JPH09306518A - Solid electrolyte fuel cell and manufacture thereof - Google Patents

Solid electrolyte fuel cell and manufacture thereof

Info

Publication number
JPH09306518A
JPH09306518A JP8123465A JP12346596A JPH09306518A JP H09306518 A JPH09306518 A JP H09306518A JP 8123465 A JP8123465 A JP 8123465A JP 12346596 A JP12346596 A JP 12346596A JP H09306518 A JPH09306518 A JP H09306518A
Authority
JP
Japan
Prior art keywords
current collector
fuel cell
solid oxide
oxide fuel
conductive ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8123465A
Other languages
Japanese (ja)
Inventor
Naoyuki Nishimura
直之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8123465A priority Critical patent/JPH09306518A/en
Publication of JPH09306518A publication Critical patent/JPH09306518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell in which development of cracks in a unit cell is prevented and yielding rate is enhanced by using felt made of fibrous conductive ceramics as a current collector. SOLUTION: In a solid electrolyte fuel cell prepared by stacking many unit cells 1 each formed by bringing a current collector 4 into contact with an electrode 3 through a gas separator 5, fibrous conductive ceramic felt 6 is used as the current collector 4. The fibrous conductive ceramics has lanthanum manganite containing either one of strontium, cobalt, calcium and magnesium as the main component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池およびその製造方法に係り、特に、単セルの破損を
防止し、歩留りを向上させることができる固体電解質型
燃料電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell and a method for manufacturing the same, and more particularly to a solid oxide fuel cell which can prevent damage to a single cell and improve yield, and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】平板型の固体電解質型燃料電池は、一般
に、発電を行うセル、燃料ガス流路と酸素含有ガス(空
気)流路とを仕切るガスセパレータ、および電流を集め
る集電体で構成されている。図3は、固体電解質型燃料
電池を構成する燃料電池スタックの説明図である。図に
おいて、単セル11が、電極12の表面に集電体13が
当接される状態で、ガスセパレータ14を介して多数積
層されている。15は燃料または酸素含有ガスの通路
穴、16はセル枠である。燃料電池の単セル11、集電
体13およびガスセパレータ14は電気的に相互に連結
されていなければならず、これら各構成部材の接合は、
接合面に導電性材料からなるスラリを塗布し、加圧しな
がら焼成することによって行われていた。
2. Description of the Related Art A flat plate solid oxide fuel cell is generally composed of a cell for generating power, a gas separator for partitioning a fuel gas flow path and an oxygen-containing gas (air) flow path, and a current collector for collecting an electric current. Has been done. FIG. 3 is an explanatory diagram of a fuel cell stack that constitutes a solid oxide fuel cell. In the figure, a large number of unit cells 11 are stacked with a current collector 13 in contact with the surface of an electrode 12 with a gas separator 14 interposed therebetween. Reference numeral 15 is a passage hole for fuel or oxygen-containing gas, and 16 is a cell frame. The single cell 11, the current collector 13, and the gas separator 14 of the fuel cell must be electrically connected to each other, and the joining of these respective constituent members is
This has been done by applying a slurry made of a conductive material to the joint surface and firing it while applying pressure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、加圧、焼成する際に接合面に少しでも凹凸
があると強度的に最も弱い単セルにひび割れが生じ、こ
れによって燃料電池製造時の歩留りが大幅に低下すると
いう問題があった。図2は、従来技術における、燃料電
池を製造する際の単セルと集電体との接合面を示す模式
図である。図において、固体電解質膜2に電極3を積層
した単セル1の前記電極3の表面と、例えば固体バルク
中にガスを通す気孔を空けた多孔質導電性材料からなる
集電体4の表面にそれぞれ凹凸があるために、加圧、焼
成することによって単セル1に割れが発生している。
However, in the above-mentioned prior art, if there is any unevenness in the joint surface during pressurization and firing, cracks occur in the single cell, which is the weakest in terms of strength, and this causes fuel cell production. There has been a problem that the yield in time is significantly reduced. FIG. 2 is a schematic view showing a joint surface between a single cell and a current collector in manufacturing a fuel cell according to a conventional technique. In the figure, on the surface of the electrode 3 of the single cell 1 in which the electrode 3 is laminated on the solid electrolyte membrane 2 and on the surface of the current collector 4 made of, for example, a porous conductive material having pores for passing gas in the solid bulk. Since there are irregularities, the unit cell 1 is cracked by applying pressure and firing.

【0004】本発明の目的は、上記従来技術の問題点を
解決し、単セルの破損を防止して製造時の歩留り率を向
上させることができる固体電解質型燃料電池およびその
製造方法を提供することにある。
An object of the present invention is to provide a solid oxide fuel cell capable of solving the above-mentioned problems of the prior art, preventing damage to a single cell, and improving a yield rate during manufacturing, and a manufacturing method thereof. Especially.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、燃料電池製造時の単セルの割れを防止
するためには、単セルの電極表面に当接される集電体
に、前記単セル電極表面の凹凸を吸収する圧縮性をもた
せればよいことに着目し、鋭意研究の結果、ファイバー
状導電性セラミックスをフェルト状に成形した成形体、
またはこの成形体にさらに導電性セラミックス粉末また
はスラリを分散または含浸させたものを集電体として用
いることにより、化学的安定性、導電性およびガス拡散
性に加え、厚み方向への圧縮性を有する集電体が得られ
るので、この集電体を用いて固体電解質型燃料電池を製
造することにより、単セルの割れを効果的に防止できる
ことを見出し、本発明に到達した。
In order to achieve the above object, the present inventor has found that, in order to prevent cracking of a single cell at the time of manufacturing a fuel cell, a current collector contacted with an electrode surface of the single cell. Attention is paid to the fact that the single cell electrode has a compressibility that absorbs the unevenness of the surface, and as a result of earnest research, a molded body obtained by molding a fibrous conductive ceramic into a felt shape,
Alternatively, by using, as a current collector, a molded body obtained by further dispersing or impregnating conductive ceramic powder or slurry, it has chemical stability, conductivity and gas diffusivity, and has compressibility in the thickness direction. Since a current collector can be obtained, it was found that cracking of a single cell can be effectively prevented by producing a solid oxide fuel cell using this current collector, and the present invention was reached.

【0006】すなわち、本願で特許請求される発明は、
以下のとおりである。 (1)電極面に集電体を当接した単セルをガスセパレー
タを介して多数積層した固体電解質型燃料電池におい
て、前記集電体としてファイバー状導電性セラミックス
をフェルト状に成形したものを用いたことを特徴とする
固体電解質型燃料電池。 (2)前記ファイバー状導電性セラミックスが、ストロ
ンチウム、コバルト、カルシウムおよびマグネシウムの
うちいずれか一つを含むランタンマンガナイトを主成分
とするものであることを特徴とする上記(1)に記載の
固体電解質型燃料電池。
That is, the invention claimed in this application is as follows:
It is as follows. (1) In a solid oxide fuel cell in which a large number of single cells in which a current collector is in contact with an electrode surface are stacked with a gas separator interposed therebetween, a fiber-shaped conductive ceramic formed into a felt shape is used as the current collector. A solid oxide fuel cell characterized by the following. (2) The solid according to (1) above, wherein the fibrous conductive ceramics is mainly composed of lanthanum manganite containing any one of strontium, cobalt, calcium and magnesium. Electrolyte fuel cell.

【0007】(3)前記集電体として、前記ファイバー
状導電性セラミックスからなるフェルトに、粉末または
スラリ状の導電性セラミックスを分散または含浸させた
ものを用いたことを特徴とする上記(1)または(2)
に記載の固体電解質型燃料電池。 (4)前記粉末またはスラリ状の導電性セラミックス
が、ストロンチウム、コバルト、カルシウムおよびマグ
ネシウムのうちいずれか一つを含むランタンマンガナイ
トを主成分とするものであることを特徴とする上記
(3)に記載の固体電解質型燃料電池。
(3) As the current collector, a felt obtained by dispersing or impregnating powdery or slurry-like conductive ceramics into a felt made of the fibrous conductive ceramics is used. Or (2)
3. The solid oxide fuel cell according to item 1. (4) In the above (3), the powdery or slurry-like conductive ceramics are mainly composed of lanthanum manganite containing any one of strontium, cobalt, calcium and magnesium. The solid oxide fuel cell described.

【0008】(5)電極表面に集電体を当接した単セル
をガスセパレータを介して多数積層する固体電解質型燃
料電池の製造方法において、前記集電体として、上記
(3)または(4)に記載の集電体を所定温度で焼成し
たものを用い、得られた単セル積層体をさらに焼成して
各構成部材を接合することを特徴とする固体電解質型燃
料電池の製造方法。 (6)前記集電体として上記(3)または(4)に記載
の集電体を用い、得られた単セル積層体を燃料電池とし
て作動させ、発生する熱量によって前記集電体を焼結さ
せて各構成部材を接合することを特徴とする上記(5)
に記載の固体電解質型燃料電池の製造方法。
(5) In the method for producing a solid oxide fuel cell in which a large number of single cells in which a current collector is in contact with the electrode surface is laminated with a gas separator interposed therebetween, the current collector may be the above (3) or (4). A method for producing a solid oxide fuel cell, characterized in that the current collector described in 1) is fired at a predetermined temperature, and the obtained single cell laminate is further fired to bond the respective constituent members. (6) The current collector described in (3) or (4) above is used as the current collector, the obtained single cell laminate is operated as a fuel cell, and the current collector is sintered according to the amount of heat generated. The above (5) is characterized in that the respective constituent members are joined together.
The method for producing a solid oxide fuel cell according to item 1.

【0009】本発明においては、集電体としてファイバ
ー状導電性セラミックスをフェルト状に成形したものを
用いる。導電性セラミックスは、固体電解質型燃料電池
の作動温度である、例えば800〜1000℃、および
燃料電池スタックを製造する焼成温度である1300〜
1500℃において化学的に安定であり、優れた導電性
を有している。この導電性セラミックスをファイバー状
に形成することにより、化学的安定性、導電性に加え、
圧縮性およびガス拡散性が付与されるので、これをフェ
ルト状に成形したものを集電体として用いることによ
り、集電体が厚み方向、すなわち燃料電池製造時の加圧
方向への圧縮性を有するものとなる。従って、この集電
体を用いて固体電解質型燃料電池を製造することによ
り、接合面である単セル電極面の凹凸が前記集電体に柔
軟に吸収されるので、単セルの割れが未然に防止され
る。
In the present invention, a fiber-shaped conductive ceramic formed into a felt shape is used as the current collector. The conductive ceramics are the operating temperature of the solid oxide fuel cell, for example, 800 to 1000 ° C., and the firing temperature for producing the fuel cell stack, 1300 to 1300.
It is chemically stable at 1500 ° C and has excellent conductivity. By forming this conductive ceramic into a fiber shape, in addition to chemical stability and conductivity,
Since compressibility and gas diffusibility are imparted, by using this as a current collector formed into a felt shape, the current collector can be compressed in the thickness direction, that is, in the pressure direction during fuel cell production. Will have. Therefore, by manufacturing a solid oxide fuel cell using this current collector, the unevenness of the single cell electrode surface, which is the bonding surface, is flexibly absorbed by the current collector, so that cracking of the single cell occurs in advance. To be prevented.

【0010】本発明において、単セルとは電池の最少単
位をいい、固体電解質膜と、該固体電解質膜の両面にそ
れぞれ積層された燃料極側電極膜および酸素極側電極膜
で構成される。本発明において、ファイバー状導電性セ
ラミックスをフェルト状に成形した集電体は形状安定性
に優れている。
In the present invention, the single cell means the minimum unit of a battery, and is composed of a solid electrolyte membrane and a fuel electrode side electrode membrane and an oxygen electrode side electrode membrane which are respectively laminated on both sides of the solid electrolyte membrane. In the present invention, the current collector obtained by molding the fibrous conductive ceramics into a felt shape has excellent shape stability.

【0011】本発明において、ファイバー状に成形され
る導電性のセラミックスとしては、ストロンチウム、コ
バルト、カルシウムおよびマグネシウムのうちいずれか
一つを含むランタンマンガナイト、例えばLa1-x (S
X )MnO3 (X=0.1〜0.5)が好適に用いら
れる。Xが0.1よりも小さいと導電率が低くなり、
0.5を越えると線膨張率が大きくなる。ランタンマン
ガナイト(LaMnO3)に第三成分としてSr、C
o、CaまたはMgを加えたセラミックスは、La 1-X
(MX )MnO3 (M:Sr、Co、Ca、Mg)と表
され、ここでXは、例えばX=0.1〜0.5である。
In the present invention, it is formed into a fiber shape.
Conductive ceramics such as strontium and
Baltic, calcium or magnesium
Lantern Manganite containing one, eg La1-x(S
rX) MnOThree(X = 0.1 to 0.5) is preferably used.
It is. When X is smaller than 0.1, the conductivity becomes low,
If it exceeds 0.5, the coefficient of linear expansion increases. Lantern man
Gunite (LaMnOThree) As the third component Sr, C
Ceramics added with o, Ca or Mg are La 1-X
(MX) MnOThree(M: Sr, Co, Ca, Mg) and table
Where X is, for example, X = 0.1-0.5.

【0012】本発明においては、導電性セラミックスの
フェルトに、さらに粉末またはスラリ状の導電性セラミ
ックスを分散または含浸した集電体を用いることもでき
る。これによって集電体が、フェルトの間隙にセラミッ
クス粒子を分散させたものとなるので、燃料電池全体と
しての発電効率が著しく向上する。粉末状またはスラリ
状の導電性セラミックスとしては、例えばストロンチウ
ム、コバルト、カルシウムおよびマグネシウムのうちい
ずれか一つを含むランタンマンガナイト等が用いられ
る。この場合、集電体の熱膨張率は骨格である導電性セ
ラミックスのフェルトに支配されるので、これに含浸す
る導電材料の熱膨張率を他の構成部材、例えばガスセパ
レータ等に合わせる必要はない。従って、含浸材料とし
てより導電性の高いものを使用することもできる。ファ
イバー状導電性セラミックスと粉末状またはスラリ状の
導電性セラミックスは同種のものであってもよい。
In the present invention, it is also possible to use a current collector in which a conductive ceramic felt is further dispersed or impregnated with a conductive ceramic powder or slurry. As a result, the current collector becomes one in which the ceramic particles are dispersed in the felt gap, so that the power generation efficiency of the fuel cell as a whole is significantly improved. As the powdery or slurry-like conductive ceramics, for example, lanthanum manganite containing any one of strontium, cobalt, calcium and magnesium is used. In this case, since the coefficient of thermal expansion of the current collector is governed by the felt of the conductive ceramics that is the skeleton, it is not necessary to match the coefficient of thermal expansion of the conductive material impregnated with this to other constituent members such as a gas separator. . Therefore, as the impregnating material, one having higher conductivity can be used. The fibrous conductive ceramics and the powdery or slurry conductive ceramics may be the same kind.

【0013】なお、本発明の集電体は、フェルト状を呈
しているので、集電体と他の構成部材との熱膨張差はほ
とんど問題とならない。本発明において、導電性セラミ
ックスのフェルトに粉末またはスラリ状の導電性セラミ
ックスを分散または含浸した集電体を予め所定温度、例
えば800〜1000℃で焼成したのち、これを用いて
単セルを積層し、該単セル積層体を所定条件下、例えば
0.2〜0.5kg/cm2 の力で押圧しながら130
0〜1500℃で1〜10時間焼成し、各構成部材を接
合して固体電解質型燃料電池を製造することができる。
また、前記導電性セラミックスのフェルトに粉末または
スラリ状の導電性セラミックスを分散または含浸した集
電体を、焼成することなくそのまま用いて単セルを積層
し、この単セル積層体を箱体に収納し、例えば0.2〜
0.5kg/cm2 の力で押圧しつつ燃料ガスおよび酸
素含有ガスを通して燃料電池として作動させ、作動時に
発生する熱量によって前記集電体を焼結させて燃料電池
を完成させることもできる。
Since the current collector of the present invention has a felt shape, the difference in thermal expansion between the current collector and the other constituent members causes almost no problem. In the present invention, a current collector obtained by dispersing or impregnating powdery or slurry-like conductive ceramics in a conductive ceramics felt is fired at a predetermined temperature, for example, 800 to 1000 ° C., and then a single cell is laminated using the same. While pressing the single cell laminated body under a predetermined condition, for example, with a force of 0.2 to 0.5 kg / cm 2 ,
A solid oxide fuel cell can be manufactured by firing at 0 to 1500 ° C. for 1 to 10 hours and joining the respective constituent members.
In addition, a current collector obtained by dispersing or impregnating the conductive ceramic felt with powdered or slurry conductive ceramics is used as it is without firing, and a single cell is stacked, and the single cell stack is stored in a box. , For example 0.2
It is also possible to complete the fuel cell by pressing it with a force of 0.5 kg / cm 2 to operate it as a fuel cell through a fuel gas and an oxygen-containing gas, and sinter the current collector according to the amount of heat generated during operation.

【0014】[0014]

【発明の実施の形態】次に本発明を実施例によってさら
に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to Examples.

【0015】実施例1 La2 3 とSrO2 とMnO2 をモル比で0.42
5:0.15:1.0となる割合で混合し、エタノール
を加えてスラリとし、該スラリを乾燥した後、1500
℃で5時間焼成し、冷却したのち粉砕して、平均粒径
1.0μmのLa0. 85(Sr0.15)MnO3 (ストロン
チウム−ランタンマンガナイト)を得た。このストロン
チウム−ランタンマンガナイトの粉末(原料粉末1)1
00gに対して、アルコール系バインダとして、例えば
ポビニルブチラール20gを添加してスラリとし、この
スラリを押出し成形機、例えば口金90μmにより、圧
力2.0kg/cm2 の条件で押出してファイバー状に
成形した。
Example 1 La 2 O 3 , SrO 2 and MnO 2 in a molar ratio of 0.42
The mixture was mixed at a ratio of 5: 0.15: 1.0, ethanol was added to form a slurry, and the slurry was dried, and then 1500
Calcined ℃ in 5 hours, and pulverized after cooling, La 0. 85 having an average particle size of 1.0μm (Sr 0.15) MnO 3 - was obtained (strontium lanthanum manganite). This strontium-lanthanum manganite powder (raw material powder 1) 1
For example, 20 g of polyvinyl butyral as an alcohol-based binder is added to 00 g to make a slurry, and the slurry is extruded by an extrusion molding machine, for example, a 90 μm die under a condition of a pressure of 2.0 kg / cm 2 to form a fiber. did.

【0016】次に、このファイバー状成形体を1000
〜1300℃で5.0時間焼成し、さらに結合剤、例え
ばポリビニルアルコールと混合し、鋳込み成形してフェ
ルト状に成形し、該成形体を700〜1000℃で脱脂
することにより導電性材料で構成されたフェルトとし
た。一方、平均粒径1.0μmのストロンチウム−ラン
タンマンガナイト(La0. 85(Sr0.15)MnO3 )粉
末(原料粉末2)100gに対し、結合剤として、例え
ばポリビニルブチラール18gおよび溶媒として、例え
ばエタノール100mlを混合してスラリとし、このス
ラリを前記導電性材料からなるフェルトに含浸させ、こ
れを集電体とした。
Next, this fibrous molded body is treated with 1000
˜1300 ° C. for 5.0 hours, further mixed with a binder such as polyvinyl alcohol, cast-molded into a felt shape, and degreased at 700 to 1000 ° C. to form a conductive material It was made felt. On the other hand, strontium having an average particle size of 1.0 .mu.m - to lanthanum manganite (La 0. 85 (Sr 0.15) MnO 3) powder (raw material powder 2) 100 g, as a binder, as for example polyvinyl butyral 18g and solvents, such as ethanol A slurry was prepared by mixing 100 ml of the slurry, and the slurry made of the conductive material was impregnated with the slurry to obtain a current collector.

【0017】得られた集電体を1000℃で5時間焼成
し、該焼成後の集電体を単セルの燃料極側電極面および
空気極側電極面にそれぞれ当接し、この単セルをガスセ
パレータを介して多数積層し、例えば0.2〜0.5k
g/cm2 の力を加えながら1300〜1500℃で1
〜10時間焼成して燃料電池を構成した。図1は本実施
例における単セルの積層状況を示す模式図である。図に
おいて、導電性セラミックスのフェルトを用いた集電体
6は単セル1の固体電解質膜2に積層された電極3の凹
凸面に従ってその厚み方向に圧縮されており、接合面に
間隙はなく、単セルのひび割れは発生しなかった。本実
施例における歩留り率はほぼ100%であった。
The obtained current collector is calcined at 1000 ° C. for 5 hours, and the calcined current collector is brought into contact with the fuel electrode side electrode surface and the air electrode side electrode surface of the single cell, and the single cell is gasified. A large number of layers are stacked via a separator, for example, 0.2 to 0.5k
while applying a force of g / cm 2 1 at 1300 to 1500 ° C.
A fuel cell was constructed by firing for 10 hours. FIG. 1 is a schematic diagram showing the stacked state of the single cells in this example. In the figure, the current collector 6 using the felt of conductive ceramics is compressed in the thickness direction according to the uneven surface of the electrode 3 laminated on the solid electrolyte membrane 2 of the single cell 1, and there is no gap on the joint surface. No single cell cracking occurred. The yield rate in this example was almost 100%.

【0018】比較例1 集電体として、実施例1と同様のストロンチウム−ラン
タンマンガナイトを原材料とする固体バルク中にガスを
通す気孔を空けた従来型の多孔質集電体を用い、上記実
施例1と同様にして燃料電池を製造したところ、単セル
1にひび割れが生じ、歩留り率は60〜80%であっ
た。
Comparative Example 1 As the current collector, a conventional porous current collector having the same pores as the raw material of strontium-lanthanum manganite as in Example 1 and having pores for passing gas in a solid bulk was used. When a fuel cell was manufactured in the same manner as in Example 1, the single cell 1 was cracked and the yield rate was 60 to 80%.

【0019】実施例2 実施例1で得られた導電性セラミックスのフェルトに粉
末またはスラリ状の導電性セラミックスを分散または含
浸した集電体を、焼成することなくそのまま用い、実施
例1と同様にして単セルを積層し、得られた単セル積層
体を所定の箱体に収納し、0.2〜0.5kg/cm2
の力で押圧しながら、燃料ガスとして水素を、酸素含有
ガスとして空気をそれぞれ用いて燃料電池として作動さ
せたところ、前記単セル積層体は約800〜1000℃
となり、この熱量により集電体が焼結して各構成部材が
接合されて燃料電池が完成した。単セル1のひび割れ発
生率はごく少量であり、歩留り率はほぼ100%であっ
た。
Example 2 The same procedure as in Example 1 was carried out using the current collector obtained by dispersing or impregnating the conductive ceramic felt obtained in Example 1 with powdery or slurry conductive ceramics without firing. The single cells are stacked in a predetermined box, and the single cells are stacked in a predetermined box, and 0.2 to 0.5 kg / cm 2
While pressing with the force of 1, the hydrogen was used as the fuel gas and the air was used as the oxygen-containing gas to operate as a fuel cell.
Then, the heat collector sinters due to this amount of heat and the constituent members are joined to complete the fuel cell. The rate of occurrence of cracks in the single cell 1 was very small, and the yield rate was almost 100%.

【0020】[0020]

【発明の効果】本願の請求項1記載の発明によれば、集
電体としてファイバー状導電性セラミックスからなるフ
ェルトを用いたことにより、単セルの割れが防止され、
歩留り率が高い固体電解質型燃料電池が得られる。本願
の請求項2記載の発明によれば、ファイバー状導電性セ
ラミックスとして、例えばストロンチウム−ランタンマ
ンガナイト〔La1-x (SrX )MnO3(X=0.1
〜0.5)〕を主成分とするものを用いたことにより、
上記発明の効果に加え、ストロンチウム(Sr)の添加
量を調節することにより、集電体の導電率を調節して発
電効率をさらに向上させることができる。
According to the invention described in claim 1 of the present application, the use of the felt made of the fibrous conductive ceramics as the current collector prevents cracking of the single cell,
A solid oxide fuel cell having a high yield rate can be obtained. According to the invention of claim 2 of the present application, as the fibrous conductive ceramics, for example, strontium-lanthanum manganite [La 1-x (Sr X ) MnO 3 (X = 0.1
~ 0.5)] is used as a main component,
In addition to the effects of the invention described above, by adjusting the amount of strontium (Sr) added, the electrical conductivity of the current collector can be adjusted to further improve the power generation efficiency.

【0021】本願の請求項3記載の発明によれば、ファ
イバー状導電性セラミックスからなるフェルトに、粉末
またはスラリ状の導電性セラミックスを含浸した集電体
を用いたことにより、上記発明の効果に加え、集電体の
集電能力がさらに向上し、発電効率の高い電池となる。
本願の請求項4記載の発明によれば、粉末またはスラリ
状の導電性セラミックスとしてストロンチウム、コバル
ト、カルシウムまたはマグネシウムを含むランタンマン
ガナイトを主成分とするものを用いたことにより、上記
発明の効果に加え、導電性が向上する。
According to the invention of claim 3 of the present application, the effect of the invention can be obtained by using the current collector in which the felt made of the fibrous conductive ceramics is impregnated with the powdered or slurry-like conductive ceramics. In addition, the current collecting ability of the current collector is further improved, and the battery has high power generation efficiency.
According to the invention of claim 4 of the present application, by using a powder or slurry-like conductive ceramics containing lanthanum manganite containing strontium, cobalt, calcium or magnesium as a main component, the effect of the invention can be obtained. In addition, conductivity is improved.

【0022】本願の請求項5記載の発明によれば、集電
体として、ファイバー状導電性セラミックスからなるフ
ェルトに、粉末またはスラリ状の導電性セラミックスを
含浸させたものを用いて燃料電池を製造したことによ
り、単セルの割れのない、発電効率の高い燃料電池が得
られる。本願の請求項6記載の発明によれば、単セル積
層体を燃料電池として作動させ、発生する熱量によって
集電体を焼結させて各構成部材を接合するようにしたこ
とにより、上記発明の効果に加え、製造工程を簡素化
し、かつコストの低減を図ることができる。
According to the invention of claim 5 of the present application, a fuel cell is manufactured by using, as the current collector, a felt made of fiber-like conductive ceramics impregnated with powdery or slurry-like conductive ceramics. By doing so, it is possible to obtain a fuel cell with high power generation efficiency without cracking of the single cell. According to the invention of claim 6 of the present application, the single cell stack is operated as a fuel cell, and the current collector is sintered by the amount of heat generated to join the respective constituent members. In addition to the effect, the manufacturing process can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における単セルの積層状況を
示す模式図。
FIG. 1 is a schematic diagram showing a stacked state of a single cell according to an embodiment of the present invention.

【図2】従来技術を示す説明図。FIG. 2 is an explanatory view showing a conventional technique.

【図3】固体電解質型燃料電池の燃料電池スタックの構
成を示す図。
FIG. 3 is a diagram showing a configuration of a fuel cell stack of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1…単セル、2…固体電解質膜、3…電極、4…集電
体、5…ガスセパレータ、6…導電性セラミックスのフ
ェルトを用いた集電体、11…単セル、12…電極、1
3…集電体、14…ガスセパレータ、15…ガス通路
穴、16…セル枠。
DESCRIPTION OF SYMBOLS 1 ... Single cell, 2 ... Solid electrolyte membrane, 3 ... Electrode, 4 ... Current collector, 5 ... Gas separator, 6 ... Current collector using felt of conductive ceramics, 11 ... Single cell, 12 ... Electrode, 1
3 ... Current collector, 14 ... Gas separator, 15 ... Gas passage hole, 16 ... Cell frame.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電極面に集電体を当接した単セルをガス
セパレータを介して多数積層した固体電解質型燃料電池
において、前記集電体としてファイバー状導電性セラミ
ックスをフェルト状に成形したものを用いたことを特徴
とする固体電解質型燃料電池。
1. A solid electrolyte fuel cell in which a large number of single cells, each of which has a current collector in contact with an electrode surface, are stacked with a gas separator interposed therebetween, wherein a fiber-shaped conductive ceramic is formed into a felt shape as the current collector. A solid oxide fuel cell, characterized in that
【請求項2】 前記ファイバー状導電性セラミックス
が、ストロンチウム、コバルト、カルシウムおよびマグ
ネシウムのうちいずれか一つを含むランタンマンガナイ
トを主成分とするものであることを特徴とする請求項1
に記載の固体電解質型燃料電池。
2. The fibrous conductive ceramics is mainly composed of lanthanum manganite containing any one of strontium, cobalt, calcium and magnesium.
3. The solid oxide fuel cell according to item 1.
【請求項3】 前記集電体として、前記ファイバー状導
電性セラミックスからなるフェルトに、粉末またはスラ
リ状の導電性セラミックスを分散または含浸させたもの
を用いたことを特徴とする請求項1または2に記載の固
体電解質型燃料電池。
3. The current collector is made of a felt made of the fibrous conductive ceramics and dispersed or impregnated with powdery or slurry conductive ceramics. The solid oxide fuel cell according to 1.
【請求項4】 前記粉末またはスラリ状の導電性セラミ
ックスが、ストロンチウム、コバルト、カルシウムおよ
びマグネシウムのうちいずれか一つを含むランタンマン
ガナイトを主成分とするものであることを特徴とする請
求項3に記載の固体電解質型燃料電池。
4. The powdery or slurry-like conductive ceramics is mainly composed of lanthanum manganite containing any one of strontium, cobalt, calcium and magnesium. The solid oxide fuel cell according to 1.
【請求項5】 電極表面に集電体を当接した単セルをガ
スセパレータを介して多数積層する固体電解質型燃料電
池の製造方法において、前記集電体として、請求項3ま
たは4に記載の集電体を所定温度で焼成したものを用
い、得られた単セル積層体をさらに焼成して各構成部材
を接合することを特徴とする固体電解質型燃料電池の製
造方法。
5. The method for producing a solid oxide fuel cell in which a large number of single cells, each of which has a current collector in contact with an electrode surface, are stacked with a gas separator interposed therebetween, wherein the current collector is used as the current collector. A method for producing a solid oxide fuel cell, comprising using a current collector that has been fired at a predetermined temperature, and further firing the obtained single cell laminate to bond the respective constituent members.
【請求項6】 前記集電体として請求項3または4に記
載の集電体を用い、得られた単セル積層体を燃料電池と
して作動させ、発生する熱量によって前記集電体を焼結
させて各構成部材を接合することを特徴とする請求項5
に記載の固体電解質型燃料電池の製造方法。
6. The current collector according to claim 3 or 4 is used as the current collector, the obtained single cell laminate is operated as a fuel cell, and the current collector is sintered according to the amount of heat generated. 6. Each component is joined together by means of
The method for producing a solid oxide fuel cell according to item 1.
JP8123465A 1996-05-17 1996-05-17 Solid electrolyte fuel cell and manufacture thereof Pending JPH09306518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8123465A JPH09306518A (en) 1996-05-17 1996-05-17 Solid electrolyte fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8123465A JPH09306518A (en) 1996-05-17 1996-05-17 Solid electrolyte fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09306518A true JPH09306518A (en) 1997-11-28

Family

ID=14861310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8123465A Pending JPH09306518A (en) 1996-05-17 1996-05-17 Solid electrolyte fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09306518A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263994A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid electrolyte fuel cell
DE10342691A1 (en) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell has cathode connected to interconnector by electrically conductive ceramic sprung elastic pressure contacts
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2007273194A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2010257744A (en) * 2009-04-24 2010-11-11 Kyocera Corp Lateral stripe type fuel cell stack, method for manufacturing the same, and fuel cell
JP2016081813A (en) * 2014-10-20 2016-05-16 株式会社東芝 Electrochemical cell stack, and power system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263994A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid electrolyte fuel cell
JP4552371B2 (en) * 2002-03-11 2010-09-29 三菱マテリアル株式会社 Solid oxide fuel cell
DE10342691A1 (en) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell has cathode connected to interconnector by electrically conductive ceramic sprung elastic pressure contacts
US7897289B2 (en) 2003-09-08 2011-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Stackable high-temperature fuel cell
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2007273194A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2010257744A (en) * 2009-04-24 2010-11-11 Kyocera Corp Lateral stripe type fuel cell stack, method for manufacturing the same, and fuel cell
JP2016081813A (en) * 2014-10-20 2016-05-16 株式会社東芝 Electrochemical cell stack, and power system

Similar Documents

Publication Publication Date Title
JP3230156B2 (en) Electrode of solid oxide fuel cell and method of manufacturing the same
KR102066121B1 (en) Electrolyte formation process
JP5279272B2 (en) Conductive fuel cell contact material
CN1653638A (en) Electrochemical cell stack assembly
CN101443947A (en) SOFC stack having a high temperature bonded ceramic interconnect and method for making same
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JPH053037A (en) Solid electrolyte type fuel cell
JPH10275748A (en) Electric double layer capacitor
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2001351647A (en) Solid electrolyte fuel cell
JP2012146628A (en) Solid oxide fuel cell
JPH09306518A (en) Solid electrolyte fuel cell and manufacture thereof
KR101937919B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell by tape lamination, Fuel Cell Stack and Fuel Cell Power Generation System manufactured by using the cell for fuel cell
JP2004055194A (en) Electrode of solid oxide type fuel cell
JP3246678B2 (en) Method for manufacturing electrode body of solid oxide fuel cell
JPH09306515A (en) Solid electrolyte fuel cell and manufacture thereof
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP3963122B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JPH07245112A (en) Solid electrolyte fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH06223846A (en) Joint method for solid electrolyte type fuel cell stack
KR101873960B1 (en) A method of producing a cell for a solid oxide fuel cell, Fuel Cell Stack and Fuel Cell Power Generation System manufactured by using the cell for fuel cell
KR20130050402A (en) A method of producing a cell for a metal-supported solid oxide fuel cell
JP7278241B2 (en) electrochemical reaction single cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020107