WO2023199484A1 - 無線通信方法、基地局装置及び無線通信システム - Google Patents
無線通信方法、基地局装置及び無線通信システム Download PDFInfo
- Publication number
- WO2023199484A1 WO2023199484A1 PCT/JP2022/017846 JP2022017846W WO2023199484A1 WO 2023199484 A1 WO2023199484 A1 WO 2023199484A1 JP 2022017846 W JP2022017846 W JP 2022017846W WO 2023199484 A1 WO2023199484 A1 WO 2023199484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- station
- optical
- control signal
- transmission
- Prior art date
Links
- 230000006854 communication Effects 0.000 title claims abstract description 107
- 238000004891 communication Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 311
- 230000005540 biological transmission Effects 0.000 claims abstract description 223
- 230000002776 aggregation Effects 0.000 claims abstract description 100
- 238000004220 aggregation Methods 0.000 claims abstract description 100
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 29
- 239000013307 optical fiber Substances 0.000 claims abstract description 27
- 230000004044 response Effects 0.000 claims description 49
- 238000006243 chemical reaction Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 22
- 238000012545 processing Methods 0.000 description 21
- 239000000284 extract Substances 0.000 description 20
- 230000004931 aggregating effect Effects 0.000 description 14
- 230000007175 bidirectional communication Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 206010033546 Pallor Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
Definitions
- the present invention relates to a wireless communication method, a base station device, and a wireless communication system.
- An example of a wireless communication system for performing beamforming using an array antenna is a wireless communication system that includes an aggregation station and an outbound station.
- the central station and the outgoing stations are connected by optical fiber, but when high optical power is input into the optical fiber, the signal may be distorted due to nonlinear optical effects such as self-phase modulation and cross-phase modulation. Therefore, it is necessary to suppress the transmission power. Therefore, when transmitting multiple signals, it is necessary to transmit them using limited power.
- the signal when the number of wavelengths increases due to an increase in the number of antenna elements, the signal will be distorted due to nonlinear optical effects, but even when the number of wavelengths is small, if high optical power is input into the optical fiber, , the signal is also distorted due to nonlinear optical effects.
- an object of the present invention is to provide a technology that can transmit multiple signals with a limited power range and perform beamforming control without causing signal distortion due to nonlinear optical effects.
- One aspect of the present invention is a wireless communication method in a wireless communication system including an aggregation station, and an overhang station that is connected to the aggregation station via an optical fiber and performs beam formation under the control of the aggregation station,
- the station is configured such that an optical signal including at least a beam control signal for controlling beam formation at the outgoing station and a transmission signal that is data to be transmitted is an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber.
- the power level of the beam control signal and the power level of the transmission signal are adjusted and sent to the outgoing station, and the outgoing station performs identification based on the beam control signal included in the optical signal.
- This is a wireless communication method in which the transmission signal is transmitted by setting a phase difference for performing beam formation in the direction of , in a phase shifter or by switching a switch.
- One aspect of the present invention is a base station device in a wireless communication system including an aggregation station and an overhang station that is connected to the aggregation station via an optical fiber and performs beam formation under the control of the aggregation station,
- an optical signal including a beam control signal for controlling beam formation at an outgoing station and a transmission signal that is data to be transmitted, an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber, an aggregation station that adjusts the power level of a beam control signal and the power level of the transmission signal and sends it to the outgoing station; and performs beam formation in a specific direction based on the beam control signal included in the optical signal.
- a base station that transmits the transmission signal by setting a phase difference in a phase shifter or by switching a switch.
- One aspect of the present invention is a wireless communication system including an aggregation station, and an overhang station that is connected to the aggregation station via an optical fiber and performs beam formation under the control of the aggregation station, wherein the aggregation station includes at least In order to make an optical signal including a beam control signal for controlling beam formation at the outgoing station and a transmission signal that is data to be transmitted, an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber, The power level of the beam control signal and the power level of the transmission signal are adjusted and sent to the outgoing station, and the outgoing station controls the beam in a specific direction based on the beam control signal included in the optical signal.
- the wireless communication system transmits the transmission signal by setting a phase difference for forming the signal in a phase shifter or by switching a switch.
- FIG. 1 is a diagram illustrating an example configuration of a wireless communication system in a first embodiment.
- FIG. 3 is a diagram showing a first configuration example of a beam forming section.
- FIG. 7 is a diagram showing a second configuration example of a beam forming section.
- FIG. 2 is a sequence diagram showing the flow of processing of the wireless communication system in the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a wireless communication system in a second embodiment.
- FIG. 2 is a sequence diagram showing the flow of processing of a wireless communication system in a second embodiment.
- FIG. 7 is a diagram illustrating a configuration example of a wireless communication system in a third embodiment.
- FIG. 7 is a sequence diagram showing the flow of processing of a wireless communication system in a third embodiment.
- FIG. 7 is a sequence diagram showing the flow of processing of a wireless communication system in a fourth embodiment. It is a figure showing the example of composition of the radio communication system in a 5th embodiment.
- FIG. 7 is a sequence diagram showing the flow of processing of a wireless communication system in a fifth embodiment. It is a figure showing the example of composition of the radio communication system in a 6th embodiment.
- FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 according to the first embodiment.
- the wireless communication system 1 includes an aggregation station 10 and an outpost station 20.
- the aggregation station 10 and the outbound station 20 that constitute the wireless communication system 1 are also configured as one base station device.
- the aggregating station 10 and the outgoing station 20 are connected via an optical transmission line 40.
- the optical transmission line 40 is, for example, an optical fiber.
- the optical transmission line 40 may be one or more single-core fibers, or may be a multi-core fiber having two or more cores.
- the direction from the aggregating station 10 to the outgoing station 20 is referred to as a down direction, and the direction from the outgoing station 20 to the aggregating station 10 is assumed to be an up direction.
- FIG. 1 shows a case where there is one outpost station 20, the wireless communication system 1 may include a plurality of outbound stations 20.
- the aggregation station 10 and the plurality of outpost stations 20 may be connected via a passive optical network (PON).
- PON passive optical network
- an optical splitter (branching section) is provided between the aggregation station 10 and the plurality of outbound stations 20.
- the optical splitter branches the optical signal output from the central station 10 and outputs it to the outgoing station 20.
- the passive optical network is, for example, WDM-PON (Wavelength Division Multiplexing - Passive Optical Network) or TDM-PON (Time Division Multiplexing - Passive Optical Network).
- the concentrating station 10 remotely controls the beam forming of the outgoing station 20.
- the aggregation station 10 converts a transmission signal and a control signal into optical signals of different wavelengths, and uses a wavelength division multiplexed signal generated by wavelength division multiplexing (WDM) of the optical signals of different wavelengths.
- WDM wavelength division multiplexing
- the beam forming of the outgoing station 20 is controlled remotely.
- the aggregation station 10 remotely controls the beam forming of the outgoing station 20 using analog RoF technology.
- the transmission signal is a main signal containing data to be transmitted.
- the transmission signal may be an IF signal (Intermediate Frequency signal) or an RF signal.
- the control signal is a signal for controlling the operation at the outgoing station 20.
- the control signal includes at least a beam control signal for controlling beam formation at the outgoing station 20.
- the beam control signal includes phase instruction information for radiating the transmission signal in a desired beam-forming direction.
- the control signal may include a clock signal, a level adjustment signal, or a TDD (Time Division Duplex) signal in addition to the beam control signal.
- the clock signal is a reference signal when generating an LO (Local Oscillator) signal for converting the frequency of a transmission signal from IF to RF in the outpost station 20.
- the level adjustment signal is an LO signal.
- the TDD signal is a signal indicating the timing at which the outgoing station 20 switches between transmission and reception.
- the TDD signal is a signal required to realize bidirectional communication using a time division duplex (TDD) method. Therefore, when realizing bidirectional communication using a frequency division duplex (FDD) method in the outgoing station 20, the TDD signal does not need to be included in the control signal.
- TDD time division duplex
- the outgoing station 20 is installed at a location away from where the aggregation station 10 is located.
- the outgoing station 20 performs beam formation based on the control signal transmitted from the aggregation station 10, and wirelessly radiates a transmission signal.
- the outpost station 20 communicates with wireless devices located around the installed location. Further, when performing bidirectional communication using a time division duplex (TDD) method, the outpost station 20 switches between transmission and reception at the timing indicated by the TDD signal.
- TDD time division duplex
- FIG. 1 shows the configuration of an aggregation station 10 and an outgoing station 20 for realizing downlink communication.
- the aggregation station 10 includes level adjustment sections 101 and 102, a plurality of E/Os 11-1 to 11-2, and an optical multiplexing section 12.
- a transmission signal is input to level adjustment section 101 .
- Level adjustment section 101 adjusts the power level of the transmission signal and outputs the transmission signal to E/O 11-1.
- a transmission signal whose power level has been adjusted by the level adjustment section 101 is input to the E/O 11-1.
- the E/O 11-1 uses the input transmission signal to intensity-modulate the optical signal of wavelength ⁇ TX1 . As a result, the E/O 11-1 generates an optical modulation signal of wavelength ⁇ TX1 .
- a control signal is input to the level adjustment section 102.
- a control signal including a beam control signal, a clock signal, and a TDD signal is input to the level adjustment section 102.
- the transmission signal is an RF signal
- a control signal including a beam control signal and a TDD signal is input to the level adjustment section 102.
- the beam control signal includes at least one of information S T1 , ..., S Tm for forming a beam in any one of m (m is an integer of 1 or more) directions.
- the m beam control signals have a one-to-one correspondence with the m transmission beams, and the user can switch the transmission beams in a desired direction by switching the beam control signals.
- the E/O 11-2 uses the input control signal to intensity-modulate the optical signal of wavelength ⁇ TX2 . As a result, the E/O 11-2 generates an optical modulation signal of wavelength ⁇ TX2 .
- the intensity modulation method a direct modulation method (DML: Directly Modulated Laser) may be used, or an external modulation method (MAZ: Mach Zehnder Modulator, EAM: Electro Absorption Modulator) may be used.
- the modulated signal propagated through the optical transmission line 40 may be ODSB (Optical Double Sideband), OSSB (Optical Single Sideband), or OCS (Optical Carrier Suppression).
- the level adjustment units 101 and 102 adjust the power level of the control signal and the power level of the transmission signal so that the optical signal including the control signal and the transmission signal is an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber. and adjust each. Since the transmitted signal is an analog signal and the control signal is a digital signal, the required SNR at the outgoing station is higher for the transmitted signal, so the power level of the transmitted signal is higher than the power level of the control signal. Adjust to power level. By doing so, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the optical multiplexer 12 multiplexes the optical modulation signal with the wavelength ⁇ TX1 generated by the E/O 11-1 and the optical modulation signal with the wavelength ⁇ TX2 generated by the E/O 11-2. Specifically, the optical multiplexer 12 wavelength division multiplexes the optical modulation signal of wavelength ⁇ TX1 generated by E/O 11-1 and the optical modulation signal of wavelength ⁇ TX2 generated by E/O 11-2. By doing so, a wavelength multiplexed signal is generated. The optical multiplexer 12 outputs the generated wavelength multiplexed signal to the outgoing station 20 via the optical transmission line 40.
- the outgoing station 20 includes an optical demultiplexing section 21, a plurality of O/Es 22-1 to 22-2, a demultiplexing section 23, a frequency conversion section 24, a beam forming section 25, and a transmission/reception switching section 33. .
- the outgoing station 20 does not need to include the frequency converter 24 when the aggregation station 10 transmits an RF signal as a transmission signal.
- the outgoing station 20 includes the frequency converter 24, assuming that the aggregation station 10 transmits an IF signal as a transmission signal.
- the transmission/reception switching section 33 may be configured integrally with the frequency conversion section 24 or may be provided within the beam forming section 25.
- the optical demultiplexer 21 demultiplexes the wavelength multiplexed signal transmitted through the optical transmission line 40 . Thereby, the optical demultiplexer 21 demultiplexes the wavelength multiplexed signal into an optical modulation signal with wavelength ⁇ TX1 and an optical modulation signal with wavelength ⁇ TX2 .
- the optical demultiplexer 21 outputs an optical modulation signal with a wavelength ⁇ TX1 to the O/E 22-1, and outputs an optical modulation signal with a wavelength ⁇ TX2 to the O/E 22-2.
- O/E22-1 is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ TX1 and extracts an electrical signal.
- the optical modulation signal of wavelength ⁇ TX1 includes a transmission signal. Therefore, the O/E 22-1 outputs an electrical signal including the transmission signal to the frequency converter 24. Note that if the outgoing station 20 is not equipped with the frequency converter 24, the O/E 22-1 will output an electrical signal to the beam forming unit 25.
- O/E22-2 is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ TX2 and extracts an electrical signal.
- the optical modulation signal of wavelength ⁇ TX2 includes a control signal. Therefore, the O/E 22-2 outputs an electrical signal including a control signal to the demultiplexer 23.
- the demultiplexer 23 demultiplexes the electrical signal output by the O/E 22-2 according to the frequency. Thereby, the demultiplexer 23 separates the clock signal (CLK in FIG. 1), beam control signal (STi in FIG. 1), and TDD signal from the electrical signal.
- the demultiplexing section 23 outputs a clock signal to the frequency conversion section 24 , a beam control signal to the beam forming section 25 , and a TDD signal to the transmission/reception switching section 33 .
- the frequency conversion unit 24 converts the frequency of the transmission signal (IF signal) included in the electrical signal output from the O/E 22-1 into a signal (of the frequency of the RF band) using the LO signal generated based on the clock signal. RF signal).
- the transmission/reception switching unit 33 is a switch for switching between transmission and reception based on the input TDD signal. Specifically, the transmission/reception switching section 33 switches the connection so that the frequency conversion section 24 and the beam forming section 25 are electrically connected at the transmission timing indicated by the TDD signal. When the frequency conversion section 24 and the beam forming section 25 are electrically connected, a signal of an RF band frequency (RF signal) output from the frequency conversion section 24 is output to the beam forming section 25. At the reception timing indicated by the TDD signal, the transmission/reception switching section 33 switches the connection so that the beam forming section 25 and the frequency conversion section used for reception are electrically connected.
- RF signal RF band frequency
- the beam forming unit 25 performs beam forming based on the input beam control signal and emits a wireless signal according to the transmission signal.
- the beam forming unit 25 is a functional unit equipped with a control unit that can control the direction of beam formation in the outgoing station 20 .
- FIG. 2 is a diagram showing a first configuration example of the beam forming section 25.
- the beam forming unit 25 shown in FIG. 2 includes a control unit 251, n (n is an integer of 2 or more) phase shifters 252-1 to 252-n, and n antennas 253 to 253-n. .
- One antenna 253 is attached to each phase shifter 252.
- the control unit 251 electrically controls the phase shifters 252-1 to 252-n according to the input beam control signal S Ti . Thereby, the phase of the transmission signal input to each phase shifter 252-1 to 252-n can be adjusted.
- the phase shifters 252-1 to 252-n adjust the phase of the input transmission signal under the control of the control unit 251.
- the antennas 253 to 253-n convert the transmission signals whose phases have been adjusted by the phase shifters 252-1 to 252-n into radio signals and radiate the radio signals.
- each phase shifter 252-1 to 252-n adjusts the phase to correspond to the beam control signal and strengthens the in-phase signals in a specific direction. and a transmit beam is formed.
- the direction in which in-phase signals are strengthened differs depending on the beam control signal S Ti .
- the beam forming unit 25 shown in FIG. 2 has input/output reversibility, and when RF signals arrive from a beam direction corresponding to a certain beam control signal, they are in phase and strengthen each other. When RF signals arrive from other directions, they weaken each other. Since the beam forming section 25 shown in FIG. 2 has such a property, the direction of the receiving beam can also be selected in accordance with the selection of the beam control signal S Ti .
- the configuration of the first configuration example of the beam forming section 25 is described in Reference Document 1, for example.
- FIG. 3 is a diagram showing a second configuration example of the beam forming section 25.
- the beam forming section 25 shown in FIG. 3 includes a control switch 254, a passive beam forming section 255, and N (N is an integer of 2 or more) antennas 253 to 253-N.
- the control switch 254 is a switch that can switch the connection between an input port and an output port according to the input beam control signal S Ti .
- a transmission signal is input to the input port.
- Each port of the passive beam forming section 255 is connected to the output port.
- Control switch 254 has one input port and m output ports SW-1 to SW-m. There is a one-to-one correspondence between the output ports SW-1 to SW-m of the control switch 254 and the beam control signals S T1 to S Tm . For example, when the beam control signal ST1 is input as the beam control signal, the control switch 254 connects the input port and the output port SW-1. As a result, a transmission signal is output from the output port SW-1 of the control switch 254.
- the passive beam forming unit 255 is a functional unit that can form beams by adding a specific phase difference to the output beams from each of the antennas 256-1 to 256-N depending on the input port.
- the passive beam forming section 255 has m input ports and N (N is an integer greater than or equal to 1) output ports.
- the passive beam forming section 255 is, for example, a beam forming circuit, a reflector, a lens, or the like.
- the beam forming circuit has m first ports and N second ports.
- the m output ports SW-1 to SW-m of the control switch 254 are connected to the m first ports of the beam forming circuit.
- Antennas 256-1 to 256-N are connected to the second port of the beam forming circuit.
- the beam forming circuit when a signal is input to a certain first port, signals having the same amplitude and linearly tilted phase are output from the N second ports.
- the beam forming circuit has different phase inclinations depending on the first port.
- the beam forming circuit can form a beam in a direction according to the first port into which the transmission signal is input.
- the beam forming circuit has input/output reversibility, and when a signal arrives from the direction of the beam corresponding to a certain first port, the signal is output only from the first port.
- Examples of the beam forming circuit include a Butler matrix, a Blass matrix, a Nolan matrix, and a Rotman lens (for example, see Reference 2).
- FIG. 4 is a sequence diagram showing the flow of processing of the wireless communication system 1 in the first embodiment. Note that in FIG. 4, an example will be described in which an IF signal is input as a transmission signal to the aggregation station 10.
- An IF signal (transmission signal) is input to the level adjustment section 101 of the aggregation station 10.
- the level adjustment unit 101 adjusts the power level of the IF signal (transmission signal) and outputs the transmission signal to the E/O 11-1 (step S101).
- the E/O 11-1 uses the input IF signal (transmission signal) to intensity-modulate the optical signal of wavelength ⁇ TX1 (step S102). As a result, an optical modulation signal of wavelength ⁇ TX1 is generated.
- the E/O 11-1 outputs the generated optical modulation signal of wavelength ⁇ TX1 to the optical multiplexer 12.
- a control signal is input to the level adjustment section 102 of the aggregation station 10.
- the level adjustment unit 102 adjusts the power level of the control signal and outputs the control signal to the E/O 11-2 (step S103).
- the E/O 11-2 uses the input control signal to intensity-modulate the optical signal of wavelength ⁇ TX2 (step S104). As a result, an optical modulation signal of wavelength ⁇ TX2 is generated.
- the E/O 11-2 outputs the generated optical modulation signal of wavelength ⁇ TX2 to the optical multiplexer 12.
- the control signal input to the E/O 11-2 includes a beam control signal corresponding to the direction in which beam formation is desired at the outgoing station 20, a clock signal, and a TDD signal. A beam control signal corresponding to the direction in which beam formation is desired at the outgoing station 20 is selected by the user.
- the optical multiplexer 12 wavelength-division multiplexes the optical modulation signal with the wavelength ⁇ TX1 output from the E/O 11-1 and the optical modulation signal with the wavelength ⁇ TX2 output from the E/O 11-2 (step S105). ). This generates a wavelength multiplexed signal.
- the optical multiplexer 12 sends the generated wavelength multiplexed signal to the optical transmission line 40 (step S106).
- the wavelength multiplexed signal sent to the optical transmission line 40 is input to the outgoing station 20.
- the optical demultiplexer 21 of the outgoing station 20 demultiplexes the input wavelength multiplexed signal (step S107). Thereby, the wavelength multiplexed signal is demultiplexed into an optical modulation signal with wavelength ⁇ TX1 and an optical modulation signal with wavelength ⁇ TX2 .
- an O/E 22-1 is connected to the output port of the wavelength ⁇ TX1
- an O/E 22-2 is connected to the output port of the wavelength ⁇ TX2 . Therefore, the optical modulation signal with the wavelength ⁇ TX1 is output to the O/E 22-1, and the optical modulation signal with the wavelength ⁇ TX2 is output to the O/E 22-2.
- the O/E 22-1 directly detects the optical modulation signal of wavelength ⁇ TX1 and extracts an electrical signal.
- the O/E 22-1 outputs an electric signal including the extracted IF signal (transmission signal) to the frequency converter 24.
- the O/E 22-2 directly detects the optical modulation signal of wavelength ⁇ TX2 and extracts an electrical signal (step S108). Thereby, the O/E 22-2 outputs an electric signal including the extracted control signal to the demultiplexer 23.
- the demultiplexer 23 demultiplexes the electrical signal output from the O/E 22-2 according to the frequency (step S109). Specifically, the demultiplexer 23 separates the clock signal, beam control signal, and TDD signal included in the electrical signal output from the O/E 22-2 according to the frequency. This separates the clock signal, beam control signal, and TDD signal from the electrical signal.
- the demultiplexing section 23 outputs a clock signal to the frequency conversion section 24 , a beam control signal to the beam forming section 25 , and a TDD signal to the transmission/reception switching section 33 .
- the frequency converter 24 generates an LO signal based on the clock signal output from the demultiplexer 23.
- the frequency converter 24 uses the generated LO signal to convert the frequency of the IF signal (transmission signal) included in the electrical signal output from the O/E 22-1 to the frequency of the RF band (step S110). That is, the frequency converter 24 converts the frequency of the transmission signal.
- the frequency conversion unit 24 outputs the frequency-converted transmission signal to the transmission/reception switching unit 33.
- the transmission/reception switching section 33 switches the connection so that the frequency conversion section 24 and the beam forming section 25 are electrically connected at the transmission timing indicated by the TDD signal. As a result, the frequency-converted transmission signal output from the frequency converter 24 is output to the beam former 25 .
- the beam forming unit 25 forms a beam based on the beam control signal output from the demultiplexing unit 23, and radiates the frequency-converted transmission signal as a wireless signal (step S111).
- a specific operation of the beam forming section 25 will be explained using the beam forming section 25 shown in FIG. 2 as an example.
- the control unit 251 controls the amount of phase rotation adjusted by each of the phase shifters 252-1 to 252-n in accordance with the input beam control signal.
- the phase shifters 252-1 to 252-n adjust the phase of the input transmission signal. At this time, the phase shifters 252-1 to 252-n adjust the phase of the transmission signal under the control of the control unit 251 so as to form a beam in the direction according to the beam control signal input to the control unit 251. .
- the transmission signals whose phases have been adjusted by phase shifters 252-1 to 252-n are output to antennas 253-1 to 253-n.
- the antennas 253-1 to 253-n convert the input transmission signals into radio signals and radiate them.
- the wireless communication system 1 configured as described above, it is possible to perform beamforming control while suppressing signal distortion due to nonlinear optical effects.
- the level adjustment units 101 and 102 make the optical signal including the control signal and the transmission signal into an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber.
- the power level of the control signal and the power level of the transmission signal are adjusted respectively. Thereby, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the wireless communication system 1 configured as described above, it is possible to perform beamforming control while suppressing a decrease in wavelength usage efficiency.
- the central station 10 transmits a control signal including a beam control signal (signal for phase control) for controlling beam formation and a main signal to the outgoing station 20 at different wavelengths. Then, on the outgoing station 20 side, beamforming is performed based on the beam control signal.
- a beam control signal signal for phase control
- beamforming is performed based on the beam control signal.
- one beam control does not require as many fixed optical wavelengths as the number of antenna elements in the outgoing station. In this manner, the wireless communication system 1 can significantly reduce the number of wavelengths required for one-beam control. Therefore, it becomes possible to perform beamforming control while suppressing a decrease in wavelength utilization efficiency.
- the configuration required for the outgoing station 20 to control one beam can be significantly reduced compared to the conventional system. Therefore, it becomes possible to suppress an increase in the cost of the device.
- (Second embodiment) In the first embodiment, a configuration has been described in which the aggregation station converts a transmission signal and a control signal into optical signals of different wavelengths, and then performs wavelength division multiplexing.
- the second embodiment is different from the first embodiment in that the aggregation station frequency-multiplexes the transmission signal and the control signal and transmits them through the optical transmission path using a subcarrier multiplexing (SCM) method.
- SCM subcarrier multiplexing
- FIG. 5 is a diagram showing a configuration example of a wireless communication system 1a in the second embodiment.
- the wireless communication system 1a includes an aggregation station 10a and an outpost station 20a.
- the aggregating station 10a and the outgoing station 20a are connected via an optical transmission line 40.
- the aggregating station 10a remotely controls the beam forming of the outgoing station 20a using a multiplexed signal generated by frequency multiplexing the transmission signal and the control signal.
- the aggregating station 10a remotely controls the beam forming of the outgoing station 20a using analog RoF technology.
- the aggregation station 10a includes level adjustment sections 103 and 104, an E/O 11a, and a multiplexing section 13.
- a transmission signal is input to the level adjustment section 103.
- Level adjustment section 103 adjusts the power level of the transmission signal and outputs the transmission signal to multiplexing section 13 .
- a control signal is input to the level adjustment section 104.
- the control signals input to the level adjustment section 104 include a beam control signal, a clock signal, and a TDD signal.
- Level adjustment section 104 adjusts the power level of the control signal and outputs the control signal to multiplexing section 13 .
- the level adjustment units 103 and 104 adjust the level adjustment units 103 and 104 within a range that the E/O 11a can receive, in order to make the optical signal including the control signal and the transmission signal into an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber.
- the power level of the control signal and the power level of the transmission signal are adjusted respectively. Since the transmission signal is an analog signal and the control signal is a digital signal, the transmission signal has a higher SNR, so the power level of the transmission signal is adjusted to a higher power level compared to the power level of the control signal. . By doing so, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the adjusted transmission signal and the adjusted control signal are input to the multiplexing unit 13.
- the control signals input to the multiplexer 13 include a beam control signal, a clock signal, and a TDD signal.
- the multiplexer 13 generates a multiplexed signal by frequency multiplexing the input transmission signal and control signal.
- the multiplexer 13 outputs the generated multiplexed signal to the E/O 11a.
- the E/O 11a uses the input multiplexed signal to intensity modulate the optical signal of wavelength ⁇ TX . Thereby, the E/O 11a generates an optical modulation signal of wavelength ⁇ TX . The E/O 11a sends the generated optical modulation signal of wavelength ⁇ TX to the optical transmission line 40.
- the outgoing station 20a includes an O/E 22a, a demultiplexing section 23, a frequency conversion section 24, a beam forming section 25, a demultiplexing section 26, and a transmission/reception switching section 33. Note that the outgoing station 20a does not need to include the frequency converter 24 when the aggregation station 10a transmits an RF signal as a transmission signal.
- the outgoing station 20a includes the frequency converter 24, assuming that the aggregating station 10a transmits an IF signal as a transmission signal.
- the O/E 22a is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ TX transmitted from the central station 10a and extracts an electrical signal.
- the optical modulation signal of wavelength ⁇ TX includes a transmission signal and a control signal. Therefore, the O/E 22a outputs an electrical signal including a transmission signal and a control signal to the demultiplexer 26.
- the demultiplexer 26 demultiplexes the electrical signal output from the O/E 22a according to the frequency. Thereby, the transmission signal and the control signal are separated.
- the demultiplexer 26 outputs the transmission signal to the frequency converter 24 and outputs the control signal to the demultiplexer 23. Note that the demultiplexing section 26 outputs the transmission signal to the beam forming section 25 when the outgoing station 20a is not equipped with the frequency conversion section 24.
- the processing of the demultiplexing unit 23, frequency conversion unit 24, and beam forming unit 25 is the same as that in the first embodiment, so the description thereof will be omitted.
- FIG. 6 is a sequence diagram showing the flow of processing of the wireless communication system 1a in the second embodiment. Note that in FIG. 6, an example will be described in which an IF signal is input as a transmission signal to the aggregation station 10a. In FIG. 6, the same processes as in FIG. 4 are given the same reference numerals as in FIG. 4, and the description thereof will be omitted.
- An IF signal (transmission signal) is input to the level adjustment section 103 of the aggregation station 10.
- the level adjustment section 103 adjusts the power level of the IF signal (transmission signal) and outputs the transmission signal to the multiplexing section 13 (step S201).
- a control signal is input to the level adjustment section 104 of the aggregation station 10.
- the level adjustment section 104 adjusts the power level of the control signal and outputs the control signal to the multiplexing section 13 (step S202).
- the multiplexing unit 13 of the central station 10a receives the adjusted IF signal (transmission signal) and the adjusted control signal as input.
- the multiplexer 13 frequency-multiplexes the input IF signal (transmission signal) and control signal (step S203). This generates multiplexed signals.
- the control signal input to the multiplexing unit 13 includes a beam control signal corresponding to the direction in which beam formation is desired at the outgoing station 20a, and a clock signal.
- a beam control signal corresponding to the direction in which beam formation is desired at the outgoing station 20a is selected by the user.
- the multiplexer 13 outputs the generated multiplexed signal to the E/O 11a.
- the E/O 11a intensity-modulates the optical signal of wavelength ⁇ TX using the multiplexed signal output from the multiplexer 13 (step S204). As a result, an optical modulation signal of wavelength ⁇ TX is generated.
- the E/O 11a sends the generated optical modulation signal of wavelength ⁇ TX to the optical transmission path 40 (step S205).
- the optical modulation signal sent to the optical transmission line 40 is input to the outgoing station 20a.
- the O/E 22a of the outgoing station 20a directly detects the input optical modulation signal and extracts the electrical signal (step S206).
- the O/E 22a outputs the extracted electrical signal to the demultiplexer 26.
- the demultiplexer 26 demultiplexes the electrical signal output from the O/E 22a according to the frequency (step S207). Specifically, the demultiplexer 26 separates the transmission signal and control signal included in the electrical signal output from the O/E 22a according to frequency. This separates the transmission signal and control signal.
- the demultiplexer 26 outputs the transmission signal to the frequency converter 24 and outputs the control signal to the demultiplexer 23. After that, the processing from step S109 onwards is executed.
- the wireless communication system 1a configured as above, it is possible to perform beamforming control while suppressing signal distortion due to nonlinear optical effects.
- the level adjustment units 103 and 104 make the optical signal including the control signal and the transmission signal an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber.
- the power level of the control signal and the power level of the transmission signal are adjusted respectively. Thereby, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the wireless communication system 1a configured as described above, even when the transmission signal and the control signal are frequency multiplexed, beamforming can be performed on the outgoing station 20a side based on the beam control signal. .
- This makes it possible to realize remote beamforming using only one wavelength. Therefore, unlike the conventional technique, one beam control does not require as many fixed optical wavelengths as the number of antenna elements in the outgoing station. In this way, in the wireless communication system 1a, the number of wavelengths required for one beam control can be significantly reduced. Therefore, it becomes possible to perform beamforming control while suppressing a decrease in wavelength utilization efficiency.
- the third embodiment differs from the second embodiment in that the LO signal is transmitted from the aggregation station. In the third embodiment, differences from the second embodiment will be mainly explained.
- FIG. 7 is a diagram showing a configuration example of a wireless communication system 1b in the third embodiment.
- the wireless communication system 1b includes an aggregation station 10b and an outpost station 20b.
- the aggregating station 10b and the outgoing station 20b are connected via an optical transmission line 40.
- the concentrating station 10b remotely controls the beam forming of the outgoing station 20b using a multiplexed signal generated by frequency multiplexing the transmission signal, control signal, and LO signal.
- the aggregation station 10b remotely controls the beam forming of the outgoing station 20b using analog RoF technology.
- the aggregation station 10b includes level adjustment sections 105, 106, and 107, an E/O 11a, and a multiplexing section 13b.
- a transmission signal is input to level adjustment section 105 .
- the transmission signal input to level adjustment section 105 is an IF signal.
- Level adjustment section 105 adjusts the power level of the transmission signal and outputs the transmission signal to multiplexing section 13b.
- the LO signal is input to the level adjustment section 106.
- the level adjustment section 106 adjusts the power level of the LO signal and outputs a control signal to the multiplexing section 13b.
- a control signal is input to the level adjustment section 107.
- the control signals input to the level adjustment section 107 include a beam control signal and a TDD signal.
- the level adjustment section 107 adjusts the power level of the control signal and outputs the control signal to the multiplexing section 13b.
- the adjusted transmission signal, the adjusted control signal, and the adjusted LO signal are input to the multiplexer 13b.
- the multiplexer 13b generates a multiplexed signal by frequency multiplexing the input transmission signal, control signal, and LO signal.
- the multiplexer 13b outputs the generated multiplexed signal to the E/O 11a.
- the outgoing station 20b includes an O/E 22b, a demultiplexing section 23b, a frequency conversion section 24b, a beam forming section 25, a demultiplexing section 26b, and a transmission/reception switching section 33.
- the O/E 22b is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ TX transmitted from the central station 10b and extracts an electrical signal.
- the optical modulation signal of wavelength ⁇ TX transmitted from the central station 10b includes a transmission signal, a control signal, and an LO signal. Therefore, the O/E 22b outputs an electrical signal including a transmission signal, a control signal, and an LO signal to the demultiplexer 26b.
- the demultiplexer 26b demultiplexes the electrical signal extracted by the O/E 22b according to the frequency. Specifically, the demultiplexer 26b separates the transmission signal, control signal, and LO signal included in the electrical signal extracted by the O/E 22b according to frequency. This separates the transmission signal, control signal, and LO signal. The demultiplexer 26b outputs the transmission signal and the LO signal to the frequency converter 24b, and outputs the control signal to the demultiplexer 23b.
- the demultiplexer 23b demultiplexes the control signal output by the demultiplexer 26b according to the frequency. Thereby, the demultiplexer 23b separates the beam control signal (STi in FIG. 7) and the TDD signal from the control signal.
- the demultiplexing section 23b outputs the beam control signal to the beam forming section 25 and outputs the TDD signal to the transmission/reception switching section 33.
- the frequency converter 24b converts the frequency of the transmission signal (IF signal) output from the demultiplexer 26b into a signal with a frequency in the RF band (RF signal) using the LO signal output from the demultiplexer 26b. .
- the processing of the beam forming section 25 and the transmission/reception switching section 33 is the same as that of the second embodiment, so the description thereof will be omitted.
- FIG. 8 is a sequence diagram showing the flow of processing of the wireless communication system 1b in the third embodiment.
- the same processes as in FIG. 6 are given the same reference numerals as in FIG. 6, and the description thereof will be omitted.
- An IF signal (transmission signal) is input to the level adjustment section 105 of the aggregation station 10b.
- the level adjustment section 105 adjusts the power level of the IF signal (transmission signal) and outputs the transmission signal to the multiplexing section 13b (step S301).
- the LO signal is input to the level adjustment section 106 of the aggregation station 10b.
- the level adjustment section 106 adjusts the power level of the LO signal and outputs the LO signal to the multiplexing section 13b (step S302).
- a control signal is input to the level adjustment section 107 of the aggregation station 10b.
- the level adjustment section 107 adjusts the power level of the control signal and outputs the control signal to the multiplexing section 13b (step S303).
- the multiplexing unit 13b frequency-multiplexes the input IF signal (transmission signal), control signal, and LO signal (step S304). This generates multiplexed signals.
- the control signals input to the multiplexing unit 13b include a beam control signal and a TDD signal depending on the direction in which beam formation is desired at the outgoing station 20b. Unlike the second embodiment, the control signal does not include a clock signal. A beam control signal corresponding to the direction in which beam formation is desired at the outgoing station 20b is selected by the user.
- the multiplexer 13b outputs the generated multiplexed signal to the E/O 11a.
- the E/O 11a intensity-modulates the optical signal of wavelength ⁇ TX using the multiplexed signal output from the multiplexer 13b (step S305). As a result, an optical modulation signal of wavelength ⁇ TX is generated.
- the E/O 11a sends the generated optical modulation signal of wavelength ⁇ TX to the optical transmission path 40 (step S306).
- the optical modulation signal sent to the optical transmission line 40 is input to the outgoing station 20b.
- the O/E 22b of the outgoing station 20b directly detects the input optical modulation signal and extracts the electrical signal (step S307).
- the O/E 22b outputs an electrical signal including an IF signal (transmission signal), a control signal, and an LO signal to the demultiplexer 26b.
- the demultiplexer 26b demultiplexes the electrical signal output from the O/E 22b according to the frequency (step S308). Specifically, the demultiplexer 26b separates the transmission signal, clock signal, and LO signal included in the electrical signal output from the O/E 22b according to the frequency.
- the demultiplexer 26b outputs the transmission signal and the LO signal to the frequency converter 24b, and outputs the control signal to the demultiplexer 23b.
- the demultiplexer 23b separates the beam control signal and the TDD signal from the control signal output from the demultiplexer 26b.
- the demultiplexing section 23b outputs the beam control signal to the beam forming section 25 and outputs the TDD signal to the transmission/reception switching section 33.
- the frequency converter 24b converts the frequency of the IF signal (transmission signal) output from the demultiplexer 26b to the frequency of the RF band using the LO signal output from the demultiplexer 26b (step S309). That is, the frequency converter 24b converts the frequency of the transmission signal.
- the frequency conversion unit 24b outputs the frequency-converted transmission signal to the transmission/reception switching unit 33.
- the transmission/reception switching section 33 switches the connection so that the frequency conversion section 24b and the beam forming section 25 are electrically connected at the transmission timing indicated by the TDD signal. As a result, the frequency-converted transmission signal output from the frequency conversion section 24b is output to the beam forming section 25. After that, the process of step S111 is performed.
- the wireless communication system 1b configured as described above, it is possible to perform beamforming control by transmitting multiple signals in a power range in which distortion due to nonlinear optical effects does not occur.
- the level adjustment units 105 and 107 make the optical signal including the control signal and the transmission signal an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber.
- the power level of the control signal and the power level of the transmission signal are each adjusted within a range that can be received by the E/O 11a. Thereby, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the aggregation station 10b transmits an optical signal including the LO signal, which is a signal for frequency conversion, to the outgoing station 20b.
- the configuration of the outgoing station 20b can be made simpler than in the second embodiment.
- a larger number of outgoing stations 20b are installed compared to the aggregating stations 10b. Therefore, by simplifying the outgoing station 20b and reducing costs, a significant cost reduction is expected. Therefore, the same effects as in the second embodiment can be obtained, and the cost for realizing the system can be reduced more than in the second embodiment.
- FIG. 9 is a diagram showing a configuration example of a wireless communication system 1c in the fourth embodiment.
- the wireless communication system 1c includes an aggregation station 10c and an outgoing station 20c.
- the aggregating station 10c and the outgoing station 20c are connected via an optical transmission line 40.
- the aggregation station 10c remotely controls the beam forming of the outbound station 20c by transmitting a control signal to the outbound station 20c.
- the aggregation station 10c remotely controls the beam forming of the outgoing station 20c using analog RoF technology.
- the aggregation station 10c receives the reception signal received by the outgoing station 20c.
- the outgoing station 20c performs beam forming based on the control signal transmitted from the aggregation station 10c.
- the outgoing station 20c receives a wireless signal transmitted from an external device located in the direction in which the beam was formed.
- the external device is, for example, a wireless device with which the outgoing station 20c communicates.
- the wireless signal received by the outgoing station 20c is an RF band signal.
- the outgoing station 20c may transmit the received signal in the RF band to the aggregation station 10c, or may convert the frequency of the received signal in the RF band to the frequency in the IF band and transmit it to the aggregation station 10c.
- the outgoing station 20c converts the received signal in the RF band or the IF band and the response signal into optical signals of different wavelengths, and aggregates wavelength multiplexed signals generated by wavelength division multiplexing the optical signals of different wavelengths. It is transmitted to station 10c.
- the response signal is a signal for notifying information regarding the beam forming section 27.
- the response signal includes status information indicating the current settings of the antenna 253 or 256 provided in the beam forming section 27.
- the outgoing station 20c includes an O/E 22, a demultiplexing section 23, a beam forming section 27, a frequency conversion section 28, level adjustment sections 108 and 109, a plurality of E/Os 29-1 to 29-2, and an optical combiner. It includes a demultiplexing section 30 and a transmission/reception switching section 33.
- the processing of the O/E 22 and the demultiplexer 23 is the same as that of the O/E 22-2 and the demultiplexer 23 in the first embodiment. Note that the outgoing station 20c does not need to include the frequency converter 28 when transmitting an RF signal as a received signal to the aggregation station 10c.
- the outgoing station 20c is equipped with the frequency converter 28, assuming that the outgoing station 20c transmits an IF signal as a received signal to the aggregation station 10c.
- the transmission/reception switching section 33 may be configured integrally with the frequency conversion section 28 or may be provided within the beam forming section 27.
- the beam forming section 27 has the same configuration as the beam forming section 25. That is, the beam forming unit 27 forms a beam according to the beam control signal included in the control signal transmitted from the aggregation station 10c.
- the beam forming unit 27 receives a wireless signal transmitted from an external device located in the direction in which the beam is formed.
- the beam forming section 27 converts the received wireless signal into an electrical signal and outputs it to the transmission/reception switching section 33 .
- the beam forming section 27 may output a response signal.
- the response signal output from the beam forming section 27 is input to the level adjustment section 109.
- the level adjustment unit 109 adjusts the power level of the response signal and outputs the response signal to the E/O 29-2.
- the transmission/reception switching section 33 in the fourth embodiment switches the connection so that the frequency conversion section 28 and the beam forming section 27 are electrically connected at the reception timing indicated by the TDD signal.
- the received signal output from the beam forming section 27 is output to the frequency conversion section 28 .
- the transmission/reception switching section 33 switches the connection so that the beam forming section 27 and the frequency conversion section used for transmission are electrically connected at the transmission timing indicated by the TDD signal.
- the frequency conversion section 28 converts the frequency of the received signal (RF signal) outputted via the transmission/reception switching section 33 into an IF band using the LO signal generated based on the clock signal outputted from the demultiplexing section 23. Convert to a frequency signal (IF signal).
- the received signal is input to the level adjustment section 108.
- the received signal (IF signal) after frequency conversion is input to the level adjustment section 108.
- a received signal (RF signal) is input to the level adjustment section 108.
- Level adjustment section 108 adjusts the power level of the received signal and outputs a response signal to E/O 29-2.
- the level adjustment units 108 and 109 adjust the power level of the received signal and the power level of the response signal so that the optical signal including the received signal and the response signal is an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber. and adjust each. By doing so, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the adjusted received signal is input to the E/O 29-1.
- the E/O 29-1 uses the input received signal to intensity modulate the optical signal of wavelength ⁇ RX1 .
- the E/O 29-1 generates an optical modulation signal of wavelength ⁇ RX1 .
- the adjusted response signal is input to the E/O 29-2.
- the E/O 29-2 uses the input response signal to intensity-modulate the optical signal of wavelength ⁇ RX2 .
- the E/O 29-2 generates an optical modulation signal of wavelength ⁇ RX2 .
- the optical multiplexing/demultiplexing section 30 multiplexes or demultiplexes input optical signals. Specifically, the optical multiplexer/demultiplexer 30 demultiplexes the optical signal transmitted via the optical transmission line 40.
- the optical multiplexer/demultiplexer 30 receives an optically modulated signal of wavelength ⁇ TX2 transmitted from the central station 10c.
- the optical modulation signal of wavelength ⁇ TX2 includes, for example, a beam control signal and a clock signal.
- the optical multiplexer/demultiplexer 30 outputs an optical modulation signal of wavelength ⁇ TX2 to the O/E 22.
- the optical multiplexing/demultiplexing unit 30 multiplexes the optical modulation signal with the wavelength ⁇ RX1 generated by the E/O 29-1 and the optical modulation signal with the wavelength ⁇ RX2 generated by the E/O 29-2. Specifically, the optical multiplexing/demultiplexing unit 30 wavelength-divides the optical modulation signal of the wavelength ⁇ RX1 generated by the E/O 29-1 and the optical modulation signal of the wavelength ⁇ RX2 generated by the E/O 29-2. By multiplexing, a wavelength multiplexed signal is generated. The optical multiplexer/demultiplexer 30 outputs the generated wavelength multiplexed signal to the central station 10c via the optical transmission line 40.
- the aggregation station 10c includes an E/O 11, an optical multiplexing/demultiplexing section 14, and a plurality of O/Es 15-1 to 15-2.
- the processing of the E/O 11 is similar to that of the E/O 11-2 in the first embodiment.
- the optical multiplexer/demultiplexer 14 multiplexes or demultiplexes input optical signals. Specifically, the optical multiplexing/demultiplexing unit 14 multiplexes the optical modulation signals of wavelength ⁇ TX2 generated by the E/O 11. In the example shown in FIG. 9, only the optically modulated signal of wavelength ⁇ TX2 is input to the optical multiplexer/demultiplexer 14 as a signal transmitted by the central station 10c. Therefore, the optical multiplexer/demultiplexer 14 outputs the input optical modulation signal of wavelength ⁇ TX2 to the outgoing station 20c via the optical transmission line 40.
- the optical multiplexer/demultiplexer 14 demultiplexes the optical signal transmitted via the optical transmission line 40.
- the optical multiplexer/demultiplexer 14 receives a wavelength multiplexed signal transmitted from the outgoing station 20c.
- the optical multiplexing/demultiplexing unit 14 demultiplexes the wavelength multiplexed signal into an optical modulation signal of wavelength ⁇ RX1 and an optical modulation signal of wavelength ⁇ RX2 .
- the optical multiplexing/demultiplexing unit 14 outputs an optical modulation signal with a wavelength ⁇ RX1 to the O/E 15-1, and outputs an optical modulation signal with a wavelength ⁇ RX2 to the O/E 15-2.
- O/E15-1 is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ RX1 and extracts an electrical signal.
- the optically modulated signal of wavelength ⁇ RX1 includes a received signal.
- O/E 15-2 is a direct detection unit that directly detects the optical modulation signal of wavelength ⁇ RX2 and extracts an electrical signal.
- the optical modulation signal of wavelength ⁇ RX2 includes a response signal.
- FIG. 10 is a sequence diagram showing the flow of processing of the wireless communication system 1c in the fourth embodiment. It is assumed that, at the start of the process in FIG. 10, beam forming control is being performed on the outgoing station 20c by the aggregating station 10c. For example, in the process of FIG. 10, it is assumed that a beam is formed in a direction corresponding to the beam control signal S Ti .
- the beam forming unit 27 of the outgoing station 20c receives, via the antenna 253-i or 256-i, a wireless signal transmitted from an external device located in the direction corresponding to the beam control signal S Ti (step S401). .
- the beam forming section 27 converts the received wireless signal into an electrical signal and outputs it to the transmission/reception switching section 33 .
- the beam forming unit 27 outputs an electrical signal from a port corresponding to the port that received the wireless signal (for example, a port to which the antenna 253-i or 256-i is directly or indirectly connected).
- the transmission/reception switching section 33 switches the connection so that the frequency conversion section 28 and the beam forming section 27 are electrically connected at the reception timing indicated by the TDD signal. Thereby, the electrical signal output from the beam forming section 27 is output to the frequency converting section 28.
- the frequency converter 28 generates an LO signal based on the clock signal output from the demultiplexer 23.
- the frequency conversion unit 28 uses the generated LO signal to convert the frequency of the electrical signal (received signal) outputted via the transmission/reception switching unit 33 to the frequency of the IF band (step S402). That is, the frequency converter 28 converts the frequency of the received signal.
- Frequency converter 28 outputs the frequency-converted received signal to level adjuster 108 .
- the level adjustment unit 108 adjusts the power level of the received signal (step S403), and outputs the transmitted signal to the E/O 29-1.
- the E/O 29-1 inputs the adjusted received signal output from the level adjustment section 108.
- the E/O 29-1 uses the input adjusted reception signal to intensity-modulate the optical signal of wavelength ⁇ RX1 (step S404). As a result, an optical modulation signal of wavelength ⁇ RX1 is generated.
- the E/O 29-1 outputs the generated optical modulation signal of wavelength ⁇ RX1 to the optical multiplexing/demultiplexing section 30.
- the level adjustment section 109 When the response signal is output from the beam forming section 27, the level adjustment section 109 inputs the response signal output from the beam forming section 27.
- the level adjustment unit 109 adjusts the power level of the response signal (step S405) and outputs the transmission signal to the E/O 29-1.
- the E/O 29-2 receives the response signal output from the level adjustment section 109 as input.
- the E/O 29-2 uses the input response signal to intensity-modulate the optical signal of wavelength ⁇ RX2 (step S406). As a result, an optical modulation signal of wavelength ⁇ RX2 is generated.
- the E/O 29-2 outputs the generated optical modulation signal of wavelength ⁇ RX2 to the optical multiplexing/demultiplexing section 30.
- the optical multiplexing / demultiplexing unit 30 wavelength division multiplexes the optical modulation signal of wavelength ⁇ R X1 outputted from E/O 29-1 and the optical modulation signal of wavelength ⁇ R S407). This generates a wavelength multiplexed signal.
- the optical multiplexer/demultiplexer 30 sends the generated wavelength multiplexed signal to the optical transmission line 40 (step S408).
- the wavelength multiplexed signal sent out to the optical transmission line 40 is input to the aggregation station 10c.
- the optical multiplexer/demultiplexer 14 of the central station 10c demultiplexes the input wavelength multiplexed signal (step S409). Thereby, the wavelength multiplexed signal is demultiplexed into an optical modulation signal with wavelength ⁇ RX1 and an optical modulation signal with wavelength ⁇ RX2 .
- an O/E 15-1 is connected to the output port of the wavelength ⁇ RX1
- an O/E 15-2 is connected to the output port of the wavelength ⁇ RX2 . Therefore, the optical modulation signal with wavelength ⁇ RX1 is output to O/E 15-1, and the optical modulation signal with wavelength ⁇ RX2 is output to O/E 15-2.
- the O/E 15-1 directly detects the optical modulation signal of wavelength ⁇ RX1 and extracts an electrical signal. As a result, the O/E 15-1 extracts the IF signal (received signal).
- the O/E 15-2 directly detects the optical modulation signal of wavelength ⁇ RX2 and extracts an electrical signal (step S410). As a result, the O/E 15-2 takes out the response signal.
- the same effects as in the first embodiment can be obtained also in the up direction.
- the wireless communication system 1c may combine the techniques of the wireless communication system 1 in the first embodiment in downlink communication.
- the aggregation station 10c includes a configuration for downstream communication (for example, a plurality of E/Os 11-1 to 11-2 instead of the E/O 11).
- the outgoing station 20c includes a configuration for downstream communication (for example, a plurality of O/Es 22-1 to 22-2 instead of the O/E 22).
- the frequency converter 28 performs the same processing as the frequency converter 24 during downlink communication.
- the beam forming section 27 performs the same processing as the beam forming section 25 during downstream communication.
- the outgoing station 20c does not include the transmission/reception switching section 33. Such a configuration enables bidirectional communication in the up and down directions even in the frequency division duplex (FDD) system.
- FDD frequency division duplex
- (Fifth embodiment) In the fourth embodiment, a configuration has been described in which the outgoing station converts the received signal and the response signal into optical signals of different wavelengths, and then performs wavelength division multiplexing.
- the fifth embodiment differs from the fourth embodiment in that the outgoing station frequency-multiplexes the received signal and response signal. In the fifth embodiment, differences from the fourth embodiment will be mainly explained.
- FIG. 11 is a diagram showing a configuration example of a wireless communication system 1d in the fifth embodiment.
- the wireless communication system 1d includes an aggregation station 10d and an outpost station 20d.
- the aggregating station 10d and the outgoing station 20d are connected via an optical transmission line 40.
- the concentrating station 10d remotely controls the beam forming of the outgoing station 20d by transmitting a control signal to the outgoing station 20d.
- the concentrating station 10d remotely controls the beam forming of the outgoing station 20d using analog RoF technology.
- the aggregation station 10d receives the reception signal received by the outgoing station 20d.
- the outgoing station 20d performs beam forming based on the control signal transmitted from the aggregation station 10d.
- the outgoing station 20d receives a wireless signal transmitted from an external device located in the direction in which the beam was formed.
- the wireless signal received by the outgoing station 20d is an RF band signal.
- the outgoing station 20d may transmit the received signal in the RF band to the aggregation station 10d, or may convert the frequency of the received signal in the RF band to the frequency in the IF band and transmit it to the aggregation station 10d.
- the outgoing station 20d converts a multiplexed signal generated by frequency multiplexing the received signal in the RF band or the IF band and the response signal into an optical signal, and transmits the optical signal to the aggregation station 10d.
- the outgoing station 20d includes an O/E 22d, a demultiplexing section 23, a beam forming section 27, a frequency conversion section 28, level adjustment sections 110 and 111, an E/O 29d, an optical multiplexing/demultiplexing section 30d, and a multiplexing section 20d. section 31, a demultiplexing section 32, and a transmission/reception switching section 33.
- the outgoing station 20d does not need to include the frequency converter 28 when transmitting an RF signal as a received signal to the aggregation station 10d.
- the outgoing station 20d is provided with the frequency converter 28, assuming that the outgoing station 20d transmits an IF signal as a received signal to the aggregation station 10d.
- the O/E 22d is a direct detection unit that directly detects an optical modulation signal of wavelength ⁇ TX and extracts an electrical signal. Thereby, the O/E 22d takes out at least the control signal. The O/E 22d outputs a control signal to the demultiplexer 32.
- the demultiplexer 32 demultiplexes the signal extracted by the O/E 22d according to the frequency. For example, the demultiplexer 32 separates the control signal and other signals from the signal extracted by the O/E 22d. The demultiplexer 32 outputs the control signal to the demultiplexer 23. In the aggregation station 10d, there is a possibility that the control signal and other signals are multiplexed by the multiplexer 16. Therefore, it is necessary to separate the control signal from other signals at the outgoing station 20d. Therefore, in this embodiment, the demultiplexer 32 has a function of separating the control signal and other signals.
- a received signal is input to the level adjustment section 110.
- the received signal input to the level adjustment section 110 is a received signal in the RF band received by the beam forming section 27 or a received signal frequency-converted to a frequency in the IF band by the frequency conversion section 28.
- Level adjustment section 110 adjusts the power level of the received signal and outputs the received signal to multiplexing section 31 .
- a response signal is input to the level adjustment section 111.
- the level adjustment section 111 adjusts the power level of the response signal and outputs the response signal to the multiplexing section 31 .
- the level adjustment units 110 and 111 adjust the power level of the received signal and the power level of the control signal so that the optical signal including the received signal and the response signal is an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber. and adjust each. Thereby, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the adjusted reception signal and the adjusted response signal are input to the multiplexer 31.
- the multiplexer 31 generates a multiplexed signal by frequency multiplexing the input received signal and response signal.
- the multiplexer 31 outputs the generated multiplexed signal to the E/O 29d.
- the E/O 29d uses the input multiplexed signal to intensity modulate the optical signal of wavelength ⁇ RX . Thereby, the E/O 29d generates an optical modulation signal of wavelength ⁇ RX . The E/O 29d sends the generated optical modulation signal of wavelength ⁇ RX to the optical multiplexer/demultiplexer 30d.
- the optical multiplexer/demultiplexer 30d multiplexes or demultiplexes input optical signals. Specifically, the optical multiplexer/demultiplexer 30d demultiplexes the optical signal transmitted via the optical transmission line 40.
- an optical modulation signal having a wavelength ⁇ TX transmitted from the central station 10d is input to the optical multiplexing/demultiplexing unit 30d.
- the optical modulation signal of wavelength ⁇ TX includes, for example, a beam control signal and a clock signal.
- the optical multiplexer/demultiplexer 30d outputs an optical modulation signal of wavelength ⁇ TX to the O/E 22d.
- the optical multiplexing/demultiplexing unit 30d multiplexes the optical modulation signal of wavelength ⁇ RX generated by the E/O 29d.
- the optical multiplexer/demultiplexer 30d outputs the input optical modulated signal of wavelength ⁇ RX to the central station 10d via the optical transmission line 40.
- the central station 10d includes an E/O 11a, an optical multiplexing/demultiplexing section 14d, an O/E 15d, a multiplexing section 16, and a demultiplexing section 17.
- At least a control signal is input to the multiplexer 16.
- the control signals input to the multiplexer 16 include a beam control signal, a clock signal, and a TDD signal.
- the multiplexer 16 generates a multiplexed signal by frequency multiplexing the input control signals. Note that, similarly to the second embodiment, when a transmission signal and a control signal are input to the multiplexing unit 16, the multiplexing unit 16 frequency-multiplexes the input transmission signal and control signal to generate a multiplexed signal. generate.
- the multiplexer 16 outputs the generated multiplexed signal to the E/O 11a. Note that the power level of the control signal input to the multiplexer 16 may be adjusted as necessary.
- the optical multiplexing/demultiplexing section 14d multiplexes or demultiplexes input optical signals. Specifically, the optical multiplexing/demultiplexing unit 14d multiplexes the optical modulation signals of the wavelength ⁇ TX generated by the E/O 11a. In the example shown in FIG. 11, only the optically modulated signal of wavelength ⁇ TX is input to the optical multiplexer/demultiplexer 14d as a signal transmitted by the central station 10d. Therefore, the optical multiplexer/demultiplexer 14d outputs the input optical modulation signal of wavelength ⁇ TX to the outgoing station 20d via the optical transmission line 40.
- the optical multiplexer/demultiplexer 14d demultiplexes the optical signal transmitted via the optical transmission line 40.
- an optical modulation signal having a wavelength ⁇ RX transmitted from the outgoing station 20d is input to the optical multiplexing/demultiplexing unit 14d.
- the optical multiplexer/demultiplexer 14d outputs an optical modulation signal of wavelength ⁇ RX to the O/E 15d.
- the O/E 15d is a direct detection unit that directly detects an optical modulation signal of wavelength ⁇ RX and extracts an electrical signal. As a result, the O/E 15-1d extracts the received signal and response signal.
- the demultiplexer 17 demultiplexes the received signal and response signal output from the O/E 15d according to the frequency. Thereby, the received signal and the response signal are separated.
- FIG. 12 is a sequence diagram showing the flow of processing of the wireless communication system 1d in the fifth embodiment. It is assumed that, at the start of the process in FIG. 12, beam forming control is being performed by the central station 10d for the outgoing station 20d. For example, in the process of FIG. 12, it is assumed that a beam is formed in a direction corresponding to the beam control signal S Ti .
- the beam forming unit 27 of the outgoing station 20d receives, via the antenna 253-i or 256-i, a wireless signal transmitted from an external device located in the direction corresponding to the beam control signal S Ti (step S501). .
- the beam forming section 27 converts the received wireless signal into an electrical signal and outputs it to the transmission/reception switching section 33 .
- the beam forming unit 27 outputs an electrical signal from a port corresponding to the port that received the wireless signal (for example, a port to which the antenna 253-i or 256-i is directly or indirectly connected).
- the beam forming section 27 outputs a response signal to the level adjusting section 111 as necessary.
- the transmission/reception switching section 33 switches the connection so that the frequency conversion section 28 and the beam forming section 27 are electrically connected at the reception timing indicated by the TDD signal. Thereby, the electrical signal output from the beam forming section 27 is output to the frequency converting section 28.
- the frequency converter 28 generates an LO signal based on the clock signal output from the demultiplexer 23.
- the frequency conversion unit 28 uses the generated LO signal to convert the frequency of the electrical signal (received signal) outputted via the transmission/reception switching unit 33 to the frequency of the IF band (step S502). That is, the frequency converter 28 converts the frequency of the received signal.
- the frequency converter 28 outputs the frequency-converted received signal to the level adjuster 110.
- the level adjustment section 110 adjusts the power level of the received signal (step S503), and outputs the received signal to the multiplexing section 31.
- the level adjustment section 111 adjusts the power level of the response signal (step S504), and outputs the response signal to the multiplexing section 31.
- the multiplexer 31 frequency-multiplexes the adjusted received signal and the adjusted response signal (step S505). This generates multiplexed signals.
- the multiplexer 31 outputs the generated multiplexed signal to the E/O 29d.
- the E/O 29d receives the multiplexed signal output from the multiplexer 31 as input.
- the E/O 29d uses the input multiplexed signal to intensity-modulate the optical signal of wavelength ⁇ RX (step S506). As a result, an optical modulation signal of wavelength ⁇ RX is generated.
- the E/O 29d outputs the generated optical modulation signal of wavelength ⁇ RX to the optical multiplexing/demultiplexing section 30d.
- the optical multiplexing/demultiplexing section 30d receives the optical modulation signal of wavelength ⁇ RX output from the E/O 29 as input.
- the optical multiplexer/demultiplexer 30d sends the input optical modulation signal of wavelength ⁇ RX to the optical transmission path 40 (step S507).
- the optically modulated signal of wavelength ⁇ RX sent out to the optical transmission line 40 is input to the central station 10d.
- the optical multiplexer/demultiplexer 14d of the central station 10d demultiplexes the input optical modulated signal of wavelength ⁇ RX (step S508). As a result, the optical modulation signal of wavelength ⁇ RX is output to the O/E 15d.
- the O/E 15d directly detects the optical modulation signal of wavelength ⁇ RX and extracts an electrical signal. Thereby, the O/E 15d extracts the IF signal (received signal) and response signal (step S509).
- the O/E 15d outputs an IF signal (received signal) and a response signal to the demultiplexer 17.
- the demultiplexer 17 demultiplexes the IF signal (received signal) output from the O/E 15d and the response signal according to the frequency (step S510). Thereby, the demultiplexer 17 separates the IF signal (received signal) and the response signal.
- the same effects as in the second embodiment can be obtained also in the up direction.
- the wireless communication system 1d may combine the techniques of the wireless communication system 1a in the second embodiment in downlink communication.
- the adjusted transmission signal and the adjusted control signal are input to the multiplexing unit 16 of the central station 10d, as in the second embodiment, and the input transmission signal and control signal are Frequency multiplexed.
- the electrical signal output from the O/E 22d is input to the branching unit 32 of the outgoing station 20d, and the input electrical signal is separated into a control signal and other signals (for example, a transmission signal).
- the demultiplexer 32 outputs the control signal to the demultiplexer 23 and other signals to the frequency converter 28.
- the frequency converter 28 performs the same processing as the frequency converter 24 during downlink communication.
- the beam forming section 27 performs the same processing as the beam forming section 25 during downstream communication.
- the technology of the wireless communication system 1a and the wireless communication system 1d are combined to perform bidirectional communication using the frequency division duplexing (FDD) method, different frequencies are used in the upstream and downstream directions, and the The station 20d does not include a transmission/reception switching section 33.
- FDD frequency division duplexing
- FIG. 13 is a diagram showing a configuration example of a wireless communication system 1e in the sixth embodiment.
- the wireless communication system 1e includes an aggregation station 10e and an outpost station 20e.
- the aggregating station 10e and the outgoing station 20e are connected via an optical transmission line 40.
- the concentrating station 10e remotely controls the beam forming of the outgoing station 20e using a multiplexed signal generated by frequency multiplexing at least the control signal and the LO signal.
- the aggregation station 10e remotely controls the beam forming of the outgoing station 20e using analog RoF technology. Further, the aggregation station 10e receives the reception signal received at the outgoing station 20e.
- the outgoing station 20e performs beamforming based on the control signal included in the multiplexed signal transmitted from the aggregation station 10e.
- the outgoing station 20e receives a wireless signal transmitted from an external device located in the direction in which the beam was formed.
- the wireless signal received by the outgoing station 20e is an RF band signal.
- the outgoing station 20d may transmit the received signal in the RF band to the aggregation station 10e, or may convert the frequency of the received signal in the RF band to the frequency in the IF band and transmit it to the aggregation station 10e.
- the outgoing station 20e converts a multiplexed signal generated by frequency multiplexing the received signal in the RF band or the IF band and the response signal into an optical signal, and transmits the optical signal to the aggregation station 10e.
- the outgoing station 20e includes an O/E 22e, a demultiplexing section 23e, a beam forming section 27, a frequency conversion section 28e, an E/O 29d, an optical multiplexing/demultiplexing section 30, level adjustment sections 112 and 113, and a multiplexing section 23e. section 31, a demultiplexing section 32e, and a transmission/reception switching section 33.
- the O/E 22e is a direct detection unit that directly detects an optical modulation signal of wavelength ⁇ TX and extracts an electrical signal. Thereby, the O/E 22e extracts at least the control signal and the LO signal. The O/E 22d outputs the control signal and the LO signal to the demultiplexer 32e.
- the demultiplexer 32e demultiplexes the electrical signal extracted by the O/E 22e according to the frequency. Specifically, the demultiplexer 32e separates the control signal and LO signal included in the electrical signal extracted by the O/E 22e according to frequency. This separates the control signal and the LO signal. The demultiplexer 32e outputs the LO signal to the frequency converter 28e, and outputs the control signal to the demultiplexer 23e.
- the control signal separated by the demultiplexer 32e is input to the demultiplexer 23e.
- the demultiplexer 23e demultiplexes the input control signal according to the frequency. Thereby, the demultiplexer 23e separates the beam control signal (STi in FIG. 13) and the TDD signal from the control signal.
- the demultiplexing section 23e outputs the beam control signal to the beam forming section 27 and outputs the TDD signal to the transmission/reception switching section 33.
- the frequency conversion section 28e converts the frequency of the received signal (RF signal) outputted through the transmission/reception switching section 33 into a signal (IF signal) with a frequency in the IF band using the LO signal outputted from the demultiplexing section 32e. It is converted and output to the level adjustment section 112.
- Level adjustment section 112 adjusts the power level of the received signal and outputs the received signal to multiplexing section 31 .
- a response signal is input to the level adjustment section 113.
- the level adjustment section 113 adjusts the power level of the response signal and outputs the response signal to the multiplexing section 31 .
- the level adjustment units 112 and 113 adjust the power level of the received signal and the power level of the control signal so that the optical signal including the received signal and the response signal is an optical signal that does not cause distortion due to nonlinear optical effects in the optical fiber. and adjust each. Thereby, multiple signals can be transmitted within a power range in which distortion due to nonlinear optical effects does not occur.
- the aggregation station 10e includes level adjustment sections 114 and 115, an E/O 11a, an optical multiplexing/demultiplexing section 14d, an O/E 15d, a multiplexing section 16e, and a demultiplexing section 17.
- At least a control signal and an LO signal are input to the multiplexer 16e.
- the LO signal input to the multiplexer 16e is a signal adjusted by the level adjuster 114.
- the control signal input to the multiplexer 16e is a signal adjusted by the level adjuster 115.
- the control signal input to the multiplexer 16e includes a beam control signal and a TDD signal.
- the multiplexer 16e generates a multiplexed signal by frequency multiplexing the input control signal and LO signal. Note that, similarly to the third embodiment, when the transmission signal, control signal, and LO signal are input to the multiplexing unit 16e, the multiplexing unit 16e converts the input transmission signal, control signal, and LO signal into frequencies. Multiple signals are generated by multiplexing.
- the multiplexer 16e outputs the generated multiplexed signal to the E/O 11a. Note that the power level of the control signal and LO signal input to the multiplexer 16 may be adjusted as necessary.
- the same effects as in the third embodiment can be obtained also in the up direction.
- the wireless communication system 1e may combine the technology of the wireless communication system 1b in the third embodiment in downlink communication.
- the adjusted transmission signal, the adjusted control signal, and the adjusted LO signal are input to the multiplexing unit 16e of the aggregation station 10e, as in the third embodiment.
- the transmission signal, control signal, and LO signal are frequency multiplexed.
- the electrical signal extracted by the O/E 22e is input to the demultiplexer 32e of the outgoing station 20e, and the input electrical signal is separated into a control signal and other signals (for example, a transmission signal and an LO signal). Ru.
- the demultiplexer 32e outputs the control signal to the demultiplexer 23e, and outputs other signals to the frequency converter 28e.
- the frequency converter 28e performs the same processing as the frequency converter 24e during downstream communication.
- the beam forming section 27 performs the same processing as the beam forming section 25 during downstream communication.
- the station 20e does not include a transmission/reception switching section 33.
- FDD frequency division duplexing
- Some of the functional units of the aggregation stations 10, 10a, 10b, 10c, 10d, 10e and outgoing stations 20, 20a, 20b, 20c, 20d, 20e in the embodiments described above may be realized by a computer.
- a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
- the "computer system” herein includes hardware such as an OS and peripheral devices.
- computer-readable recording medium refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
- a “computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
- the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may also be realized using a programmable logic device such as an FPGA.
- the present invention is applicable to a wireless communication system that performs RoF transmission.
- Transmission/reception switching section 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113... Level adjustment section, 251... Control section, 252-1 to 252-n ...Phase shifter, 253-1 to 253-n, 256-1 to 256-n...Antenna, 254...Control switch, 255...Passive beam forming unit
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
集約局と、集約局と光ファイバで接続されるとともに集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムにおける無線通信方法であって、集約局は、少なくとも張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、ビーム制御信号の電力レベルと送信信号の電力レベルとを調整して張出局に送出し、張出局が、光信号に含まれるビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで送信信号を送信する無線通信方法。
Description
本発明は、無線通信方法、基地局装置及び無線通信システムに関する。
従来、高速伝送が可能なミリ波帯を利用した無線通信が注目されている。しかしながら、ミリ波帯を利用する場合、伝搬損失が大きく長距離伝送が困難であるという問題がある。RoF(Radio over Fiber)システムにより、ミリ波帯のRF信号(Radio Frequency 信号)の長距離伝送が可能となるが、アンテナ部のカバーエリアが課題となる。その解決策の1つとして、アレーアンテナを用いたビームフォーミングが挙げられる。RoFシステム又は光技術を利用したビームフォーミング技術として特許文献1の技術が知られている。
アレーアンテナを用いたビームフォーミングを行うための無線通信システムとして、集約局と張出局とを含む無線通信システムが挙げられる。この無線通信システムにおいて、集約局と張出局は光ファイバで接続されるが、光ファイバ中に高い光電力を入力すると、自己位相変調や、相互位相変調などの非線形光学効果により信号が歪むことが知られているため、送信電力を抑える必要がある。そのため、複数信号を送信する際には限られた電力で送る必要がある。
さらに、アンテナ素子数が増加することで波長数が増えた場合にも、非線形光学効果により信号が歪むが、波長数が少ない場合であっても、光ファイバ中に高い光電力が入力されると、やはり非線形光学効果により信号が歪む。
上記事情に鑑み、本発明は、非線形光学効果による信号の歪みが生じない範囲の限られた電力で複数信号を伝送し、ビームフォーミング制御を行うことができる技術の提供を目的としている。
本発明の一態様は、集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムにおける無線通信方法であって、前記集約局は、少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出し、前記張出局が、前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する無線通信方法である。
本発明の一態様は、集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムにおける基地局装置であって、少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出する集約局と、前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する張出局と、を備える基地局装置である。
本発明の一態様は、集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムであって、前記集約局は、少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出し、前記張出局は、前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する、無線通信システムである。
本発明により、非線形光学効果による信号の歪みを抑制しつつ、ビームフォーミング制御を行うことが可能となる。
以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
図1は、第1の実施形態における無線通信システム1の構成例を示す図である。無線通信システム1は、集約局10と、張出局20とを備える。無線通信システム1を構成する集約局10と、張出局20とは、1つの基地局装置としても構成される。集約局10と、張出局20とは、光伝送路40を介して接続されている。光伝送路40は、例えば光ファイバである。光伝送路40は、1以上のシングルコアファイバでもよいし、2以上のコアを有するマルチコアファイバでもよい。以下の説明では、集約局10から張出局20へ向かう方向を下り方向、張出局20から集約局10へ向かう方向を上り方向とする。
(第1の実施形態)
図1は、第1の実施形態における無線通信システム1の構成例を示す図である。無線通信システム1は、集約局10と、張出局20とを備える。無線通信システム1を構成する集約局10と、張出局20とは、1つの基地局装置としても構成される。集約局10と、張出局20とは、光伝送路40を介して接続されている。光伝送路40は、例えば光ファイバである。光伝送路40は、1以上のシングルコアファイバでもよいし、2以上のコアを有するマルチコアファイバでもよい。以下の説明では、集約局10から張出局20へ向かう方向を下り方向、張出局20から集約局10へ向かう方向を上り方向とする。
図1では、張出局20が1台の場合を示しているが、無線通信システム1は複数の張出局20を備えてもよい。この場合、集約局10と複数の張出局20とは、パッシブ光ネットワーク(Passive Optical Network : PON)で接続されていてもよい。集約局10と複数の張出局20とが、PONで接続される場合には、集約局10と複数の張出局20との間に光スプリッタ(分岐部)が設けられる。光スプリッタは、集約局10から出力された光信号を分岐して張出局20に出力する。パッシブ光ネットワークは、例えば、WDM-PON(Wavelength Division Multiplexing - Passive Optical Network)、又は、TDM-PON(Time Division Multiplexing - Passive Optical Network)である。
集約局10は、張出局20のビーム形成を遠隔で制御する。例えば、集約局10は、送信信号と制御信号とを異なる波長の光信号にそれぞれ変換し、異なる波長の光信号を波長分割多重(WDM:Wavelength Division Multiplexing)することで生成した波長多重信号によって、張出局20のビーム形成を遠隔で制御する。集約局10は、アナログRoF技術を用いて張出局20のビーム形成を遠隔で制御する。
送信信号は、送信の対象となるデータを含む主信号である。送信信号は、IF信号(Intermediate Frequency信号)であってもよいし、RF信号であってもよい。
制御信号は、張出局20における動作を制御するための信号である。制御信号には、少なくとも張出局20におけるビーム形成を制御するためのビーム制御信号が含まれる。ビーム制御信号には、ビーム形成したい方向に送信信号を放射させるための位相の指示情報が含まれる。なお、制御信号には、ビーム制御信号の他に、クロック信号又はレベル調整用信号又はTDD(Time Division Duplex)信号が含まれてもよい。ここで、クロック信号は、張出局20において送信信号をIFからRFに周波数変換するためのLO(Local Oscillator)信号を生成する際の基準となる信号である。レベル調整用信号は、LO信号である。なお、送信信号がRF信号である場合、周波数変換の必要がないため、制御信号にはクロック信号又はレベル調整用信号のいずれも含まれない。TDD信号は、張出局20における送信と受信を切り替えるタイミングを示す信号である。TDD信号は、時分割複信(TDD)方式により双方向通信を実現する際に必要となる信号である。そのため、張出局20において周波数分割複信(FDD:Frequency Division Duplex)方式により双方向通信を実現する場合には、制御信号にTDD信号が含まれなくてよい。以下の各実施形態の説明では、張出局20が時分割複信(TDD)方式により双方向通信を行うことを前提に説明する。
張出局20は、集約局10が配置されている場所から離れた場所に設置される。張出局20は、集約局10から送信された制御信号に基づいてビーム形成を行い、送信信号を無線により放射する。これにより、張出局20は、設置された場所の周辺に位置する無線装置との間で通信を行う。さらに、張出局20は、時分割複信(TDD)方式により双方向通信を行う場合、TDD信号で示されるタイミングで送信と受信を切り替える。
次に、集約局10及び張出局20の具体的な構成について説明する。なお、図1では、下り方向の通信を実現するための集約局10及び張出局20の構成を示す。
集約局10は、レベル調整部101、102、複数のE/O11-1~11-2と、光合波部12とを備える。
集約局10は、レベル調整部101、102、複数のE/O11-1~11-2と、光合波部12とを備える。
レベル調整部101には、送信信号が入力される。レベル調整部101は、送信信号の電力レベルを調整してE/O11-1に送信信号を出力する。E/O11-1には、レベル調整部101により電力レベルが調整された送信信号が入力される。E/O11-1は、入力された送信信号を用いて、波長λTX1の光信号を強度変調する。これにより、E/O11-1は、波長λTX1の光変調信号を生成する。
レベル調整部102には、制御信号が入力される。例えば、送信信号がIF信号である場合、レベル調整部102には、ビーム制御信号と、クロック信号とTDD信号とを含む制御信号が入力される。例えば、送信信号がRF信号である場合、レベル調整部102には、ビーム制御信号とTDD信号とを含む制御信号が入力される。
ビーム制御信号は、m(mは1以上の整数)個のいずれかの方向にビーム形成させるための情報ST1,…,STmの少なくとも1つを含む。m個のビーム制御信号は、m個の送信ビームと一対一に対応しており、ユーザがビーム制御信号を切り替えることで所望の方向に送信ビームを切り替えることができる。E/O11-2は、入力された制御信号を用いて、波長λTX2の光信号を強度変調する。これにより、E/O11-2は、波長λTX2の光変調信号を生成する。なお、強度変調手法としては、直接変調方法(DML:Directly Modulated Laser)が用いられてもよいし、外部変調方式(MAZ:Mach Zehnder Modulator,EAM:Electro Absorption Modulator)が用いられてもよい。光伝送路40を伝搬する変調信号は、ODSB(Optical Double Sideband)でもよいし、OSSB(Optical Single Sideband)でもよいし、OCS(Optical Carrier Suppression)でもよい。
レベル調整部101、102は、制御信号と、送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、制御信号の電力レベルと送信信号の電力レベルとをそれぞれ調整する。送信信号はアナログ信号であり、制御信号はデジタル信号であることから、張出局における所要SNRとしては送信信号の方が高いため、送信信号の電力レベルを、制御信号の電力レベルと比較して高い電力レベルに調整する。このようにすることで、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
光合波部12は、E/O11-1により生成された波長λTX1の光変調信号と、E/O11-2により生成された波長λTX2の光変調信号とを合波する。具体的には、光合波部12は、E/O11-1により生成された波長λTX1の光変調信号と、E/O11-2により生成された波長λTX2の光変調信号とを波長分割多重することによって、波長多重信号を生成する。光合波部12は、生成した波長多重信号を、光伝送路40を介して張出局20に出力する。
張出局20は、光分波部21と、複数のO/E22-1~22-2と、分波部23と、周波数変換部24と、ビーム形成部25と、送受信切替部33とを備える。なお、張出局20は、集約局10が送信信号としてRF信号を送信する場合には、周波数変換部24を備えなくてもよい。ここでは、集約局10が送信信号としてIF信号を送信するものとして、張出局20が周波数変換部24を備える場合について説明する。送受信切替部33は、周波数変換部24と一体で構成されてもよいし、ビーム形成部25内に備えられてもよい。
光分波部21は、光伝送路40で伝送された波長多重信号を分波する。これにより、光分波部21は、波長多重信号を、波長λTX1の光変調信号と、波長λTX2の光変調信号とに分波する。光分波部21は、波長λTX1の光変調信号をO/E22-1に出力し、波長λTX2の光変調信号をO/E22-2に出力する。
O/E22-1は、波長λTX1の光変調信号を直接検波して電気信号を取り出す直接検波部である。波長λTX1の光変調信号には、送信信号が含まれる。そこで、O/E22-1は、送信信号を含む電気信号を周波数変換部24に出力する。なお、O/E22-1は、張出局20に周波数変換部24が備えられていない場合には、電気信号をビーム形成部25に出力することになる。
O/E22-2は、波長λTX2の光変調信号を直接検波して電気信号を取り出す直接検波部である。波長λTX2の光変調信号には、制御信号が含まれる。そこで、O/E22-2は、制御信号を含む電気信号を分波部23に出力する。
分波部23は、O/E22-2により出力された電気信号を周波数に応じて分波する。これにより、分波部23は、電気信号からクロック信号(図1ではCLK)と、ビーム制御信号(図1ではSTi)と、TDD信号とを分離する。分波部23は、クロック信号を周波数変換部24に出力し、ビーム制御信号をビーム形成部25に出力し、TDD信号を送受信切替部33に出力する。
周波数変換部24は、O/E22-1から出力された電気信号に含まれる送信信号(IF信号)の周波数を、クロック信号に基づいて生成されるLO信号を用いてRF帯の周波数の信号(RF信号)に変換する。
送受信切替部33は、入力されたTDD信号に基づいて送信と受信を切り替えるためのスイッチである。具体的には、送受信切替部33は、TDD信号で示される送信タイミング時に、周波数変換部24とビーム形成部25とを電気的に接続するように接続の切替を行う。周波数変換部24とビーム形成部25とが電気的に接続されると、周波数変換部24から出力されたRF帯の周波数の信号(RF信号)がビーム形成部25に出力される。送受信切替部33は、TDD信号で示される受信タイミング時には、ビーム形成部25と受信用に用いられる周波数変換部とを電気的に接続するように接続の切替を行う。
ビーム形成部25は、入力されたビーム制御信号に基づいてビーム形成を行い、送信信号に応じた無線信号を放射する。ビーム形成部25は、張出局20においてビーム形成の方向を制御可能な制御部搭載型の機能部である。
図2は、ビーム形成部25の第1の構成例を示す図である。図2に示すビーム形成部25は、制御部251と、n(nは2以上の整数)個の移相器252-1~252-nと、n個のアンテナ253~253-nとを備える。各移相器252には、1つのアンテナ253が取り付けられる。
制御部251は、入力されたビーム制御信号STiに応じて、移相器252-1~252-nを電気的に制御する。これにより、各移相器252-1~252-nに入力される送信信号の位相を調整することができる。
移相器252-1~252-nは、制御部251の制御に応じて、入力される送信信号の位相を調整する。
アンテナ253~253-nは、移相器252-1~252-nにより位相が調整された送信信号を無線信号に変換して放射する。
図2に示すビーム形成部25では、送信信号が同相で入力されると、各移相器252-1~252-nによりビーム制御信号に対応した位相に調整されて特定の方向に同相で強め合い、送信ビームが形成される。ビーム制御信号STiによって、同相で強め合う方向は異なる。図2に示すビーム形成部25は、入出力の可逆性を有し、あるビーム制御信号に対応するビームの方向からRF信号が到来すると、同相で強め合う。それ以外の方向からRF信号が到来すると弱めあう。図2に示すビーム形成部25は、このような性質を有するため、ビーム制御信号STiの選択に応じて、受信ビームの方向も選択可能になる。ビーム形成部25の第1の構成例に関する構成は、例えば参考文献1に記載されている。
(参考文献1:Keith Benson, “アンテナの設計を簡素化するフェーズド・アレイ向けのビームフォーミングIC”, Analog Dialogue 53-01、2019年1月)
図3は、ビーム形成部25の第2の構成例を示す図である。図3に示すビーム形成部25は、制御スイッチ254と、パッシブビーム形成部255と、N(Nは2以上の整数)個のアンテナ253~253-Nとを備える。
制御スイッチ254は、入力されたビーム制御信号STiに応じて、入力ポートと出力ポートとの接続を切り替え可能なスイッチである。入力ポートには送信信号が入力される。出力ポートにはパッシブビーム形成部255の各ポートが接続される。制御スイッチ254は、1個の入力ポートと、m個の出力ポートSW-1~SW-mとを有する。制御スイッチ254の出力ポートSW-1~SW-mと、ビーム制御信号ST1~STmとは一対一対応している。例えば、制御スイッチ254は、ビーム制御信号としてビーム制御信号ST1が入力された場合、入力ポートと出力ポートSW-1とを接続する。これにより、制御スイッチ254の出力ポートSW-1から送信信号が出力される。
パッシブビーム形成部255は、入力ポートに応じて各アンテナ256-1~256-Nからの出力ビームに特定の位相差を付けることによりビーム形成可能な機能部である。パッシブビーム形成部255は、m個の入力ポートと、N(Nは1以上の整数)個の出力ポートとを持つ。パッシブビーム形成部255は、例えばビーム形成回路、リフレクタ又はレンズ等である。
ビーム形成回路は、m個の第1ポートと、N個の第2ポートとを持つ。ビーム形成回路のm個の第1ポートには、制御スイッチ254のm個の出力ポートSW-1~SW-mが接続される。ビーム形成回路の第2ポートには、アンテナ256-1~256-Nが接続される。
ビーム形成回路は、ある1つの第1ポートに信号を入力すると、N個の第2ポートから振幅が同じで、位相が線形に傾くような信号が出力される。ビーム形成回路は、第1ポートによって位相の傾きが異なる。ビーム形成回路は、送信信号が入力された第1ポートに応じた方向にビームを形成することができる。
ビーム形成回路は、入出力の可逆性をもち、ある第1ポートに対応するビームの方向から信号が到来すると、当該第1ポートのみから信号が出力される。ビーム形成回路は、例えばバトラーマトリクス、ブラスマトリクス、ノーランマトリクス及びロットマンレンズなどがある(例えば、参考文献2参照)。
(参考文献2:Wei Hong, Zhi Hao Jiang, Chao Yu, Jianyi Zhou, Peng Chen, Zhiqiang Yu, Hui Zhang, Binqi Yang, Xingdong Pang, Mei Jiang, Yujian Cheng, Mustafa K. Taher Al-Nuaimi, Yan Zhang, Jixin Chen, and Shiwen He, “Multibeam antenna technologies for 5G wireless communications”, IEEE Transactions on Antennas and Propagation, 65(12), 6231-6249 (2017).)
図4は、第1の実施形態における無線通信システム1の処理の流れを示すシーケンス図である。なお、図4では、集約局10に対して、送信信号としてIF信号が入力される場合を例について説明する。
集約局10のレベル調整部101には、IF信号(送信信号)が入力される。レベル調整部101は、IF信号(送信信号)の電力レベルを調整してE/O11-1に送信信号を出力する(ステップS101)。E/O11-1は、入力されたIF信号(送信信号)を用いて、波長λTX1の光信号を強度変調する(ステップS102)。これにより、波長λTX1の光変調信号が生成される。E/O11-1は、生成した波長λTX1の光変調信号を光合波部12に出力する。
集約局10のレベル調整部102には、制御信号が入力される。レベル調整部102は、制御信号の電力レベルを調整してE/O11-2に制御信号を出力する(ステップS103)。E/O11-2は、入力された制御信号を用いて、波長λTX2の光信号を強度変調する(ステップS104)。これにより、波長λTX2の光変調信号が生成される。E/O11-2は、生成した波長λTX2の光変調信号を光合波部12に出力する。なお、E/O11-2に入力される制御信号には、張出局20においてビーム形成したい方向に応じたビーム制御信号と、クロック信号と、TDD信号とが含まれる。張出局20においてビーム形成したい方向に応じたビーム制御信号は、ユーザにより選択される。
光合波部12は、E/O11-1から出力された波長λTX1の光変調信号と、E/O11-2から出力された波長λTX2の光変調信号とを、波長分割多重する(ステップS105)。これにより、波長多重信号が生成される。光合波部12は、生成した波長多重信号を光伝送路40に送出する(ステップS106)。光伝送路40に送出された波長多重信号は、張出局20に入力される。
張出局20の光分波部21は、入力された波長多重信号を分波する(ステップS107)。これにより、波長多重信号は、波長λTX1の光変調信号と、波長λTX2の光変調信号とに分波される。光分波部21において波長λTX1の出力ポートにはO/E22-1が接続され、波長λTX2の出力ポートにはO/E22-2が接続されている。そのため、波長λTX1の光変調信号はO/E22-1に出力され、波長λTX2の光変調信号はO/E22-2に出力される。
O/E22-1は、波長λTX1の光変調信号を直接検波して電気信号を取り出す。O/E22-1は、取り出したIF信号(送信信号)を含む電気信号を周波数変換部24に出力する。O/E22-2は、波長λTX2の光変調信号を直接検波して電気信号を取り出す(ステップS108)。これにより、O/E22-2は、取り出した制御信号を含む電気信号を分波部23に出力する。
分波部23は、O/E22-2から出力された電気信号を周波数に応じて分波する(ステップS109)。具体的には、分波部23は、O/E22-2から出力された電気信号に含まれるクロック信号とビーム制御信号とTDD信号とを、周波数に応じて分離する。これにより、電気信号から、クロック信号とビーム制御信号とTDD信号とが分離される。分波部23は、クロック信号を周波数変換部24に出力し、ビーム制御信号をビーム形成部25に出力し、TDD信号を送受信切替部33に出力する。
周波数変換部24は、分波部23から出力されたクロック信号を基準にしてLO信号を生成する。周波数変換部24は、生成したLO信号を用いて、O/E22-1から出力された電気信号に含まれるIF信号(送信信号)の周波数をRF帯の周波数に変換する(ステップS110)。すなわち、周波数変換部24は、送信信号の周波数を変換する。周波数変換部24は、周波数変換後の送信信号を送受信切替部33に出力する。
送受信切替部33は、TDD信号で示される送信タイミング時に、周波数変換部24とビーム形成部25とが電気的に接続されるように接続を切り替える。これにより、周波数変換部24から出力された周波数変換後の送信信号がビーム形成部25に出力される。
ビーム形成部25は、分波部23から出力されたビーム制御信号に基づいてビームを形成し、周波数変換後の送信信号を無線信号により放射する(ステップS111)。ここで、ビーム形成部25の具体的な動作として、図2に示すビーム形成部25を例に説明する。制御部251は、入力されたビーム制御信号に応じて、各移相器252-1~252-nで調整する位相の回転量を制御する。
移相器252-1~252-nは、入力された送信信号の位相を調整する。この際、移相器252-1~252-nは、制御部251の制御により、制御部251に入力されたビーム制御信号に応じた方向にビームを形成するように送信信号の位相を調整する。移相器252-1~252-nにより位相が調整された送信信号は、アンテナ253-1~253-nに出力される。アンテナ253-1~253-nは、入力された送信信号を無線信号に変換して放射する。
以上のように構成された無線通信システム1によれば、非線形光学効果による信号の歪みを抑制しつつ、ビームフォーミング制御を行うことが可能になる。具体的には、無線通信システム1では、レベル調整部101、102が、制御信号と、送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、制御信号の電力レベルと送信信号の電力レベルとをそれぞれ調整する。これにより、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
また、上記のように構成された無線通信システム1によれば、波長利用効率の低下を抑制しつつ、ビームフォーミング制御を行うことが可能になる。具体的には、無線通信システム1では、集約局10がビーム形成を制御するためのビーム制御信号(位相制御用の信号)を含む制御信号と、主信号とを異なる波長で張出局20に送信し、張出局20側で、ビーム制御信号に基づいてビームフォーミングを行う。これにより、2波長のみを利用した遠隔ビームフォーミングが実現できる。したがって、従来のように、1ビーム制御に張出局のアンテナ素子数分の固定光波長を必要としない。このように、無線通信システム1では、1ビーム制御に必要な波長数を大幅に削減することができる。そのため、波長利用効率の低下を抑制しつつ、ビームフォーミング制御を行うことが可能になる。
従来では、アンテナ素子数分だけ張出局に光変調信号の直接検波部を用意する必要があり、張出局の簡易化や低コスト化に限界があるという問題もあった。これに対して、無線通信システム1では、張出局20が1ビーム制御に必要な構成を従来よりも大幅に削減することができる。そのため、装置の高コスト化を抑制することが可能になる。
(第2の実施形態)
第1の実施形態では、集約局が送信信号と制御信号をそれぞれ異なる波長の光信号に変換した後、波長分割多重する構成について説明した。第2の実施形態では、集約局が送信信号と制御信号を周波数多重し、光伝送路中をサブキャリア多重(SCM:Subcarrier Multiplexing)方式で伝送する点が、第1の実施形態との差分である。第2の実施形態では、第1の実施形態との差分を中心に説明する。
第1の実施形態では、集約局が送信信号と制御信号をそれぞれ異なる波長の光信号に変換した後、波長分割多重する構成について説明した。第2の実施形態では、集約局が送信信号と制御信号を周波数多重し、光伝送路中をサブキャリア多重(SCM:Subcarrier Multiplexing)方式で伝送する点が、第1の実施形態との差分である。第2の実施形態では、第1の実施形態との差分を中心に説明する。
図5は、第2の実施形態における無線通信システム1aの構成例を示す図である。無線通信システム1aは、集約局10aと、張出局20aとを備える。集約局10aと、張出局20aとは、光伝送路40を介して接続されている。
集約局10aは、送信信号と制御信号とを周波数多重することで生成した多重信号によって、張出局20aのビーム形成を遠隔で制御する。集約局10aは、アナログRoF技術を用いて張出局20aのビーム形成を遠隔で制御する。
集約局10aは、レベル調整部103、104と、E/O11aと、合波部13とを備える。
レベル調整部103には、送信信号が入力される。レベル調整部103は、送信信号の電力レベルを調整して合波部13に送信信号を出力する。レベル調整部104には、制御信号が入力される。例えば、レベル調整部104に入力される制御信号には、ビーム制御信号と、クロック信号と、TDD信号とが含まれる。レベル調整部104は、制御信号の電力レベルを調整して、合波部13に制御信号を出力する。
レベル調整部103、104は、制御信号と、送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、E/O11aが受信可能な範囲内で、制御信号の電力レベルと送信信号の電力レベルとをそれぞれ調整する。送信信号はアナログ信号であり、制御信号はデジタル信号であることから、送信信号の方がSNRが高いため、送信信号の電力レベルを、制御信号の電力レベルと比較して高い電力レベルに調整する。このようにすることで、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
合波部13には、調整された送信信号と、調整された制御信号とが入力される。例えば、合波部13に入力される制御信号には、ビーム制御信号と、クロック信号と、TDD信号とが含まれる。合波部13は、入力された送信信号と制御信号とを周波数多重することによって多重信号を生成する。合波部13は、生成した多重信号をE/O11aに出力する。
E/O11aは、入力された多重信号を用いて、波長λTXの光信号を強度変調する。これにより、E/O11aは、波長λTXの光変調信号を生成する。E/O11aは、生成した波長λTXの光変調信号を光伝送路40に送出する。
張出局20aは、O/E22aと、分波部23と、周波数変換部24と、ビーム形成部25と、分波部26と、送受信切替部33とを備える。なお、張出局20aは、集約局10aが送信信号としてRF信号を送信する場合には、周波数変換部24を備えなくてもよい。ここでは、集約局10aが送信信号としてIF信号を送信するものとして、張出局20aが周波数変換部24を備える場合について説明する。
O/E22aは、集約局10aから送信された波長λTXの光変調信号を直接検波して電気信号を取り出す直接検波部である。波長λTXの光変調信号には、送信信号及び制御信号が含まれる。そこで、O/E22aは、送信信号及び制御信号を含む電気信号を分波部26に出力する。
分波部26は、O/E22aから出力された電気信号を周波数に応じて分波する。これにより、送信信号と、制御信号とが分離される。分波部26は、送信信号を周波数変換部24に出力し、制御信号を分波部23に出力する。なお、分波部26は、張出局20aに周波数変換部24が備えられていない場合には、送信信号をビーム形成部25に出力することになる。
分波部23、周波数変換部24及びビーム形成部25の処理は、第1の実施形態と同様であるため、説明を省略する。
図6は、第2の実施形態における無線通信システム1aの処理の流れを示すシーケンス図である。なお、図6では、集約局10aに対して、送信信号としてIF信号が入力される場合を例について説明する。図6において、図4と同様の処理については図4と同様の符号を付して説明を省略する。
集約局10のレベル調整部103には、IF信号(送信信号)が入力される。レベル調整部103は、IF信号(送信信号)の電力レベルを調整して合波部13に送信信号を出力する(ステップS201)。集約局10のレベル調整部104には、制御信号が入力される。レベル調整部104は、制御信号の電力レベルを調整して合波部13に制御信号を出力する(ステップS202)。
集約局10aの合波部13は、調整されたIF信号(送信信号)と、調整された制御信号とを入力とする。合波部13は、入力されたIF信号(送信信号)と制御信号を周波数多重する(ステップS203)。これにより、多重信号が生成される。なお、合波部13に入力される制御信号には、張出局20aにおいてビーム形成したい方向に応じたビーム制御信号と、クロック信号とが含まれる。張出局20aにおいてビーム形成したい方向に応じたビーム制御信号は、ユーザにより選択される。合波部13は、生成した多重信号をE/O11aに出力する。
E/O11aは、合波部13から出力された多重信号を用いて、波長λTXの光信号を強度変調する(ステップS204)。これにより、波長λTXの光変調信号が生成される。E/O11aは、生成した波長λTXの光変調信号を光伝送路40に送出する(ステップS205)。光伝送路40に送出された光変調信号は、張出局20aに入力される。
張出局20aのO/E22aは、入力された光変調信号を直接検波して電気信号を取り出す(ステップS206)。O/E22aは、取り出した電気信号を分波部26に出力する。分波部26は、O/E22aから出力された電気信号を周波数に応じて分波する(ステップS207)。具体的には、分波部26は、O/E22aから出力された電気信号に含まれる送信信号と制御信号とを、周波数に応じて分離する。これにより、送信信号と制御信号とが分離される。分波部26は、送信信号を周波数変換部24に出力し、制御信号を分波部23に出力する。その後、ステップS109以降の処理が実施される。
以上のように構成された無線通信システム1aによれば、非線形光学効果による信号の歪みを抑制しつつ、ビームフォーミング制御を行うことが可能になる。具体的には、無線通信システム1では、レベル調整部103、104が、制御信号と、送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、制御信号の電力レベルと送信信号の電力レベルとをそれぞれ調整する。これにより、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
また、上記のように構成された無線通信システム1aによれば、送信信号と制御信号とを周波数多重した場合においても、張出局20a側で、ビーム制御信号に基づいてビームフォーミングを行うことができる。これにより、1波長のみを利用した遠隔ビームフォーミングが実現できる。したがって、従来のように、1ビーム制御に張出局のアンテナ素子数分の固定光波長を必要としない。このように、無線通信システム1aでは、1ビーム制御に必要な波長数を大幅に削減することができる。そのため、波長利用効率の低下を抑制しつつ、ビームフォーミング制御を行うことが可能になる。
(第3の実施形態)
第2の実施形態では、張出局が、クロック信号に基づいて周波数変換部においてLO信号を生成する構成を示した。これに対して、第3の実施形態では、集約局からLO信号を送信する点が、第2の実施形態との差分である。第3の実施形態では、第2の実施形態との差分を中心に説明する。
第2の実施形態では、張出局が、クロック信号に基づいて周波数変換部においてLO信号を生成する構成を示した。これに対して、第3の実施形態では、集約局からLO信号を送信する点が、第2の実施形態との差分である。第3の実施形態では、第2の実施形態との差分を中心に説明する。
図7は、第3の実施形態における無線通信システム1bの構成例を示す図である。無線通信システム1bは、集約局10bと、張出局20bとを備える。集約局10bと、張出局20bとは、光伝送路40を介して接続されている。
集約局10bは、送信信号と制御信号とLO信号とを周波数多重することで生成した多重信号によって、張出局20bのビーム形成を遠隔で制御する。例えば、集約局10bは、アナログRoF技術を用いて張出局20bのビーム形成を遠隔で制御する。
集約局10bは、レベル調整部105、106、107と、E/O11aと、合波部13bとを備える。レベル調整部105には、送信信号が入力される。ここで、第3の実施形態では、張出局20bにおいて送信信号の周波数変換を行うことが前提となる。そのため、レベル調整部105に入力される送信信号は、IF信号である。レベル調整部105は、送信信号の電力レベルを調整して合波部13bに送信信号を出力する。レベル調整部106には、LO信号が入力される。レベル調整部106は、LO信号の電力レベルを調整して、合波部13bに制御信号を出力する。レベル調整部107には、制御信号が入力される。例えば、レベル調整部107に入力される制御信号には、ビーム制御信号と、TDD信号とが含まれる。レベル調整部107は、制御信号の電力レベルを調整して、合波部13bに制御信号を出力する。
合波部13bには、調整された送信信号と、調整された制御信号と、調整されたLO信号とが入力される。合波部13bは、入力された送信信号と制御信号とLO信号とを周波数多重することによって多重信号を生成する。合波部13bは、生成した多重信号をE/O11aに出力する。
張出局20bは、O/E22bと、分波部23bと、周波数変換部24bと、ビーム形成部25と、分波部26bと、送受信切替部33とを備える。
O/E22bは、集約局10bから送信された波長λTXの光変調信号を直接検波して電気信号を取り出す直接検波部である。集約局10bから送信された波長λTXの光変調信号には、送信信号と制御信号とLO信号とが含まれる。そこで、O/E22bは、送信信号と制御信号とLO信号とを含む電気信号を分波部26bに出力する。
分波部26bは、O/E22bにより取り出された電気信号を周波数に応じて分波する。具体的には、分波部26bは、O/E22bにより取り出された電気信号に含まれる送信信号と制御信号とLO信号とを、周波数に応じて分離する。これにより、送信信号と、制御信号と、LO信号とが分離される。分波部26bは、送信信号及びLO信号を周波数変換部24bに出力し、制御信号を分波部23bに出力する。
分波部23bは、分波部26bにより出力された制御信号を周波数に応じて分波する。これにより、分波部23bは、制御信号からビーム制御信号(図7ではSTi)と、TDD信号とを分離する。分波部23bは、ビーム制御信号をビーム形成部25に出力し、TDD信号を送受信切替部33に出力する。
周波数変換部24bは、分波部26bから出力された送信信号(IF信号)の周波数を、分波部26bから出力されたLO信号を用いてRF帯の周波数の信号(RF信号)に変換する。
ビーム形成部25及び送受信切替部33の処理は、第2の実施形態と同様であるため、説明を省略する。
図8は、第3の実施形態における無線通信システム1bの処理の流れを示すシーケンス図である。図8において、図6と同様の処理については図6と同様の符号を付して説明を省略する。
集約局10bのレベル調整部105には、IF信号(送信信号)が入力される。レベル調整部105は、IF信号(送信信号)の電力レベルを調整して合波部13bに送信信号を出力する(ステップS301)。集約局10bのレベル調整部106には、LO信号が入力される。レベル調整部106は、LO信号の電力レベルを調整して合波部13bにLO信号を出力する(ステップS302)。集約局10bのレベル調整部107には、制御信号が入力される。レベル調整部107は、制御信号の電力レベルを調整して合波部13bに制御信号を出力する(ステップS303)。
合波部13bは、入力されたIF信号(送信信号)と制御信号とLO信号を周波数多重する(ステップS304)。これにより、多重信号が生成される。なお、合波部13bに入力される制御信号には、張出局20bにおいてビーム形成したい方向に応じたビーム制御信号及びTDD信号が含まれる。第2の実施形態と異なり、制御信号には、クロック信号が含まれない。張出局20bにおいてビーム形成したい方向に応じたビーム制御信号は、ユーザにより選択される。合波部13bは、生成した多重信号をE/O11aに出力する。
E/O11aは、合波部13bから出力された多重信号を用いて、波長λTXの光信号を強度変調する(ステップS305)。これにより、波長λTXの光変調信号が生成される。E/O11aは、生成した波長λTXの光変調信号を光伝送路40に送出する(ステップS306)。光伝送路40に送出された光変調信号は、張出局20bに入力される。
張出局20bのO/E22bは、入力された光変調信号を直接検波して電気信号を取り出す(ステップS307)。O/E22bは、IF信号(送信信号)と制御信号とLO信号とを含む電気信号を分波部26bに出力する。分波部26bは、O/E22bから出力された電気信号を周波数に応じて分波する(ステップS308)。具体的には、分波部26bは、O/E22bから出力された電気信号に含まれる送信信号とクロック信号とLO信号とを周波数に応じて分離する。分波部26bは、送信信号及びLO信号を周波数変換部24bに出力し、制御信号を分波部23bに出力する。分波部23bは、分波部26bから出力された制御信号からビーム制御信号と、TDD信号とを分離する。分波部23bは、ビーム制御信号をビーム形成部25に出力し、TDD信号を送受信切替部33に出力する。
周波数変換部24bは、分波部26bから出力されたLO信号を用いて、分波部26bから出力されたIF信号(送信信号)の周波数をRF帯の周波数に変換する(ステップS309)。すなわち、周波数変換部24bは、送信信号の周波数を変換する。周波数変換部24bは、周波数変換後の送信信号を送受信切替部33に出力する。送受信切替部33は、TDD信号で示される送信タイミング時に、周波数変換部24bとビーム形成部25とが電気的に接続されるように接続を切り替える。これにより、周波数変換部24bから出力された周波数変換後の送信信号がビーム形成部25に出力される。その後、ステップS111の処理が実施される。
以上のように構成された無線通信システム1bによれば、非線形光学効果による歪みが生じない電力範囲での複数信号伝送を行い、ビームフォーミング制御を行うことが可能になる。具体的には、無線通信システム1では、レベル調整部105、107が、制御信号と、送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、E/O11aが受信可能な範囲内で、制御信号の電力レベルと送信信号の電力レベルとをそれぞれ調整する。これにより、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
また、上記のように構成された無線通信システム1bによれば、集約局10bにおいて周波数変換用の信号であるLO信号も含めて張出局20bに光信号を送信する。これにより、張出局20bにおいて、LO信号を生成する必要がない。このように張出局20bの構成を第2の実施形態よりも簡易化することができる。張出局20bは、集約局10bに比べて多数設置される。したがって、張出局20bの簡易化やコストを削減することができることにより、大幅なコスト削減が見込まれる。そのため、第2の実施形態と同様の効果を得ることができるとともに、第2の実施形態よりもシステムの実現に係るコストを削減することができる。
(第4の実施形態)
第1の実施形態から第3の実施形態では、下り方向に対する信号送信の構成について説明した。第4の実施形態では、上り方向に対する信号送信の構成について説明する。
第1の実施形態から第3の実施形態では、下り方向に対する信号送信の構成について説明した。第4の実施形態では、上り方向に対する信号送信の構成について説明する。
図9は、第4の実施形態における無線通信システム1cの構成例を示す図である。無線通信システム1cは、集約局10cと、張出局20cとを備える。集約局10cと、張出局20cとは、光伝送路40を介して接続されている。
集約局10cは、第1の実施形態と同様に、制御信号を張出局20cに送信することによって張出局20cのビーム形成を遠隔で制御する。例えば、集約局10cは、アナログRoF技術を用いて張出局20cのビーム形成を遠隔で制御する。さらに、集約局10cは、張出局20cで受信された受信信号を受信する。
張出局20cは、第1の実施形態と同様に、集約局10cから送信された制御信号に基づいてビーム形成を行う。張出局20cは、ビームを形成した方向に位置する外部の装置から送信された無線信号を受信する。外部の装置とは、例えば張出局20cが通信を行う対象となる無線装置である。張出局20cが受信する無線信号は、RF帯の信号である。張出局20cは、RF帯の受信信号を集約局10cに送信してもよいし、RF帯の受信信号の周波数をIF帯の周波数に変換して集約局10cに送信してもよい。
例えば、張出局20cは、RF帯又はIF帯の受信信号と、応答信号とを異なる波長の光信号にそれぞれ変換し、異なる波長の光信号を波長分割多重することで生成した波長多重信号を集約局10cに送信する。ここで、応答信号とは、ビーム形成部27に関する情報を通知するための信号である。例えば、応答信号には、ビーム形成部27に備えられるアンテナ253又はアンテナ256の現状の設定を表すステータス情報等が含まれる。
張出局20cは、O/E22と、分波部23と、ビーム形成部27と、周波数変換部28と、レベル調整部108、109と、複数のE/O29-1~29-2と、光合分波部30と、送受信切替部33とを備える。O/E22及び分波部23の処理は、第1の実施形態におけるO/E22-2及び分波部23と同様である。なお、張出局20cは、受信信号としてRF信号を集約局10cに送信する場合には、周波数変換部28を備えなくてもよい。ここでは、張出局20cが受信信号としてIF信号を集約局10cに送信するものとして、張出局20cが周波数変換部28を備える場合について説明する。送受信切替部33は、周波数変換部28と一体で構成されてもよいし、ビーム形成部27内に備えられてもよい。
ビーム形成部27は、ビーム形成部25と同様の構成を有する。すなわち、ビーム形成部27は、集約局10cから送信された制御信号に含まれるビーム制御信号に応じてビームを形成する。ビーム形成部27は、ビームを形成した方向に位置する外部の装置から送信された無線信号を受信する。ビーム形成部27は、受信した無線信号を電気信号に変換して送受信切替部33に出力する。
なお、ビーム形成部27は、応答信号を出力してもよい。ビーム形成部27が応答信号を出力する場合、ビーム形成部27から出力された応答信号は、レベル調整部109に入力される。レベル調整部109は、応答信号の電力レベルを調整して、E/O29-2に応答信号を出力する。
第4の実施形態における送受信切替部33は、TDD信号で示される受信タイミング時に、周波数変換部28とビーム形成部27とを電気的に接続するように接続の切替を行う。周波数変換部28とビーム形成部27とが電気的に接続されると、ビーム形成部27から出力された受信信号が周波数変換部28に出力される。送受信切替部33は、TDD信号で示される送信タイミング時には、ビーム形成部27と送信用に用いられる周波数変換部とを電気的に接続するように接続の切替を行う。
周波数変換部28は、送受信切替部33を介して出力された受信信号(RF信号)の周波数を、分波部23から出力されるクロック信号に基づいて生成されるLO信号を用いてIF帯の周波数の信号(IF信号)に変換する。
レベル調整部108には、受信信号が入力される。例えば、集約局10cが周波数変換部28を備える場合、レベル調整部108には周波数変換後の受信信号(IF信号)が入力される。集約局10cが周波数変換部28を備えない場合、レベル調整部108には受信信号(RF信号)が入力される。レベル調整部108は、受信信号の電力レベルを調整して、E/O29-2に応答信号を出力する。
レベル調整部108、109は、受信信号と、応答信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、受信信号の電力レベルと応答信号の電力レベルとをそれぞれ調整する。このようにすることで、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
E/O29-1には、調整された受信信号が入力される。E/O29-1は、入力された受信信号を用いて、波長λRX1の光信号を強度変調する。これにより、E/O29-1は、波長λRX1の光変調信号を生成する。
E/O29-2には、調整された応答信号が入力される。E/O29-2は、入力された応答信号を用いて、波長λRX2の光信号を強度変調する。これにより、E/O29-2は、波長λRX2の光変調信号を生成する。
光合分波部30は、入力された光信号を合波又は分波する。具体的には、光合分波部30は、光伝送路40を介して伝送された光信号を分波する。例えば、本実施形態では、光合分波部30には、集約局10cから送信された波長λTX2の光変調信号が入力される。波長λTX2の光変調信号には、例えばビーム制御信号と、クロック信号とが含まれる。光合分波部30は、波長λTX2の光変調信号をO/E22に出力する。
さらに、光合分波部30は、E/O29-1により生成された波長λRX1の光変調信号と、E/O29-2により生成された波長λRX2の光変調信号とを合波する。具体的には、光合分波部30は、E/O29-1により生成された波長λRX1の光変調信号と、E/O29-2により生成された波長λRX2の光変調信号とを波長分割多重することによって、波長多重信号を生成する。光合分波部30は、生成した波長多重信号を、光伝送路40を介して集約局10cに出力する。
集約局10cは、E/O11と、光合分波部14と、複数のO/E15-1~15-2とを備える。E/O11の処理は、第1の実施形態におけるE/O11-2と同様である。
光合分波部14は、入力された光信号を合波又は分波する。具体的には、光合分波部14は、E/O11により生成された波長λTX2の光変調信号を合波する。なお、図9に示す例では、集約局10cが送信する信号として光合分波部14には波長λTX2の光変調信号のみが入力されている。そのため、光合分波部14は、入力された波長λTX2の光変調信号を、光伝送路40を介して張出局20cに出力する。
さらに、光合分波部14は、光伝送路40を介して伝送された光信号を分波する。例えば、本実施形態では、光合分波部14には、張出局20cから送信された波長多重信号が入力される。これにより、光合分波部14は、波長多重信号を、波長λRX1の光変調信号と、波長λRX2の光変調信号とに分波する。光合分波部14は、波長λRX1の光変調信号をO/E15-1に出力し、波長λRX2の光変調信号をO/E15-2に出力する。
O/E15-1は、波長λRX1の光変調信号を直接検波して電気信号を取り出す直接検波部である。波長λRX1の光変調信号には、受信信号が含まれる。
O/E15-2は、波長λRX2の光変調信号を直接検波して電気信号を取り出す直接検波部である。波長λRX2の光変調信号には、応答信号が含まれる。
図10は、第4の実施形態における無線通信システム1cの処理の流れを示すシーケンス図である。なお、図10の処理開始時には、集約局10cにより張出局20cに対してビーム形成の制御が行われているものとする。例えば、図10の処理では、ビーム制御信号STiに対応する方向にビームが形成されているものとする。
張出局20cのビーム形成部27は、ビーム制御信号STiに対応する方向に位置する外部の装置から送信された無線信号を、アンテナ253-i又は256-iを介して受信する(ステップS401)。ビーム形成部27は、受信した無線信号を電気信号に変換して送受信切替部33に出力する。例えば、ビーム形成部27は、無線信号を受信したポート(例えば、アンテナ253-i又は256-iが直接又は間接的に接続されるポート)に対応するポートから電気信号を出力する。
送受信切替部33は、TDD信号で示される受信タイミング時に、周波数変換部28とビーム形成部27とが電気的に接続されるように接続を切り替える。これにより、ビーム形成部27から出力された電気信号が周波数変換部28に出力される。
周波数変換部28は、分波部23から出力されたクロック信号を基準にしてLO信号を生成する。周波数変換部28は、生成したLO信号を用いて、送受信切替部33を介して出力された電気信号(受信信号)の周波数をIF帯の周波数に変換する(ステップS402)。すなわち、周波数変換部28は、受信信号の周波数を変換する。周波数変換部28は、周波数変換後の受信信号をレベル調整部108に出力する。レベル調整部108は、受信信号の電力レベルを調整して(ステップS403)、E/O29-1に送信信号を出力する。
E/O29-1は、レベル調整部108から出力された調整後の受信信号を入力とする。E/O29-1は、入力された調整後の受信信号を用いて、波長λRX1の光信号を強度変調する(ステップS404)。これにより、波長λRX1の光変調信号が生成される。E/O29-1は、生成した波長λRX1の光変調信号を光合分波部30に出力する。
ビーム形成部27から応答信号が出力された場合、レベル調整部109は、はビーム形成部27から出力された応答信号を入力とする。レベル調整部109は、応答信号の電力レベルを調整して(ステップS405)、E/O29-1に送信信号を出力する。E/O29-2はレベル調整部109から出力された応答信号を入力とする。E/O29-2は、入力された応答信号を用いて、波長λRX2の光信号を強度変調する(ステップS406)。これにより、波長λRX2の光変調信号が生成される。E/O29-2は、生成した波長λRX2の光変調信号を光合分波部30に出力する。
光合分波部30は、E/O29-1から出力された波長λRX1の光変調信号と、E/O29-2から出力された波長λRX2の光変調信号とを、波長分割多重する(ステップS407)。これにより、波長多重信号が生成される。光合分波部30は、生成した波長多重信号を光伝送路40に送出する(ステップS408)。光伝送路40に送出された波長多重信号は、集約局10cに入力される。
集約局10cの光合分波部14は、入力された波長多重信号を分波する(ステップS409)。これにより、波長多重信号は、波長λRX1の光変調信号と、波長λRX2の光変調信号とに分波される。光合分波部14において波長λRX1の出力ポートにはO/E15-1が接続され、波長λRX2の出力ポートにはO/E15-2が接続されている。そのため、波長λRX1の光変調信号はO/E15-1に出力され、波長λRX2の光変調信号はO/E15-2に出力される。
O/E15-1は、波長λRX1の光変調信号を直接検波して電気信号を取り出す。これにより、O/E15-1は、IF信号(受信信号)を取り出す。O/E15-2は、波長λRX2の光変調信号を直接検波して電気信号を取り出す(ステップS410)。これにより、O/E15-2は、応答信号を取り出す。
以上のように構成された無線通信システム1cによれば、上り方向においても第1の実施形態と同様の効果を得ることができる。
(第4の実施形態の変形例)
無線通信システム1cは、下り方向の通信において第1の実施形態における無線通信システム1の技術が組み合わされてもよい。この場合、集約局10cは、下り方向の通信のための構成(例えば、E/O11に代えて複数のE/O11-1~11-2)を備える。張出局20cは、下り方向の通信のための構成(例えば、O/E22に代えて複数のO/E22-1~22-2)を備える。周波数変換部28は、下り方向の通信時には周波数変換部24と同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1の技術と無線通信システム1cの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1cは、下り方向の通信において第1の実施形態における無線通信システム1の技術が組み合わされてもよい。この場合、集約局10cは、下り方向の通信のための構成(例えば、E/O11に代えて複数のE/O11-1~11-2)を備える。張出局20cは、下り方向の通信のための構成(例えば、O/E22に代えて複数のO/E22-1~22-2)を備える。周波数変換部28は、下り方向の通信時には周波数変換部24と同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1の技術と無線通信システム1cの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1の技術と無線通信システム1cの技術とを組み合わせて、周波数分割複信(FDD:Frequency Division Duplex)方式により双方向通信を行う場合には、上り方向と下り方向とで異なる周波数が用いられ、張出局20cは送受信切替部33を備えない。このような構成により、周波数分割複信(FDD)方式においても上り方向と下り方向の双方向の通信が可能になる。
(第5の実施形態)
第4の実施形態では、張出局が受信信号と応答信号をそれぞれ異なる波長の光信号に変換した後、波長分割多重する構成について説明した。第5の実施形態では、張出局が受信信号と応答信号を周波数多重する点が、第4の実施形態との差分である。第5の実施形態では、第4の実施形態との差分を中心に説明する。
第4の実施形態では、張出局が受信信号と応答信号をそれぞれ異なる波長の光信号に変換した後、波長分割多重する構成について説明した。第5の実施形態では、張出局が受信信号と応答信号を周波数多重する点が、第4の実施形態との差分である。第5の実施形態では、第4の実施形態との差分を中心に説明する。
図11は、第5の実施形態における無線通信システム1dの構成例を示す図である。無線通信システム1dは、集約局10dと、張出局20dとを備える。集約局10dと、張出局20dとは、光伝送路40を介して接続されている。
集約局10dは、第2の実施形態と同様に、制御信号を張出局20dに送信することによって張出局20dのビーム形成を遠隔で制御する。集約局10dは、アナログRoF技術を用いて張出局20dのビーム形成を遠隔で制御する。さらに、集約局10dは、張出局20dで受信された受信信号を受信する。
張出局20dは、第2の実施形態と同様に、集約局10dから送信された制御信号に基づいてビーム形成を行う。張出局20dは、ビームを形成した方向に位置する外部の装置から送信された無線信号を受信する。張出局20dが受信する無線信号は、RF帯の信号である。張出局20dは、RF帯の受信信号を集約局10dに送信してもよいし、RF帯の受信信号の周波数をIF帯の周波数に変換して集約局10dに送信してもよい。例えば、張出局20dは、RF帯又はIF帯の受信信号と、応答信号とを周波数多重することで生成した多重信号を光信号に変換して集約局10dに送信する。
張出局20dは、O/E22dと、分波部23と、ビーム形成部27と、周波数変換部28と、レベル調整部110、111と、E/O29dと、光合分波部30dと、合波部31と、分波部32と、送受信切替部33とを備える。なお、張出局20dは、受信信号としてRF信号を集約局10dに送信する場合には、周波数変換部28を備えなくてもよい。ここでは、張出局20dが受信信号としてIF信号を集約局10dに送信するものとして、張出局20dが周波数変換部28を備える場合について説明する。
O/E22dは、波長λTXの光変調信号を直接検波して電気信号を取り出す直接検波部である。これにより、O/E22dは、少なくとも制御信号を取り出す。O/E22dは、制御信号を分波部32に出力する。
分波部32は、O/E22dにより取り出された信号を周波数に応じて分波する。例えば、分波部32は、O/E22dにより取り出された信号から制御信号と他の信号とを分離する。分波部32は、制御信号を分波部23に出力する。集約局10dでは、合波部16により制御信号と他の信号とが合波されている可能性がある。そのため、張出局20dにおいて制御信号と、他の信号とを分離する必要がある。そこで、本実施形態では、分波部32が、制御信号と他の信号とを分離する機能を備える。
レベル調整部110には、受信信号が入力される。レベル調整部110に入力される受信信号は、ビーム形成部27により受信されたRF帯の受信信号、又は、周波数変換部28によりIF帯の周波数に周波数変換された受信信号である。レベル調整部110は、受信信号の電力レベルを調整して合波部31に受信信号を出力する。
レベル調整部111には、応答信号が入力される。レベル調整部111は、応答信号の電力レベルを調整して合波部31に応答信号を出力する。レベル調整部110、111は、受信信号と、応答信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、受信信号の電力レベルと制御信号の電力レベルとをそれぞれ調整する。これにより、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
合波部31には、調整された受信信号と、調整された応答信号とが入力される。合波部31は、入力された受信信号と応答信号とを周波数多重することによって多重信号を生成する。合波部31は、生成した多重信号をE/O29dに出力する。
E/O29dは、入力された多重信号を用いて、波長λRXの光信号を強度変調する。これにより、E/O29dは、波長λRXの光変調信号を生成する。E/O29dは、生成した波長λRXの光変調信号を光合分波部30dに送出する。
光合分波部30dは、入力された光信号を合波又は分波する。具体的には、光合分波部30dは、光伝送路40を介して伝送された光信号を分波する。例えば、本実施形態では、光合分波部30dには、集約局10dから送信された波長λTXの光変調信号が入力される。波長λTXの光変調信号には、例えばビーム制御信号と、クロック信号とが含まれる。光合分波部30dは、波長λTXの光変調信号をO/E22dに出力する。
さらに、光合分波部30dは、E/O29dにより生成された波長λRXの光変調信号を合波する。なお、図11に示す例では、張出局20dが送信する信号として光合分波部30dには波長λRXの光変調信号のみが入力されている。そのため、光合分波部30dは、入力された波長λRXの光変調信号を、光伝送路40を介して集約局10dに出力する。
集約局10dは、E/O11aと、光合分波部14dと、O/E15dと、合波部16と、分波部17とを備える。
合波部16には、少なくとも制御信号が入力される。例えば、合波部16に入力される制御信号には、ビーム制御信号と、クロック信号と、TDD信号とが含まれる。合波部16は、入力された制御信号を周波数多重することによって多重信号を生成する。なお、第2の実施形態と同様に、合波部16に送信信号と制御信号とが入力される場合、合波部16は、入力された送信信号と制御信号を周波数多重することによって多重信号を生成する。合波部16は、生成した多重信号をE/O11aに出力する。なお、合波部16に入力される制御信号は、必要に応じて電力レベルが調整されてもよい。
光合分波部14dは、入力された光信号を合波又は分波する。具体的には、光合分波部14dは、E/O11aにより生成された波長λTXの光変調信号を合波する。なお、図11に示す例では、集約局10dが送信する信号として光合分波部14dには波長λTXの光変調信号のみが入力されている。そのため、光合分波部14dは、入力された波長λTXの光変調信号を、光伝送路40を介して張出局20dに出力する。
さらに、光合分波部14dは、光伝送路40を介して伝送された光信号を分波する。例えば、本実施形態では、光合分波部14dには、張出局20dから送信された波長λRXの光変調信号が入力される。光合分波部14dは、波長λRXの光変調信号をO/E15dに出力する。
O/E15dは、波長λRXの光変調信号を直接検波して電気信号を取り出す直接検波部である。これにより、O/E15-1dは、受信信号及び応答信号を取り出す。
分波部17は、O/E15dから出力された受信信号及び応答信号を周波数に応じて分波する。これにより、受信信号と、応答信号とが分波される。
図12は、第5の実施形態における無線通信システム1dの処理の流れを示すシーケンス図である。なお、図12の処理開始時には、集約局10dにより張出局20dに対してビーム形成の制御が行われているものとする。例えば、図12の処理では、ビーム制御信号STiに対応する方向にビームが形成されているものとする。
張出局20dのビーム形成部27は、ビーム制御信号STiに対応する方向に位置する外部の装置から送信された無線信号を、アンテナ253-i又は256-iを介して受信する(ステップS501)。ビーム形成部27は、受信した無線信号を電気信号に変換して送受信切替部33に出力する。例えば、ビーム形成部27は、無線信号を受信したポート(例えば、アンテナ253-i又は256-iが直接又は間接的に接続されるポート)に対応するポートから電気信号を出力する。さらに、ビーム形成部27は、必要に応じて応答信号をレベル調整部111に出力する。
送受信切替部33は、TDD信号で示される受信タイミング時に、周波数変換部28とビーム形成部27とが電気的に接続されるように接続を切り替える。これにより、ビーム形成部27から出力された電気信号が周波数変換部28に出力される。
周波数変換部28は、分波部23から出力されたクロック信号を基準にしてLO信号を生成する。周波数変換部28は、生成したLO信号を用いて、送受信切替部33を介して出力された電気信号(受信信号)の周波数をIF帯の周波数に変換する(ステップS502)。すなわち、周波数変換部28は、受信信号の周波数を変換する。周波数変換部28は、周波数変換後の受信信号をレベル調整部110に出力する。レベル調整部110は、受信信号の電力レベルを調整して(ステップS503)、合波部31に受信信号を出力する。レベル調整部111は、応答信号の電力レベルを調整して(ステップS504)、合波部31に応答信号を出力する。
合波部31は、調整後の受信信号と、調整後の応答信号とを周波数多重する(ステップS505)。これにより、多重信号が生成される。合波部31は、生成した多重信号をE/O29dに出力する。E/O29dは、合波部31から出力された多重信号を入力とする。E/O29dは、入力された多重信号を用いて、波長λRXの光信号を強度変調する(ステップS506)。これにより、波長λRXの光変調信号が生成される。E/O29dは、生成した波長λRXの光変調信号を光合分波部30dに出力する。
光合分波部30dは、E/O29から出力された波長λRXの光変調信号を入力とする。光合分波部30dは、入力した波長λRXの光変調信号を光伝送路40に送出する(ステップS507)。光伝送路40に送出された波長λRXの光変調信号は、集約局10dに入力される。
集約局10dの光合分波部14dは、入力された波長λRXの光変調信号を分波する(ステップS508)。これにより、波長λRXの光変調信号は、O/E15dに出力される。O/E15dは、波長λRXの光変調信号を直接検波して電気信号を取り出す。これにより、O/E15dは、IF信号(受信信号)と応答信号とを取り出す(ステップS509)。O/E15dは、IF信号(受信信号)と応答信号とを分波部17に出力する。分波部17は、O/E15dから出力されたIF信号(受信信号)と応答信号とを周波数に応じて分波する(ステップS510)。これにより、分波部17は、IF信号(受信信号)と応答信号とを分離する。
以上のように構成された無線通信システム1dによれば、上り方向においても第2の実施形態と同様の効果を得ることができる。
(第5の実施形態の変形例)
無線通信システム1dは、下り方向の通信において第2の実施形態における無線通信システム1aの技術が組み合わされてもよい。この場合、集約局10dの合波部16には、第2の実施形態と同様に、調整された送信信号と、調整された制御信号とが入力され、入力された送信信号と制御信号とが周波数多重される。張出局20dの分波部32には、O/E22dからの出力である電気信号が入力され、入力された電気信号が制御信号と他の信号(例えば、送信信号)とに分離される。分波部32は、制御信号を分波部23に出力し、他の信号を周波数変換部28に出力する。周波数変換部28は、下り方向の通信時には周波数変換部24と同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1aの技術と無線通信システム1dの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1dは、下り方向の通信において第2の実施形態における無線通信システム1aの技術が組み合わされてもよい。この場合、集約局10dの合波部16には、第2の実施形態と同様に、調整された送信信号と、調整された制御信号とが入力され、入力された送信信号と制御信号とが周波数多重される。張出局20dの分波部32には、O/E22dからの出力である電気信号が入力され、入力された電気信号が制御信号と他の信号(例えば、送信信号)とに分離される。分波部32は、制御信号を分波部23に出力し、他の信号を周波数変換部28に出力する。周波数変換部28は、下り方向の通信時には周波数変換部24と同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1aの技術と無線通信システム1dの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1aの技術と無線通信システム1dの技術とを組み合わせて、周波数分割複信(FDD)方式により双方向通信を行う場合には、上り方向と下り方向とで異なる周波数が用いられ、張出局20dは送受信切替部33を備えない。このような構成により、周波数分割複信(FDD)方式においても上り方向と下り方向の双方向の通信が可能になる。
(第6の実施形態)
第5の実施形態では、張出局が、クロック信号に基づいて周波数変換部においてLO信号を生成する構成を示した。これに対して、第6の実施形態では、集約局からLO信号を送信する点が、第5の実施形態との差分である。第6の実施形態では、第5の実施形態との差分を中心に説明する。
第5の実施形態では、張出局が、クロック信号に基づいて周波数変換部においてLO信号を生成する構成を示した。これに対して、第6の実施形態では、集約局からLO信号を送信する点が、第5の実施形態との差分である。第6の実施形態では、第5の実施形態との差分を中心に説明する。
図13は、第6の実施形態における無線通信システム1eの構成例を示す図である。無線通信システム1eは、集約局10eと、張出局20eとを備える。集約局10eと、張出局20eとは、光伝送路40を介して接続されている。
集約局10eは、少なくとも制御信号とLO信号とを周波数多重することで生成した多重信号によって、張出局20eのビーム形成を遠隔で制御する。例えば、集約局10eは、アナログRoF技術を用いて張出局20eのビーム形成を遠隔で制御する。さらに、集約局10eは、張出局20eで受信された受信信号を受信する。
張出局20eは、第3の実施形態と同様に、集約局10eから送信された多重信号に含まれる制御信号に基づいてビーム形成を行う。張出局20eは、ビームを形成した方向に位置する外部の装置から送信された無線信号を受信する。張出局20eが受信する無線信号は、RF帯の信号である。張出局20dは、RF帯の受信信号を集約局10eに送信してもよいし、RF帯の受信信号の周波数をIF帯の周波数に変換して集約局10eに送信してもよい。例えば、張出局20eは、RF帯又はIF帯の受信信号と、応答信号とを周波数多重することで生成した多重信号を光信号に変換して集約局10eに送信する。
張出局20eは、O/E22eと、分波部23eと、ビーム形成部27と、周波数変換部28eと、E/O29dと、光合分波部30と、レベル調整部112、113と、合波部31と、分波部32eと、送受信切替部33とを備える。
O/E22eは、波長λTXの光変調信号を直接検波して電気信号を取り出す直接検波部である。これにより、O/E22eは、少なくとも制御信号とLO信号とを取り出す。O/E22dは、制御信号とLO信号とを分波部32eに出力する。
分波部32eは、O/E22eにより取り出された電気信号を周波数に応じて分波する。具体的には、分波部32eは、O/E22eにより取り出された電気信号に含まれる制御信号とLO信号とを周波数に応じて分離する。これにより、制御信号と、LO信号とが分離される。分波部32eは、LO信号を周波数変換部28eに出力し、制御信号を分波部23eに出力する。
分波部23eには、分波部32eにより分離された制御信号が入力される。分波部23eは、入力された制御信号を周波数に応じて分波する。これにより、分波部23eは、制御信号からビーム制御信号(図13ではSTi)と、TDD信号とを分離する。分波部23eは、ビーム制御信号をビーム形成部27に出力し、TDD信号を送受信切替部33に出力する。
周波数変換部28eは、送受信切替部33を介して出力された受信信号(RF信号)の周波数を、分波部32eから出力されたLO信号を用いてIF帯の周波数の信号(IF信号)に変換し、レベル調整部112に出力する。レベル調整部112は、受信信号の電力レベルを調整して合波部31に受信信号を出力する。レベル調整部113には、応答信号が入力される。レベル調整部113は、応答信号の電力レベルを調整して合波部31に応答信号を出力する。レベル調整部112、113は、受信信号と、応答信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、受信信号の電力レベルと制御信号の電力レベルとをそれぞれ調整する。これにより、非線形光学効果による歪みが生じない電力範囲での複数信号伝送をすることができる。
集約局10eは、レベル調整部114、115と、E/O11aと、光合分波部14dと、O/E15dと、合波部16eと、分波部17とを備える。
合波部16eには、少なくとも制御信号とLO信号とが入力される。合波部16eに入力されるLO信号は、レベル調整部114により調整された信号である。合波部16eに入力される制御信号は、レベル調整部115により調整された信号である。例えば、合波部16eに入力される制御信号には、ビーム制御信号と、TDD信号とが含まれる。合波部16eは、入力された制御信号とLO信号とを周波数多重することによって多重信号を生成する。なお、第3の実施形態と同様に、合波部16eに送信信号と制御信号とLO信号とが入力される場合、合波部16eは、入力された送信信号と制御信号とLO信号を周波数多重することによって多重信号を生成する。合波部16eは、生成した多重信号をE/O11aに出力する。なお、合波部16に入力される制御信号とLO信号は、必要に応じて電力レベルが調整されてもよい。
以上のように構成された無線通信システム1eによれば、上り方向においても第3の実施形態と同様の効果を得ることができる。
(第6の実施形態の変形例)
無線通信システム1eは、下り方向の通信において第3の実施形態における無線通信システム1bの技術が組み合わされてもよい。この場合、集約局10eの合波部16eには、第3の実施形態と同様に、調整された送信信号と、調整された制御信号と、調整されたLO信号とが入力され、入力された送信信号と制御信号とLO信号とが周波数多重される。張出局20eの分波部32eには、O/E22eにより取り出された電気信号が入力され、入力された電気信号が制御信号と、他の信号(例えば、送信信号及びLO信号)とに分離される。分波部32eは、制御信号を分波部23eに出力し、他の信号を周波数変換部28eに出力する。周波数変換部28eは、下り方向の通信時には周波数変換部24eと同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1bの技術と無線通信システム1eの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1eは、下り方向の通信において第3の実施形態における無線通信システム1bの技術が組み合わされてもよい。この場合、集約局10eの合波部16eには、第3の実施形態と同様に、調整された送信信号と、調整された制御信号と、調整されたLO信号とが入力され、入力された送信信号と制御信号とLO信号とが周波数多重される。張出局20eの分波部32eには、O/E22eにより取り出された電気信号が入力され、入力された電気信号が制御信号と、他の信号(例えば、送信信号及びLO信号)とに分離される。分波部32eは、制御信号を分波部23eに出力し、他の信号を周波数変換部28eに出力する。周波数変換部28eは、下り方向の通信時には周波数変換部24eと同様の処理を行う。ビーム形成部27は、下り方向の通信時にはビーム形成部25と同様の処理を行う。無線通信システム1bの技術と無線通信システム1eの技術とを組み合わせた場合には、時分割複信(TDD)方式により双方向通信が可能になる。
無線通信システム1bの技術と無線通信システム1eの技術とを組み合わせて、周波数分割複信(FDD)方式により双方向通信を行う場合には、上り方向と下り方向とで異なる周波数が用いられ、張出局20eは送受信切替部33を備えない。このような構成により、上り方向と下り方向の双方向の通信が可能になる。
上述した実施形態における集約局10,10a,10b,10c,10d,10eや張出局20,20a,20b,20c,20d,20eの一部の機能部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
本発明は、RoF伝送を行う無線通信システムに適用可能である。
10、10a、10b、10c、10d、10e…集約局, 20、20a、20b、20c、20d、20e…張出局, 11-1、11-2、11a、29、29d、29-1、29-2…E/O, 12…光合波部, 13、16、16e、31…合波部, 14、14d、30、30d…光合分波部, 15、15d、15-1、15-2、22-1、22-2、22a…O/E, 17、23、23e、26…分波部, 21…光分波部, 24、28、28e…周波数変換部, 25、27…ビーム形成部, 33、33e…送受信切替部、101、102、103、104、105、106、107、108、109、110、111、112、113…レベル調整部、 251…制御部, 252-1~252-n…移相器, 253-1~253-n、256-1~256-n…アンテナ, 254…制御スイッチ, 255…パッシブビーム形成部
Claims (8)
- 集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムにおける無線通信方法であって、
前記集約局は、少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出し、
前記張出局が、前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する無線通信方法。 - 前記集約局が、前記ビーム制御信号と、前記送信信号とを異なる波長に強度変調し、波長分割多重を行うことによって前記光信号を生成し、
前記張出局が、前記光信号を波長に応じて分波し、前記光信号に含まれる前記ビーム制御信号を取得することで前記特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定する、
請求項1に記載の無線通信方法。 - 前記集約局が、前記ビーム制御信号と、前記送信信号とを周波数多重した後に特定の波長に強度変調することによって前記光信号を生成し、
前記張出局が、前記光信号を電気信号に変換した後に、前記電気信号に含まれる前記ビーム制御信号を取得することで前記特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定する、
請求項1に記載の無線通信方法。 - 前記集約局は、前記送信信号の電力レベルは、前記ビーム制御信号の電力レベルと比較して高い電力レベルに調整する請求項1から請求項3のいずれか1項に記載の無線通信方法。
- 前記張出局が、前記ビーム制御信号に応じて複数の移相器における位相の回転量を制御することで前記特定の方向にビーム形成を行う、又は、前記ビーム制御信号に応じて前記特定の方向にビーム形成可能なポートに前記送信信号が入力されるようにスイッチの接続を切り替えて前記特定の方向にビーム形成を行う、
請求項1から請求項3のいずれか1項に記載の無線通信方法。 - 前記張出局が、外部の装置から受信した受信信号と、ビーム制御信号に対する応答信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記受信信号の電力レベルと前記応答信号の電力レベルとを調整して前記集約局に送出し、
前記集約局が、前記張出局から送出された前記光信号から少なくとも受信信号を取得する、
請求項1から請求項3のいずれか1項に記載の無線通信方法。 - 集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムにおける基地局装置であって、
少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出する集約局と、
前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する張出局と、
を備える基地局装置。 - 集約局と、前記集約局と光ファイバで接続されるとともに前記集約局の制御に従ってビーム形成を行う張出局とを備える無線通信システムであって、
前記集約局は、少なくとも前記張出局におけるビーム形成を制御するためのビーム制御信号と、送信対象となるデータである送信信号とを含む光信号が、光ファイバにおいて非線形光学効果による歪みが生じない光信号とするために、前記ビーム制御信号の電力レベルと前記送信信号の電力レベルとを調整して前記張出局に送出し、
前記張出局は、前記光信号に含まれる前記ビーム制御信号に基づいて、特定の方向にビーム形成を行うための位相差を、移相器に設定又はスイッチ切替により設定することで前記送信信号を送信する、無線通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/017846 WO2023199484A1 (ja) | 2022-04-14 | 2022-04-14 | 無線通信方法、基地局装置及び無線通信システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/017846 WO2023199484A1 (ja) | 2022-04-14 | 2022-04-14 | 無線通信方法、基地局装置及び無線通信システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023199484A1 true WO2023199484A1 (ja) | 2023-10-19 |
Family
ID=88329405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/017846 WO2023199484A1 (ja) | 2022-04-14 | 2022-04-14 | 無線通信方法、基地局装置及び無線通信システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023199484A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240063850A1 (en) * | 2021-01-07 | 2024-02-22 | Nippon Telegraph And Telephone Corporation | Distributed antenna system, wireless communication method, and centralized station |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022439A (ja) * | 1998-06-26 | 2000-01-21 | Nippon Telegr & Teleph Corp <Ntt> | 給電方法およびフェーズドアレーアンテナ |
JP2001102979A (ja) * | 1999-09-29 | 2001-04-13 | Toshiba Corp | 移動体無線通信システム |
JP2015076700A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社Nttドコモ | 無線装置、無線制御装置及び通信制御方法 |
JP2016082457A (ja) * | 2014-10-19 | 2016-05-16 | 国立研究開発法人情報通信研究機構 | 光アップ・ダウンコンバート型光位相共役対信号送受信回路 |
US20190267708A1 (en) * | 2018-02-23 | 2019-08-29 | Precision Integrated Photonics, Inc. | Phased array communication system with remote rf transceiver and antenna beam control |
-
2022
- 2022-04-14 WO PCT/JP2022/017846 patent/WO2023199484A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022439A (ja) * | 1998-06-26 | 2000-01-21 | Nippon Telegr & Teleph Corp <Ntt> | 給電方法およびフェーズドアレーアンテナ |
JP2001102979A (ja) * | 1999-09-29 | 2001-04-13 | Toshiba Corp | 移動体無線通信システム |
JP2015076700A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社Nttドコモ | 無線装置、無線制御装置及び通信制御方法 |
JP2016082457A (ja) * | 2014-10-19 | 2016-05-16 | 国立研究開発法人情報通信研究機構 | 光アップ・ダウンコンバート型光位相共役対信号送受信回路 |
US20190267708A1 (en) * | 2018-02-23 | 2019-08-29 | Precision Integrated Photonics, Inc. | Phased array communication system with remote rf transceiver and antenna beam control |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240063850A1 (en) * | 2021-01-07 | 2024-02-22 | Nippon Telegraph And Telephone Corporation | Distributed antenna system, wireless communication method, and centralized station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akiba et al. | Photonic architecture for beam forming of RF phased array antenna | |
US20190386765A1 (en) | Method and apparatus for weight assignment in beamforming (bf) | |
US10629989B2 (en) | Phased array communication system with remote RF transceiver and antenna beam control | |
JP4246724B2 (ja) | ビームフォーミング型rofシステム | |
Ruggeri et al. | A 5G fiber wireless 4Gb/s WDM fronthaul for flexible 360 coverage in V-band massive MIMO small cells | |
US11563508B1 (en) | Photonics assisted millimeter-wave systems and methods | |
EP2767012B1 (en) | Optical network unit | |
US11606142B2 (en) | Radio access network using radio over fibre | |
WO2021106043A1 (ja) | 無線送信システム、無線受信システム、基地局装置、及び無線通信システム、並びに無線送信方法、及び無線受信方法 | |
WO2015154806A1 (en) | Radio-over-fibre transmission in communications networks | |
WO2023199484A1 (ja) | 無線通信方法、基地局装置及び無線通信システム | |
WO2023199476A1 (ja) | 無線通信方法、基地局装置及び無線通信システム | |
JP4810366B2 (ja) | 波長変換型波長分割多重伝送装置 | |
Ito et al. | Remote beamforming scheme with fixed wavelength allocation for radio-over-fiber systems employing single-mode fiber | |
US20240275491A1 (en) | Wireless communication method and wireless communication system | |
Morant et al. | Multi-core fiber technology supporting MIMO and photonic beamforming in 5G multi-antenna systems | |
Kao et al. | Photodiode-integrated array-antenna module enabling 2-D beamforming for RoF transmission | |
US20230208522A1 (en) | Communication system and method, and related device | |
WO2021106041A1 (ja) | 無線送信システム、無線受信システム、基地局装置、及び無線通信システム、並びに無線送信方法、及び無線受信方法 | |
US20090285577A1 (en) | Optical Frontend for Integration of Optical and Wireless Networks | |
WO2022044309A1 (ja) | 無線通信方法、基地局装置、及び無線通信システム | |
US20240267122A1 (en) | Wireless communication method | |
Shin et al. | A versatile 60 GHz CMOS phased-array transmitter chipset for broadband radio-over-fiber systems | |
US20240259098A1 (en) | Wireless communication method and wireless communication system | |
WO2023216123A1 (en) | Methods and apparatuses providing optical beamforming crossbar arrays for radio communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22937463 Country of ref document: EP Kind code of ref document: A1 |