WO2012172937A1 - Wiring body and method for making wiring body - Google Patents

Wiring body and method for making wiring body Download PDF

Info

Publication number
WO2012172937A1
WO2012172937A1 PCT/JP2012/063113 JP2012063113W WO2012172937A1 WO 2012172937 A1 WO2012172937 A1 WO 2012172937A1 JP 2012063113 W JP2012063113 W JP 2012063113W WO 2012172937 A1 WO2012172937 A1 WO 2012172937A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
copper foil
flexible printed
wiring board
printed wiring
Prior art date
Application number
PCT/JP2012/063113
Other languages
French (fr)
Japanese (ja)
Inventor
良啓 赤羽
齊藤 裕久
直太 上西
山本 正道
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2012172937A1 publication Critical patent/WO2012172937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • H05K1/0281Reinforcement details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to a wiring body and a manufacturing method of the wiring body. Specifically, the present invention relates to a wiring body on which an electronic component having a large calorific value is mounted and a manufacturing method thereof.
  • an illumination device used as a backlight of a liquid crystal display includes a plurality of LED light emitting elements. Since the LED light emitting element generates a large amount of heat, the LED light emitting element is often configured to include a metal substrate with high heat dissipation.
  • the light emitting elements are not necessarily arranged on a flat surface.
  • the light emitting element is mounted on a metal substrate having a curved surface or a bent surface.
  • a method of laminating a flexible printed wiring board on which a light emitting element is mounted in advance by solder reflow processing on a metal structure having high heat dissipation such as a heat sink can be considered.
  • the light emitting elements may have to be arranged along a curved surface or a bent surface.
  • the flexible printed wiring board lamination surface of the metal structure is formed in a curved shape or a bent shape, it is difficult to press the entire area of the flexible printed wiring board uniformly and laminate and bond them.
  • the flexible printed wiring board when the flexible printed wiring board is laminated along the curved surface or the bent surface, the flexible printed wiring board is likely to be distorted, and bubbles are likely to enter the adhesive layer due to the distortion. For this reason, the heat dissipation of the metal substrate is hindered and the temperature of the light emitting element is likely to increase.
  • the present invention solves the above-described conventional problems, and provides a wiring body and a method of manufacturing a wiring body, in which a flexible printed wiring board on which electronic components are mounted by solder reflow processing is laminated and bonded to a metal structure without hindering heat dissipation.
  • the issue is to provide.
  • the invention described in claim 1 of the present application is a wiring body configured by laminating a flexible printed wiring board on which an electronic component is mounted on a metal structure having heat dissipation, and the electronic of the flexible printed wiring board.
  • the reinforcing copper foil layer is provided on the back side of the region where the component is mounted, and includes a reinforcing copper foil layer having a thickness of 35 ⁇ m or more, and an adhesive layer for adhering the flexible printed wiring board to the metal structure.
  • the bubble rate in the adhesive layer between the metal structure and the metal structure is set to be smaller than the bubble rate of the adhesive layer in other regions.
  • the flexible printed wiring board After mounting electronic components on the flexible printed wiring board by solder reflow processing, the flexible printed wiring board is laminated and bonded to a metal structure having heat dissipation.
  • a reinforced copper foil layer having a thickness of 35 ⁇ m or more is provided on the back surface side of at least the region where the electronic component is mounted on the flexible printed wiring board.
  • the rigidity of the electronic component mounting area is increased by the reinforcing copper foil layer, it is possible to apply a large pressing force to the electronic component mounting area even when the periphery of the electronic component mounting area is pressed. Become. Thereby, in the step of laminating and bonding the flexible printed wiring boards, the bubbles in the electronic component mounting area can be pushed out together with the adhesive. Therefore, the heat dissipation in the electronic component mounting area can be enhanced as compared with other areas.
  • the bubble rate in areas other than the electronic component mounting area increases, but the copper foil has a high thermal conductivity, and since heat dissipation in the area immediately below the electronic component mounting area can be ensured, the temperature of the electronic component is reduced. It will not rise.
  • the bubble rate in the adhesive layer between the reinforcing copper foil layer and the metal structure is set to 20% or less as in the invention described in claim 2. Is preferred.
  • the laminating step of the flexible printed wiring board and the metal structure is performed by setting the pressing force to be applied, the pressing time, and the like so as to achieve the bubble ratio. By setting it as the said bubble rate, it becomes possible to laminate
  • the bubble rate per volume in the adhesive layer is not so important, and the bubbles in the adhesive layer are attached to the bonding surface.
  • the area ratio projected onto is important. Therefore, in the present invention, the bubble rate is determined by the area ratio obtained by projecting the bubbles in the adhesive layer onto the bonding surface.
  • the copper foil can be provided by setting the copper foil on one side of the double-sided flexible printed wiring board provided with copper foil on both sides of the insulating substrate to be thick and removing the area other than the electronic component mounting area by etching or the like. it can.
  • the reinforcing copper foil layer is provided at least on the back surface side of the region to which the connection electrode of the electronic component is connected.
  • the connection electrode is also a heat conduction path, the heat generated in the electronic component can be efficiently conducted to the metal structure and radiated.
  • the connection electrodes include, for example, non-energized electrodes provided for heat dissipation.
  • the reinforcing copper foil layer is configured to include a pressing area set outside the area where the electronic component is mounted. Is preferred. By providing the pressing area, it is possible to further increase the pressing force acting on the electronic component mounting area.
  • the copper foil in 80% or more of the area where the electronic component is mounted as in the invention described in claim 5.
  • the present invention is applied to a case where a flexible printed wiring board is used as a double-sided board using the reinforced copper foil layer.
  • the reinforced copper foil layer is set to a thickness of 70 ⁇ m or more as in the invention described in claim 7.
  • the configuration and type of the flexible printed wiring board are not particularly limited. Not only a single-sided flexible printed wiring board having a circuit surface on which electronic components are mounted on one side, but also a double-sided printed wiring board can be employed.
  • the material for the metal structure is not particularly limited.
  • a metal structure made of aluminum can be employed.
  • the form of the metal structure is not particularly limited.
  • a flat plate-like metal structure can be employed.
  • the flexible printed wiring board is laminated and bonded in a curved state or a bent state.
  • the said copper foil is provided, the rigidity of the said electronic component mounting area increases. Thereby, it is hard to produce distortion in the said electronic component mounting area
  • a heat sink provided with heat radiating means such as heat radiating fins can be adopted.
  • the wiring body according to the present invention can be applied to various electronic devices.
  • a lighting device can be configured by employing a light emitting element as the electronic component.
  • the invention described in claim 10 is a method of manufacturing a wiring body on which an electronic component that generates heat is mounted, and includes a reinforced copper foil layer having a thickness of 35 ⁇ m or more on at least the back surface side of the region on which the electronic component is mounted.
  • Laminating step of laminating on the metal structure, and in the laminating step, the electronic component and / or the flexible printed wiring so as to extrude air bubbles between the copper foil and the surface of the metal structure together with the adhesive layer.
  • a plate is pressed and laminated.
  • the said reinforcement copper foil layer is provided, when an electronic component is pressed directly, the said pressing force can be concentrated on the area
  • the reinforcing copper foil layer increases the rigidity of the electronic component mounting region, and even when the periphery of this region is pressed, a large pressing force can be applied to the reinforcing copper foil layer.
  • the electronic component and the flexible printed wiring board are pressed so as to extrude air bubbles in the adhesive layer between the reinforcing copper foil layer and the metal structure surface together with the adhesive layer. can do.
  • the pressing part in the laminating step is not particularly limited.
  • the pressing step can be performed so as to include an electronic component pressing step in which a pressing force is applied to the mounted electronic component.
  • the said electronic component press process can be performed by applying the force of the grade which does not destroy or break down an electronic component.
  • the invention described in claim 12 includes the copper foil pressing step of pressing the pressing region of the copper foil set outside the region where the electronic component is mounted.
  • FIG. 1 is a cross-sectional view of a main part of a flexible printed wiring board 1 used in the first embodiment.
  • the flexible printed wiring board 1 includes a base film 2 formed from an insulating resin such as polyimide, a circuit pattern 3 formed from a copper foil laminated on the upper surface of the base film 2, and the circuit pattern 3.
  • An electronic component connection electrode 4 exposed at a predetermined portion, an electronic component 5 connected to the electronic component connection electrode 4 via a solder 11, a cover layer 6 covering a region other than the electronic component connection electrode 4, and An adhesive layer 7 is provided.
  • An LED light emitting element is employed as the electronic component 5, and the electrode 10 provided on the lower surface of the electronic component 5 and the electronic component connection electrode 4 are connected via a solder 11.
  • a double-sided flexible printed wiring board is adopted as the flexible printed wiring board 1, and a copper foil that forms a circuit pattern (not shown) is laminated on the back side. Moreover, the cover layer 8 and the adhesive bond layer 9 which protect the circuit pattern formed with the said copper foil are provided also in the back surface side.
  • a reinforced copper foil layer 12 is provided on the back side of the area where the electronic component 5 is mounted, leaving a copper foil that forms the back side circuit pattern.
  • the thickness of the reinforcing copper foil layer 12 is set to 35 ⁇ m, and the back surface of the electronic component mounting region is formed in a protruding shape by the thickness from the surrounding region.
  • the flexible printed wiring board 1 is laminated and bonded to a heat dissipating metal structure.
  • FIG. 2 is a cross-sectional view showing a state immediately before the flexible printed wiring board 1 is laminated and bonded to the metal structure 15. As shown in this figure, the flexible printed wiring board 1 is laminated and bonded to the metal structure 15 via an adhesive layer 16.
  • the adhesive layer 16 contains a large number of bubbles 17, and as it is, the thermal conductivity of the adhesive layer 16 becomes low, and the required heat dissipation performance cannot be ensured.
  • a laminating step of laminating and bonding the flexible printed wiring board 1 to the metal structure 15 is performed by applying a predetermined pressure to the area around the electronic component 5 using the press die 20.
  • the reinforcing copper foil layer 12 having a thickness of 35 ⁇ m is provided on the back surface side of the electronic component mounting region, the convex portion formed by the reinforcing copper foil layer 12 is the metal structure.
  • the adhesive layer 16 having a predetermined thickness on the surface 15 is pressed so as to push away.
  • the wiring body 100 in which the lamination process has been completed has a bubble rate in the adhesive layer 16 between the reinforcing copper foil layer 12 and the metal structure 15, as compared to the bubble rate in the surrounding area. Get smaller. Thereby, it becomes possible to prevent the heat conduction performance in the region immediately below the electronic component mounting region from being deteriorated by the bubbles 17 included in the adhesive layer 16, and the heat generated from the electronic component 5 is efficiently reduced. It is possible to conduct heat to the metal structure 15 to dissipate heat.
  • the electronic component 5 can be connected to the flexible printed wiring board 1 by a solder reflow process, the working efficiency is remarkably increased as compared with a conventional electronic component connecting step by manual work.
  • the rigidity of the electronic component mounting region is increased. Thereby, even if the periphery of the electronic component mounting area is pressed, a large pressing force can be applied to the inside of the electronic component mounting area. Even when the electronic component is directly pressed, the pressing force can be concentrated on the portion where the reinforcing copper foil layer 12 is provided. For this reason, it is possible to efficiently eliminate the bubbles 17 together with a part of the adhesive layer 16 in the surrounding area.
  • the electronic component is an LED light emitting element.
  • the present invention is not particularly limited to this, and the same effect can be expected if the electronic component generates heat.
  • FIG. 4 shows a second embodiment of the present invention.
  • a flexible printed wiring board 201 according to the present invention is laminated and bonded to a metal structure 215 having a bent portion 250.
  • a single-sided flexible printed wiring board 201 having a circuit pattern 203 formed on one side is employed. For this reason, it is not necessary to provide a cover layer or the like for circuit protection on the back surface side in the first embodiment.
  • the reinforcing copper foil layer 212 is provided only on the back surface of the electronic component mounting area, the flexibility of the flexible printed wiring board 201 other than the area where the reinforcing copper foil layer 212 is provided is high. For this reason, the flexible printed wiring board 201 can be laminated and bonded along the bent surface of the metal structure 215.
  • the adhesive layer 216 immediately below the electronic component mounting region is deformed to extrude bubbles, thereby ensuring heat dissipation. .
  • the rigidity of the electronic component mounting area of the flexible printed wiring board 201 is high, it is difficult to deform. For this reason, distortion etc. are hard to produce in the electronic component mounting area
  • the bending angle is not limited and can be laminated and bonded along the bending surface of the metal structure 215 having an L-shaped cross section.
  • FIG. 5 shows a third embodiment according to the present invention.
  • the stacking process is performed using positioning pins 330 that are capable of relatively moving the flexible printed wiring board 301 and the metal structure 315 in the stacking direction.
  • the flexible printed wiring board 301 and the metal structure 315 are formed with positioning holes, and the positioning pins 330 are inserted into the positioning holes. For this reason, the flexible printed wiring board 301 and the metal structure 315 can be laminated and bonded by applying a pressing force without shifting in the lateral direction.
  • FIG. 6 to 8 show a fourth embodiment of the present invention. The effect of this invention is confirmed using this embodiment.
  • an LED light emitting element 405 is mounted as an electronic component.
  • a flexible printed wiring board 401 on which a plurality of LED light emitting elements 405 are mounted is laminated and adhered along one side of a rectangular plate-like metal structure 415. Since the configuration of the flexible printed wiring board 401 is the same as that of the above-described embodiment, the description thereof is omitted.
  • the light emitting element 405 as an electronic component according to the present embodiment has a mounting area of 8 mm ⁇ 5 mm.
  • the temperature rise of the light emitting element 405 between the connection electrodes Solder temperature and the bubble rate of the adhesive layer in the region where the reinforcing copper foil layer was provided were measured.
  • the bubble ratio was calculated from the ratio of the projected area of the bubbles by observing the adhesive layer between the metal structure surface and the flexible printed wiring board from the metal structure side using an ultrasonic flaw detector.
  • Comparative Example 1 is configured by connecting a LED light emitting element 405 after laminating and bonding a flexible printed wiring board (FPC) to the metal structure 415 by hot pressing.
  • the LED light-emitting element 405 is connected to a flexible printed wiring board (FPC) having no reinforcing copper foil layer on the back surface, and then laminated and adhered to the metal structure 415.
  • FPC flexible printed wiring board
  • Examples 1 to 6 are each configured by providing a copper foil on the back side of the region where the LED light emitting element 405 is mounted.
  • a reinforcing copper foil layer is provided only directly below the region where the LED light emitting element 405 is provided.
  • Example 4 and Example 5 provide the reinforcement copper foil layer in the part wider than the said LED mounting area, as shown in FIG.
  • the thickness of the reinforced copper foil layer is 18 ⁇ m.
  • the thickness of the reinforced copper foil layer is 35 ⁇ m.
  • the reinforced copper foil is A layer having a thickness of 70 ⁇ m is employed.
  • the temperature of the LED light emitting element 405 and the temperature of the solder at the electrode connection part were adopted.
  • the temperature of the LED light emitting element 405 is derived from the value and temperature characteristics of the voltage drop when the LED is energized.
  • the temperature of the solder is a value measured by a thermocouple attached to the solder of the LED light emitting element 405 at the center.
  • the temperature increase value of the LED light emitting element is lower than that of the comparative example 2 in any case.
  • a copper foil is provided in a region larger than the region immediately below the LED light emitting element 405 (Example 4 and Example 5)
  • the temperature rise of the LED light emitting element becomes smaller.
  • a predetermined effect can also be expected when the copper foil is set in a range smaller than the region immediately below the LED light emitting element 405 (Example 6).
  • the thickness of the reinforcing copper foil layer is 35 ⁇ m, the LED temperature rise and the solder temperature are within the usable range in any case. For this reason, it is preferable to set the thickness of the reinforcing copper foil layer to 35 ⁇ m or more. Furthermore, it can be seen that the thickness is more preferably 70 ⁇ m or more.
  • the bubble ratio of the adhesive layer between the reinforcing copper foil layer and the metal structure substantially corresponds to the LED temperature increase described above. Therefore, the temperature rise of the wiring body can be reduced by controlling the bubble rate of the adhesive layer.
  • the air bubble rate in the adhesive layer between the reinforcing copper foil layer and the metal structure is 20% or less.
  • the electronic component is an LED light emitting element.
  • the present invention is not particularly limited to this, and the same effect can be expected if the electronic component generates heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided is a wiring body (100) in which a flexible printed wiring board (1) having an electronic component (5) mounted therein is positioned on top of a heat-radiating metal structure (15). The wiring body (100) is provided with: a reinforcement copper foil layer (12) which is provided on the rear surface side of the region of the flexible printed wiring board where the electronic component is mounted, and has a thickness of 35 μm or more; and an adhesive layer (16) for adhering the flexible printed wiring board to the metal structure. The bubble fraction in the adhesive layer between the reinforcement copper foil layer and the metal structure is set to be less than the bubble fraction in the adhesive layer in other regions.

Description

配線体及び配線体の製造方法Wiring body and manufacturing method of wiring body
 本願発明は、配線体及び配線体の製造方法に関する。詳しくは、発熱量の大きな電子部品を搭載した配線体及びその製造方法に関する。 The present invention relates to a wiring body and a manufacturing method of the wiring body. Specifically, the present invention relates to a wiring body on which an electronic component having a large calorific value is mounted and a manufacturing method thereof.
 例えば、液晶ディスプレイのバックライトとして使用される照明装置は、複数のLED発光素子を備えて構成されている。上記LED発光素子は、発熱量が大きいため、放熱性の高い金属基板等を備えて構成されることが多い。 For example, an illumination device used as a backlight of a liquid crystal display includes a plurality of LED light emitting elements. Since the LED light emitting element generates a large amount of heat, the LED light emitting element is often configured to include a metal substrate with high heat dissipation.
 上記LED発光素子を用いて照明装置を構成する場合、平坦面に上記発光素子が配列されるとは限らない。このような場合、曲面あるいは屈曲面を有する金属基板等に上記発光素子が搭載されることになる。 When the lighting device is configured using the LED light emitting elements, the light emitting elements are not necessarily arranged on a flat surface. In such a case, the light emitting element is mounted on a metal substrate having a curved surface or a bent surface.
特開2002-184209号JP 2002-184209 A
 上記発光素子を効率よく金属基板上に搭載するには、半田リフロー処理を採用するのが望ましい。ところが、放熱性を高めるため上記金属基板等の熱容量が大きくなり、半田リフロー処理によって上記発熱素子を金属基板上に搭載するのは困難である。このため、従来は、手作業で各発光素子を金属基板上に接続する手法が採用されることが多く、製造効率が低くなるという問題があった。 In order to efficiently mount the light emitting element on the metal substrate, it is desirable to employ a solder reflow process. However, the heat capacity of the metal substrate or the like is increased in order to improve heat dissipation, and it is difficult to mount the heating element on the metal substrate by solder reflow processing. For this reason, conventionally, a method of manually connecting each light-emitting element onto a metal substrate is often employed, resulting in a problem that manufacturing efficiency is lowered.
 上記不都合を回避するため、あらかじめ半田リフロー処理によって発光素子を搭載したフレキシブルプリント配線板を、ヒートシンク等の放熱性の高い金属構造体に積層する手法が考えられる。 In order to avoid the above inconvenience, a method of laminating a flexible printed wiring board on which a light emitting element is mounted in advance by solder reflow processing on a metal structure having high heat dissipation such as a heat sink can be considered.
 ところが、発光素子を搭載したフレキシブルプリント配線板を、金属構造体等に積層接着する際、上記発光素子に大きな押圧力を作用させることができないため、上記発光素子を搭載した領域の裏面と上記金属構造体表面との間に大きな押圧力を作用させることができない。このため、上記発光素子を設けた領域直下の領域に気泡が入りやすく、放熱性能が低下するという問題が生じやすい。 However, when the flexible printed wiring board on which the light emitting element is mounted is laminated and bonded to a metal structure or the like, a large pressing force cannot be applied to the light emitting element. A large pressing force cannot be applied to the surface of the structure. For this reason, bubbles tend to enter the region immediately below the region where the light emitting element is provided, and the problem that the heat dissipation performance is likely to deteriorate is likely to occur.
 また、照明装置を構成する場合において、発光素子を曲面あるいは屈曲面に沿って配列しなければならない場合がある。このような場合、金属構造体のフレキシブルプリント配線板積層面が曲面形状あるいは屈曲形状に形成されているため、フレキシブルプリント配線板の全域を均一に押圧して積層接着するのは困難である。 Further, in the case of configuring the lighting device, the light emitting elements may have to be arranged along a curved surface or a bent surface. In such a case, since the flexible printed wiring board lamination surface of the metal structure is formed in a curved shape or a bent shape, it is difficult to press the entire area of the flexible printed wiring board uniformly and laminate and bond them.
 また、上記曲面あるいは屈曲面に沿ってフレキシブルプリント配線板を積層した場合、フレキシブルプリント配線板に歪が生じやすく、この歪によって接着剤層に気泡が入り易くなる。このため、金属基板の放熱性が阻害されて、発光素子の温度が上昇するという問題が生じやすい。 Further, when the flexible printed wiring board is laminated along the curved surface or the bent surface, the flexible printed wiring board is likely to be distorted, and bubbles are likely to enter the adhesive layer due to the distortion. For this reason, the heat dissipation of the metal substrate is hindered and the temperature of the light emitting element is likely to increase.
 本願発明は、上記従来の問題を解決し、半田リフロー処理によって電子部品を搭載したフレキシブルプリント配線板を、放熱性を阻害することなく金属構造体に積層接着した配線体及び配線体の製造方法を提供することを課題とする。 The present invention solves the above-described conventional problems, and provides a wiring body and a method of manufacturing a wiring body, in which a flexible printed wiring board on which electronic components are mounted by solder reflow processing is laminated and bonded to a metal structure without hindering heat dissipation. The issue is to provide.
 本願の請求項1に記載した発明は、電子部品を搭載したフレキシブルプリント配線板を、放熱性のある金属構造体に積層して構成される配線体であって、上記フレキシブルプリント配線板の上記電子部品を搭載した領域の裏面側に設けられるとともに、35μm以上の厚みを有する補強銅箔層と、上記フレキシブルプリント配線板を上記金属構造体に接着する接着剤層とを備え、上記補強銅箔層と上記金属構造体との間の接着剤層における気泡率が、他の領域の接着剤層の気泡率より小さく設定されているものである。 The invention described in claim 1 of the present application is a wiring body configured by laminating a flexible printed wiring board on which an electronic component is mounted on a metal structure having heat dissipation, and the electronic of the flexible printed wiring board. The reinforcing copper foil layer is provided on the back side of the region where the component is mounted, and includes a reinforcing copper foil layer having a thickness of 35 μm or more, and an adhesive layer for adhering the flexible printed wiring board to the metal structure. The bubble rate in the adhesive layer between the metal structure and the metal structure is set to be smaller than the bubble rate of the adhesive layer in other regions.
 本願発明に係る配線体では、フレキシブルプリント配線板に半田リフロー処理によって電子部品を搭載した後に、上記フレキシブルプリント配線板を、放熱性を有する金属構造体に積層接着する。 In the wiring body according to the present invention, after mounting electronic components on the flexible printed wiring board by solder reflow processing, the flexible printed wiring board is laminated and bonded to a metal structure having heat dissipation.
 本願発明では、上記フレキシブルプリント配線板の少なくとも上記電子部品を搭載した領域の裏面側に35μm以上の厚みを有する補強銅箔層が設けられている。上記補強銅箔層を設けることにより、上記電子部品搭載領域の剛性が高まる。また、上記銅箔の厚み分、電子部品搭載領域直下の領域が段付き状に盛り上がった形態を備えることになる。 In the present invention, a reinforced copper foil layer having a thickness of 35 μm or more is provided on the back surface side of at least the region where the electronic component is mounted on the flexible printed wiring board. By providing the reinforced copper foil layer, the rigidity of the electronic component mounting region is increased. Moreover, the area | region immediately under the electronic component mounting area | region for the thickness of the said copper foil is provided with the form which rose in stepped form.
 上記構成によって、電子部品を直接押圧した場合においては、押圧力を上記補強銅箔層形成部分に集中させることが可能となり、上記補強銅箔層と上記金属構造体表面との間にある気泡を接着剤層とともに周囲に押し出すように積層接着することが可能となり、上記電子部品搭載領域直下の気泡率を、他の領域より小さくすることが可能となる。 With the above configuration, when the electronic component is directly pressed, it becomes possible to concentrate the pressing force on the reinforcing copper foil layer forming portion, and the air bubbles between the reinforcing copper foil layer and the metal structure surface are removed. It becomes possible to laminate and bond together with the adhesive layer so as to be pushed out to the periphery, and the bubble rate immediately below the electronic component mounting area can be made smaller than that in other areas.
 また、上記補強銅箔層によって上記電子部品搭載領域の剛性が高くなるため、上記電子部品搭載領域の周囲を押圧した場合においても、上記電子部品搭載領域に大きな押圧力を作用させることが可能となる。これにより、フレキシブルプリント配線板を積層接着する工程において、上記電子部品搭載領域における気泡を接着剤とともに周囲に押し出すことができる。したがって、上記電子部品搭載領域における放熱性を他の領域に比べて高めることができる。 Moreover, since the rigidity of the electronic component mounting area is increased by the reinforcing copper foil layer, it is possible to apply a large pressing force to the electronic component mounting area even when the periphery of the electronic component mounting area is pressed. Become. Thereby, in the step of laminating and bonding the flexible printed wiring boards, the bubbles in the electronic component mounting area can be pushed out together with the adhesive. Therefore, the heat dissipation in the electronic component mounting area can be enhanced as compared with other areas.
 一方、電子部品搭載領域以外の領域における気泡率が大きくなるが、上記銅箔は熱伝導率が高く、しかも、上記電子部品搭載領域直下の領域の放熱性を確保できるため、電子部品の温度が上昇することはない。 On the other hand, the bubble rate in areas other than the electronic component mounting area increases, but the copper foil has a high thermal conductivity, and since heat dissipation in the area immediately below the electronic component mounting area can be ensured, the temperature of the electronic component is reduced. It will not rise.
 放熱性を確保するため、請求項2に記載した発明のように、上記補強銅箔層と上記金属構造体との間の接着剤層における気泡率が、20%以下となるように設定するのが好ましい。上記気泡率となるように、作用させる押圧力、押圧時間等を設定して、上記フレキシブルプリント配線板と上記金属構造体との積層工程が行われる。上記気泡率とすることにより、放熱性を阻害することなく、プリント配線板を積層することが可能となる。なお、本願発明では、厚み方向への熱伝導が気泡によって阻害されることが問題となるため、接着剤層中の体積あたりの気泡率はあまり重要ではなく、接着剤層中の気泡を接着面に投影した面積割合が重要である。したがって、本願発明では、接着剤層中の気泡を接着面に投影した面積割合で気泡率を求めることとする。 In order to ensure heat dissipation, the bubble rate in the adhesive layer between the reinforcing copper foil layer and the metal structure is set to 20% or less as in the invention described in claim 2. Is preferred. The laminating step of the flexible printed wiring board and the metal structure is performed by setting the pressing force to be applied, the pressing time, and the like so as to achieve the bubble ratio. By setting it as the said bubble rate, it becomes possible to laminate | stack a printed wiring board, without inhibiting heat dissipation. In the present invention, since the problem is that the heat conduction in the thickness direction is hindered by bubbles, the bubble rate per volume in the adhesive layer is not so important, and the bubbles in the adhesive layer are attached to the bonding surface. The area ratio projected onto is important. Therefore, in the present invention, the bubble rate is determined by the area ratio obtained by projecting the bubbles in the adhesive layer onto the bonding surface.
 上記銅箔は、絶縁性基材の両側に銅箔を設けた両面フレキシブルプリント配線板の片面の銅箔を厚く設定し、上記電子部品搭載領域以外をエッチング等で除去することにより、設けることができる。 The copper foil can be provided by setting the copper foil on one side of the double-sided flexible printed wiring board provided with copper foil on both sides of the insulating substrate to be thick and removing the area other than the electronic component mounting area by etching or the like. it can.
 請求項3に記載した発明のように、積層工程における押圧力を効率良く作用させるために、上記補強銅箔層を、少なくとも上記電子部品の接続電極が接続される領域の裏面側に設けるのが好ましい。また、上記接続電極は、熱の伝導経路でもあるため、電子部品で発生した熱を効率よく金属構造体に伝導して放熱することが可能となる。なお、上記接続電極には、例えば、放熱用に設けられる通電されない電極も含まれる。 As in the invention described in claim 3, in order to efficiently apply the pressing force in the laminating process, the reinforcing copper foil layer is provided at least on the back surface side of the region to which the connection electrode of the electronic component is connected. preferable. Further, since the connection electrode is also a heat conduction path, the heat generated in the electronic component can be efficiently conducted to the metal structure and radiated. The connection electrodes include, for example, non-energized electrodes provided for heat dissipation.
 さらに、気泡が入るのを防止するため、請求項4に記載した発明のように、上記補強銅箔層を、上記電子部品を搭載した領域より外側に設定された押圧領域を備えて構成するのが好ましい。上記押圧領域を設けることにより、上記電子部品搭載領域に作用する押圧力をより高めることが可能となる。 Furthermore, in order to prevent air bubbles from entering, as in the invention described in claim 4, the reinforcing copper foil layer is configured to include a pressing area set outside the area where the electronic component is mounted. Is preferred. By providing the pressing area, it is possible to further increase the pressing force acting on the electronic component mounting area.
 なお、上記押圧領域は、上記電子部品搭載領域を挟んだ両側に対称に設けるのが望ましい。これにより、押圧力を上記電子部品搭載領域の全域に偏りなく作用させることが可能となる。 It should be noted that it is desirable to provide the pressing area symmetrically on both sides of the electronic component mounting area. As a result, the pressing force can be applied to the entire electronic component mounting area without any deviation.
 気泡が入るのを防止するとともに放熱性を確保するため、請求項5に記載された発明のように、上記銅箔を、上記電子部品を搭載した領域の80%以上に設けるのが好ましい。たとえば、上記補強銅箔層を利用してフレキシブルプリント配線板を両面基板として利用する場合等に適用される。 In order to prevent bubbles from entering and to ensure heat dissipation, it is preferable to provide the copper foil in 80% or more of the area where the electronic component is mounted as in the invention described in claim 5. For example, the present invention is applied to a case where a flexible printed wiring board is used as a double-sided board using the reinforced copper foil layer.
 さらに、気泡の排除効果を高めるため、請求項7に記載した発明のように、上記補強銅箔層を70μm以上の厚さに設定するのが好ましい。 Furthermore, in order to enhance the effect of eliminating bubbles, it is preferable to set the reinforced copper foil layer to a thickness of 70 μm or more as in the invention described in claim 7.
 上記フレキシブルプリント配線板の構成及び種類は特に限定されることはない。電子部品を搭載した回路面を片面に設けた片面フレキシブルプリント配線板のみならず、両面プリント配線板を採用することができる。 The configuration and type of the flexible printed wiring board are not particularly limited. Not only a single-sided flexible printed wiring board having a circuit surface on which electronic components are mounted on one side, but also a double-sided printed wiring board can be employed.
 上記金属構造体の材料も特に限定されることはない。たとえば、アルミニウム製の金属構造体を採用することができる。また、金属構造体の形態も特に限定されることはない。たとえば、平坦板状の金属構造体を採用することができる。また、請求項6に記載した発明のように、上記金属構造体におけるフレキシブルプリント配線板の積層面が、曲面又は屈曲面であるものを採用できる。 The material for the metal structure is not particularly limited. For example, a metal structure made of aluminum can be employed. Further, the form of the metal structure is not particularly limited. For example, a flat plate-like metal structure can be employed. In addition, as in the invention described in claim 6, it is possible to adopt a structure in which the laminated surface of the flexible printed wiring board in the metal structure is a curved surface or a bent surface.
 この場合、上記フレキシブルプリント配線板は、湾曲状態又は屈曲状態で積層接着されることになる。本願発明では、上記銅箔を設けているため、上記電子部品搭載領域の剛性が高まる。これにより、上記電子部品搭載領域において歪が生じにくく、接着剤層に気泡が入るのを抑制することができる。また、電子部品搭載領域ないし押圧領域に押圧力を作用させるため、曲面状の積層面にも容易に積層することが可能となる。 In this case, the flexible printed wiring board is laminated and bonded in a curved state or a bent state. In this invention, since the said copper foil is provided, the rigidity of the said electronic component mounting area increases. Thereby, it is hard to produce distortion in the said electronic component mounting area | region, and it can suppress that a bubble enters into an adhesive bond layer. Further, since the pressing force is applied to the electronic component mounting area or the pressing area, it can be easily stacked on a curved surface.
 また、上記金属構造体として、請求項8に記載した発明のように、放熱フィン等の放熱手段を備えるヒートシンクを採用することができる。 Further, as the metal structure, as in the invention described in claim 8, a heat sink provided with heat radiating means such as heat radiating fins can be adopted.
 本願発明に係る配線体は、種々の電子装置に適用できる。たとえば、請求項9に記載した発明のように、上記電子部品として発光素子を採用し、照明装置を構成することができる。 The wiring body according to the present invention can be applied to various electronic devices. For example, as in the invention described in claim 9, a lighting device can be configured by employing a light emitting element as the electronic component.
 請求項10に記載した発明は、発熱する電子部品を搭載した配線体の製造方法であって、少なくとも上記電子部品を搭載した領域の裏面側に、35μm以上の厚みを有する補強銅箔層を備えるフレキシブルプリント配線板を製造するフレキシブルプリント配線板製造工程と、上記フレキシブルプリント配線板に、半田リフロー処理によって上記電子部品を搭載する電子部品搭載工程と、上記フレキシブルプリント配線板を、接着剤層を介して金属構造体に積層する積層工程とを含み、上記積層工程において、上記銅箔と上記金属構造体表面の間の気泡を接着剤層とともに押し出すように、上記電子部品及び/又は上記フレキシブルプリント配線板が押圧積層されるものである。 The invention described in claim 10 is a method of manufacturing a wiring body on which an electronic component that generates heat is mounted, and includes a reinforced copper foil layer having a thickness of 35 μm or more on at least the back surface side of the region on which the electronic component is mounted. A flexible printed wiring board manufacturing process for manufacturing a flexible printed wiring board, an electronic component mounting process for mounting the electronic component on the flexible printed wiring board by a solder reflow process, and the flexible printed wiring board via an adhesive layer. Laminating step of laminating on the metal structure, and in the laminating step, the electronic component and / or the flexible printed wiring so as to extrude air bubbles between the copper foil and the surface of the metal structure together with the adhesive layer. A plate is pressed and laminated.
 本願発明では、上記補強銅箔層を設けているため、電子部品を直接押圧した場合において、上記押圧力を、上記補強銅箔層を設けた領域に集中させることができる。このため、上記補強銅箔層と上記金属構造体表面の間の接着剤層を気泡とともに押し出すようにして、上記フレキシブルプリント配線板を積層することができる。 In this invention, since the said reinforcement copper foil layer is provided, when an electronic component is pressed directly, the said pressing force can be concentrated on the area | region which provided the said reinforcement copper foil layer. For this reason, the said flexible printed wiring board can be laminated | stacked so that the adhesive bond layer between the said reinforcement copper foil layer and the said metal structure body surface may be extruded with a bubble.
 また、上記補強銅箔層によって上記電子部品搭載領域の剛性が高まり、この領域の周囲を押圧した場合にも、上記補強銅箔層に大きな押圧力を作用させることが可能となる。この結果、上記積層工程において、上記補強銅箔層と上記金属構造体表面の間の接着剤層内の気泡を、上記接着剤層とともに押し出すように、上記電子部品及び上記フレキシブルプリント配線板を押圧することができる。 Also, the reinforcing copper foil layer increases the rigidity of the electronic component mounting region, and even when the periphery of this region is pressed, a large pressing force can be applied to the reinforcing copper foil layer. As a result, in the laminating step, the electronic component and the flexible printed wiring board are pressed so as to extrude air bubbles in the adhesive layer between the reinforcing copper foil layer and the metal structure surface together with the adhesive layer. can do.
 上記積層工程における押圧部位は特に限定されることはない。請求項11に記載した発明のように、上記押圧工程を、搭載した電子部品に対して押圧力を作用させる電子部品押圧工程を含むように行うことができる。なお、上記電子部品押圧工程は、電子部品を破壊しない、もしくは故障させない程度の力を作用させることにより行うことができる。 The pressing part in the laminating step is not particularly limited. As in the invention described in claim 11, the pressing step can be performed so as to include an electronic component pressing step in which a pressing force is applied to the mounted electronic component. In addition, the said electronic component press process can be performed by applying the force of the grade which does not destroy or break down an electronic component.
 請求項12に記載した発明は、上記押圧工程を、上記電子部品を搭載した領域より外側に設定された上記銅箔の押圧領域を押圧する銅箔押圧工程を含んで行うものである。 The invention described in claim 12 includes the copper foil pressing step of pressing the pressing region of the copper foil set outside the region where the electronic component is mounted.
 上記押圧領域を押圧することにより、電子部品搭載領域の周囲を押圧した場合であっても、電子部品搭載領域に大きな押圧力を作用させて気泡を押し出すことが可能となる。 By pressing the pressing area, it is possible to push out bubbles by applying a large pressing force to the electronic component mounting area even when the periphery of the electronic component mounting area is pressed.
 電子部品搭載領域の裏面側の気泡を押し出すことにより熱伝導性を高め、電子部品から発生する熱を効率よく放熱することができる配線体を得ることができる。 It is possible to obtain a wiring body capable of improving heat conductivity by extruding bubbles on the back side of the electronic component mounting area and efficiently radiating heat generated from the electronic component.
本願発明の第1の実施形態に係るフレキシブルプリント配線板の要部断面図である。It is principal part sectional drawing of the flexible printed wiring board which concerns on the 1st Embodiment of this invention. 図1に示すフレキシブルプリント配線板を金属構造体に積層接着する際の気泡を含む接着剤層の流れを模式的に示す要部拡大断面図である。It is a principal part expanded sectional view which shows typically the flow of the adhesive bond layer containing the bubble at the time of carrying out the lamination | stacking adhesion | attachment of the flexible printed wiring board shown in FIG. 1 to a metal structure. 図2に示す積層工程を終えた後の配線体の要部拡大断面図である。It is a principal part expanded sectional view of the wiring body after finishing the lamination process shown in FIG. 本願発明の第2の実施形態であって、屈曲した積層面を有する金属構造体に電子部品を搭載したフレキシブルプリント配線板を積層して構成した配線体の断面図である。It is 2nd Embodiment of this invention, Comprising: It is sectional drawing of the wiring body comprised by laminating | stacking the flexible printed wiring board which mounted the electronic component on the metal structure which has the bending laminated surface. 本願発明の第3の実施形態であって、位置決めピンを用いてフレキシブルプリント配線板を板状の金属構造体に積層する状態を示す断面図である。It is 3rd Embodiment of this invention, Comprising: It is sectional drawing which shows the state which laminates | stacks a flexible printed wiring board on a plate-shaped metal structure using a positioning pin. 本願発明の第4の実施形態に係る配線体の平面図である。It is a top view of the wiring body which concerns on 4th Embodiment of this invention. 図6に示す配線体に搭載される電子部品と銅箔を設ける領域を示す拡大平面図である。It is an enlarged plan view which shows the area | region which provides the electronic component mounted in the wiring body shown in FIG. 6, and copper foil. 図6及び図7に係る実施形態において、銅箔の厚み及び銅箔を設ける領域を異ならせた場合の放熱特性試験結果を示す図表である。In embodiment which concerns on FIG.6 and FIG.7, it is a table | surface which shows the heat dissipation characteristic test result at the time of varying the thickness of a copper foil, and the area | region which provides copper foil.
  1 フレキシブルプリント配線板
  2 基材フィルム
  3 回路パターン
  4 電子部品接続電極
  5 電子部品
  6 カバー層
  7 接着剤層
  8 カバー層
  9 接着剤層
 10 電極
 11 半田
 12 補強銅箔層
 15 金属構造体
 16 接着剤層
 17 気泡
 20 プレス型
100 配線体
250 屈曲部
330 位置決めピン
405 発光素子 

200番台、300番台、400番台の符号はそれぞれ第2の実施の形態、第3の実施の形態、第4の実施の形態に対応し、特に規定しないかぎり下2桁が同じ番号のものは同じ要素を示す。
DESCRIPTION OF SYMBOLS 1 Flexible printed wiring board 2 Base film 3 Circuit pattern 4 Electronic component connection electrode 5 Electronic component 6 Cover layer 7 Adhesive layer 8 Cover layer 9 Adhesive layer 10 Electrode 11 Solder 12 Reinforced copper foil layer 15 Metal structure 16 Adhesive Layer 17 Bubble 20 Press mold 100 Wiring body 250 Bending part 330 Positioning pin 405 Light emitting element

The codes in the 200s, 300s, and 400s correspond to the second, third, and fourth embodiments, respectively, and the same numbers with the same last two digits are the same unless otherwise specified. Indicates an element.
 以下、本願発明の実施形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1から図3に、本願発明の第1の実施形態を示す。図1は、第1の実施形態に用いられるフレキシブルプリント配線板1の要部断面図である。フレキシブルプリント配線板1は、ポリイミド等の絶縁性樹脂から形成された基材フィルム2と、この基材フィルム2の上面に積層された銅箔から形成される回路パターン3と、この回路パターン3の所定部位において露出させられた電子部品接続電極4と、この電子部品接続電極4に、半田11を介して接続される電子部品5と、上記電子部品接続電極4以外の領域を覆うカバー層6及び接着剤層7とを備えて構成されている。上記電子部品5として、LED発光素子が採用されており、上記電子部品5の下面に設けられた電極10と上記電子部品接続電極4とが、半田11を介して接続されている。 1 to 3 show a first embodiment of the present invention. FIG. 1 is a cross-sectional view of a main part of a flexible printed wiring board 1 used in the first embodiment. The flexible printed wiring board 1 includes a base film 2 formed from an insulating resin such as polyimide, a circuit pattern 3 formed from a copper foil laminated on the upper surface of the base film 2, and the circuit pattern 3. An electronic component connection electrode 4 exposed at a predetermined portion, an electronic component 5 connected to the electronic component connection electrode 4 via a solder 11, a cover layer 6 covering a region other than the electronic component connection electrode 4, and An adhesive layer 7 is provided. An LED light emitting element is employed as the electronic component 5, and the electrode 10 provided on the lower surface of the electronic component 5 and the electronic component connection electrode 4 are connected via a solder 11.
 本実施形態では、上記フレキシブルプリント配線板1として両面フレキシブルプリント配線板が採用されており、裏面側にも図示しない回路パターンを形成する銅箔が積層されている。また、裏面側にも、上記銅箔によって形成される回路パターンを保護するカバー層8及び接着剤層9が設けられている。 In this embodiment, a double-sided flexible printed wiring board is adopted as the flexible printed wiring board 1, and a copper foil that forms a circuit pattern (not shown) is laminated on the back side. Moreover, the cover layer 8 and the adhesive bond layer 9 which protect the circuit pattern formed with the said copper foil are provided also in the back surface side.
 図1に示すように、上記電子部品5を搭載した領域の裏面側に、裏面側回路パターンを形成する銅箔を残して形成される補強銅箔層12が設けられている。本実施形態では、上記補強銅箔層12の厚みは35μmに設定されており、周囲の領域より上記電子部品搭載領域の裏面が上記厚み分だけ凸状に突出した形態に形成されている。上記フレキシブルプリント配線板1は、放熱性のある金属構造体に積層接着される。 As shown in FIG. 1, a reinforced copper foil layer 12 is provided on the back side of the area where the electronic component 5 is mounted, leaving a copper foil that forms the back side circuit pattern. In the present embodiment, the thickness of the reinforcing copper foil layer 12 is set to 35 μm, and the back surface of the electronic component mounting region is formed in a protruding shape by the thickness from the surrounding region. The flexible printed wiring board 1 is laminated and bonded to a heat dissipating metal structure.
 図2は、上記フレキシブルプリント配線板1を金属構造体15に積層接着する直前の状態を示す断面図である。この図に示すように、上記フレキシブルプリント配線板1は、接着剤層16を介して上記金属構造体15に積層接着される。上記接着剤層16には気泡17が多数含まれており、そのままでは接着剤層16の熱伝導率が低くなって所要の放熱性能を確保できない。 FIG. 2 is a cross-sectional view showing a state immediately before the flexible printed wiring board 1 is laminated and bonded to the metal structure 15. As shown in this figure, the flexible printed wiring board 1 is laminated and bonded to the metal structure 15 via an adhesive layer 16. The adhesive layer 16 contains a large number of bubbles 17, and as it is, the thermal conductivity of the adhesive layer 16 becomes low, and the required heat dissipation performance cannot be ensured.
 図2に示す状態から、プレス型20を用いて上記電子部品5の周囲の領域に所定の圧力を作用させることにより、フレキシブルプリント配線板1を金属構造体15に積層接着する積層工程が行われる。本実施形態では、上記電子部品搭載領域の裏面側に、厚さ35μmの補強銅箔層12が設けられているため、上記補強銅箔層12によって形成された凸状部が、上記金属構造体15の表面に所定厚みで存在する接着剤層16を押し退けるように押圧される。これにより、上記補強銅箔層12と上記金属構造体15の表面に介在する接着剤層16の一部が、上記補強銅箔層12を設けた領域から押し出されるように変形させられるとともに、上記気泡17が上記電子部品搭載領域から押し出される。 From the state shown in FIG. 2, a laminating step of laminating and bonding the flexible printed wiring board 1 to the metal structure 15 is performed by applying a predetermined pressure to the area around the electronic component 5 using the press die 20. . In the present embodiment, since the reinforcing copper foil layer 12 having a thickness of 35 μm is provided on the back surface side of the electronic component mounting region, the convex portion formed by the reinforcing copper foil layer 12 is the metal structure. The adhesive layer 16 having a predetermined thickness on the surface 15 is pressed so as to push away. Thereby, a part of the adhesive copper layer 16 interposed on the surface of the reinforcing copper foil layer 12 and the metal structure 15 is deformed so as to be pushed out from the region where the reinforcing copper foil layer 12 is provided, and Bubbles 17 are pushed out of the electronic component mounting area.
 上記積層工程が終了した配線体100は、図3に示すように、上記補強銅箔層12と上記金属構造体15との間の接着剤層16における気泡率が、周囲の領域の気泡率より小さくなる。これにより、上記電子部品搭載領域直下の領域における熱伝導性能が、接着剤層16に含まれる上記気泡17によって低下するのを防止することが可能となり、電子部品5から生じた熱を効率よく上記金属構造体15に伝導させて放熱させることが可能となる。 As shown in FIG. 3, the wiring body 100 in which the lamination process has been completed has a bubble rate in the adhesive layer 16 between the reinforcing copper foil layer 12 and the metal structure 15, as compared to the bubble rate in the surrounding area. Get smaller. Thereby, it becomes possible to prevent the heat conduction performance in the region immediately below the electronic component mounting region from being deteriorated by the bubbles 17 included in the adhesive layer 16, and the heat generated from the electronic component 5 is efficiently reduced. It is possible to conduct heat to the metal structure 15 to dissipate heat.
 上記電子部品5は、半田リフロー処理によって上記フレキシブルプリント配線板1に接続することができるため、従来の手作業による電子部品接続工程に比べて、作業効率が格段に高まる。 Since the electronic component 5 can be connected to the flexible printed wiring board 1 by a solder reflow process, the working efficiency is remarkably increased as compared with a conventional electronic component connecting step by manual work.
 また、上記補強銅箔層12を設けることにより、上記電子部品搭載領域の剛性が大きくなる。これにより、上記電子部品搭載領域の周囲を押圧しても、上記電子部品搭載領域の内側に大きな押圧力を作用させることができる。また、電子部品を直接押圧する場合でも、押圧力を、上記補強銅箔層12を設けた部分に集中させることができる。このため、上記気泡17を接着剤層16の一部とともに、効率よく周囲の領域に排除することが可能となる。なお本実施形態では電子部品をLED発光素子としたが特にこれに限定されるものではなく、発熱する電子部品であれば同様の効果を期待できる。 Further, by providing the reinforced copper foil layer 12, the rigidity of the electronic component mounting region is increased. Thereby, even if the periphery of the electronic component mounting area is pressed, a large pressing force can be applied to the inside of the electronic component mounting area. Even when the electronic component is directly pressed, the pressing force can be concentrated on the portion where the reinforcing copper foil layer 12 is provided. For this reason, it is possible to efficiently eliminate the bubbles 17 together with a part of the adhesive layer 16 in the surrounding area. In the present embodiment, the electronic component is an LED light emitting element. However, the present invention is not particularly limited to this, and the same effect can be expected if the electronic component generates heat.
 図4に、本願発明の第2の実施形態を示す。この実施形態は、本願発明に係るフレキシブルプリント配線板201を、屈曲部250を有する金属構造体215に積層接着したものである。 FIG. 4 shows a second embodiment of the present invention. In this embodiment, a flexible printed wiring board 201 according to the present invention is laminated and bonded to a metal structure 215 having a bent portion 250.
 図4に示すように、本実施形態では、片面に回路パターン203が形成された片面フレキシブルプリント配線板201が採用されている。このため、第1の実施形態における裏面側には、回路保護のためのカバー層等を設ける必要がない。 As shown in FIG. 4, in this embodiment, a single-sided flexible printed wiring board 201 having a circuit pattern 203 formed on one side is employed. For this reason, it is not necessary to provide a cover layer or the like for circuit protection on the back surface side in the first embodiment.
 本願発明では、上記電子部品搭載領域の裏面にのみ補強銅箔層212を設けているため、フレキシブルプリント配線板201の上記補強銅箔層212を設けた領域以外の領域の屈曲性は高い。このため、上記金属構造体215の屈曲面に沿って上記フレキシブルプリント配線板201を積層接着することができる。 In the present invention, since the reinforcing copper foil layer 212 is provided only on the back surface of the electronic component mounting area, the flexibility of the flexible printed wiring board 201 other than the area where the reinforcing copper foil layer 212 is provided is high. For this reason, the flexible printed wiring board 201 can be laminated and bonded along the bent surface of the metal structure 215.
 しかも、本実施形態では、上記電子部品搭載領域及びその周囲の部分を押圧することにより、上記電子部品搭載領域直下の接着剤層216を変形させて気泡を押し出し、放熱性を確保することができる。また、上記フレキシブルプリント配線板201の電子部品搭載領域の剛性が高いため変形しにくい。このため、フレキシブルプリント配線板201における電子部品搭載領域に歪等が生じにくく、気泡の発生を抑制することもできる。なお、屈曲角度は限定されることはなく、断面L字状の金属構造体215の屈曲面に沿って積層接着することができる。 In addition, in the present embodiment, by pressing the electronic component mounting region and the surrounding portion, the adhesive layer 216 immediately below the electronic component mounting region is deformed to extrude bubbles, thereby ensuring heat dissipation. . Moreover, since the rigidity of the electronic component mounting area of the flexible printed wiring board 201 is high, it is difficult to deform. For this reason, distortion etc. are hard to produce in the electronic component mounting area | region in the flexible printed wiring board 201, and generation | occurrence | production of a bubble can also be suppressed. Note that the bending angle is not limited and can be laminated and bonded along the bending surface of the metal structure 215 having an L-shaped cross section.
 図5に本願発明に係る第3の実施形態を示す。フレキシブルプリント配線板301を金属構造体315に対して積層接着する際に、フレキシブルプリント配線板301が横方向にずれると、気泡をうまく押し出すことができない。このため、上記積層工程において、フレキシブルプリント配線板301を位置決めしつつ押圧できるように構成するのが望ましい。 FIG. 5 shows a third embodiment according to the present invention. When the flexible printed wiring board 301 is laminated and bonded to the metal structure 315, if the flexible printed wiring board 301 is displaced laterally, bubbles cannot be pushed out well. For this reason, in the said lamination process, it is desirable to comprise so that the flexible printed wiring board 301 can be pressed while positioning.
 図5に示す第3の実施形態では、フレキシブルプリント配線板301と金属構造体315とを積層方向に相対動可能係着できる位置決めピン330を用いて積層工程が行われる。上記フレキシブルプリント配線板301及び上記金属構造体315には位置決め孔が形成されているとともに、上記位置決めピン330が連通挿されている。このため、上記フレキシブルプリント配線板301と上記金属構造体315とを横方向にずれることなく押圧力を作用させて積層接着することができる。 In the third embodiment shown in FIG. 5, the stacking process is performed using positioning pins 330 that are capable of relatively moving the flexible printed wiring board 301 and the metal structure 315 in the stacking direction. The flexible printed wiring board 301 and the metal structure 315 are formed with positioning holes, and the positioning pins 330 are inserted into the positioning holes. For this reason, the flexible printed wiring board 301 and the metal structure 315 can be laminated and bonded by applying a pressing force without shifting in the lateral direction.
 図6~図8に、本願発明の第4の実施形態を示す。この実施形態を用いて、本願発明の作用効果を確認する。本実施形態では、電子部品としてLED発光素子405が搭載されている。 6 to 8 show a fourth embodiment of the present invention. The effect of this invention is confirmed using this embodiment. In the present embodiment, an LED light emitting element 405 is mounted as an electronic component.
 第4の実施形態では、矩形板状の金属構造体415の一辺にそって複数個のLED発光素子405を搭載したフレキシブルプリント配線板401が積層接着されている。上記フレキシブルプリント配線板401の構成は、上述した実施形態と同様であるので説明は省略する。 In the fourth embodiment, a flexible printed wiring board 401 on which a plurality of LED light emitting elements 405 are mounted is laminated and adhered along one side of a rectangular plate-like metal structure 415. Since the configuration of the flexible printed wiring board 401 is the same as that of the above-described embodiment, the description thereof is omitted.
 この実施形態を用いて、補強銅箔層を設ける領域及び銅箔の厚みによって、接着剤層の気泡率及び放熱特性がどのように変化するかを検証した。 Using this embodiment, it was verified how the bubble rate and heat dissipation characteristics of the adhesive layer change depending on the region where the reinforcing copper foil layer is provided and the thickness of the copper foil.
 図7に示すように、本実施形態に係る電子部品としての発光素子405は、8mm×5mmの搭載面積を備えている。上記LED発光素子405の搭載面積に対して、フレキシブルプリント配線板401の裏面に設けられる補強銅箔層の面積、補強銅箔の厚みを変更して、発光素子405の温度上昇、接続電極間における半田温度及び上記補強銅箔層を設けた領域における接着剤層の気泡率を測定した。なお、上記気泡率は、超音波探傷装置を用いて金属構造体側から金属構造体表面とフレキシブルプリント配線板間の接着剤層を観察し、気泡の投影面積の割合から算出した。 As shown in FIG. 7, the light emitting element 405 as an electronic component according to the present embodiment has a mounting area of 8 mm × 5 mm. By changing the area of the reinforcing copper foil layer provided on the back surface of the flexible printed wiring board 401 and the thickness of the reinforcing copper foil with respect to the mounting area of the LED light emitting element 405, the temperature rise of the light emitting element 405, between the connection electrodes Solder temperature and the bubble rate of the adhesive layer in the region where the reinforcing copper foil layer was provided were measured. The bubble ratio was calculated from the ratio of the projected area of the bubbles by observing the adhesive layer between the metal structure surface and the flexible printed wiring board from the metal structure side using an ultrasonic flaw detector.
 図8において、比較例1は、フレキシブルプリント配線板(FPC)を熱プレスによって上記金属構造体415に積層接着した後にLED発光素子405を接続して構成されたものである。また、比較例2は、裏面に補強銅箔層を有しないフレキシブルプリント配線板(FPC)にLED発光素子405を接続した後に金属構造体415に積層接着して構成されたものである。 In FIG. 8, Comparative Example 1 is configured by connecting a LED light emitting element 405 after laminating and bonding a flexible printed wiring board (FPC) to the metal structure 415 by hot pressing. In Comparative Example 2, the LED light-emitting element 405 is connected to a flexible printed wiring board (FPC) having no reinforcing copper foil layer on the back surface, and then laminated and adhered to the metal structure 415.
 実施例1から実施例6は、いずれもLED発光素子405を搭載した領域の裏面側に銅箔を設けて構成されたものである。実施例1から実施例3及び実施例6は、上記LED発光素子405を設けた領域の直下にのみ補強銅箔層を設けたものである。また、実施例4及び実施例5は、図7に示すように、上記LED搭載領域より広い部分に補強銅箔層を設けたものである。また、実施例1は、補強銅箔層の厚みが18μmであり、実施例2及び実施例4~実施例6は、補強銅箔層の厚みが35μmであり、実施例3は、補強銅箔層の厚みが70μmのものを採用している。 Examples 1 to 6 are each configured by providing a copper foil on the back side of the region where the LED light emitting element 405 is mounted. In Examples 1 to 3 and 6, a reinforcing copper foil layer is provided only directly below the region where the LED light emitting element 405 is provided. Moreover, Example 4 and Example 5 provide the reinforcement copper foil layer in the part wider than the said LED mounting area, as shown in FIG. In Example 1, the thickness of the reinforced copper foil layer is 18 μm. In Examples 2 and 4 to 6, the thickness of the reinforced copper foil layer is 35 μm. In Example 3, the reinforced copper foil is A layer having a thickness of 70 μm is employed.
 計測項目として、LED発光素子405の温度及び電極接続部の半田の温度を採用した。上記LED発光素子405の温度は、LED通電時の電圧降下量を測定し、その値と温度特性とから導いたものである。上記半田の温度は、中央部のLED発光素子405の半田に貼り付けた熱電対によって測定した値である。 As the measurement items, the temperature of the LED light emitting element 405 and the temperature of the solder at the electrode connection part were adopted. The temperature of the LED light emitting element 405 is derived from the value and temperature characteristics of the voltage drop when the LED is energized. The temperature of the solder is a value measured by a thermocouple attached to the solder of the LED light emitting element 405 at the center.
 上記図8から明らかなように、LED発光素子405を接続したフレキシブルプリント配線板を従来と同様の手法で積層接着した場合(比較例2)の温度上昇は、フレキシブルプリント配線板を積層接着した後にLED発光素子405を接続した場合(比較例1)にくらべて5℃以上高くなる。また、上記気泡率の値も上記温度上昇に対応している。このため、比較例2の手法では、LED発光素子405から発生する熱を充分に放熱できないことが判る。 As apparent from FIG. 8, the temperature rise in the case where the flexible printed wiring board connected with the LED light emitting element 405 is laminated and bonded in the same manner as in the past (Comparative Example 2) Compared with the case where the LED light emitting element 405 is connected (Comparative Example 1), the temperature is higher by 5 ° C. or more. The value of the bubble rate also corresponds to the temperature increase. For this reason, it can be seen that the method of Comparative Example 2 cannot sufficiently dissipate the heat generated from the LED light emitting element 405.
 一方、LED発光素子405の直下に補強銅箔層を設けた実施例では、いずれの場合も上記比較例2よりLED発光素子の温度上昇の値が低い。また、上記LED発光素子405の直下の領域より大きな領域に銅箔を設けた場合(実施例4及び実施例5)は、LED発光素子の温度上昇がより小さくなることが判る。さらに、LED発光素子405の直下の領域より小さい範囲に銅箔を設定した場合(実施例6)にも所定の効果を期待することができる。 On the other hand, in the examples in which the reinforcing copper foil layer is provided directly under the LED light emitting element 405, the temperature increase value of the LED light emitting element is lower than that of the comparative example 2 in any case. Moreover, when a copper foil is provided in a region larger than the region immediately below the LED light emitting element 405 (Example 4 and Example 5), it can be seen that the temperature rise of the LED light emitting element becomes smaller. Furthermore, a predetermined effect can also be expected when the copper foil is set in a range smaller than the region immediately below the LED light emitting element 405 (Example 6).
 ただし、補強銅箔層の厚みが18μmの構成(実施例1)では、LED発光素子の温度上昇を低下させることができない。 However, in the configuration (Example 1) in which the thickness of the reinforcing copper foil layer is 18 μm, the temperature rise of the LED light emitting element cannot be reduced.
 補強銅箔層の厚みが35μmの場合は、いずれの場合もLED温度上昇及び半田温度が使用可能な範囲となっている。このため、補強銅箔層の厚みは、35μm以上に設定するのが好ましい。さらに、70μm以上にするのがより好ましいことが判る。 When the thickness of the reinforcing copper foil layer is 35 μm, the LED temperature rise and the solder temperature are within the usable range in any case. For this reason, it is preferable to set the thickness of the reinforcing copper foil layer to 35 μm or more. Furthermore, it can be seen that the thickness is more preferably 70 μm or more.
 上記の各実施例における、上記補強銅箔層と上記金属構造体との間の接着剤層の気泡率は、上述したLED温度上昇にほぼ対応している。したがって、上記接着剤層の気泡率をコントロールすることにより、配線体の温度上昇を低下させることができる。 In each of the above embodiments, the bubble ratio of the adhesive layer between the reinforcing copper foil layer and the metal structure substantially corresponds to the LED temperature increase described above. Therefore, the temperature rise of the wiring body can be reduced by controlling the bubble rate of the adhesive layer.
 上記試験結果から明らかなように、上記補強銅箔層と上記金属構造体との間の接着剤層における気泡率が、20%以下となるように構成するのが好ましい。なお本実施形態では電子部品をLED発光素子としたが特にこれに限定されるものではなく、発熱する電子部品であれば同様の効果を期待できる。 As is clear from the test results, it is preferable that the air bubble rate in the adhesive layer between the reinforcing copper foil layer and the metal structure is 20% or less. In the present embodiment, the electronic component is an LED light emitting element. However, the present invention is not particularly limited to this, and the same effect can be expected if the electronic component generates heat.
 電子部品を搭載したフレキシブルプリント配線板を、放熱性を確保しつつ金属構造体に積層接着して構成される配線体を提供できる。 It is possible to provide a wiring body constituted by laminating and bonding a flexible printed wiring board on which electronic components are mounted to a metal structure while ensuring heat dissipation.

Claims (12)

  1.  電子部品を搭載したフレキシブルプリント配線板を、放熱性のある金属構造体に積層して構成される配線体であって、
     上記フレキシブルプリント配線板の上記電子部品を搭載した領域の裏面側に設けられるとともに、35μm以上の厚みを有する補強銅箔層と、
     上記フレキシブルプリント配線板を上記金属構造体に接着する接着剤層とを備え、
     上記補強銅箔層と上記金属構造体との間の接着剤層における気泡率が、他の領域の接着剤層の気泡率より小さい、配線体。
    It is a wiring body configured by laminating a flexible printed wiring board carrying electronic components on a metal structure with heat dissipation,
    Reinforced copper foil layer having a thickness of 35 μm or more, provided on the back side of the area where the electronic component of the flexible printed wiring board is mounted,
    An adhesive layer for bonding the flexible printed wiring board to the metal structure,
    A wiring body in which an air bubble rate in an adhesive layer between the reinforcing copper foil layer and the metal structure is smaller than an air bubble rate of an adhesive layer in another region.
  2.  上記補強銅箔層と上記金属構造体との間の接着剤層における気泡率が、20%以下である、請求項1に記載の配線体。 2. The wiring body according to claim 1, wherein a bubble ratio in an adhesive layer between the reinforcing copper foil layer and the metal structure is 20% or less.
  3.  上記補強銅箔層は、少なくとも上記電子部品の接続電極が接続される領域の裏面側に設けられている、請求項1又は請求項2のいずれかに記載の配線体。 3. The wiring body according to claim 1, wherein the reinforcing copper foil layer is provided at least on a back surface side of a region to which a connection electrode of the electronic component is connected.
  4.  上記補強銅箔層は、上記電子部品を搭載した領域より外側に設定された押圧領域を備えて構成されている、請求項1から請求項3のいずれか1項に記載の配線体。 The wiring body according to any one of claims 1 to 3, wherein the reinforcing copper foil layer is configured to include a pressing area set outside an area where the electronic component is mounted.
  5.  上記銅箔は、上記電子部品を搭載した領域の裏面の80%以上に設けられている、請求項1から請求項4のいずれか1項に記載の配線体。 The wiring body according to any one of claims 1 to 4, wherein the copper foil is provided on 80% or more of a back surface of a region where the electronic component is mounted.
  6.  上記金属構造体におけるフレキシブルプリント配線板の積層面が、曲面又は屈曲面であり、上記フレキシブルプリント配線板が、湾曲状態又は屈曲状態で積層されている、請求項1から請求項5のいずれか1項に記載の配線体。 The laminated surface of the flexible printed wiring board in the metal structure is a curved surface or a bent surface, and the flexible printed wiring board is laminated in a curved state or a bent state. Wiring body according to item.
  7.  上記補強銅箔層が70μm以上の厚さを有する、請求項1から請求項6のいずれか1項に記載の配線体。 The wiring body according to any one of claims 1 to 6, wherein the reinforcing copper foil layer has a thickness of 70 µm or more.
  8.  上記金属構造体は、放熱フィンを備えるヒートシンクである、請求項1から請求項7のいずれか1項に記載の配線体。 The wiring body according to any one of claims 1 to 7, wherein the metal structure is a heat sink including a heat radiation fin.
  9.  上記電子部品が発光素子である、請求項1から請求項8のいずれか1項に記載の配線体。 The wiring body according to any one of claims 1 to 8, wherein the electronic component is a light emitting element.
  10.  発熱する電子部品を搭載した配線体の製造方法であって、
     少なくとも上記電子部品を搭載した領域の裏面側に、35μm以上の厚みを有する補強銅箔層を備えるフレキシブルプリント配線板を製造するフレキシブルプリント配線板製造工程と、
     上記フレキシブルプリント配線板に、半田リフロー処理によって上記電子部品を搭載する電子部品搭載工程と、
     上記フレキシブルプリント配線板を、接着剤層を介して金属構造体に積層する積層工程とを含み、
     上記積層工程において、上記補強銅箔層と上記金属構造体表面の間の気泡を接着剤層とともに押し出すように、上記電子部品及び上記フレキシブルプリント配線板が押圧積層される、配線体の製造方法。
    A method of manufacturing a wiring body having electronic components that generate heat,
    A flexible printed wiring board manufacturing process for manufacturing a flexible printed wiring board having a reinforced copper foil layer having a thickness of 35 μm or more on at least the back surface side of the region where the electronic component is mounted;
    An electronic component mounting step of mounting the electronic component on the flexible printed wiring board by a solder reflow process;
    A laminating step of laminating the flexible printed wiring board on a metal structure via an adhesive layer,
    The method of manufacturing a wiring body, wherein the electronic component and the flexible printed wiring board are pressed and laminated so that air bubbles between the reinforcing copper foil layer and the surface of the metal structure are extruded together with an adhesive layer in the laminating step.
  11.  上記押圧工程は、搭載した電子部品に対して押圧力を作用させる電子部品押圧工程を含む、請求項10に記載の配線体の製造方法。 The wiring body manufacturing method according to claim 10, wherein the pressing step includes an electronic component pressing step in which a pressing force is applied to the mounted electronic component.
  12.  上記押圧工程は、上記電子部品を搭載した領域より外側に設定された上記銅箔の押圧領域に押圧力を作用させる銅箔押圧工程を含む、請求項10又は請求項11のいずれかに記載の配線体の製造方法。 The said pressing process includes the copper foil pressing process which makes a pressing force act on the pressing area | region of the said copper foil set outside the area | region which mounted the said electronic component. Manufacturing method of wiring body.
PCT/JP2012/063113 2011-06-17 2012-05-23 Wiring body and method for making wiring body WO2012172937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011135028A JP2013004775A (en) 2011-06-17 2011-06-17 Wiring body and manufacturing method therefor
JP2011-135028 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172937A1 true WO2012172937A1 (en) 2012-12-20

Family

ID=47356931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063113 WO2012172937A1 (en) 2011-06-17 2012-05-23 Wiring body and method for making wiring body

Country Status (3)

Country Link
JP (1) JP2013004775A (en)
TW (1) TW201301962A (en)
WO (1) WO2012172937A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207182A (en) * 2013-04-15 2014-10-30 Dnライティング株式会社 Luminaire
US20190131363A1 (en) * 2017-10-30 2019-05-02 Boe Technology Group Co., Ltd. Flexible display device, display apparatus, and method for manufacturing the flexible display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611740B (en) 2015-02-05 2018-01-11 頎邦科技股份有限公司 Flexible substrate
TWI777760B (en) * 2021-08-09 2022-09-11 頎邦科技股份有限公司 Flexible printed circuit board with heat-dissipation plate and heat-dissipation plate thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092971A (en) * 1996-09-13 1998-04-10 Ibiden Co Ltd Manufacture of electronic component mounting board
JP2001127398A (en) * 1999-10-27 2001-05-11 Hitachi Chem Co Ltd Method for manufacturing wiring board with metal plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092971A (en) * 1996-09-13 1998-04-10 Ibiden Co Ltd Manufacture of electronic component mounting board
JP2001127398A (en) * 1999-10-27 2001-05-11 Hitachi Chem Co Ltd Method for manufacturing wiring board with metal plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207182A (en) * 2013-04-15 2014-10-30 Dnライティング株式会社 Luminaire
US20190131363A1 (en) * 2017-10-30 2019-05-02 Boe Technology Group Co., Ltd. Flexible display device, display apparatus, and method for manufacturing the flexible display device
US10950672B2 (en) * 2017-10-30 2021-03-16 Boe Technology Group Co., Ltd. Flexible display device with hardened layer, display apparatus, and method for manufacturing the flexible display device

Also Published As

Publication number Publication date
TW201301962A (en) 2013-01-01
JP2013004775A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US8017959B2 (en) Light source and liquid crystal display device using the same
WO2015178232A1 (en) Circuit structure and electric junction box
JP2009246258A (en) Semiconductor device, and manufacturing method thereof
US10028371B2 (en) Heat radiation member, heat radiation circuit board, and heat emission device package
JP5372653B2 (en) Light emitting element mounting substrate and light emitting device
JP2010239022A (en) Flexible printed wiring board and semiconductor device employing the same
JP6691137B2 (en) Heat dissipation circuit board
JP2013207084A (en) Substrate module with radiator plate and method of manufacturing the same
WO2012172937A1 (en) Wiring body and method for making wiring body
JP6164495B2 (en) Circuit structure and method for manufacturing circuit structure
JP2006324542A (en) Printed wiring board and its manufacturing method
JP2008198921A (en) Module component and manufacturing method
JP2017157739A (en) Manufacturing method of wiring board with electronic component
US20070221942A1 (en) LED backlight unit without printed circuit board and method of manufacturing the same
WO2009066950A2 (en) Heat-radiating substrate and method of manufacturing the same
KR20120018014A (en) Heat spreading printed circuit board and method for fabricating the same
JP2013239549A (en) Attachment structure of wiring board, electronic device, and manufacturing method of electronic device
JP2006294749A (en) High heat dissipation circuit board and its manufacturing method
WO2013145390A1 (en) Flexible printed circuit board and fabrication process for same
JP2008004785A (en) Manufacturing method of heat conducting substrate and heat conducting substrate manufactured by method
JP6639890B2 (en) Wiring board laminate and manufacturing method thereof
JP5751052B2 (en) Heat dissipation board, semiconductor module
WO2016063473A1 (en) Led array and production method therefor
JP2008066360A (en) Heat dissipating wiring board and its manufacturing method
TWI616123B (en) Method for manufacturing heat dissipation laminated material for mounted substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801427

Country of ref document: EP

Kind code of ref document: A1