WO2016063635A1 - 光アップ・ダウンコンバート型光位相共役対信号送受信回路 - Google Patents

光アップ・ダウンコンバート型光位相共役対信号送受信回路 Download PDF

Info

Publication number
WO2016063635A1
WO2016063635A1 PCT/JP2015/074940 JP2015074940W WO2016063635A1 WO 2016063635 A1 WO2016063635 A1 WO 2016063635A1 JP 2015074940 W JP2015074940 W JP 2015074940W WO 2016063635 A1 WO2016063635 A1 WO 2016063635A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
sideband
phase
optical fiber
Prior art date
Application number
PCT/JP2015/074940
Other languages
English (en)
French (fr)
Inventor
高秀 坂本
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Priority to CN201580051522.7A priority Critical patent/CN106716879B/zh
Priority to US15/514,529 priority patent/US9954615B2/en
Priority to EP15853196.2A priority patent/EP3208954B1/en
Publication of WO2016063635A1 publication Critical patent/WO2016063635A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present invention relates to a method and apparatus capable of effectively compensating for a nonlinear effect that an optical signal and an optical fiber radio signal receive when transmitting through an optical fiber.
  • optical fiber wireless system increasing the input strength to an optical fiber is an important issue because it leads to an increase in RF link gain and an increase in transmission distance.
  • the input light intensity to the optical fiber is increased, the signal cannot be transmitted linearly due to the influence of nonlinear effects in the optical fiber. Therefore, in the current optical fiber radio system, the optical input light intensity is limited to several mWm.
  • optical multiplexing method is also attracting attention.
  • optical PSK optical phase shift keying
  • QAM optical quadrature amplitude modulation
  • OFDM optical orthogonal frequency division multiplexing
  • Japanese Patent Application Laid-Open No. 2010-28470 discloses an optical signal receiving apparatus having an electric arithmetic circuit for compensating for nonlinear waveform distortion, and nonlinear distortion compensation using an optical phase conjugate pair signal.
  • an electric circuit for compensating for nonlinear waveform distortion, and nonlinear distortion compensation using an optical phase conjugate pair signal.
  • the waveform distortion due to the nonlinear effect in the optical transmission line is compensated by an electric circuit, the problem that the apparatus becomes complicated, and the optical phase conjugate pair signal generation on the transmitter side is not possible by digital signal processing or the like.
  • An object of the present invention is to provide a method capable of easily compensating for waveform distortion due to a nonlinear effect caused by a complicated electric circuit, and an apparatus for realizing the method.
  • the present invention uses an optical phase conjugate signal pair at the time of optical up-conversion or down-conversion, and effectively eliminates signal degradation such as waveform distortion caused by nonlinear effects caused by an optical fiber as an optical transport path. It is an object of the present invention to provide a method capable of compensation and a device capable of realizing the method.
  • the present invention basically generates both sidebands at the time of optical modulation and uses them as an optical phase conjugate signal pair, and then effectively interferes with these or components derived therefrom, thereby reducing nonlinear effects. cancel.
  • the present invention can easily compensate for the nonlinear effect due to the optical fiber without using a complicated electric circuit.
  • a first aspect of the present invention relates to a homodyne phase conjugate radio (C-RoF) system, which will be described later, and a method for compensating a nonlinear optical effect generated when an optical signal propagates through an optical fiber using the system.
  • the upper sideband and the lower sideband are easily generated using direct modulation of a semiconductor laser, etc., light intensity modulation, amplitude modulation, phase modulation, etc. by means of external modulation, etc.
  • the upper sideband and lower sideband are used as a phase conjugate signal pair.
  • the upper sideband and the lower sideband are simultaneously input to the optical fiber.
  • continuous light having the same frequency as the optical carrier is combined as a carrier signal.
  • the upper sideband and the lower sideband are combined with no phase difference between the upper sideband and the lower sideband.
  • a photodetector detects the combined optical signal.
  • An electric signal based on the optical signal detected by the photodetector is transmitted to the transmitting antenna.
  • the transmitting antenna emits a radio signal based on the electrical signal.
  • the receiver side receives the radio signal.
  • the optical receiver when continuous light having the same frequency as the optical carrier is combined as a carrier signal, the combined optical signal propagates through the optical fiber.
  • the homodyne C-RoF system has a radio signal emitting device 25 that compensates for a nonlinear optical effect generated when an optical signal propagates through an optical fiber. It functions as a phase conjugate signal pair-based optical signal output system that can effectively compensate for the nonlinear effect caused by the optical fiber caused in the part before the photodetector.
  • the emission device 25 includes an optical modulator 11, a signal source 13, an optical fiber 15, a multiplexing unit 17, a multiplexing local signal source 19, a photodetector 21, and a transmitting antenna 23. Including.
  • the optical modulator 11 is an element to which a carrier wave is input. Then, the optical modulator 11 outputs a phase conjugate signal pair including the upper sideband and the lower sideband.
  • the signal source 13 is an element that outputs a modulation signal and a bias signal applied to the optical modulator 11.
  • the optical fiber 15 is an element for receiving a phase conjugate signal pair including an upper sideband and a lower sideband, which are optical signals output from the optical modulator 11, and propagating the optical signal.
  • the multiplexing unit 17 is connected to the optical fiber 15 and is an element for multiplexing an optical signal including a phase conjugate signal pair and an optical signal from the outside (the following local continuous light and local light).
  • the multiplexing unit 17 may be provided in the optical transmitter, in the optical receiver, or in any location of the optical fiber transmission line.
  • the local light is combined with the optical signal including the phase conjugate signal pair in this arbitrary location. May be.
  • the local signal source for multiplexing 19 transmits an optical signal having the same frequency as that of the optical carrier wave via the multiplexing unit 17 in a state where there is no phase difference between the upper side band and the lower side band. It is an element for combining with waves.
  • the photodetector is an element for detecting the combined optical signal.
  • the transmitting antenna 23 is an element that receives an electrical signal based on the optical signal detected by the photodetector. The transmitting antenna 23 emits a radio signal based on the electric signal and transmits the radio signal to the receiver side.
  • the second aspect of the present invention relates to a heterodyne C-RoF system, which will be described later, and a method for compensating for a nonlinear optical effect generated when an optical signal propagates through an optical fiber using the system.
  • a phase conjugate signal pair including an upper sideband and a lower sideband is obtained by using direct modulation of a semiconductor laser or the like, light intensity modulation by external modulation, amplitude modulation, phase modulation, or the like.
  • the upper sideband and the lower sideband are simultaneously input to the optical fiber.
  • the optical signal is combined with the upper sideband and the lower sideband.
  • a photodetector detects the combined optical signal.
  • An electric signal based on the optical signal detected by the photodetector is transmitted to the transmitting antenna.
  • the transmitting antenna emits a radio signal based on the electrical signal.
  • the receiving antenna receives the radio signal emitted from the transmitting antenna.
  • the receiving antenna receives an electrical signal based on the radio signal received, and multiplexes the signal derived from the received upper sideband and the signal derived from the lower sideband after adjusting so as to eliminate the phase difference.
  • the heterodyne C-RoF system includes a transmission device and a reception device.
  • the radio signal transmitter 45 includes an optical modulator 31, a signal source 33, an optical fiber 35, a multiplexing unit 37 connected to the optical fiber 35, a multiplexing local signal source 39, and a photodetector 41. And a transmitting antenna 43.
  • the radio signal receiving device 55 includes a receiving antenna 51 and a signal processing device 53.
  • the optical modulator 31 is an element to which a carrier wave is input.
  • the signal source 33 is an element that outputs a modulation signal and a bias signal applied to the optical modulator 31.
  • the optical fiber 35 is an element to which a phase conjugate signal pair including an upper sideband and a lower sideband that are optical signals output from the optical modulator 31 is input simultaneously.
  • the multiplexing unit 37 is an element connected to the optical fiber 35 for multiplexing light.
  • the optical signal (local light) can be combined with the upper side band and the lower side band through the local signal source 39 for multiplexing and the multiplexing unit 37.
  • the photodetector 41 is an element for detecting the combined optical signal.
  • the transmitting antenna 43 is an element for receiving an electrical signal based on the optical signal detected by the photodetector and emitting it as a radio signal.
  • the receiving antenna 51 is an element for receiving a radio signal emitted from the transmitting antenna 43.
  • the signal processing device 53 receives an electrical signal based on the radio signal received by the receiving antenna, and adjusts the signal derived from the received upper sideband and the signal derived from the lower sideband so that there is no phase difference. It is an element for combining above. In the heterodyne C-ROF system, a wavelength or frequency different from that of the optical carrier is given as the wavelength or frequency of local light combined from the combining unit 37.
  • FIG. 1 is a block diagram showing a configuration example of a homodyne C-RoF system.
  • FIG. 2 is a block diagram illustrating a configuration example of the heterodyne C-RoF system.
  • FIG. 3 shows an example of a generated signal (in the case of QPSK modulation) in which there is no phase difference in the phase conjugate signal pair.
  • FIG. 4 shows an example of a generated signal (in the case of QPSK modulation) when the phase difference between the upper side wave and the lower side wave is not optimized, that is, when the phase difference is not zero.
  • FIG. 5 is a block diagram showing a configuration example for generating local light using an independent light source.
  • FIG. 1 is a block diagram showing a configuration example of a homodyne C-RoF system.
  • FIG. 2 is a block diagram illustrating a configuration example of the heterodyne C-RoF system.
  • FIG. 3 shows an example of a generated signal (in the case of
  • FIG. 6 is a block diagram showing a configuration example for generating local light by reusing an optical carrier wave.
  • FIG. 7 is a block diagram showing a configuration example for generating local light by reusing an optical carrier wave.
  • FIG. 8 is a block diagram showing a configuration example of a heterodyne C-RoF for generating local light using an independent light source.
  • FIG. 9 is a block diagram illustrating a configuration example for generating local light by reusing an optical carrier wave.
  • FIG. 10 is a block diagram illustrating a configuration example for generating local light by reusing an optical carrier wave.
  • FIG. 11 shows a configuration example of a radio receiver using heterodyne C-RoF.
  • FIG. 12 is a diagram illustrating a configuration example of a wireless receiver when ⁇ f> fm.
  • FIG. 13 is a diagram illustrating the principle of an optical phase conjugate versus fiber radio (C-RoF) system.
  • FIG. 14 is a conceptual diagram showing the relationship between each component and nonlinear effects such as nonlinear distortion.
  • FIG. 15 is a conceptual diagram showing a homodyne C-RoF system.
  • FIG. 16 is a conceptual diagram showing a heterodyne C-RoF system.
  • FIG. 17 is a schematic diagram of a system in the numerical analysis of the embodiment.
  • FIG. 18 is a constellation map of received signals.
  • FIG. 19 is an experimental configuration diagram for demonstrating the principle of the bias shift type electro-optic effect type phase conjugate signal pair generator.
  • FIG. 20 is a diagram showing experimental results in Example 2.
  • An example of the compensation principle for nonlinear effect using an optical phase conjugate signal pair is as follows. A pair of signals with phase conjugation along with the original transmission signal is transmitted through the optical fiber. Then, in the optical fiber, both the original signal light and the phase conjugate light experience the same nonlinear phase shift. However, when the phase conjugate signal is based on the original signal, a phase shift of an opposite sign is caused. By utilizing and canceling the fact that the original signal light and phase conjugate light are subjected to the same non-linear effect with an opposite sign, it is possible to cancel non-linear effects such as non-linear distortion.
  • an optical phase conjugate signal pair is generated when optical modulation is performed in the optical modulator.
  • This system is called an electro-optic effect type phase conjugate signal pair generator.
  • electro-optic effect type phase conjugate signal pair generator it is possible to generate a phase conjugate signal pair using only the original data set without converting the electrical signal for phase conjugation. It can be simple.
  • a first aspect of the present invention relates to a homodyne phase conjugate radio (C-RoF) system, which will be described later, and a method for compensating for a nonlinear optical effect generated when an optical signal propagates through an optical fiber using the system.
  • C-RoF homodyne phase conjugate radio
  • FIG. 1 is a block diagram showing a configuration example of a homodyne C-RoF system.
  • the homodyne C-RoF system has a radio signal emitting device that compensates for nonlinear optical effects that occur when an optical signal propagates through an optical fiber.
  • it functions as a phase conjugate signal pair utilization type optical signal output system that effectively compensates for the nonlinear effect due to the optical fiber in the part before the photodetector.
  • the emission device 25 includes an optical modulator 11, a signal source 13, an optical fiber 15, a combining unit 17 connected to the optical fiber 15, and a combining local signal source 19. And a photodetector 21 and a transmitting antenna 23.
  • the optical modulator 11 is an element to which a carrier wave is input. Then, the optical modulator 11 outputs a phase conjugate signal pair including the upper sideband and the lower sideband.
  • a known modulator such as an intensity modulator, a phase modulator, a frequency modulator, an SSB modulator, an FSK modulator, a QPSK modulator, or an ASK modulator can be appropriately used.
  • a modulator having a Mach-Zehnder interferometer can be preferably used. For example, in Japanese Patent No.
  • an optical modulator having a Mach-Zehnder type interferometer can output phase conjugate light together with a modulation signal, and obtain an upper frequency component and a lower frequency component from phase conjugate light.
  • the upper frequency component and the lower frequency component may be acquired from the phase conjugate light included in the optical modulator to form a phase conjugate signal pair.
  • the optical output includes not only the carrier wave (f 0 ) but also a plurality of components whose frequency is indicated by f 0 ⁇ nf m [Hz] (n is an integer). Since these exist on the side surface of the carrier wave f 0 , they are called sidebands. Among them and f 0 + f m [Hz] 1 primary to those present in the sideband, since frequency is sidebands present in the higher position the carrier (f 0), referred to as upper side band (USB).
  • USB upper side band
  • a negative sideband (LSB) because it is a negative sideband or a sideband whose frequency is lower than the carrier wave (f 0 ).
  • the primary sideband wave and the ⁇ 1st order sideband wave may be simply expressed as a primary sideband wave, and in this specification, a component of f 0 + f m [Hz] and f 0 ⁇ f m [Hz] Hz] components are collectively referred to as primary sidebands.
  • a pair of a signal existing in f 0 + nf m [Hz] (n is an integer of 1 or more) and a signal existing in f 0 -nf m [Hz] may be used as a phase conjugate signal pair.
  • the signal source 13 is an element that outputs a modulation signal and a bias signal applied to the optical modulator 11.
  • the optical modulator 11 is driven using an electrical signal (voltage) such as a modulation signal and a bias signal.
  • the signal source 13 is a device for obtaining this electrical signal and controlling the optical modulator.
  • the output from the optical modulator can be developed using a Bessel function. In other words, by adjusting the bias voltage applied to the optical modulator, in general, the condition that the odd-order component (primary sideband, third-order sideband, fifth-order sideband ...) becomes stronger, the carrier wave, and the even-order order.
  • the conditions under which the components (secondary sideband, fourth-order sideband, sixth-order sideband ...) become strong can be changed.
  • the output light is controlled by controlling whether the light intensity is increased or decreased.
  • the evenness of the signal can be adjusted.
  • the intensity of each order component can be adjusted by adjusting the intensity of the modulation signal.
  • unnecessary light is abundant, unnecessary components may be removed using a known filter.
  • the optical fiber 15 is an element for receiving a phase conjugate signal pair including an upper side band wave and a lower side band wave, which are optical signals output from the optical modulator 11, and propagating the optical signal.
  • An example of the optical fiber is a single mode fiber, but a multimode fiber may be used.
  • the multiplexing unit 17 is connected to the optical fiber 15 and is an element for multiplexing a phase conjugate signal pair and an external optical signal (hereinafter also referred to as local continuous light or “local light emission”). .
  • the multiplexing unit 17 may be provided in an optical transmitter, an optical receiver, or an arbitrary place in an optical fiber transmission line.
  • An example of the multiplexing unit is a photocoupler, but the multiplexing unit may be constructed by an optical path.
  • the local signal source for multiplexing 19 transmits an optical signal having the same frequency as that of the optical carrier wave via the multiplexing unit 17 in a state where there is no phase difference between the upper side band and the lower side band. It is an element for combining with waves. It is preferable to combine the phase conjugate signal pair and the local light in a state where the phase difference between the upper side band and the local light is the same as the phase difference between the lower side wave and the local light. Further, the upper sideband and the lower sideband may have no phase difference, and may be combined with the optical signal having no phase difference.
  • the local signal source for multiplexing 19 is preferably one that obtains an optical signal (local light) having the same frequency as the optical carrier synchronized with the optical carrier.
  • the local signal source 19 for multiplexing guides the local light emission frequency f, the phase ⁇ , and the phase angle ⁇ to the multiplexing unit in a state where the frequency is appropriately adjusted.
  • the phase angle ⁇ may be adjusted using a phase shifter or the like that is an element of the local signal source 19 for multiplexing.
  • the multiplexing unit may already exist on the transmitter side (before the optical fiber), may exist in the middle of the optical fiber (for example, a relay point), or may be on the receiver side (after the optical fiber). ) May be present.
  • the local signal source 19 for multiplexing obtains an optical signal (local light) having the same frequency as the optical carrier wave. This optical signal may be a signal obtained by demultiplexing the previous carrier wave, or may be an optical signal prepared separately.
  • the local signal source 19 for multiplexing receives, for example, a clock signal from a light source that outputs a carrier wave, analyzes the phase of the upper sideband and the lower sideband based on the clock signal, , Control is performed so that these are combined at the multiplexing unit at a timing such that there is no phase difference between the upper sideband and the lower sideband.
  • the phase angle ⁇ of the local light is the average of the phase angle of the upper sideband and the phase angle of the lower sideband.
  • control may be performed so that these are combined at the multiplexing unit at a timing such that there is no phase difference with the sideband.
  • the photodetector is an element for detecting the combined optical signal.
  • the photodetector is well known, and a photodiode or the like can be used as appropriate.
  • the transmitting antenna 23 is an element that receives an electrical signal based on the optical signal detected by the photodetector.
  • the transmitting antenna 23 emits a radio signal based on the electric signal and transmits the radio signal to the receiver side.
  • a method for compensating for a nonlinear optical effect that occurs when an optical signal propagates through an optical fiber using a homodyne C-RoF system includes the following steps.
  • An optical carrier wave is input to the optical modulator.
  • the signal source 13 outputs a modulation signal and a bias signal applied to the optical modulator 11.
  • the optical modulator is driven by a modulation signal and a bias signal, and outputs a phase conjugate signal pair including an upper sideband and a lower sideband.
  • This optical signal may include a carrier wave in addition to the phase conjugate signal pair. Further, when an unnecessary light component is present, it may be appropriately removed by an optical filter.
  • a method for obtaining a phase conjugate signal pair including an upper sideband and a lower sideband is known, for example, as disclosed in Japanese Patent No. 5263205.
  • a phase conjugate signal pair including the upper sideband and the lower sideband is simultaneously input to the optical fiber. Thereafter, these optical signals propagate through the optical fiber.
  • Local light which is an optical signal having the same frequency as the optical carrier wave, is generated. Then, the local light is combined with the upper side band and the lower side band in the state where there is no phase difference between the upper side band and the lower side band. Then, the distortion due to the nonlinearity of the optical fiber is canceled out. Then, the photodetector detects the combined optical signal.
  • the local light and the phase conjugate signal pair may be combined and input to the optical fiber at the multiplexing unit. Moreover, you may provide a multiplexing part in the middle of an optical fiber.
  • an electric signal (difference frequency component) corresponding to the frequency difference between the optical signals is output (in this case, the component corresponding to the sum of the frequencies) (Sum frequency component) is also output). Therefore, the two sidebands on the optical carrier (f 0) (f 0 ⁇ nf m) are superimposed, the input to the photodetector, the photodetector (light detector), and the optical carrier (f 0) sideband An electric signal (nf m ) corresponding to the wave frequency difference is generated. At this time, if the optical carrier wave is suppressed, an electrical signal (2nf m ) corresponding to the frequency difference between the two sidebands is generated.
  • an electrical signal (nf m ) corresponding to the frequency difference between the optical carrier wave (f 0 ) and the sideband wave is the main output, The electric signal (2nf m ) corresponding to the frequency difference between the two sidebands can be ignored. On the other hand, if an electrical signal (2nf m ) corresponding to the frequency difference between the two sidebands is unnecessary, this component may be electrically removed.
  • the transmitting antenna emits a radio signal based on the electrical signal. Then, the receiver side receives the radio signal.
  • the second aspect of the present invention relates to a heterodyne C-RoF system, which will be described later, and a method for compensating a nonlinear optical effect generated when an optical signal propagates through an optical fiber using the system.
  • FIG. 2 is a block diagram showing a configuration example of the heterodyne C-RoF system.
  • the heterodyne C-RoF system includes a transmission device and a reception device.
  • the radio signal transmitter 45 includes an optical modulator 31, a signal source 33, an optical fiber 35, a multiplexing unit 37 connected to the optical fiber 35, a multiplexing local signal source 39, and a photodetector 41. And a transmitting antenna 43.
  • the radio signal receiving device 55 includes a receiving antenna 51 and a signal processing device 53.
  • the optical modulator 31 is an element to which a carrier wave is input.
  • the signal source 33 is an element that outputs a modulation signal and a bias signal applied to the optical modulator 31.
  • the optical fiber 35 is an element to which a phase conjugate signal pair including an upper sideband and a lower sideband that are optical signals output from the optical modulator 31 is input simultaneously.
  • the multiplexing unit 37 is an element connected to the optical fiber 35 for multiplexing (or demultiplexing) light. This is an element for combining an optical signal with an upper side band wave and a lower side band wave through a local signal source for multiplexing 39 and a multiplexing unit 37.
  • the photodetector 41 is an element for detecting the combined optical signal.
  • the transmitting antenna 43 is an element for receiving an electrical signal based on the optical signal detected by the photodetector and emitting it as a radio signal.
  • the receiving antenna 51 is an element for receiving a radio signal emitted from the transmitting antenna 43.
  • the signal processing device 53 receives an electrical signal based on the radio signal received by the receiving antenna, and adjusts the signal derived from the received upper sideband and the signal derived from the lower sideband so that there is no phase difference. It is an element for combining above.
  • This method obtains a phase conjugate signal pair including an upper sideband and a lower sideband.
  • the upper sideband and the lower sideband are simultaneously input to the optical fiber.
  • An optical signal (local light) is combined with a phase conjugate signal pair including an upper sideband and a lower sideband.
  • a photodetector detects the combined optical signal.
  • An electric signal based on the optical signal detected by the photodetector is transmitted to the transmitting antenna.
  • the transmitting antenna emits a radio signal based on the electrical signal.
  • the receiving antenna receives the radio signal emitted from the transmitting antenna.
  • the receiving antenna receives an electrical signal based on the radio signal received, and multiplexes the signal derived from the received upper sideband and the signal derived from the lower sideband after adjusting so as to eliminate the phase difference.
  • the local light and the phase conjugate signal pair may be combined and input to the optical fiber at the multiplexing unit. Moreover, you may provide a multiplexing part in the middle of an optical fiber.
  • FIG. 3 shows an example of a generated signal (in the case of QPSK modulation) in which there is no phase difference in the phase conjugate signal pair.
  • the left figure shows the USB constellation map, and the right figure shows the LSB constellation map.
  • FIG. 4 shows an example of a generated signal (in the case of QPSK modulation) when the phase difference between the upper side wave and the lower side wave is not optimized, that is, when the phase difference is not zero.
  • the left figure shows the USB constellation map
  • the right figure shows the LSB constellation map.
  • the phase difference between the upper side signal and the lower side signal differs depending on the modulation method on the optical transmitter side.
  • this phase difference is 90 degrees, and in the case of amplitude modulation, it is 0 degrees.
  • the upper and lower side wave components are obtained by direct modulation of the laser, amplitude modulation and phase modulation are mixed due to the chirp effect during modulation, and the phase difference between the upper and lower side signal is mixed. Takes a value between 0 and 90 degrees. Further, the upper side wave and the lower side wave are given different phase shifts due to chromatic dispersion caused in the optical fiber.
  • the difference in phase angle between the local light and the upper side wave and the difference in phase angle between the local light and the lower side wave have the same value. Under this condition, the non-linear distortion experienced by the upper side wave and the lower side wave becomes equal length and reverse distortion, which are canceled when added together.
  • This principle can also be applied to a method by bias shift of an optical modulator, which will be described later, and a conventional method of generating a phase conjugate pair.
  • the value of the optical phase difference between the phase conjugate pairs is arbitrary.
  • nonlinear distortion can be compensated by combining local light having a phase angle of ⁇ with a phase conjugate pair.
  • Local light having an appropriate phase angle as described above can be generated using a method using an independent light source or a method of reusing an optical carrier wave.
  • FIG. 5 is a block diagram showing a configuration example for generating local light using an independent light source.
  • an independent light source for example, an optical phase-locked loop or the like is used.
  • a light source independent of the light source on the transmitter side can be used as the local light source.
  • the local signal source 19 for multiplexing is adjusted by the light source 61 that generates light having the same frequency as the carrier wave, the adjustment unit 63 that adjusts the frequency, intensity, and phase of the light output from the light source, and the adjustment unit 63.
  • a phase adjusting unit 65 such as a phase shifter for adjusting the phase of the emitted light, and a phase of the light propagating through the multiplexing unit, and adjusting the amount of the phase adjusted by the adjusting unit 53 or the phase adjusting unit 63 And a detecting unit 57 for obtaining the information.
  • the local light emission is controlled so as to have the same optical frequency as the optical frequency f and optical phase of the optical carrier wave transmitted from the optical transmitter side by the optical phase locked loop (optical PLL).
  • optical phase locked loop optical phase locked loop
  • an optical phase shifter is used to give the above-mentioned optimum phase angle ⁇ opt to the local light, and the condition for canceling the nonlinear effect is maintained.
  • This optical phase-locked loop may exist on the optical modulator side of the optical fiber, may exist in the optical fiber, may exist in the subsequent stage of the optical fiber, It may be present at the site.
  • FIG. 6 is a block diagram showing a configuration example for generating local light by reusing an optical carrier wave.
  • the optical carrier is branched. Then, one of the branched lights is applied to the optical modulator as an optical carrier wave.
  • the remaining branched light is input to the phase adjusting unit 55 such as a phase shifter, and the phase is adjusted so that the above situation can be achieved in the multiplexing unit.
  • both the phase conjugate signal pair and the local light may propagate through the optical fiber, or may be combined with the local light after the phase conjugate signal pair propagates through the optical fiber.
  • FIG. 7 is a block diagram illustrating a configuration example for generating local light by reusing an optical carrier wave.
  • the wavelength separation device 61 performs wavelength separation. Then, a component having a frequency corresponding to the optical carrier wave is input to the phase adjustment unit 55 such as a phase shifter, and the phase is adjusted so that the above situation can be achieved in the multiplexing unit.
  • the optical carrier on the optical transmitter side is reused as local light.
  • the optical carrier wave may be separated from the modulated light after the optical modulation for splitting the continuous light before the optical modulation or after the optical modulation for generating the upper side wave and the lower side wave.
  • the local light obtained by these methods is combined with the phase conjugate signal pair in the multiplexer 17.
  • the place of multiplexing may be any place in the optical transmitter side, the receiver side, or the optical fiber transmission line.
  • an optical phase modulator an optical phase modulator, an optical SSB (single sideband) modulator, an optical fiber stretcher, or the like can be used.
  • ⁇ f is desirably ⁇ f> 2B, where B [Hz] is a band to be secured for data transmission or the like.
  • the optical carrier frequency f 0, with respect to the light modulation frequency f m which is used for the upper sideband and lower sideband product, Delta] f ⁇ f m is desirable, and this condition is satisfied, from an upper wave emitted as a radio signal Either of the above-mentioned signal or the signal derived from the lower side wave is subjected to phase conjugation again during the down-conversion process in the photodetector and re-converted to the original modulation signal. It becomes.
  • Delta] f> f m is a non-linear compensation possible, it is preferable to perform the phase conjugation operation in either the signal or signals from the lower side wave from the upper wave radio receiver.
  • FIG. 8 is a block diagram showing a configuration example of a heterodyne C-RoF for generating local light using an independent light source.
  • a radio using this heterodyne C-RoF local light having a different frequency from the carrier wave is combined with a phase conjugate signal pair.
  • the optical frequency and phase are synchronized with those of the optical carrier using an optical phase locked loop or the like. There is no need.
  • the optical frequency and phase may be synchronized with those of the optical carrier using an optical phase locked loop or the like.
  • FIG. 9 is a block diagram illustrating a configuration example for generating local light by reusing an optical carrier wave.
  • the component having a frequency corresponding to the optical carrier wave is subjected to processing for changing the frequency by a frequency adjusting unit 75 such as a frequency shifter, and further input to a phase adjusting unit 65 such as a phase shifter. Adjust the phase so that the above situation can be achieved.
  • a frequency adjusting unit 75 such as a frequency shifter
  • a phase adjusting unit 65 such as a phase shifter.
  • Adjust the phase so that the above situation can be achieved.
  • the continuous light before optical modulation is branched, or the optical carrier is separated from the modulated light after optical modulation for generating the upper side wave and the lower side wave by using an optical filter or the like.
  • An optical frequency difference ⁇ f [Hz] is given to the separated optical carrier using an optical frequency shifter.
  • the phase of local light is adjusted by a phase shifter or the like so that the above-described situation can be achieved.
  • FIG. 10 is a block diagram showing a configuration example for generating local light by reusing an optical carrier wave.
  • the wavelength separation device 61 performs wavelength separation.
  • the frequency adjustment unit 75 such as a frequency shifter performs processing to change the frequency of the component having the frequency corresponding to the optical carrier wave, and the above situation is achieved in the multiplexing unit by the phase adjustment unit 55 such as the phase shifter. Adjust the phase so that you can.
  • the local light obtained by these methods is multiplexed from the multiplexer 17.
  • the place of multiplexing may be any place in the optical transmitter side, the receiver side, or the optical fiber transmission line.
  • An acoustooptic effect modulator, an optical SSB modulator, or the like can be applied to the optical frequency shifter.
  • FIG. 11 shows a configuration example of a radio receiver using heterodyne C-RoF.
  • FIG. 11 is particularly for explaining processing of a radio signal.
  • Delta] f ⁇ f m is a component derived from and from the lower side wave upper sideband separated respectively, detect, this may, combined added at the optimum phase angle theta opt.
  • the optimal phase angle theta opt, operation or one component adding the phase angle portion on optimum phase angle theta opt to one of the separated components from and from the lower side wave upper sideband optimum phase angle theta ( computation such that opt ) is performed, and the computation of adding the components derived from the upper side wave and the lower side wave may be performed.
  • the component derived from LSB (or the component derived from USB) may be in a state in which phase conjugation is taken by the photodetector and the signal is returned to the original signal.
  • the Delta] f> f m showing a configuration example of a radio receiver.
  • ⁇ opt ( ⁇ U + ⁇ L ) / 2 is maintained with respect to the phase angle of the component derived from the upper side wave and the lower side wave.
  • FIG. 13 is a diagram showing the principle of an optical phase conjugate versus fiber radio (C-RoF) system.
  • This system uses double sideband (DSB) modulated light to propagate light that is a radio (RF) signal over an optical fiber link.
  • Double sideband modulated light can be easily generated by applying modulation to continuous (CW) light.
  • Intensity modulation by a Mach-Zehnder modulator (MZM) that performs push-pull drive at a frequency corresponding to a subcarrier of a radio signal is a typical method for obtaining such double-sideband modulated light.
  • the generated upper sideband and lower sideband propagate simultaneously through the optical fiber and are detected by a high-speed PD (photodetector).
  • PD photodetector
  • a fiber radio (Radio-on-Fiber: RoF) signal is down-converted to the frequency of the radio signal, and the original radio wavelength signal is recovered.
  • FIG. 14 is a conceptual diagram showing the relationship between each component and nonlinear effects such as nonlinear distortion.
  • USB and LSB are affected by the same amount of nonlinear distortion and chromatic dispersion due to the optical fiber.
  • SPM self-phase modulation
  • XPM external phase modulation
  • the USB component and the LSB component are subjected to a phase shift caused by SPM and XPM as shown in FIG.
  • This phase shift is represented as a vector in FIG. USB and LSB undergo the same amount of phase shift in the same direction.
  • the C-RoF system according to this embodiment cancels the influence of the nonlinear effect without separately preparing a dispersion compensator and a nonlinear compensator.
  • this embodiment takes one phase conjugate of the double sideband component and superimposes it on the remaining components.
  • one phase conjugate pair component is affected by nonlinear distortion in the opposite direction to the remaining phase conjugate pair component.
  • the C-RoF system can achieve the above processing only by adding simple processing to photomixing or adding simple processing to demodulation of a radio signal.
  • LSB is used as a component whose phase conjugation is taken, and local continuous light having a signal with a frequency (that is, wavelength) between USB and LSB is applied.
  • the embodiments of the present invention are roughly classified into two modes.
  • One is an embodiment named homodyne C-RoF.
  • the local continuous light has the same frequency as the C-RoF carrier.
  • the other is named heterodyne C-RoF.
  • local continuous light having a frequency different from that of a C-RoF carrier is used.
  • FIG. 15 is a conceptual diagram showing a homodyne C-RoF system.
  • USB and LSB are simultaneously downconverted to the same radio frequency region.
  • the LSB component is a component having a frequency lower than that of the local light
  • the phase conjugation of the LSB component is taken again to restore the original signal.
  • the USB and LSB in the phase conjugate state are superimposed in an optical mixing process (photomixing) for obtaining a radio signal frequency in the photodetector.
  • photomixing optical mixing
  • phase of the local continuous light is locked to the phase of the C-RoF carrier and adjusted to the optimum situation.
  • Locking the phase of the local continuous light to the phase of the C-RoF carrier means that the phase of the local continuous light is the same as the phase of the C-RoF carrier. This means that continuous light is combined with an optical signal including a C-RoF carrier.
  • the timing at which the C-RoF carrier is output and the combining unit This can also be achieved by calculating the time to reach, and adjusting the time for the local light to reach the multiplexing part.
  • DSB (DSB-C) modulation with a carrier wave is preferably employed.
  • Another embodiment uses an optical phase locked loop, i.e., two optical phase locked loops. In these aspects, nonlinear distortion can be eliminated as described above.
  • FIG. 16 is a conceptual diagram showing a heterodyne C-RoF system.
  • the USB component and the LSB component are both downconverted to different frequency components.
  • this heterodyne C-RoF system is also conjugated with one sideband (here, LSB) component, similar to the homodyne C-RoF system.
  • LSB sideband
  • both down-converted components are emitted as radio signals, and both are detected by the detector of the radio signal receiver.
  • the phase-conjugated LSB-derived component is superimposed on the USB-derived component.
  • This processing can be easily implemented by a digital processor (arithmetic unit) in the receiver and a data restoration function (data recovery unit), and as a result, nonlinear effects can be easily eliminated.
  • Heterodyne C-RoF does not need to lock the local continuous light to the carrier of the C-RoF signal because the phase lock loop (PLL) in the receiver can trace the phase drift of the local continuous light.
  • PLL phase lock loop
  • This system can generate local continuous light in a local area away from the central station, and can generate an optical signal that becomes local continuous light in the central station.
  • the C-RoF system has two main modes. These are the homodyne C-RoF system and the heterodyne C-RoF system. Although these systems require local continuous light, the configuration of a typical C-RoF transmission system using DSB-C and a C-RoF transmission system using DSB-SC can be used as they are. Although the heterodyne C-RoF system needs to occupy twice the band, it does not need to lock the phase of the local continuous light to the phase of the RoF carrier.
  • FIG. 13 is a conceptual diagram showing a bias shift type electro-optic effect type phase conjugate signal pair generator.
  • This phase conjugate signal pair generator consists of two quadrature modulators. Both of these quadrature modulators are driven by the same Inphase (I) signal and Quadrature (Q) signal.
  • the main bias of one quadrature modulator (the bias of the main Mach-Zehnder modulator) is set to ⁇ / 2
  • the main bias of the other quadrature modulator is set to ⁇ / 2.
  • the biases on the I and Q component sides are respectively [ ⁇ / 4, ⁇ ⁇ ⁇ / 4] for the upper quadrature modulator and [ ⁇ / 4, ⁇ / m for the lower quadrature modulator, respectively. 4].
  • the symbol arrangement of the modulation signal output from each modulator is shown on the right side of FIG. In this example, symbol arrangement in the case of QPSK modulation is shown. Different symbols in the figure mean different symbols, and it can be seen that the symbol arrangement of each quadrature modulator output signal is symmetric with respect to the dotted line in the figure. That is, it can be seen that the modulated lights output from the pair of quadrature modulators have a phase conjugate relationship with each other.
  • phase conjugate signal pairs can be generated without performing signal processing in the electrical stage.
  • This electro-optic effect type phase conjugate signal pair generator can be applied to any phase conjugate pair transmission, such as wavelength multiplexing or polarization multiplexing.
  • wavelength multiplexing the input light to each quadrature modulator is set to a different wavelength, and the optical signal pair is transmitted at a different wavelength.
  • polarization multiplexing the optical signal pair is transmitted as orthogonal polarization components. In this case, light of the same wavelength is input to each orthogonal modulator and the output is combined with polarization. It ’s fine.
  • FIG. 17 is a schematic diagram of a system in the numerical analysis of the embodiment.
  • MZM Mach-Zehnder modulator
  • This RoF signal propagates in a standard single mode fiber having the following parameter characteristics.
  • Fiber length (L) 10 km
  • propagation loss ( ⁇ ) 0.2 decibel / km
  • nonlinearity coefficient ( ⁇ ) 2.6 W ⁇ 1 km ⁇ 1 .
  • Group velocity dispersion ( ⁇ 2 ⁇ 16 ps 2 / km
  • the received RoF signal and local continuous light are combined and introduced into the photodetector.
  • the wavelength of the local light is set to be the same as the frequency of the carrier wave of the RoF signal.
  • the photodetector is assumed to be sufficiently high speed corresponding to the 10 GHz radio frequency region.
  • the RF signal output from the photodetector is down-converted by an RF down converter, and the I component and the Q component are restored through a carrier delivery restoration process and a phase lock process.
  • the radio frequency component from the photodetector is emitted as a radio signal from the antenna.
  • FIG. 18 is a received signal constellation map.
  • FIG. 18A is a constellation map of the QPSK signal obtained by the RoF system based on the conventional SSB-C technology. As shown in FIG. 18A, it can be seen that the symbol is distorted. In this case, this is due to non-linear distortion caused by SPM.
  • FIG. 18B is a constellation map of the QPSK signal obtained by the C-RoF system. FIG. 18B shows that the obtained constellation map is not affected by nonlinear distortion. In other words, it has been shown that the C-RoF system eliminates the effects of nonlinear effects due to optical fibers.
  • FIG. 19 is an experimental configuration diagram for demonstrating the principle of the bias shift type electro-optic effect type phase conjugate signal pair generator.
  • the compensation effect of the self-phase modulation effect is shown by SMF transmission of 20-Gb / sQPSK.
  • Transmission of the phase conjugate signal pair is performed by a polarization multiplexing configuration.
  • continuous light having a wavelength of 1552 nm output from a fiber laser having a line width of 10 kHz is branched by an optical coupler and input to two independent quadrature modulators.
  • the quadrature modulator is driven at the same timing by the same I and Q data.
  • the drive signal is an NRZ signal generated from a pulse pattern generator and has a pattern length of 215-1PRBS.
  • Each sub-Mach-Zehnder modulator of each quadrature modulator has a null point bias.
  • the main bias is ⁇ / 2 and ⁇ / 2, respectively.
  • a 20-Gb / sQPSK signal and its phase conjugate signal can be obtained from each quadrature modulator.
  • the obtained phase conjugate signal pair is polarization multiplexed by the polarization beam splitter so that there is no delay between both signals.
  • the polarization-multiplexed phase conjugate signal pair is amplified to 17.6 dBm by an optical fiber amplifier and then input to a single mode fiber (SMF) having a total length of 20 km.
  • SMF single mode fiber
  • the received phase conjugate signal pair is received by a polarization diversity type digital coherent detector.
  • homodyne mixing with local light is performed by a 90-degree hybrid coupler having a balanced detector as an output port, and in-phase and quadrature components (for local light) and phase components of each polarization component are detected.
  • detection signals are digitized at a high sampling rate of 50 GSa / s, and then subjected to digital signal processing having polarization separation and carrier phase estimation functions.
  • one signal phase conjugate signal side
  • phase conjugation again and then added to the other signal.
  • FIG. 20 is a diagram showing experimental results in Example 2.
  • FIGS. 20A and 20B show received constellations, which correspond to the case where the nonlinear effect in the optical fiber is not compensated (by the phase conjugate signal pair method) and the case where it is compensated, respectively.
  • FIG. 20A in the case of non-compensation, a nonlinear phase shift is observed. This is considered to be due to the self-phase modulation effect and the cross-phase modulation effect from orthogonal polarization components.
  • FIG. 20B by performing nonlinear compensation using the phase conjugate signal pair on the receiver side, these nonlinear effects are canceled out and a clear constellation is obtained. Recognize. From this experimental result, it was confirmed that a phase conjugate signal pair was certainly generated from the proposed electro-optic effect type phase conjugate signal pair generator.
  • the present invention can be used in the information communication industry using light.
  • optical modulator 15. signal source; . Optical fiber; . Multiplexing part; 19. . Local signal source for multiplexing; 21. . 23. a photodetector; . 25. transmitting antenna; . Discharge device; 31. . Optical modulator; 33. . 35. signal source; . Optical fiber; 37. . Multiplexing part; 39. . Local signal source for multiplexing; 41. . Optical detector; 43. . Transmitting antenna; 45. . Discharge device; 51. . Receiving antenna; 53. . 55. signal processing device; . Receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【解決課題】 複雑な電気回路による非線形効果による波形の歪みを簡単に補償できる方法や,その方法を実現するための装置を提供する。 【解決手段】 光アップコンバート時又はダウンコンバート時の光位相共役信号対を利用し,光搬送路である光ファイバによる非線形効果によってもたらされる波形の歪みといった信号の劣化を効果的に補償できる方法や,その方法を実現できる装置。この放出装置25は,光変調器11と,信号源13と,光ファイバ15と,合波部17と,合波用局所信号源19と,光検出器21と,送信用アンテナ23と,を含む。

Description

光アップ・ダウンコンバート型光位相共役対信号送受信回路
 本発明は,光信号及び光ファイバ無線信号が光ファイバを伝送する際に受ける非線形効果を効果的に補償できる方法及び装置に関するものである。
 光ファイバ無線システムにおいて,光ファイバへの入力強度を高めることは,RFリンクゲインの増加や,伝送距離の拡張等に繋がるため,重要な課題である。しかしながら,光ファイバへの入力光強度を強めると,光ファイバ中の非線形効果の影響を受け,信号の線形伝送を行えない。そのため,現状の光ファイバ無線システムでは,光入力光強度が数mW に限られている。
 一方,光ファイバ伝送,光ファイバ無線伝送等において,光位相シフトキーイング(光PSK),光直交振幅変調(光QAM)等のコヒーレント光伝送方式や,光直交周波数分割多重(光OFDM)などの複雑な光多重方式も注目を集めている。これらの光信号を伝送する場合,伝送路中の光非線形効果の影響は無視できず,これを補償する方法が渇望されている。
 特開2010-28470号公報には,非線形波形歪を補償するための電気演算回路を有する光信号の受信装置や,光位相共役対信号による非線形歪み補償が開示されている。しかし,光伝送路中の非線形効果による波形の歪を電気回路により補償する場合,装置が複雑になるといった問題や,送信機側での光位相共役対信号生成には,デジタル信号処理等による前処理を施した電気信号を用いて複数の光変調器を出す必要があるといった問題や,受信機側ではデジタル信号処理等による電気的信号処理が必要となる,といった問題があった。
特開2010-28470号公報
 本発明は,複雑な電気回路による非線形効果による波形の歪みを簡単に補償できる方法や,その方法を実現するための装置を提供することを目的とする。
 より詳しく説明すると,本発明は光アップコンバート時又はダウンコンバート時の光位相共役信号対を利用し,光搬送路である光ファイバによる非線形効果によってもたらされる波形の歪みといった信号の劣化を効果的に補償できる方法や,その方法を実現できる装置を提供することを目的とする。
 本発明は,基本的には,光変調時に両サイドバンドを発生させ,これを光位相共役信号対として利用したうえで,効果的にこれら又はこれら由来の成分を干渉させることで,非線形効果を相殺する。これにより,本発明は,複雑な電気回路を用いることなく,光ファイバによる非線形効果を容易に補償できる。
 本発明の第1の態様は,後述するホモダイン位相共役ラジオ無線(C-RoF)システムやそのシステムを用いて光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法に関する。
 この方法は,半導体レーザ等の直接変調,外部変調等による光の強度変調,振幅変調,位相変調等を用いて,簡単に上側帯波と下側帯波を生成し,この対の信号は互いに位相共役の関係にあり,この上側帯波と下側帯波を位相共役信号対として利用する。この上側帯波と下側帯波とを同時に光ファイバに入力する。光の受信機あるいはリモート局では,光搬送波と同一の周波数を有する連続光をキャリア信号として,合波する。その際, 上側帯波と下側帯波と位相差がない状態で,上側帯波と下側帯波と合波する。合波された光信号を光検出器が検出する。光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える。送信用アンテナが,電気信号に基づいた無線信号を放出する。そして,受信機側が,無線信号を受信する。なお,光の受信機において,光搬送波と同一の周波数を有する連続光をキャリア信号として合波した場合は,合波した状態の光信号が光ファイバを伝播する。
 ホモダインC-RoFシステムは,光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償した無線信号の放出装置25を有する。なお,光検出器より前の部分で引き起こされる光ファイバによる非線形効果を効果的に補償することができる,位相共役信号対利用型の光信号出力システムとして機能する。この放出装置25は,光変調器11と,信号源13と,光ファイバ15と,合波部17と,合波用局所信号源19と,光検出器21と,送信用アンテナ23と,を含む。
 光変調器11は,搬送波が入力される要素である。そして,光変調器11は,上側帯波と下側帯波とを含む位相共役信号対を出力する。信号源13は,光変調器11に印加される変調信号及びバイアス信号を出力する要素である。光ファイバ15は,光変調器11から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力され,光信号を伝搬するための要素である。合波部17は,光ファイバ15と接続され,位相共役信号対を含む光信号と外部からの光信号(以下の局所的な連続光,局発光)とを合波するための要素である。合波部17は,光送信機内,光受信機内,あるいは,光ファイバ伝送路の任意の場所に設けても良く,局発光は,この任意の場所において位相共役信号対を含む光信号と合波してもよい。合波用局所信号源19は,合波部17を介して,光搬送波と同一の周波数を有する光信号を,上側帯波と下側帯波と位相差がない状態で,上側帯波と下側帯波と合波するための要素である。光検出器は,合波された光信号を検出するための要素である。送信用アンテナ23は,光検出器が検出した光信号に基づく電気信号を受け取る要素である。送信用アンテナ23は,電気信号に基づいて無線信号を放出し,受信機側へ無線信号を伝える。
 本発明の第2の態様は,後述するヘテロダインC-RoFシステムやそのシステムを用いて光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法に関する。
 この方法では,半導体レーザ等の直接変調,外部変調等による光の強度変調,振幅変調,位相変調等を用いて,上側帯波と下側帯波とを含む位相共役信号対を得る。次に上側帯波と下側帯波とを同時に光ファイバに入力する。光信号を,上側帯波と下側帯波と合波する。合波された光信号を光検出器が検出する。光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える。送信用アンテナが,電気信号に基づいた無線信号を放出する。送信用アンテナから放出された無線信号を受信用アンテナが受信する。受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った上側帯波に由来する信号と,下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波する。
 ヘテロダインC-RoFシステムは,送信装置と受信装置とを含む。無線信号の送信装置45は,光変調器31と,信号源33と,光ファイバ35と,光ファイバ35と接続された合波部37と,合波用局所信号源39と,光検出器41と,送信用アンテナ43を含む。無線信号の受信装置55は,受信用アンテナ51と,信号処理装置53を含む。
 光変調器31は,搬送波が入力される要素である。信号源33は,光変調器31に印加される変調信号及びバイアス信号を出力する要素である。光ファイバ35は,光変調器31から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力される要素である。合波部37は,光ファイバ35と接続され光を合波するための要素である。合波用局所信号源39と合波部37を介して,光信号(局発光)を,上側帯波と下側帯波と合波することができる。光検出器41は,合波された光信号を検出するための要素である。送信用アンテナ43は,光検出器が検出した光信号に基づく電気信号を受け取り,無線信号として放出するための要素である。
 受信用アンテナ51は,送信用アンテナ43から放出された無線信号を受信するための要素である。信号処理装置53は,受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った上側帯波に由来する信号と,下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波するための要素である。ヘテロダインC-ROFシステムでは,合波部37から合波される局発光の波長又は,周波数として,光の搬送波とは異なる波長や周波数を与える。
 本発明によれば,光ファイバによる非線形効果を容易に補償できる方法やシステムを提供できる。
図1は,ホモダインC-RoFシステムの構成例を示すブロック図である。 図2は,ヘテロダインC-RoFシステムの構成例を示すブロック図である。 図3は,位相共役信号対に位相差がない状態の生成信号の例(QPSK変調の場合)を示す。 図4は,上側波及び下側波間の位相差が最適化されない場合,すなわち位相差が零でない場合の,生成信号の例(QPSK変調の場合)を示す。 図5は,独立光源を用いて局発光を発生させるための構成例を示すブロック図である。 図6は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。 図7は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。 図8は,独立光源を用いて局発光を発生させるためのヘテロダインC-RoFの構成例を示すブロック図である。 図9は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。 図10は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。 図11にヘテロダインC-RoFを用いた無線受信器の構成例を示す。 図12は,Δf>fmの場合無線受信器の構成例を示す図である。 図13は,光位相共役対ファイバ無線(C-RoF)システムの原理を示す図である。 図14は,各成分と非線形歪みなど非線形効果の関係を示す概念図である。 図15は,ホモダインC-RoFシステムを示す概念図である。 図16は,ヘテロダインC-RoFシステムを示す概念図である。 図17は,実施例の数値解析におけるシステムの概略図である。 図18は,受信信号のコンスタレーションマップである。 図19は,バイアスシフト型電気光学効果型位相共役信号対生成器の原理実証のための実験構成図である。 図20は,実施例2における実験結果を示す図である。
 光位相共役信号対を用いた非線形効果の補償原理
 光位相共役信号対を用いた非線形効果の補償原理の例は,以下のとおりである。
 オリジナルの伝送信号と共に,位相共役をとった信号を対にして,光ファイバ中を伝送させる。すると,光ファイバ中では,元の信号光及び位相共役光共に同等の非線形位相シフトを経験する。しかしながら,位相共役信号は元信号を基準とすると,逆符号の位相シフトが引き起こされることになる。この元の信号光及び位相共役光が逆符号で同様の非線形効果を受けることを利用し,相殺することで,非線形歪みなどの非線形効果を相殺できる。 
 本発明の一例では,光変調器において光変調を行う際に光位相共役信号対を生成する。このシステムを電気光学効果型位相共役信号対生成器とよぶ。この電気光学効果型位相共役信号対生成器を用いると,元のデータセットのみを用い,位相共役用に電気信号を変換することなく,位相共役信号対を発生でき,送信機側の構成をより簡単なものにできる。
 本発明の第1の態様は,後述するホモダイン位相共役ラジオ無線(C-RoF)システムやそのシステムを用いて光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法に関する。
 図1は,ホモダインC-RoFシステムの構成例を示すブロック図である。ホモダインC-RoFシステムは,光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償した無線信号の放出装置を有する。なお,光検出器より前の部分で,光ファイバによる非線形効果を効果的に補償した位相共役信号対利用型の光信号出力システムとして機能する。図1に示されるように,この放出装置25は,光変調器11と,信号源13と,光ファイバ15と,光ファイバ15と接続された合波部17と,合波用局所信号源19と,光検出器21と,送信用アンテナ23とを含む。
 光変調器11は,搬送波が入力される要素である。そして,光変調器11は,上側帯波と下側帯波とを含む位相共役信号対を出力する。光変調器11は,強度変調器,位相変調器,周波数変調器,SSB変調器,FSK変調器,QPSK変調器,ASK変調器など公知の変調器を適宜用いることができる。これらのなかでは,マッハツェンダー型の干渉計を有する変調器を好ましく用いることができる。
 例えば,特許第5263205号公報には,マッハツェンダー型の干渉計を有する光変調器が,変調信号とともに位相共役光が出力できることや,位相共役光から上側周波数成分及び下側周波数成分を取得することが記載されている(もっともこの文献は,遅延差を制御することを開示する文献である)。この文献と同様にして,光変調器に含まれる位相共役光から上側周波数成分及び下側周波数成分を取得し,位相共役信号対とすればよい。
 光搬送波の周波数をf[Hz]とし変調信号の周波数をf[Hz]とする。すると光出力には,搬送波(f)のみならず,周波数がf±nf[Hz](nは整数)で示される複数の成分が存在する。これらは搬送波fの側面に存在することから側帯波とよばれる。そのうちf+f[Hz]に存在するものを1次側帯波や,周波数が搬送波(f)より高い位置に存在する側帯波であるから,上側帯波(USB)とよぶ。f-f[Hz]に存在するものを-1次側帯波や,周波数が搬送波(f)より低い位置に存在する側帯波であるから,下側帯波(LSB)とよぶ。なお,1次側帯波と-1次側帯波とをあわせて単に1次側帯波と表現することもあり,本明細書では,f+f[Hz]の成分と,f-f[Hz]の成分をあわせて1次側帯波とよぶ。もっともf+nf[Hz]に存在するもの(nは1以上の整数)とf-nf[Hz]に存在するものとの対を位相共役信号対としてもよい。
 信号源13は,光変調器11に印加される変調信号及びバイアス信号を出力する要素である。光変調器11は,変調信号及びバイアス信号といった電気信号(電圧)を用いて駆動する。信号源13は,この電気信号を得て,光変調器を制御するための装置である。光変調器からの出力は,ベッセル関数を用いて展開できる。つまり,光変調器に印加するバイアス電圧を調整することで,一般に,奇数次成分(1次側帯波,3次側帯波,5次側帯波...)が強くなる条件と,搬送波及び偶数次成分(2次側帯波,4次側帯波,6次側帯波...)が強くなる条件を変化させることができる。つまり,仮想的に,光変調器に変調信号を印加せず,バイアス信号のみを印加した場合において,光強度が強くなる状態か光強度が弱くなる状態かを制御することで,出力される光信号の偶奇性を調整できる。また,変調信号の強度を調整することで,各次数成分の強度を調整することもできる。一方,不要な光がぞんざいする場合は,公知のフィルタを用いて不要な成分を取り除けばよい。
 光ファイバ15は,光変調器11から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力され,光信号を伝搬するための要素である。光ファイバの例は,シングルモードファイバであるが,マルチモードファイバを用いても良い。
 合波部17は,光ファイバ15と接続され,位相共役信号対と,外部からの光信号(以下の局所的な連続光や「局発光」ともよぶ)とを合波するための要素である。合波部17は,光送信機内,光受信機内,あるいは光ファイバ伝送路中の任意の場所に設けられても良い。合波部の例は,フォトカプラであるが,光導路により合波部を構築してもよい。
 合波用局所信号源19は,合波部17を介して,光搬送波と同一の周波数を有する光信号を,上側帯波と下側帯波と位相差がない状態で,上側帯波と下側帯波と合波するための要素である。上側帯波と局発光との位相差と,下側帯波と局発光との位相差とが同一である状態で,位相共役信号対と局発光とを合波することが好ましい。また,上側帯波と下側帯波とが位相差がなく,さらにこの光信号とも位相差がない状態で,合波されてもよい。この合波用局所信号源19は,光搬送波と同期がとられた光搬送波と同一の周波数を有する光信号(局発光)をえるものが好ましい。そして,合波用局所信号源19は,この局発光の周波数fや位相φ及び位相角θを適宜調整した状態で合波部へと導く。この位相角θは,合波用局所信号源19の要素である位相シフタ等を用いて調整すればよい。合波部は,送信器側(光ファイバの前)にすでに存在していても良いし,光ファイバの途中(たとえば中継地点)に存在していても良いし,受信器側(光ファイバの後)に存在していても良い。この合波用局所信号源19は,光搬送波と同一の周波数を有する光信号(局発光)をえる。この光信号は,先の搬送波が分波されたものであってもよいし,それとは別途用意された光信号であってもよい。そして,合波用局所信号源19は,たとえば,搬送波を出力する光源からクロック信号を受け取って,そのクロック信号により上側帯波と下側帯波との位相を分析し,その上で,局発光と,上側帯波と下側帯波との間に位相差がないようなタイミングで,これらを合波部で合波するよう制御する。局発光と,上側帯波と下側帯波との間に位相差がないようにするためには,局発光の位相角θが,上側帯波の位相角及び下側帯波の位相角の平均となるように調整すればよい。いずれかの地点に上側帯波と下側帯波を検出する検出部が存在する場合は,その検出部からの情報を得て,合波用局所信号源19が局発光と,上側帯波と下側帯波との間に位相差がないようなタイミングで,これらを合波部で合波するよう制御しても良い。
 光検出器は,合波された光信号を検出するための要素である。光検出器は,公知であり,フォトダイオードなどを適宜用いることができる。
 送信用アンテナ23は,光検出器が検出した光信号に基づく電気信号を受け取る要素である。送信用アンテナ23は,電気信号に基づいて無線信号を放出し,受信器側へ無線信号を伝える。
 ホモダインC-RoFシステムを用いた光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法は,以下の工程を含む。
 光搬送波が光変調器に入力する。そして,信号源13が,光変調器11に印加される変調信号及びバイアス信号を出力する。光変調器は,変調信号及びバイアス信号により駆動され,上側帯波と下側帯波とを含む位相共役信号対を出力する。この光信号には,位相共役信号対のほか搬送波が含まれていても良い。また,不要な光成分が存在する場合は,適宜光フィルタで除去しても良い。上側帯波と下側帯波とを含む位相共役信号対を得る方法は,たとえば,特許第5263205号公報に開示されたとおり公知である。
 次に,上側帯波と下側帯波とを含む位相共役信号対を同時に光ファイバに入力する。その後,これらの光信号が光ファイバを伝播する。光搬送波と同一の周波数を有する光信号である局発光を発生させる。そして,合波部にて,局発光を,上側帯波と下側帯波と位相差がない状態で,上側帯波と下側帯波と合波する。すると,光ファイバの非線形性による歪が相殺される。その上で,合波された光信号を光検出器が検出する。
 なお,合波部で局発光と位相共役信号対とを合波した後に光ファイバに入力しても構わない。また,光ファイバの途中に合波部を設けても構わない。
 光検出器に,異なる周波数を有する光信号を同時に入力すると,その光信号の周波数差に相当する電気信号(差周波成分)が出力される(なお,この際に,周波数の和に相当する成分(和周波成分)も出力される)。このため,光搬送波(f)に2つの側波帯(f±nf)を重畳させ,光検出器へ入力すると,受光器(光検出器)から,光搬送波(f)と側帯波の周波数差に相当する電気信号(nf)が発生する。この際,光搬送波が抑圧されていれば,2つの側帯波の周波数差に相当する電気信号(2nf)が発生する。光検出器に入力される光搬送波の強度が側帯波の強度に比べて強ければ,光搬送波(f)と側帯波の周波数差に相当する電気信号(nf)が主な出力であり,2つの側帯波の周波数差に相当する電気信号(2nf)は無視できる。一方,2つの側帯波の周波数差に相当する電気信号(2nf)が不要であれば,この成分を電気的に取り除いても良い。
 光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える。送信用アンテナが,電気信号に基づいた無線信号を放出する。そして,受信器側が,無線信号を受信する。
 本発明の第2の態様は,後述するヘテロダインC-RoFシステムやそのシステムを用いて光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法に関する。
 図2は,ヘテロダインC-RoFシステムの構成例を示すブロック図である。図2に示されるように,ヘテロダインC-RoFシステムは,送信装置と受信装置とを含む。無線信号の送信装置45は,光変調器31と,信号源33と,光ファイバ35と,光ファイバ35と接続された合波部37と,合波用局所信号源39と,光検出器41と,送信用アンテナ43を含む。無線信号の受信装置55は,受信用アンテナ51と,信号処理装置53を含む。
 光変調器31は,搬送波が入力される要素である。信号源33は,光変調器31に印加される変調信号及びバイアス信号を出力する要素である。光ファイバ35は,光変調器31から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力される要素である。合波部37は,光ファイバ35と接続され光を合波(又は分波)するための要素である。合波用局所信号源39と合波部37を介して,光信号を,上側帯波と下側帯波と合波するための要素である。光検出器41は,合波された光信号を検出するための要素である。送信用アンテナ43は,光検出器が検出した光信号に基づく電気信号を受け取り,無線信号として放出するための要素である。
 受信用アンテナ51は,送信用アンテナ43から放出された無線信号を受信するための要素である。信号処理装置53は,受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った上側帯波に由来する信号と,下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波するための要素である。
 この方法は,上側帯波と下側帯波とを含む位相共役信号対を得る。次に上側帯波と下側帯波とを同時に光ファイバに入力する。光信号(局発光)を,上側帯波と下側帯波とを含む位相共役信号対と合波する。合波された光信号を光検出器が検出する。光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える。送信用アンテナが,電気信号に基づいた無線信号を放出する。送信用アンテナから放出された無線信号を受信用アンテナが受信する。受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った上側帯波に由来する信号と,下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波する。
 なお,合波部で局発光と位相共役信号対とを合波した後に光ファイバに入力しても構わない。また,光ファイバの途中に合波部を設けても構わない。
 上記した方法により,非線形補償を実現するためには,位相共役信号対を構成する上側帯波及び下側帯波を位相差が無いように足し合わせることが好ましい。上側帯波と局発光との位相差と,下側帯波と局発光との位相差とが同一である状態で,位相共役信号対と局発光とを合波することが好ましい。図3は,位相共役信号対に位相差がない状態の生成信号の例(QPSK変調の場合)を示す。左図はUSBのコンスタレーションマップを示し,右図はLSBのコンスタレーションマップを示す。ホモダインC-RoFの場合には,合波器17により合波される,局発光の光位相を適切に制御することにより,この条件が得られる。図4は,上側波及び下側波間の位相差が最適化されない場合,すなわち位相差が零でない場合の,生成信号の例(QPSK変調の場合)を示す。左図はUSBのコンスタレーションマップを示し,右図はLSBのコンスタレーションマップを示す。この場合,光ファイバ中の非線形歪みは完全には相殺されず,歪み成分が残留する。また,上側波と下側波の信号間の位相差は,光送信機側での変調の手法によって異なる。位相変調により生成した場合には,この位相差は90度であり,振幅変調の場合は0度である。また,レーザの直接変調等により上側波と下側波成分を得た場合には,変調時のチャープ効果により,振幅変調,位相変調が混在し,上側波と下側波の信号間の位相差は0度と90度の間の値をとる。また,光ファイバ中で引き起こされる波長分散により上側波及び下側波は異なる位相シフトが与えられる。
 このような場合において,非線形効果を相殺させるためには,上側波(その位相角をθとする)及び下側波(その位相角をθとする)の位相角の平均値θすなわち,(θ)/2を持った局発光を合波すればよい。この場合,局発光と上側波の位相角の差と,局発光と下側波の位相角の差とが同じ値となる。この条件の下で,上側波及び下側波の受ける非線形歪みは,等長で逆方向の歪みとなり,足し合わせた際に相殺される。この原理は,また,後述の光変調器のバイアスシフトによる方法や,従来の位相共役対生成の方法の場合にも適用することができる。従来方式の場合,位相共役対間の光位相差の値は任意となる。この場合にも,θの位相角を持った局発光を位相共役対と合波することによって,非線形歪みを補償できる。上記のような適切な位相角を持った局発光は,独立光源を用いる方法や,光搬送波を再利用する方法を用いて発生することができる。
 図5は,独立光源を用いて局発光を発生させるための構成例を示すブロック図である。独立光源を用いる方法では,例えば,光位相同期ループ等を用い,局発光は,送信機側の光源と独立した光源を局発光源として用いることができる。この合波用局所信号源19は,搬送波と同一の周波数を有する光を発生させる光源61と,光源から出力される光の周波数,強度及び位相を調整する調整部63と,調整部63により調整された光の位相を調整する位相シフタなどの位相調整部65と,合波部を伝播する光の位相を検出し,調整部53や位相調整部63が調整する位相などの量を調整するための情報を得る検出部57とを含む。光位相同期ループ(光PLL)により,光送信機側から送られてくる光搬送波の光周波数f,光位相と同一の光周波数を持つよう,局発光を制御する。この,光周波数同期,光位相同期のとれた局発光に対して,光位相シフタを用いて,上述の最適位相角θoptを局発光に与え,非線形効果の相殺される条件を保つ。この光位相同期ループは,光ファイバより光変調器側に存在しても良いし,光ファイバ中に存在しても良いし,光ファイバの後段に存在してもよいし,光ファイバの後の部位に存在しても良い。
 図6は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。この例では,光搬送波を分岐する。そして,分岐した一方の光を光搬送波として光変調器へ印加する。一方,分岐した残りの光を位相シフタなどの位相調整部55に入力し,合波部において上記の状況が達成できるように,位相を調整する。この場合,位相共役信号対と局発光とがともに光ファイバを伝播しても良いし,光ファイバを位相共役信号対が伝播した後に局発光と合波されてもよい。
 図7は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。この例では,光変調器で位相共役信号対を得た後に,波長分離装置61により波長分離する。そして,光搬送波に相当する周波数を有する成分を位相シフタなどの位相調整部55に入力し,合波部において上記の状況が達成できるように,位相を調整する。
 光搬送波を再利用する方法では,光送信機側の光搬送波を局発光として再利用する。光変調前の連続光を分岐する,あるいは,上側波及び下側波生成のための光変調後の変調光から,光フィルタ等を用いて,光搬送波を分離してもよい。
 これらの方法で得られた局発光を,合波器17において位相共役信号対と合波する。合波の場所は,光送信機側,受信機側,光ファイバ伝送路中の任意の場所であってもよい。光位相シフタには,光位相変調器や,光SSB(シングルサイドバンド)変調器,光ファイバストレッチャ等を用いることができる。
 ヘテロダインC-RoFシステムの場合には,光合波器37から合波される局発光flに,光送信機側の光搬送波,光周波数差Δf[Hz]を与えf=f+Δfもしくはfl=f-Δfを与えることが好ましい。Δfは非零の値とする。fは光搬送波の光周波数である。 
 Δfの値は,データ伝送などに確保するべき帯域をB[Hz]とすると,Δf>2Bとすることが望ましい。また,光搬送波周波数f,上側波及び下側波生成のために用いられる光変調周波数fに対し,Δf<fが望ましく,この条件を満たすと,無線信号として放出される上側波由来の信号ないしは下側波由来の信号のいずれか一方が,光検出器内でのダウンコンバートの過程で,再度位相共役がとられ元の変調信号に再変換されるため,非線形効果補償の方法容易となる。Δf>fの場合も非線形補償は可能であるが,無線受信機内で上側波由来の信号ないしは下側波由来の信号のいずれか一方で位相共役操作を行うことが好ましい。
 ヘテロダインC-RoFの場合も,先に説明した独立光源を用いる方法や,光搬送波を再利用する方法を用いて局発光を発生することができる。図8は,独立光源を用いて局発光を発生させるためのヘテロダインC-RoFの構成例を示すブロック図である。このヘテロダインC-RoFを用いた無線機は,搬送波と周波数の異なる局発光が位相共役信号対と合波される。
 ヘテロダインC-RoFにおいて,独立光源を用いる場合には,上述の光周波数差Δf[Hz]を与えることができれば,光位相同期ループ等を用いて,光周波数,位相を光搬送波のものと同期させる必要はない。もちろん,光位相同期ループ等を用いて,光周波数,位相を光搬送波のものと同期させても構わない。
 ヘテロダインC-RoFにおいて,搬送波を再利用する場合には,光送信機側の光搬送波を局発光として再利用する。図9は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。そして,光搬送波に相当する周波数を有する成分に対して,周波数シフタなどの周波数調整部75により周波数を変化させる処理を行い,さらに,位相シフタなどの位相調整部65に入力し,合波部において上記の状況が達成できるように,位相を調整する。つまり,この例では,光変調前の連続光を分岐する,あるいは,上側波及び下側波生成のための光変調後の変調光から,光フィルタ等を用いて,光搬送波を分離する。この分離された光搬送波に対し,光周波数シフタを用いて光周波数差Δf[Hz]を与える。そして,適宜位相シフタなどにより上記した状況が達成できるよう局発光の位相を調整する。
 図10は,光搬送波を再利用して局発光を発生させるための構成例を示すブロック図である。この例では,光変調器で位相共役信号対を得た後に,波長分離装置61により波長分離する。そして,光搬送波に相当する周波数を有する成分に対し,周波数シフタなどの周波数調整部75により周波数を変化させる処理を行い,位相シフタなどの位相調整部55により,合波部において上記の状況が達成できるように,位相を調整する。
 これらの方法によりで得られた局発光は,合波器17から合波する。合波の場所は,光送信機側,受信機側,光ファイバ伝送路中の任意の場所であってもよい。光周波数シフタには,音響光学効果変調器や,光SSB変調器等を適用する事ができる。
 図11にヘテロダインC-RoFを用いた無線受信器の構成例を示す。図11は,特に無線信号の処理を説明するためのものである。ここで,Δf<fの場合には,上側波由来及び下側波由来の成分をそれぞれ分離して,検出し,これを最適位相角θoptで足し合わせればよい。最適位相角θoptに関する情報を得ておいて,分離した上側波由来及び下側波由来の成分の一方に最適位相角θoptに関する位相角部分を足す演算(又は一方の成分が最適位相角θoptとなるような演算)を行った上で,これら上側波由来及び下側波由来の成分を足し合わせる演算を行えばよい。具体的に説明すると,電気的位相同期ループや既存の電気信号を用い,上側波由来及び下側波由来の成分の位相角に対し,θopt=(θ+θ)/2が保たれるように加算する。上側波由来の信号の位相角θ下側波由来の信号の位相角θに対し,θopt=(θ+θ)/2を与えれば非線形効果が補償される。なお,例えば,LSB由来の成分(又はUSB由来の成分)は,光検出器により位相共役が取られており,元の信号に戻っている状態としても良い。
 図12にΔf>fの場合無線受信器の構成例を示す。この場合,足し合わせの前に位相共役操作を上側波由来または下側波由来の成分のどちらか一方に施すことが好ましい。周波数fの局発正弦波とミキサーにより乗算し,この位相共役操作を得る。周波数fは,θopt=(θ+θ)/2の関係を保つよう,電気的位相同期ループ等を用いて,光周波数,位相制御を行えばよい。具体的に説明すると,電気的位相同期ループや既存の電気信号を用い,上側波由来及び下側波由来の成分の位相角に対し,θopt=(θ+θ)/2が保たれるように加算する。上側波由来の信号の位相角θ下側波由来の信号の位相角θに対し,θopt=(θ+θ)/2を与えれば非線形効果が補償される。
 ホモダインC-RoF及びヘテロダインC-RoFのいずれの場合においても,上記の最適位相角,それぞれθopt=(θ+θ)/2を保つ場合,光ファイバ中の波長分散おけるフェージング効果の影響を受けない。
 従来のRoFシステムの場合,両側波成分を光搬送波と共に光ファイバ中を伝搬させた場合,光ファイバ長に応じて得られる無線信号が変動するフェージング効果が知られていた。これを避けるため,従来のRoFシステムでは,光搬送波と片方の側波成分の二成分のみを光ファイバに導入していた。
 C-RoFの基本的な構成
 図13は,光位相共役対ファイバ無線(C-RoF)システムの原理を示す図である。このシステムは,光ファイバリンク上を無線(RF)信号となる光を伝播するために両側波帯(DSB)変調光が用いられる。両側波帯変調光は,連続(CW)光に変調を印加することによって,容易に生成できる。
 無線信号の副搬送波に相当する周波数でプッシュプル駆動を行うマッハツェンダー変調器(MZM)による強度変調が,そのような両側帯波変調光を得る典型的な方法である。生成される上側帯波と下側帯波は,同時に光ファイバを伝播し,高速PD(光検出器)により検出される。この光検出によりファイバ無線(Radio-on-Fiber:RoF)信号はダウンコンバートされ,無線信号の周波数となり,もとの無線波長信号を取り戻す。
 一見すると,この両側波帯変調を得るためのシステム系は,初期段階のRoFシステムに典型的であったもののようにもみえる。当時は,両側帯波と搬送波(DSB-C)系が劣化を受けやすいのに対し,片側帯波と搬送波(SSB-C)系が劣化を受けにくいことから,RoFシステムを構築するためにSSB-C系が採用されていた。
 この実施態様は,RoFシステムにおいて用いられていなかった両側帯波と搬送波(DSB-C)系を用いるものである。この実施態様は,特にDSBに含まれる上側帯波(USB)成分と下側側帯(LSB)成分との光位相共役関係に注目するものである。図14は,各成分と非線形歪みなど非線形効果の関係を示す概念図である。C-RoFシステムにおいて,USBとLSBとは,光ファイバにより同じ量の非線形歪みと波長分散の影響を受ける。特にC-RoFシステムを高出力で駆動した場合,自己位相変調(SPM)と外部位相変調(XPM)とが光ファイバにおける最も大きな非線形効果である。USB成分とLSB成分とは,図14に示されるような,SPMとXPMに起因する位相シフトをうける。この位相シフトは,図14においてベクトルとして表現されている。USBとLSBは,同様の方向に対して,同じ量の位相シフトを受ける。この実施態様のC-RoFシステムは,この非線形歪みを,分散補償器や非線形補償器を別途用意することなく,非線形効果の影響を相殺するものである。
 光ファイバにより引き起こされる非線形歪みの解消
 次に,光ファイバにより引き起こされる非線形歪みがどのように解消されるのかについて説明する。基本的に,この実施態様は,両側帯波成分の一方の位相共役をとり,それを残りの成分に重畳する。図14に示されるように,一方の位相共役対成分は,残りの位相共役対成分と反対方向に非線形歪みの影響を受ける。これら二つの成分を重ね合わせることで,非線形歪みの影響が解消される。C-RoFシステムは,フォトミキシングに簡単な処理を加えるか,又は無線信号の復調に簡単な処理を加えることのみで,上記の処理を達成できる。以下の説明では,簡単のため,LSBを位相共役がとられる成分とし,USBとLSBの間にある周波数(すなわち波長)の信号を有する局所的な(local)連続光を印加する。
 本発明の実施態様は,大きく分けて2つの態様に分類される。一つは,ホモダインC-RoFを命名された態様である。この態様は,局所的な連続光が,C-RoFの搬送波と同一の周波数を有するものである。もう一つは,ヘテロダインC-RoFを命名された態様である。この態様は,局所的な連続光として,C-RoFの搬送波とことなる周波数を有するものを用いるものである。
 ホモダインC-RoF
 図15は,ホモダインC-RoFシステムを示す概念図である。ホモダインC-RoF系では,USBとLSBとが,同時に,同じ無線周波数領域にダウンコンバートされる。この際に,LSB成分は局所光より低い周波数を有する成分であるから,LSB成分の位相共役をもう一度とり,元の信号を取り戻す。位相共役状態にあるUSBとLSBは,光検出器において無線信号周波数を得るための光混合過程(フォトミキシング)において重畳される。この際に,重要となるものが,USB成分と,位相共役状態にあるLSB成分とが制御された状態で重ね合わされることである。すなわち,局所的な連続光の位相を,C-RoFの搬送波の位相にロックし,最適状況に調整する。局所的な連続光の位相を,C-RoFの搬送波の位相にロックするとは,局所的な連続光の位相が,C-RoFの搬送波の位相と同位相となるようにした状態で,局所的な連続光をC-RoFの搬送波を含む光信号と合波することを意味する。
 これは,例えば,C-RoFの搬送波の位相を測定して,局所光を合波するタイミングを制御することによって達成できるし,C-RoFの搬送波が出力されるタイミングと,それが合波部に到達する時間を計算した上で,局所光が合波部に到達する時間を調整することによっても達成される。
 このために,ある実施態様では,搬送波を有するDSB(DSB-C)変調を好ましく採用した。別の態様は,光位相ロックループ,すなわち二つの光位相ロックループを用いるものである。これらの態様では,非線形歪みを上述したように解消することができる。
 ヘテロダインC-RoF
 図16は,ヘテロダインC-RoFシステムを示す概念図である。この例に示すヘテロダインC-RoFシステムでは,USB成分とLSB成分とがともに異なる周波数成分へとダウンコンバートされる。このヘテロダインC-RoFシステムも,ホモダインC-RoFシステムと同様一方の側帯波(ここではLSB)成分が共役状態とされるものの,ホモダインC-RoFシステムと異なり,光検出器の出力において両側帯波が重畳されない。ヘテロダインC-RoFでは,ダウンコンバートされた両成分が,それぞれ無線信号として放出され,共に無線信号受信機の検出器により検出される。この受信器は,位相共役されたLSB由来の成分が,USB由来の成分に重畳されるようにされている。この処理は,受信器内のデジタルプロセッサー(演算装置)と,データ復元機能(データリカバリー部)とにより容易に実装でき,その結果,非線形効果を容易に解消できる。ヘテロダインC-RoFは,受信器内の位相ロックループ(PLL)が局所的な連続光の位相ドリフトをトレースできるため,局所的な連続光をC-RoF信号の搬送波にロックする必要がない。このシステムは,局所的な連続光を中心局と離れた局所において生成することもできるし,中心局において局所的な連続光となる光信号を発生させることもできる。
 上記のとおりC-RoFシステムは2つの主な態様が存在する。それは,ホモダインC-RoFシステムと,ヘテロダインC-RoFシステムである。これらのシステムは,局所的な連続光を必要とするものの,典型的なDSB-Cを用いたC-RoF伝送システムや,DSB-SCを用いたC-RoF伝送システムの構成をそのまま利用できる。ヘテロダインC-RoFシステムは,2倍のバンド帯を占有する必要があるものの,局所的な連続光の位相をRoFの搬送波の位相にロックする必要がない。
 図13は,バイアスシフト型電気光学効果型位相共役信号対生成器を示す概念図である。この位相共役信号対生成器は二つの直交変調器からなる。これらの直交変調器は,どちらも同一のInphase(I)信号,Quadrature(Q)信号により駆動される。ただし,一方の直交変調器の主バイアス(主マハツェンダ変調器のバイアス)はπ/2に,もう一方の直交変調器の主バイアスは-π/2にバイアスを設定する。
 図13では,説明の都合上,I,Q 成分側のバイアスを上方の直交変調器ではそれぞれ[π/4, π/4]に,下方の直交変調器ではそれぞれ[-π/4, π/4]と記述している。) 各変調器から出力される変調信号のシンボル配置は,図13の右側に示される。この例では,QPSK 変調の場合のシンボル配置を示す。図中の異なる記号は,異なるシンボルを意味し,各直交変調器出力信号のシンボル配置は,図中の点線に対して対称であることがわかる。すなわち,この1対の直交変調器から出力される変調光は互いに位相共役の関係にあることがわかる。
 この手法により,同一のI,Q信号源を駆動信号とし,電気段での信号処理を介さずに,位相共役信号対を生成できることになる。この電気光学効果型位相共役信号対生成器は,波長多重方式,偏波多重方式,いずれの位相共役対伝送にも適用できる。波長多重方式の場合には,それぞれの直交変調器に対する入力光を別波長とし,光信号対は別波長で伝送される。一方,偏波多重の場合には,光信号対は直交した偏光成分として伝送されることになり,この場合には,同一波長の光を各直交変調器に入力し,出力を偏波合成すれば良い。
 以下では,上記のシステムを数値解析する。以下の数値解析では,ホモダインC-RoFシステムを用いて分析を行う。QPSKやQAMといった無線信号のサブキャリアを有するマルチレベルの信号がスタンダードなシングルモードファイバを経て遠隔地に転送されると仮定する。図17は,実施例の数値解析におけるシステムの概略図である。
 C-RoFシステムの送信器側,すなわち,中心局側では,連続光が,ヌルバイアスに設定された,プッシュプル型のマッハツェンダー変調器(MZM)において強度変調される。MZMは,RF信号を用いて以下のように変調される。周波数が10GHzであるRFサブキャリア信号は,IQ変調部によりデータ変調されて,QPSK信号を生じさせる。そのデータのシンボルレートは,5GBaudである。この装置を用いて,DSB-SC信号,すなわち,C-RoF信号を生成できる。生成されるRoF信号のOSNR(0.1nmにおける)は27dBである。
 このRoF信号は,以下のパラメータ特性を有するスタンダードシングルモードファイバ中を伝搬する。ファイバ長(L)=10km,伝搬損失(α)=0.2デシベル/km,非直線性係数(γ)=2.6W-1km-1。群速度分散(β2 =-16ps/km,光ファイバへの入力強度(launched power)10ミリワット。
 C-RoFシステムの受信器側,すなわち遠隔局では,受信したRoF信号と局所的な連続光(局発光)とが結合されて,光検出器に導入される。局発光の波長は,RoF信号の搬送波の周波数と同一となるようにされる。光検出器は,10GHz無線周波数領域に対応した十分に高速なものとする。光検出器から出力されたRF信号は,RFダウンコンバータにてダウンコンバートされ,搬送配送復元工程と,位相ロック工程とを経て,I成分とQ成分とが復元される。通常,光検出器からの無線周波数成分は,アンテナから無線信号として放出される。
 図18は,受信信号のコンスタレーションマップである。図18(a)は,従来のSSB-C技術に基づいたRoFシステムによって得られるQPSK信号のコンスタレーションマップである。図18(a)に示されるとおり,シンボルは歪んでいることがわかる。この件では,これは,SPMによりひき起こされる非線形歪みによるものである。図18(b)は,C-RoFシステムによって得られるQPSK信号のコンスタレーションマップである。図18(b)から,得られたコンスタレーションマップが非線形歪みの影響を受けていないことがわかる。すなわち,C-RoFシステムにより,光ファイバによる非線形効果による影響が,解消されることが示された。
 図19は,バイアスシフト型電気光学効果型位相共役信号対生成器の原理実証のための実験構成図である。ここでは,20-Gb/sQPSKのSMF伝送により,自己位相変調効果の補償効果を示す。位相共役信号対の伝送は偏波多重の構成により行う。送信機側では,線幅10kHzのファイバレーザから出力される波長1552nmの連続光を光カプラにより分岐し,それぞれ2つの独立した直交変調器に入力する。直交変調器は同一のI,Qデータにより,同じタイミングで駆動される。駆動信号はパルスパターン発生器から生成される,NRZ信号で,パターン長215-1PRBS形式である。各直交変調器の副マハツェンダ変調器はいずれもnull点バイアスとする。主バイアスは,それぞれπ/2,-π/2とする。この構成により,それぞれの直交変調器から20-Gb/sQPSK信号とその位相共役信号が得られる。得られた位相共役信号対は,偏波ビームスプリッタにより,両信号間で遅延の無いよう,偏波多重される。偏波多重された位相共役信号対は,光ファイバ増幅器により,17.6dBmにまで増幅した後,全長20kmのシングルモードファイバ(SMF)に入力する。一方,受信機側では,受信した位相共役信号対を,偏波ダイバーシティ型デジタルコヒーレント検出器により受信する。まず,バランスドディテクタを出力ポートに持つ90度ハイブリッドカプラにより,局発光とのホモダインミキシングが行い,各偏光成分の,(局発光に対する)同相直交成分,位相成分を検出する。これらの検出信号を50GSa/sのサンプリングレートにより高速デジタイズした後,偏波分離,キャリア位相推定機能を持つデジタル信号処理を施す。位相回復されたQPSK信号対の内,一方の信号(位相共役信号側)に対し,位相共役を取り直した後,他方の信号と加算する。これらのデジタル信号処理は全てオフライン処
理とする。
 図20は,実施例2における実験結果を示す図である。図20(a)(b)は,受信されたコンスタレーションであり,それぞれ,(位相共役信号対の手法にて)光ファイバ中の非線形効果を補償しない場合,補償する場合に相当する。図20(a)に示されるように,非補償の場合には,非線形位相シフトが見受けられる。これは,自己位相変調効果,及び直交偏光成分からの相互位相変調効果によるものと考えられる。一方,図20(b)に示されるように,受信機側で位相共役信号対を利用した非線形補償を行うことにより,これらの非線形効果は相殺され,クリアなコンスタレーションが得られていることがわかる。この実験結果により,提案した電気光学効果型位相共役信号対生成器から,確かに,位相共役信号対が生成されることが,確認された。
 本発明は光を用いた情報通信の産業において利用されうる。
 11..光変調器;  13..信号源;  15..光ファイバ;  17..合波部;
 19..合波用局所信号源;
 21..光検出器;  23..送信用アンテナ;  25..放出装置;
 31..光変調器;  33..信号源;  35..光ファイバ;  37..合波部;
 39..合波用局所信号源;
 41..光検出器;  43..送信用アンテナ;  45..放出装置;
 51..受信用アンテナ;  53..信号処理装置;  55..受信装置

 
 

Claims (4)

  1.  光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法であって,
     上側帯波と下側帯波とを含む位相共役信号対を得る工程と,
     前記上側帯波と前記下側帯波とを同時に前記光ファイバに入力する工程と,
     前記光搬送波と同一の周波数を有する光信号を,前記上側帯波と前記下側帯波と位相差がない状態で,前記上側帯波と前記下側帯波と合波する工程と,
     前記合波された光信号を光検出器が検出する工程と,
     前記光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える工程と,
     前記送信用アンテナが,前記電気信号に基づいた無線信号を放出する工程と,
     を含む,
     方法。
  2.  搬送波が入力される光変調器(11)と,
     前記光変調器(11)に印加される変調信号及びバイアス信号を出力する信号源(13)と,
     前記光変調器(11)から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力される光ファイバ(15)と,
     前記光ファイバ(15)と接続された合波部(17)と,
     前記合波部(17)を介して,前記光搬送波と同一の周波数を有する光信号を,前記上側帯波と前記下側帯波と位相差がない状態で,前記上側帯波と前記下側帯波と合波するための合波用局所信号源(19)と,
     前記合波された光信号を検出する光検出器(21)と,
     前記光検出器が検出した光信号に基づく電気信号を受け取る送信用アンテナ(23)と,
     を含む,
     光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償した無線信号の放出装置(25)。
  3.  光ファイバを光信号が伝搬する際に生じる非線形光学効果を補償する方法であって,
     上側帯波と下側帯波とを含む位相共役信号対を得る工程と,
     前記上側帯波と前記下側帯波とを同時に前記光ファイバに入力する工程と,
     光信号を,前記上側帯波と前記下側帯波と合波する工程と,
     前記合波された光信号を光検出器が検出する工程と,
     前記光検出器が検出した光信号に基づく電気信号を送信用アンテナへ伝える工程と,
     前記送信用アンテナが,前記電気信号に基づいた無線信号を放出する工程と,
     前記送信用アンテナから放出された無線信号を受信用アンテナが受信する工程と,
     前記受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った前記上側帯波に由来する信号と,前記下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波する方法。
  4.  搬送波が入力される光変調器(31)と,
     前記光変調器(31)に印加される変調信号及びバイアス信号を出力する信号源(33)と,
     前記光変調器(31)から出力される光信号である上側帯波と下側帯波とを含む位相共役信号対が同時に入力される光ファイバ(35)と,
     前記光ファイバ(35)と接続された合波部(37)と,
     前記合波部(37)を介して,光信号を,前記上側帯波と前記下側帯波と合波するための合波用局所信号源(39)と,
     前記合波された光信号を検出する光検出器(41)と,
     前記光検出器が検出した光信号に基づく電気信号を受け取る送信用アンテナ(43)
    を含む,
     無線信号の送信装置(45)と,
     前記送信用アンテナ(43)から放出された無線信号を受信する受信用アンテナ(51)と,
     前記受信用アンテナが受信した無線信号に基づく電気信号を受け取り,受け取った前記上側帯波に由来する信号と,前記下側帯波に由来する信号とを,位相差がなくなるように調整したうえで合波するための信号処理装置(53)を含む
     無線信号の受信装置(55)と,
     を含む,無線通信システム。
     
PCT/JP2015/074940 2014-10-19 2015-09-02 光アップ・ダウンコンバート型光位相共役対信号送受信回路 WO2016063635A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051522.7A CN106716879B (zh) 2014-10-19 2015-09-02 光学上变频和下变频型光学相位共轭对信号收发电路
US15/514,529 US9954615B2 (en) 2014-10-19 2015-09-02 Optical up/down conversion-type optical phase conjugate pair signal transmission/reception circuit
EP15853196.2A EP3208954B1 (en) 2014-10-19 2015-09-02 Optical up/down-conversion-type optical phase conjugate pair signal transmission/reception circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-213264 2014-10-19
JP2014213264A JP6353342B2 (ja) 2014-10-19 2014-10-19 光アップ・ダウンコンバート型光位相共役対信号送受信回路

Publications (1)

Publication Number Publication Date
WO2016063635A1 true WO2016063635A1 (ja) 2016-04-28

Family

ID=55760680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074940 WO2016063635A1 (ja) 2014-10-19 2015-09-02 光アップ・ダウンコンバート型光位相共役対信号送受信回路

Country Status (5)

Country Link
US (1) US9954615B2 (ja)
EP (1) EP3208954B1 (ja)
JP (1) JP6353342B2 (ja)
CN (1) CN106716879B (ja)
WO (1) WO2016063635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124505A1 (ja) * 2019-12-19 2021-06-24 日本電信電話株式会社 光通信システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353342B2 (ja) * 2014-10-19 2018-07-04 国立研究開発法人情報通信研究機構 光アップ・ダウンコンバート型光位相共役対信号送受信回路
JP6853104B2 (ja) * 2017-04-28 2021-03-31 Kddi株式会社 波長分散補償装置および波長分散補償方法
CN107340666B (zh) * 2017-06-08 2019-07-09 浙江大学 一种基于光电振荡器的矢量信号上变频装置
CN107317629B (zh) * 2017-06-29 2019-11-05 电子科技大学 一种基于隐性共轭的双波传输系统
CN108759879B (zh) * 2018-04-26 2019-11-26 浙江大学 一种基于光栅传感器的波长解析装置
CN108562311B (zh) * 2018-04-26 2019-08-20 浙江大学 一种光传感器阵列的位置解析装置
US10833770B2 (en) * 2018-06-22 2020-11-10 Nec Corporation Optical fiber nonlinearity compensation using neural networks
CN109143183B (zh) * 2018-09-12 2023-05-05 中国航天科工集团八五一一研究所 基于数字技术实现自定频结构超外差相位共轭的方法
JP6946360B2 (ja) * 2019-02-01 2021-10-06 株式会社Kddi総合研究所 光受信器及び光伝送方法
CN111431565B (zh) * 2020-03-16 2021-02-12 东莞职业技术学院 一种光通信mimo检测方法及系统
CN113078946B (zh) * 2021-03-25 2022-07-29 中山大学 一种光信噪比监测方法及其系统
CN117941291A (zh) * 2021-08-10 2024-04-26 华为技术有限公司 一种基站、中心站及非线性信号处理方法
WO2023199484A1 (ja) * 2022-04-14 2023-10-19 日本電信電話株式会社 無線通信方法、基地局装置及び無線通信システム
CN117914411B (zh) * 2024-03-19 2024-06-04 济南量子技术研究院 一种用于tf-qkd系统的相位反馈方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333347A (ja) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光−無線融合通信システム用光送信器
US20140099127A1 (en) * 2012-10-04 2014-04-10 Nec Laboratories America, Inc. Optical Phase Conjugation Aided Long-Haul Transmission System with Enhanced Signal-to-Noise Ratio and Nonlinear Tolerance

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965603A (en) * 1989-08-01 1990-10-23 Rockwell International Corporation Optical beamforming network for controlling an RF phased array
US5239401A (en) * 1990-12-31 1993-08-24 Gte Laboratories Incorporated Optical modulator for cancellation of second-order intermodulation products in lightwave systems
US5301058A (en) * 1990-12-31 1994-04-05 Gte Laboratories Incorporated Single sideband optical modulator for lightwave systems
US5101450A (en) * 1991-01-23 1992-03-31 Gte Laboratories Incorporated Quadrature optical phase modulators for lightwave systems
US5386314A (en) * 1993-09-10 1995-01-31 At&T Corp. Polarization-insensitive optical four-photon mixer with orthogonally-polarized pump signals
US6020990A (en) * 1998-05-11 2000-02-01 Trw Inc. R.F. signal summing using non-linear optical phase conjugation
JP3401483B2 (ja) * 2000-07-04 2003-04-28 科学技術振興事業団 波長変換装置
US7149434B2 (en) * 2001-03-30 2006-12-12 Mission Research Corporation System and method for optical communication
US6823144B2 (en) * 2001-06-26 2004-11-23 Lucent Technologies Inc. Optical transmission system
US20040234275A1 (en) * 2003-05-20 2004-11-25 Aref Chowdhury Process for optical communication and system for same
US7558485B2 (en) * 2003-05-20 2009-07-07 Alcatel-Lucent Usa Inc. Processes and systems involving optical phase conjugators
US7773883B1 (en) * 2007-05-04 2010-08-10 Vello Systems, Inc. Single-fiber optical ring networks based on optical double sideband modulation
US7982683B2 (en) * 2007-09-26 2011-07-19 Ibiquity Digital Corporation Antenna design for FM radio receivers
GB0808010D0 (en) * 2008-05-02 2008-06-11 Univ Belfast Retrodirective antenna systems
JP5147582B2 (ja) 2008-07-18 2013-02-20 日本電信電話株式会社 受信装置、補償演算回路、および受信方法
WO2013000511A1 (en) * 2011-06-29 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Individual information in lower and upper optical sidebands
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US9544064B2 (en) * 2012-07-19 2017-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Electro-optical implementation of an optical spectrum inverter
US9621270B2 (en) * 2013-09-24 2017-04-11 Zte Corporation System and methods for fiber and wireless integration
JP6353342B2 (ja) * 2014-10-19 2018-07-04 国立研究開発法人情報通信研究機構 光アップ・ダウンコンバート型光位相共役対信号送受信回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333347A (ja) * 2005-05-30 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光−無線融合通信システム用光送信器
US20140099127A1 (en) * 2012-10-04 2014-04-10 Nec Laboratories America, Inc. Optical Phase Conjugation Aided Long-Haul Transmission System with Enhanced Signal-to-Noise Ratio and Nonlinear Tolerance

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO, TAKAHIDE ET AL.: "Conjugated-Paired Radio-on-Fiber Transmission Scheme Highly Tolerant against Optical Fiber Nonlinearity", 2014 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP) AND THE 2014 9TH ASIA-PACIFIC MICROWAVE PHOTONICS CONFERENCE (APMP), 20 October 2014 (2014-10-20), pages 399 - 402, XP032712337 *
SAKAMOTO, TAKAHIDE ET AL.: "Phase-Conjugated Twin Signals Generation with Oppositely-Biased Paired IQ Modulators", 2014 IEEE PHOTONICS CONFERENCE, 12 October 2014 (2014-10-12), pages 300 - 301, XP032712675 *
See also references of EP3208954A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124505A1 (ja) * 2019-12-19 2021-06-24 日本電信電話株式会社 光通信システム
JPWO2021124505A1 (ja) * 2019-12-19 2021-06-24
JP7252498B2 (ja) 2019-12-19 2023-04-05 日本電信電話株式会社 光通信システム

Also Published As

Publication number Publication date
EP3208954A4 (en) 2018-07-11
EP3208954B1 (en) 2020-05-27
JP6353342B2 (ja) 2018-07-04
EP3208954A1 (en) 2017-08-23
US9954615B2 (en) 2018-04-24
CN106716879B (zh) 2019-09-17
JP2016082457A (ja) 2016-05-16
US20170264366A1 (en) 2017-09-14
CN106716879A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6353342B2 (ja) 光アップ・ダウンコンバート型光位相共役対信号送受信回路
US8437638B2 (en) Optical modulation circuit and optical transmission system
US9853739B2 (en) Optical transmitter and method for controlling bias of optical modulator
JP5601205B2 (ja) 光受信器および光通信システム
US9544060B2 (en) Optical transmitter and method for controlling the same
US10205535B1 (en) Coherent optical receiver
JP2008153863A (ja) コヒーレント光受信機
US10234704B2 (en) Optical module that includes optical modulator and bias control method for optical modulator
US20140044439A1 (en) Method and apparatus for transmission of two modulated signals via an optical channel
Zhu et al. Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach–Zehnder modulator to overcome chromatic dispersion
Wang et al. Photonic filterless scheme to generate V-band OFDM vector mm-wave signal without precoding
JP2020109887A (ja) 光伝送方法および光伝送装置
Wang et al. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding
CN114584222B (zh) 一种功能复用的微波光子下变频方法
JP2012039290A (ja) コヒーレント光時分割多重伝送方式
Okamura et al. All-optical generation of optical BPSK/QPSK signals interleaved with reference light
JP3730789B2 (ja) 光変調器
JP2009296623A (ja) コヒーレント光送受信機
JP6363933B2 (ja) 光送受信装置、光受信器及び光送受信方法
Yi et al. Modulation-format-independent wavelength conversion
EP4027539A1 (en) Optical transmitter and optical transmission method
US20230121555A1 (en) System and method for optical communication
Nakagawa et al. Phase-conjugated twin-SSB for compensation of optical nonlinear waveform distortion
JPH0285830A (ja) コヒーレント光受信方式
Chen et al. Microwave photonic link based on coherent detection using low-cost free-running laser sources incorporating optical independent sideband and optical orthogonal modulation for 4× 4 MIMO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853196

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015853196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015853196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15514529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE