WO2016063647A1 - Electrochemical cell stack and electrical power system - Google Patents

Electrochemical cell stack and electrical power system Download PDF

Info

Publication number
WO2016063647A1
WO2016063647A1 PCT/JP2015/075358 JP2015075358W WO2016063647A1 WO 2016063647 A1 WO2016063647 A1 WO 2016063647A1 JP 2015075358 W JP2015075358 W JP 2015075358W WO 2016063647 A1 WO2016063647 A1 WO 2016063647A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell stack
current collector
electrochemical cell
heat
solid oxide
Prior art date
Application number
PCT/JP2015/075358
Other languages
French (fr)
Japanese (ja)
Inventor
亀田 常治
吉野 正人
理子 犬塚
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016063647A1 publication Critical patent/WO2016063647A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Embodiments of the present invention relate to an electrochemical cell stack and a power system.
  • An electrochemical cell including a solid electrolyte membrane for example, contains a reducing agent such as hydrogen or hydrocarbon and an oxidizing agent such as oxygen through a solid electrolyte membrane having ion conductivity under a high temperature condition of 700 to 1000 ° C. Used to react and extract electrical energy.
  • the electrochemical cell can generate oxygen and hydrogen by electrolyzing water vapor with electric energy supplied from the outside.
  • Electrochemical cell functions as a solid oxide fuel cell (SOFC) that extracts reaction energy between a reducing agent and an oxidizing agent as electricity when a reaction for extracting electric energy is performed.
  • SOFC solid oxide fuel cell
  • the electrochemical cell uses the reverse reaction of the reaction in the SOFC as described above as an operating principle, and electrolyzes high-temperature water vapor through an electrolyte membrane to generate hydrogen and oxygen. It functions as a solid oxide electrolysis cell (SOEC).
  • the entire heat storage system is further enhanced by efficiently accumulating or supplying heat accompanying the exothermic reaction that occurs during power generation in SOFC and the endothermic reaction that occurs during electrolysis of water vapor in SOEC. It can be operated efficiently.
  • the heat transfer between the electrochemical cell and the outside is efficiently performed during exothermic and endothermic reactions in the electrochemical cell. It is desired that the electrochemical cell stack can be stably used for a long period of time at a temperature (for example, 700 to 1000 ° C.) at which oxygen ions can effectively pass through the solid electrolyte membrane.
  • An object of the embodiment of the present invention is to provide an electrochemical cell stack that can be used stably for a long period of time within a temperature range in which the solid electrolyte membrane functions effectively.
  • An electrochemical cell stack comprises an electrolyte membrane, an oxygen electrode provided on one main surface of the electrolyte membrane, and a hydrogen electrode provided on the other main surface of the electrolyte membrane.
  • a small unit cell stack including one or more single cells each having a current collector and a separator provided on both sides of the chemical cell; and between the small unit cell stacks and one end of the small unit cell stack. It is provided in any one or both, It comprises the said small unit cell stack and the heat exchange part in which heat exchange is possible, It is characterized by the above-mentioned.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • It is a disassembled perspective view of an electrochemical cell.
  • It is a schematic diagram which shows an example of a 1st electrical power collector or a 2nd electrical power collector. It is the elements on larger scale of FIG. It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector. It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector.
  • FIG. 1 is a perspective view schematically showing a configuration of an electrochemical cell stack according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. It is.
  • the electrochemical cell stack 10 includes a small unit cell stack 11 and a heat exchanger (heat exchange unit) 12, and the small unit cell stack 11 and the heat exchanger 12 are stacked. Configured.
  • the reaction gas supplied into the small unit cell stack 11 refers to an oxidizing agent, a reducing agent, or water vapor.
  • the oxidant refers to a gas containing oxygen such as air
  • the reducing agent refers to a fuel gas such as hydrogen or hydrocarbon
  • the water vapor may be a medium in which most of the water is in a gas phase state. This includes cases where some of the state water is included.
  • the small unit cell stack 11 includes one or more flat plate-type single cells 13 (in the embodiment shown in FIGS. 1 to 3, five layers are stacked). Note that the small unit cell stack 11 includes one or more single cells. In the present embodiment, the small unit cell stack 11 is preferably configured by stacking 3 to 30 single cells. If the number of single cells in the small unit cell stack 11 is within the above range, as will be described later, heat exchange between each single cell 13 and the heat exchanger 12 can be performed reliably. It becomes easy to control the temperature distribution of the temperature in 11, and the temperature of each single cell 13 can be made constant.
  • the single cell 13 includes an electrochemical cell 14 and current collectors 15 and 16 (first current collector 15 and second current collector 16) provided on both surfaces of the electrochemical cell 14.
  • a pair of separators 17 that sandwich the electrochemical cell 14 from the outside of the first current collector 15 and the second current collector 16, and a cell holder 19.
  • the electrochemical cell 14 includes an ion conductive solid electrolyte membrane (electrolyte membrane) 21, an oxygen electrode 22 provided on one main surface 21 a of the solid electrolyte membrane 21, and the other main surface 21 b of the solid electrolyte membrane 21.
  • a hydrogen electrode 23 is provided, and a hydrogen electrode porous substrate 24 provided on the surface of the hydrogen electrode 23 opposite to the solid electrolyte membrane 21 side, and these are laminated.
  • the first current collector 15 is stacked on the outer surface of the oxygen electrode 22, and the second current collector 16 is stacked on the outer surface of the hydrogen electrode 23.
  • the solid electrolyte membrane 21, the oxygen electrode 22, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 all have a rectangular shape. Further, the size of the oxygen electrode 22 is smaller than that of the solid electrolyte membrane 21, and there is a portion that is not covered with the oxygen electrode 22 on the outer periphery of the solid electrolyte membrane 21.
  • the shape of the solid electrolyte membrane 21, the oxygen electrode 22, the hydrogen electrode 23, and the hydrogen electrode porous base material 24 is not limited to a square shape, and can be an arbitrary shape.
  • the solid electrolyte membrane 21 is formed by densely forming a solid oxide having electronic insulation and oxygen ion conductivity into a film shape.
  • the dense state may be a dense density that allows gas leakage in the solid electrolyte membrane 21 to be substantially ignored.
  • the solid electrolyte membrane 21 is formed using, for example, stabilized zirconia, perovskite oxide, or ceria (CeO 2 ) electrolyte solid solution.
  • Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia.
  • the stabilizer for example, Y 2 O 3, Sc 2 O 3, Yb 2 O 3, Gd 2 O 3, Nd 2 O 3, CaO, MgO or the like can be mentioned.
  • the perovskite oxide examples include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide.
  • the ceria-based electrolyte solid solution a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
  • the solid electrolyte membrane 21 is not limited to these materials, and may be composed of other materials.
  • the solid electrolyte membrane 21 has electronic insulation and oxygen ion conductivity within a temperature range of 700 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the solid electrolyte membrane.
  • the thickness of the solid electrolyte membrane 21 can be arbitrarily adjusted as appropriate according to the intended use.
  • the thickness of the solid electrolyte membrane 21 is preferably in the range of 5 ⁇ m to 500 ⁇ m, for example. .
  • the oxygen electrode 22 is made of a material that can efficiently dissociate oxygen and has electronic conductivity.
  • the oxygen electrode 22 is configured using a known material that is used as an oxygen electrode of an electrochemical cell.
  • Examples of the oxygen electrode 22 include lanthanum / strontium / manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide ( LSMC), LaSrMnCr oxide (LSMC), LaCoMn oxide (LCM), LaSrCu oxide (LSC), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) ), LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), G
  • the oxygen electrode 22 may be a mixture of these oxides, for example, LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM -It may be formed of GDC or the like. Furthermore, for example, components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 22.
  • the thickness of the oxygen electrode 22 can be arbitrarily set according to the intended use.
  • the thickness of the oxygen electrode 22 can be set in the range of 30 ⁇ m to 100 ⁇ m.
  • the hydrogen electrode 23 is an oxide having an average particle diameter of 1 nm to 100 nm made of metal particles having an average particle diameter of 0.1 ⁇ m to 5 ⁇ m made of a hydrogen electrode catalytic metal and an oxide having the same oxygen ion conductivity as the solid electrolyte membrane 21. It is comprised including physical particles.
  • a hydrogen electrode catalyst metal metal oxides, such as metals, such as nickel, silver, or platinum, nickel oxide, or cobalt oxide, are mentioned, for example.
  • the oxide constituting the oxide particles is made of ceramics having oxygen ion conductivity, for example, ceria-based oxides such as samaria stabilized ceria (SDC) or gadolinia stabilized ceria (GDC), or yttria stabilized. Examples thereof include zirconia-based oxides such as zirconia (YSZ).
  • the average particle diameter of the metal particles is in the range of 0.1 ⁇ m to 5 ⁇ m, the surface area of the catalyst particles can be increased, so that the activity as an electrode can be increased. Further, the average particle size of the metal particles is more preferably 1 ⁇ m or less. If the particle size is too small, characteristic deterioration due to aggregation of the metal particles occurs at the time of operation of the single cell 13, particularly at a high current density. Therefore, the lower limit of the average particle size of the metal particles is preferably 0.1 ⁇ m. .
  • the average particle diameter of the oxide particles is in the range of 1 nm to 100 nm because the denseness of the structure sintering by firing can be improved.
  • the average particle size of the oxide particles is more preferably 1 nm to 50 nm.
  • grains shall be 1 nm from a viewpoint of a dispersibility at the time of manufacturing technology and mixing.
  • the average particle diameter means a volume average diameter by an effective diameter, and the average particle diameter is measured by, for example, a laser diffraction / scattering method or a dynamic light scattering method.
  • the mass of the metal particles when the mass of the metal particles is 1, the mass of the oxide particles is preferably set in the range of 0.6 to 1.6. Within this range, the metal particles and the oxide particles are uniformly dispersed, and the activity of the hydrogen electrode 23 and the oxygen ion conduction path and electron conduction path in the hydrogen electrode 23 can be arranged in the most balanced manner.
  • the thickness of the hydrogen electrode 23 can be arbitrarily set according to the application to be used.
  • the thickness of the hydrogen electrode 23 can be set within a range of 50 ⁇ m to 200 ⁇ m.
  • the hydrogen electrode porous substrate 24 is a layer serving as a support substrate of the electrochemical cell 14 and is provided in a state of being integrally bonded to the hydrogen electrode 23. Since the hydrogen porous substrate 24 functions as a support for the electrochemical cell 14, the mechanical strength of the electrochemical cell 14 can be maintained or improved.
  • the porosity of the hydrogen electrode porous substrate 24 is preferably 30 to 80%, for example. A porosity of 30% or more is preferable because the gas permeability is not impaired and the characteristics of the electrochemical cell 14 can be maintained. On the other hand, when the porosity is 80% or less, it is preferable because the mechanical strength can be sufficiently maintained and the occurrence of breakage during assembly can be suppressed.
  • the porosity is measured by a gas permeation method, a water absorption method, a porosimeter, or the like.
  • the thickness of the hydrogen electrode porous substrate 24 is preferably set in the range of 500 ⁇ m to 5 mm, for example. If the thickness of the hydrogen electrode porous substrate 24 is within this range, the mechanical strength can be maintained and the gas permeability can be secured.
  • the hydrogen electrode porous substrate 24 is provided on the main surface 23b of the hydrogen electrode 23, but may be provided on one surface of the solid electrolyte membrane 21 on the oxygen electrode 22 side.
  • oxygen is dissociated at the oxygen electrode 22 to generate oxygen ions (O 2 ⁇ ).
  • the oxygen ions move to the hydrogen electrode 23 through the solid electrolyte membrane 21, and the oxygen ions and hydrogen react with each other as shown by the following formula (2) to generate water.
  • the electrons generated at this time are taken out and consumed by an external load.
  • the reaction during power generation in the electrochemical cell 14 at this time is an exothermic reaction. 1 / 2O 2 + 2e ⁇ ⁇ O 2 ⁇ (1) H 2 + O 2 ⁇ ⁇ H 2 O + 2e ⁇ (2)
  • the first current collector 15 and the second current collector 16 are both made of a conductive material and configured to allow gas to pass therethrough.
  • the first current collector 15 and the second current collector 16 are electrically connected to the oxygen electrode 22 and the hydrogen electrode 23, respectively.
  • the first current collector 15 and the second current collector 16 are generally formed in a plate shape in order to collect current evenly from the entire surface of the electrode.
  • the first current collector 15 and the second current collector 16 are generally formed in a rectangular shape smaller than the solid electrolyte membrane 21, and the first current collector 15 is approximately the same size as the oxygen electrode 22. Is formed.
  • the first current collector 15 and the second current collector 16 are made of a mesh shape, a cloth shape, a porous body, or the like. It is preferable that the first current collector 15 and the second current collector 16 are used so as to have an appropriate thickness. Thereby, the thickness of the 1st electrical power collector 15 and the 2nd electrical power collector 16 can be adjusted arbitrarily.
  • the first current collector 15 is formed of, for example, a metal such as nickel or stainless steel subjected to an oxidation resistant surface treatment, or a metal having oxidation resistance such as gold, silver or platinum.
  • the second current collector 16 is formed of a metal such as nickel, silver or platinum, for example.
  • the first current collector 15 and the second current collector 16 are made by mixing a material used for each electrode such as gold and silver, a metal paste having strong oxidation resistance, and a foam material. It can be formed using a thing.
  • a foam material is a material that foams during normal temperature to use temperature.
  • calcium carbonate (CaCO 3 ) can be used as the foaming substance.
  • Calcium carbonate is decomposed into calcium oxide (CaO) and carbon dioxide (CO 2 ) by heating.
  • CO 2 is generated, bubbles are generated in the first current collector 15 and the second current collector 16.
  • ceramics containing a component that vitrifies and a component that gasifies into water vapor, CO 2 , or the like by performing heat treatment at a temperature between normal temperature and use temperature can be used.
  • foam materials include pearlite, fly ash, or obsidian.
  • a substance foamed by applying heat treatment to obsidian is used as a shirasu balloon.
  • the content of the foaming substance in the first current collector 15 and the second current collector 16 is too small, the volume expansion associated with foaming may be small, and the thermal expansion of the electrochemical cell 14 may not be followed. Moreover, when there is too much quantity of a foaming substance, a bubble may connect and airtightness may not be ensured. Therefore, the content of the foaming substance is, for example, 1 to 20 wt%, more preferably 5 to 10 wt%.
  • the first current collector 15 and the second current collector 16 are expanded or expanded at the use temperature of the electrochemical cell 14. By extending, it is possible to suppress a reduction in contact resistance between the first current collector 15 or the second current collector 16 and the oxygen electrode 22 or the hydrogen electrode 23.
  • the laminated unit configuration of the electrochemical cell 14 and the first current collector 15 and the second current collector 16 is flatness from the viewpoint of ensuring electrical connection and gas sealing property to suppress gas leakage. Is preferably high.
  • the flatness is defined by JIS.
  • the thickness range of the separator 17 and the cell holder 19 is between the first current collector 15, the second current collector 16, and the cell holder 19 between the first current collector 15 or the second current collector 16. It depends on the respective materials used for the gas seal portion 35 provided.
  • the difference in thickness between the first current collector 15 or the second current collector 16 and the gas seal portion 35 is preferably ⁇ 50 ⁇ m or less, and more preferably ⁇ 20 ⁇ m or less. If the difference in thickness between the first current collector 15 and the second current collector 16 and the gas seal portion 35 is within the above range, the electrical connection with the separator 17 of the electrochemical cell 14 and the single cell 13 Gas sealing properties can be ensured.
  • the first current collector 15 and the second current collector 16 As a method of forming the first current collector 15 and the second current collector 16 that ensure such an electrical connection and gas sealability, for example, a conductive material containing a conductive particulate material and / or a fibrous material is used. There is a method in which a porous porous material is laminated to a predetermined thickness. By laminating the conductive porous material to a predetermined thickness to form the first current collector 15 and the second current collector 16, the first current collector 15 and the second current collector 16 are robust. Due to the excellent properties, even when the thickness of the electrochemical cell 14 varies greatly, the single cell 13 with high flatness can be formed, and the first current collector 15 or the second current collector 16 and the oxygen electrode 22 can be formed. Alternatively, the electrical connection with the hydrogen electrode 23 and the gas sealing property of the single cell 13 can be ensured, and the favorable electrochemical cell stack 10 can be manufactured. Thus, an example of the configuration of the first current collector 15 and the second current collector 16 is shown below.
  • FIG. 5 is a diagram schematically showing an example of the first current collector 15 or the second current collector 16, and FIG. 6 is a partially enlarged view of FIG.
  • the first current collector 15 or the second current collector 16 is composed of aggregate particles 41 and aggregate particles 41 that combine the aggregate particles 41 or between the aggregate particles 41 and the electrodes.
  • a layered body (particulate current collecting layer) 43 including particles 42 is formed, and a conductive layer 44 is formed on the surface of the aggregate particles 41.
  • the aggregate particles 41 can be made of metal, ceramics, organic polymer, or the like.
  • metal stainless steel, ferrite alloy, aluminum, Ni metal, Cr metal, or the like can be used.
  • ceramic any one oxide selected from Al, Si, Ti, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Zr, La, Sr, Gd, and Mn, nitride, Alternatively, either carbide can be used.
  • organic polymer epoxy resin, polyester resin, urea resin, polyimide resin, polyethylene resin, polypropylene resin, polyamide resin, vinyl chloride resin, or the like can be used.
  • the aggregate particles 41 may have a powder that is usually commercially available, or may be produced by adjusting the particle size after being manufactured by an atomizing method or the like.
  • the bonding fine particles 42 those containing any of Al, Si, Ti, Fe, Co, Ni, Cu, Mn, Ag, Au, Pd, Pt, Rh, Zr, La, Sr, Gd, and the like should be used. Can do.
  • the bonded fine particles 42 are composed of fine crystal and / or amorphous phase particles.
  • the conductive layer 44 is, for example, a metal layer or a conductive oxide layer. More specifically, it can be a layer made of an oxide compound called various metal materials or a highly conductive oxide. Such a conductive layer 44 can be formed by, for example, a plating method, an ion plating method, a chemical vapor deposition method, a physical vapor deposition method, an electrophoresis method, a sol-gel method, a solution deposition method, or the like.
  • the conductive oxide layer can be easily formed by mixing and drying (oxidizing) several kinds of solutions having components of the oxide compound with the aggregate particles 41.
  • An oxide compound called a highly conductive oxide includes, for example, TiO, VO, or EuO 1-X called NaCl type, LiTi 2 O 4 called spinel type, or Fe 3 O 4 , ReO 2 called perovskite type, M x WO 3 (M is a metal generally), LaTiO 3, SrVO 3, CaCrO 3, SrCrO 3, La 1-X SrMnO 3, SrFeO 3, SrCoO 3, La 1-x Sr x CoO 3, LaNiO 3, CaRuO 3, SrRuO 3 , SrIrO 3 , BaPbO 3 , BaPb 1-x Bi x O 3 , or (Ba, Ca, Sr) TiO 3-x , V 2 O 3 called corundum type, or Ti 2 O 3 , called rutile type VO 2, CrO 2, MoO 2 , WO 2, ⁇ -ReO 2, RuO 2, V O 2n-1 or Ti n O 2n-1, SnO 2-x, Pb 2 Ru 2
  • the conductive layers 44 of the adjacent aggregate particles 41 are bonded to each other through the bonded fine particles 42, thereby having conductivity as a whole.
  • Such a current collector can be manufactured, for example, by the following method.
  • the aggregate particles 41 having the conductive layer 44 formed on the surface in advance, the alkoxide solution, and the solvent are adjusted in necessary amounts and mixed sufficiently to prepare a slurry.
  • the slurry is applied to one surface of the electrochemical cell 14, shaped into a predetermined shape, and dried to a predetermined thickness.
  • the electrochemical cell 14 to which the slurry is applied is sandwiched between flat metal plates, and while the slurry is compressed and deformed and restrained, the electrochemical cell 14 to which the slurry is applied is heat-treated to hydrolyze the alkoxide in the slurry. I do.
  • bonding fine particle 42 produces
  • grain 41 are each couple
  • the first current collector 15 or the second current collector 16 is formed on one surface of the cell 14, and the other current collector is formed on the other surface of the electrochemical cell 14. At this time, the conductive layers 44 of the adjacent aggregate particles 41 are brought into contact with each other, thereby having conductivity as a whole.
  • first current collector 15 and the second current collector 16 are processed to be flat. May be used.
  • the alkoxide solution contains a metal alkoxide containing the component atoms of the aggregate particles 41.
  • a metal alkoxide an alkoxide compound of any one of Al, Si, Ti, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Zr, La, Sr, Gd, or Mn is used. It is done.
  • an alcohol solution such as butanol can be used.
  • the alkoxide solution it is preferable to use a mixture of a metal alkoxide containing main component atoms of the aggregate particles 41 and a dispersion medium, and heat treatment is preferably performed at 50 ° C. or higher.
  • heat treatment temperature By setting the heat treatment temperature to 50 ° C. or higher, the hydrolysis treatment can be effectively advanced.
  • FIG. 7 shows another example of the first current collector 15 or the second current collector 16.
  • the first current collector 15 or the second current collector 16 is composed of aggregate particles 41 and bonded fine particles 42, and the respective surfaces of the aggregate particles 41 and the bonded fine particles 42.
  • a conductive layer 44 is formed.
  • the conductive layer 44 is formed on the surface of each of the adjacent aggregate particles 41 and the combined fine particles 42, so that the first current collector 15 or the second current collector 16 is formed.
  • An electrical passage is secured in the two current collectors 16 and has electrical conductivity as a whole. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the first current collector 15 or the second current collector 16.
  • the first current collector 15 or the second current collector 16 is previously formed in the conductive layer 44.
  • the aggregate particles 41 in which the conductive layer 44 is not formed are used instead of using the aggregate particles 41 in which the layers are formed. It can be obtained by forming a conductive layer 44 on the surfaces of the aggregate particles 41 and the bonding fine particles 42 by performing a plating process such as electroless plating on the whole. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the first current collector 15 or the second current collector 16.
  • FIG. 8 shows another example of the first current collector 15 or the second current collector 16.
  • the first current collector 15 or the second current collector 16 has aggregate particles 41 covered with a conductive layer 44 and metal particles 45 that join the aggregate particles 41.
  • the first current collector 15 or the second current collector 16 is different from the first current collector 15 or the second current collector 16 shown in FIGS. 5 and 6 in that the aggregate particles 41 on which the conductive layer 44 is formed are formed.
  • the particles to be bonded are metal particles 45 made of a metal material.
  • the conductive layers 44 of the adjacent aggregate particles 41 are in direct contact with each other and indirectly in contact through the metal particles 45. As conductive. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the conductive porous material.
  • the first current collector 15 or the second current collector 16 is obtained by mixing aggregate particles 41 on which a conductive layer 44 has been formed in advance, metal particles 45, and a solvent, forming into a predetermined shape, and drying.
  • the aggregate particles 41 on which the conductive layer 44 is formed and the metal particles 45 are bonded by fusing by heat treatment at a high temperature. At this time, the conductive layers 44 of the aggregate particles 41 are brought into direct contact with each other and indirectly brought into contact with each other through the metal particles 45, thereby having conductivity as a whole.
  • FIG. 9 shows another example of the first current collector 15 or the second current collector 16.
  • the first current collector 15 or the second current collector 16 is composed of two layers of a fibrous current collecting layer 47 made of a conductive fibrous material 46 and a particulate current collecting layer 43. It consists of
  • a slurry containing the conductive fibrous material 46 is applied on the electrochemical cell 14 and heat treated to form the fibrous current collecting layer 47, and then the first shown in FIGS. 5 and 6 above.
  • the particulate current collecting layer 43 is formed on the fibrous current collecting layer 47 in the same manner as the method for producing the current collector 15 or the second current collector 16.
  • the first current collector 15 is formed on one surface of the electrochemical cell 14, and the second current collector 16 is formed on the other surface of the electrochemical cell 14.
  • FIG. 10 shows another example of the first current collector 15 or the second current collector 16.
  • the first current collector 15 or the second current collector 16 includes a metal fiber 48 and a ceramic fiber 49 and is formed in a layer shape.
  • the metal fiber 48 can be used as long as it has conductivity.
  • the ceramic fiber 49 is composed of alumina fiber or zirconia fiber. Moreover, the ceramic fiber 49 can contain a silica etc. as needed. This silica may be inevitably contained as an impurity, or may be contained as a second component.
  • the ceramic fiber 49 preferably has a diameter of 0.5 ⁇ m to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m. If the diameter of the ceramic fiber 49 is 50 ⁇ m or less, the ceramic fiber 49 can be easily bent, and thus can be compressed and deformed, and deterioration of the sealing characteristics can be suppressed. On the other hand, if the diameter of the ceramic fiber 49 is 0.5 ⁇ m or more, the ceramic fiber 49 is kept dispersed, and voids can be formed by the ceramic fibers 49. Therefore, it is possible to fill the voids with foamed glass or ceramic particles.
  • the length of the ceramic fiber 49 is preferably 10 ⁇ m to 1000 ⁇ m. If the length of the ceramic fiber 49 is 10 ⁇ m or more, the intersecting portion of the fibers can also be bent. Therefore, the ceramic fiber 49 can be compressed and deformed, and the deterioration of the sealing characteristics can be suppressed. On the other hand, when the length of the ceramic fiber 49 is 1000 ⁇ m or less, the ceramic fiber 49 can be uniformly dispersed, and the voids of the ceramic fiber 49 can be filled with foamed glass or ceramic particles.
  • a first current collector 15 is formed on one surface of the electrochemical cell 14 by laminating metal fibers 48 and ceramic fibers 49 on the electrochemical cell 14 to form a fiber layer having a predetermined thickness.
  • the second current collector 16 is formed on the other surface of the electrochemical cell 14.
  • the first current collector 15 and the second current collector 16 are sandwiched between a pair of separators 17 provided outside in the stacking direction. ing.
  • a plurality of holes 28 are provided at the ends of the pair of separators 17, bolts are inserted into these holes 28, and the pair of separators 17 are tightened in a direction approaching each other by a bolt and a nut attached to the bolt.
  • the separator 17 has a function of supplying a reactive gas (oxidant, reducing agent, or water vapor) to each electrode and collecting current evenly from the entire surface of the electrode. Therefore, the separator 17 has a through oxygen channel 31 and a through fuel channel 32 at predetermined intervals on the contact surface with each electrode in order to supply the reaction gas to each electrode.
  • the penetrating oxygen channel 31 and the penetrating fuel channel 32 are spaces through which regions extending along opposing sides penetrate in the thickness direction of the separator 17.
  • the separator 17 has a groove-like oxygen channel 33 between a pair of through oxygen channels 31 in order to supply an oxidant (for example, air) to the oxygen electrode 22 on one surface.
  • the separator 17 supplies a reducing agent (for example, hydrogen) or water vapor to the hydrogen electrode 23 on the surface of the separator 17 opposite to the surface on which the grooved oxygen flow path 33 is formed.
  • a grooved fuel flow path 34 is provided between the flow paths 32.
  • the grooved oxygen channel 33 is formed in the separator 17 in a direction orthogonal to the grooved fuel channel 34.
  • the groove-like oxygen flow path 33 and the groove-like fuel flow path 34 form gas spaces that communicate with the oxygen electrode 22 or the hydrogen electrode 23, respectively.
  • Oxygen is supplied to the groove-like oxygen channel 33, and oxygen is supplied to the oxygen electrode 22 through the groove-like oxygen channel 33. Further, hydrogen or water vapor is supplied to the groove-like fuel flow path 34, and hydrogen or water vapor is supplied to the hydrogen electrode 23 through the groove-like fuel flow path 34. When electrolysis is performed in the electrochemical cell 14, only water vapor is supplied and oxygen is not supplied.
  • the separator 17 is generally formed in a plate shape from a conductive material in order to collect current evenly from the entire surface of the electrode.
  • the electrochemical cell 14 includes a first current collector 15 and a second current collector. 16 and the separator 17 are electrically connected.
  • the separator 17 is in close contact with the oxygen electrode 22 or the hydrogen electrode 23 through a portion in contact with the oxygen electrode 22 or the hydrogen electrode 23 other than the groove-like oxygen channel 33 or the groove-like fuel channel 34. Then, electric power is supplied from the outside to the electrochemical cell 14 through the separator 17, or electric power is supplied from the electrochemical cell 14 to the outside.
  • a cover layer (not shown) is provided on the electrode-side surface of the separator 17 at a portion in contact with a gas seal portion 35 to be described later so that the contact surface with the gas seal portion 35 is flat.
  • the adhesion between the first current collector 15 or the second current collector 16 and the electrode surface of the oxygen electrode 22 or the hydrogen electrode 23 depends on the electrochemical cell 14 and the separator 17 and the first current collector 15 or the second current collector. It is ensured by tightening the body 16 from above and below with a plurality of bolts.
  • the cell holder 19 has a function of fixing the hydrogen electrode 23 and the ends of the second current collector 16.
  • the cell holder 19 is provided so as to surround the periphery of the hydrogen electrode 23 and the second current collector 16, and the hydrogen electrode 23 and the second current collector 16 are fitted and fixed to the recess 19 a of the cell holder 19.
  • the cell holder 19 is made of metal or ceramics.
  • the cell holder 19 has substantially the same thickness as the electrochemical cell 14, for example.
  • the electrochemical cell stack 10 includes a gas seal portion 35 between the separator 17 and the cell holder 19 for ensuring the gas seal performance of the single cell 13.
  • the gas seal portion 35 can be formed using an insulating material. Even when the cell holder 19 is made of metal, it is possible to ensure insulation between the first current collector 15 and the second current collector 16.
  • the seal will be damaged due to accumulation of distortion and defects.
  • the small unit cell stacks 11 are integrated with the glass so that the small unit cell stacks 11 can be appropriately slid and deformed. As a whole, the chemical cell stack 10 can improve robustness against seal breakage.
  • glass having a glass transition temperature of 800 ° C. or higher can be used. Since glass has a stack operating temperature range of about 800 ° C., it is preferable to use crystallized glass that is solid at least 800 ° C. from the viewpoint of durability for a long period of time.
  • crystallized glass that is solid at least 800 ° C. from the viewpoint of durability for a long period of time.
  • sodium silicate or borosilicate glass can be used.
  • the gas seal part 35 can use what combined the said glass and inorganic material.
  • the inorganic material ceramics such as yttria-stabilized zirconia and alumina may be further included in the gas seal portion 35.
  • the content of such an inorganic material in the gas seal portion 35 is, for example, 5 to 20 wt%.
  • the gas seal portion 35 has an adhesive surface having a width obtained by combining the width of the oxygen electrode 22 that is not in contact with the oxygen electrode 22 and the width of the cell holder 19 in the entire width of the solid electrolyte membrane 21.
  • the gas seal portion 35 preferably has a thickness of 0.2 to 1.0 mm in order to ensure gas sealability.
  • the gas seal portion 35 is preferably formed with a glass pool groove at an appropriate location of the separator 17 and the cell holder 19 so that the gas seal portion 35 is securely bonded to the separator 17 and the cell holder 19.
  • the gas seal portion is provided within a range that does not block the penetrating oxygen channel 31 and the penetrating fuel channel 32 at the end 17 a of the separator 17 for each small unit cell stack 11. 35 is provided.
  • the single cell 13 is in electrical contact with the oxygen electrode 22 and the separator 17 on the oxygen electrode side, and between the hydrogen electrode 23 and the separator 17 on the hydrogen electrode side while ensuring gas sealing performance at the end. Therefore, the sum of the thicknesses of the oxygen electrode 22, the solid electrolyte membrane 21, the hydrogen electrode 23, the first current collector 15, and the second current collector 16 of the electrochemical cell 14 is equal to the thickness of the cell holder 19.
  • the sum of the thicknesses of the two gas seal portions 35 is preferably substantially the same, and more preferably the difference between the two is 0.1 mm or less.
  • a filler 50 between the electrochemical cell 14 and the cell holder 19 as shown in FIG.
  • the filler 50 between the electrochemical cell 14 and the cell holder 19 even when the unevenness of the end of the electrochemical cell 14 is large, the leakage of the reaction gas from the end of the electrochemical cell 14 is suppressed. can do.
  • the material of the filler 50 it is possible to use glass that melts near the operating temperature, ceramic powder that does not cause reaction or melting with glass or peripheral members at the operating temperature, or a mixture of glass powder. it can.
  • the average particle size of the ceramic powder or glass powder is preferably 1 ⁇ m or less.
  • the heat exchanger 12 is formed in a plate shape and is provided between the small unit cell stacks 11.
  • the heat exchanger 12 exchanges heat with the small unit cell stack 11 and supplies heat to the small unit cell stack 11 during recovery of heat generated by power generation in the single cell 13 or electrolysis in the single cell 13. Is to do.
  • the heat exchanger 12 includes a heat transport pipe 52 through which the heat transport medium gas 51 passes.
  • the heat transport medium gas 51 for example, nitrogen (N 2 ), carbon dioxide (CO 2 ), helium (He), or the like is used.
  • the heat transport pipe 52 is provided meandering in the heat exchanger 12 as shown in FIG. With this structure, the heat transfer area of the heat transport pipe 52 can be increased by circulating the heat transport medium gas 51 through the heat transport pipe 52.
  • the material of the heat exchanger 12 is required to have high thermal conductivity, electrolyte resistance, heat resistance, etc., for example, stainless steel or the like is used.
  • the heat exchanger 12 Since the heat exchanger 12 is provided between the small unit cell stacks 11, heat exchange is performed for each small unit cell stack 11. Thereby, the electrochemical cell stack 10 can easily control the temperature distribution in the small unit cell stack 11, and can adjust and control the heat exchange efficiency of the entire stack to be high.
  • the heat exchanger 12 is provided in a meandering manner with the heat transport pipe 52 inside the heat exchanger 12 to increase the heat transfer area with the heat transport medium gas 51, heat is generated from a limited contact surface with the single cell 13. As a result, the electrochemical cell stack 10 can be made compact.
  • the heat exchanger 12 may be provided not only between the small unit cell stacks 11 but also at one end such as the upper end or the lower end of the small unit cell stack 11.
  • the electrochemical cell stack 10 includes a metal foil (buffer part) 55 between the small unit cell stack 11 and the heat exchanger 12.
  • a metal foil (buffer part) 55 between the small unit cell stack 11 and the heat exchanger 12.
  • SUS or the like As the material of the metal foil 55, SUS or the like is used. Since the metal foil 55 can relieve the stress generated by plastic deformation, by providing the metal foil 55 between the small unit cell stack 11 and the heat exchanger 12, the small unit cell stack 11 and the heat exchanger 12 are provided. And the tolerance for deformation of the small unit cell stack 11 is increased, the robustness of the entire stack is improved, and the gas seal portion 35 can be prevented from being damaged.
  • the metal foil 55 is provided between the small unit cell stack 11 and the heat exchanger 12, but the small unit cell stack 11 and the heat exchanger 12 may be directly laminated.
  • an oxidizing agent for example, air
  • This oxidant is sent to the grooved oxygen channel 33 through the through oxygen channel 31.
  • the oxidant that has reached the groove-like oxygen flow path 33 passes through the first current collector 15 and comes into contact with the oxygen electrode 22.
  • a reducing agent for example, hydrogen
  • This reducing agent is supplied to the electrochemical cell stack 10 from an external gas supply means.
  • This reducing agent is sent to the grooved fuel flow path 34 through the through fuel flow path 32.
  • the reducing agent that has reached the groove-like fuel flow path 34 is supplied to the hydrogen electrode 23 through the second current collector 16.
  • an oxidizing agent is supplied to the oxygen electrode 22 and a reducing agent is supplied to the hydrogen electrode 23, an electric current is generated in the electrochemical cell 14 to generate electric power.
  • the current generated in the electrochemical cell 14 flows through the second current collector 16 to an external load connected to the electrochemical cell stack 10 and is consumed.
  • the oxidizing agent is not supplied, and water vapor is supplied to the penetrating fuel flow path 32 instead of the reducing agent.
  • the water vapor is sent from the through fuel flow path 32 to the grooved fuel flow path 34, passes through the second current collector 16, and is supplied to the hydrogen electrode 23.
  • the water vapor is electrolyzed in the electrochemical cell 14 to generate hydrogen and oxygen.
  • the electrochemical cell stack 10 since the electrochemical cell stack 10 is provided with the heat exchanger 12 between the small unit cell stacks 11, the small unit cell stack 11 can perform heat exchange. With this configuration, the electrochemical cell stack 10 can easily control the temperature distribution of the plurality of single cells 13 in the stack, and the solid electrolyte membrane 21 functions effectively in the electrochemical cell stack 10. It can be used stably for a long time within the temperature range.
  • the electrochemical cell stack 10 when the electrochemical cell stack has a structure in which the heat exchanger 12 is not disposed between the small unit cell stacks 11, as shown in FIG. 14, the single cells stacked in the electrochemical cell stack The temperature distribution of the single cell increases in the vertical direction, and the efficiency of the entire stack tends to decrease.
  • the electrochemical cell stack 10 can easily control the temperature distribution of the plurality of single cells 13 stacked in the stack by providing the heat exchanger 12 between the small unit cell stacks 11. .
  • the electrochemical cell stack 10 has all the temperatures of the plurality of single cells 13 stacked in the stack within a temperature range in which oxygen ions can effectively pass through the solid electrolyte membrane 21. Therefore, the operation efficiency of the entire electrochemical cell stack 10 can be improved.
  • the electrochemical cell stack 10 can improve the gas sealing property of the single cell 13 by providing the gas sealing portion 35 between the separator 17 and the cell holder 19.
  • the tolerance for deformation of the small unit cell stack 11 increases, and the entire stack is robust. Can be improved, and damage to the gas seal portion 35 can be suppressed.
  • the solid electrolyte membrane 21, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 are fitted in the recess 19a of the cell holder 19, but as shown in FIG.
  • the end of the extremely porous substrate 24 may be covered with the cell end cover 56 and fitted into the recess 19a.
  • the cell end cover 56 can be formed using a stable metal, glass, ceramics, or the like that does not react with the reaction gas supplied to the electrochemical cell 14 or peripheral members under operating conditions. Since the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 are fixed to the recess 19a via the cell end cover 56, the flatness and thickness uniformity of the end face can be adjusted more strictly. Higher robustness can be imparted by suppressing the influence of the flatness and thickness of the end portion of the electrochemical cell 14 on the property.
  • a seal layer 57 may be provided between the end portions of the solid electrolyte membrane 21, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 and the cell holder 19.
  • the sealing layer 57 between the solid electrolyte membrane 21, the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 and the cell end cover 56, the solid electrolyte membrane 21, the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 are provided. And the gas seal between the cell holder 19 can be further enhanced.
  • an insulating strength auxiliary portion 58 may be provided outside the gas seal portion 35.
  • the electrochemical cell stack 10 is an internal manifold system in which the separator 17 is provided with the through oxygen passage 31 and the penetration fuel passage 32 and the gas introduction passage for the reaction gas is arranged inside the separator 17.
  • the present invention is not limited to this.
  • the grooved oxygen flow path 33 and the grooved fuel flow path 34 are extended to the end of the separator 17, and the penetrating oxygen flow path 31 and the penetrating fuel flow path 32 are provided outside the separator 17.
  • the electrochemical cell stack 10 is a solid oxide electrolytic cell (SOEC) that electrolyzes water to produce hydrogen, or a solid oxide fuel cell (SOFC) that generates power using hydrogen as a fuel. Since it can be used effectively, the electrochemical cell stack 10 is used as a solid oxide electrolytic cell and a solid oxide fuel cell, so that the combined electric power of the solid oxide electrolytic cell and the solid oxide fuel cell can be obtained. It can be used effectively as a system.
  • SOEC solid oxide electrolytic cell
  • SOFC solid oxide fuel cell
  • the power system according to this embodiment includes a solid oxide electrolytic cell that electrolyzes water vapor, a solid oxide fuel cell that generates power using a reducing agent and an oxidizing agent, and heat generated by the solid oxide fuel cell.
  • the solid oxide electrolysis cell and the solid oxide fuel cell include the electrochemical cell stack according to the first embodiment.
  • hydrogen is used as the reducing agent and oxygen is used as the oxidizing agent.
  • FIG. 19 is a diagram simply showing the configuration of the power system according to the present embodiment.
  • a power system (hydrogen power storage system) 60 includes a solid oxide electrolytic cell (SOEC) 61, a solid oxide fuel cell (SOFC) 62, and a hydrogen storage unit (reducing agent storage). Part) 63, an oxygen storage part (oxidant storage part) 64, a heat storage part 65, and a thermal circulation line L11.
  • the electrochemical cell stack 10 according to the first embodiment is used as the solid oxide electrolytic cell 61 and the solid oxide fuel cell 62.
  • the water vapor supplied to the solid oxide electrolytic cell 61 is supplied to the solid oxide electrolytic cell 61 after being heated up to about 800 ° C., for example, and is electrolyzed in the solid oxide electrolytic cell 61. Therefore, most of them are in the gas phase.
  • the electric power supplied from the outside to the solid oxide electrolytic cell 61 for example, electric power obtained by using natural energy such as solar power generation, wind power generation, or hydroelectric power generation can be used.
  • the hydrogen generated in the solid oxide electrolytic cell 61 is supplied to and stored in the hydrogen storage unit 63, and the oxygen generated in the solid oxide electrolytic cell 61 is supplied to and stored in the oxygen storage unit 64.
  • the heat supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 is released after being used for heat exchange with the small unit cell stack 11.
  • Hydrogen stored in the hydrogen storage unit 63 and oxygen stored in the oxygen storage unit 64 are supplied to the small unit cell stack 11 of the solid oxide fuel cell 62.
  • heat is supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 from an external heat source to the heat exchanger 12, and heat is exchanged with the small unit cell stack 11 to be heated.
  • the heat after heat exchange in the heat exchanger 12 is discharged to a thermal circulation line L11 that connects the solid oxide electrolytic cell 61 and the solid oxide fuel cell 62.
  • the heat discharged from the heat exchanger 12 is supplied to the heat storage unit 65 through the heat circulation line L11 and stored in the heat storage unit 65.
  • a heat storage container in which a plurality of capsules (not shown) of a ceramic material such as a silicon carbide sintered body in which a heat storage material is enclosed can be used.
  • a latent heat storage material such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium fluoride, lithium carbonate, sodium carbonate, or potassium carbonate is used.
  • the heat storage container forms a flow path for the medium flowing around the capsule.
  • the heat stored in the heat storage unit 65 is supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 through the thermal circulation line L11 and used for heat exchange with the small unit cell stack 11, and then released. Is done.
  • the power system 60 includes the solid oxide electrolytic cell 61, the solid oxide fuel cell 62, and the thermal circulation line L11.
  • the solid oxide fuel cell 62 generates electric power
  • the heat generated in the solid oxide fuel cell 62 is supplied to the heat exchanger 12 during electrolysis in the solid oxide electrolytic cell 61 as a heat storage unit.
  • the heat can be stored in 65.
  • the power generation that occurs in the solid oxide fuel cell 62 is an exothermic reaction
  • the electrolysis that occurs in the solid oxide electrolytic cell 61 is an endothermic reaction.
  • the heat generated in each small unit cell stack 11 in the solid oxide fuel cell 62 is discharged to the outside through the heat exchanger 12, and is stored in the heat storage unit 65, and the heat storage unit
  • the heat storage unit 65 By supplying the heat stored in 65 to each heat exchanger 12 of the solid oxide electrolytic cell 61, the reaction heat generated during power generation in the small unit cell stack 11 of the solid oxide fuel cell 62 is reused. Therefore, the overall energy efficiency of the power system 60 can be improved.
  • a hydrogen storage unit 63 and an oxygen storage unit 64 are provided, and hydrogen and oxygen supplied to the solid oxide fuel cell 62 are hydrogen stored in the hydrogen storage unit 63 and the oxygen storage unit 64.
  • hydrogen and oxygen supplied from the outside may be used.
  • the heat storage unit 65 is provided to store the heat discharged from the solid oxide fuel cell 62.
  • the heat storage unit 65 is directly supplied to the solid oxide electrolytic cell 61 without storing heat. May be.
  • the power system is a hydrogen power storage system
  • the present invention is not limited to this, and the power system is applied to a power system that uses other fuel as a fuel source. You can also.
  • the reducing agent is not limited to hydrogen and the oxidizing agent is not limited to oxygen. Any gas can be used as long as the reducing agent is a gas containing hydrogen and the oxidizing agent is a gas containing oxygen.
  • the solid electrolyte membrane can be used stably for a long time within a temperature range where the solid electrolyte membrane functions effectively.
  • Electrochemical cell stack 11 Small unit cell stack 12 Heat exchanger (heat exchanger) 13 Single cell 14 Electrochemical cell 15 Current collector (first current collector) 16 Current collector (second current collector) 17 Separator 19 Cell holder 21 Solid electrolyte membrane (electrolyte membrane) 22 Oxygen electrode 23 Hydrogen electrode 24 Hydrogen electrode porous substrate 28 Hole 31 Through oxygen flow path 32 Through fuel flow path 33 Grooved oxygen flow path 34 Grooved fuel flow path 35 Gas seal part 41 Aggregate particle 42 Bonded fine particle 43 Laminate (particulate current collecting layer) 44 Conductive layer 45 Metal particle 46 Fibrous material 47 Fibrous current collecting layer 48 Metal fiber 49 Ceramic fiber 50 Filler 51 Heat transport medium gas 52 Heat transport pipe 55 Metal foil (buffer part) 56 Cell end cover 57 Seal layer 58 Reinforcement material 60 Power system 61 Solid oxide electrolytic cell (SOEC) 62 Solid oxide fuel cell (SOFC) 63 Hydrogen storage part (reducing agent storage part) 64 Oxygen storage (oxidizer storage) 65 Heat storage section L11 Thermal circulation line L12 Water supply

Abstract

An electrochemical cell stack 10 according to the present invention comprises small unit cell stacks 11 and a heat exchanger 12 disposed between the small unit cell stacks 11 to exchange heat with the small unit cell stacks 11, wherein each of the small unit cell stacks 11 includes at least one unit cell 13 formed by stacking current collectors 15 and 16 and a separator 17 on each surface of an electrochemical cell 14 including an electrolyte film 21, an oxygen electrode 22 disposed on one principal surface of the electrolyte film 21, and a hydrogen electrode 23 disposed on another principal surface of the electrolyte film 21.

Description

電気化学セルスタック、および電力システムElectrochemical cell stack and power system
 本発明の実施形態は、電気化学セルスタック、および電力システムに関する。 Embodiments of the present invention relate to an electrochemical cell stack and a power system.
 固体電解質膜を備える電気化学セルは、例えば、700~1000℃の高温条件下において、イオン伝導性を有する固体電解質膜を介して、水素または炭化水素などの還元剤と酸素などの酸化剤とを反応させ、電気エネルギーを取り出すのに用いられる。また、電気化学セルは、外部から供給される電気エネルギーにより水蒸気を電気分解して酸素と水素とを生成させることもできる。 An electrochemical cell including a solid electrolyte membrane, for example, contains a reducing agent such as hydrogen or hydrocarbon and an oxidizing agent such as oxygen through a solid electrolyte membrane having ion conductivity under a high temperature condition of 700 to 1000 ° C. Used to react and extract electrical energy. In addition, the electrochemical cell can generate oxygen and hydrogen by electrolyzing water vapor with electric energy supplied from the outside.
 電気化学セルは、電気エネルギーを取り出す反応を行う場合には、還元剤と酸化剤との反応エネルギーを電気として取り出す固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)として機能する。一方、水蒸気などの電気分解を行う場合には、電気化学セルは、上記したSOFCにおける反応の逆反応を動作原理とし、電解質膜を介して、高温の水蒸気を電気分解することにより水素と酸素とを得る固体酸化物型電解セル(Solid Oxide Electrolysis Cell:SOEC)として機能する。 Electrochemical cell functions as a solid oxide fuel cell (SOFC) that extracts reaction energy between a reducing agent and an oxidizing agent as electricity when a reaction for extracting electric energy is performed. On the other hand, in the case of electrolyzing water vapor or the like, the electrochemical cell uses the reverse reaction of the reaction in the SOFC as described above as an operating principle, and electrolyzes high-temperature water vapor through an electrolyte membrane to generate hydrogen and oxygen. It functions as a solid oxide electrolysis cell (SOEC).
 SOFCおよびSOECの双方の機能を有する電気化学セルを備えた電気化学装置を用いて、必要に応じて発電モードと電解モードのいずれかの運転、いわゆるリバーシブル運転を行うことで、電力に余裕のあるときには水素を生成して蓄積し、電力不足時には蓄積された水素を用いて発電を行う電力貯蔵システム(水素電力貯蔵システム)を実現することが可能である。 Using an electrochemical device equipped with an electrochemical cell having both functions of SOFC and SOEC, power can be afforded by performing either power generation mode or electrolysis mode operation, so-called reversible operation, as necessary. Sometimes, it is possible to realize a power storage system (hydrogen power storage system) that generates and stores hydrogen and generates power using the stored hydrogen when power is insufficient.
 こうした電力貯蔵システムでは、SOFCにおいて発電の際に生じる発熱反応、およびSOECにおいて水蒸気の電気電解の際に生じる吸熱反応に伴う熱の蓄積または供給を効率よく行うことで、電力貯蔵システム全体をさらに高効率で運用することができる。 In such a power storage system, the entire heat storage system is further enhanced by efficiently accumulating or supplying heat accompanying the exothermic reaction that occurs during power generation in SOFC and the endothermic reaction that occurs during electrolysis of water vapor in SOEC. It can be operated efficiently.
特開2012-109251号公報JP 2012-109251 A 特開2011-228171号公報JP 2011-228171 A
 電力貯蔵システム全体において、さらにシステム全体を高効率での運用を図る上で、電気化学セルでの発熱反応および吸熱反応の際に、電気化学セルとその外部との熱の移動を効率的に行い、電気化学セルスタックを、酸素イオンが固体電解質膜を有効に通過できる温度(例えば700~1000℃)で長期間安定して使用できることが望まれている。 In order to operate the entire power storage system with high efficiency, the heat transfer between the electrochemical cell and the outside is efficiently performed during exothermic and endothermic reactions in the electrochemical cell. It is desired that the electrochemical cell stack can be stably used for a long period of time at a temperature (for example, 700 to 1000 ° C.) at which oxygen ions can effectively pass through the solid electrolyte membrane.
 本発明の実施形態が解決しようとする課題は、固体電解質膜が有効に機能する温度範囲内で長期間安定して使用することができる電気化学セルスタックを提供することを目的とする。 An object of the embodiment of the present invention is to provide an electrochemical cell stack that can be used stably for a long period of time within a temperature range in which the solid electrolyte membrane functions effectively.
 一の実施形態による電気化学セルスタックは、電解質膜と、前記電解質膜の一方の主面に設けられる酸素極と、前記電解質膜の他方の主面に設けられる水素極とを具備してなる電気化学セルの両面に集電体とセパレータとが設けられてなる単セルを1つ以上含む小単位セルスタックと、前記小単位セルスタック同士の間と前記小単位セルスタックの一方の端部との何れか一方または両方に設けられ、前記小単位セルスタックと熱交換が可能な熱交換部と、を具備してなることを特徴とする。 An electrochemical cell stack according to one embodiment comprises an electrolyte membrane, an oxygen electrode provided on one main surface of the electrolyte membrane, and a hydrogen electrode provided on the other main surface of the electrolyte membrane. A small unit cell stack including one or more single cells each having a current collector and a separator provided on both sides of the chemical cell; and between the small unit cell stacks and one end of the small unit cell stack. It is provided in any one or both, It comprises the said small unit cell stack and the heat exchange part in which heat exchange is possible, It is characterized by the above-mentioned.
第1の実施形態による電気化学セルスタックの構成を簡略に示す斜視図である。It is a perspective view which shows simply the structure of the electrochemical cell stack by 1st Embodiment. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 電気化学セルの分解斜視図である。It is a disassembled perspective view of an electrochemical cell. 第1集電体または第2集電体の一例を示す模式図である。It is a schematic diagram which shows an example of a 1st electrical power collector or a 2nd electrical power collector. 図5の部分拡大図である。It is the elements on larger scale of FIG. 第1集電体または第2集電体の他の一例を模式的に示す図である。It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector. 第1集電体または第2集電体の他の一例を模式的に示す図である。It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector. 第1集電体または第2集電体の他の一例を模式的に示す図である。It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector. 第1集電体または第2集電体の他の一例を模式的に示す図である。It is a figure which shows typically another example of a 1st electrical power collector or a 2nd electrical power collector. 電気化学セルスタックの構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of an electrochemical cell stack. 電気化学セルの構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of an electrochemical cell. 熱交換器の一例を示す説明図である。It is explanatory drawing which shows an example of a heat exchanger. 電気化学セルスタックの高さと単セルの温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the height of an electrochemical cell stack, and the temperature of a single cell. 電気化学セルスタックの高さと単セルの温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the height of an electrochemical cell stack, and the temperature of a single cell. 水素極および水素極多孔質基材の端部にセル端部カバーを設けた図である。It is the figure which provided the cell edge part cover in the edge part of a hydrogen electrode and a hydrogen electrode porous base material. セル端部カバー内にシール層を設けた図である。It is the figure which provided the sealing layer in the cell edge part cover. 電気化学セルスタックの構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of an electrochemical cell stack. 第2の実施形態による電力システムの構成を簡略に示す図である。It is a figure which shows simply the structure of the electric power system by 2nd Embodiment.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[第1の実施形態]
<電気化学セルスタック>
 図1は、本実施形態による電気化学セルスタックの構成を簡略に示す斜視図であり、図2は、図1のA-A断面図であり、図3は、図1のB-B断面図である。図1~図3に示されるように、電気化学セルスタック10は、小単位セルスタック11と、熱交換器(熱交換部)12とを備え、小単位セルスタック11および熱交換器12が積層して構成されている。
[First Embodiment]
<Electrochemical cell stack>
FIG. 1 is a perspective view schematically showing a configuration of an electrochemical cell stack according to the present embodiment, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG. It is. As shown in FIGS. 1 to 3, the electrochemical cell stack 10 includes a small unit cell stack 11 and a heat exchanger (heat exchange unit) 12, and the small unit cell stack 11 and the heat exchanger 12 are stacked. Configured.
 なお、本実施形態において、小単位セルスタック11内に供給される反応ガスとは、酸化剤、還元剤、または水蒸気をいう。酸化剤とは、空気など酸素を含むガスをいい、還元剤とは、水素または炭化水素などの燃料ガスをいい、水蒸気は、水の大部分が気相状態の媒体であればよく、液相状態の水を一部含んでいる場合も含む。 In the present embodiment, the reaction gas supplied into the small unit cell stack 11 refers to an oxidizing agent, a reducing agent, or water vapor. The oxidant refers to a gas containing oxygen such as air, the reducing agent refers to a fuel gas such as hydrogen or hydrocarbon, and the water vapor may be a medium in which most of the water is in a gas phase state. This includes cases where some of the state water is included.
(小単位セルスタック)
 小単位セルスタック11は、平板型の単セル13を1つ以上含んで(図1~図3に示された実施形態では5段積層されて)構成されている。なお、小単位セルスタック11は、単セルを1つ以上含んで構成されてなるものである。本実施形態では、小単位セルスタック11は、単セルを3~30個積層されて構成されていることが好ましい。小単位セルスタック11中の単セルの数が上記範囲内であれば、後述するように、各単セル13と熱交換器12との熱交換を確実に行うことができるため、小単位セルスタック11内の温度の温度分布を制御することが容易になり、各単セル13の温度を一定にすることができる。
(Small unit cell stack)
The small unit cell stack 11 includes one or more flat plate-type single cells 13 (in the embodiment shown in FIGS. 1 to 3, five layers are stacked). Note that the small unit cell stack 11 includes one or more single cells. In the present embodiment, the small unit cell stack 11 is preferably configured by stacking 3 to 30 single cells. If the number of single cells in the small unit cell stack 11 is within the above range, as will be described later, heat exchange between each single cell 13 and the heat exchanger 12 can be performed reliably. It becomes easy to control the temperature distribution of the temperature in 11, and the temperature of each single cell 13 can be made constant.
 単セル13の分解斜視図を図4に示す。図4に示されるように、単セル13は、電気化学セル14と、その電気化学セル14の両面に設けられる集電体15、16(第1集電体15、第2集電体16)と、電気化学セル14を第1集電体15および第2集電体16の外側から挟み込む一対のセパレータ17と、セルホルダー19とを有している。 An exploded perspective view of the single cell 13 is shown in FIG. As shown in FIG. 4, the single cell 13 includes an electrochemical cell 14 and current collectors 15 and 16 (first current collector 15 and second current collector 16) provided on both surfaces of the electrochemical cell 14. A pair of separators 17 that sandwich the electrochemical cell 14 from the outside of the first current collector 15 and the second current collector 16, and a cell holder 19.
 電気化学セル14は、イオン伝導性を有する固体電解質膜(電解質膜)21と、固体電解質膜21の一方の主面21aに設けられる酸素極22と、固体電解質膜21の他方の主面21bに設けられる水素極23と、水素極23の固体電解質膜21側とは反対側の面に設けられる水素極多孔質基材24とを備え、これらが積層されたものである。 The electrochemical cell 14 includes an ion conductive solid electrolyte membrane (electrolyte membrane) 21, an oxygen electrode 22 provided on one main surface 21 a of the solid electrolyte membrane 21, and the other main surface 21 b of the solid electrolyte membrane 21. A hydrogen electrode 23 is provided, and a hydrogen electrode porous substrate 24 provided on the surface of the hydrogen electrode 23 opposite to the solid electrolyte membrane 21 side, and these are laminated.
 第1集電体15は酸素極22の外側の面に積層され、第2集電体16は水素極23の外側の面に積層される。固体電解質膜21、酸素極22、水素極23、および水素極多孔質基材24とは、いずれも矩形状の形状を有する。また、酸素極22の大きさは固体電解質膜21よりも小さく、固体電解質膜21の外周には酸素極22で覆われていない部分が存在する。なお、固体電解質膜21、酸素極22、水素極23、および水素極多孔質基材24の形状は、正方形に限定されるものではなく、任意の形状とすることができる。 The first current collector 15 is stacked on the outer surface of the oxygen electrode 22, and the second current collector 16 is stacked on the outer surface of the hydrogen electrode 23. The solid electrolyte membrane 21, the oxygen electrode 22, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 all have a rectangular shape. Further, the size of the oxygen electrode 22 is smaller than that of the solid electrolyte membrane 21, and there is a portion that is not covered with the oxygen electrode 22 on the outer periphery of the solid electrolyte membrane 21. In addition, the shape of the solid electrolyte membrane 21, the oxygen electrode 22, the hydrogen electrode 23, and the hydrogen electrode porous base material 24 is not limited to a square shape, and can be an arbitrary shape.
 固体電解質膜21は、電子絶縁性と酸素イオン伝導性を有する固体酸化物を膜状に稠密に形成させたものである。ここで、稠密とは、固体電解質膜21におけるガスリークが実質的に無視できる程度の稠密度であればよい。固体電解質膜21は、例えば、安定化ジルコニア、ペロブスカイト型酸化物、またはセリア(CeO)系電解質固溶体などを用いて形成される。なお、安定化ジルコニアとは、安定化剤をジルコニア中に固溶させたジルコニアである。安定化剤としては、例えば、Y、Sc、Yb、Gd、Nd、CaO、MgOなどが挙げられる。また、ペロブスカイト型酸化物としては、例えば、LaSrGaMg酸化物、LaSrGaMgCo酸化物、およびLaSrGaMgCoFe酸化物などが挙げられる。また、セリア系電解質固溶体としては、CeOを含む材料に、Sm、Gd、Y、またはLaなどを固溶させた固溶体が挙げられる。また、固体電解質膜21は、これらの材料に限定されるものではなく、これら以外の材料で構成されてもよい。 The solid electrolyte membrane 21 is formed by densely forming a solid oxide having electronic insulation and oxygen ion conductivity into a film shape. Here, the dense state may be a dense density that allows gas leakage in the solid electrolyte membrane 21 to be substantially ignored. The solid electrolyte membrane 21 is formed using, for example, stabilized zirconia, perovskite oxide, or ceria (CeO 2 ) electrolyte solid solution. Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia. As the stabilizer, for example, Y 2 O 3, Sc 2 O 3, Yb 2 O 3, Gd 2 O 3, Nd 2 O 3, CaO, MgO or the like can be mentioned. Examples of the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide. As the ceria-based electrolyte solid solution, a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given. Moreover, the solid electrolyte membrane 21 is not limited to these materials, and may be composed of other materials.
 固体電解質膜21は、例えば、700~1000℃の温度範囲内で電子絶縁性と酸素イオン伝導性を有する。この温度範囲内で、酸素イオンは固体電解質膜を通過することができる。 The solid electrolyte membrane 21 has electronic insulation and oxygen ion conductivity within a temperature range of 700 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the solid electrolyte membrane.
 また、固体電解質膜21の厚さは、使用される用途に応じて適宜任意に調整することができ、例えば、固体電解質膜21の厚さは、例えば、5μm~500μmの範囲であることが好ましい。 In addition, the thickness of the solid electrolyte membrane 21 can be arbitrarily adjusted as appropriate according to the intended use. For example, the thickness of the solid electrolyte membrane 21 is preferably in the range of 5 μm to 500 μm, for example. .
 酸素極22は、酸素を効率よく解離させることができるとともに、電子伝導性を有する材料で構成される。酸素極22は、電気化学セルの酸素極として用いられている公知の材料を用いて構成される。酸素極22としては、例えば、ランタン・ストロンチウム・マンガン(LaSrMn)系ペロブスカイト型酸化物(LSM)、LaSrCo酸化物(LSC)、LaSrCoFe酸化物(LSCF)、LaSrFe酸化物(LSF)、LaSrMnCo酸化物(LSMC)、LaSrMnCr酸化物(LSMC)、LaCoMn酸化物(LCM)、LaSrCu酸化物(LSC)、LaSrFeNi酸化物(LSFN)、LaNiFe酸化物(LNF)、LaBaCo酸化物(LBC)、LaNiCo酸化物(LNC)、LaSrAlFe酸化物(LSAF)、LaSrCoNiCu酸化物(LSCNC)、LaSrFeNiCu酸化物(LSFNC)、LaNi酸化物(LN)、GdSrCo酸化物(GSC)、GdSrMn酸化物(GSM)、PrCaMn酸化物(PCaM)、PrSrMn酸化物(PSM)、PrBaCo酸化物(PBC)、SmSrCo酸化物(SSC)、NdSmCo酸化物(NSC)、BiSrCaCu酸化物(BSCC)、BaLaFeCo酸化物(BLFC)、BaSrFeCo酸化物(BSFC)、YSrFeCo酸化物(YLFC)、YCuCoFe酸化物(YCCF)、またはYBaCu酸化物(YBC)などで形成される。酸素極22は、これらの酸化物の混合体でもよく、例えば、LSM-YSZ、LSCF-SDC、LSCF-GDC、LSCF-YDC、LSCF-LDC、LSCF-CDC、LSM-ScSZ、LSM-SDC、LSM-GDCなどで形成されてもよい。さらに、酸素極22に、例えばPt、Ru、Au、Ag、Pdなどの成分を添加してもよい。 The oxygen electrode 22 is made of a material that can efficiently dissociate oxygen and has electronic conductivity. The oxygen electrode 22 is configured using a known material that is used as an oxygen electrode of an electrochemical cell. Examples of the oxygen electrode 22 include lanthanum / strontium / manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide ( LSMC), LaSrMnCr oxide (LSMC), LaCoMn oxide (LCM), LaSrCu oxide (LSC), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) ), LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrMn oxide (GS) ), PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxide (BLFC) BaSrFeCo oxide (BSFC), YSrFeCo oxide (YLFC), YCuCoFe oxide (YCCF), or YBaCu oxide (YBC). The oxygen electrode 22 may be a mixture of these oxides, for example, LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM -It may be formed of GDC or the like. Furthermore, for example, components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 22.
 酸素極22の厚さは、使用される用途に応じて任意に設定することができる。例えば、酸素極22の厚さを、30μm~100μmの範囲に設定することができる。 The thickness of the oxygen electrode 22 can be arbitrarily set according to the intended use. For example, the thickness of the oxygen electrode 22 can be set in the range of 30 μm to 100 μm.
 水素極23は、水素極触媒金属からなる平均粒子径が0.1μm~5μmの金属粒子、および固体電解質膜21と同じ酸素イオン伝導性を有する酸化物からなる平均粒子径が1nm~100nmの酸化物粒子を含んで構成されている。水素極触媒金属としては、例えば、ニッケル、銀、または白金などの金属や、酸化ニッケル、または酸化コバルトなどの金属酸化物が挙げられる。酸化物粒子を構成する酸化物は、酸素イオン伝導性を有するセラミックスで構成され、例えば、サマリア安定化セリア(SDC)、またはガドリニア安定化セリア(GDC)などのセリア系酸化物、またはイットリア安定化ジルコニア(YSZ)などのジルコニア系酸化物などが挙げられる。また、酸化物粒子を構成する酸化物として、固体電解質膜21を構成する酸化物を使用してもよい。 The hydrogen electrode 23 is an oxide having an average particle diameter of 1 nm to 100 nm made of metal particles having an average particle diameter of 0.1 μm to 5 μm made of a hydrogen electrode catalytic metal and an oxide having the same oxygen ion conductivity as the solid electrolyte membrane 21. It is comprised including physical particles. As a hydrogen electrode catalyst metal, metal oxides, such as metals, such as nickel, silver, or platinum, nickel oxide, or cobalt oxide, are mentioned, for example. The oxide constituting the oxide particles is made of ceramics having oxygen ion conductivity, for example, ceria-based oxides such as samaria stabilized ceria (SDC) or gadolinia stabilized ceria (GDC), or yttria stabilized. Examples thereof include zirconia-based oxides such as zirconia (YSZ). Moreover, you may use the oxide which comprises the solid electrolyte membrane 21 as an oxide which comprises an oxide particle.
 金属粒子の平均粒子径が0.1μm~5μmの範囲内であれば、触媒粒子の表面積を大きくできるため、電極としての活性を高くでき、好ましい。また、さらに好ましい金属粒子の平均粒子径は、1μm以下である。なお、粒径が小さすぎると、単セル13の運用時、特に高電流密度において金属粒子の凝集による特性低下が生じるため、金属粒子の平均粒子径の下限値は0.1μmとすることが好ましい。 If the average particle diameter of the metal particles is in the range of 0.1 μm to 5 μm, the surface area of the catalyst particles can be increased, so that the activity as an electrode can be increased. Further, the average particle size of the metal particles is more preferably 1 μm or less. If the particle size is too small, characteristic deterioration due to aggregation of the metal particles occurs at the time of operation of the single cell 13, particularly at a high current density. Therefore, the lower limit of the average particle size of the metal particles is preferably 0.1 μm. .
 また、酸化物粒子の平均粒子径が1nm~100nmの範囲内であれば、焼成による組織焼結の緻密性を向上させることができるため、好ましい。また、酸化物粒子の平均粒子径は、1nm~50nmであることがより好ましい。なお、製造技術や混合時の分散性の観点から、酸化物粒子の平均粒子径の下限値は1nmとすることが好ましい。 Further, it is preferable that the average particle diameter of the oxide particles is in the range of 1 nm to 100 nm because the denseness of the structure sintering by firing can be improved. The average particle size of the oxide particles is more preferably 1 nm to 50 nm. In addition, it is preferable that the lower limit of the average particle diameter of oxide particle | grains shall be 1 nm from a viewpoint of a dispersibility at the time of manufacturing technology and mixing.
 なお、平均粒子径とは、有効径による体積平均径をいい、平均粒子径は、例えば、レーザー回折・散乱法または動的光散乱法などによって測定される。 In addition, the average particle diameter means a volume average diameter by an effective diameter, and the average particle diameter is measured by, for example, a laser diffraction / scattering method or a dynamic light scattering method.
 金属粒子と酸化物粒子との混合割合について、金属粒子の質量を1とした場合、酸化物粒子の質量は、0.6~1.6の範囲に設定することが好ましい。この範囲内であれば、金属粒子および酸化物粒子は、均一に分散され、水素極23の活性および水素極23中の酸素イオン伝導経路、電子伝導経路を最もバランスよく配置することができる。 Regarding the mixing ratio of the metal particles and the oxide particles, when the mass of the metal particles is 1, the mass of the oxide particles is preferably set in the range of 0.6 to 1.6. Within this range, the metal particles and the oxide particles are uniformly dispersed, and the activity of the hydrogen electrode 23 and the oxygen ion conduction path and electron conduction path in the hydrogen electrode 23 can be arranged in the most balanced manner.
 また、水素極23の厚さは、使用される用途に応じて任意に設定することができる。例えば、水素極23の厚さは、50μm~200μmの範囲内設定することができる。 Further, the thickness of the hydrogen electrode 23 can be arbitrarily set according to the application to be used. For example, the thickness of the hydrogen electrode 23 can be set within a range of 50 μm to 200 μm.
 水素極多孔質基材24は、電気化学セル14の支持基材となる層であり、水素極23に一体的に接合した状態で設けられる。水素極多孔質基材24は、電気化学セル14の支持体として機能するため、電気化学セル14の機械的強度の維持または向上を図ることができる。 The hydrogen electrode porous substrate 24 is a layer serving as a support substrate of the electrochemical cell 14 and is provided in a state of being integrally bonded to the hydrogen electrode 23. Since the hydrogen porous substrate 24 functions as a support for the electrochemical cell 14, the mechanical strength of the electrochemical cell 14 can be maintained or improved.
 水素極多孔質基材24の気孔率は、例えば30~80%であることが好ましい。気孔率が30%以上の場合には、ガス透過性が損なわれず、電気化学セル14の特性を維持できるので好ましい。一方、気孔率が80%以下の場合には、機械的強度を十分に維持することができ、組立の際に破損が生じることを抑制できるので好ましい。なお、気孔率は、ガス透過法や吸水法、ポロシメータなどによって測定される。 The porosity of the hydrogen electrode porous substrate 24 is preferably 30 to 80%, for example. A porosity of 30% or more is preferable because the gas permeability is not impaired and the characteristics of the electrochemical cell 14 can be maintained. On the other hand, when the porosity is 80% or less, it is preferable because the mechanical strength can be sufficiently maintained and the occurrence of breakage during assembly can be suppressed. The porosity is measured by a gas permeation method, a water absorption method, a porosimeter, or the like.
 水素極多孔質基材24の厚さは、例えば500μm~5mmの範囲に設定することが好ましい。水素極多孔質基材24の厚さがこの範囲内であれば、機械的強度を維持すると共にガス透過性を確保することができる。 The thickness of the hydrogen electrode porous substrate 24 is preferably set in the range of 500 μm to 5 mm, for example. If the thickness of the hydrogen electrode porous substrate 24 is within this range, the mechanical strength can be maintained and the gas permeability can be secured.
 なお、水素極多孔質基材24は、水素極23の主面23bに設けているが、酸素極22側の固体電解質膜21の片面に設けてもよい。 The hydrogen electrode porous substrate 24 is provided on the main surface 23b of the hydrogen electrode 23, but may be provided on one surface of the solid electrolyte membrane 21 on the oxygen electrode 22 side.
 このような電気化学セル14では、発電時には、下記式(1)で示されるとおり、酸素極22で酸素が解離して酸素イオン(O2-)を生じる。この酸素イオンが、固体電解質膜21を通って水素極23へ移動し、水素極23で、下記式(2)で示されるとおり酸素イオンと水素とが反応して水が生成する。このときに生じた電子が取り出されて、外部負荷で消費される。このときの電気化学セル14における発電時の反応は、発熱反応である。
1/2O+2e-→O2- ・・・(1)
+O2-→HO+2e- ・・・(2)
In such an electrochemical cell 14, during power generation, as shown by the following formula (1), oxygen is dissociated at the oxygen electrode 22 to generate oxygen ions (O 2− ). The oxygen ions move to the hydrogen electrode 23 through the solid electrolyte membrane 21, and the oxygen ions and hydrogen react with each other as shown by the following formula (2) to generate water. The electrons generated at this time are taken out and consumed by an external load. The reaction during power generation in the electrochemical cell 14 at this time is an exothermic reaction.
1 / 2O 2 + 2e → O 2− (1)
H 2 + O 2− → H 2 O + 2e (2)
 一方、電気化学セル14では、電気分解時には、外部負荷に代えて外部電源が接続され、発電時の逆反応が進行する。すなわち、単セル13に外部電源から供給された電力により、下記式(3)で示されるとおり、水素極23で、供給された水蒸気(水)が水素と酸素イオン(O2-)に分解され、水素が放出される。また、酸素イオンは、固体電解質膜21を通って酸素極22へ移動する。そして酸素極22で、下記式(4で示されるとおり、酸素イオンから電子が分離されて酸素となり、その酸素が放出される。このときに分離された電子が取り出されて、循環して利用される。このときの電気化学セル14における電気分解時の反応は、吸熱反応である。
O+2e-→H+O2- ・・・(3)O2-→1/2O+2e- ・・・(4)
On the other hand, in the electrochemical cell 14, during electrolysis, an external power supply is connected instead of an external load, and a reverse reaction during power generation proceeds. That is, as shown by the following formula (3), the supplied water vapor (water) is decomposed into hydrogen and oxygen ions (O 2− ) at the hydrogen electrode 23 by the power supplied from the external power source to the single cell 13. , Hydrogen is released. Also, oxygen ions move to the oxygen electrode 22 through the solid electrolyte membrane 21. Then, at the oxygen electrode 22, as shown in the following formula (4), electrons are separated from oxygen ions to become oxygen, and the oxygen is released. At this time, the separated electrons are taken out and recycled and used. The reaction during electrolysis in the electrochemical cell 14 at this time is an endothermic reaction.
H 2 O + 2e - → H 2 + O 2- ··· (3) O 2- → 1 / 2O 2 + 2e - ··· (4)
 第1集電体15および第2集電体16は、いずれも、導電性を持つ材料で形成され、気体が通過可能に構成されている。第1集電体15および第2集電体16は、それぞれ酸素極22および水素極23と電気的に接続されている。第1集電体15および第2集電体16は、電極全面から均等に集電するため、板状に形成されているのが一般的である。また、第1集電体15および第2集電体16は、一般に、いずれも固体電解質膜21よりも小さい矩形状に形成され、第1集電体15は、酸素極22とほぼ同じ大きさに形成されている。 The first current collector 15 and the second current collector 16 are both made of a conductive material and configured to allow gas to pass therethrough. The first current collector 15 and the second current collector 16 are electrically connected to the oxygen electrode 22 and the hydrogen electrode 23, respectively. The first current collector 15 and the second current collector 16 are generally formed in a plate shape in order to collect current evenly from the entire surface of the electrode. The first current collector 15 and the second current collector 16 are generally formed in a rectangular shape smaller than the solid electrolyte membrane 21, and the first current collector 15 is approximately the same size as the oxygen electrode 22. Is formed.
 第1集電体15および第2集電体16は、メッシュ状、布状、多孔質体などで構成される。第1集電体15および第2集電体16は、これらを適当な厚さになるように重ねて用いることが好ましい。これにより、第1集電体15および第2集電体16の厚さを任意に調整することができる。 The first current collector 15 and the second current collector 16 are made of a mesh shape, a cloth shape, a porous body, or the like. It is preferable that the first current collector 15 and the second current collector 16 are used so as to have an appropriate thickness. Thereby, the thickness of the 1st electrical power collector 15 and the 2nd electrical power collector 16 can be adjusted arbitrarily.
 第1集電体15は、例えば、耐酸化表面処理を施したニッケルやステンレスなどの金属、または金、銀もしくは白金などの耐酸化性を有する金属などで形成される。 The first current collector 15 is formed of, for example, a metal such as nickel or stainless steel subjected to an oxidation resistant surface treatment, or a metal having oxidation resistance such as gold, silver or platinum.
 第2集電体16は、例えば、ニッケル、銀または白金などの金属で形成される。 The second current collector 16 is formed of a metal such as nickel, silver or platinum, for example.
 また、第1集電体15および第2集電体16は、上記材料の他に、例えば金、銀など各電極に用いられる材料や耐酸化性の強い金属ペーストと、発泡材料とを混合したものを用いて形成することができる。 In addition to the above materials, the first current collector 15 and the second current collector 16 are made by mixing a material used for each electrode such as gold and silver, a metal paste having strong oxidation resistance, and a foam material. It can be formed using a thing.
 発泡材料とは、常温から使用温度になる間に発泡する材料である。発泡物質としては、例えば炭酸カルシウム(CaCO)を用いることができる。炭酸カルシウムは、加熱により酸化カルシウム(CaO)と二酸化炭素(CO)に分解する。COが発生すると、第1集電体15および第2集電体16の中に気泡が生成される。また、発泡物質として、常温と使用温度の間の温度で熱処理を施すことにより、ガラス化する成分と、水蒸気またはCOなどにガス化する成分とを含有するセラミックスを用いることができる。このような発泡物質としては、パーライト、フライアッシュ、または黒曜石が挙げられる。黒曜石に熱処理を施すことにより発泡した物質は、シラスバルーンとして用いられる。 A foam material is a material that foams during normal temperature to use temperature. For example, calcium carbonate (CaCO 3 ) can be used as the foaming substance. Calcium carbonate is decomposed into calcium oxide (CaO) and carbon dioxide (CO 2 ) by heating. When CO 2 is generated, bubbles are generated in the first current collector 15 and the second current collector 16. Further, as the foamed substance, ceramics containing a component that vitrifies and a component that gasifies into water vapor, CO 2 , or the like by performing heat treatment at a temperature between normal temperature and use temperature can be used. Such foam materials include pearlite, fly ash, or obsidian. A substance foamed by applying heat treatment to obsidian is used as a shirasu balloon.
 第1集電体15および第2集電体16中の発泡物質の含有量が少なすぎると、発泡に伴う体積膨張が小さくなり、電気化学セル14の熱膨張に追随できない可能性がある。また、発泡物質の量が多すぎると、気泡が連結して気密性を確保できない可能性がある。そこで、発泡物質の含有量は、例えば1~20wt%、より好ましくは5~10wt%とする。 If the content of the foaming substance in the first current collector 15 and the second current collector 16 is too small, the volume expansion associated with foaming may be small, and the thermal expansion of the electrochemical cell 14 may not be followed. Moreover, when there is too much quantity of a foaming substance, a bubble may connect and airtightness may not be ensured. Therefore, the content of the foaming substance is, for example, 1 to 20 wt%, more preferably 5 to 10 wt%.
 第1集電体15および第2集電体16として、発泡材料を混合した材料を用いることで、電気化学セル14の使用温度において第1集電体15および第2集電体16が膨張または伸張することにより、第1集電体15または第2集電体16と、酸素極22または水素極23との接触抵抗が低減することを抑制することができる。 By using a material in which a foam material is mixed as the first current collector 15 and the second current collector 16, the first current collector 15 and the second current collector 16 are expanded or expanded at the use temperature of the electrochemical cell 14. By extending, it is possible to suppress a reduction in contact resistance between the first current collector 15 or the second current collector 16 and the oxygen electrode 22 or the hydrogen electrode 23.
 電気化学セル14と第1集電体15および第2集電体16との積層単位構成は、電気的な接続と、ガスリークを抑制するガスシール性とを確保する観点から、平坦度(flatness)が高いことが好ましい。なお、平坦度は、JISにより定義されている。セパレータ17やセルホルダー19の厚さの範囲は、第1集電体15と、第2集電体16と、セルホルダー19と第1集電体15または第2集電体16との間に設けられるガスシール部35とに用いられるそれぞれの材料により決まる。 The laminated unit configuration of the electrochemical cell 14 and the first current collector 15 and the second current collector 16 is flatness from the viewpoint of ensuring electrical connection and gas sealing property to suppress gas leakage. Is preferably high. The flatness is defined by JIS. The thickness range of the separator 17 and the cell holder 19 is between the first current collector 15, the second current collector 16, and the cell holder 19 between the first current collector 15 or the second current collector 16. It depends on the respective materials used for the gas seal portion 35 provided.
 本実施形態においては、第1集電体15または第2集電体16とガスシール部35との厚さの差は、±50μm以下であることが好ましく、より好ましくは±20μm以下である。第1集電体15および第2集電体16とガスシール部35との厚さの差が上記範囲内であれば、電気化学セル14のセパレータ17との電気的な接続と単セル13のガスシール性とを確保することができる。 In the present embodiment, the difference in thickness between the first current collector 15 or the second current collector 16 and the gas seal portion 35 is preferably ± 50 μm or less, and more preferably ± 20 μm or less. If the difference in thickness between the first current collector 15 and the second current collector 16 and the gas seal portion 35 is within the above range, the electrical connection with the separator 17 of the electrochemical cell 14 and the single cell 13 Gas sealing properties can be ensured.
 このような電気的な接続とガスシール性を確保した第1集電体15および第2集電体16を形成する方法として、例えば、導電性の粒子状物質および/または繊維状物質を含む導電性多孔質材料を所定の厚さに積層して形成する方法がある。導電性多孔質材料を所定の厚さに積層して、第1集電体15および第2集電体16を形成することにより、第1集電体15および第2集電体16は、ロバスト性に優れるため、電気化学セル14の厚さのばらつきが大きい場合でも、平坦度が高い単セル13を形成することができ、第1集電体15または第2集電体16と酸素極22または水素極23との電気的な接続と、単セル13のガスシール性とを確保することができ、良好な電気化学セルスタック10を製造することができる。そこで、第1集電体15および第2集電体16の構成の一例を以下に示す。 As a method of forming the first current collector 15 and the second current collector 16 that ensure such an electrical connection and gas sealability, for example, a conductive material containing a conductive particulate material and / or a fibrous material is used. There is a method in which a porous porous material is laminated to a predetermined thickness. By laminating the conductive porous material to a predetermined thickness to form the first current collector 15 and the second current collector 16, the first current collector 15 and the second current collector 16 are robust. Due to the excellent properties, even when the thickness of the electrochemical cell 14 varies greatly, the single cell 13 with high flatness can be formed, and the first current collector 15 or the second current collector 16 and the oxygen electrode 22 can be formed. Alternatively, the electrical connection with the hydrogen electrode 23 and the gas sealing property of the single cell 13 can be ensured, and the favorable electrochemical cell stack 10 can be manufactured. Thus, an example of the configuration of the first current collector 15 and the second current collector 16 is shown below.
 図5は、第1集電体15または第2集電体16の一例を模式的に示す図であり、図6は、図5の部分拡大図である。図5および図6に示されるように、第1集電体15または第2集電体16は、骨材粒子41と、骨材粒子41同士または骨材粒子41と電極とを結合する結合微細粒子42とを含む積層体(粒子状集電層)43で形成され、骨材粒子41の表面に導電層44が形成されている。 FIG. 5 is a diagram schematically showing an example of the first current collector 15 or the second current collector 16, and FIG. 6 is a partially enlarged view of FIG. As shown in FIG. 5 and FIG. 6, the first current collector 15 or the second current collector 16 is composed of aggregate particles 41 and aggregate particles 41 that combine the aggregate particles 41 or between the aggregate particles 41 and the electrodes. A layered body (particulate current collecting layer) 43 including particles 42 is formed, and a conductive layer 44 is formed on the surface of the aggregate particles 41.
 骨材粒子41は、金属、セラミックス、または有機ポリマーなどを用いることができる。金属としては、ステンレス鋼、フェライト系合金、アルミニウム、Ni系金属、Cr系金属などを用いることができる。セラミックスとしては、Al、Si、Ti、Fe、Co、Ni、Cu、Ag、Au、Pd、Pt、Zr、La、Sr、Gd、Mnから選択されるいずれか1種の酸化物、窒化物、または炭化物のいずれかを用いることができる。有機ポリマーとしては、エポキシ樹脂、ポリエステル樹脂、尿素樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、または塩化ビニル樹脂などを用いることができる。骨材粒子41は、通常市販されている粉末を持いてもよいし、アトマイズ法などによって製作した後、粒径を調整したものを用いてもよい。 The aggregate particles 41 can be made of metal, ceramics, organic polymer, or the like. As the metal, stainless steel, ferrite alloy, aluminum, Ni metal, Cr metal, or the like can be used. As the ceramic, any one oxide selected from Al, Si, Ti, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Zr, La, Sr, Gd, and Mn, nitride, Alternatively, either carbide can be used. As the organic polymer, epoxy resin, polyester resin, urea resin, polyimide resin, polyethylene resin, polypropylene resin, polyamide resin, vinyl chloride resin, or the like can be used. The aggregate particles 41 may have a powder that is usually commercially available, or may be produced by adjusting the particle size after being manufactured by an atomizing method or the like.
 結合微細粒子42は、Al、Si、Ti、Fe、Co、Ni、Cu、Mn、Ag、Au、Pd、Pt、Rh、Zr、La、Sr、Gdなどのいずれかが含まれるものを用いることができる。結合微細粒子42は、微細結晶および/または非晶質相の粒子で構成される。 As the bonding fine particles 42, those containing any of Al, Si, Ti, Fe, Co, Ni, Cu, Mn, Ag, Au, Pd, Pt, Rh, Zr, La, Sr, Gd, and the like should be used. Can do. The bonded fine particles 42 are composed of fine crystal and / or amorphous phase particles.
 導電層44は、例えば、金属層、または導電性酸化物層である。より具体的には、各種の金属材料や良電導性酸化物といわれる酸化物化合物からなる層とすることができる。このような導電層44は、例えば、メッキ法、イオンプレーティング法、化学蒸着法、物理蒸着法、電気泳動法、ゾルゲル法、溶液析出法などにより形成することができる。導電性酸化物層については、特にその酸化物化合物の成分を有する何種類かの溶液を骨材粒子41と混合および乾燥(酸化)させることにより容易に形成することができる。 The conductive layer 44 is, for example, a metal layer or a conductive oxide layer. More specifically, it can be a layer made of an oxide compound called various metal materials or a highly conductive oxide. Such a conductive layer 44 can be formed by, for example, a plating method, an ion plating method, a chemical vapor deposition method, a physical vapor deposition method, an electrophoresis method, a sol-gel method, a solution deposition method, or the like. The conductive oxide layer can be easily formed by mixing and drying (oxidizing) several kinds of solutions having components of the oxide compound with the aggregate particles 41.
 良電導性酸化物といわれる酸化物化合物は、例えばNaCl型と呼ばれるTiO、VO、またはEuO1-X、スピネル型と呼ばれるLiTi、またはFe、ペロブスカイト型と呼ばれるReO、MWO(Mは金属一般)、LaTiO、SrVO、CaCrO、SrCrO、La1-XSrMnO、SrFeO、SrCoO、La1-xSrCoO、LaNiO、CaRuO、SrRuO、SrIrO、BaPbO、BaPb1-xBi、または(Ba,Ca,Sr)TiO3-x、コランダム型と呼ばれるV、またはTi、ルチル型と呼ばれるVO、CrO、MoO、WO、β-ReO、RuO、VnO2n-1、またはTi2n-1、SnO2-x、パイロクロア型と呼ばれるPbRu7-x、またはBiRu7-x、その他にTl2-x、Tl1-xF、またはM2-x(Mは金属一般)などが挙げられる。 An oxide compound called a highly conductive oxide includes, for example, TiO, VO, or EuO 1-X called NaCl type, LiTi 2 O 4 called spinel type, or Fe 3 O 4 , ReO 2 called perovskite type, M x WO 3 (M is a metal generally), LaTiO 3, SrVO 3, CaCrO 3, SrCrO 3, La 1-X SrMnO 3, SrFeO 3, SrCoO 3, La 1-x Sr x CoO 3, LaNiO 3, CaRuO 3, SrRuO 3 , SrIrO 3 , BaPbO 3 , BaPb 1-x Bi x O 3 , or (Ba, Ca, Sr) TiO 3-x , V 2 O 3 called corundum type, or Ti 2 O 3 , called rutile type VO 2, CrO 2, MoO 2 , WO 2, β-ReO 2, RuO 2, V O 2n-1 or Ti n O 2n-1, SnO 2-x, Pb 2 Ru 2 O 7-x , called pyrochlore type, or Bi 2 Ru 2 O 7-x , Other Tl 2 O 2-x,, Tl 1-x F, or M x V 2 O 2-x (M is a general metal).
 第1集電体15または第2集電体16では、隣接する骨材粒子41の導電層44同士が結合微細粒子42を介して結合することにより、全体として導電性を有している。 In the first current collector 15 or the second current collector 16, the conductive layers 44 of the adjacent aggregate particles 41 are bonded to each other through the bonded fine particles 42, thereby having conductivity as a whole.
 このような集電体は、例えば以下の方法で製造することができる。予め表面に導電層44を形成した骨材粒子41とアルコキシド溶液と溶媒とをそれぞれ必要な分量を調整して十分混合してスラリーを作製する。その後、スラリーを電気化学セル14の一方の面に塗布して、所定の形状に成形、乾燥して、所定の厚さにする。その後、スラリーが塗布された電気化学セル14を平坦な金属板で挟み、スラリーを圧縮変形させて拘束したまま、スラリーが塗布された電気化学セル14を熱処理して、スラリー中のアルコキシドの加水分解を行う。これにより、アルコキシド溶液から結合微細粒子42が生成し、生成した結合微細粒子42を介して骨材粒子41同士、または電気化学セル14の電極と骨材粒子41とをそれぞれ結合して、電気化学セル14の一方の面に第1集電体15または第2集電体16が形成され、電気化学セル14の他方の面に他方の集電体が形成される。この際、隣接する骨材粒子41の導電層44同士が接触することにより、全体として導電性を有するものとなる。 Such a current collector can be manufactured, for example, by the following method. The aggregate particles 41 having the conductive layer 44 formed on the surface in advance, the alkoxide solution, and the solvent are adjusted in necessary amounts and mixed sufficiently to prepare a slurry. Thereafter, the slurry is applied to one surface of the electrochemical cell 14, shaped into a predetermined shape, and dried to a predetermined thickness. Thereafter, the electrochemical cell 14 to which the slurry is applied is sandwiched between flat metal plates, and while the slurry is compressed and deformed and restrained, the electrochemical cell 14 to which the slurry is applied is heat-treated to hydrolyze the alkoxide in the slurry. I do. Thereby, the coupling | bonding fine particle 42 produces | generates from an alkoxide solution, the aggregate particle | grains 41 or the electrode of the electrochemical cell 14 and the aggregate particle | grain 41 are each couple | bonded through the produced | generated coupling | bonding fine particle 42, and electrochemical. The first current collector 15 or the second current collector 16 is formed on one surface of the cell 14, and the other current collector is formed on the other surface of the electrochemical cell 14. At this time, the conductive layers 44 of the adjacent aggregate particles 41 are brought into contact with each other, thereby having conductivity as a whole.
 また、電気化学セル14の両面に第1集電体15および第2集電体16を形成した後、第1集電体15および第2集電体16の片面またはその両面を加工して平坦化してもよい。 Further, after forming the first current collector 15 and the second current collector 16 on both surfaces of the electrochemical cell 14, one or both surfaces of the first current collector 15 and the second current collector 16 are processed to be flat. May be used.
 なお、上記した方法において、アルコキシド溶液は、骨材粒子41の成分原子を含有する金属アルコキシドを含む。具体的には、金属アルコキシドとしては、Al、Si、Ti、Fe、Co、Ni、Cu、Ag、Au、Pd、Pt、Zr、La、Sr、Gd、またはMnのいずれかのアルコキシド化合物が用いられる。 In the above method, the alkoxide solution contains a metal alkoxide containing the component atoms of the aggregate particles 41. Specifically, as the metal alkoxide, an alkoxide compound of any one of Al, Si, Ti, Fe, Co, Ni, Cu, Ag, Au, Pd, Pt, Zr, La, Sr, Gd, or Mn is used. It is done.
 溶媒は、ブタノールなどアルコール溶液を用いることができる。 As the solvent, an alcohol solution such as butanol can be used.
 この際、アルコキシド溶液としては、骨材粒子41の主成分原子を含有する金属アルコキシドと分散媒とを混合したものを用いることが好ましく、50℃以上で熱処理することが好ましい。熱処理温度を50℃以上とすることで加水分解処理を有効に進めることができる。熱処理温度が高いほど結合微細粒子42を安定させることができるが、温度が高すぎると骨材粒子41の機械的特性を低下させるおそれがあるため、500℃以下とすることが好ましい。 At this time, as the alkoxide solution, it is preferable to use a mixture of a metal alkoxide containing main component atoms of the aggregate particles 41 and a dispersion medium, and heat treatment is preferably performed at 50 ° C. or higher. By setting the heat treatment temperature to 50 ° C. or higher, the hydrolysis treatment can be effectively advanced. The higher the heat treatment temperature is, the more stable the bonded fine particles 42 are. However, if the temperature is too high, the mechanical properties of the aggregate particles 41 may be deteriorated.
 また、第1集電体15または第2集電体16の他の一例を図7に示す。図7に示されるように、第1集電体15または第2集電体16は、骨材粒子41と、結合微細粒子42とからなり、骨材粒子41および結合微細粒子42のそれぞれの表面に導電層44が形成されてなるものである。この第1集電体15または第2集電体16では、隣接する骨材粒子41および結合微細粒子42のそれぞれの表面に導電層44が形成されることで、第1集電体15または第2集電体16に電気の通路が確保され、全体として導電性を有するものとなっている。このような構造が3次元的に網目状につながることにより、電気化学セル14側から第1集電体15または第2集電体16の表面までの電気通路となる。 FIG. 7 shows another example of the first current collector 15 or the second current collector 16. As shown in FIG. 7, the first current collector 15 or the second current collector 16 is composed of aggregate particles 41 and bonded fine particles 42, and the respective surfaces of the aggregate particles 41 and the bonded fine particles 42. A conductive layer 44 is formed. In the first current collector 15 or the second current collector 16, the conductive layer 44 is formed on the surface of each of the adjacent aggregate particles 41 and the combined fine particles 42, so that the first current collector 15 or the second current collector 16 is formed. An electrical passage is secured in the two current collectors 16 and has electrical conductivity as a whole. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the first current collector 15 or the second current collector 16.
 この第1集電体15または第2集電体16は、上記図5および図6に示す第1集電体15または第2集電体16を製造する方法において説明した通り、予め導電層44が形成された骨材粒子41を用いる代わりに、導電層44が形成されていない骨材粒子41を用いること以外は同様にして第1集電体15または第2集電体16を製造した後、全体に無電解メッキなどのメッキ処理を行うことにより骨材粒子41および結合微細粒子42のそれぞれの表面に導電層44を形成することにより得ることができる。このような構造が3次元的に網目状につながることにより、電気化学セル14側から第1集電体15または第2集電体16の表面まで電気通路となる。 As described in the method of manufacturing the first current collector 15 or the second current collector 16 shown in FIGS. 5 and 6, the first current collector 15 or the second current collector 16 is previously formed in the conductive layer 44. After the first current collector 15 or the second current collector 16 is manufactured in the same manner except that the aggregate particles 41 in which the conductive layer 44 is not formed are used instead of using the aggregate particles 41 in which the layers are formed. It can be obtained by forming a conductive layer 44 on the surfaces of the aggregate particles 41 and the bonding fine particles 42 by performing a plating process such as electroless plating on the whole. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the first current collector 15 or the second current collector 16.
 第1集電体15または第2集電体16の他の一例を図8に示す。図8に示されるように、第1集電体15または第2集電体16は、導電層44が被覆された骨材粒子41と、これを接合する金属粒子45とを有するものである。この第1集電体15または第2集電体16は、図5、6に示す第1集電体15または第2集電体16とは、導電層44が形成された骨材粒子41を結合するものが金属材料からなる金属粒子45である点が異なる。この第1集電体15または第2集電体16では、隣接する骨材粒子41の導電層44同士が直接接触することにより、また金属粒子45を介して間接的に接触することにより、全体として導電性を有する。このような構造が3次元的に網目状につながることにより、電気化学セル14側から導電性多孔質材料の表面まで電気通路となる。 FIG. 8 shows another example of the first current collector 15 or the second current collector 16. As shown in FIG. 8, the first current collector 15 or the second current collector 16 has aggregate particles 41 covered with a conductive layer 44 and metal particles 45 that join the aggregate particles 41. The first current collector 15 or the second current collector 16 is different from the first current collector 15 or the second current collector 16 shown in FIGS. 5 and 6 in that the aggregate particles 41 on which the conductive layer 44 is formed are formed. The difference is that the particles to be bonded are metal particles 45 made of a metal material. In the first current collector 15 or the second current collector 16, the conductive layers 44 of the adjacent aggregate particles 41 are in direct contact with each other and indirectly in contact through the metal particles 45. As conductive. By connecting such a structure in a three-dimensional network, an electric path is formed from the electrochemical cell 14 side to the surface of the conductive porous material.
 この第1集電体15または第2集電体16は、予め導電層44が形成された骨材粒子41と、金属粒子45と、溶媒とを混合し、所定の形状に成形、乾燥した後、高温で熱処理することにより、導電層44が形成された骨材粒子41と金属粒子45とを融着により結合させることにより得ることができる。この際、骨材粒子41の導電層44同士が直接接触することにより、また金属粒子45を介して間接的に接触することにより、全体として導電性を有するものとなる。 The first current collector 15 or the second current collector 16 is obtained by mixing aggregate particles 41 on which a conductive layer 44 has been formed in advance, metal particles 45, and a solvent, forming into a predetermined shape, and drying. The aggregate particles 41 on which the conductive layer 44 is formed and the metal particles 45 are bonded by fusing by heat treatment at a high temperature. At this time, the conductive layers 44 of the aggregate particles 41 are brought into direct contact with each other and indirectly brought into contact with each other through the metal particles 45, thereby having conductivity as a whole.
 第1集電体15または第2集電体16の他の一例を図9に示す。図9に示されるように、第1集電体15または第2集電体16は、導電性の繊維状物質46からなる繊維状集電層47と、粒子状集電層43との2層で構成されている。 FIG. 9 shows another example of the first current collector 15 or the second current collector 16. As shown in FIG. 9, the first current collector 15 or the second current collector 16 is composed of two layers of a fibrous current collecting layer 47 made of a conductive fibrous material 46 and a particulate current collecting layer 43. It consists of
 この場合、電気化学セル14の上に、導電性の繊維状物質46を含むスラリーを塗布して熱処理を行い、繊維状集電層47を形成した後、上記図5および図6に示す第1集電体15または第2集電体16を製造する方法と同様にして行い、繊維状集電層47上に粒子状集電層43を形成する。これにより、電気化学セル14の一方の面に第1集電体15が形成され、電気化学セル14の他方の面に第2集電体16が形成される。 In this case, a slurry containing the conductive fibrous material 46 is applied on the electrochemical cell 14 and heat treated to form the fibrous current collecting layer 47, and then the first shown in FIGS. 5 and 6 above. The particulate current collecting layer 43 is formed on the fibrous current collecting layer 47 in the same manner as the method for producing the current collector 15 or the second current collector 16. As a result, the first current collector 15 is formed on one surface of the electrochemical cell 14, and the second current collector 16 is formed on the other surface of the electrochemical cell 14.
 第1集電体15または第2集電体16の他の一例を図10に示す。図10に示されるように、第1集電体15または第2集電体16は、金属繊維48と、セラミックス繊維49とを含み、層状に形成したものである。 FIG. 10 shows another example of the first current collector 15 or the second current collector 16. As shown in FIG. 10, the first current collector 15 or the second current collector 16 includes a metal fiber 48 and a ceramic fiber 49 and is formed in a layer shape.
 金属繊維48は、導電性を有する金属であれば用いることができる。 The metal fiber 48 can be used as long as it has conductivity.
 セラミックス繊維49は、アルミナ繊維、またはジルコニア繊維などから構成される。
また、セラミックス繊維49は、必要に応じてシリカなどを含むことができる。このシリカは、不純物として不可避的に含まれてもよいし、第2成分として含有させてもよい。
The ceramic fiber 49 is composed of alumina fiber or zirconia fiber.
Moreover, the ceramic fiber 49 can contain a silica etc. as needed. This silica may be inevitably contained as an impurity, or may be contained as a second component.
 セラミックス繊維49は、その径が0.5μm~50μmであることが好ましく、その長さが10μm~1000μmであることが好ましい。セラミックス繊維49の径が50μm以下であれば、セラミックス繊維49は湾曲し易いため、圧縮変形でき、シール特性が低下することを抑制することができる。一方、セラミックス繊維49の径が0.5μm以上であれば、セラミックス繊維49の分散は保たれ、セラミックス繊維49により空隙が形成できるため、空隙中に発泡ガラスやセラミック粒子を充填することができる。 The ceramic fiber 49 preferably has a diameter of 0.5 μm to 50 μm and a length of 10 μm to 1000 μm. If the diameter of the ceramic fiber 49 is 50 μm or less, the ceramic fiber 49 can be easily bent, and thus can be compressed and deformed, and deterioration of the sealing characteristics can be suppressed. On the other hand, if the diameter of the ceramic fiber 49 is 0.5 μm or more, the ceramic fiber 49 is kept dispersed, and voids can be formed by the ceramic fibers 49. Therefore, it is possible to fill the voids with foamed glass or ceramic particles.
 さらに、セラミックス繊維49の長さは、10μm~1000μmであることが好ましい。セラミックス繊維49の長さが10μm以上であれば、繊維同士の交差部分も湾曲できるため、セラミックス繊維49は圧縮変形でき、シール特性が低下することを抑制することができる。一方、セラミックス繊維49の長さが1000μm以下の場合には、セラミックス繊維49は均一に分散することができ、セラミックス繊維49の空隙中に発泡ガラスやセラミック粒子などを充填することができる。 Furthermore, the length of the ceramic fiber 49 is preferably 10 μm to 1000 μm. If the length of the ceramic fiber 49 is 10 μm or more, the intersecting portion of the fibers can also be bent. Therefore, the ceramic fiber 49 can be compressed and deformed, and the deterioration of the sealing characteristics can be suppressed. On the other hand, when the length of the ceramic fiber 49 is 1000 μm or less, the ceramic fiber 49 can be uniformly dispersed, and the voids of the ceramic fiber 49 can be filled with foamed glass or ceramic particles.
 電気化学セル14の上に、金属繊維48およびセラミックス繊維49を積層して所定の厚さの繊維層を形成することにより、電気化学セル14の一方の面に第1集電体15が形成され、電気化学セル14の他方の面に第2集電体16が形成される。 A first current collector 15 is formed on one surface of the electrochemical cell 14 by laminating metal fibers 48 and ceramic fibers 49 on the electrochemical cell 14 to form a fiber layer having a predetermined thickness. The second current collector 16 is formed on the other surface of the electrochemical cell 14.
 また、図2または図3に示されるように、本実施形態において、第1集電体15および第2集電体16は、これらの積層方向の外側に設けられた一対のセパレータ17で挟み込まれている。一対のセパレータ17の端部に複数の穴28が設けられ、これらの穴28にボルトが差し込まれ、ボルトとボルトに取り付けられるナットによって、一対のセパレータ17は互いに近づく方向に締め付けられる。 Further, as shown in FIG. 2 or FIG. 3, in the present embodiment, the first current collector 15 and the second current collector 16 are sandwiched between a pair of separators 17 provided outside in the stacking direction. ing. A plurality of holes 28 are provided at the ends of the pair of separators 17, bolts are inserted into these holes 28, and the pair of separators 17 are tightened in a direction approaching each other by a bolt and a nut attached to the bolt.
 セパレータ17は、それぞれの電極への反応ガス(酸化剤、還元剤、または水蒸気)の供給と、電極全面からの均等な集電との機能を有する。そのため、セパレータ17は、それぞれの電極に反応ガスを供給するため、それぞれの電極との接触面に所定の間隔で貫通酸素流路31および貫通燃料流路32を有している。貫通酸素流路31および貫通燃料流路32は、それぞれ対向する辺に沿って延びる領域がセパレータ17の板厚方向に貫通した空間である。 The separator 17 has a function of supplying a reactive gas (oxidant, reducing agent, or water vapor) to each electrode and collecting current evenly from the entire surface of the electrode. Therefore, the separator 17 has a through oxygen channel 31 and a through fuel channel 32 at predetermined intervals on the contact surface with each electrode in order to supply the reaction gas to each electrode. The penetrating oxygen channel 31 and the penetrating fuel channel 32 are spaces through which regions extending along opposing sides penetrate in the thickness direction of the separator 17.
 また、セパレータ17は、一方の表面に、酸素極22に酸化剤(例えば空気)を供給するため、一対の貫通酸素流路31の間に溝状酸素流路33を有している。また、セパレータ17は、溝状酸素流路33が形成されている面とは反対側のセパレータ17の表面に、水素極23に還元剤(例えば水素)または水蒸気を供給するため、一対の貫通燃料流路32の間に溝状燃料流路34を有している。溝状酸素流路33は、溝状燃料流路34と直交する向きにセパレータ17に形成されている。これら溝状酸素流路33、溝状燃料流路34は、それぞれ酸素極22または水素極23と連通するガス空間を形成している。溝状酸素流路33には、酸素が供給され、酸素は溝状酸素流路33を通って酸素極22に供給される。また、溝状燃料流路34には、水素または水蒸気が供給され、水素または水蒸気は溝状燃料流路34を通って水素極23に供給される。なお、電気化学セル14で電気分解を行う際には、水蒸気のみ供給され、酸素は供給されない。 The separator 17 has a groove-like oxygen channel 33 between a pair of through oxygen channels 31 in order to supply an oxidant (for example, air) to the oxygen electrode 22 on one surface. The separator 17 supplies a reducing agent (for example, hydrogen) or water vapor to the hydrogen electrode 23 on the surface of the separator 17 opposite to the surface on which the grooved oxygen flow path 33 is formed. A grooved fuel flow path 34 is provided between the flow paths 32. The grooved oxygen channel 33 is formed in the separator 17 in a direction orthogonal to the grooved fuel channel 34. The groove-like oxygen flow path 33 and the groove-like fuel flow path 34 form gas spaces that communicate with the oxygen electrode 22 or the hydrogen electrode 23, respectively. Oxygen is supplied to the groove-like oxygen channel 33, and oxygen is supplied to the oxygen electrode 22 through the groove-like oxygen channel 33. Further, hydrogen or water vapor is supplied to the groove-like fuel flow path 34, and hydrogen or water vapor is supplied to the hydrogen electrode 23 through the groove-like fuel flow path 34. When electrolysis is performed in the electrochemical cell 14, only water vapor is supplied and oxygen is not supplied.
 また、セパレータ17は、電極全面からの均等な集電を行うため、一般的に導電性の材料で板状に形成され、電気化学セル14は、第1集電体15、第2集電体16およびセパレータ17により電気的に接続されている。セパレータ17は、溝状酸素流路33、または溝状燃料流路34以外で酸素極22、または水素極23に接する部分を介して酸素極22、または水素極23に密着している。そして、このセパレータ17を介して、電気化学セル14に外部から電力が供給され、または電気化学セル14から外部に電力が供給される。 The separator 17 is generally formed in a plate shape from a conductive material in order to collect current evenly from the entire surface of the electrode. The electrochemical cell 14 includes a first current collector 15 and a second current collector. 16 and the separator 17 are electrically connected. The separator 17 is in close contact with the oxygen electrode 22 or the hydrogen electrode 23 through a portion in contact with the oxygen electrode 22 or the hydrogen electrode 23 other than the groove-like oxygen channel 33 or the groove-like fuel channel 34. Then, electric power is supplied from the outside to the electrochemical cell 14 through the separator 17, or electric power is supplied from the electrochemical cell 14 to the outside.
 また、セパレータ17の電極側の面には、後述するガスシール部35と接する部分にカバー層(図示せず)を設け、ガスシール部35との接触面を平坦にすることが好ましい。 Further, it is preferable that a cover layer (not shown) is provided on the electrode-side surface of the separator 17 at a portion in contact with a gas seal portion 35 to be described later so that the contact surface with the gas seal portion 35 is flat.
 第1集電体15または第2集電体16と、酸素極22または水素極23の電極面との密着性は、電気化学セル14とセパレータ17および第1集電体15または第2集電体16とを、複数のボルトで上下から締め付けることにより確保される。 The adhesion between the first current collector 15 or the second current collector 16 and the electrode surface of the oxygen electrode 22 or the hydrogen electrode 23 depends on the electrochemical cell 14 and the separator 17 and the first current collector 15 or the second current collector. It is ensured by tightening the body 16 from above and below with a plurality of bolts.
 また、セルホルダー19は、水素極23および第2集電体16の端部を固定する機能を有する。セルホルダー19は、水素極23および第2集電体16の周囲を囲うように設けられ、水素極23および第2集電体16は、セルホルダー19の凹部19aにはめ込まれて固定される。セルホルダー19は、金属またはセラミックスなどで形成される。また、セルホルダー19は、例えば電気化学セル14とほぼ同じ厚みを有している。 In addition, the cell holder 19 has a function of fixing the hydrogen electrode 23 and the ends of the second current collector 16. The cell holder 19 is provided so as to surround the periphery of the hydrogen electrode 23 and the second current collector 16, and the hydrogen electrode 23 and the second current collector 16 are fitted and fixed to the recess 19 a of the cell holder 19. The cell holder 19 is made of metal or ceramics. The cell holder 19 has substantially the same thickness as the electrochemical cell 14, for example.
 電気化学セルスタック10は、セパレータ17とセルホルダー19との間に、単セル13のガスシール性を確保するためのガスシール部35を備えている。ガスシール部35は、絶縁材料を用いて形成することができる。セルホルダー19が金属製である場合でも、第1集電体15と第2集電体16との間の絶縁性を確保することができる。一般に、小単位セルスタック11の広い領域をガラスで一体にシールする場合には、小単位セルスタック11や熱交換器12など電気化学セルスタック10を構成する部材との熱膨張差、位置ずれによる歪、欠陥などが累積してシールが破損する可能性が高い。ガスシール部35を形成する材料としてガラスを用いることで、小単位セルスタック11毎にガラスにより一体化し、小単位セルスタック11同士の間に適度なスライドや変形ができるようにさせることで、電気化学セルスタック10の全体として、シール破損に対するロバスト性を向上させることができる。 The electrochemical cell stack 10 includes a gas seal portion 35 between the separator 17 and the cell holder 19 for ensuring the gas seal performance of the single cell 13. The gas seal portion 35 can be formed using an insulating material. Even when the cell holder 19 is made of metal, it is possible to ensure insulation between the first current collector 15 and the second current collector 16. In general, when a wide area of the small unit cell stack 11 is integrally sealed with glass, it is caused by a difference in thermal expansion and misalignment with members constituting the electrochemical cell stack 10 such as the small unit cell stack 11 and the heat exchanger 12. There is a high possibility that the seal will be damaged due to accumulation of distortion and defects. By using glass as a material for forming the gas seal portion 35, the small unit cell stacks 11 are integrated with the glass so that the small unit cell stacks 11 can be appropriately slid and deformed. As a whole, the chemical cell stack 10 can improve robustness against seal breakage.
 また、ガラスとしては、ガラス転位温度が800℃以上のガラスを用いることができる。ガラスは、スタックの運転温度領域が800℃程度であるため、少なくとも800℃で固体の結晶化ガラスを用いることが、長期間、耐久性を有するという観点から好ましい。
このようなガラスとして、例えば、珪酸ソーダ、または硼珪酸ガラスなどを用いることができる。
As the glass, glass having a glass transition temperature of 800 ° C. or higher can be used. Since glass has a stack operating temperature range of about 800 ° C., it is preferable to use crystallized glass that is solid at least 800 ° C. from the viewpoint of durability for a long period of time.
As such glass, for example, sodium silicate or borosilicate glass can be used.
 また、ガスシール部35は、上記ガラスと、無機系材料とを併用したものを用いることができる。無機系材料としては、イットリア安定化ジルコニア、アルミナなどのセラミックスを、さらに、ガスシール部35に含有させてもよい。ガスシール部35中のこのような無機系材料の含有量は、例えば5~20wt%である。 Moreover, the gas seal part 35 can use what combined the said glass and inorganic material. As the inorganic material, ceramics such as yttria-stabilized zirconia and alumina may be further included in the gas seal portion 35. The content of such an inorganic material in the gas seal portion 35 is, for example, 5 to 20 wt%.
 ガスシール部35は、固体電解質膜21の全体の幅のうち酸素極22と接触しない酸素極22の幅と、セルホルダー19の幅とを合わせた幅の接着面を有する。 The gas seal portion 35 has an adhesive surface having a width obtained by combining the width of the oxygen electrode 22 that is not in contact with the oxygen electrode 22 and the width of the cell holder 19 in the entire width of the solid electrolyte membrane 21.
 ガスシール部35は、ガスシール性を確保するためは、ガスシール部35の厚さは、0.2~1.0mmとするのが好ましい。 The gas seal portion 35 preferably has a thickness of 0.2 to 1.0 mm in order to ensure gas sealability.
 ガスシール部35は、セパレータ17やセルホルダー19との接着が確実に行われるように、セパレータ17およびセルホルダー19の適切な場所にガラス溜まりの溝を形成することが好ましい。 The gas seal portion 35 is preferably formed with a glass pool groove at an appropriate location of the separator 17 and the cell holder 19 so that the gas seal portion 35 is securely bonded to the separator 17 and the cell holder 19.
 また、本実施形態では、図11に示されるように、小単位セルスタック11毎にセパレータ17の端部17aに、貫通酸素流路31および貫通燃料流路32を塞がない範囲でガスシール部35を設けている。貫通酸素流路31および貫通燃料流路32を塞がない範囲で端部17aにガスシール部35を設けることにより、ガスシール部35のシール部分の強度を向上させると共にガスシール性を向上させることができる。 Further, in the present embodiment, as shown in FIG. 11, the gas seal portion is provided within a range that does not block the penetrating oxygen channel 31 and the penetrating fuel channel 32 at the end 17 a of the separator 17 for each small unit cell stack 11. 35 is provided. By providing the gas seal portion 35 at the end portion 17a within a range that does not block the through-oxygen flow channel 31 and the through-fuel flow channel 32, the strength of the seal portion of the gas seal portion 35 is improved and the gas seal performance is improved. Can do.
 また、本実施形態においては、単セル13が、端部におけるガスシール性を確保しつつ酸素極22と酸素極側のセパレータ17、および水素極23と水素極側のセパレータ17との電気的接触を確保するため、電気化学セル14の酸素極22と固体電解質膜21と水素極23と第1集電体15と第2集電体16との厚さの和は、セルホルダー19の厚さと2つのガスシール部35の厚さの和とほぼ同じとすることが好ましく、より好ましくは、両者の差が、0.1mm以下であることが好ましい。なお、電気化学セルスタック10の組み立て時にボルトを締め付ける際、ガスシール部35と第1集電体15および第2集電体16とが圧力に応じて収縮し、ガスシール性と電気的接触の確保するため、ある程度のロバスト性を与えることが好ましい。 In this embodiment, the single cell 13 is in electrical contact with the oxygen electrode 22 and the separator 17 on the oxygen electrode side, and between the hydrogen electrode 23 and the separator 17 on the hydrogen electrode side while ensuring gas sealing performance at the end. Therefore, the sum of the thicknesses of the oxygen electrode 22, the solid electrolyte membrane 21, the hydrogen electrode 23, the first current collector 15, and the second current collector 16 of the electrochemical cell 14 is equal to the thickness of the cell holder 19. The sum of the thicknesses of the two gas seal portions 35 is preferably substantially the same, and more preferably the difference between the two is 0.1 mm or less. Note that when the bolts are tightened when the electrochemical cell stack 10 is assembled, the gas seal portion 35, the first current collector 15 and the second current collector 16 contract according to the pressure, and the gas seal property and the electrical contact are reduced. In order to ensure, it is preferable to provide a certain degree of robustness.
 更に、図12に示されるように、電気化学セル14とセルホルダー19との間に充填材50を設けることが好ましい。電気化学セル14とセルホルダー19との間に充填材50を設けることで、電気化学セル14の端部の凹凸が大きい場合でも、電気化学セル14の端部から反応ガスが漏洩するのを抑制することができる。 Furthermore, it is preferable to provide a filler 50 between the electrochemical cell 14 and the cell holder 19 as shown in FIG. By providing the filler 50 between the electrochemical cell 14 and the cell holder 19, even when the unevenness of the end of the electrochemical cell 14 is large, the leakage of the reaction gas from the end of the electrochemical cell 14 is suppressed. can do.
 充填材50の材料としては、運転温度付近で溶融するガラスや、前記ガラスに運転温度においてガラスや周辺部材との反応や溶融を生じないセラミックスの粉末またはガラスの粉末を混合したものを用いることができる。セラミックスの粉末またはガラスの粉末の平均粒子径は、1μm以下であることが好ましい。 As the material of the filler 50, it is possible to use glass that melts near the operating temperature, ceramic powder that does not cause reaction or melting with glass or peripheral members at the operating temperature, or a mixture of glass powder. it can. The average particle size of the ceramic powder or glass powder is preferably 1 μm or less.
(熱交換器)
 熱交換器12は、板状に形成され、小単位セルスタック11同士の間に設けられている。熱交換器12は、小単位セルスタック11と熱交換するものであり、単セル13における発電に伴って生じる熱の回収、または単セル13における電気分解時に小単位セルスタック11への熱の供給を行うものである。熱交換器12は、その内部に熱輸送媒体ガス51が通る熱輸送管52を備えている。熱輸送媒体ガス51としては、例えば、窒素(N)、二酸化炭素(CO)またはヘリウム(He)などが用いられる。
(Heat exchanger)
The heat exchanger 12 is formed in a plate shape and is provided between the small unit cell stacks 11. The heat exchanger 12 exchanges heat with the small unit cell stack 11 and supplies heat to the small unit cell stack 11 during recovery of heat generated by power generation in the single cell 13 or electrolysis in the single cell 13. Is to do. The heat exchanger 12 includes a heat transport pipe 52 through which the heat transport medium gas 51 passes. As the heat transport medium gas 51, for example, nitrogen (N 2 ), carbon dioxide (CO 2 ), helium (He), or the like is used.
 熱輸送管52は、図13に示されるように、熱交換器12内に蛇行して設けられている。このような構造とすることで、熱輸送管52に熱輸送媒体ガス51を循環させることにより、熱輸送管52の伝熱面積を大きくすることができる。 The heat transport pipe 52 is provided meandering in the heat exchanger 12 as shown in FIG. With this structure, the heat transfer area of the heat transport pipe 52 can be increased by circulating the heat transport medium gas 51 through the heat transport pipe 52.
 熱交換器12の材料には、高い熱伝導性、耐電解質性、耐熱性などが要求されることから、例えば、ステンレスなどが使用される。 Since the material of the heat exchanger 12 is required to have high thermal conductivity, electrolyte resistance, heat resistance, etc., for example, stainless steel or the like is used.
 小単位セルスタック11同士の間に熱交換器12が設けられているため、小単位セルスタック11ごとに熱交換を行われる。これにより、電気化学セルスタック10は、小単位セルスタック11内の温度分布を容易に制御でき、スタック全体の熱交換効率を高く調整制御することができる。 Since the heat exchanger 12 is provided between the small unit cell stacks 11, heat exchange is performed for each small unit cell stack 11. Thereby, the electrochemical cell stack 10 can easily control the temperature distribution in the small unit cell stack 11, and can adjust and control the heat exchange efficiency of the entire stack to be high.
 また、熱交換器12は、その内部に熱輸送管52を蛇行して設け、熱輸送媒体ガス51との伝熱面積を大きくしているため、単セル13との限られた接触面から熱の入出を効率的に行うことができ、電気化学セルスタック10をコンパクトにすることができる。 Further, since the heat exchanger 12 is provided in a meandering manner with the heat transport pipe 52 inside the heat exchanger 12 to increase the heat transfer area with the heat transport medium gas 51, heat is generated from a limited contact surface with the single cell 13. As a result, the electrochemical cell stack 10 can be made compact.
 また、熱交換器12は、その内部に熱輸送管52を備える以外に、熱交換器12内部にガス流路を形成できる方法であれば他の方法を用いてもよい。 In addition to the heat exchanger 12 having the heat transport pipe 52 therein, other methods may be used as long as the gas flow path can be formed inside the heat exchanger 12.
 なお、熱交換器12は、小単位セルスタック11同士の間に限らず、小単位セルスタック11の上端または下端など一方の端部にも設けられてもよい。 The heat exchanger 12 may be provided not only between the small unit cell stacks 11 but also at one end such as the upper end or the lower end of the small unit cell stack 11.
 また、電気化学セルスタック10は、小単位セルスタック11と熱交換器12との間に金属箔(緩衝部)55を備えている。金属箔55の材料としては、SUSなどが用いられる。金属箔55は、塑性変形により発生応力を緩和することができるため、小単位セルスタック11と熱交換器12との間に金属箔55を設けることで、小単位セルスタック11と熱交換器12との間の熱抵抗を低減させることができると共に、小単位セルスタック11の変形に対する許容量が増大し、スタック全体としてロバスト性が向上し、ガスシール部35の破損を抑制することができる。 In addition, the electrochemical cell stack 10 includes a metal foil (buffer part) 55 between the small unit cell stack 11 and the heat exchanger 12. As the material of the metal foil 55, SUS or the like is used. Since the metal foil 55 can relieve the stress generated by plastic deformation, by providing the metal foil 55 between the small unit cell stack 11 and the heat exchanger 12, the small unit cell stack 11 and the heat exchanger 12 are provided. And the tolerance for deformation of the small unit cell stack 11 is increased, the robustness of the entire stack is improved, and the gas seal portion 35 can be prevented from being damaged.
 なお、本実施形態では、小単位セルスタック11と熱交換器12との間に金属箔55を設けているが、小単位セルスタック11と熱交換器12とを直接積層させてもよい。 In this embodiment, the metal foil 55 is provided between the small unit cell stack 11 and the heat exchanger 12, but the small unit cell stack 11 and the heat exchanger 12 may be directly laminated.
 このような電気化学セルスタック10において、発電時には、外部のガス供給手段から、酸化剤(例えば空気)を電気化学セルスタック10に供給する。この酸化剤は、貫通酸素流路31を通って溝状酸素流路33に送られる。溝状酸素流路33に到達した酸化剤は、第1集電体15を通って、酸素極22に接することになる。 In such an electrochemical cell stack 10, during power generation, an oxidizing agent (for example, air) is supplied to the electrochemical cell stack 10 from an external gas supply means. This oxidant is sent to the grooved oxygen channel 33 through the through oxygen channel 31. The oxidant that has reached the groove-like oxygen flow path 33 passes through the first current collector 15 and comes into contact with the oxygen electrode 22.
 一方、外部のガス供給手段から、還元剤(例えば水素)を電気化学セルスタック10に供給する。この還元剤は、貫通燃料流路32を通って溝状燃料流路34に送られる。溝状燃料流路34に到達した還元剤は、第2集電体16を通って、水素極23に供給される。 On the other hand, a reducing agent (for example, hydrogen) is supplied to the electrochemical cell stack 10 from an external gas supply means. This reducing agent is sent to the grooved fuel flow path 34 through the through fuel flow path 32. The reducing agent that has reached the groove-like fuel flow path 34 is supplied to the hydrogen electrode 23 through the second current collector 16.
 このようにして、酸素極22に酸化剤、水素極23に還元剤が供給されることにより電気化学セル14で電流が生じ、発電する。電気化学セル14で生じた電流は第2集電体16を通って電気化学セルスタック10と接続される外部負荷に流れ、消費される。 Thus, when an oxidizing agent is supplied to the oxygen electrode 22 and a reducing agent is supplied to the hydrogen electrode 23, an electric current is generated in the electrochemical cell 14 to generate electric power. The current generated in the electrochemical cell 14 flows through the second current collector 16 to an external load connected to the electrochemical cell stack 10 and is consumed.
 また、電気分解時には、酸化剤は供給せず、還元剤の代わりに水蒸気を貫通燃料流路32に供給する。水蒸気は貫通燃料流路32から溝状燃料流路34に送られ、第2集電体16を通って、水素極23に供給される。水素極23に水蒸気が供給されることにより電気化学セル14で水蒸気が電気分解されて、水素と酸素が発生する。 Also, at the time of electrolysis, the oxidizing agent is not supplied, and water vapor is supplied to the penetrating fuel flow path 32 instead of the reducing agent. The water vapor is sent from the through fuel flow path 32 to the grooved fuel flow path 34, passes through the second current collector 16, and is supplied to the hydrogen electrode 23. When water vapor is supplied to the hydrogen electrode 23, the water vapor is electrolyzed in the electrochemical cell 14 to generate hydrogen and oxygen.
 このように、電気化学セルスタック10は、小単位セルスタック11同士の間に熱交換器12を設けているため、小単位セルスタック11ごとに熱交換を行うことができる。このような構成とすることにより、電気化学セルスタック10は、スタック内の複数の単セル13の温度分布を制御することが容易となり、電気化学セルスタック10を固体電解質膜21が有効に機能する温度範囲内で長期間安定して使用することができる。 Thus, since the electrochemical cell stack 10 is provided with the heat exchanger 12 between the small unit cell stacks 11, the small unit cell stack 11 can perform heat exchange. With this configuration, the electrochemical cell stack 10 can easily control the temperature distribution of the plurality of single cells 13 in the stack, and the solid electrolyte membrane 21 functions effectively in the electrochemical cell stack 10. It can be used stably for a long time within the temperature range.
 例えば、電気化学セルスタックが小単位セルスタック11間に熱交換器12を配置していない構造である場合には、図14に示されるように、電気化学セルスタック内に積層された単セルの上下方向において単セルの温度分布は大きくなり、スタック全体での効率が低下する傾向にある。これに対し、電気化学セルスタック10は、小単位セルスタック11同士の間に熱交換器12を設けることでスタック内に積層された複数の単セル13の温度分布を容易に制御することができる。このため、電気化学セルスタック10は、図15に示されるように、スタック内に積層された複数の単セル13のすべての温度を、酸素イオンが固体電解質膜21を有効に通過できる温度範囲内にすることができるため、電気化学セルスタック10全体の運転効率を向上させることができる。 For example, when the electrochemical cell stack has a structure in which the heat exchanger 12 is not disposed between the small unit cell stacks 11, as shown in FIG. 14, the single cells stacked in the electrochemical cell stack The temperature distribution of the single cell increases in the vertical direction, and the efficiency of the entire stack tends to decrease. On the other hand, the electrochemical cell stack 10 can easily control the temperature distribution of the plurality of single cells 13 stacked in the stack by providing the heat exchanger 12 between the small unit cell stacks 11. . For this reason, as shown in FIG. 15, the electrochemical cell stack 10 has all the temperatures of the plurality of single cells 13 stacked in the stack within a temperature range in which oxygen ions can effectively pass through the solid electrolyte membrane 21. Therefore, the operation efficiency of the entire electrochemical cell stack 10 can be improved.
 また、電気化学セルスタック10は、セパレータ17とセルホルダー19との間に、ガスシール部35を備えることにより、単セル13のガスシール性を向上させることができる。 Moreover, the electrochemical cell stack 10 can improve the gas sealing property of the single cell 13 by providing the gas sealing portion 35 between the separator 17 and the cell holder 19.
 さらに、電気化学セルスタック10は、小単位セルスタック11と熱交換器12との間に金属箔55を設けることにより、小単位セルスタック11の変形に対する許容量が増大し、スタック全体としてロバスト性を向上させ、ガスシール部35の破損を抑制することができる。 Further, in the electrochemical cell stack 10, by providing the metal foil 55 between the small unit cell stack 11 and the heat exchanger 12, the tolerance for deformation of the small unit cell stack 11 increases, and the entire stack is robust. Can be improved, and damage to the gas seal portion 35 can be suppressed.
 なお、本実施形態においては、固体電解質膜21、水素極23および水素極多孔質基材24をセルホルダー19の凹部19aに嵌めているが、図16に示されるように、水素極23および水素極多孔質基材24の端部をセル端部カバー56で被覆して凹部19aに嵌めるようにしてもよい。セル端部カバー56は、電気化学セル14に供給される反応ガスや周辺部材と運転条件で反応しない安定な金属、ガラス、またはセラミックスなどを用いて形成することができる。凹部19aにセル端部カバー56を介して水素極23および水素極多孔質基材24を固定することにより、端面の平坦度や厚みの均一性をより厳密に調整することができるため、ガスシール性に対する電気化学セル14の端部の平坦度や厚みの影響を抑制して、より高いロバスト性を付与することができる。 In the present embodiment, the solid electrolyte membrane 21, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 are fitted in the recess 19a of the cell holder 19, but as shown in FIG. The end of the extremely porous substrate 24 may be covered with the cell end cover 56 and fitted into the recess 19a. The cell end cover 56 can be formed using a stable metal, glass, ceramics, or the like that does not react with the reaction gas supplied to the electrochemical cell 14 or peripheral members under operating conditions. Since the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 are fixed to the recess 19a via the cell end cover 56, the flatness and thickness uniformity of the end face can be adjusted more strictly. Higher robustness can be imparted by suppressing the influence of the flatness and thickness of the end portion of the electrochemical cell 14 on the property.
 また、図17に示されるように、固体電解質膜21、水素極23および水素極多孔質基材24の端部とセルホルダー19との間にシール層57を設けるようにしてもよい。固体電解質膜21、水素極23および水素極多孔質基材24とセル端部カバー56との間にシール層57を設けることにより、固体電解質膜21、水素極23および水素極多孔質基材24とセルホルダー19との間のガスシール性を更に高めることができる。 Further, as shown in FIG. 17, a seal layer 57 may be provided between the end portions of the solid electrolyte membrane 21, the hydrogen electrode 23, and the hydrogen electrode porous substrate 24 and the cell holder 19. By providing the sealing layer 57 between the solid electrolyte membrane 21, the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 and the cell end cover 56, the solid electrolyte membrane 21, the hydrogen electrode 23 and the hydrogen electrode porous substrate 24 are provided. And the gas seal between the cell holder 19 can be further enhanced.
 また、本実施形態においては、図18に示されるように、絶縁性を有する強度補助部58をガスシール部35の外部に設けるようにしてもよい。これにより、電気化学セル14の内部との絶縁性を保ちつつ、さらに長期に亘ってガスシール性を保つことができると共に、さらに電気化学セルスタック10の強度の向上を図ることができる。 Further, in the present embodiment, as shown in FIG. 18, an insulating strength auxiliary portion 58 may be provided outside the gas seal portion 35. Thereby, while maintaining the insulation with the inside of the electrochemical cell 14, gas sealing performance can be maintained for a longer period of time, and the strength of the electrochemical cell stack 10 can be further improved.
 また、本実施形態においては、電気化学セルスタック10は、セパレータ17に貫通酸素流路31、貫通燃料流路32を設け、セパレータ17の内部に反応ガスのガス導入路を配置する内部マニホールド方式である場合について説明したが、これに限定されない。例えば、溝状酸素流路33および溝状燃料流路34をセパレータ17の端部まで延長して、セパレータ17の外側に別体として貫通酸素流路31および貫通燃料流路32を設け、貫通酸素流路31と溝状酸素流路33とを連結し、貫通燃料流路32と溝状燃料流路34とを連結して、反応ガスを流通させる外部マニホールド方式である場合でも同様に適用することができる。 In the present embodiment, the electrochemical cell stack 10 is an internal manifold system in which the separator 17 is provided with the through oxygen passage 31 and the penetration fuel passage 32 and the gas introduction passage for the reaction gas is arranged inside the separator 17. Although a case has been described, the present invention is not limited to this. For example, the grooved oxygen flow path 33 and the grooved fuel flow path 34 are extended to the end of the separator 17, and the penetrating oxygen flow path 31 and the penetrating fuel flow path 32 are provided outside the separator 17. The same applies to an external manifold system in which the flow path 31 and the grooved oxygen flow path 33 are connected, the through fuel flow path 32 and the grooved fuel flow path 34 are connected, and the reaction gas is circulated. Can do.
 このように、電気化学セルスタック10は、水を電気分解して水素の製造を行う固体酸化物型電解セル(SOEC)、または水素を燃料として発電を行う固体酸化物型燃料電池(SOFC)として有効に用いることができるため、電気化学セルスタック10を固体酸化物型電解セルおよび固体酸化物型燃料電池として用いることで、固体酸化物型電解セルと固体酸化物型燃料電池とを組合せた電力システムとして有効に用いることができる。 As described above, the electrochemical cell stack 10 is a solid oxide electrolytic cell (SOEC) that electrolyzes water to produce hydrogen, or a solid oxide fuel cell (SOFC) that generates power using hydrogen as a fuel. Since it can be used effectively, the electrochemical cell stack 10 is used as a solid oxide electrolytic cell and a solid oxide fuel cell, so that the combined electric power of the solid oxide electrolytic cell and the solid oxide fuel cell can be obtained. It can be used effectively as a system.
[第2の実施形態]
<電力システム>
 本実施形態による電力システムは、水蒸気を電気分解する固体酸化物型電解セルと、還元剤および酸化剤を用いて発電する固体酸化物型燃料電池と、固体酸化物型燃料電池で発生する熱を固体酸化物型電解セルに供給する熱循環ラインとを具備してなり、固体酸化物電解セルおよび固体酸化物型燃料電池が、上記第1の実施形態による電気化学セルスタックを含んでなる。本実施形態においては、電力システムが、水素電力貯蔵システムとして使用される場合について説明する。そのため、本実施形態においては、還元剤として水素を使用し、酸化剤として酸素を使用する。
[Second Embodiment]
<Power system>
The power system according to this embodiment includes a solid oxide electrolytic cell that electrolyzes water vapor, a solid oxide fuel cell that generates power using a reducing agent and an oxidizing agent, and heat generated by the solid oxide fuel cell. The solid oxide electrolysis cell and the solid oxide fuel cell include the electrochemical cell stack according to the first embodiment. In this embodiment, a case where the power system is used as a hydrogen power storage system will be described. Therefore, in this embodiment, hydrogen is used as the reducing agent and oxygen is used as the oxidizing agent.
 図19は、本実施形態による電力システムの構成を簡略に示す図である。図19に示されるように、電力システム(水素電力貯蔵システム)60は、固体酸化物型電解セル(SOEC)61と、固体酸化物型燃料電池(SOFC)62と、水素貯蔵部(還元剤貯蔵部)63と、酸素貯蔵部(酸化剤貯蔵部)64と、蓄熱部65と、熱循環ラインL11とを有する。なお、本実施形態においては、固体酸化物型電解セル61と固体酸化物型燃料電池62とは、上記第1の実施形態による電気化学セルスタック10が使用される。 FIG. 19 is a diagram simply showing the configuration of the power system according to the present embodiment. As shown in FIG. 19, a power system (hydrogen power storage system) 60 includes a solid oxide electrolytic cell (SOEC) 61, a solid oxide fuel cell (SOFC) 62, and a hydrogen storage unit (reducing agent storage). Part) 63, an oxygen storage part (oxidant storage part) 64, a heat storage part 65, and a thermal circulation line L11. In the present embodiment, the electrochemical cell stack 10 according to the first embodiment is used as the solid oxide electrolytic cell 61 and the solid oxide fuel cell 62.
 固体酸化物型電解セル61の小単位セルスタック11に、外部から給水ラインL12を介して水蒸気を供給する。固体酸化物型電解セル61において、給水ラインL12を通って供給された水蒸気を、外部から供給される電力を用いて、酸素および水素に電気分解する。 Steam is supplied to the small unit cell stack 11 of the solid oxide electrolytic cell 61 from the outside through the water supply line L12. In the solid oxide electrolytic cell 61, the water vapor supplied through the water supply line L12 is electrolyzed into oxygen and hydrogen using electric power supplied from the outside.
 なお、固体酸化物型電解セル61に供給される水蒸気は、例えば、800℃程度にまで昇温した後に固体酸化物型電解セル61に供給され、固体酸化物型電解セル61で電気分解されるため、ほとんどが気相の状態である。 The water vapor supplied to the solid oxide electrolytic cell 61 is supplied to the solid oxide electrolytic cell 61 after being heated up to about 800 ° C., for example, and is electrolyzed in the solid oxide electrolytic cell 61. Therefore, most of them are in the gas phase.
 また、固体酸化物型電解セル61に外部から供給される電力として、例えば、太陽光発電、風力発電、または水力発電など自然エネルギーを用いて得られた電力を使用することができる。 Also, as the electric power supplied from the outside to the solid oxide electrolytic cell 61, for example, electric power obtained by using natural energy such as solar power generation, wind power generation, or hydroelectric power generation can be used.
 固体酸化物型電解セル61で生じた水素は、水素貯蔵部63に供給されて貯蔵され、固体酸化物型電解セル61で生じた酸素は、酸素貯蔵部64に供給されて貯蔵される。 The hydrogen generated in the solid oxide electrolytic cell 61 is supplied to and stored in the hydrogen storage unit 63, and the oxygen generated in the solid oxide electrolytic cell 61 is supplied to and stored in the oxygen storage unit 64.
 また、固体酸化物型電解セル61の熱交換器12に供給された熱は、小単位セルスタック11との熱交換に使用された後、放出される。 Further, the heat supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 is released after being used for heat exchange with the small unit cell stack 11.
 水素貯蔵部63に貯蔵された水素、酸素貯蔵部64に貯蔵された酸素は、固体酸化物型燃料電池62の小単位セルスタック11に供給される。 Hydrogen stored in the hydrogen storage unit 63 and oxygen stored in the oxygen storage unit 64 are supplied to the small unit cell stack 11 of the solid oxide fuel cell 62.
 固体酸化物型燃料電池62の小単位セルスタック11では、水素貯蔵部63から供給された水素、酸素貯蔵部64から供給された酸素を用いて発電する。 In the small unit cell stack 11 of the solid oxide fuel cell 62, electric power is generated using hydrogen supplied from the hydrogen storage unit 63 and oxygen supplied from the oxygen storage unit 64.
 また、固体酸化物型電解セル61の熱交換器12には、外部の熱源から熱が熱交換器12に供給され、小単位セルスタック11と熱交換して加熱される。熱交換器12で熱交換後の熱は、固体酸化物型電解セル61と固体酸化物型燃料電池62とを連結する熱循環ラインL11に排出される。熱交換器12から排出された熱は、熱循環ラインL11を通って、蓄熱部65に供給され、蓄熱部65に蓄熱される。 Further, heat is supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 from an external heat source to the heat exchanger 12, and heat is exchanged with the small unit cell stack 11 to be heated. The heat after heat exchange in the heat exchanger 12 is discharged to a thermal circulation line L11 that connects the solid oxide electrolytic cell 61 and the solid oxide fuel cell 62. The heat discharged from the heat exchanger 12 is supplied to the heat storage unit 65 through the heat circulation line L11 and stored in the heat storage unit 65.
 蓄熱部65は、例えば、蓄熱容器(図示せず)に、蓄熱材を封入した、炭化ケイ素焼結体などのセラミックス材の複数のカプセル(図示せず)を収容したものなどを用いることができる。蓄熱材としては、例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、フッ化リチウム、炭酸リチウム、炭酸ナトリウムまたは炭酸カリウムなどの潜熱蓄熱材が用いられる。蓄熱容器は、カプセルのまわりを流れる媒体の流路を形成する。 As the heat storage unit 65, for example, a heat storage container (not shown) in which a plurality of capsules (not shown) of a ceramic material such as a silicon carbide sintered body in which a heat storage material is enclosed can be used. . As the heat storage material, for example, a latent heat storage material such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium fluoride, lithium carbonate, sodium carbonate, or potassium carbonate is used. The heat storage container forms a flow path for the medium flowing around the capsule.
 蓄熱部65に蓄熱された熱は、熱循環ラインL11を通って、固体酸化物型電解セル61の熱交換器12に供給され、小単位セルスタック11との熱交換に使用された後、放出される。 The heat stored in the heat storage unit 65 is supplied to the heat exchanger 12 of the solid oxide electrolytic cell 61 through the thermal circulation line L11 and used for heat exchange with the small unit cell stack 11, and then released. Is done.
 このように、電力システム60は、固体酸化物型電解セル61、固体酸化物型燃料電池62、および熱循環ラインL11を備えている。このシステムでは、固体酸化物型燃料電池62で発電すると共に、固体酸化物型燃料電池62で生じた熱を固体酸化物型電解セル61で電気分解時に熱交換器12に供給する熱源として蓄熱部65に蓄熱することができる。固体酸化物型燃料電池62において生じる発電は発熱反応であり、固体酸化物型電解セル61において生じる電気分解は吸熱反応である。そのため、電力システム60によれば、固体酸化物型燃料電池62においてそれぞれの小単位セルスタック11で生じた熱を熱交換器12を介して外部に排出して蓄熱部65で蓄熱し、蓄熱部65で蓄熱された熱を固体酸化物型電解セル61のそれぞれの熱交換器12に供給することにより、固体酸化物型燃料電池62の小単位セルスタック11で発電時に生じた反応熱を再度利用することができるため、電力システム60の全体のエネルギー効率を向上させることができる。 Thus, the power system 60 includes the solid oxide electrolytic cell 61, the solid oxide fuel cell 62, and the thermal circulation line L11. In this system, the solid oxide fuel cell 62 generates electric power, and the heat generated in the solid oxide fuel cell 62 is supplied to the heat exchanger 12 during electrolysis in the solid oxide electrolytic cell 61 as a heat storage unit. The heat can be stored in 65. The power generation that occurs in the solid oxide fuel cell 62 is an exothermic reaction, and the electrolysis that occurs in the solid oxide electrolytic cell 61 is an endothermic reaction. Therefore, according to the electric power system 60, the heat generated in each small unit cell stack 11 in the solid oxide fuel cell 62 is discharged to the outside through the heat exchanger 12, and is stored in the heat storage unit 65, and the heat storage unit By supplying the heat stored in 65 to each heat exchanger 12 of the solid oxide electrolytic cell 61, the reaction heat generated during power generation in the small unit cell stack 11 of the solid oxide fuel cell 62 is reused. Therefore, the overall energy efficiency of the power system 60 can be improved.
 なお、本実施形態においては、水素貯蔵部63および酸素貯蔵部64を設け、固体酸化物型燃料電池62に供給される水素および酸素は、水素貯蔵部63および酸素貯蔵部64に貯蔵される水素および酸素を用いているが、外部から供給される水素および酸素を用いてもよい。 In the present embodiment, a hydrogen storage unit 63 and an oxygen storage unit 64 are provided, and hydrogen and oxygen supplied to the solid oxide fuel cell 62 are hydrogen stored in the hydrogen storage unit 63 and the oxygen storage unit 64. In addition, hydrogen and oxygen supplied from the outside may be used.
 また、本実施形態においては、蓄熱部65を設け、固体酸化物型燃料電池62から排出される熱を蓄熱しているが、蓄熱することなく固体酸化物型電解セル61に直接供給するようにしてもよい。 In this embodiment, the heat storage unit 65 is provided to store the heat discharged from the solid oxide fuel cell 62. However, the heat storage unit 65 is directly supplied to the solid oxide electrolytic cell 61 without storing heat. May be.
 なお、本実施形態においては、電力システムが水素電力貯蔵システムである場合について説明したが、これに限定されるものではなく、電力システムは、燃料源として他の燃料を使用する電力システムに適用することもできる。また、還元剤として水素、酸化剤として酸素に限定されず、還元剤としては水素を含むガス、酸化剤としては酸素を含むガスであれば使用することができる。 In the present embodiment, the case where the power system is a hydrogen power storage system has been described. However, the present invention is not limited to this, and the power system is applied to a power system that uses other fuel as a fuel source. You can also. Further, the reducing agent is not limited to hydrogen and the oxidizing agent is not limited to oxygen. Any gas can be used as long as the reducing agent is a gas containing hydrogen and the oxidizing agent is a gas containing oxygen.
 以上説明した実施形態によれば、固体電解質膜が有効に機能する温度範囲内で長期間安定して使用することができる。 According to the embodiment described above, the solid electrolyte membrane can be used stably for a long time within a temperature range where the solid electrolyte membrane functions effectively.
 以上の通り、本発明による実施形態を説明したが、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment according to the present invention has been described. However, the above-described embodiment is presented as an example, and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various combinations, omissions, replacements, changes, and the like can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 10 電気化学セルスタック
 11 小単位セルスタック
 12 熱交換器(熱交換部)
 13 単セル
 14 電気化学セル
 15 集電体(第1集電体)
 16 集電体(第2集電体)
 17 セパレータ
 19 セルホルダー
 21 固体電解質膜(電解質膜)
 22 酸素極
 23 水素極
 24 水素極多孔質基材
 28 穴
 31 貫通酸素流路
 32 貫通燃料流路
 33 溝状酸素流路
 34 溝状燃料流路
 35 ガスシール部
 41 骨材粒子
 42 結合微細粒子
 43 積層体(粒子状集電層)
 44 導電層
 45 金属粒子
 46 繊維状物質
 47 繊維状集電層
 48 金属繊維
 49 セラミック繊維
 50 充填材
 51 熱輸送媒体ガス
 52 熱輸送管
 55 金属箔(緩衝部)
 56 セル端部カバー
 57 シール層
 58 補強材
 60 電力システム
 61 固体酸化物型電解セル(SOEC)
 62 固体酸化物型燃料電池(SOFC)
 63 水素貯蔵部(還元剤貯蔵部)
 64 酸素貯蔵部(酸化剤貯蔵部)
 65 蓄熱部
 L11 熱循環ライン
 L12 給水ライン
10 Electrochemical cell stack 11 Small unit cell stack 12 Heat exchanger (heat exchanger)
13 Single cell 14 Electrochemical cell 15 Current collector (first current collector)
16 Current collector (second current collector)
17 Separator 19 Cell holder 21 Solid electrolyte membrane (electrolyte membrane)
22 Oxygen electrode 23 Hydrogen electrode 24 Hydrogen electrode porous substrate 28 Hole 31 Through oxygen flow path 32 Through fuel flow path 33 Grooved oxygen flow path 34 Grooved fuel flow path 35 Gas seal part 41 Aggregate particle 42 Bonded fine particle 43 Laminate (particulate current collecting layer)
44 Conductive layer 45 Metal particle 46 Fibrous material 47 Fibrous current collecting layer 48 Metal fiber 49 Ceramic fiber 50 Filler 51 Heat transport medium gas 52 Heat transport pipe 55 Metal foil (buffer part)
56 Cell end cover 57 Seal layer 58 Reinforcement material 60 Power system 61 Solid oxide electrolytic cell (SOEC)
62 Solid oxide fuel cell (SOFC)
63 Hydrogen storage part (reducing agent storage part)
64 Oxygen storage (oxidizer storage)
65 Heat storage section L11 Thermal circulation line L12 Water supply line

Claims (14)

  1.  電解質膜と、前記電解質膜の一方の主面に設けられる酸素極と、前記電解質膜の他方の主面に設けられる水素極とを具備してなる電気化学セルの両面に集電体とセパレータとが設けられてなる単セルを1つ以上含む小単位セルスタックと、
     前記小単位セルスタック同士の間と前記小単位セルスタックの一方の端部との何れか一方または両方に設けられ、前記小単位セルスタックと熱交換が可能な熱交換部と、
    を具備してなることを特徴とする電気化学セルスタック。
    A current collector and a separator on both surfaces of an electrochemical cell comprising an electrolyte membrane, an oxygen electrode provided on one main surface of the electrolyte membrane, and a hydrogen electrode provided on the other main surface of the electrolyte membrane. A small unit cell stack including one or more single cells provided with:
    A heat exchanging unit that is provided between one of or both of the small unit cell stacks and one end of the small unit cell stack, and is capable of exchanging heat with the small unit cell stack;
    An electrochemical cell stack comprising:
  2.  前記熱交換部が、前記単セルにおける発電に伴って生じる熱を回収し、または前記単セルにおける電気分解時に必要な熱を供給する、請求項1に記載の電気化学セルスタック。 The electrochemical cell stack according to claim 1, wherein the heat exchanging unit recovers heat generated by power generation in the single cell or supplies heat necessary for electrolysis in the single cell.
  3.  前記小単位セルスタックが、前記単セルを3~30個含む、請求項1または2に記載の電気化学セルスタック。 The electrochemical cell stack according to claim 1 or 2, wherein the small unit cell stack includes 3 to 30 single cells.
  4.  前記水素極および前記水素極側の集電体の周囲を囲うように設けられ、前記水素極および前記水素極側の集電体の端部を固定するセルホルダーと、
     前記セルホルダーと前記セパレータとの間に設けられた、ガラスを含むガスシール部と、
    をさらに具備してなる、請求項1~3の何れか1項に記載の電気化学セルスタック。
    A cell holder provided so as to surround the hydrogen electrode and the current collector on the hydrogen electrode side, and fixing an end of the hydrogen electrode and the current collector on the hydrogen electrode side;
    A gas seal part including glass provided between the cell holder and the separator;
    The electrochemical cell stack according to any one of claims 1 to 3, further comprising:
  5.  前記小単位セルスタックと前記熱交換部との間に緩衝部をさらに具備してなる、請求項1~4の何れか1項に記載の電気化学セルスタック。 The electrochemical cell stack according to any one of claims 1 to 4, further comprising a buffer unit between the small unit cell stack and the heat exchange unit.
  6.  前記ガラスのガラス転位温度が800℃以上である、請求項4または5に記載の電気化学セルスタック。 The electrochemical cell stack according to claim 4 or 5, wherein the glass transition temperature of the glass is 800 ° C or higher.
  7.  前記ガスシール部が、前記小単位セルスタックの外周に、絶縁性を有する強度補助部をさらに具備してなる、請求項1~6の何れか1項に記載の電気化学セルスタック。 The electrochemical cell stack according to any one of claims 1 to 6, wherein the gas seal portion further includes a strength auxiliary portion having insulating properties on an outer periphery of the small unit cell stack.
  8.  前記集電体が、メッシュ状、布状、または多孔質体で形成されてなる、請求項1~7の何れか1項に記載の電気化学セルスタック。 The electrochemical cell stack according to any one of claims 1 to 7, wherein the current collector is formed of a mesh shape, a cloth shape, or a porous body.
  9.  前記多孔質体が、骨材粒子と前記骨材粒子同士または前記骨材粒子と前記酸素極および前記水素極とを結合する結合微細粒子とを含む粒子状集電層と、導電性の繊維状物質からなる繊維状集電層と前記粒子状集電層とからなる層と、前記粒子状集電層の前記骨材粒子と前記結合微細粒子との何れか一方また両方の表面に導電層を有する層と、金属粒子と前記導電層が被覆された骨材粒子とを有する層と、金属繊維およびセラミックス繊維を含む層との何れかである、請求項8に記載の電気化学セルスタック。 The porous body has a particulate current collecting layer including aggregate particles and the aggregate particles, or a combined fine particle that combines the aggregate particles with the oxygen electrode and the hydrogen electrode, and a conductive fibrous shape. A conductive layer is provided on the surface of any one or both of a layer comprising a fibrous current collecting layer made of a substance and the particulate current collecting layer, and the aggregate particles and the binding fine particles of the particulate current collecting layer. 9. The electrochemical cell stack according to claim 8, wherein the electrochemical cell stack is any one of a layer including a metal layer, a layer including metal particles and aggregate particles coated with the conductive layer, and a layer including metal fibers and ceramic fibers.
  10.  前記集電体が、金属ペーストと発泡材料と含んで形成されてなる、請求項1~9の何れか1項に記載の電気化学セルスタック。 The electrochemical cell stack according to any one of claims 1 to 9, wherein the current collector includes a metal paste and a foam material.
  11.  水蒸気を電気分解する固体酸化物型電解セルと、
     還元剤および酸化剤を用いて発電する固体酸化物型燃料電池と、
     前記固体酸化物型燃料電池で発生する熱を前記固体酸化物型電解セルに供給する熱循環ラインと、
    を具備してなり、
     前記固体酸化物型電解セルおよび前記固体酸化物型燃料電池が、請求項1~10の何れか1項に記載された電気化学セルスタックを含んでなることを特徴とする、電力システム。
    A solid oxide electrolytic cell for electrolyzing water vapor;
    A solid oxide fuel cell that generates electricity using a reducing agent and an oxidizing agent;
    A heat circulation line for supplying heat generated in the solid oxide fuel cell to the solid oxide electrolytic cell;
    Comprising
    A power system, wherein the solid oxide electrolytic cell and the solid oxide fuel cell comprise the electrochemical cell stack according to any one of claims 1 to 10.
  12.  前記熱循環ラインに設けられ、前記固体酸化物型燃料電池で発生する熱を蓄熱する蓄熱部をさらに具備してなり、
     前記蓄熱部に蓄熱された熱が前記固体酸化物型電解セルに供給される、請求項11に記載の電力システム。
    A heat storage section that is provided in the heat circulation line and stores heat generated in the solid oxide fuel cell;
    The power system according to claim 11, wherein the heat stored in the heat storage unit is supplied to the solid oxide electrolytic cell.
  13.  前記固体酸化物型電解セルの運転により発生した還元剤を貯蔵する還元剤貯蔵部をさらに具備してなり、
     前記還元剤貯蔵部で貯蔵された還元剤が前記固体酸化物型燃料電池に供給される、請求項11または12に記載の電力システム。
    Further comprising a reducing agent storage unit for storing a reducing agent generated by the operation of the solid oxide electrolytic cell;
    The electric power system according to claim 11 or 12, wherein the reducing agent stored in the reducing agent storage unit is supplied to the solid oxide fuel cell.
  14.  前記固体酸化物型電解セルの運転により発生した酸化剤を貯蔵する酸化剤貯蔵部をさらに具備してなり、
     前記酸化剤貯蔵部で貯蔵された酸化剤が前記固体酸化物型燃料電池に供給される、請求項11~13の何れか1項に記載された電力システム。
    Further comprising an oxidant storage unit for storing an oxidant generated by the operation of the solid oxide electrolytic cell;
    The power system according to any one of claims 11 to 13, wherein the oxidant stored in the oxidant storage unit is supplied to the solid oxide fuel cell.
PCT/JP2015/075358 2014-10-20 2015-09-07 Electrochemical cell stack and electrical power system WO2016063647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-213890 2014-10-20
JP2014213890A JP6385788B2 (en) 2014-10-20 2014-10-20 Electrochemical cell stack and power system

Publications (1)

Publication Number Publication Date
WO2016063647A1 true WO2016063647A1 (en) 2016-04-28

Family

ID=55760692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075358 WO2016063647A1 (en) 2014-10-20 2015-09-07 Electrochemical cell stack and electrical power system

Country Status (2)

Country Link
JP (1) JP6385788B2 (en)
WO (1) WO2016063647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185665A1 (en) * 2020-12-15 2022-06-16 Honda Motor Co., Ltd. Electrochemical hydrogen compression system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030132A1 (en) 2016-08-08 2018-02-15 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack
JP6393714B2 (en) 2016-08-09 2018-09-19 日本特殊陶業株式会社 Electrochemical reaction cell and electrochemical reaction cell stack
WO2018051385A1 (en) * 2016-09-16 2018-03-22 株式会社 東芝 Electrochemical cell stack
FR3056337B1 (en) * 2016-09-22 2021-01-22 Commissariat Energie Atomique WATER ELECTROLYSIS REACTOR (SOEC) OR FUEL CELL (SOFC) AT RATE OF USE OF WATER VAPOR OR RESPECTIVELY OF FUEL INCREASED
JP6511195B2 (en) 2016-11-22 2019-05-15 日本特殊陶業株式会社 Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
JP6284662B1 (en) 2017-02-02 2018-02-28 日本特殊陶業株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
JP6368389B1 (en) 2017-02-02 2018-08-01 日本特殊陶業株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
JP6530862B2 (en) 2017-02-16 2019-06-12 日本特殊陶業株式会社 Electrochemical reaction unit cell and electrochemical reaction cell stack
JP6290471B1 (en) 2017-02-16 2018-03-07 日本特殊陶業株式会社 Electrochemical reaction cell and electrochemical reaction cell stack
EP3588644B1 (en) 2017-02-27 2024-05-08 Morimura Sofc Technology Co., Ltd. Electrochemical reaction unit and electrochemical reaction cell stack
JP6573719B2 (en) 2017-02-27 2019-09-11 日本特殊陶業株式会社 Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
US11271221B2 (en) 2017-06-06 2022-03-08 Morimura Sofc Technology Co.. Ltd. Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JP6734816B2 (en) 2017-06-21 2020-08-05 日本特殊陶業株式会社 Electrochemical cell and electrochemical stack
KR102037938B1 (en) * 2018-01-31 2019-10-30 한국과학기술연구원 Cathode current collector for solid oxide fuel cells and current collector method using the same
JP2019157146A (en) * 2018-03-07 2019-09-19 東芝エネルギーシステムズ株式会社 Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen production device
JP6813525B2 (en) * 2018-03-16 2021-01-13 株式会社東芝 Carbon dioxide electrolyzer and electrolyzer
JP6813526B2 (en) * 2018-03-16 2021-01-13 株式会社東芝 Carbon dioxide electrolyzer and electrolyzer
JP6936273B2 (en) 2019-04-11 2021-09-15 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP6945035B1 (en) 2020-04-21 2021-10-06 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP7237043B2 (en) 2020-07-14 2023-03-10 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP7104129B2 (en) 2020-12-04 2022-07-20 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack
DE102022108748A1 (en) 2021-04-26 2022-10-27 Morimura Sofc Technology Co., Ltd. Interconnector single electrochemical reaction cell composite body and electrochemical reaction cell stack
JP7288928B2 (en) 2021-06-17 2023-06-08 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack
JP7194242B1 (en) 2021-09-10 2022-12-21 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2009176564A (en) * 2008-01-24 2009-08-06 Toshiba Corp Conductive porous material, manufacturing method of conductive porous material, and electrode current collection material of fuel cell using this conductive porous material
JP2010180104A (en) * 2009-02-06 2010-08-19 Toshiba Corp Laminated structure and method for producing the same
JP2012230887A (en) * 2011-04-15 2012-11-22 Toshiba Corp Conductive porous material, fuel cell, and electrolysis cell
WO2013065757A1 (en) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 Fuel cell
JP2014185833A (en) * 2013-03-25 2014-10-02 Toshiba Corp Heat storage device
JP2014207120A (en) * 2013-04-12 2014-10-30 株式会社東芝 Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP2015505344A (en) * 2012-01-09 2015-02-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High-temperature steam electrolysis equipment (HTSE) with externally heated hydrogen production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105239B2 (en) * 1988-05-06 1995-11-13 富士電機株式会社 Fuel cell cooling body
JP2936001B2 (en) * 1990-03-31 1999-08-23 東燃株式会社 High temperature fuel cell and method of manufacturing the same
JPH09306518A (en) * 1996-05-17 1997-11-28 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell and manufacture thereof
JP4438295B2 (en) * 2003-01-21 2010-03-24 三菱マテリアル株式会社 Fuel cell
JP2005078859A (en) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd Fuel cell system
JP5932587B2 (en) * 2012-09-19 2016-06-08 株式会社東芝 Electrochemical equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2009176564A (en) * 2008-01-24 2009-08-06 Toshiba Corp Conductive porous material, manufacturing method of conductive porous material, and electrode current collection material of fuel cell using this conductive porous material
JP2010180104A (en) * 2009-02-06 2010-08-19 Toshiba Corp Laminated structure and method for producing the same
JP2012230887A (en) * 2011-04-15 2012-11-22 Toshiba Corp Conductive porous material, fuel cell, and electrolysis cell
WO2013065757A1 (en) * 2011-11-02 2013-05-10 日本特殊陶業株式会社 Fuel cell
JP2015505344A (en) * 2012-01-09 2015-02-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High-temperature steam electrolysis equipment (HTSE) with externally heated hydrogen production
JP2014185833A (en) * 2013-03-25 2014-10-02 Toshiba Corp Heat storage device
JP2014207120A (en) * 2013-04-12 2014-10-30 株式会社東芝 Solid oxide electrochemical cell stack structure and hydrogen power storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185665A1 (en) * 2020-12-15 2022-06-16 Honda Motor Co., Ltd. Electrochemical hydrogen compression system

Also Published As

Publication number Publication date
JP6385788B2 (en) 2018-09-05
JP2016081813A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6385788B2 (en) Electrochemical cell stack and power system
JP4960593B2 (en) Electrochemical battery stack assembly
TWI811327B (en) Electrochemical module, assembly method for electrochemical module, electrochemical device, and energy system
WO2013012009A1 (en) Electrical connection material for solid oxide fuel cells, solid oxide fuel cell, solid oxide fuel cell module, and method for manufacturing solid oxide fuel cell
JP6139231B2 (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP7202061B2 (en) Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells
KR20200139711A (en) Metal support for electrochemical devices, electrochemical devices, electrochemical modules, electrochemical devices, energy systems, solid oxide fuel cells, solid oxide electrolytic cells and methods of manufacturing metal supports
US9666892B2 (en) Cell, cell stack device, module, and module housing device
KR20110022907A (en) Flat tube type solid oxide fuel cell module
TWI811328B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
TWI729087B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
US20210119224A1 (en) Metal Plate, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System, Solid Oxide Fuel Cell, and Method for Manufacturing Metal Plate
JP2023075221A (en) Electrochemical module, electrochemical device, and energy system
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
US11967740B2 (en) Electrochemical element, electrochemical element stack, electrochemical module, electrochemical device, and energy system
JP6822644B2 (en) Flat solid oxide fuel cell
JP7202060B2 (en) Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells
CN113614422A (en) Electrochemical module, electrochemical device, and energy system
JP7353226B2 (en) Electrochemical modules, electrochemical devices and energy systems
JP6957736B2 (en) Cell stack device, module and module containment device
TWI811329B (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
JP6839021B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
WO2018146809A1 (en) Electrochemical cell stack
JP2022028167A (en) Electrochemical reaction single cell
JP2022054033A (en) Electrochemical reaction single cell and electrochemical reaction cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852787

Country of ref document: EP

Kind code of ref document: A1