WO2020071640A1 - Method and system for regenerating lithium precursor - Google Patents

Method and system for regenerating lithium precursor

Info

Publication number
WO2020071640A1
WO2020071640A1 PCT/KR2019/010914 KR2019010914W WO2020071640A1 WO 2020071640 A1 WO2020071640 A1 WO 2020071640A1 KR 2019010914 W KR2019010914 W KR 2019010914W WO 2020071640 A1 WO2020071640 A1 WO 2020071640A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium precursor
lithium
positive electrode
active material
electrode active
Prior art date
Application number
PCT/KR2019/010914
Other languages
French (fr)
Korean (ko)
Inventor
나지예
구민수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2020071640A1 publication Critical patent/WO2020071640A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • B01J2219/00481Means for mixing reactants or products in the reaction vessels by the use of moving stirrers within the reaction vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a lithium precursor regeneration method and a lithium precursor regeneration system. More particularly, it relates to a method and system for regenerating a lithium precursor from a waste lithium secondary battery.
  • the secondary battery is a battery that can be repeatedly charged and discharged, and has been widely applied to portable electronic communication devices such as camcorders, mobile phones, notebook PCs, etc. with the development of the information communication and display industries.
  • Examples of the secondary battery include lithium secondary batteries, nickel-cadmium batteries, and nickel-hydrogen batteries, among which lithium secondary batteries have high operating voltage and energy density per unit weight, and are advantageous for charging speed and weight reduction. In this regard, it has been actively developed and applied.
  • the lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator (separator), and an electrolyte impregnating the electrode assembly.
  • the lithium secondary battery may further include, for example, a pouch-shaped exterior material that accommodates the electrode assembly and the electrolyte.
  • Lithium metal oxide may be used as the positive electrode active material of the lithium secondary battery.
  • the lithium metal oxide may additionally contain transition metals such as nickel, cobalt, and manganese.
  • Lithium metal oxide as the positive electrode active material may be prepared by reacting a lithium precursor and a nickel-cobalt-manganese (NCM) precursor containing nickel, cobalt, and manganese.
  • NCM nickel-cobalt-manganese
  • the expensive metals described above are used for the positive electrode active material, 20% or more of the manufacturing cost is required to manufacture the positive electrode material.
  • the recycling method of the positive electrode active material has been conducted. In order to recycle the positive electrode active material, it is necessary to recycle the lithium precursor from the waste positive electrode with high efficiency and high purity.
  • Korean Patent Publication No. 2015-0002963 discloses a method for recovering lithium using a wet method.
  • the recovery rate is excessively reduced, and many impurities may be generated from the waste liquid.
  • One object of the present invention is to provide a method for regenerating a lithium precursor with high efficiency and high yield.
  • One object of the present invention is to provide a system for regenerating a lithium precursor with high efficiency and high yield.
  • the positive electrode active material mixture collected from the waste lithium secondary battery is supplied to a continuous flow reactor. Fluid is introduced into the continuous flow reactor to produce a counter flow. A lithium precursor aqueous solution is produced by contacting the counter flow and the positive electrode active material mixture. The lithium precursor is collected from the aqueous lithium precursor solution.
  • the fluid may be supplied to the bottom of the continuous flow reactor rather than the positive electrode active material mixture to generate a counter flow.
  • a plurality of impellers continuously arranged in the longitudinal direction of the continuous flow reactor may be rotated.
  • the flow of the counter flow may be maintained through a porous plate disposed between the impellers in the continuous flow reactor.
  • a plurality of the continuous flow reactors are continuously arranged and a counter flow can be generated within each continuous flow reactor.
  • the positive electrode active material mixture may sequentially pass through a plurality of the continuous flow reactors.
  • the aqueous lithium precursor solution in collecting the lithium precursor, may be stabilized at the top of the continuous flow reactor.
  • the lithium precursor aqueous solution may be crystallized to regenerate the lithium precursor.
  • the positive electrode active material mixture may include a preliminary lithium precursor and a transition metal-containing mixture.
  • a transition metal precursor can be collected from the transition metal containing mixture.
  • the transition metal containing mixture in collecting the transition metal precursor, may be collected from the bottom of the continuous flow reactor.
  • the transition metal-containing mixture can be treated with an acid solution.
  • the transition metal-containing mixture may be flushed in collecting the transition metal-containing mixture.
  • the preliminary lithium precursor may include lithium hydroxide, lithium oxide and lithium carbonate.
  • the lithium precursor may include lithium hydroxide.
  • the positive electrode active material mixture may be produced by reducing a waste positive electrode active material.
  • the lithium precursor regeneration system includes a positive electrode active material mixture introduction part, a continuous flow reactor for hydrating a positive electrode active material mixture supplied from the positive electrode active material mixture contact with a counter flow, and the positive electrode active material reacted with the counter flow. And a lithium precursor collection section for generating a lithium precursor from the mixture.
  • the continuous flow reactor may include a plurality of impellers arranged in the longitudinal direction of the continuous flow reactor, and at least one porous plate disposed between the impellers.
  • the impellers may include a first impeller and a second impeller disposed non-parallel to each other.
  • a plurality of continuous flow reactors can be arranged continuously.
  • a lithium precursor in the form of lithium hydroxide may be regenerated through a contact reaction between a positive electrode active material mixture and a counter flow of a fluid. Therefore, it is possible to increase the contact time between the positive electrode active material mixture and the fluid to improve the lithium precursor regeneration yield, and to reduce the amount of fluid used.
  • FIG. 1 is a process flow diagram illustrating a lithium precursor regeneration method according to example embodiments.
  • FIG. 2 is a schematic schematic diagram for describing a lithium precursor regeneration system according to example embodiments.
  • FIG 3 is a perspective view for explaining the structure of the impeller and the porous plate according to the exemplary embodiments.
  • FIG. 4 is a schematic diagram illustrating an impeller according to some example embodiments.
  • 5 to 7 are simulation graphs for explaining the lithium precursor regeneration yield using a continuous flow reactor and a batch reactor.
  • Embodiments of the present invention provide a method and system for regenerating a lithium precursor with high purity and high yield from a waste lithium secondary battery, for example, through a continuous flow reactor.
  • the term "precursor” is used to generically refer to a compound containing the specific metal to provide a specific metal included in the electrode active material.
  • 1 is a process flow diagram illustrating a lithium precursor regeneration method according to example embodiments.
  • 2 is a schematic schematic diagram for describing a lithium precursor regeneration system according to example embodiments.
  • FIGS. 1 and 2 a method and system for regenerating a lithium precursor will be described together.
  • a positive electrode active material mixture may be prepared (for example, step S10).
  • the positive electrode active material mixture may be obtained from a waste lithium-containing compound obtained from a waste lithium secondary battery.
  • the waste lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode may include a positive electrode active material layer and a negative electrode active material layer coated on the positive electrode current collector and the negative electrode current collector, respectively.
  • the positive electrode active material included in the positive electrode active material layer may include an oxide containing lithium and a transition metal.
  • the positive electrode active material may include a compound represented by Formula 1 below.
  • M1, M2 and M3 are transition metals selected from Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga or B Can be In Formula 1, 0 ⁇ x ⁇ 1.1, 2 ⁇ y ⁇ 2.02, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ a + b + c ⁇ 1.
  • the positive electrode active material may be NCM-based lithium oxide including nickel, cobalt, and manganese.
  • NCM-based lithium oxide as the positive electrode active material may be prepared by reacting a lithium precursor and an NCM precursor (eg, NCM oxide) with each other through, for example, a co-precipitation reaction.
  • the embodiments of the present invention can be commonly applied to a positive electrode material containing the NCM-based lithium oxide, as well as a lithium-containing positive electrode material.
  • the lithium precursor may include lithium hydroxide (LiOH), lithium oxide (Li 2 O), or lithium carbonate (Li 2 CO 3 ).
  • Lithium hydroxide may be advantageous as a lithium precursor in terms of charging / discharging characteristics, life characteristics, and high temperature stability of the lithium secondary battery.
  • a deposition reaction may be caused on the separator to weaken life stability.
  • a method of regenerating lithium hydroxide as a lithium precursor at a high selectivity may be provided.
  • the positive electrode can be recovered by separating the positive electrode from the waste lithium secondary battery.
  • the positive electrode includes a positive electrode current collector (for example, aluminum (Al)) and a positive electrode active material layer as described above, and the positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material described above. .
  • the conductive material may include, for example, carbon-based materials such as graphite, carbon black, graphene, and carbon nanotubes.
  • the binder is, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate and resin materials such as (polymethylmethacrylate).
  • a preliminary positive electrode active material mixture may be prepared from the recovered positive electrode.
  • the preliminary positive electrode active material mixture may be prepared in powder form through a physical method such as grinding treatment.
  • the preliminary positive electrode active material mixture includes a powder of a lithium-transition metal oxide, for example, NCM-based lithium oxide powder (eg, Li (NCM) O 2 ).
  • the anode recovered before the crushing treatment may be heat treated. Accordingly, desorption of the positive electrode current collector during the pulverization treatment may be promoted, and the binder and the conductive material may be at least partially removed.
  • the heat treatment temperature may be performed at, for example, about 100 to 500 ° C, preferably about 350 to 450 ° C.
  • the preliminary positive electrode active material mixture may be obtained after immersing the recovered positive electrode in an organic solvent.
  • the positive electrode current collector may be separated and removed by immersing the recovered positive electrode in an organic solvent, and the positive electrode active material may be selectively extracted through centrifugation.
  • the positive electrode current collector component such as aluminum is substantially completely separated and removed, and the preliminary positive electrode active material mixture having the content of carbon-based components derived from the conductive material and the binder removed or reduced can be obtained.
  • the preliminary positive electrode active material mixture (eg, waste positive electrode active material) may be reduced to generate the positive electrode active material mixture.
  • the preliminary positive electrode active material mixture may be hydrogen-reduced to form a positive electrode active material mixture.
  • the positive electrode active material mixture may include a hydrogen reduction reaction of a lithium-transition metal oxide contained in the preliminary positive electrode active material mixture.
  • the preliminary precursor mixture may include a preliminary lithium precursor and a transition metal-containing mixture.
  • the preliminary lithium precursor may include lithium hydroxide, lithium oxide and / or lithium carbonate. According to exemplary embodiments, since the preliminary lithium precursor is obtained through a hydrogen reduction reaction, the mixed content of lithium carbonate may be reduced.
  • the transition metal-containing reactant may include Ni, Co, NiO, CoO, MnO, and the like.
  • the positive electrode active material mixture may be introduced into a continuous flow reactor (eg, CSTR) 100 (eg, step S20).
  • CSTR continuous flow reactor
  • the continuous flow reactor 100 may be connected to a first flow path 102a provided as a supply portion of the positive electrode active material mixture.
  • the continuous flow reactor 100 may be connected to a second flow path 102b provided as a counter flow forming fluid supply unit, which will be described later.
  • pure water may be supplied through the second flow path 102b to generate a counter flow in the reactor body 130.
  • the first flow path 102a may be disposed above the continuous flow reactor 100 than the second flow path 102b.
  • the positive electrode active material mixture may be supplied through the first flow path 102a disposed on the second flow path 102b.
  • a positive electrode active material mixture having a higher density is supplied to the first flow path 102a disposed above the continuous flow reactor 100 than the second flow path 102b, and disposed at the lower portion of the continuous flow reactor 100.
  • a fluid having a low density is supplied to the second flow path 102b, and a counter flow (countercurrent, flow) may be formed by a difference in density between the positive electrode active material mixture and the fluid.
  • the positive electrode active material mixture is in contact with the counter flow rising from the bottom to the top of the reactor body 130, a hydration reaction may be induced. Accordingly, an aqueous lithium precursor solution may be generated (eg, step S30).
  • the continuous flow reactor 100 may include a reactor body 130 and a plurality of impellers 110 included inside the reactor body 130.
  • the impellers 110 for example, share one rotating shaft 115 and may be continuously disposed along the longitudinal direction of the reactor body 130.
  • At least one porous plate 120 may be disposed between the impellers 110.
  • the counter flow may continuously rise through a fluid continuously supplied through the second flow path 102b. Therefore, the time during which the positive electrode active material mixture stays in the reactor body 130 and the hydration reaction can be increased can improve the regeneration yield.
  • a plurality of impellers continuously arranged in the longitudinal direction of the continuous flow reactor 100 may be rotated. Therefore, the contact efficiency between the positive electrode active material mixture and the counter flow increases due to the rotation of the impellers, thereby improving the production efficiency of the lithium precursor aqueous solution.
  • the porous plate 120 is disposed between the impellers 110, the counter flow is prevented from flowing backward or turbulence, and the rise of the counter flow can be maintained. Therefore, since the contact time between the positive electrode active material mixture and the counter flow is increased, the regeneration yield of the lithium precursor through the hydration reaction may be further improved. In addition, it is possible to reduce the amount of fluid for maintaining the counter flow rise.
  • the positive electrode active material mixture may include a preliminary lithium precursor and a transition metal-containing mixture 70.
  • the preliminary lithium precursor may be converted into a lithium precursor 60 containing lithium hydroxide by hydration reaction through contact with the counter flow.
  • lithium oxide and lithium carbonate contained in the preliminary lithium precursor may be converted into lithium hydroxide.
  • the lithium precursor 60 may be substantially composed of lithium hydroxide through continuous reaction with the counter flow.
  • the lithium precursor 60 may be substantially dissolved in the counter flow containing water to rise together with the counter flow in the form of an aqueous solution.
  • the transition metal-containing mixture 70 remains in a solid state and may move to the bottom of the reactor 100 by gravity. For example, the transition metal-containing mixture 70 may settle to the bottom of the reactor 100 through pores included in the porous plate 120.
  • a distribution gradient of the lithium precursor 60 and the transition metal-containing mixture 70 may be formed inside the reactor body 130.
  • the distribution density of the lithium precursor 60 may be increased toward the upper portion of the reactor body 130.
  • a plurality of continuous flow reactors 100 may be continuously arranged.
  • a counter flow is generated in each continuous flow reactor 100, and the positive electrode active material mixture sequentially passes through a plurality of continuous flow reactors and is in continuous contact with the counter flow to induce a hydration reaction. Therefore, the conversion rate of the preliminary lithium precursor to lithium hydroxide can reach substantially 100%.
  • the transition metal-containing mixture is collected from each continuous flow reactor 100, the resolution and yield of the transition metal-containing mixture can also be improved.
  • the reactor body 130 includes a temperature-adjustable heater, and for the hydration reaction efficiency, the temperature inside the reactor body 130 may be maintained within a range of about 30 to 95 ° C.
  • a lithium precursor and a transition metal precursor may be collected from the reactor body 130 (eg, step S40).
  • the lithium precursor 60 may be recovered from the lithium precursor collection unit 150 connected to the upper portion of the reactor body 130.
  • the lithium precursor collection unit 150 may be provided as a stabilization unit of a lithium precursor aqueous solution.
  • the lithium precursor aqueous solution stays or circulates in the lithium precursor collection unit 150, and the transition metal-containing mixture 70 mixed in the lithium precursor aqueous solution is separated and removed under the reactor body 130. You can.
  • the lithium precursor collection unit 150 may have a larger diameter or cross-sectional area than the reactor body 100. Therefore, since the flow rate in the lithium precursor collection unit 150 of the lithium precursor aqueous solution decreases, the high-density transition metal-containing mixture precipitates, so that the high-purity lithium precursor can be easily collected.
  • the lithium precursor 60 collected in the lithium precursor collection unit 150 may be recovered through the first recovery channel 160a. Thereafter, the lithium precursor in the form of lithium hydroxide may be regenerated through a crystallization process or the like.
  • the transition metal-containing mixture 70 may be collected through the transition metal precursor collection unit 140.
  • the transition metal-containing mixture 70 may not be dissolved in the counter flow and may be precipitated in the transition metal precursor collection unit 140 through the porous plate 120 in a solid form.
  • the transition metal precursor collection unit 140 may be provided as a flushing or flushing section.
  • lithium or a lithium precursor remaining on the surface of the transition metal-containing mixture 70 may be washed with water by supplying water from the bottom of the reactor body 130. Accordingly, the substantially pure transition metal-containing mixture 70 may be collected in the transition metal precursor collection unit 140.
  • the transition metal-containing mixture 70 may be recovered through the second recovery channel 160b.
  • the recovered transition metal-containing mixture 70 may be acid treated through a filtration or separation process. Accordingly, transition metal precursors in the acid salt form of each transition metal can be formed.
  • sulfuric acid may be used as the acid treatment solution.
  • NiSO 4 , MnSO 4 and CoSO 4 may be recovered as the transition metal precursor, respectively.
  • the purity and recovery rate of the lithium precursor may be increased through a distribution gradient utilizing the column type continuous flow reactor 100.
  • the lithium precursor in the form of lithium hydroxide can be obtained in high yield with a small amount of water through a continuous hydration reaction using a counter flow.
  • FIG 3 is a perspective view for explaining the structure of the impeller and the porous plate according to the exemplary embodiments.
  • a plurality of impellers 110 may be arranged along the rotation axis 115 extending in the longitudinal direction of the reactor body 130.
  • a porous plate 120 may be disposed between the impellers 110.
  • Each impeller 110 may include a plurality of blades.
  • the four blades may be arranged around the rotation axis 115 such that they intersect at right angles to each other.
  • the blade arrangement shown in FIG. 3 is exemplary, and may be appropriately modified according to the shape of the reactor body 130.
  • FIG. 4 is a schematic diagram illustrating an impeller according to some example embodiments.
  • impellers may be arranged non-parallel to each other.
  • the impeller may include a first impeller 110a and a second impeller 110b.
  • the plurality of first impellers 110a and the second impellers 110b may be alternately arranged alternately along the rotation axis 115.
  • the blades of the first impeller 110a and the second impeller 110b may be disposed non-parallel to each other.
  • the first impeller 110a may be disposed substantially perpendicular to the rotating shaft 115
  • the second impeller 110b may be disposed obliquely to the rotating shaft 115.
  • 5 to 7 are simulation graphs for explaining lithium precursor regeneration yield using a continuous flow reactor (CSTR) and a batch reactor.
  • the x-axis represents the reactor residence time (hr) of the positive electrode active material mixture
  • the y-axis represents the yield (LiOH Yield) of the lithium precursor.
  • the dissolution rate constant refers to the rate at which LiOH dissolves in water, and is proportional to the dissolution concentration and the contact area with water.
  • FIG. 6 is a graph showing a change in the yield of lithium precursors according to the number of CSTRs or the number of counter flows, assuming that the dissolution rate constant of the CSTR is 2 times that of a batch reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A method for regenerating a lithium precursor according to embodiments of the present invention comprises: supplying, to a continuous flow reactor, a cathode active material mixture collected from a waste lithium secondary battery; introducing a fluid into the continuous flow reactor to produce a counter flow; bringing the counter flow into contact with the cathode active material mixture to produce a lithium precursor aqueous solution; and collecting a lithium precursor from the lithium precursor aqueous solution. The present invention can improve the yield and efficiency of lithium precursor regeneration through a continuous contact reaction with the counter flow.

Description

리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템Lithium precursor regeneration method and lithium precursor regeneration system
본 발명은 리튬 전구체 재생 방법 및 리튬 전구체 재생 시스템에 관한 것이다. 보다 상세하게는, 폐 리튬 이차 전지로부터 리튬 전구체를 재생하는 방법 및 시스템에 관한 것이다.The present invention relates to a lithium precursor regeneration method and a lithium precursor regeneration system. More particularly, it relates to a method and system for regenerating a lithium precursor from a waste lithium secondary battery.
이차 전지는 충전 및 방전이 반복 가능한 전지로서, 정보 통신 및 디스플레이 산업의 발전에 따라 캠코더, 휴대폰, 노트북 PC 등과 같은 휴대용 전자통신 기기에 널리 적용되어 왔다. 이차 전지로서 예를 들면, 리튬 이차 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 들 수 있으며, 이들 중 리튬 이차 전지가 작동 전압 및 단위 중량당 에너지 밀도가 높으며, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되어 왔다.The secondary battery is a battery that can be repeatedly charged and discharged, and has been widely applied to portable electronic communication devices such as camcorders, mobile phones, notebook PCs, etc. with the development of the information communication and display industries. Examples of the secondary battery include lithium secondary batteries, nickel-cadmium batteries, and nickel-hydrogen batteries, among which lithium secondary batteries have high operating voltage and energy density per unit weight, and are advantageous for charging speed and weight reduction. In this regard, it has been actively developed and applied.
리튬 이차 전지는 양극, 음극 및 분리막(세퍼레이터)를 포함하는 전극 조립체, 및 상기 전극 조립체를 함침시키는 전해질을 포함할 수 있다. 상기 리튬 이차 전지는 상기 전극 조립체 및 전해질을 수용하는 예를 들면, 파우치 형태의 외장재를 더 포함할 수 있다.The lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator (separator), and an electrolyte impregnating the electrode assembly. The lithium secondary battery may further include, for example, a pouch-shaped exterior material that accommodates the electrode assembly and the electrolyte.
상기 리튬 이차 전지의 양극 활물질로서 리튬 금속 산화물이 사용될 수 있다. 상기 리튬 금속 산화물은 추가적으로 니켈, 코발트, 망간과 같은 전이금속을 함께 함유할 수 있다.Lithium metal oxide may be used as the positive electrode active material of the lithium secondary battery. The lithium metal oxide may additionally contain transition metals such as nickel, cobalt, and manganese.
상기 양극 활물질로서 리튬 금속 산화물은 리튬 전구체 및 니켈, 코발트 및 망간을 함유하는 니켈-코발트-망간(NCM) 전구체를 반응시켜 제조될 수 있다.Lithium metal oxide as the positive electrode active material may be prepared by reacting a lithium precursor and a nickel-cobalt-manganese (NCM) precursor containing nickel, cobalt, and manganese.
상기 양극 활물질에 상술한 고비용의 유가 금속들이 사용됨에 따라, 양극재 제조에 제조 비용의 20% 이상이 소요되고 있다. 또한, 최근 환경보호 이슈가 부각됨에 따라, 양극 활물질의 리싸이클 방법에 대한 연구가 진행되고 있다. 상기 양극 활물질 리싸이클을 위해서는 폐 양극으로부터 상기 리튬 전구체를 고효율, 고순도로 재생할 필요가 있다.As the expensive metals described above are used for the positive electrode active material, 20% or more of the manufacturing cost is required to manufacture the positive electrode material. In addition, as environmental protection issues have recently emerged, research on the recycling method of the positive electrode active material has been conducted. In order to recycle the positive electrode active material, it is necessary to recycle the lithium precursor from the waste positive electrode with high efficiency and high purity.
예를 들면, 한국공개특허공보 제2015-0002963호에는 습식 방법을 활용한 리튬의 회수 방법을 개시하고 있다. 그러나, 코발트, 니켈 등을 추출하고 남은 폐액으로부터 습식 추출에 의해 리튬을 회수하므로 회수율이 지나치게 저감되며, 폐액으로부터 불순물이 다수 발생할 수 있다.For example, Korean Patent Publication No. 2015-0002963 discloses a method for recovering lithium using a wet method. However, since lithium is recovered by wet extraction from the remaining waste liquid after extracting cobalt, nickel, and the like, the recovery rate is excessively reduced, and many impurities may be generated from the waste liquid.
본 발명의 일 과제는 고효율성, 고수율로 리튬 전구체를 재생하는 방법을 제공하는 것이다.One object of the present invention is to provide a method for regenerating a lithium precursor with high efficiency and high yield.
본 발명의 일 과제는 고효율성, 고수율로 리튬 전구체를 재생하는 시스템을 제공하는 것이다.One object of the present invention is to provide a system for regenerating a lithium precursor with high efficiency and high yield.
예시적인 실시예들에 따른 리튬 전구체 재생 방법에 있어서, 폐 리튬 이차 전지로부터 수집된 양극 활물질 혼합물을 연속 흐름 반응기로 공급한다. 상기 연속 흐름 반응기 내로 유체를 도입하여 카운터 플로우를 생성한다. 상기 카운터 플로우 및 상기 양극 활물질 혼합물을 접촉시켜 리튬 전구체 수용액을 생성한다. 상기 리튬 전구체 수용액으로부터 리튬 전구체를 수집한다.In the lithium precursor regeneration method according to the exemplary embodiments, the positive electrode active material mixture collected from the waste lithium secondary battery is supplied to a continuous flow reactor. Fluid is introduced into the continuous flow reactor to produce a counter flow. A lithium precursor aqueous solution is produced by contacting the counter flow and the positive electrode active material mixture. The lithium precursor is collected from the aqueous lithium precursor solution.
일부 실시예들에 있어서, 상기 유체를 상기 양극 활물질 혼합물보다 연속 흐름 반응기의 하부로 공급하여 카운터 플로우를 생성할 수 있다.In some embodiments, the fluid may be supplied to the bottom of the continuous flow reactor rather than the positive electrode active material mixture to generate a counter flow.
일부 실시예들에 있어서, 상기 리튬 전구체 수용액을 생성함에 있어, 상기 연속 흐름 반응기의 길이 방향으로 연속 배열된 복수의 임펠러들을 회전 시킬 수 있다.In some embodiments, in generating the aqueous lithium precursor solution, a plurality of impellers continuously arranged in the longitudinal direction of the continuous flow reactor may be rotated.
일부 실시예들에 있어서, 상기 리튬 전구체 수용액을 생성함에 있어, 상기 연속 흐름 반응기 내에서 상기 임펠러들 사이에 배치된 다공 플레이트를 통해 상기 카운터 플로우의 흐름을 유지할 수 있다.In some embodiments, in generating the aqueous solution of the lithium precursor, the flow of the counter flow may be maintained through a porous plate disposed between the impellers in the continuous flow reactor.
일부 실시예들에 있어서, 복수의 상기 연속 흐름 반응기들이 연속 배치되며 각 연속 흐름 반응기 내에서 카운터 플로우가 생성될 수 있다.In some embodiments, a plurality of the continuous flow reactors are continuously arranged and a counter flow can be generated within each continuous flow reactor.
일부 실시예들에 있어서, 상기 양극 활물질 혼합물은 복수의 상기 연속 흐름 반응기들을 순차적으로 통과할 수 있다.In some embodiments, the positive electrode active material mixture may sequentially pass through a plurality of the continuous flow reactors.
일부 실시예들에 있어서, 상기 리튬 전구체를 수집함에 있어, 상기 연속 흐름 반응기의 상부에서 상기 리튬 전구체 수용액을 안정화시킬 수 있다. 상기 리튬 전구체 수용액을 결정화하여 리튬 전구체를 재생할 수 있다.In some embodiments, in collecting the lithium precursor, the aqueous lithium precursor solution may be stabilized at the top of the continuous flow reactor. The lithium precursor aqueous solution may be crystallized to regenerate the lithium precursor.
일부 실시예들에 있어서, 상기 양극 활물질 혼합물은 예비 리튬 전구체 및 전이금속 함유 혼합물을 포함할 수 있다.In some embodiments, the positive electrode active material mixture may include a preliminary lithium precursor and a transition metal-containing mixture.
일부 실시예들에 있어서, 상기 전이 금속 함유 혼합물로부터 전이금속 전구체를 수집할 수 있다.In some embodiments, a transition metal precursor can be collected from the transition metal containing mixture.
일부 실시예들에 있어서, 상기 전이금속 전구체를 수집함에 있어서, 상기 연속 흐름 반응기의 하부로부터 상기 전이 금속 함유 혼합물을 수집할 수 있다. 상기 전이 금속 함유 혼합물을 산 용액으로 처리할 수 있다.In some embodiments, in collecting the transition metal precursor, the transition metal containing mixture may be collected from the bottom of the continuous flow reactor. The transition metal-containing mixture can be treated with an acid solution.
일부 실시예들에 있어서, 상기 전이 금속 함유 혼합물을 수집함에 있어 상기 전이 금속 함유 혼합물을 플러싱할 수 있다.In some embodiments, the transition metal-containing mixture may be flushed in collecting the transition metal-containing mixture.
일부 실시예들에 있어서, 상기 예비 리튬 전구체는 리튬 수산화물, 리튬 산화물 및 리튬 탄산화물을 포함할 수 있다.In some embodiments, the preliminary lithium precursor may include lithium hydroxide, lithium oxide and lithium carbonate.
일부 실시예들에 있어서, 상기 리튬 전구체는 리튬 수산화물을 포함할 수 있다.In some embodiments, the lithium precursor may include lithium hydroxide.
일부 실시예들에 있어서, 상기 양극 활물질 혼합물은 폐 양극 활물질을 환원시켜 생성될 수 있다.In some embodiments, the positive electrode active material mixture may be produced by reducing a waste positive electrode active material.
예시적인 실시예들에 따른 리튬 전구체 재생 시스템은 양극 활물질 혼합물 도입부, 상기 양극 활물질 혼합물 도입부로부터 공급된 양극 활물질 혼합물을 카운터 플로우와 접촉시켜 수화시키는 연속 흐름 반응기, 및 상기 카운터 플로우와 반응한 상기 양극 활물질 혼합물로부터 리튬 전구체를 생성하는 리튬 전구체 수집부를 포함한다.The lithium precursor regeneration system according to the exemplary embodiments includes a positive electrode active material mixture introduction part, a continuous flow reactor for hydrating a positive electrode active material mixture supplied from the positive electrode active material mixture contact with a counter flow, and the positive electrode active material reacted with the counter flow. And a lithium precursor collection section for generating a lithium precursor from the mixture.
일부 실시예들에 있어서, 상기 연속 흐름 반응기는 상기 연속 흐름 반응기의 길이 방향으로 배열된 복수의 임펠러들, 및 상기 임펠러들 사이에 배치된 적어도 하나의 다공 플레이트를 포함할 수 있다.In some embodiments, the continuous flow reactor may include a plurality of impellers arranged in the longitudinal direction of the continuous flow reactor, and at least one porous plate disposed between the impellers.
일부 실시예들에 있어서, 상기 임펠러들은 서로 비평행하게 배치된 제1 임펠러 및 제2 임펠러를 포함할 수 있다.In some embodiments, the impellers may include a first impeller and a second impeller disposed non-parallel to each other.
일부 실시예들에 있어서, 복수의 연속 흐름 반응기들이 연속 배치될 수 있다.In some embodiments, a plurality of continuous flow reactors can be arranged continuously.
전술한 예시적인 실시예들에 따르면, 양극 활물질 혼합물 및 유체의 카운터 플로우 사이의 접촉 반응을 통해 예를 들면, 리튬 수산화물 형태의 리튬 전구체를 재생할 수 있다. 따라서, 양극 활물질 혼합물과 유체의 접촉시간을 늘려 리튬 전구체 재생 수율을 향상시키며, 및 유체의 사용량을 감소시킬 수 있다.According to the exemplary embodiments described above, for example, a lithium precursor in the form of lithium hydroxide may be regenerated through a contact reaction between a positive electrode active material mixture and a counter flow of a fluid. Therefore, it is possible to increase the contact time between the positive electrode active material mixture and the fluid to improve the lithium precursor regeneration yield, and to reduce the amount of fluid used.
또한, 연속 흐름 반응기를 사용한 연속 공정을 활용하여 배치(batch) 방식에 비해 반응 속도 및 재생 수율을 현저히 증가시킬 수 있다.In addition, by utilizing a continuous process using a continuous flow reactor it is possible to significantly increase the reaction rate and regeneration yield compared to the batch (batch) method.
도 1은 예시적인 실시예들에 따른 리튬 전구체 재생 방법을 설명하기 위한 공정 흐름도이다.1 is a process flow diagram illustrating a lithium precursor regeneration method according to example embodiments.
도 2은 예시적인 실시예들에 따른 리튬 전구체 재생 시스템을 설명하기 위한 개략적인 모식도이다.2 is a schematic schematic diagram for describing a lithium precursor regeneration system according to example embodiments.
도 3은 예시적인 실시예들에 따른 임펠러 및 다공 플레이트의 구조를 설명하기 위한 사시도이다.3 is a perspective view for explaining the structure of the impeller and the porous plate according to the exemplary embodiments.
도 4는 일부 예시적인 실시예들에 따른 임펠러를 나타내는 개략적인 도면이다.4 is a schematic diagram illustrating an impeller according to some example embodiments.
도 5 내지 도 7은 연속 흐름 반응기 및 배치 반응기를 이용한 리튬 전구체 재생 수율을 설명하기 위한 시뮬레이션 그래프들이다.5 to 7 are simulation graphs for explaining the lithium precursor regeneration yield using a continuous flow reactor and a batch reactor.
본 발명의 실시예들은 예를 들면, 연속 흐름 반응기를 통해 폐 리튬 이차 전지로부터 고순도, 고수율로 리튬 전구체를 재생하는 방법 및 시스템을 제공한다.Embodiments of the present invention provide a method and system for regenerating a lithium precursor with high purity and high yield from a waste lithium secondary battery, for example, through a continuous flow reactor.
이하에서는, 첨부된 도면을 참조로 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 그러나 이는 예시적인 것에 불과하며 본 발명이 예시적으로 설명된 구체적인 실시 형태로 제한되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, this is merely exemplary and the present invention is not limited to the specific exemplary embodiments.
본 명세서에 사용되는 용어 "전구체"는 전극 활물질에 포함되는 특정 금속을 제공하기 위해 상기 특정 금속을 포함하는 화합물을 포괄적으로 지칭하는 것으로 사용된다.As used herein, the term "precursor" is used to generically refer to a compound containing the specific metal to provide a specific metal included in the electrode active material.
도 1은 예시적인 실시예들에 따른 리튬 전구체 재생 방법을 설명하기 위한 공정 흐름도이다. 도 2은 예시적인 실시예들에 따른 리튬 전구체 재생 시스템을 설명하기 위한 개략적인 모식도이다.1 is a process flow diagram illustrating a lithium precursor regeneration method according to example embodiments. 2 is a schematic schematic diagram for describing a lithium precursor regeneration system according to example embodiments.
이하에서는 도 1 및 도 2를 참조하며, 리튬 전구체 재생 방법 및 시스템을 함께 설명한다.Hereinafter, referring to FIGS. 1 and 2, a method and system for regenerating a lithium precursor will be described together.
도 1을 참조하면, 양극 활물질 혼합물을 준비할 수 있다(예를 들면, 단계 S10). 예시적인 실시예들에 따르면, 상기 양극 활물질 혼합물은 폐 리튬 이차 전지로부터 수득된 폐 리튬 함유 화합물로부터 획득될 수 있다.1, a positive electrode active material mixture may be prepared (for example, step S10). According to exemplary embodiments, the positive electrode active material mixture may be obtained from a waste lithium-containing compound obtained from a waste lithium secondary battery.
상기 폐 리튬 이차 전지는 양극, 음극 및 상기 양극 및 음극 사이에 개재된 분리막을 포함하는 전극 조립체를 포함할 수 있다. 상기 양극 및 음극은 각각 양극 집전체 및 음극 집전체 상에 코팅된 양극 활물질층 및 음극 활물질층을 포함할 수 있다.The waste lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode and the negative electrode may include a positive electrode active material layer and a negative electrode active material layer coated on the positive electrode current collector and the negative electrode current collector, respectively.
예를 들면, 상기 양극 활물질층에 포함된 양극 활물질은 리튬 및 전이금속을 함유하는 산화물을 포함할 수 있다.For example, the positive electrode active material included in the positive electrode active material layer may include an oxide containing lithium and a transition metal.
일부 실시예들에 있어서, 상기 양극 활물질은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.In some embodiments, the positive electrode active material may include a compound represented by Formula 1 below.
[화학식 1][Formula 1]
Li xM1 aM2 bM3 cO y Li x M1 a M2 b M3 c O y
화학식 1 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 또는 B 중에서 선택되는 전이 금속일 수 있다. 화학식 1 중, 0<x≤1.1, 2≤y≤2.02, 0<a<1, 0<b<1, 0<c<1, 0<a+b+c≤1일 수 있다.In Formula 1, M1, M2 and M3 are transition metals selected from Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga or B Can be In Formula 1, 0 <x≤1.1, 2≤y≤2.02, 0 <a <1, 0 <b <1, 0 <c <1, 0 <a + b + c≤1.
일부 실시예들에 있어서, 상기 양극 활물질은 니켈, 코발트 및 망간을 포함하는 NCM계 리튬 산화물일 수 있다. 상기 양극 활물질로서 NCM계 리튬 산화물은 리튬 전구체 및 NCM 전구체(예를 들면, NCM 산화물)을 예를 들면 공침 반응을 통해 서로 반응시켜 제조될 수 있다.In some embodiments, the positive electrode active material may be NCM-based lithium oxide including nickel, cobalt, and manganese. NCM-based lithium oxide as the positive electrode active material may be prepared by reacting a lithium precursor and an NCM precursor (eg, NCM oxide) with each other through, for example, a co-precipitation reaction.
그러나, 본 발명의 실시예들은 상기 NCM계 리튬 산화물을 포함하는 양극재 뿐만 아니라, 리튬 함유 양극재에 공통적으로 적용될 수 있다.However, the embodiments of the present invention can be commonly applied to a positive electrode material containing the NCM-based lithium oxide, as well as a lithium-containing positive electrode material.
상기 리튬 전구체는 리튬 수산화물(LiOH), 리튬 산화물(Li 2O) 또는 리튬 탄산화물(Li 2CO 3)을 포함할 수 있다. 리튬 이차 전지의 충/방전 특성, 수명 특성, 고온 안정성 등의 측면에서 리튬 수산화물이 리튬 전구체로서 유리할 수 있다. 예를 들면, 리튬 탄산화물의 경우 분리막 상에 침적 반응을 초래하여 수명 안정성을 약화시킬 수 있다.The lithium precursor may include lithium hydroxide (LiOH), lithium oxide (Li 2 O), or lithium carbonate (Li 2 CO 3 ). Lithium hydroxide may be advantageous as a lithium precursor in terms of charging / discharging characteristics, life characteristics, and high temperature stability of the lithium secondary battery. For example, in the case of lithium carbonate, a deposition reaction may be caused on the separator to weaken life stability.
이에 따라, 본 발명의 실시예들에 따르면 리튬 전구체로서 리튬 수산화물을 고 선택비로 재생하는 방법이 제공될 수 있다.Accordingly, according to embodiments of the present invention, a method of regenerating lithium hydroxide as a lithium precursor at a high selectivity may be provided.
예를 들면, 상기 폐 리튬 이차 전지로부터 상기 양극을 분리하여 폐 양극을 회수할 수 있다. 상기 양극은 상술한 바와 같이 양극 집전체(예를 들면, 알루미늄(Al)) 및 양극 활물질층을 포함하며, 상기 양극 활물질층은 상술한 양극 활물질과 함께, 도전재 및 결합제를 함께 포함할 수 있다.For example, the positive electrode can be recovered by separating the positive electrode from the waste lithium secondary battery. The positive electrode includes a positive electrode current collector (for example, aluminum (Al)) and a positive electrode active material layer as described above, and the positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material described above. .
상기 도전재는 예를 들면, 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등과 같은 탄소계열 물질을 포함할 수 있다. 상기 결합제는 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 수지 물질을 포함할 수 있다.The conductive material may include, for example, carbon-based materials such as graphite, carbon black, graphene, and carbon nanotubes. The binder is, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate and resin materials such as (polymethylmethacrylate).
회수된 상기 양극으로부터 예비 양극 활물질 혼합물을 준비할 수 있다. 일부 실시예들에 있어서, 상기 예비 양극 활물질 혼합물은 분쇄 처리와 같은 물리적 방법을 통해 분말 형태로 제조될 수 있다. 상기 예비 양극 활물질 혼합물은 리튬-전이금속 산화물의 분말을 포함하며, 예를 들면 NCM계 리튬 산화물 분말(예를 들면, Li(NCM)O 2)을 포함할 수 있다.A preliminary positive electrode active material mixture may be prepared from the recovered positive electrode. In some embodiments, the preliminary positive electrode active material mixture may be prepared in powder form through a physical method such as grinding treatment. The preliminary positive electrode active material mixture includes a powder of a lithium-transition metal oxide, for example, NCM-based lithium oxide powder (eg, Li (NCM) O 2 ).
일부 실시예들에 있어서, 상기 분쇄 처리 전에 회수된 상기 양극을 열처리할 수도 있다. 이에 따라, 상기 분쇄 처리 시 양극 집전체의 탈착을 촉진할 수 있으며, 상기 결합제 및 도전재가 적어도 부분적으로 제거될 수 있다. 상기 열처리 온도는 예를 들면, 약 100 내지 500℃, 바람직하게는 약 350 내지 450℃에서 수행될 수 있다.In some embodiments, the anode recovered before the crushing treatment may be heat treated. Accordingly, desorption of the positive electrode current collector during the pulverization treatment may be promoted, and the binder and the conductive material may be at least partially removed. The heat treatment temperature may be performed at, for example, about 100 to 500 ° C, preferably about 350 to 450 ° C.
일부 실시예들에 있어서, 상기 예비 양극 활물질 혼합물은 회수된 상기 양극을 유기 용매에 침지시킨 후 수득될 수 있다. 예를 들면, 회수된 상기 양극을 유기 용매에 침지시켜 상기 양극 집전체를 분리 제거하고, 원심 분리를 통해 상기 양극 활물질을 선택적으로 추출할 수 있다. In some embodiments, the preliminary positive electrode active material mixture may be obtained after immersing the recovered positive electrode in an organic solvent. For example, the positive electrode current collector may be separated and removed by immersing the recovered positive electrode in an organic solvent, and the positive electrode active material may be selectively extracted through centrifugation.
상술한 공정들을 통해 실질적으로 알루미늄과 같은 양극 집전체 성분이 실질적으로 완전히 분리 제거되고, 상기 도전재 및 결합제로부터 유래된 탄소계 성분들의 함량이 제거 또는 감소된 상기 예비 양극 활물질 혼합물을 획득할 수 있다.Through the above-described processes, the positive electrode current collector component such as aluminum is substantially completely separated and removed, and the preliminary positive electrode active material mixture having the content of carbon-based components derived from the conductive material and the binder removed or reduced can be obtained. .
일부 실시예들에 있어서, 상기 예비 양극 활물질 혼합물(예를 들면, 폐 양극 활물질)을 환원시켜 상기 양극 활물질 혼합물을 생성할 수 있다. 예를 들면, 상기 예비 양극 활물질 혼합물을 수소 환원 처리하여 양극 활물질 혼합물을 형성할 수 있다.In some embodiments, the preliminary positive electrode active material mixture (eg, waste positive electrode active material) may be reduced to generate the positive electrode active material mixture. For example, the preliminary positive electrode active material mixture may be hydrogen-reduced to form a positive electrode active material mixture.
상기 양극 활물질 혼합물은 상기 예비 양극 활물질 혼합물에 포함된 리튬-전이금속 산화물의 수소 환원 반응물을 포함할 수 있다. 상기 리튬-전이금속 산화물로서 NCM계 리튬 산화물이 사용된 경우, 상기 예비 전구체 혼합물은 예비 리튬 전구체 및 전이금속 함유 혼합물을 포함할 수 있다.The positive electrode active material mixture may include a hydrogen reduction reaction of a lithium-transition metal oxide contained in the preliminary positive electrode active material mixture. When an NCM-based lithium oxide is used as the lithium-transition metal oxide, the preliminary precursor mixture may include a preliminary lithium precursor and a transition metal-containing mixture.
상기 예비 리튬 전구체는 리튬 수산화물, 리튬 산화물 및/또는 리튬 탄산화물을 포함할 수 있다. 예시적인 실시예들에 따르면, 수소 환원 반응을 통해 상기 예비 리튬 전구체가 획득되므로 리튬 탄산화물의 혼합 함량을 감소시킬 수 있다.The preliminary lithium precursor may include lithium hydroxide, lithium oxide and / or lithium carbonate. According to exemplary embodiments, since the preliminary lithium precursor is obtained through a hydrogen reduction reaction, the mixed content of lithium carbonate may be reduced.
상기 전이금속 함유 반응물은 Ni, Co, NiO, CoO, MnO 등을 포함할 수 있다.The transition metal-containing reactant may include Ni, Co, NiO, CoO, MnO, and the like.
도 1 및 도 2를 함께 참조하면, 상기 양극 활물질 혼합물을 연속 흐름 반응기(예를 들면, CSTR)(100) 내부로 도입할 수 있다(예를 들면, 단계 S20).1 and 2 together, the positive electrode active material mixture may be introduced into a continuous flow reactor (eg, CSTR) 100 (eg, step S20).
연속 흐름 반응기(100)는 상기 양극 활물질 혼합물의 공급부로 제공되는 제1 유로(102a)와 연결될 수 있다. 또한, 연속 흐름 반응기(100)는 후술하는 카운터 플로우 형성 유체 공급부로 제공되는 제2 유로(102b)와 연결될 수 있다.The continuous flow reactor 100 may be connected to a first flow path 102a provided as a supply portion of the positive electrode active material mixture. In addition, the continuous flow reactor 100 may be connected to a second flow path 102b provided as a counter flow forming fluid supply unit, which will be described later.
제2 유로(102b)를 통해 예를 들면, 순수가 공급되어 반응기 바디(130) 내에서 카운터 플로우가 생성될 수 있다.For example, pure water may be supplied through the second flow path 102b to generate a counter flow in the reactor body 130.
예시적인 실시예들에 있어서, 제1 유로(102a)는 제2 유로(102b)보다 연속 흐름 반응기(100)의 상부에 배치될 수 있다. 상술한 바와 같이, 상기 양극 활물질 혼합물은 제2 유로(102b) 위에 배치된 제1 유로(102a)를 통해 공급될 수 있다. 예를 들어, 제2 유로(102b)보다 연속 흐름 반응기(100)의 상부에 배치된 제1 유로(102a)로 밀도가 큰 양극 활물질 혼합물이 공급되고, 연속 흐름 반응기(100)의 하부에 배치된 제2 유로(102b)로 밀도가 작은 유체가 공급되어, 상기 양극 활물질 혼합물과 상기 유체의 밀도 차이에 의해 카운터 플로우(향류, 向流)가 형성될 수 있다.In example embodiments, the first flow path 102a may be disposed above the continuous flow reactor 100 than the second flow path 102b. As described above, the positive electrode active material mixture may be supplied through the first flow path 102a disposed on the second flow path 102b. For example, a positive electrode active material mixture having a higher density is supplied to the first flow path 102a disposed above the continuous flow reactor 100 than the second flow path 102b, and disposed at the lower portion of the continuous flow reactor 100. A fluid having a low density is supplied to the second flow path 102b, and a counter flow (countercurrent, flow) may be formed by a difference in density between the positive electrode active material mixture and the fluid.
이에 따라, 상기 양극 활물질 혼합물은 반응기 바디(130)의 하부에서부터 상부로 상승하는 상기 카운터 플로우와 접촉하며 수화반응이 유도될 수 있다. 이에 따라, 리튬 전구체 수용액이 생성될 수 있다(예를 들면, 단계 S30)Accordingly, the positive electrode active material mixture is in contact with the counter flow rising from the bottom to the top of the reactor body 130, a hydration reaction may be induced. Accordingly, an aqueous lithium precursor solution may be generated (eg, step S30).
연속 흐름 반응기(100)는 반응기 바디(130) 및 반응기 바디(130)의 내부에 포함된 복수의 임펠러들(110)을 포함할 수 있다. 상기 임펠러들(110)은 예를 들면, 하나의 회전축(115)을 공유하며 반응기 바디(130)의 길이 방향을 따라 연속적으로 배치될 수 있다.The continuous flow reactor 100 may include a reactor body 130 and a plurality of impellers 110 included inside the reactor body 130. The impellers 110, for example, share one rotating shaft 115 and may be continuously disposed along the longitudinal direction of the reactor body 130.
일부 실시예들에 있어서, 임펠러들(110) 사이에는 적어도 하나의 다공 플레이트(120)가 배치될 수 있다.In some embodiments, at least one porous plate 120 may be disposed between the impellers 110.
상기 카운터 플로우는 제2 유로(102b)를 통해 연속적으로 공급되는 유체를 통해 지속적으로 상승할 수 있다. 따라서, 상기 양극 활물질 혼합물이 반응기 바디(130) 내에 체류하며 수화 반응이 수행될 수 있는 시간이 증가하여, 재생 수율이 향상될 수 있다.The counter flow may continuously rise through a fluid continuously supplied through the second flow path 102b. Therefore, the time during which the positive electrode active material mixture stays in the reactor body 130 and the hydration reaction can be increased can improve the regeneration yield.
또한, 상기 연속 흐름 반응기(100)의 길이 방향으로 연속 배열된 복수의 임펠러들을 회전시킬 수 있다. 따라서, 상기 임펠러들의 회전에 의해 상기 양극 활물질 혼합물과 상기 카운터 플로우의 접촉 효율이 상승하여 리튬 전구체 수용액의 생성 효율이 향상될 수 있다.In addition, a plurality of impellers continuously arranged in the longitudinal direction of the continuous flow reactor 100 may be rotated. Therefore, the contact efficiency between the positive electrode active material mixture and the counter flow increases due to the rotation of the impellers, thereby improving the production efficiency of the lithium precursor aqueous solution.
또한, 임펠러들(110) 사이에 다공 플레이트(120)가 배치되므로 상기 카운터 플로우가 아래로 역류하거나, 난류가 발생하는 것을 방지하며, 상기 카운터 플로우의 상승이 유지될 수 있다. 따라서, 상기 양극 활물질 혼합물과 상기 카운터 플로우와의 접촉 시간이 증가되므로, 수화 반응을 통한 리튬 전구체의 재생 수율이 더욱 향상될 수 있다. 또한, 상기 카운터 플로우의 상승 유지를 위한 유체의 양을 감소시킬 수 있다.In addition, since the porous plate 120 is disposed between the impellers 110, the counter flow is prevented from flowing backward or turbulence, and the rise of the counter flow can be maintained. Therefore, since the contact time between the positive electrode active material mixture and the counter flow is increased, the regeneration yield of the lithium precursor through the hydration reaction may be further improved. In addition, it is possible to reduce the amount of fluid for maintaining the counter flow rise.
상술한 바와 같이, 상기 양극 활물질 혼합물은 예비 리튬 전구체 및 전이금속 함유 혼합물(70)을 포함할 수 있다. 상기 예비 리튬 전구체는 상기 카운터 플로우와의 접촉을 통한 수화 반응에 의해 리튬 수산화물을 포함하는 리튬 전구체(60)로 변환될 수 있다.As described above, the positive electrode active material mixture may include a preliminary lithium precursor and a transition metal-containing mixture 70. The preliminary lithium precursor may be converted into a lithium precursor 60 containing lithium hydroxide by hydration reaction through contact with the counter flow.
예를 들면, 상기 예비 리튬 전구체에 포함된 리튬 산화물 및 리튬 탄산화물이 리튬 수산화물로 전환될 수 있다. 예시적인 실시예들에 따르면, 연속적인 상기 카운터 플로우와의 반응을 통해 리튬 전구체(60)는 실질적으로 리튬 수산화물로 구성될 수 있다.For example, lithium oxide and lithium carbonate contained in the preliminary lithium precursor may be converted into lithium hydroxide. According to exemplary embodiments, the lithium precursor 60 may be substantially composed of lithium hydroxide through continuous reaction with the counter flow.
리튬 전구체(60)는 물을 포함하는 상기 카운터 플로우 내에 실질적으로 용해되어 수용액 형태로 상기 카운터 플로우와 함께 상승할 수 있다. 전이금속 함유 혼합물(70)은 고체 상태로 잔류하며, 중력에 의해 반응기(100)의 하부로 이동할 수 있다. 예를 들면, 전이금속 함유 혼합물(70)은 다공 플레이트(120)에 포함된 포어(pore)를 통해 반응기(100)의 하부로 침강할 수 있다.The lithium precursor 60 may be substantially dissolved in the counter flow containing water to rise together with the counter flow in the form of an aqueous solution. The transition metal-containing mixture 70 remains in a solid state and may move to the bottom of the reactor 100 by gravity. For example, the transition metal-containing mixture 70 may settle to the bottom of the reactor 100 through pores included in the porous plate 120.
이에 따라, 도 2에 도시된 바와 같이, 반응기 바디(130) 내부에서는 리튬 전구체(60) 및 전이금속 함유 혼합물(70)의 분포 그래디언트(distribution gradient)가 형성될 수 있다. 예시적인 실시예들에 따르면, 반응기 바디(130)의 상부로 갈수록 리튬 전구체(60)의 분포 밀도가 증가할 수 있다.Accordingly, as illustrated in FIG. 2, a distribution gradient of the lithium precursor 60 and the transition metal-containing mixture 70 may be formed inside the reactor body 130. According to exemplary embodiments, the distribution density of the lithium precursor 60 may be increased toward the upper portion of the reactor body 130.
일부 실시예들에 있어서, 복수의 연속 흐름 반응기들(100)이 연속적으로 배치될 수 있다. 이 경우, 각 연속 흐름 반응기(100) 내에서 카운터 플로우가 생성되며, 양극 활물질 혼합물은 순차적으로 복수의 연속 흐름 반응기들을 통과하며 상기 카운터 플로우와 연속적으로 접촉하며 수화 반응이 유도될 수 있다. 따라서, 상기 예비 리튬 전구체의 리튬 수산화물로의 전환율이 실질적으로 100%에 도달할 수 있다. 또한, 각 연속 흐름 반응기(100)로부터 전이금속 함유 혼합물이 수집되므로 상기 전이금속 함유 혼합물의 분리능 및 수율 역시 향상될 수 있다.In some embodiments, a plurality of continuous flow reactors 100 may be continuously arranged. In this case, a counter flow is generated in each continuous flow reactor 100, and the positive electrode active material mixture sequentially passes through a plurality of continuous flow reactors and is in continuous contact with the counter flow to induce a hydration reaction. Therefore, the conversion rate of the preliminary lithium precursor to lithium hydroxide can reach substantially 100%. In addition, since the transition metal-containing mixture is collected from each continuous flow reactor 100, the resolution and yield of the transition metal-containing mixture can also be improved.
일 실시예에 있어서, 반응기 바디(130)는 온도 조절이 가능한 히터를 포함하며, 수화 반응 효율을 위해 반응기 바디(130) 내부의 온도는 약 30 내지 95 oC 범위 내에서 유지될 수 있다.In one embodiment, the reactor body 130 includes a temperature-adjustable heater, and for the hydration reaction efficiency, the temperature inside the reactor body 130 may be maintained within a range of about 30 to 95 ° C.
다시 도 1 및 도 2를 참조하면, 반응기 바디(130)로부터 리튬 전구체 및 전이금속 전구체를 수집할 수 있다(예를 들면, 단계 S40).Referring back to FIGS. 1 and 2, a lithium precursor and a transition metal precursor may be collected from the reactor body 130 (eg, step S40).
예시적인 실시예들에 따르면, 리튬 전구체(60)은 반응기 바디(130)의 상부에 연결된 리튬 전구체 수집부(150)로부터 회수될 수 있다. 리튬 전구체 수집부(150)는 리튬 전구체 수용액의 안정화 유닛으로 제공될 수 있다. According to exemplary embodiments, the lithium precursor 60 may be recovered from the lithium precursor collection unit 150 connected to the upper portion of the reactor body 130. The lithium precursor collection unit 150 may be provided as a stabilization unit of a lithium precursor aqueous solution.
예를 들면, 상기 리튬 전구체 수용액은 리튬 전구체 수집부(150) 내에서 체류 또는 순환하며, 상기 리튬 전구체 수용액 내에 혼입된 전이금속 함유 혼합물(70)이 반응기 바디(130)의 하부로 분리되어 제거될 수 있다.For example, the lithium precursor aqueous solution stays or circulates in the lithium precursor collection unit 150, and the transition metal-containing mixture 70 mixed in the lithium precursor aqueous solution is separated and removed under the reactor body 130. You can.
상기 리튬 전구체 수용액의 충분한 안정화를 위해 리튬 전구체 수집부(150)는 반응기 바디(100)보다 큰 직경 또는 단면적을 가질 수 있다. 따라서, 리튬 전구체 수용액의 리튬 전구체 수집부(150) 내 유속이 감소하여, 밀도가 큰 전이금속 함유 혼합물이 침강되므로, 고순도의 리튬 전구체를 용이하게 수집할 수 있다.For sufficient stabilization of the lithium precursor aqueous solution, the lithium precursor collection unit 150 may have a larger diameter or cross-sectional area than the reactor body 100. Therefore, since the flow rate in the lithium precursor collection unit 150 of the lithium precursor aqueous solution decreases, the high-density transition metal-containing mixture precipitates, so that the high-purity lithium precursor can be easily collected.
예를 들면, 리튬 전구체 수집부(150)에 수집된 리튬 전구체(60)는 제1 회수 유로(160a)를 통해 회수될 수 있다. 이후, 결정화 공정 등을 통해 리튬 수산화물 형태의 리튬 전구체가 재생될 수 있다.For example, the lithium precursor 60 collected in the lithium precursor collection unit 150 may be recovered through the first recovery channel 160a. Thereafter, the lithium precursor in the form of lithium hydroxide may be regenerated through a crystallization process or the like.
예시적인 실시예들에 따르면, 전이금속 함유 혼합물(70)은 전이금속 전구체 수집부(140)를 통해 수집될 수 있다.According to exemplary embodiments, the transition metal-containing mixture 70 may be collected through the transition metal precursor collection unit 140.
상술한 바와 같이, 전이금속 함유 혼합물(70)은 상기 카운터 플로우 내에 용해되지 않고 고체 형태로 다공 플레이트(120)를 통해 전이금속 전구체 수집부(140) 내에 침강될 수 있다.As described above, the transition metal-containing mixture 70 may not be dissolved in the counter flow and may be precipitated in the transition metal precursor collection unit 140 through the porous plate 120 in a solid form.
일부 실시예들에 있어서, 전이금속 전구체 수집부(140)는 수세 혹은 플러싱 부(flushing section)으로 제공될 수 있다. 예를 들면, 반응기 바디(130)의 하부에서 물이 공급되어 전이금속 함유 혼합물(70) 표면에 잔류하는 리튬 혹은 리튬 전구체가 수세될 수 있다. 이에 따라, 전이금속 전구체 수집부(140) 내에서 실질적으로 순수한 전이금속 함유 혼합물(70)이 수집될 수 있다.In some embodiments, the transition metal precursor collection unit 140 may be provided as a flushing or flushing section. For example, lithium or a lithium precursor remaining on the surface of the transition metal-containing mixture 70 may be washed with water by supplying water from the bottom of the reactor body 130. Accordingly, the substantially pure transition metal-containing mixture 70 may be collected in the transition metal precursor collection unit 140.
전이금속 함유 혼합물(70)은 제2 회수 유로(160b)를 통해 회수될 수 있다. 일부 실시예들에 있어서, 회수된 전이금속 함유 혼합물(70)은 여과 혹은 분리 공정을 거쳐 산 처리될 수 있다. 이에 따라, 각 전이금속의 산 염 형태의 전이 금속 전구체들을 형성할 수 있다. The transition metal-containing mixture 70 may be recovered through the second recovery channel 160b. In some embodiments, the recovered transition metal-containing mixture 70 may be acid treated through a filtration or separation process. Accordingly, transition metal precursors in the acid salt form of each transition metal can be formed.
일 실시예에 있어서, 산 처리 용액으로 황산을 사용할 수 있다. 이 경우, 상기 전이 금속 전구체로서 NiSO 4, MnSO 4 및 CoSO 4를 각각 회수할 수 있다. In one embodiment, sulfuric acid may be used as the acid treatment solution. In this case, NiSO 4 , MnSO 4 and CoSO 4 may be recovered as the transition metal precursor, respectively.
상술한 바와 같이, 칼럼 형태의 연속 흐름 반응기(100)를 활용한 분포 그래디언트를 통해 리튬 전구체의 순도, 회수율을 증가시킬 수 있다. 또한, 카운터 플로우를 이용한 연속 수화 반응을 통해 리튬 수산화물 형태의 리튬 전구체를 적은 양의 물로 고수율로 획득할 수 있다.As described above, the purity and recovery rate of the lithium precursor may be increased through a distribution gradient utilizing the column type continuous flow reactor 100. In addition, the lithium precursor in the form of lithium hydroxide can be obtained in high yield with a small amount of water through a continuous hydration reaction using a counter flow.
도 3은 예시적인 실시예들에 따른 임펠러 및 다공 플레이트의 구조를 설명하기 위한 사시도이다.3 is a perspective view for explaining the structure of the impeller and the porous plate according to the exemplary embodiments.
도 3을 참조하면, 상술한 바와 같이, 반응기 바디(130)의 길이 방향으로 연장하는 회전축(115)을 따라 복수의 임펠러들(110)이 배열될 수 있다. 임펠러들(110) 사이에는 다공 플레이트(120)가 배치될 수 있다.Referring to FIG. 3, as described above, a plurality of impellers 110 may be arranged along the rotation axis 115 extending in the longitudinal direction of the reactor body 130. A porous plate 120 may be disposed between the impellers 110.
각 임펠러(110)는 복수의 블레이드들을 포함할 수 있다. 예를 들면, 4개의 블레이드들이 서로 직각으로 교차하도록 회전 축(115)을 중심으로 배열될 수 있다.Each impeller 110 may include a plurality of blades. For example, the four blades may be arranged around the rotation axis 115 such that they intersect at right angles to each other.
도 3에 도시된 블레이드 배열은 예시적인 것이며, 반응기 바디(130)의 형상에 따라 적절히 변형될 수 있다.The blade arrangement shown in FIG. 3 is exemplary, and may be appropriately modified according to the shape of the reactor body 130.
도 4는 일부 예시적인 실시예들에 따른 임펠러를 나타내는 개략적인 도면이다.4 is a schematic diagram illustrating an impeller according to some example embodiments.
도 4를 참조하면, 임펠러들은 서로 비평행하게 배열될 수 있다. 예를 들면, 상기 임펠러는 제1 임펠러(110a) 및 제2 임펠러(110b)를 포함할 수 있다. 4, impellers may be arranged non-parallel to each other. For example, the impeller may include a first impeller 110a and a second impeller 110b.
일부 실시예들에 있어서, 복수의 제1 임펠러들(110a) 및 제2 임펠러들(110b)을 회전축(115)을 따라 교대로 반복적으로 배열될 수 있다.In some embodiments, the plurality of first impellers 110a and the second impellers 110b may be alternately arranged alternately along the rotation axis 115.
제1 임펠러(110a) 및 제2 임펠러(110b)의 블레이드는 서로 비평행하게 배치될 수 있다. 예를 들면, 제1 임펠러(110a)는 회전축(115)에 대해 실질적으로 수직하게 배치되며, 제2 임펠러(110b)는 회전축(115)에 대해 경사지게 배치될 수 있다.The blades of the first impeller 110a and the second impeller 110b may be disposed non-parallel to each other. For example, the first impeller 110a may be disposed substantially perpendicular to the rotating shaft 115, and the second impeller 110b may be disposed obliquely to the rotating shaft 115.
예를 들면, 경사진 제2 임펠러(110b)를 포함시킴에 따라 카운터 플로우의 하강을 보다 효과적으로 방지하며 반응기 바디(130) 내부에서의 카운터 플로우의 분산을 촉진할 수 있다.For example, by including the inclined second impeller 110b, it is possible to more effectively prevent the drop of the counter flow and promote dispersion of the counter flow inside the reactor body 130.
도 5 내지 도 7은 연속 흐름 반응기(CSTR) 및 배치(Batch) 반응기를 이용한 리튬 전구체 재생 수율을 설명하기 위한 시뮬레이션 그래프들이다.5 to 7 are simulation graphs for explaining lithium precursor regeneration yield using a continuous flow reactor (CSTR) and a batch reactor.
도 5 내지 도 7에서 x축은 양극 활물질 혼합물의 반응기 체류시간(hr)을 나타내며, y축은 리튬 전구체의 수율(LiOH Yield)를 나타낸다.5 to 7, the x-axis represents the reactor residence time (hr) of the positive electrode active material mixture, and the y-axis represents the yield (LiOH Yield) of the lithium precursor.
도 5은 배치 반응기 대비 CSTR의 용해속도 상수 증가에 따른 리튬 전구체 수율 변화를 도시한 그래프이다. 상기 용해속도 상수는 LiOH가 물에 용해되는 속도를 지칭하며, 용해 농도 및 물과의 접촉면적에 비례한다.5 is a graph showing a change in yield of lithium precursors according to an increase in the dissolution rate constant of a CSTR compared to a batch reactor. The dissolution rate constant refers to the rate at which LiOH dissolves in water, and is proportional to the dissolution concentration and the contact area with water.
도 5을 참조하면, 배치 반응기 대비 CSTR에서 용해속도 상수가 증가함에 따라, 수율 1로 도달할때까지 체류시간이 감소함을 알 수 있다.Referring to FIG. 5, it can be seen that as the dissolution rate constant increases in the CSTR compared to the batch reactor, the residence time decreases until a yield of 1 is reached.
도 6은 배치 반응기 대비 CSTR의 용해속도 상수가 2배임을 가정할 때, CSTR의 개수 또는 카운터 플로우의 개수에 따른 리튬 전구체 수율 변화를 도시한 그래프이다.6 is a graph showing a change in the yield of lithium precursors according to the number of CSTRs or the number of counter flows, assuming that the dissolution rate constant of the CSTR is 2 times that of a batch reactor.
도 6을 참조하면, CSTR을 통한 카운터 플로우의 개수가 증가함에 따라, 수율 1에 도달하는 체류 시간이 감소함을 알 수 있다.Referring to FIG. 6, it can be seen that as the number of counter flows through the CSTR increases, the residence time reaching the yield 1 decreases.
도 7은 배치 반응기 대비 CSTR의 용해속도 상수가 2배이며, CSTR의 개수가 4개임을 가정할 때, 유량 변화에 따른 리튬 전구체 수율 변화를 도시한 그래프이다. 7 is a graph showing a change in the yield of a lithium precursor according to a flow rate change, assuming that the dissolution rate constant of the CSTR is 2 times that of the batch reactor and the number of CSTRs is 4.
도 7을 참조하면, 배치 반응기에서 사용되는 유량의 1/10로도 실질적으로 동일한 수율이 확보되며, 배치 반응기 유량의 1/40로도 0.8 이상의 수율이 확보됨을 알 수 있다.Referring to FIG. 7, it can be seen that a yield substantially equal to 1/10 of the flow rate used in the batch reactor is secured, and a yield of 0.8 or higher is secured to 1/40 of the flow rate of the batch reactor.
도 5 내지 도 7의 시뮬레이션 결과를 참조하면, 용해속도 상수가 우수한 CSTR 시스템을 활용하여 적은 카운터 플로우 유량으로 실질적으로 100%에 가까운 수율이 확보될 수 있음을 확인할 수 있다. 또한, 복수의 CSTR을 활용한 카운터 플로우의 연속 제공으로 리튬 전구체 전환 효율이 더욱 향상됨을 알 수 있다.Referring to the simulation results of FIGS. 5 to 7, it can be confirmed that a yield close to 100% can be secured with a small counter flow flow rate by utilizing a CSTR system having an excellent dissolution rate constant. In addition, it can be seen that the lithium precursor conversion efficiency is further improved by continuously providing a counter flow utilizing a plurality of CSTRs.

Claims (19)

  1. 폐 리튬 이차 전지로부터 수집된 양극 활물질 혼합물을 연속 흐름 반응기로 공급하는 단계;Supplying the positive electrode active material mixture collected from the waste lithium secondary battery to a continuous flow reactor;
    상기 연속 흐름 반응기 내로 유체를 도입하여 카운터 플로우를 생성하는 단계;Introducing a fluid into the continuous flow reactor to produce a counter flow;
    상기 카운터 플로우 및 상기 양극 활물질 혼합물을 접촉시켜 리튬 전구체 수용액을 생성하는 단계; 및Generating a lithium precursor aqueous solution by contacting the counter flow and the positive electrode active material mixture; And
    상기 리튬 전구체 수용액으로부터 리튬 전구체를 수집하는 단계를 포함하는, 리튬 전구체 재생 방법.And collecting the lithium precursor from the lithium precursor aqueous solution.
  2. 청구항 1에 있어서, 상기 카운터 플로우를 생성하는 단계는 상기 유체를 상기 양극 활물질 혼합물보다 상기 연속 흐름 반응기의 하부로 공급하는 것을 포함하는, 리튬 전구체 재생 방법.The method according to claim 1, The step of generating the counter flow comprises supplying the fluid to the lower portion of the continuous flow reactor than the positive electrode active material mixture, lithium precursor regeneration method.
  3. 청구항 1에 있어서, 상기 리튬 전구체 수용액을 생성하는 단계는 상기 연속 흐름 반응기의 길이 방향으로 연속 배열된 복수의 임펠러들을 회전시키는 것을 포함하는, 리튬 전구체 재생 방법.The method according to claim 1, The step of generating the aqueous solution of lithium precursor comprises rotating a plurality of impellers arranged in the longitudinal direction of the continuous flow reactor, lithium precursor regeneration method.
  4. 청구항 3에 있어서, 상기 리튬 전구체 수용액을 생성하는 단계는 상기 연속 흐름 반응기 내에서 상기 임펠러들 사이에 배치된 다공 플레이트를 통해 상기 카운터 플로우의 흐름을 유지하는 것을 포함하는, 리튬 전구체 재생 방법.The method according to claim 3, wherein the step of generating the aqueous solution of lithium precursor comprises maintaining the flow of the counter flow through a porous plate disposed between the impellers in the continuous flow reactor.
  5. 청구항 1에 있어서, 복수의 상기 연속 흐름 반응기들이 연속 배치되며 각 연속 흐름 반응기 내에서 카운터 플로우가 생성되는, 리튬 전구체 재생 방법.The method according to claim 1, A plurality of said continuous flow reactors are arranged continuously and a counter flow is generated in each continuous flow reactor.
  6. 청구항 5에 있어서, 상기 양극 활물질 혼합물은 복수의 상기 연속 흐름 반응기들을 순차적으로 통과하는, 리튬 전구체 재생 방법.The method according to claim 5, The positive electrode active material mixture is a lithium precursor regeneration method, sequentially passing through a plurality of the continuous flow reactors.
  7. 청구항 1에 있어서, 상기 리튬 전구체를 수집하는 단계는,The method according to claim 1, The step of collecting the lithium precursor,
    상기 연속 흐름 반응기의 상부에서 상기 리튬 전구체 수용액을 안정화시키는 단계; 및Stabilizing the aqueous lithium precursor solution at the top of the continuous flow reactor; And
    상기 리튬 전구체 수용액을 결정화하여 리튬 전구체를 재생하는 단계를 포함하는, 리튬 전구체 재생 방법.And regenerating the lithium precursor by crystallizing the aqueous lithium precursor solution.
  8. 청구항 1에 있어서, 상기 양극 활물질 혼합물은 예비 리튬 전구체 및 전이금속 함유 혼합물을 포함하는, 리튬 전구체 재생 방법.The method according to claim 1, The positive electrode active material mixture comprises a preliminary lithium precursor and a transition metal-containing mixture, lithium precursor regeneration method.
  9. 청구항 8에 있어서, 상기 전이 금속 함유 혼합물로부터 전이금속 전구체를 수집하는 단계를 더 포함하는, 리튬 이차 전지의 리튬 전구체 재생 방법.The method of claim 8, further comprising collecting a transition metal precursor from the transition metal-containing mixture.
  10. 청구항 9에 있어서, 상기 전이금속 전구체를 수집하는 단계는,The method according to claim 9, The step of collecting the transition metal precursor,
    상기 연속 흐름 반응기의 하부로부터 상기 전이 금속 함유 혼합물을 수집하는 단계; 및Collecting the transition metal containing mixture from the bottom of the continuous flow reactor; And
    상기 전이 금속 함유 혼합물을 산 용액으로 처리하는 단계를 포함하는, 리튬 전구체 재생 방법.And treating the transition metal-containing mixture with an acid solution.
  11. 청구항 10에 있어서, 상기 전이 금속 함유 혼합물을 수집하는 단계는 상기 전이 금속 함유 혼합물을 플러싱하는 것을 포함하는, 리튬 전구체 재생 방법.The method of claim 10, wherein collecting the transition metal-containing mixture comprises flushing the transition metal-containing mixture.
  12. 청구항 8에 있어서, 상기 예비 리튬 전구체는 리튬 수산화물, 리튬 산화물 및 리튬 탄산화물을 포함하는, 리튬 전구체 재생 방법.The method of claim 8, wherein the preliminary lithium precursor comprises lithium hydroxide, lithium oxide and lithium carbonate.
  13. 청구항 1에 있어서, 상기 리튬 전구체는 리튬 수산화물을 포함하는, 리튬 전구체 재생 방법.The method according to claim 1, The lithium precursor comprises a lithium hydroxide, lithium precursor regeneration method.
  14. 청구항 1에 있어서, 상기 양극 활물질 혼합물은 폐 양극 활물질을 환원시켜 생성되는, 리튬 전구체 재생 방법.The method according to claim 1, The positive electrode active material mixture is produced by reducing the waste positive electrode active material, lithium precursor regeneration method.
  15. 양극 활물질 혼합물 도입부; A cathode active material mixture introduction part;
    상기 양극 활물질 혼합물 도입부로부터 공급된 양극 활물질 혼합물을 카운터 플로우와 접촉시켜 수화시키는 연속 흐름 반응기; 및A continuous flow reactor for hydrating the positive electrode active material mixture supplied from the positive electrode active material mixture introduction unit by contacting it with a counter flow; And
    상기 카운터 플로우와 반응한 상기 양극 활물질 혼합물로부터 리튬 전구체를 생성하는 리튬 전구체 수집부를 포함하는, 리튬 전구체 재생 시스템.And a lithium precursor collection unit for generating a lithium precursor from the positive electrode active material mixture reacted with the counter flow.
  16. 청구항 15에 있어서, 상기 연속 흐름 반응기는,The method according to claim 15, wherein the continuous flow reactor,
    상기 연속 흐름 반응기의 길이 방향으로 배열된 복수의 임펠러들; 및A plurality of impellers arranged in the longitudinal direction of the continuous flow reactor; And
    상기 임펠러들 사이에 배치된 적어도 하나의 다공 플레이트를 포함하는, 리튬 전구체 재생 시스템.And at least one porous plate disposed between the impellers.
  17. 청구항 16에 있어서, 상기 임펠러들은 서로 비평행하게 배치된 제1 임펠러 및 제2 임펠러를 포함하는, 리튬 전구체 재생 시스템.17. The lithium precursor regeneration system of claim 16, wherein the impellers include a first impeller and a second impeller disposed non-parallel to each other.
  18. 청구항 15에 있어서, 상기 리튬 전구체 수집부는 상기 연속 흐름 반응기보다 큰 직경을 갖는, 리튬 전구체 재생 시스템.The lithium precursor regeneration system of claim 15, wherein the lithium precursor collection unit has a larger diameter than the continuous flow reactor.
  19. 청구항 15에 있어서, 복수의 연속 흐름 반응기들이 연속 배치된, 리튬 전구체 재생 시스템.16. The lithium precursor regeneration system of claim 15, wherein a plurality of continuous flow reactors are continuously disposed.
PCT/KR2019/010914 2018-10-04 2019-08-27 Method and system for regenerating lithium precursor WO2020071640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180118083A KR101998691B1 (en) 2018-10-04 2018-10-04 Method of regenerating lithium precursor and recycling system of lithium precursor
KR10-2018-0118083 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071640A1 true WO2020071640A1 (en) 2020-04-09

Family

ID=67255008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010914 WO2020071640A1 (en) 2018-10-04 2019-08-27 Method and system for regenerating lithium precursor

Country Status (2)

Country Link
KR (1) KR101998691B1 (en)
WO (1) WO2020071640A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220103769A (en) 2019-11-19 2022-07-22 바스프 에스이 Lithium salt purification method
KR102195017B1 (en) * 2019-11-27 2020-12-29 주식회사 동영산업 High-performance cathode material manufacturing system through upcycling lithium-containing recycled materials
KR20210105209A (en) * 2020-02-18 2021-08-26 에스케이이노베이션 주식회사 Method of recycling active metal of lithium secondary battery utilizing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140126943A (en) * 2013-04-24 2014-11-03 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR20170074960A (en) * 2014-10-24 2017-06-30 라이프 테크놀로지스 코포레이션 Acoustically settled liquid-liquid sample purification system
KR20180042641A (en) * 2016-10-18 2018-04-26 한국전기연구원 Continuous recovery apparatus and recovery method using the positive electrode active material for a rechargeable lithium battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563338B1 (en) 2013-06-27 2015-10-27 성일하이텍(주) Recovery method of lithium from lithium containing waste liquid using solvent extraction process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140126943A (en) * 2013-04-24 2014-11-03 타운마이닝캄파니(주) Method for recovering valuable metals from cathodic active material of used lithium battery
KR20170074960A (en) * 2014-10-24 2017-06-30 라이프 테크놀로지스 코포레이션 Acoustically settled liquid-liquid sample purification system
KR101708149B1 (en) * 2016-05-20 2017-02-20 (주)이엠티 A Method For Recovering Lithium Compound From An Anode Material In Spent Lithium Batteries By Wet-Milling
KR20180042641A (en) * 2016-10-18 2018-04-26 한국전기연구원 Continuous recovery apparatus and recovery method using the positive electrode active material for a rechargeable lithium battery
KR101897134B1 (en) * 2018-04-09 2018-09-10 에스케이이노베이션 주식회사 Method of regenerating lithium precursor from used lithium secondary battery

Also Published As

Publication number Publication date
KR101998691B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2019199014A1 (en) Method for recovering active metals from lithium secondary battery
WO2019199015A1 (en) Method for recovering active metal of lithium secondary battery
WO2020096195A1 (en) Method for regenerating lithium precursor and system for regenerating lithium precursor
WO2020071640A1 (en) Method and system for regenerating lithium precursor
WO2021187808A1 (en) Classifier for positive electrode active material and method for regenerating lithium precursor by using same
WO2021132923A1 (en) Fluidized bed reactor, and method for recovering active metal of lithium secondary battery utilizing same
KR20200114048A (en) Method of regenerating lithium precursor
WO2021241817A1 (en) Method for reusing active material by using positive electrode scrap
WO2020235802A1 (en) Method for isolating lithium precursor, and system for isolating lithium precursor
WO2021172846A1 (en) Method for recovering active metal of lithium secondary battery
WO2021066362A1 (en) Recovery method for lithium precursor
WO2021167345A1 (en) Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same
WO2021177733A1 (en) Method for recovering active metal of lithium secondary battery
WO2022191499A1 (en) Method for recovering lithium precursor from lithium secondary battery
WO2021162277A1 (en) Method for recovering active metal of lithium secondary battery
WO2021137453A1 (en) Fluidized bed reactor and method for recovering active metal from lithium secondary battery thereby
WO2022191634A1 (en) Fluidized bed reactor and method for recycling lithium precursor using same
WO2024043603A1 (en) Fluidized bed reactor and method for recovering active metal of lithium secondary battery using same
WO2023048430A1 (en) Method for recovering lithium precursor from lithium secondary battery
WO2021246721A1 (en) Method for recovering active metals from lithium secondary battery
WO2023063677A1 (en) Method for recovering lithium precursor from lithium secondary battery
WO2021172689A1 (en) Methods for preparing cathode active material precursor material and cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery prepared according to same
WO2022139310A1 (en) Method for recovering active metal of lithium secondary battery
WO2022065702A1 (en) Method for recovering active metal of lithium secondary battery
WO2021132946A1 (en) Method for recovering positive electrode active material precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869878

Country of ref document: EP

Kind code of ref document: A1