WO2016063548A1 - 照射計画装置および照射計画補正方法 - Google Patents
照射計画装置および照射計画補正方法 Download PDFInfo
- Publication number
- WO2016063548A1 WO2016063548A1 PCT/JP2015/005352 JP2015005352W WO2016063548A1 WO 2016063548 A1 WO2016063548 A1 WO 2016063548A1 JP 2015005352 W JP2015005352 W JP 2015005352W WO 2016063548 A1 WO2016063548 A1 WO 2016063548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- irradiation
- particle beam
- correction
- power ratio
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 177
- 239000002245 particle Substances 0.000 claims abstract description 133
- 238000009826 distribution Methods 0.000 claims abstract description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 89
- 238000012545 processing Methods 0.000 claims abstract description 34
- 238000004364 calculation method Methods 0.000 claims abstract description 32
- 239000000126 substance Substances 0.000 claims description 32
- 230000003993 interaction Effects 0.000 claims description 24
- 239000013076 target substance Substances 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- 238000003384 imaging method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000012634 fragment Substances 0.000 description 5
- -1 carbon ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 231100000987 absorbed dose Toxicity 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000002665 ion therapy Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 229910052739 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000002727 particle therapy Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002661 proton therapy Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/025—Tomosynthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4007—Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
- A61B6/4014—Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4064—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
- A61B6/4085—Cone-beams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1031—Treatment planning systems using a specific method of dose optimization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
- A61N2005/1062—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
Definitions
- the present invention relates to an irradiation plan apparatus, an irradiation plan program, an irradiation plan correction program, and an irradiation plan correction method for creating, for example, a particle beam irradiation plan.
- an irradiation planning device used for particle beam therapy represented by proton beam therapy and carbon beam therapy approximates the human body as water of different density, and applies the dose distribution measured in water to an inhomogeneous medium called the human body.
- the dose distribution in the body is calculated (see Patent Document 1).
- the pixel value (CT value) of the CT image of the patient is converted into a stopping power ratio representing an effective density of the substance with respect to the particle beam.
- the human body is expressed as water of different density.
- the CT value represents an effective source weak coefficient for the X-ray of the substance.
- the human body composition is different from water.
- the rate of the nuclear reaction that the incident particles cause in the body is different from the rate of the nuclear reaction that occurs in water.
- Different proportions of nuclear reactions mean that the number of incident particles reaching the vicinity of the range is different between the body and water.
- the percentage of incident particles that reach the vicinity of the stop position directly affects the height of the Bragg peak. For this reason, an error caused by a difference in nuclear reaction between water and the human body occurs in the dose distribution of the irradiation plan obtained by applying the dose distribution measured in water to the body. In addition, the degree of error differs for each patient and for each beam direction.
- the dose error caused by the dose distribution calculation in the patient's body may be corrected by the fluence correction factor.
- Palmans H and Verhagen F 1997, Calculated depth dose distributions for proton beams in some low-Z materials Phys. Med. Biol. 42, 1175-83 Schneider U, Pemler P, Besseler J, Dellert M, Moosburger M, Boer J, Pedronie E and Boehringer T, 2002, Thewater educator. Phys. 29, 2946-51 Palmans H and Verhagen F, 2005, Assigning non-neutral nuclear interaction cross sections to Hounsfield units for Monte paleontlement plan. Med. Biol. 50, 991-1000 Al-Suraiti L, Shipley D, Thomas R, Kackperek A, Regan P and Palmans H, 2010, Waterequivalence of minerals. Instrum. Meth. A 619, 344-7
- the present invention calculates the dose error due to the fact that the nuclear reaction probability caused by the incident particles in the body is different from the nuclear reaction probability caused in the water in the calculation of the dose distribution in the body in the particle beam irradiation plan, It is an object of the present invention to provide an irradiation plan apparatus, an irradiation plan program, an irradiation plan correction program, and an irradiation plan correction method that are easily and highly accurately corrected.
- the present invention is an irradiation planning apparatus for creating an irradiation plan using particle beams, and acquiring three-dimensional scanning data for acquiring three-dimensional scanning data obtained by three-dimensionally scanning an irradiation target of the particle beams with radiation different from the particle beams.
- a prescription data acquisition unit that acquires prescription data indicating the position and amount of a region that irradiates a particle beam to the irradiation target, and a physical quantity distribution that represents the ability of the irradiation target substance to react to the particle beam
- a reaction physical quantity distribution data creation unit that creates reaction physical quantity distribution data indicating the three-dimensional scanning data, and a dose distribution calculation unit that obtains a dose distribution based on the prescription data and the reaction physical quantity distribution data, and
- the reaction physical quantity distribution data creation unit uses the 3D scanning data to determine how much of the target substance is incident on the water.
- a stopping power ratio correction processing unit that generates a three-dimensional stopping power ratio data by converting into a stopping power ratio, which is a physical quantity indicating whether the child has the ability to decelerate, and water and an irradiation target substance from the three-dimensional stopping power ratio data
- An irradiation planning apparatus configured with an irradiation target substance correction processing unit that calculates a correction coefficient representing a difference between the irradiation target substance and the depth dose distribution of the particle beam for each depth using the correction coefficient, an irradiation planning program used for the irradiation plan, and irradiation It is a plan correction program and an irradiation plan correction method.
- the dose error caused by the difference in the nuclear reaction probability caused by the incident particle in the body from the nuclear reaction probability caused in the water is easily and accurately corrected.
- An irradiation plan apparatus, an irradiation plan program, an irradiation plan correction program, and an irradiation plan correction method can be provided.
- Explanatory drawing by the graph which shows a dose Explanatory drawing by the graph which showed this dose distribution correction simply.
- Explanatory drawing which shows the image of three-dimensional scanning data, and the image after conversion.
- the graph which shows the contribution of the deep dose distribution in water of a proton beam, and each interaction.
- Explanatory drawing which shows the relationship between the prevention capability ratio of ICRU human body tissue, and each correction coefficient.
- the image figure and histogram which show the mode of a series of conversion.
- Explanatory drawing which shows the whole structure of a particle beam irradiation system Explanatory drawing which shows the whole structure of 1 A of particle beam irradiation systems which concern on 2nd Embodiment.
- the present inventors have conducted intensive research to eliminate dose errors caused by the difference in the nuclear reaction probability caused by incident particles in the body from the nuclear reaction probability caused in water. Went.
- FIG. 1A is a diagram showing the distribution of the number of deep particles in water of carbon rays derived by Monte Carlo calculation for each atomic number.
- the horizontal axis indicates the depth from the body surface, and the vertical axis indicates the fluence.
- the dose distribution d j (x, y, z) of the carbon beam depends on the dose contribution from the incident particles (carbon ions) and the fragment particles, but due to the difference in the lateral spread, the following [ Expression 1] can be expressed.
- D n, j (x, y, z) represents the dose distribution of the nth component.
- I n the depth dose distribution obtained by integrating the dose distribution of the n-th component in the beam axis perpendicular to the plane (Integrated Depth Dose: IDD) represents a.
- G (x, y, ⁇ n, j (z)) represents a two-dimensional normal distribution having a standard deviation ⁇ .
- the first component (first region) is an incident particle (carbon ion in the case of carbon ion therapy)
- the second component (second region) is a heavy fragment other than atomic numbers 1 and 2
- the third component (third ) Is approximated to be a contribution from light fragments with atomic numbers 1 and 2.
- FIG. 1B is a graph showing a deep dose distribution of a carbon beam having an energy of 290 MeV / u as an example.
- the horizontal axis indicates the depth from the body surface, and the vertical axis indicates the dose.
- the graph 101 shows the deep dose distribution IDD total in water of the carbon beam
- the dose contribution is shown
- the pixel value (CT value) of the patient's CT image is converted into the stopping power ratio ⁇ S of the substance to water, so that the inhomogeneous medium called the human body can be obtained.
- the stopping power ratio ⁇ S is a physical quantity representing how much a substance of interest with respect to water has the ability to decelerate incident particles.
- the dose distribution in the body is calculated by applying the dose distribution measured in water as shown in FIG. 1B to the distribution of the stopping power ratio obtained by the conversion.
- the inventors derived a universal correlation between the stopping power ratio ⁇ S and the nuclear reaction effective density ⁇ N of each tissue from the composition list of human tissues summarized in the ICRU report (ICRU Report 1992).
- the nuclear reaction effective density ⁇ N is a physical quantity that represents how easily a substance of interest with respect to water breaks incident particles.
- a three-dimensional distribution of the stopping power ratio ⁇ S is obtained from a three-dimensional distribution of CT values obtained by performing a three-dimensional scanning with a CT apparatus using X-rays that are radiation different from the particle beam, Further, using the correlation between ⁇ S and ⁇ N , a three-dimensional distribution of the nuclear response effective density ⁇ N is created.
- the effective distance S S (z) relating to particle deceleration from the body surface to the focused depth z is obtained by performing line integration of the stopping power ratio ⁇ S to the focused depth z, and the following [Equation 2] And given.
- the effective distance S N (z) for breaking the particles (causing a nuclear reaction) up to the depth z is obtained by the following integral of [Numerical Equation 3] by integrating the nuclear reaction effective density ⁇ N to z. ] Is given.
- Kanematsu et al. Derives the mean free path ⁇ of the carbon beam to 255 mm under an exponential decay model of the carbon beam fluence. (For details, see Kanematsu N, Koba Y and Ogata R, 2013, Evaluation of plastic materials for range singing. Using this relationship, the change in the carbon fluence caused by the nuclear reaction in water and in the body that occurs up to the depth of interest z can be expressed by the following [Equation 4].
- ⁇ w p (z) is referred to as an attenuation correction factor (Attenuation Correction Factor).
- the attenuation correction coefficient is ⁇ w p (z from the relationship S S (z) ⁇ S N (z) when passing through a substance having a higher probability of nuclear reaction that occurs per stopping power than water. ) ⁇ 1.0.
- I 1, j is corrected by ⁇ w p (z). Since fragment particles increase as the degree of attenuation of incident particles increases, the dose contribution I 3, j of the third component is corrected by 1 / ⁇ w p (z). The reason for not correcting the second component I2 , j is empirical.
- FIG. 2 is an explanatory diagram using a graph that simply shows the correction of the dose distribution.
- 2 (A), (C), (E), the vertical axis is the carbon fluence, the horizontal axis is the depth from the body surface, and FIGS. 2 (B), (D), (F) are Bragg curves.
- the vertical axis represents the depth dose, and the horizontal axis represents the depth from the body surface.
- FIG. 2 (A) and FIG. 2 (B) both show the carbon fluence or depth dose in water.
- the graph 111 has a low carbon fluence according to the depth, and the graph 116 shows a peak at a depth of about 1.0.
- FIG. 2 (C) and FIG. 2 (D) show the carbon beam fluence or the deep dose in a substance ( ⁇ w p (z)> 1.0) that is less likely to cause a nuclear reaction per stopping power than water. Show. As shown, the graph 112 is slightly higher overall than the graph 111, and the graph 117 is also slightly higher overall than the graph 116.
- 2 (E) and 2 (F) show the carbon fluence or the deep dose in a substance ( ⁇ w p (z) ⁇ 1.0) that is more likely to cause a nuclear reaction per stopping power than water. Show. As shown, the graph 113 is slightly lower than the graph 111 as a whole, and the graph 118 is also slightly lower than the graph 116 as a whole. In this way, the fluence and the deep dose are low if the substance is likely to cause a nuclear reaction, and conversely, the fluence and the deep dose are high if the substance is difficult to cause a nuclear reaction.
- FIG. 3 is an image diagram showing a series of conversion states.
- 3A shows an image of a CT value using the attenuation coefficient ⁇
- FIG. 3B1 shows a stopping power ratio image corrected by the stopping power ratio ⁇ S
- FIG. The nuclear reaction effective density image corrected by the nuclear reaction effective density ⁇ N is shown.
- FIG. 3 (B2) is a diagram showing a conversion table used for obtaining a stopping power ratio image from an image of CT values, with the vertical axis representing the stopping power ratio and the horizontal axis representing the attenuation coefficient.
- FIG. 3 is an image diagram showing a series of conversion states.
- 3A shows an image of a CT value using the attenuation coefficient ⁇
- FIG. 3B1 shows a stopping power ratio image corrected by the stopping power ratio ⁇ S
- the nuclear reaction effective density image corrected by the nuclear reaction effective density ⁇ N is shown.
- FIG. 3 (B2) is a diagram showing a conversion table used for obtaining a stopping power ratio image from
- C2 is a diagram showing a conversion table used for obtaining a nuclear reaction effective density image from a stopping power ratio image, with the vertical axis representing the nuclear reaction effective density and the horizontal axis representing the stopping power ratio.
- the dose distribution D (s) given to the water by the proton beam can be expressed by the contribution of each interaction (D EM (s ), D EL / IE (s), D NE (s)).
- D EM represents the absorbed dose of water due to incident particles that have caused only EM interaction.
- D EL / IE (s) represents the absorbed dose of water by the incident particle that has caused EL interaction or IE interaction.
- D NE represents the absorbed dose of water due to the NE interaction.
- 1-As indicates the change in the number of protons (fluence) that caused only EM interaction in water.
- A represents the slope
- 1-As represents how much the number of protons (fluence) that caused only EM interaction at depth s for water is reduced.
- 1-A's represents how much the fluence is reduced when the non-water is the same depth as the water. That is, (1-A's) / (1-As) is applied to correct how much the EM reaction differs from water at the depth s.
- Y represents a slope and represents how much the number of protons (fluence) that caused EL interaction or IE interaction at a depth s with respect to water is increased.
- Y ′ represents how much the number of protons (fluence) that caused EL interaction or IE interaction when non-water is the same depth as water is increased. That is, Y ′ / Y applies a correction of how much the response of EL and IE differs from water at the depth s.
- Y's / Ys it is canceled and expressed as Y '/ Y because the depth s is in the numerator and denominator.
- ⁇ Third component NE system> AY represents how much the reaction of NE has occurred in water.
- A′-Y ′ represents how much the NE reaction occurs when the material reaches the same depth as water (water equivalent depth). That is, A′-Y ′ / AY applies a correction of how much the NE reaction differs from water at the water equivalent depth s in the substance.
- ⁇ indicates how much energy is given to charged particles when water undergoes a nuclear reaction with respect to water. In detail, charged particles generated in the nuclear reaction drop in energy near the place where the reaction occurred, so they are included in the dose calculation, but neutrons and gamma rays generated in the nuclear reaction do not store much energy near the place where the reaction occurred. Do not include in dose calculation as it will not drop.
- ⁇ indicates that the proportion of energy delivered to charged particles is large, and if ⁇ is small, the proportion of energy delivered to neutrons and gamma rays is large, and the proportion of energy delivered to charged particles is small.
- ⁇ ′ indicates how much other than water causes nuclear reaction and how much energy is given to charged particles. That is, ⁇ ′ / ⁇ indicates how much the ratio of energy transferred to charged particles by the NE reaction at a depth s differs from that of water.
- the correction coefficient Y ′ / Y of El / IE represents the ratio of the number of protons in the substance that causes EL / IE interaction to water.
- correction coefficients ⁇ ′ / ⁇ and (A′ ⁇ Y ′) / (AY) of the D NE are respectively “the ratio at which the energy of the proton that caused the nuclear reaction is given to the target charged particles” and “the nuclear reaction” Represents the ratio of the number of protons in the water to water.
- FIG. 4 is a graph showing a deep dose distribution D in water of a proton beam having an energy of 216 MeV and contributions D EM , D EL / IE , and D NE of each interaction.
- the vertical axis indicates the dose, and the horizontal axis indicates the depth.
- the pixel value (CT value) of the patient's CT image is converted into the stopping power ratio ⁇ S of the substance to water, so that the inhomogeneous medium called the human body can be obtained.
- the stopping power ratio ⁇ S is a physical quantity representing how much a substance of interest with respect to water has the ability to decelerate incident particles.
- the dose distribution in the body is calculated by applying the dose distribution measured in water to the distribution of the stopping power ratio obtained by the conversion.
- the inventors created a human tissue phantom in the Monte Carlo simulation code GEANT4 based on the composition list of the human tissue summarized in the ICRU report (ICRU Report 1992), and simulated proton irradiation to the phantom.
- a universal correlation between the stopping power ratio ⁇ s of each tissue and each correction coefficient A ′ / A, Y ′ / Y, ⁇ ′ / ⁇ was derived.
- EM attenuation coefficient A and EL / IE yield Y were obtained by simulating proton irradiation with GEANT4 for water as a reference substance.
- FIG. 5 is an explanatory diagram showing the relationship between the stopping power ratio ⁇ s of the ICRU human body tissue and the correction coefficients A ′ / A, Y ′ / Y, ⁇ ′ / ⁇ .
- the vertical axis represents the correction coefficient
- the horizontal axis represents the stopping power ratio (ease of stopping the particle beam).
- “+” plotted in each figure is obtained by picking out parameters of each tissue (each substance) in the ICRU human tissue and plotting them one by one.
- a stopping power ratio greater than 1.0 indicates that the particle beam is easier to stop than water (substance), and smaller than 1.0 indicates that the particle beam is less likely to stop water than water (substance). Indicates that there is.
- FIG. 5A shows a graph of the correction coefficient A ′ / A for EM
- FIG. 5B shows a graph of the correction coefficient Y ′ / Y for EL / IE
- FIG. , NE shows a graph of the correction coefficient A ′ / A.
- the graph of each correction coefficient shows a positive correlation for EM and EL / IE shown in FIGS. 5A and 5B, and is negative for NE shown in FIG. 5C. Correlation is shown.
- a CT value representing an effective X-ray linear attenuation coefficient is converted into a stopping power ratio ⁇ s via a conversion table (calibrated for each CT device and imaging conditions). That is, in the treatment planning apparatus, the stopping power ratio distribution ⁇ s in the patient body is determined in advance when performing dose calculation. Therefore, from the universal correlation between the stopping power ratio ⁇ s and each correction coefficient A ′ / A, Y ′ / Y, ⁇ ′ / ⁇ and the EM attenuation coefficient A of water and the EL / IE yield Y shown in FIG. It is possible to apply the correction of the formula [8] to the dose calculation in the body.
- FIG. 6 is an image diagram and a histogram showing the state of a series of conversions.
- 6A shows an image of a dose distribution before correction
- FIG. 6B shows an image of a dose distribution after correction
- FIG. 6C shows an image before correction (uncorrected) and after correction.
- An image of the dose difference is shown.
- FIG. 6D is a dose volume histogram with the vertical axis representing volume and the horizontal axis representing dose.
- FIG. 7 is an explanatory diagram showing the overall configuration of the particle beam irradiation system 1 according to the first embodiment of the present invention.
- the particle beam irradiation system 1 includes an accelerator 4 that accelerates and emits a charged particle beam 3 emitted from an ion source 2, a beam transport system 5 that transports the charged particle beam 3 emitted from the accelerator 4, and the beam.
- An irradiation apparatus (scanning irradiation apparatus) 6 that irradiates a target unit 8 (for example, a tumor part) that is an irradiation target of a patient 7 with a charged particle beam 3 that has passed through a transport system 5, and a control apparatus that controls the particle beam irradiation system 1.
- 10 and an irradiation planning device 20 as a computer for determining irradiation parameters of the particle beam irradiation system 1.
- a carbon beam is used as the charged particle beam 3 irradiated from the ion source 2, but the present invention is not limited to this, and a particle beam irradiation system that irradiates various charged particle beams (including charged heavy particle beams).
- the present invention can be applied to 1.
- the accelerator 4 adjusts the intensity of the charged particle beam 3.
- the irradiation device 6 includes a scanning magnet (not shown) for deflecting the charged particle beam 3 in the XY direction that forms a plane perpendicular to the beam traveling direction (Z direction), and a dose for monitoring the position of the charged particle beam 3.
- a monitor (not shown) and a range shifter (not shown) for adjusting the stop position of the charged particle beam 3 in the Z direction are provided, and the charged particle beam 3 is scanned along the scan trajectory with respect to the target unit 8. .
- the control device 10 adjusts the intensity of the charged particle beam 3 from the accelerator 4, the position correction of the charged particle beam 3 in the beam transport system 5, scanning by a scanning magnet (not shown) of the irradiation device 6, and a range shifter ( The beam stop position and the like are controlled by (not shown).
- the irradiation planning device 20 includes an input device 21 composed of a keyboard and a mouse, a display device 22 composed of a liquid crystal display or a CRT display, a control device 23 composed of a CPU and ROM and RAM, a CD-ROM and A medium processing device 24 composed of a disk drive or the like for reading / writing data from / to a storage medium 29 such as a DVD-ROM, and a storage device 25 composed of a hard disk or the like are provided.
- the control device 23 reads the irradiation plan program 39a and the irradiation plan correction program 39b stored in the storage device 25, and stores an area setting processing unit 31, a prescription data input processing unit 32, a calculation unit 33, an output processing unit 34, and a three-dimensional display. It functions as a CT value data acquisition unit 36, a stopping power ratio conversion unit 37, and a nuclear reaction effective density conversion unit 38.
- the storage unit 25 stores first conversion data 41 for converting the three-dimensional CT value data (three-dimensional scanning data) into a stopping power ratio, and second conversion data 42 for converting the stopping power ratio into a nuclear reaction effective density.
- the 1st conversion data 41 is the data of the conversion table by the prior art which converts CT value into a stopping power ratio.
- the second conversion data 42 is data of a conversion table according to the present invention for converting the stopping power ratio into the nuclear reaction effective density, and the attenuation correction coefficient ⁇ w p (z) is the stopping power ratio obtained by each conversion and the nucleus. It can be obtained from [Expression 2] to [Expression 4] described above from the three-dimensional distribution of effective reaction density.
- each functional unit operates as follows in accordance with the irradiation planning program 39a and the irradiation plan correction program 39b.
- the 3D CT value data acquisition unit 36 acquires 3D CT value data of an irradiation target (patient) from a separate CT apparatus. That is, an effective linear attenuation coefficient for X-rays at each three-dimensional position of the irradiation target is acquired as three-dimensional CT value data.
- the region setting processing unit 31 displays the three-dimensional CT value data as an image on the display device 22 and accepts the region designation (designation of the target unit 8) input by the plan creator through the input device 21.
- the prescription data input processing unit 32 displays a prescription input screen on the display device 22 and receives prescription data input by the plan creator through the input device 21.
- This prescription data is data indicating the irradiation position and dose of the particle beam at each coordinate of the three-dimensional CT value data.
- the prescription data may be prescription data using a plurality of types of particle beams, including the irradiation position and the irradiation amount for each type including the type of particle beam (for example, carbon nucleus or hydrogen nucleus).
- the stopping power ratio conversion unit 37 uses the first conversion data (conversion table) prepared in advance to convert the three-dimensional CT value data into three-dimensional data, as is done with a general particle beam irradiation planning apparatus. Convert to the stopping power ratio ⁇ S at the position. By this conversion, stopping power ratio data which is a three-dimensional distribution of the stopping power ratio ⁇ S is obtained.
- the conversion to the stopping power ratio data may be performed by an existing technique for conversion using a conversion table prepared in advance.
- the nuclear reaction effective density conversion unit 38 uses the second conversion data indicating the correlation between the stopping power ratio ⁇ S and the nuclear reaction effective density ⁇ N in the human body tissue, and converts the stopping power ratio data into the nuclear reaction effective at each three-dimensional position. It converted into the density [rho N, to derive the three-dimensional distribution of nuclear reaction effective density [rho N. By this conversion, nuclear reaction effective density data which is a three-dimensional distribution of the nuclear reaction effective density is obtained. As a result, the dose correction measured in water is not applied as it is to the dose calculation in the body, but the attenuation correction coefficient ⁇ w p (z) obtained in [Expression 2] to [Expression 4] described above is used. Use and correct the dose distribution for each depth according to [Equation 5].
- the calculation unit 33 receives prescription data, stopping power ratio data, and nuclear reaction effective density data, and creates irradiation parameters and dose distributions based on these data. That is, in order to irradiate the irradiation position of the prescription data at the irradiation position of the prescription data, the amount (number of particles) of the particle beam to be irradiated from the particle beam irradiation system 1 is used as the stopping power ratio data and the nuclear reaction effective density data. Thus, the irradiation parameters of the particle beam irradiated from the particle beam irradiation system 1 are calculated. In addition, the calculation unit 33 calculates a dose distribution when the irradiation target is irradiated with the particle beam with the calculated irradiation parameters.
- the output processing unit 34 outputs the calculated irradiation parameters and dose distribution to the display device 22 for display. Further, the output processing unit 34 transmits the irradiation parameter and the dose distribution to the control device 10 that controls the particle beam irradiation system 1.
- the particle beam irradiation system 1 irradiates a beam with high accuracy using the irradiation parameter corrected with higher accuracy in accordance with the irradiation target than the irradiation parameter approximated with water.
- the beam irradiation may be an appropriate irradiation such as spot beam irradiation using a scanning irradiation method that gives irradiation of a uniform dose distribution to the target region (the dose distribution is the sum of the spot beams). it can.
- the second conversion data 42 is the correction of the effective nuclear reaction density with respect to the stopping power ratio, it can be immediately introduced into the irradiation planning apparatus 20 of various existing particle beam irradiation systems 1 and used. More specifically, the CT value varies depending on the CT apparatus and imaging environment, and the conversion table for converting the CT value into the stopping power ratio also varies depending on the CT apparatus and imaging environment. For this reason, when the nuclear reaction effective density is directly corrected from the CT value, it is necessary to create a conversion table for each CT apparatus and imaging environment. On the other hand, in the existing particle beam irradiation system 1, there is a conversion table for the stopping power ratio in the CT apparatus and imaging environment that has already been installed. Setting can be made unnecessary.
- the core of the second conversion data 42 is obtained from the stopping power ratio calculated by the conversion table that has been individually adjusted in any CT apparatus and imaging environment. Correction by reaction effective density can be performed.
- the dose distribution measured in water (the above-mentioned [Equation 1]) is not applied as it is to the calculation of the dose distribution in the body, but is applied with the dose distribution corrected by the degree of the nuclear reaction probability of the passing substance. This makes it possible to easily correct the dose error due to the nuclear reaction.
- the irradiation planning device 20 can accurately reflect the influence of the nuclear reaction caused by the incident particles in the body in the dose distribution calculation of the particle beam irradiation plan. Thereby, more accurate dose distribution calculation in consideration of the composition in the body can be performed.
- this method is simple and uses the universal nature of the human body composition, and can be mounted on any irradiation planning apparatus. For this reason, this method can become a standard in the dose calculation algorithm of the particle beam irradiation plan using a carbon beam in the future.
- FIG. 8 is an explanatory diagram showing the overall configuration of a particle beam irradiation system 1A according to the second embodiment of the present invention.
- an EM correction unit 38a, an EL / IE correction unit 38b, and an NE correction unit 38c are provided instead of the nuclear reaction effective density conversion unit 38 (see FIG. 7), and an irradiation plan correction program 39b.
- An irradiation plan correction program 39c is provided instead of (see FIG. 7), and second conversion data 42a is provided instead of the second conversion data 42.
- the EM correction unit 38a, the EL / IE correction unit 38b, and the NE correction unit 38c receive the stopping power ratio data from the stopping power ratio conversion unit 37, and the correction coefficients A ′ / A, Y ′ / Y from the second conversion data 42a. , ⁇ ′ / ⁇ are received and the respective corrections are performed.
- the EM correction unit 38a is a part that corrects electromagnetic interaction (EM), and the EL / IE correction unit 38b is a part that corrects elastic scattering (EL) and inelastic scattering (IE).
- the part 38c is a part for correcting the nuclear reaction (NE).
- the irradiation plan correction program 39c operates each functional unit of the irradiation planning apparatus 20A as in the first embodiment.
- the irradiation plan is corrected by the EM correction unit 38a, the EL / IE correction unit 38b, and the NE correction unit 38c using the above-described equation [8] and the second conversion data 42a. I do.
- the second conversion data 42a stores correction coefficients A ′ / A, Y ′ / Y, and ⁇ ′ / ⁇ for each tissue.
- the particle beam irradiation system 1A of the second embodiment uses a high-accuracy beam using irradiation parameters corrected with higher accuracy in accordance with the irradiation target than the irradiation parameters approximated and planned with water.
- the beam irradiation may be an appropriate irradiation such as spot beam irradiation using a scanning irradiation method that gives irradiation of a uniform dose distribution to the target region (the dose distribution is the sum of the spot beams). it can.
- the correction coefficient is derived from the stopping power ratio by the second conversion data 42a, it can be immediately introduced and used in the irradiation planning apparatus 20A of various existing particle beam irradiation systems 1A. More specifically, the CT value varies depending on the CT apparatus and imaging environment, and the conversion table for converting the CT value into the stopping power ratio also varies depending on the CT apparatus and imaging environment. For this reason, when performing correction directly from the CT value, it is necessary to create a conversion table for each CT apparatus and imaging environment.
- the conversion table for the stopping power ratio in the already installed CT apparatus and imaging environment (the conversion table for converting the attenuation of X-rays into the particle beam stopping partition) )
- the second conversion data 42a is used for the stopping power ratio calculated by the individually adjusted conversion table in any CT apparatus and imaging environment.
- Conversion to a distribution of correction coefficients related to electromagnetic interaction (EM), elastic scattering (EL), inelastic scattering (IE), and nuclear reaction (NE), and taking into account the difference between each interaction and water can be implemented.
- EM electromagnetic interaction
- EL elastic scattering
- IE inelastic scattering
- NE nuclear reaction
- the dose distribution measured in water ([Equation 1] described in the first embodiment) is not applied as it is to the calculation of the dose distribution in the body, but the dose distribution is calculated according to the degree of the nuclear reaction probability of the substance passing through. By correcting and applying, it is possible to easily correct the dose error caused by the nuclear reaction.
- the irradiation planning apparatus 20A can accurately reflect the influence of the nuclear reaction caused by the incident particles in the body in the dose distribution calculation of the particle beam irradiation plan. Thereby, more accurate dose distribution calculation in consideration of the composition in the body can be performed. Moreover, this method is simple and uses the universal nature of the human body composition, and can be mounted on any irradiation planning apparatus. For this reason, this method can become a standard in the dose calculation algorithm of the particle beam irradiation plan using a proton beam in the future.
- the particle beam of the present invention corresponds to the charged particle beam 3 of the embodiment
- the irradiation target corresponds to patient 7
- the area corresponds to the target portion 8
- the irradiation planning device and the computer correspond to the irradiation planning device 20
- the prescription data acquisition unit corresponds to the prescription data input processing unit 32
- the dose distribution calculation unit corresponds to the calculation unit 33
- the three-dimensional scanning data acquisition unit corresponds to the three-dimensional CT value data acquisition unit 36
- the reaction physical quantity distribution data creation unit corresponds to the stopping power ratio conversion unit 37 and the nuclear reaction effective density conversion unit 38
- the stopping power ratio correction processing unit corresponds to the stopping power ratio conversion unit 37
- the irradiation target substance correction processing unit corresponds to the nuclear reaction effective density conversion unit 38, the EM correction unit 38a, the EL / IE correction unit 38b, and the NE correction unit 38c.
- the nuclear reaction effective density correction processing unit corresponds to the nuclear reaction effective density conversion unit 38
- the particle beam action correction processing unit corresponds to the EM correction unit 38a, the EL / IE correction unit 38b, and the NE correction unit 38c.
- Reaction physical quantity distribution data corresponds to the first conversion data 41 and the second conversion data 42, 42a
- the three-dimensional stopping power ratio data corresponds to the first conversion data 41
- the three-dimensional nuclear reaction effective density data corresponds to the second conversion data 42
- the components correspond to the first component, the second component, and the third component, It is not limited to this.
- the atomic number of each component in the correction of the example in the first embodiment described above is specialized for the carbon beam therapy with the atomic number 6, but is not limited thereto, and other nuclides with different atomic numbers are used.
- the range of atomic numbers contained in each component can be set to an appropriate range.
- stopping power ratio correction processing unit stopping power ratio conversion unit 37
- the irradiation target substance correction processing unit irradiation target substance correction processing unit (nuclear reaction effective density conversion unit 38, EM correction unit 38a, EL / IE correction unit 38b, and NE correction unit 38c). Since it is sufficient that the calculation concept is divided into two systems of calculation, the actual calculation may be configured to execute two correction processes in one calculation.
- the present invention can be used in a technique for irradiating and treating a particle beam.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- Pulmonology (AREA)
- Theoretical Computer Science (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
炭素線治療において、炭素線が体内に入射すると、炭素イオンの一部は体内の原子核との核破砕反応を通してその数を減らしていく。逆に、核破砕反応により生成されるフラグメント粒子は徐々にその数を増していき、炭素線が停止する位置を超えて広く拡散していく。
Inは、n番目の成分の線量分布をビーム軸と垂直な面内で積分した深部線量分布(Integrated Depth Dose: IDD)を表す。
G(x,y,σn,j(z))は、標準偏差σをもつ2次元正規分布を表す。
※詳細は、Inaniwa T, Furukawa T, Nagano A, Sato S, Saotome N, Noda K and Kanai T, 2009, Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med. Phys. 36, 2889-97 参照。
この関係を用いれば、着目する深さzまでに生じる、水中と体内での核反応による炭素線フルエンスの変化を、次の[数4]で表すことができる。
陽子線が水中を通過すると、水分子の電子または原子核との間で、水分子の電子(体内であれば体内の電子)に対してエネルギーを与えながら陽子線がエネルギーを失って減速していく電磁相互作用(electromagnetic interaction: EM)、全体の運動エネルギーが保存されながらエネルギーを渡すだけで原子核の種類が変化しない弾性散乱(elastic interaction: EL)、エネルギーを渡すことで原子核の種類は変わらないが励起する非弾性散乱(inelastic interaction: IE)、それ以外(EM、EL、IE以外)の反応である核反応(nonelastic interaction: NE)を起こす。ここで、ELまたはIEを起こした陽子は、その反応で僅かにエネルギーを失うが、EMのみを起こす陽子束とほぼ同じ深さまで到達する。ELとIEを起こした陽子束をまとめて扱えば、陽子線が水中に付与する線量分布D(s)は、次の[数6]に示すように、各相互作用の寄与(DEM(s)、DEL/IE(s)、DNE(s))の加算で表すことができる。
DEL/IE(s)は、EL相互作用またはIE相互作用を起こした入射粒子による水の吸収線量を表す。
DNE(s)は、NE相互作用に起因する水の吸収線量を表す。
1-Asは水の中でのEM相互作用のみを起こした陽子数(フルエンス)の変化を示す。Aは傾きを表し、1-Asは水について深さsにおいてEM相互作用のみを起こした陽子数(フルエンス)がどれくらい減っているかを表す。
1-A’sは、水ではないものが、水と同じ深さまできたときにフルエンスがどれだけ減っているかを表す。
つまり、(1-A’s)/(1-As)は、深さsにおいてEMの反応がどれだけ水と違ったかという補正をかけている。
Yは傾きを示し、水について深さsにおいてEL相互作用またはIE相互作用を起こした陽子数(フルエンス)がどれだけ増えているかを表す。
Y’は、水ではないものが、水と同じ深さまできたときにEL相互作用またはIE相互作用を起こした陽子数(フルエンス)がどれだけ増えているかを表す。
つまり、Y’/Yは、深さsにおいてELおよびIEの反応がどれだけ水と違ったかという補正をかけている。なお、本来はY’s/Ysと表現されるが、深さsが分子と分母にあるためにキャンセルされてY’/Yで表されている。
A-Yは、水の中でNEの反応がどれだけ起こっているかを表す。
A’-Y’は、物質中で、水と同じ深さ(水等価深)まできたときにNEの反応がどれだけ起こっているかを表す。
つまり、A’-Y’/A-Yは、物質中の水等価深sにおいてNEの反応がどれだけ水と違ったかという補正をかけている。
γは、水について、入射陽子が核反応をおこした際にどれだけ荷電粒子にエネルギーを与えたかを示している。詳述すると、核反応で生じた荷電粒子は反応が起こったところの近傍でエネルギーを落とすので線量計算に含めるが、核反応で生じた中性子やガンマ線は反応が起こったところの近傍にエネルギーをそれほど落とさないので線量計算に含めない。このため、γが大きければ荷電粒子に受け渡されるエネルギーの割合が大きいことを示し、γが小さければ中性子やガンマ線に受け渡されるエネルギーの割合が大きく荷電粒子に受け渡されるエネルギーの割合が小さいことを示す。
γ’は、水以外のものが、どれだけ核反応をおこしてどれだけ荷電粒子にエネルギーを与えたかを示している。
つまり、γ’/γは、深さsにおいてNEの反応により荷電粒子に受け渡されるエネルギーの割合がどれだけ水と違ったかを示す。
前記照射装置6は、荷電粒子ビーム3をビーム進行方向(Z方向)に垂直な平面を形成するX-Y方向に偏向させるスキャニングマグネット(図示省略)と、荷電粒子ビーム3の位置を監視する線量モニタ(図示省略)と、Z方向の荷電粒子ビーム3の停止位置を調整するレンジシフタ(図示省略)とを備え、ターゲット部8に対しスキャン軌道沿って荷電粒子ビーム3をスキャンするようになっている。
この発明の粒子線は、実施の形態の荷電粒子ビーム3に対応し、
以下同様に、
照射対象は、患者7に対応し、
領域は、ターゲット部8に対応し、
照射計画装置,コンピュータは、照射計画装置20に対応し、
処方データ取得部は、処方データ入力処理部32に対応し、
線量分布算出部は、演算部33に対応し、
3次元スキャニングデータ取得部は、3次元CT値データ取得部36に対応し、
反応物理量分布データ作成部は、阻止能比変換部37および核反応実効密度変換部38に対応し、
阻止能比補正処理部は、阻止能比変換部37に対応し、
照射対象物質補正処理部は、核反応実効密度変換部38、EM補正部38a、EL/IE補正部38b、およびNE補正部38cに対応し、
核反応実効密度補正処理部は、核反応実効密度変換部38に対応し、
粒子線作用補正処理部は、EM補正部38a、EL/IE補正部38b、およびNE補正部38cに対応し、
反応物理量分布データは、第1変換データ41および第2変換データ42,42aに対応し、
3次元阻止能比データは、第1変換データ41に対応し、
3次元核反応実効密度データは、第2変換データ42に対応し、
成分は、第1成分、第2成分、および第3成分に対応するが、
これに限られるものではない。
7…患者
8…ターゲット部
20,20A…照射計画装置
32…処方データ入力処理部
33…演算部
36…3次元スキャニングデータ取得部
37…阻止能比変換部
38…核反応実効密度変換部
38a…EM補正部38a
38b…EL/IE補正部38b
38c…NE補正部38c
41…第1変換データ
42,42a…第2変換データ
Claims (9)
- 粒子線による照射計画を作成する照射計画装置であって、
前記粒子線の照射対象を前記粒子線とは異なる放射線により3次元スキャニングした3次元スキャニングデータを取得する3次元スキャニングデータ取得部と、前記照射対象に対して粒子線を照射する領域の位置と量を示す処方データを取得する処方データ取得部と、
前記粒子線に反応する前記照射対象の物質の能力を表す物理量の分布を示す反応物理量分布データを前記3次元スキャニングデータに基づいて作成する反応物理量分布データ作成部と、
前記処方データと前記反応物理量分布データに基づいて線量分布を求める線量分布算出部とを備え、
前記反応物理量分布データ作成部は、
前記3次元スキャニングデータを、水に対して着目する物質がどれくらい入射粒子を減速させる能力があるかを示す物理量である阻止能比に変換して3次元阻止能比データを作成する阻止能比補正処理部と、
前記3次元阻止能比データから水と照射対象物質との違いを表す補正係数を求め、該補正係数により粒子線の深部線量分布を深さ毎に補正する照射対象物質補正処理部とで構成された
照射計画装置。 - 前記照射対象物質補正処理部は、
粒子線の深部線量分布を原子番号に応じて成分分けするか、あるいは粒子線の相互作用によって成分分けして、成分別に深部線量分布の補正を実行する構成である
請求項1記載の照射計画装置。 - 前記照射対象物質補正処理部は、
前記3次元阻止能比データを、水に対して着目する物質がどれくらい入射粒子を砕きやすいかを表す物理量である核反応実効密度に変換して3次元核反応実効密度データを作成し、粒子線の深部線量分布を原子番号に応じて成分分けし、補正係数を適用する成分と適用しない成分とに分けて深部線量分布の補正する核反応実効密度補正処理部である
請求項2記載の照射計画装置。 - 前記核反応実効密度補正処理部は、
データ原子番号が3~5の成分を、前記補正係数を適用しない成分とし、
原子番号が6の成分を、粒子線フルエンスの変化から求めた減弱補正係数を乗算する成分とし、
原子番号が1~2の成分を、前記減弱補正係数の逆数を乗算する成分とした
請求項3記載補正の照射計画装置。 - 前記照射対象物質補正処理部は、
粒子線の深部線量分布を少なくとも電磁相互作用に関する成分と核反応に関する成分に分け、それぞれについて補正係数により補正する粒子線作用補正処理部である
請求項2記載の照射計画装置。 - 前記照射対象物質補正処理部は、
粒子線の深部線量分布を前記電磁相互作用に関する成分と、前記核反応に関する成分と、弾性散乱および非弾性散乱に関する成分の3成分に分けてそれぞれ補正係数により補正し、補正後の値を加算する構成である
請求項5記載の照射計画装置。 - コンピュータを、
前記粒子線の照射対象を前記粒子線とは異なる放射線により3次元スキャニングした3次元スキャニングデータを取得する3次元スキャニングデータ取得部と、
前記照射対象に対して粒子線を照射する領域の位置と量を示す処方データを取得する処方データ取得部と、
前記粒子線に反応する前記照射対象の物質の能力を表す物理量の分布を示す反応物理量分布データを前記3次元スキャニングデータに基づいて作成する反応物理量分布データ作成部と、
前記処方データと前記反応物理量分布データに基づいて線量分布を求める線量分布算出部として機能させ、
前記反応物理量分布データ作成部を、
前記3次元スキャニングデータを、水に対して着目する物質がどれくらい入射粒子を減速させる能力があるかを示す物理量である阻止能比に変換して3次元阻止能比データを作成する阻止能比補正処理部と、
前記3次元阻止能比データから水と照射対象物質との違いを表す補正係数を求め、その補正係数により粒子線の深部線量分布を深さ毎に補正する照射対象物質補正処理部として機能させる
照射計画プログラム。 - コンピュータを、
3次元スキャニングデータを、水に対して着目する物質がどれくらい入射粒子を減速させる能力があるかを示す物理量である阻止能比に変換して3次元阻止能比データを作成する阻止能比補正処理部と、
前記3次元阻止能比データから水と照射対象物質との違いを表す補正係数を求め、その補正係数により粒子線の深部線量分布を深さ毎に補正する照射対象物質補正処理部として機能させる
照射計画補正プログラム。 - 粒子線による照射計画を補正する照射計画補正方法であって、
3次元スキャニングデータを、水に対して着目する物質がどれくらい入射粒子を減速させる能力があるかを示す物理量である阻止能比に変換して3次元阻止能比データを作成し、
前記3次元阻止能比データから水と照射対象物質との違いを表す補正係数を求め、その補正係数により粒子線の深部線量分布を深さ毎に補正する
照射計画補正方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/520,682 US10500414B2 (en) | 2014-10-24 | 2015-10-24 | Irradiation planning apparatus and irradiation plan correction method |
CN201580056738.2A CN107073288B (zh) | 2014-10-24 | 2015-10-24 | 照射计划装置以及照射计划校正方法 |
JP2016555093A JP6383429B2 (ja) | 2014-10-24 | 2015-10-24 | 照射計画装置および照射計画補正方法 |
DE112015004797.2T DE112015004797B4 (de) | 2014-10-24 | 2015-10-24 | Bestrahlungsplanungsvorrichtung und Bestrahlungsplankorrekturverfahren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014217869 | 2014-10-24 | ||
JP2014-217869 | 2014-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063548A1 true WO2016063548A1 (ja) | 2016-04-28 |
Family
ID=55760606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005352 WO2016063548A1 (ja) | 2014-10-24 | 2015-10-24 | 照射計画装置および照射計画補正方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10500414B2 (ja) |
JP (1) | JP6383429B2 (ja) |
CN (1) | CN107073288B (ja) |
DE (1) | DE112015004797B4 (ja) |
WO (1) | WO2016063548A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188688A1 (ja) * | 2018-03-30 | 2019-10-03 | テルモ株式会社 | 管理システム、管理方法、および管理プログラム |
JP7485585B2 (ja) | 2019-11-21 | 2024-05-16 | レイサーチ ラボラトリーズ エービー | 集束イオンビームのエネルギースペクトルを得ること |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108778420A (zh) * | 2016-03-31 | 2018-11-09 | 住友重机械工业株式会社 | 中子捕获治疗法用治疗计划系统 |
EP3338857B1 (en) * | 2016-12-21 | 2021-08-11 | RaySearch Laboratories AB | System and method for determining a treatment plan for active ion beam treatment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011162021A1 (ja) * | 2010-06-23 | 2011-12-29 | 独立行政法人放射線医学総合研究所 | 照射計画作成方法、照射計画作成装置および照射計画作成プログラム |
WO2012032609A1 (ja) * | 2010-09-07 | 2012-03-15 | 独立行政法人放射線医学総合研究所 | 治療計画方法、治療計画装置、治療計画プログラムおよび生物学的効果比算出方法 |
WO2012120636A1 (ja) * | 2011-03-08 | 2012-09-13 | 三菱電機株式会社 | 粒子線治療装置、および粒子線治療装置の照射線量設定方法 |
JP2013519452A (ja) * | 2010-02-12 | 2013-05-30 | ローマ リンダ ユニヴァーシティ メディカル センター | 陽子コンピュータ断層撮影のためのシステム及び方法 |
JP2013252420A (ja) * | 2012-04-11 | 2013-12-19 | Toshiba Corp | 放射線治療システム及び治療計画装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636622B2 (en) * | 1997-10-15 | 2003-10-21 | Wisconsin Alumni Research Foundation | Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment |
CN100432700C (zh) * | 2006-12-29 | 2008-11-12 | 成都川大奇林科技有限责任公司 | 医用电子加速器能谱测量方法 |
EP3862795A1 (en) * | 2009-03-20 | 2021-08-11 | Ion Beam Applications S.A. | Method for monitoring a hadron beam |
US20120041685A1 (en) * | 2010-07-13 | 2012-02-16 | Vanderbilt University | System and method for estimating radiation dose and distribution using medium-dependent-correction based algorithms (mdc) |
US8263954B2 (en) * | 2010-11-16 | 2012-09-11 | Mitsubishi Electric Corporation | Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus |
EP2486956B1 (de) | 2011-02-11 | 2015-06-03 | Hans Rinecker | Verfahren zur Identifikation möglicher Veränderungen der Reichweite eines geplanten Bestrahlungsfeldes vor der Bestrahlung eines Patienten mit geladenen Teilchen |
US9251302B2 (en) * | 2014-01-14 | 2016-02-02 | Mitsubishi Electric Research Laboratories, Inc. | System and method for planning a radiation therapy treatment |
US9844358B2 (en) * | 2014-06-04 | 2017-12-19 | Varian Medical Systems, Inc. | Imaging-based self-adjusting radiation therapy systems, devices, and methods |
EP3197553B1 (en) * | 2014-09-22 | 2018-03-21 | Koninklijke Philips N.V. | Radiation therapy planning optimization and visualization |
-
2015
- 2015-10-24 DE DE112015004797.2T patent/DE112015004797B4/de active Active
- 2015-10-24 US US15/520,682 patent/US10500414B2/en active Active
- 2015-10-24 JP JP2016555093A patent/JP6383429B2/ja active Active
- 2015-10-24 WO PCT/JP2015/005352 patent/WO2016063548A1/ja active Application Filing
- 2015-10-24 CN CN201580056738.2A patent/CN107073288B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519452A (ja) * | 2010-02-12 | 2013-05-30 | ローマ リンダ ユニヴァーシティ メディカル センター | 陽子コンピュータ断層撮影のためのシステム及び方法 |
WO2011162021A1 (ja) * | 2010-06-23 | 2011-12-29 | 独立行政法人放射線医学総合研究所 | 照射計画作成方法、照射計画作成装置および照射計画作成プログラム |
WO2012032609A1 (ja) * | 2010-09-07 | 2012-03-15 | 独立行政法人放射線医学総合研究所 | 治療計画方法、治療計画装置、治療計画プログラムおよび生物学的効果比算出方法 |
WO2012120636A1 (ja) * | 2011-03-08 | 2012-09-13 | 三菱電機株式会社 | 粒子線治療装置、および粒子線治療装置の照射線量設定方法 |
JP2013252420A (ja) * | 2012-04-11 | 2013-12-19 | Toshiba Corp | 放射線治療システム及び治療計画装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188688A1 (ja) * | 2018-03-30 | 2019-10-03 | テルモ株式会社 | 管理システム、管理方法、および管理プログラム |
JPWO2019188688A1 (ja) * | 2018-03-30 | 2021-04-01 | テルモ株式会社 | 管理システム、管理方法、および管理プログラム |
JP7307052B2 (ja) | 2018-03-30 | 2023-07-11 | テルモ株式会社 | 管理システム、管理方法、および管理プログラム |
JP7485585B2 (ja) | 2019-11-21 | 2024-05-16 | レイサーチ ラボラトリーズ エービー | 集束イオンビームのエネルギースペクトルを得ること |
Also Published As
Publication number | Publication date |
---|---|
CN107073288A (zh) | 2017-08-18 |
US10500414B2 (en) | 2019-12-10 |
JPWO2016063548A1 (ja) | 2017-08-03 |
DE112015004797T5 (de) | 2017-07-13 |
US20170304650A1 (en) | 2017-10-26 |
JP6383429B2 (ja) | 2018-08-29 |
DE112015004797B4 (de) | 2022-11-03 |
CN107073288B (zh) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fogliata et al. | Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water | |
Meier et al. | Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy | |
JP6383429B2 (ja) | 照射計画装置および照射計画補正方法 | |
Tryggestad et al. | A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform | |
US10155123B2 (en) | Neutron capture therapy system | |
US10661101B2 (en) | Dose distribution calculation device, particle beam therapy system, and dose distribution calculation method | |
TWI600451B (zh) | 粒子射線治療裝置及治療計畫補正方法 | |
US20200001113A1 (en) | Neutron capture therapy system and control device | |
Ryu et al. | Density and spatial resolutions of proton radiography using a range modulation technique | |
JP2016077812A (ja) | 中性子捕捉療法装置 | |
Noblet et al. | Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films | |
Palmans et al. | Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams | |
Robatjazi et al. | Monte Carlo simulation of electron beams produced by LIAC intraoperative radiation therapy accelerator | |
JP5721135B2 (ja) | 粒子線モニタリング装置、粒子線モニタリングプログラム及び粒子線モニタリング方法 | |
Huang et al. | Experimental determination of electron source parameters for accurate Monte Carlo calculation of large field electron therapy | |
JP6190302B2 (ja) | 生体機能観測装置および放射線治療システム | |
Kraan et al. | First tests for an online treatment monitoring system with in-beam PET for proton therapy | |
EP3266470A1 (en) | Device and method for imaging and enhanced proton-therapy treatment using nuclear reactions | |
JP2021101875A (ja) | 校正装置、治療計画装置及び校正方法 | |
TWI532515B (zh) | 粒子線照射裝置,及具有該粒子線照射裝置的粒子線治療裝置 | |
Gottschalk | Deterministic proton dose calculation from first principles | |
Biegun et al. | Proton radiography to improve proton radiotherapy: simulation study at different proton beam energies | |
WO2022211063A1 (ja) | 非破壊検査システム | |
Hundertmark et al. | A robust procedure for verifying TomoTherapy Hi-Art™ source models for small fields | |
Rinaldi et al. | Investigations on novel imaging techniques for ion beam therapy: carbon ion radiography and tomography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15851955 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016555093 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15520682 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015004797 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15851955 Country of ref document: EP Kind code of ref document: A1 |