WO2016063473A1 - Led array and production method therefor - Google Patents

Led array and production method therefor Download PDF

Info

Publication number
WO2016063473A1
WO2016063473A1 PCT/JP2015/005086 JP2015005086W WO2016063473A1 WO 2016063473 A1 WO2016063473 A1 WO 2016063473A1 JP 2015005086 W JP2015005086 W JP 2015005086W WO 2016063473 A1 WO2016063473 A1 WO 2016063473A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
led array
led
front surface
heat sink
Prior art date
Application number
PCT/JP2015/005086
Other languages
French (fr)
Japanese (ja)
Inventor
佳久 角田
冨田 秀司
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Publication of WO2016063473A1 publication Critical patent/WO2016063473A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/15Strips of light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to an LED array and a manufacturing method thereof.
  • LED arrays in which a plurality of light emitting diodes (LEDs: Light Emitting Diodes) are fixed and arranged on a wiring board are used in various fields as light sources instead of light bulbs.
  • LEDs Light Emitting Diodes
  • a light source for vehicles such as a high-mount stop lamp, a tail lamp, and a daylight that uses an LED array has been put into practical use.
  • FPC Flexible Printed
  • a copper foil having a thickness of about 12 to 40 ⁇ m is formed on a polyimide film having a thickness of about 12 to 50 ⁇ m, a wiring pattern is formed by etching the copper foil, and a polyimide film is further formed thereon. It has a structure.
  • the heat dissipation of the LED array is important because it greatly affects its lifetime. In order to improve the heat dissipation of the LED array, it is necessary to dissipate the heat generated by the LEDs by providing a heat sink made of a material such as aluminum at the bottom of each LED.
  • Patent Document 1 describes an LED array 300 in which a plurality of LEDs 32 are fixed on an FPC 30 as a wiring board and a heat sink 34 is provided below the LEDs 32, as schematically shown in FIG.
  • an object of the present invention is to provide an LED array having sufficient heat dissipation without an additional heat sink and a method for manufacturing the same.
  • the present inventors as a metal plate forming a wiring pattern of a wiring board for fixing an LED, replaces an FPC copper foil, supports and fixes a semiconductor chip, and connects to an external wiring (
  • the idea was to divert a lead frame, which is a relay board for mounting a semiconductor chip on a printed wiring board. Since the lead frame can be manufactured by stamping a thin metal plate, the thickness of the lead frame can be increased to 130 ⁇ m or more. By increasing the thickness of the metal plate forming the wiring pattern of the wiring board to 130 ⁇ m or more, it is possible to obtain a sufficient heat dissipation effect by the metal plate itself, so that sufficient heat dissipation can be achieved without providing an additional heat sink. Sex can be obtained.
  • the thickness of the copper foil is limited to about 40 ⁇ m at the maximum as described above. Therefore, there is no motivation to increase the thickness of the copper foil.
  • the present invention has been completed based on the above findings, and the gist of the present invention is as follows.
  • a wiring board having a front surface and a back surface, a metal plate having a thickness of 130 ⁇ m or more having a wiring pattern, and a first resin film provided on the back surface of the metal plate, A plurality of LEDs fixed on the front surface of the metal plate;
  • An LED array comprising: a heat sink that dissipates heat generated by the LED.
  • the metal plate includes a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions.
  • the metal plate includes a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions,
  • the said 2nd metal plate part is a manufacturing method of the LED array as described in said (4) or (5) made into the wiring pattern which deform
  • the LED array of the present invention has sufficient heat dissipation without an additional heat sink. Moreover, according to the manufacturing method of the LED array of this invention, the LED array which has sufficient heat dissipation can be manufactured even without an additional heat sink.
  • FIG. 1 is a top view of an LED array 100 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II of the LED array 100 of FIG. 1.
  • (A)-(E) are figures explaining an example of the manufacturing method of the LED array 100 of FIG.
  • FIG. 4 is a side view of FIG.
  • (A)-(D) are figures explaining an example of the manufacturing method of LED array 200 by other embodiment of this invention.
  • FIG. 6 is a side view of FIG. It is a side part of the conventional LED array 300.
  • LED array 100 An LED array 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the LED array 100 has a wiring board 10.
  • the wiring board 10 includes a metal plate 12 having a wiring pattern having a thickness of 130 ⁇ m or more, a first resin film 18B provided on the back surface 12B of the metal plate, and a first plate provided on the front surface 12A of the metal plate. 2 resin film 18A.
  • the LED array 100 includes a plurality of LEDs 20 fixed on the front surface 12A of the metal plate. On the other hand, the heat generated by the LED 20 is sufficiently dissipated from the metal plate 12. For this reason, the LED array 100 does not have a separate heat sink for dissipating the heat generated by the LEDs 20.
  • the metal plate 12 forming the wiring pattern of the wiring substrate 10 is as thick as 130 ⁇ m or more, the heat dissipation effect by the metal plate 12 itself is high, and there is no need to provide an additional heat sink. Sufficient heat dissipation can be obtained. Therefore, an additional heat sink can be omitted from the LED array 100, and as a result, the above-described problems caused by the additional heat sink can be avoided. Specifically, a large number of LEDs can be mounted on the wiring board, and a sufficient amount of light can be obtained without the LEDs being damaged by heat, and the amount of power used per amount of light can also be suppressed. Moreover, the freedom degree of design of an LED array can be raised. Further, the LED array can be manufactured by a reel-to-reel method, and the production efficiency can be increased.
  • the thickness of the metal plate 12 may be 130 ⁇ m or more, preferably 150 ⁇ m or more, and more preferably 200 ⁇ m or more.
  • the upper limit of the thickness of the metal plate 12 is not specifically limited, It is preferable to set it as 650 micrometers or less. When the thickness exceeds 650 ⁇ m, it is difficult to process a fine wiring pattern and the rigidity becomes high, so that it becomes difficult to handle as a reel.
  • the material of the metal plate 12 is not particularly limited, and examples thereof include copper, copper-based alloys such as copper-zinc, copper-tin, copper-iron, and iron-based alloys such as iron-nickel and iron-chromium. Can do.
  • a lead frame which is a component that supports and fixes a semiconductor chip and is connected to external wiring (a relay board when the semiconductor chip is mounted on a printed wiring board), can be suitably used.
  • the shape of the wiring pattern of the metal plate 12 is not particularly limited as long as the plurality of LEDs 20 can be electrically connected in series and / or in parallel.
  • LED arrays are required to be easily deformed (flexibility) from the viewpoint of design.
  • the LED 32 is protected by the heat sink 34, and the portion without the heat sink 34 is the flexible FPC 30, so that the entire shape of the LED array 300 could be curved. .
  • the protection of the LED 20 and the flexibility of the overall shape are realized by devising the shape of the wiring pattern of the metal plate 12. That is, in the present embodiment, the metal plate 12 includes a plurality of first metal plate portions 14 that fix the respective LEDs 20 and a second metal plate portion 16 that connects the adjacent first metal plate portions 14.
  • the second metal plate portion 16 is a wiring pattern having a shape that is more easily deformed than the first metal plate portion 14.
  • the first metal plate portion 14 has a relatively large area, it is difficult to be deformed, and it is possible to prevent the LED 20 from being stressed.
  • the second metal plate portion 16 is easily deformed because it has a shape to which relatively thin wirings are connected, and this portion is flexible. For example, as shown in FIG. The overall shape can be curved.
  • FIG. 5D shows a top view of an LED array 200 according to another embodiment of the present invention.
  • the metal plate 12 includes the first metal plate portion 14 and the second metal plate portion 16.
  • the second metal plate portion 16 has a wiring pattern that is more easily deformed than the first metal plate portion 14. For this reason, when the second metal plate portion 16 is flexible, the entire shape of the LED array 200 can be curved, for example, as shown in FIG.
  • the LED array 200 has the same characteristics as the LED array 100 except that the shape of the wiring pattern of the metal plate is different.
  • the second resin film 18A is provided on a surface of the front surface 12A of the metal plate on which the LED 20 is not fixed. Since the second resin film 18A is provided on the LED 20 side of the LED arrays 100 and 200, the second resin film 18A has a function of preventing energization of the user. However, the second resin film 18A may be omitted in applications where it is not assumed that the user touches the LED arrays 100, 200, such as when the LED arrays 100, 200 are housed in a housing and used as a light source. .
  • first and second resin films 18B and 18A examples include materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyimide (PI), and liquid crystal polymer (LCP). .
  • the thickness can be 12.5 to 100 ⁇ m. If it is 12.5 ⁇ m or more, it is preferable because it provides mechanical strength as a film and is easily available industrially. If it is 100 ⁇ m or less, it is difficult to bend the bending process, and heat radiation from the metal plate 12 is inhibited. It is preferable because it is difficult.
  • the LED 20 is generally one in which a light emitting element is wire-bonded in a heat resistant package and embedded in a silicon resin mixed with a phosphor.
  • the chip outline is often expressed with the vertical and horizontal numerical values in millimeters arranged with one digit after the decimal point, and 3014 (3.0mm x 1.4mm), 3020, 3030, 3528, 5630, and 5050 sizes are often used. ing.
  • the LED arrays 100 and 200 of the present embodiment can be suitably used as vehicle light sources such as high-mount stop lamps, tail lamps, and daylights.
  • LED array manufacturing method With reference to FIGS. 3A to 3E, a method of manufacturing the LED array 100 according to an embodiment of the present invention will be described.
  • a metal plate 12 having a front surface 12A and a back surface 12B (FIG. 2) and having a wiring pattern formed by punching is 130 ⁇ m or more in thickness.
  • the metal plate 12 is punched to form a wiring pattern, there is no problem in the process even if the thickness of the metal plate 12 is increased to 130 ⁇ m or more.
  • the second resin film 18A is laminated on the front surface 12A of the metal plate, and the first resin film 18B is laminated on the back surface 12B of the metal plate.
  • the wiring board 10 is obtained (see also FIG. 2).
  • the place LED mounting site
  • a method of setting and passing the metal plate 12 and the first and second resin films 18B and 18A between two heat rolls heated to about 130 ° C. is exemplified. can do.
  • a plurality of LEDs 20 are fixed on the front surface 12A of the metal plate.
  • the fixing method is not particularly limited. For example, a step of supplying solder to the LED mounting portion of the front surface 12A of the metal plate, a step of placing the LED 20 on the solder, and soldering by irradiating laser from the back side of the wiring board 10 toward the solder And the step of soldering the LED 20 to the wiring board 10 can be sequentially performed.
  • a predetermined portion (two-dot chain line portion in FIG. 3 (D)) of the wiring substrate 10 is punched. It is removed by (disconnection processing) to constitute an electric circuit. In this way, the LED array 100 shown in FIG. 3E can be manufactured.
  • FIGS. 3A to 3C This embodiment is the same as FIGS. 3A to 3C until the LED 20 is fixed except that the shape of the wiring pattern of the metal plate 12 is different as shown in FIG. A state where the LED 20 is fixed is shown in FIG. Thereafter, the portion indicated by the two-dot chain line in FIG. 5C is removed by punching to constitute an electric circuit. In this way, the LED array 200 shown in FIG. 5D can be manufactured.
  • FIGS. 3 and 5 there is no step of separately forming a heat sink that dissipates the heat generated by the LED.
  • the LED arrays 100 and 200 described above can be manufactured by these manufacturing methods.
  • a copper plate having a thickness of 130 ⁇ m punched into the wiring pattern shown in FIG. 5 was prepared. Further, a polyethylene naphthalate (PEN) film with an adhesive layer having a thickness of 50 ⁇ m, in which an LED mounting portion was previously cut, was prepared. A copper plate was sandwiched between PEN films, and passed between two hot rolls heated to 140 ° C., and bonded together to produce a wiring board.
  • this wiring board is referred to as a lead frame board-1.
  • the wiring boards are referred to as a lead frame board-2, a lead frame board-3, a lead frame board-4, and a lead frame board-5, respectively. Since the lead frame substrate-5 is relatively thick with a copper plate thickness of 800 ⁇ m, when it is punched into the wiring pattern shown in FIG.
  • Example 1 A 3030 size LED, NFC SW172, manufactured by Nichia, was mounted on the lead frame substrate-1 using lead-free solder, and the LED array 1 was produced.
  • Example 2 An LED array 2 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-2.
  • Example 3 An LED array 3 was fabricated in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-3.
  • Example 4 An LED array 4 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-4.
  • Example 5 An LED array 5 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the lead frame substrate-5.
  • a copper plate having a thickness of 100 ⁇ m punched into the wiring pattern shown in FIG. 5 was prepared.
  • the polyethylene naphthalate (PEN) film with the contact bonding layer which prepared the LED mounting part beforehand was prepared.
  • a copper plate was sandwiched between PEN films, and passed between two hot rolls heated to 140 ° C., and bonded together to produce a wiring board.
  • this wiring board is referred to as a lead frame board-6.
  • an FPC substrate-1 a substrate having a 35 ⁇ m thick copper foil bonded to a 25 ⁇ m thick polyimide film was etched to produce a substrate having a circuit similar to that shown in FIG.
  • this substrate is referred to as an FPC substrate-1.
  • Comparative Example 2 An LED array 7 was produced in the same manner as in Comparative Example 1 except that the lead frame substrate-6 was replaced with the FPC substrate-1.
  • Heat dissipation test A current of 150 mA was left on the LED chips of the LED arrays 1 to 8 for 3 minutes to cause the LEDs to emit light. The chip temperature at that time was measured with a thermocouple attached to the upper surface of the phosphor, and the heat dissipation properties of the substrates were compared.
  • Table 1 shows the results when the LED chip surface temperature after 3 minutes is 80 ° C. or less for the LED array, ⁇ for the LED array of 100 ° C. or less for ⁇ , and the LED array for over 100 ° C. for X.
  • the LED array of the example had a high heat dissipation property equivalent to that of the LED array having the heat sink of Comparative Example 3 even without an additional heat sink.
  • the LED array of the present invention and the LED array manufactured by the manufacturing method of the present invention have sufficient heat dissipation without an additional heat sink, they can be suitably used for vehicle tail lamps and daylights.

Abstract

The present invention provides an LED array having sufficient heat radiating ability even without an additional heat sink. The LED array according to the present invention is characterized by comprising: a wiring substrate including a metal plate that has a thickness of 130 μm or more, and a front surface, a rear surface and a wiring pattern, and including a first resin film provided on the rear surface of the metal plate; and a plurality of LEDs fixed upon the front surface of the metal plate, wherein the LED array does not have a heat sink that radiates heat generated from the LEDs.

Description

LEDアレイ及びその製造方法LED array and manufacturing method thereof
 本発明は、LEDアレイ及びその製造方法に関する。 The present invention relates to an LED array and a manufacturing method thereof.
 近年、光源としては、電球等に代えて、複数の発光ダイオード(LED:Light Emitting Diode)を配線基板上に固定・配列したLEDアレイが様々な分野で用いられている。例えば、ハイマウントストップランプ、テールランプ及びデイライト等の車両用光源には、LEDアレイを用いたものが実用化されている。 In recent years, LED arrays in which a plurality of light emitting diodes (LEDs: Light Emitting Diodes) are fixed and arranged on a wiring board are used in various fields as light sources instead of light bulbs. For example, a light source for vehicles such as a high-mount stop lamp, a tail lamp, and a daylight that uses an LED array has been put into practical use.
 このような車両用のLEDアレイは、デザイン性の観点から全体形状が湾曲しているものも多く、LEDを固定する配線基板には、プリント配線板の一種であるフレキシブルプリント基板(FPC:Flexible Printed Circuit)が用いられている。FPCは、厚さ12~50μm程度のポリイミドフィルム上に、厚さ12~40μm程度の銅箔を形成し、この銅箔をエッチングして配線パターンを形成し、その上にさらにポリイミドフィルムを形成した構造を有する。一方で、LEDアレイの放熱性は、その寿命に大きな影響を与えるため重要である。LEDアレイの放熱性を高めるには、各LEDの下部にアルミなどの材質からなるヒートシンクを設け、LEDが発する熱を放散する必要があった。 Many of these LED arrays for vehicles are curved from the viewpoint of design, and a flexible printed circuit board (FPC: Flexible Printed) which is a kind of printed wiring board is used as a wiring board for fixing LEDs. Circuit) is used. In FPC, a copper foil having a thickness of about 12 to 40 μm is formed on a polyimide film having a thickness of about 12 to 50 μm, a wiring pattern is formed by etching the copper foil, and a polyimide film is further formed thereon. It has a structure. On the other hand, the heat dissipation of the LED array is important because it greatly affects its lifetime. In order to improve the heat dissipation of the LED array, it is necessary to dissipate the heat generated by the LEDs by providing a heat sink made of a material such as aluminum at the bottom of each LED.
 特許文献1には、図7に模式的に示すように、配線基板としてのFPC30上に複数のLED32を固定し、LED32の下部にヒートシンク34を有するLEDアレイ300が記載されている。 Patent Document 1 describes an LED array 300 in which a plurality of LEDs 32 are fixed on an FPC 30 as a wiring board and a heat sink 34 is provided below the LEDs 32, as schematically shown in FIG.
特開2002-232009号公報Japanese Patent Laid-Open No. 2002-232009
 しかし、ヒートシンクがあるLEDアレイを製造するためには、専用のキャリアボードが必要であることから、ランニングコストが高くなるという問題があった。また、ヒートシンクがあることでLEDアレイを薄くできないことから、設計の自由度が制限されるという問題もあった。さらに、本来FPC上にはLEDのような電子部品をリールトゥリール方式で実装することが可能であるが、ヒートシンクがあるとリールトゥリール方式が適用できず、LEDがまばらに実装されるランプユニットでは実装密度が低く、実装装置の生産バランスから生産効率が非常に悪いという問題もあった。 However, in order to manufacture an LED array with a heat sink, a dedicated carrier board is required, which causes a problem that the running cost increases. In addition, since the LED array cannot be thinned due to the heat sink, there is a problem that the degree of freedom in design is limited. Furthermore, electronic components such as LEDs can be mounted on the FPC in a reel-to-reel method. However, if there is a heat sink, the reel-to-reel method cannot be applied, and a lamp unit in which LEDs are mounted sparsely. However, there is a problem that the mounting density is low and the production efficiency is very bad due to the production balance of the mounting apparatus.
 LEDアレイにおいては、ヒートシンクを用いて放熱性を確保するというのが技術常識であり、これまでLEDアレイからヒートシンクをなくそうなどという着想は皆無であった。これに対し、本発明者らは、上記のようなヒートシンクに起因する課題を認識し、追加の部品としてのヒートシンクを有しないLEDアレイを得たいとの着想に至った。しかしながら、単にヒートシンクをなくすのみでは、LEDアレイの放熱性が悪化し、製品寿命が短くなってしまう。 In LED arrays, it is common knowledge to use a heat sink to ensure heat dissipation, and there has never been an idea to eliminate the heat sink from the LED array. In contrast, the present inventors have recognized the problem caused by the heat sink as described above, and have come up with the idea of obtaining an LED array that does not have a heat sink as an additional component. However, simply eliminating the heat sink deteriorates the heat dissipation of the LED array and shortens the product life.
 そこで本発明は、上記課題に鑑み、追加のヒートシンクなしでも十分な放熱性を有するLEDアレイ及びその製造方法を提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide an LED array having sufficient heat dissipation without an additional heat sink and a method for manufacturing the same.
 上記目的を達成するため、本発明者らは、LEDを固定する配線基板の配線パターンをなす金属板として、FPCの銅箔に代えて、半導体チップを支持固定し、外部配線と接続する部品(半導体チップをプリント配線板に実装する際の中継基板)であるリードフレームを転用することを着想した。リードフレームは、金属素材の薄板を打ち抜き加工して製造できるため、その厚さは130μm以上と厚くすることができる。配線基板の配線パターンをなす金属板の厚さを130μm以上と厚くすることにより、この金属板自体による十分な放熱効果を得ることができるため、別途追加のヒートシンクを設けなくても、十分な放熱性を得ることができる。一方で、FPCは、ポリイミドフィルム上に形成した銅箔をエッチングして配線パターンを形成するため、銅箔の厚さは上記のとおり最大でも40μm程度と制限があり、しかも、この製造プロセスの観点から、銅箔の厚さを厚くしようなどという動機付けもない。 In order to achieve the above object, the present inventors, as a metal plate forming a wiring pattern of a wiring board for fixing an LED, replaces an FPC copper foil, supports and fixes a semiconductor chip, and connects to an external wiring ( The idea was to divert a lead frame, which is a relay board for mounting a semiconductor chip on a printed wiring board. Since the lead frame can be manufactured by stamping a thin metal plate, the thickness of the lead frame can be increased to 130 μm or more. By increasing the thickness of the metal plate forming the wiring pattern of the wiring board to 130 μm or more, it is possible to obtain a sufficient heat dissipation effect by the metal plate itself, so that sufficient heat dissipation can be achieved without providing an additional heat sink. Sex can be obtained. On the other hand, since FPC forms a wiring pattern by etching a copper foil formed on a polyimide film, the thickness of the copper foil is limited to about 40 μm at the maximum as described above. Therefore, there is no motivation to increase the thickness of the copper foil.
 本発明は、上記のような知見に基づき完成されたものであり、その要旨構成は以下のとおりである。
 (1)おもて面及び裏面を有し、配線パターンを有する厚さ130μm以上の金属板と、該金属板の裏面に設けられた第1樹脂フィルムと、を含む配線基板と、
 前記金属板の前記おもて面上に固定された複数のLEDと、
を有し、前記LEDが発する熱を放散するヒートシンクを有しないことを特徴とするLEDアレイ。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
(1) A wiring board having a front surface and a back surface, a metal plate having a thickness of 130 μm or more having a wiring pattern, and a first resin film provided on the back surface of the metal plate,
A plurality of LEDs fixed on the front surface of the metal plate;
An LED array comprising: a heat sink that dissipates heat generated by the LED.
 (2)前記配線基板は、前記金属板のおもて面のうち前記LEDが固定されない面上に、第2樹脂フィルムを有する上記(1)に記載のLEDアレイ。 (2) The LED array according to (1), wherein the wiring board has a second resin film on a surface of the front surface of the metal plate on which the LED is not fixed.
 (3)前記金属板は、前記それぞれのLEDを固定する複数の第1金属板部分と、隣接する前記第1金属板部分を連結する第2金属板部分と、を有し、
 前記第2金属板部分は、前記第1金属板部分よりも変形しやすい配線パターンとした上記(1)又は(2)に記載のLEDアレイ。
(3) The metal plate includes a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions.
The LED array according to (1) or (2), wherein the second metal plate portion has a wiring pattern that is more easily deformed than the first metal plate portion.
 (4)おもて面及び裏面を有し、打ち抜き加工で配線パターンを形成した、厚さ130μm以上の金属板を用意する第1工程と、
 前記金属板の裏面に第1樹脂フィルムをラミネート加工して、配線基板を得る第2工程と、
 前記金属板のおもて面上に複数のLEDを固定する第3工程と、
を有し、前記LEDが発する熱を放散するヒートシンクを形成する工程を有しないことを特徴とするLEDアレイの製造方法。
(4) a first step of preparing a metal plate having a thickness of 130 μm or more, having a front surface and a back surface, and having a wiring pattern formed by punching;
A second step of laminating a first resin film on the back surface of the metal plate to obtain a wiring board;
A third step of fixing a plurality of LEDs on the front surface of the metal plate;
And a process of forming a heat sink that dissipates heat generated by the LED.
 (5)前記第2工程では、前記金属板のおもて面に、LED実装部位を予め型抜きした第2樹脂フィルムをラミネート加工する上記(4)に記載のLEDアレイの製造方法。 (5) The manufacturing method of the LED array according to (4), wherein in the second step, a second resin film in which an LED mounting portion is pre-embossed is laminated on the front surface of the metal plate.
 (6)前記金属板は、前記それぞれのLEDを固定する複数の第1金属板部分と、隣接する前記第1金属板部分を連結する第2金属板部分と、を有し、
 前記第2金属板部分は、前記第1金属板部分よりも変形しやすい配線パターンとした上記(4)又は(5)に記載のLEDアレイの製造方法。
(6) The metal plate includes a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions,
The said 2nd metal plate part is a manufacturing method of the LED array as described in said (4) or (5) made into the wiring pattern which deform | transforms easily rather than the said 1st metal plate part.
 本発明のLEDアレイは、追加のヒートシンクなしでも十分な放熱性を有する。また、本発明のLEDアレイの製造方法によれば、追加のヒートシンクなしでも十分な放熱性を有するLEDアレイを製造できる。 The LED array of the present invention has sufficient heat dissipation without an additional heat sink. Moreover, according to the manufacturing method of the LED array of this invention, the LED array which has sufficient heat dissipation can be manufactured even without an additional heat sink.
本発明の一実施形態によるLEDアレイ100の上面図である。1 is a top view of an LED array 100 according to an embodiment of the present invention. 図1のLEDアレイ100のI-I断面図である。FIG. 2 is a cross-sectional view taken along the line II of the LED array 100 of FIG. 1. (A)~(E)は、図1のLEDアレイ100の製造方法の一例を説明する図である。(A)-(E) are figures explaining an example of the manufacturing method of the LED array 100 of FIG. 図3(E)の側面図である。FIG. 4 is a side view of FIG. (A)~(D)は、本発明の他の実施形態によるLEDアレイ200の製造方法の一例を説明する図である。(A)-(D) are figures explaining an example of the manufacturing method of LED array 200 by other embodiment of this invention. 図5(D)の側面図である。FIG. 6 is a side view of FIG. 従来のLEDアレイ300の側面部である。It is a side part of the conventional LED array 300. FIG.
 (LEDアレイ)
 図1及び図2を参照して、本発明の一実施形態によるLEDアレイ100を説明する。
(LED array)
An LED array 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
 LEDアレイ100は、配線基板10を有する。配線基板10は、配線パターンを有する厚さ130μm以上の金属板12と、この金属板の裏面12Bに設けられた第1樹脂フィルム18Bと、この金属板のおもて面12Aに設けられた第2樹脂フィルム18Aと、を含む。そして、LEDアレイ100は、金属板のおもて面12A上に固定された複数のLED20を有する。一方で、LED20が発する熱は、金属板12から十分に放散される。このため、LEDアレイ100は、LED20が発する熱を放散するための別途のヒートシンクを有しない。 The LED array 100 has a wiring board 10. The wiring board 10 includes a metal plate 12 having a wiring pattern having a thickness of 130 μm or more, a first resin film 18B provided on the back surface 12B of the metal plate, and a first plate provided on the front surface 12A of the metal plate. 2 resin film 18A. The LED array 100 includes a plurality of LEDs 20 fixed on the front surface 12A of the metal plate. On the other hand, the heat generated by the LED 20 is sufficiently dissipated from the metal plate 12. For this reason, the LED array 100 does not have a separate heat sink for dissipating the heat generated by the LEDs 20.
 <金属板>
 本実施形態のLEDアレイ100は、配線基板10の配線パターンをなす金属板12が厚さ130μm以上と厚いため、この金属板12自体による放熱効果が高く、別途追加のヒートシンクを設けなくても、十分な放熱性を得ることができる。そのため、LEDアレイ100から追加のヒートシンクを省くことができ、その結果、追加のヒートシンクに起因する既述の課題を回避することができる。具体的には、配線基板上に多数のLEDを搭載でき、LEDが熱によるダメージを受けることなく十分な光量を得ることが出来るとともに、光量あたりの使用電力量も抑えることができる。また、LEDアレイの設計の自由度を高めることができる。さらに、LEDアレイをリールトゥリール方式で製造でき、生産効率を高めることができる。
<Metal plate>
In the LED array 100 of the present embodiment, since the metal plate 12 forming the wiring pattern of the wiring substrate 10 is as thick as 130 μm or more, the heat dissipation effect by the metal plate 12 itself is high, and there is no need to provide an additional heat sink. Sufficient heat dissipation can be obtained. Therefore, an additional heat sink can be omitted from the LED array 100, and as a result, the above-described problems caused by the additional heat sink can be avoided. Specifically, a large number of LEDs can be mounted on the wiring board, and a sufficient amount of light can be obtained without the LEDs being damaged by heat, and the amount of power used per amount of light can also be suppressed. Moreover, the freedom degree of design of an LED array can be raised. Further, the LED array can be manufactured by a reel-to-reel method, and the production efficiency can be increased.
 この観点から、金属板12の厚さは130μm以上であればよく、150μm以上が好ましく、さらに200μm以上がより好ましい。また、金属板12の厚さの上限は特に限定されないが、650μm以下とすることが好ましい。650μmを超えると、微細な配線パターン加工が難しくなるとともに、剛性が高くなるためリールとしての扱いが容易でなくなるためである。また、金属板12の材質としては、特に限定されないが、銅、銅-亜鉛・銅-錫・銅-鉄などの銅系合金、鉄-ニッケル、鉄-クロムなどの鉄系合金等を挙げることができる。 From this viewpoint, the thickness of the metal plate 12 may be 130 μm or more, preferably 150 μm or more, and more preferably 200 μm or more. Moreover, although the upper limit of the thickness of the metal plate 12 is not specifically limited, It is preferable to set it as 650 micrometers or less. When the thickness exceeds 650 μm, it is difficult to process a fine wiring pattern and the rigidity becomes high, so that it becomes difficult to handle as a reel. Further, the material of the metal plate 12 is not particularly limited, and examples thereof include copper, copper-based alloys such as copper-zinc, copper-tin, copper-iron, and iron-based alloys such as iron-nickel and iron-chromium. Can do.
 金属板12としては、半導体チップを支持固定し、外部配線と接続する部品(半導体チップをプリント配線板に実装する際の中継基板)であるリードフレームを好適に転用できる。 As the metal plate 12, a lead frame, which is a component that supports and fixes a semiconductor chip and is connected to external wiring (a relay board when the semiconductor chip is mounted on a printed wiring board), can be suitably used.
 金属板12の配線パターンの形状は、複数のLED20を電気的に直列及び/又は並列に接続することができるものである限り、特に限定されない。 The shape of the wiring pattern of the metal plate 12 is not particularly limited as long as the plurality of LEDs 20 can be electrically connected in series and / or in parallel.
 ここで、一般にLEDアレイにはデザイン性の観点から、その形状が変形しやすいこと(フレキシブル性)が求められる。一方で、LEDや、LEDを固定するためのハンダにはストレスがかからないように、LED及びその周辺は変形しにくいことが望まれる。図7を参照して、従来のLEDアレイ300では、ヒートシンク34によりLED32の保護を行い、ヒートシンク34がない部分は、フレキシブルなFPC30であるため、LEDアレイ300の全体形状を湾曲させることもできた。 Here, in general, LED arrays are required to be easily deformed (flexibility) from the viewpoint of design. On the other hand, it is desirable that the LED and its surroundings are not easily deformed so that stress is not applied to the LED and solder for fixing the LED. Referring to FIG. 7, in the conventional LED array 300, the LED 32 is protected by the heat sink 34, and the portion without the heat sink 34 is the flexible FPC 30, so that the entire shape of the LED array 300 could be curved. .
 ここで本実施形態のLEDアレイ100には、ヒートシンクがないため、このようなLED20の保護と全体形状のフレキシブル性との両立を、金属板12の配線パターンの形状の工夫により実現する。すなわち、本実施形態において金属板12は、それぞれのLED20を固定する複数の第1金属板部分14と、隣接する第1金属板部分14を連結する第2金属板部分16と、を有するが、第2金属板部分16は、第1金属板部分14よりも変形しやすい形状の配線パターンとした。 Here, since the LED array 100 of the present embodiment does not have a heat sink, the protection of the LED 20 and the flexibility of the overall shape are realized by devising the shape of the wiring pattern of the metal plate 12. That is, in the present embodiment, the metal plate 12 includes a plurality of first metal plate portions 14 that fix the respective LEDs 20 and a second metal plate portion 16 that connects the adjacent first metal plate portions 14. The second metal plate portion 16 is a wiring pattern having a shape that is more easily deformed than the first metal plate portion 14.
 具体的には、第1金属板部分14は比較的大きな面積を有していることから変形しにくく、LED20にストレスがかかることを抑制することができる。一方で、第2金属板部分16は、比較的細い配線を接続した形状を有していることから変形しやすく、この部分がフレキシブルであることにより、例えば図4に示すように、LEDアレイ100の全体形状を湾曲させることができる。 Specifically, since the first metal plate portion 14 has a relatively large area, it is difficult to be deformed, and it is possible to prevent the LED 20 from being stressed. On the other hand, the second metal plate portion 16 is easily deformed because it has a shape to which relatively thin wirings are connected, and this portion is flexible. For example, as shown in FIG. The overall shape can be curved.
 図5(D)には、本発明の他の実施形態のLEDアレイ200の上面図を示すが、この実施形態でも、金属板12は、第1金属板部分14及び第2金属板部分16を有し、第2金属板部分16は、第1金属板部分14よりも変形しやすい形状の配線パターンとなっている。このため、第2金属板部分16がフレキシブルであることにより、例えば図6に示すように、LEDアレイ200の全体形状を湾曲させることができる。LEDアレイ200は、金属板の配線パターンの形状が異なる以外はLEDアレイ100と同様の特徴を有する。 FIG. 5D shows a top view of an LED array 200 according to another embodiment of the present invention. In this embodiment as well, the metal plate 12 includes the first metal plate portion 14 and the second metal plate portion 16. The second metal plate portion 16 has a wiring pattern that is more easily deformed than the first metal plate portion 14. For this reason, when the second metal plate portion 16 is flexible, the entire shape of the LED array 200 can be curved, for example, as shown in FIG. The LED array 200 has the same characteristics as the LED array 100 except that the shape of the wiring pattern of the metal plate is different.
 <樹脂フィルム>
 第2樹脂フィルム18Aは、金属板のおもて面12AのうちLED20が固定されない面上に設けられる。第2樹脂フィルム18Aは、LEDアレイ100,200のLED20側に設けられることから、使用者の通電を防止する機能を有する。ただし、LEDアレイ100,200が筐体内に収容されて光源として使用される場合など、使用者がLEDアレイ100,200に触れることを想定しない用途では、第2樹脂フィルム18Aは省略してもよい。
<Resin film>
The second resin film 18A is provided on a surface of the front surface 12A of the metal plate on which the LED 20 is not fixed. Since the second resin film 18A is provided on the LED 20 side of the LED arrays 100 and 200, the second resin film 18A has a function of preventing energization of the user. However, the second resin film 18A may be omitted in applications where it is not assumed that the user touches the LED arrays 100, 200, such as when the LED arrays 100, 200 are housed in a housing and used as a light source. .
 第1及び第2樹脂フィルム18B,18Aは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)、液晶ポリマー(LCP)等の材料を例示することができる。厚さは12.5~100μmとすることができる。12.5μm以上であれば、フィルムとしての機械強度が得られるとともに工業的に入手が容易であるため好ましく、100μm以下であれば、曲げ加工に対する障害となりにくく金属板12からの放熱阻害にもなりにくいため好ましい。 Examples of the first and second resin films 18B and 18A include materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyimide (PI), and liquid crystal polymer (LCP). . The thickness can be 12.5 to 100 μm. If it is 12.5 μm or more, it is preferable because it provides mechanical strength as a film and is easily available industrially. If it is 100 μm or less, it is difficult to bend the bending process, and heat radiation from the metal plate 12 is inhibited. It is preferable because it is difficult.
 <LED>
 LED20は、耐熱性パッケージ内に発光素子をワイヤーボンディングし、蛍光体を混合したシリコン樹脂で包埋したものが一般的である。チップ外形は、mm単位の縦横数値を小数点以下1桁の数値を並べて表記することが多く、3014(3.0mm×1.4mm)・3020・3030・3528・5630・5050のサイズのものが多く用いられている。
<LED>
The LED 20 is generally one in which a light emitting element is wire-bonded in a heat resistant package and embedded in a silicon resin mixed with a phosphor. The chip outline is often expressed with the vertical and horizontal numerical values in millimeters arranged with one digit after the decimal point, and 3014 (3.0mm x 1.4mm), 3020, 3030, 3528, 5630, and 5050 sizes are often used. ing.
 <用途>
 本実施形態のLEDアレイ100,200は、ハイマウントストップランプ、テールランプ及びデイライト等の車両用光源として好適に用いることができる。
<Application>
The LED arrays 100 and 200 of the present embodiment can be suitably used as vehicle light sources such as high-mount stop lamps, tail lamps, and daylights.
 (LEDアレイの製造方法)
 図3(A)~(E)を参照して、本発明の一実施形態によるLEDアレイ100の製造方法を説明する。
(LED array manufacturing method)
With reference to FIGS. 3A to 3E, a method of manufacturing the LED array 100 according to an embodiment of the present invention will be described.
 まず第1工程として、図3(A)に示すように、おもて面12A及び裏面12Bを有し(図2)、打ち抜き加工で配線パターンを形成した、厚さ130μm以上の金属板12を用意する。本実施形態では、金属板12を打ち抜き加工して配線パターンを形成するため、金属板12の厚さを130μm以上と厚くしてもプロセス上差し支えない。 First, as shown in FIG. 3A, as a first step, a metal plate 12 having a front surface 12A and a back surface 12B (FIG. 2) and having a wiring pattern formed by punching is 130 μm or more in thickness. prepare. In this embodiment, since the metal plate 12 is punched to form a wiring pattern, there is no problem in the process even if the thickness of the metal plate 12 is increased to 130 μm or more.
 次に第2工程として、図3(B)に示すように、金属板のおもて面12Aに第2樹脂フィルム18Aを、金属板の裏面12Bに第1樹脂フィルム18Bを、それぞれラミネート加工して、配線基板10を得る(図2も参照)。ここで、第2樹脂フィルム18Aについては、後述のLED20を固定する箇所(LED実装部位、図3(B)において実線で4箇所示す。)を予め型抜きしておく。ラミネート加工について特に限定はないが、例えば130℃程度に加熱した2本の熱ロールの間に、金属板12と第1及び第2樹脂フィルム18B,18Aをセットして通過させるなどの方法を例示することができる。 Next, as a second step, as shown in FIG. 3B, the second resin film 18A is laminated on the front surface 12A of the metal plate, and the first resin film 18B is laminated on the back surface 12B of the metal plate. Thus, the wiring board 10 is obtained (see also FIG. 2). Here, about the 2nd resin film 18A, the place (LED mounting site | part, 4 places are shown as a continuous line in FIG.3 (B)) which fixes LED20 mentioned later is previously die-cut. Although there is no particular limitation on the laminating process, for example, a method of setting and passing the metal plate 12 and the first and second resin films 18B and 18A between two heat rolls heated to about 130 ° C. is exemplified. can do.
 次に第3工程として、図3(C)に示すように、金属板のおもて面12A上に複数のLED20を固定する。固定方法は特に限定されない。例えば、金属板のおもて面12AのLED実装部位にハンダを供給する工程、このハンダ上にLED20を載置する工程、配線基板10の裏面側からハンダに向けてレーザーを照射することでハンダを融解し、LED20を配線基板10にハンダ付けする工程、を順次行うことができる。 Next, as a third step, as shown in FIG. 3C, a plurality of LEDs 20 are fixed on the front surface 12A of the metal plate. The fixing method is not particularly limited. For example, a step of supplying solder to the LED mounting portion of the front surface 12A of the metal plate, a step of placing the LED 20 on the solder, and soldering by irradiating laser from the back side of the wiring board 10 toward the solder And the step of soldering the LED 20 to the wiring board 10 can be sequentially performed.
 次に、図3(D)に示すように、配線基板10(第1及び第2樹脂フィルム18B,18A並びに金属板12)の所定部位(図3(D)の二点鎖線部分)を打ち抜き加工(断線加工)で除去して、電気回路を構成する。このようにして、図3(E)に示すLEDアレイ100を製造することができる。 Next, as shown in FIG. 3 (D), a predetermined portion (two-dot chain line portion in FIG. 3 (D)) of the wiring substrate 10 (first and second resin films 18B, 18A and metal plate 12) is punched. It is removed by (disconnection processing) to constitute an electric circuit. In this way, the LED array 100 shown in FIG. 3E can be manufactured.
 次に、図5(A)~(D)を参照して、本発明の他の実施形態によるLEDアレイ200の製造方法を説明する。本実施形態は、図5(A)に示すように、金属板12の配線パターンの形状が異なる以外は、LED20を固定するまでは図3(A)~(C)と同様である。LED20を固定した状態を図5(B)に示す。その後、図5(C)の二点鎖線に示す部位を打ち抜き加工で除去して、電気回路を構成する。このようにして、図5(D)に示すLEDアレイ200を製造することができる。 Next, a manufacturing method of the LED array 200 according to another embodiment of the present invention will be described with reference to FIGS. This embodiment is the same as FIGS. 3A to 3C until the LED 20 is fixed except that the shape of the wiring pattern of the metal plate 12 is different as shown in FIG. A state where the LED 20 is fixed is shown in FIG. Thereafter, the portion indicated by the two-dot chain line in FIG. 5C is removed by punching to constitute an electric circuit. In this way, the LED array 200 shown in FIG. 5D can be manufactured.
 このように、図3及び図5に示す本実施形態では、LEDが発する熱を放散するヒートシンクを別途形成する工程は有しない。これらの製造方法により、既述のLEDアレイ100,200を製造できる。 Thus, in the present embodiment shown in FIGS. 3 and 5, there is no step of separately forming a heat sink that dissipates the heat generated by the LED. The LED arrays 100 and 200 described above can be manufactured by these manufacturing methods.
 金属板として、図5に示す配線パターンに打ち抜いた厚み130μmの銅板を用意した。また、LED実装部位を予め型抜きした厚み50μmの接着層付きポリエチレンナフタレート(PEN)フィルムを用意した。銅板をPENフィルムで挟み、140℃に加温した2本の熱ロール間に通過させて貼り合わせ、配線基板を作製した。以下、この配線基板をリードフレーム基板-1と記す。 As the metal plate, a copper plate having a thickness of 130 μm punched into the wiring pattern shown in FIG. 5 was prepared. Further, a polyethylene naphthalate (PEN) film with an adhesive layer having a thickness of 50 μm, in which an LED mounting portion was previously cut, was prepared. A copper plate was sandwiched between PEN films, and passed between two hot rolls heated to 140 ° C., and bonded together to produce a wiring board. Hereinafter, this wiring board is referred to as a lead frame board-1.
 また、金属板の厚みを300μm、500μm、650μm、800μmに替えて同様の方法で4種類の配線基板も作製した。以下、この配線基板をそれぞれリードフレーム基板-2、リードフレーム基板-3、リードフレーム基板-4、リードフレーム基板-5と記す。なお、リードフレーム基板-5は、銅板の厚み800μmと比較的厚いため、図5に示す配線パターンに打ち抜く際に、微細回路形成部分において回路断線を起こしやすく、加工が難しかった。 Also, four types of wiring boards were produced in the same manner by changing the thickness of the metal plate to 300 μm, 500 μm, 650 μm, and 800 μm. Hereinafter, the wiring boards are referred to as a lead frame board-2, a lead frame board-3, a lead frame board-4, and a lead frame board-5, respectively. Since the lead frame substrate-5 is relatively thick with a copper plate thickness of 800 μm, when it is punched into the wiring pattern shown in FIG.
 (実施例1)
 リードフレーム基板-1に、3030サイズのLEDである日亜化学製 NFSW172を、鉛フリーはんだを使って実装し、LEDアレイ1を作製した。
(Example 1)
A 3030 size LED, NFC SW172, manufactured by Nichia, was mounted on the lead frame substrate-1 using lead-free solder, and the LED array 1 was produced.
 (実施例2)
 リードフレーム基板-1をリードフレーム基板-2に替えた以外は実施例1と同様の方法でLEDアレイ2を作製した。
(Example 2)
An LED array 2 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-2.
 (実施例3)
 リードフレーム基板-1をリードフレーム基板-3に替えた以外は実施例1と同様の方法でLEDアレイ3を作製した。
(Example 3)
An LED array 3 was fabricated in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-3.
 (実施例4)
 リードフレーム基板-1をリードフレーム基板-4に替えた以外は実施例1と同様の方法でLEDアレイ4を作製した。
Example 4
An LED array 4 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the leadframe substrate-4.
 (実施例5)
 リードフレーム基板-1をリードフレーム基板-5に替えた以外は実施例1と同様の方法でLEDアレイ5を作製した。
(Example 5)
An LED array 5 was produced in the same manner as in Example 1 except that the lead frame substrate-1 was replaced with the lead frame substrate-5.
 (比較例)
 金属板として、図5に示す配線パターンに打ち抜いた厚み100μmの銅板を用意した。また、LED実装部位を予め型抜きした接着層付きポリエチレンナフタレート(PEN)フィルムを用意した。銅板をPENフィルムで挟み、140℃に加温した2本の熱ロール間に通過させて貼り合わせ、配線基板を作製した。以下、この配線基板をリードフレーム基板-6と記す。
(Comparative example)
As the metal plate, a copper plate having a thickness of 100 μm punched into the wiring pattern shown in FIG. 5 was prepared. Moreover, the polyethylene naphthalate (PEN) film with the contact bonding layer which prepared the LED mounting part beforehand was prepared. A copper plate was sandwiched between PEN films, and passed between two hot rolls heated to 140 ° C., and bonded together to produce a wiring board. Hereinafter, this wiring board is referred to as a lead frame board-6.
 さらに、厚み25μmのポリイミドフィルムに、厚み35μmの銅箔を貼り合わせた基板をエッチングし、図5と同様な回路を有する基板を作製した。以下、この基板をFPC基板-1と記す。 Furthermore, a substrate having a 35 μm thick copper foil bonded to a 25 μm thick polyimide film was etched to produce a substrate having a circuit similar to that shown in FIG. Hereinafter, this substrate is referred to as an FPC substrate-1.
 (比較例1)
 リードフレーム基板-6に、3030サイズのLEDである日亜化学製 NFSW172を、鉛フリーはんだを使って実装し、LEDアレイ6を作製した。
(Comparative Example 1)
A 3030 size LED, NFC SWNF172, was mounted on the lead frame substrate-6 using lead-free solder, and the LED array 6 was produced.
 (比較例2)
 リードフレーム基板-6をFPC基板-1に替えた以外は比較例1と同様の方法でLEDアレイ7を作製した。
(Comparative Example 2)
An LED array 7 was produced in the same manner as in Comparative Example 1 except that the lead frame substrate-6 was replaced with the FPC substrate-1.
 (比較例3)
 LEDアレイ7において、LED裏面に厚み2mmのアルミ製ヒートシンクを貼り付けたLEDアレイ8を作製した。
(Comparative Example 3)
In the LED array 7, an LED array 8 was fabricated in which an aluminum heat sink having a thickness of 2 mm was attached to the back surface of the LED.
 (放熱性試験)
 LEDアレイ1~8のLEDチップに150mAの電流を3分間通電放置し、LEDを発光させた。そのときのチップ温度を蛍光体上面に貼り付けた熱電対で測定し、基板の放熱性を比較した。
(Heat dissipation test)
A current of 150 mA was left on the LED chips of the LED arrays 1 to 8 for 3 minutes to cause the LEDs to emit light. The chip temperature at that time was measured with a thermocouple attached to the upper surface of the phosphor, and the heat dissipation properties of the substrates were compared.
 (試験結果)
 3分経過後のLEDチップ表面温度が、80℃以下のLEDアレイを○、100℃以下のLEDアレイを△、100℃を越えるLEDアレイを×として、結果を以下の表1に示す。
(Test results)
Table 1 below shows the results when the LED chip surface temperature after 3 minutes is 80 ° C. or less for the LED array, ○ for the LED array of 100 ° C. or less for Δ, and the LED array for over 100 ° C. for X.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、実施例のLEDアレイは、追加のヒートシンクなしでも、比較例3のヒートシンクを有するLEDアレイと同等の高い放熱性を有していた。 As described above, the LED array of the example had a high heat dissipation property equivalent to that of the LED array having the heat sink of Comparative Example 3 even without an additional heat sink.
 本発明のLEDアレイ及び本発明の製造方法により製造されたLEDアレイは、追加のヒートシンクなしでも十分な放熱性を有するため、車両用のテールランプやデイライトに好適に用いることができる。 Since the LED array of the present invention and the LED array manufactured by the manufacturing method of the present invention have sufficient heat dissipation without an additional heat sink, they can be suitably used for vehicle tail lamps and daylights.
 100 LEDアレイ
 10 配線基板
 12 金属板
 12A 金属板のおもて面
 12B 金属板の裏面
 14 第1金属板部分
 16 第2金属板部分
 18B 第1樹脂フィルム
 18A 第2樹脂フィルム
 20 LED
DESCRIPTION OF SYMBOLS 100 LED array 10 Wiring board 12 Metal plate 12A The front surface of a metal plate 12B The back surface of a metal plate 14 1st metal plate part 16 2nd metal plate part 18B 1st resin film 18A 2nd resin film 20 LED

Claims (6)

  1.  おもて面及び裏面を有し、配線パターンを有する厚さ130μm以上の金属板と、該金属板の裏面に設けられた第1樹脂フィルムと、を含む配線基板と、
     前記金属板の前記おもて面上に固定された複数のLEDと、
    を有し、前記LEDが発する熱を放散するヒートシンクを有しないことを特徴とするLEDアレイ。
    A wiring board comprising a metal plate having a front surface and a back surface and having a wiring pattern and having a thickness of 130 μm or more, and a first resin film provided on the back surface of the metal plate;
    A plurality of LEDs fixed on the front surface of the metal plate;
    An LED array comprising: a heat sink that dissipates heat generated by the LED.
  2.  前記配線基板は、前記金属板のおもて面のうち前記LEDが固定されない面上に、第2樹脂フィルムを有する請求項1に記載のLEDアレイ。 2. The LED array according to claim 1, wherein the wiring board has a second resin film on a surface of the front surface of the metal plate on which the LED is not fixed.
  3.  前記金属板は、前記それぞれのLEDを固定する複数の第1金属板部分と、隣接する前記第1金属板部分を連結する第2金属板部分と、を有し、
     前記第2金属板部分は、前記第1金属板部分よりも変形しやすい配線パターンとした請求項1又は2に記載のLEDアレイ。
    The metal plate has a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions,
    The LED array according to claim 1, wherein the second metal plate portion has a wiring pattern that is more easily deformed than the first metal plate portion.
  4.  おもて面及び裏面を有し、打ち抜き加工で配線パターンを形成した、厚さ130μm以上の金属板を用意する第1工程と、
     前記金属板の裏面に第1樹脂フィルムをラミネート加工して、配線基板を得る第2工程と、
     前記金属板のおもて面上に複数のLEDを固定する第3工程と、
    を有し、前記LEDが発する熱を放散するヒートシンクを形成する工程を有しないことを特徴とするLEDアレイの製造方法。
    A first step of preparing a metal plate having a thickness of 130 μm or more, having a front surface and a back surface, and forming a wiring pattern by punching;
    A second step of laminating a first resin film on the back surface of the metal plate to obtain a wiring board;
    A third step of fixing a plurality of LEDs on the front surface of the metal plate;
    And a process of forming a heat sink that dissipates heat generated by the LED.
  5.  前記第2工程では、前記金属板のおもて面に、LED実装部位を予め型抜きした第2樹脂フィルムをラミネート加工する請求項4に記載のLEDアレイの製造方法。 5. The method of manufacturing an LED array according to claim 4, wherein, in the second step, a second resin film in which an LED mounting portion is previously cut is laminated on the front surface of the metal plate.
  6.  前記金属板は、前記それぞれのLEDを固定する複数の第1金属板部分と、隣接する前記第1金属板部分を連結する第2金属板部分と、を有し、
     前記第2金属板部分は、前記第1金属板部分よりも変形しやすい配線パターンとした請求項4又は5に記載のLEDアレイの製造方法。
    The metal plate has a plurality of first metal plate portions that fix the respective LEDs, and a second metal plate portion that connects the adjacent first metal plate portions,
    The LED array manufacturing method according to claim 4, wherein the second metal plate portion is a wiring pattern that is more easily deformed than the first metal plate portion.
PCT/JP2015/005086 2014-10-20 2015-10-06 Led array and production method therefor WO2016063473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-213897 2014-10-20
JP2014213897A JP2016082141A (en) 2014-10-20 2014-10-20 Led array and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016063473A1 true WO2016063473A1 (en) 2016-04-28

Family

ID=55760534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005086 WO2016063473A1 (en) 2014-10-20 2015-10-06 Led array and production method therefor

Country Status (2)

Country Link
JP (1) JP2016082141A (en)
WO (1) WO2016063473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693694B (en) * 2018-04-19 2020-05-11 曾玠澄 Process and structure of LED circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103993A (en) * 2002-09-12 2004-04-02 Ichikoh Ind Ltd Flexible board for setting led and light for vehicle using flexible board for setting led
JP2009528685A (en) * 2006-09-12 2009-08-06 ポール・ロ Integrally molded integrally formed light emitting diode light wire
JP2011228602A (en) * 2010-04-23 2011-11-10 Toray Ind Inc Led light-emitting device and manufacturing method thereof
JP2013008966A (en) * 2012-06-04 2013-01-10 Panasonic Corp Mounting board
JP2013254654A (en) * 2012-06-07 2013-12-19 Ntn Corp Belt-shape substrate for led lighting, led lighting, led lighting device, and manufacturing method of belt-shape substrate for led lighting
JP2014103406A (en) * 2012-01-05 2014-06-05 Canon Components Inc Flexible circuit board for mounting light emitting element, and led lighting device
JP2014130967A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103993A (en) * 2002-09-12 2004-04-02 Ichikoh Ind Ltd Flexible board for setting led and light for vehicle using flexible board for setting led
JP2009528685A (en) * 2006-09-12 2009-08-06 ポール・ロ Integrally molded integrally formed light emitting diode light wire
JP2011228602A (en) * 2010-04-23 2011-11-10 Toray Ind Inc Led light-emitting device and manufacturing method thereof
JP2014103406A (en) * 2012-01-05 2014-06-05 Canon Components Inc Flexible circuit board for mounting light emitting element, and led lighting device
JP2013008966A (en) * 2012-06-04 2013-01-10 Panasonic Corp Mounting board
JP2013254654A (en) * 2012-06-07 2013-12-19 Ntn Corp Belt-shape substrate for led lighting, led lighting, led lighting device, and manufacturing method of belt-shape substrate for led lighting
JP2014130967A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693694B (en) * 2018-04-19 2020-05-11 曾玠澄 Process and structure of LED circuit

Also Published As

Publication number Publication date
JP2016082141A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5727076B2 (en) Flexible printed wiring board, flexible circuit board, and electronic device using the same
US8002436B2 (en) LED chip package structure using a substrate as a lampshade and method for making the same
US8198543B2 (en) Rigid-flexible circuit board and method of manufacturing the same
US8162510B2 (en) LED chip package structure with multifunctional integrated chips and a method for making the same
JP5786104B2 (en) Flexible circuit board, lighting device, and vehicular lamp
JP4833683B2 (en) Method for manufacturing light source module and method for manufacturing liquid crystal display device
JP2013207084A (en) Substrate module with radiator plate and method of manufacturing the same
JP2019067903A (en) Light emitting device and method of manufacturing the same
US10383209B2 (en) Electronic assembly for lighting applications, lighting device and method for producing an electronic assembly
CN109792841B (en) Light emitting device and method of manufacturing the same
KR101369300B1 (en) Cof package having improved heat dissipation
WO2016063473A1 (en) Led array and production method therefor
WO2012172937A1 (en) Wiring body and method for making wiring body
KR20090068399A (en) A light-emitting diode module with a lead frame comprising packages
JP2013033912A (en) Light emitting element mounting substrate and led package
KR101161408B1 (en) Light emitting diode package and manufacturing method for the same
KR101370445B1 (en) Cof package having improved heat dissipation
KR101369298B1 (en) Cof package having improved heat dissipation
KR101369279B1 (en) Cof package having improved heat dissipation
JP2011077275A (en) Led package and manufacturing method of the same
KR101469014B1 (en) Illumination apparatus having a thermal plastic board
KR100979971B1 (en) Method of manufacturing light emitting diode unit and light emitting diode unit manufactured by the method
US8598597B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2013135069A (en) Wiring board for mounting light emitting element, light-emitting module, and method of manufacturing wiring board for mounting light emitting element
KR101145209B1 (en) Light emitting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853613

Country of ref document: EP

Kind code of ref document: A1