WO2016062059A1 - 光模块及调整光模块输入光功率的方法 - Google Patents

光模块及调整光模块输入光功率的方法 Download PDF

Info

Publication number
WO2016062059A1
WO2016062059A1 PCT/CN2015/078210 CN2015078210W WO2016062059A1 WO 2016062059 A1 WO2016062059 A1 WO 2016062059A1 CN 2015078210 W CN2015078210 W CN 2015078210W WO 2016062059 A1 WO2016062059 A1 WO 2016062059A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
attenuation
attenuation value
attenuator
optical module
Prior art date
Application number
PCT/CN2015/078210
Other languages
English (en)
French (fr)
Inventor
冯小财
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016062059A1 publication Critical patent/WO2016062059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver

Definitions

  • This document relates to the field of optical communication technologies, and in particular, to an optical module and a method for adjusting input optical power of an optical module.
  • the optical monitoring of the optical transmission, the client-side board, and the line-side board use a large number of optical modules with various rates.
  • engineers usually need to go to the field to measure the input optical power with an optical power meter. If the optical power does not meet the requirements, a fixed attenuator is added to the input port, and the input optical power is adjusted to a suitable range (PIN). The diode is adjusted below 0dBm and the avalanche photodiode APD is adjusted below -9dBm).
  • PIN suitable range
  • the diode is adjusted below 0dBm and the avalanche photodiode APD is adjusted below -9dBm).
  • the quality of fixed attenuators on the market is currently unstable.
  • Attenuation values measured during debugging are normal, but the attenuation values often change during formal use or even the attenuator sends damage. This requires the engineer to go back to the field to debug the optical power. Some sites are far from the operating site, which is time consuming and laborious.
  • This document provides an optical module and a method for adjusting the input optical power of the optical module, which can remotely adjust the input optical power of the optical module.
  • An optical module includes a light receiving module and a central processing unit CPU, the light receiving module comprising a connected optical input port and a dimmable optical attenuator;
  • the CPU is configured to: send an attenuation command to the dimmable attenuator;
  • the dimmable attenuator is configured to attenuate the optical signal received from the optical input port according to the attenuation value carried in the attenuation command.
  • the tunable optical attenuator comprises a control circuit and an execution unit:
  • the control circuit is configured to: receive an attenuation command sent by the CPU, and control the execution unit to perform attenuation processing on the optical signal received from the optical input port according to the attenuation value carried in the attenuation command;
  • the execution unit is configured to receive an optical signal input from the optical input port, and according to the control of the control circuit, attenuate the optical signal according to the attenuation value, and output the attenuated optical signal.
  • the optical module further includes:
  • a storage unit configured to: store an attenuation value of the optical signal.
  • the storage unit is configured to: store a default attenuation value or a most recently adjusted attenuation value; the CPU is configured to: each time the attenuation value of the dimmable attenuator is adjusted, The adjusted attenuation value is written to the storage unit.
  • the CPU is configured to: when initial power-on or reset or power-off restart, read an attenuation value stored in the storage unit, and send an attenuation command to the dimmable attenuator,
  • the attenuation command carries the value of the attenuation that is read.
  • the light receiving module further includes a photoelectric converter connected to the tunable optical attenuator, and the photoelectric converter is configured to convert the damped optical signal into an electrical signal.
  • a method for adjusting input optical power of an optical module includes:
  • the method further includes:
  • the method further includes:
  • the optical signal received from the optical input port is attenuated according to the stored attenuation value.
  • a computer readable storage medium storing computer executable instructions, the computer being executable
  • the line instructions are used to perform the method of any of the above.
  • the optical signal input by the optical module is attenuated by using the tunable optical attenuator, thereby realizing the remote adjustment of the input optical power of the optical module.
  • the dimmable attenuator has good stability and is easy to use.
  • FIG. 1 is a schematic diagram of an optical module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a light receiving module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a tunable optical attenuator according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for adjusting input optical power of an optical module according to an embodiment of the present invention.
  • the optical module 1 includes a light receiving module 10 and a CPU (Central Processing Unit) 20 .
  • the light receiving module 10 converts the received optical signal into an electrical signal.
  • the optical module for transmitting and receiving is further included with an optical transmitting module, and the module is connected to the CPU to convert the electrical signal into an optical signal and send it out.
  • the light receiving module 10 includes a connected optical input port 101 and a dimmable optical attenuator 102.
  • the CPU 20 is configured to: send an attenuation command to the dimmable attenuator 102; the dimming attenuator 102 is configured to receive from the optical input port 101 according to an attenuation value carried in the attenuation command The optical signal is attenuated.
  • the dimming attenuator 102 is disposed in the optical module, and the dimming attenuator 102 obtains an attenuation value of the optical signal according to the attenuation command received by the CPU 20, and performs attenuation processing on the optical signal.
  • the remote adjustment of the input optical power of the optical module is realized. In this way, the trouble of requiring the tester to go to the field for debugging due to the deviation of the input optical power is saved, thereby saving time and effort.
  • the dimmable attenuator 102 has good stability and is convenient to use.
  • the light receiving module 10 further includes a photoelectric converter 103 connected to the dimmable attenuator 102, and the photoelectric converter 103 is configured to convert the attenuated optical signal into an electrical signal.
  • the tunable optical attenuator 102 is located between the optical input port 101 and the photoelectric converter 103, and the optical signal attenuated by the tunable optical attenuator 102 passes through the photoelectric converter 103. The conversion is performed to convert the optical signal into an electrical signal.
  • the photoelectric converter 103 is a PIN diode or an APD diode.
  • the light receiving module further includes a serial to parallel converter 104, and the serial to parallel converter 104 is configured to: The high-speed series electric signal output from the photoelectric converter 103 is converted into a low-speed parallel electric signal and output.
  • the tunable optical attenuator 102 includes a control circuit 1021 and an execution unit 1022:
  • the control circuit 1021 is configured to: receive an attenuation command sent by the CPU 20, and according to the attenuation value carried in the attenuation command, the control execution unit 1022 performs attenuation processing on the optical signal received from the optical input port 101;
  • the executing unit 1022 is configured to receive an optical signal input from the optical input port 101, and attenuate the optical signal according to the attenuation value according to the control of the control circuit 1021, and output the attenuated optical signal.
  • the adjustable range of the attenuation value is 30 dB (decibel).
  • the optical power value command to be adjusted is sent to the monitoring system through the QX port (or other defined interface), and the monitoring system passes through the S port (or other).
  • the interface is forwarded to the service board, and the service board forwards the command to the CPU 20 of the optical module through the IIC interface.
  • the CPU 20 sends the attenuation command to the control circuit 1021 of the tunable optical attenuator 102 to parse the attenuation command.
  • control execution unit 1022 attenuates the optical signal received from the optical input port 101, and the execution unit 1022 attenuates the optical signal according to the attenuation value, and outputs the attenuated optical signal, thereby achieving the adjustment input.
  • the purpose of optical power is the optical power.
  • the optical mode Block 1 further includes a storage unit coupled to the CPU 20 and configured to store an attenuation value of the optical signal.
  • the storage unit may be an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a FLASH memory.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • FLASH memory a FLASH memory
  • the storage unit may be located in the tunable optical attenuator 102; or may be located outside the tunable optical attenuator 102 in the light receiving module 10; or may be located outside the light receiving module 10, the optical module 1 in.
  • the storage unit stores a default attenuation value or a most recently adjusted attenuation value.
  • the CPU is configured to write the adjusted attenuation value to the storage unit each time the attenuation value of the dimmable attenuator is adjusted.
  • the CPU is configured to: when initial power-on or reset or power-off restart, read an attenuation value stored in the storage unit, and send an attenuation command to the dimmable attenuator, The attenuation command carries the read attenuation value.
  • the tunable optical attenuator 102 can set a default attenuation value.
  • the default attenuation value is loaded.
  • the default attenuation value plus the value of the output optical power is input.
  • the sensitivity of the optical power is within the range.
  • the default attenuation value is set to -13dBm (decibel milliwatts)
  • the optical input power of the optical input port 101 is generally in the range of ⁇ 3dBm
  • the output optical power of the dimmable optical attenuator 102 is in the range of -16dBm and -10dBm. Between, this range is consistent with the receiving sensitivity of the PIN diode ( ⁇ -17dBm) and also the receiving sensitivity of the avalanche photodiode APD ( ⁇ -24dBm).
  • the attenuation value stores the default attenuation value and the most recently adjusted attenuation value of the first adjustment of the dimmable attenuator 102 through the storage unit in the optical module.
  • the default attenuation value is when the optical module is used for the first time. Whether the PIN tube or the APD tube is used, the dimming attenuator 102 can meet the input optical power requirement by using the default attenuation value, and the operation interface of the network management system can also be used. The default attenuation value of the dimmable attenuator 102 is restored.
  • the tunable optical attenuator 102 can store the most recently adjusted attenuation value, in order to prevent the board from being restarted or resetting the attenuation value of the tunable optical attenuator 102 after the subrack is powered off. After the board is restarted or the subrack is powered off, the CPU20 of the optical module can read the storage.
  • the attenuation value of the execution unit 1022 is maintained on the value of the board restart or before the subrack is powered down. In this way, the board can be prevented from being reset after the power is reset, and the attenuation value needs to be re-adjusted, thereby improving the adjustment efficiency.
  • a method for adjusting an input optical power of an optical module includes:
  • the adjustable range of the attenuation value is 30 dB (decibel).
  • S102 Perform attenuation processing on the optical signal received from the optical input port according to the attenuation value carried in the attenuation command.
  • the network management system is issued by the network management system.
  • the optical power value command to be adjusted is sent to the monitoring system through the QX port (or other defined interface).
  • the system forwards the fading command to the service board through the S interface (or other defined interface).
  • the service board forwards the command to the CPU 20 of the optical module through the IIC interface, and the CPU 20 sends the fading command to the tunable optical attenuator 102.
  • the control circuit 1021 analyzes the attenuation command
  • the control execution unit 1022 attenuates the optical signal received from the optical input port 101, and the execution unit 1022 attenuates the optical signal according to the attenuation value, and outputs the attenuated signal.
  • the optical signal is used to adjust the input optical power.
  • the method further comprises: storing a default attenuation value or a most recently adjusted attenuation value.
  • the optical signal received from the optical input port is attenuated according to the stored attenuation value.
  • the tunable optical attenuator 102 can set a default attenuation value.
  • the default attenuation value is loaded.
  • the default attenuation value plus the value of the output optical power is input.
  • the sensitivity of the optical power is within the range.
  • the default attenuation value is set to -13dBm (decibel milliwatts)
  • the optical input power of the optical input port 101 is generally in the range of ⁇ 3dBm
  • the output optical power of the dimmable optical attenuator 102 is in the range of -16dBm and -10dBm. Between, this range is consistent with the receiving sensitivity of the PIN diode ( ⁇ -17dBm) and also the receiving sensitivity of the avalanche photodiode APD ( ⁇ -24dBm).
  • the attenuation value stores the default attenuation value and the most recently adjusted attenuation value of the first adjustment of the dimmable attenuator 102 through the storage unit in the optical module.
  • the default attenuation value is when the optical module is used for the first time. Whether the PIN tube or the APD tube is used, the dimming attenuator 102 can meet the input optical power requirement by using the default attenuation value, and the operation interface of the network management system can also be used. The default attenuation value of the dimmable attenuator 102 is restored.
  • the tunable optical attenuator 102 can store the most recently adjusted attenuation value, in order to prevent the board from being restarted or resetting the attenuation value of the tunable optical attenuator 102 after the subrack is powered off.
  • the CPU 20 of the optical module can read the attenuation value adjusted by the last tunable optical attenuator 102 of the storage unit, and forward the attenuation value to the dimmable attenuator.
  • the control circuit 1021, the control circuit 1021 of the tunable attenuator can maintain the attenuation value of the tunable optical attenuator's execution unit 1022 on the value of the board restart or before the subrack is powered down. In this way, the board can be prevented from being reset after the power is reset, and the attenuation value needs to be re-adjusted, thereby improving the adjustment efficiency.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit, and the steps may be separately fabricated into integrated circuit modules, or multiple modules thereof or The steps are made into a single integrated circuit module.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the optical signal input by the optical module is attenuated by using the tunable optical attenuator, thereby realizing the remote adjustment of the input optical power of the optical module.
  • the dimmable attenuator has good stability and is easy to use.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

一种光模块及调整光模块输入光功率的方法,所述光模块包括光接收模块和中央处理器CPU,所述光接收模块包括相连的光输入端口和可调光衰减器;所述CPU设置为:向所述可调光衰减器发送衰减命令;所述可调光衰减器设置为:根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。

Description

光模块及调整光模块输入光功率的方法 技术领域
本文涉及光通信技术领域,尤其涉及一种光模块及调整光模块输入光功率的方法。
背景技术
在实验室或为运营商搭建组网环境的工程现场,光传输的光监控、客户侧单板和线路侧单板都会用到大量的具备各种速率的光模块。在调试光路的时候,通常需要工程师去现场用光功率计测量输入光功率,如果光功率不符合要求,则会在输入端口加上固定衰减器,而将输入光功率调整到合适的范围(PIN二极管调到0dBm以下,雪崩光电二极管APD调到-9dBm以下)。但目前市场上的固定衰减器质量都不稳定,有些在调试时测量的衰减值是正常的,但在正式使用时衰减值往往发生了变化甚至衰减器发送损坏。这就需要工程师重新去现场调试光功率,有的站点离操作现场比较远,从而费时费力。
上述内容仅用于辅助理解本文的技术方案,并不代表承认上述内容是现有技术。
发明内容
本文提供一种光模块及调整光模块输入光功率的方法,能够远程调整光模块的输入光功率。
一种光模块,包括光接收模块和中央处理器CPU,所述光接收模块包括相连的光输入端口和可调光衰减器;
所述CPU设置为:向所述可调光衰减器发送衰减命令;
所述可调光衰减器设置为:根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。
可选地,所述可调光衰减器包括控制电路和执行单元:
所述控制电路,设置为:接收所述CPU发送的衰减命令,根据所述衰减命令中携带的衰减值,控制所述执行单元对从所述光输入端口接收的光信号进行衰减处理;
所述执行单元,设置为:接收从所述光输入端口输入的光信号,根据所述控制电路的控制,按照所述衰减值对所述光信号进行衰减,并输出衰减后的光信号。
可选地,所述光模块还包括:
存储单元,所述存储单元与CPU相连,设置为:存储光信号的衰减值。
可选地,所述存储单元,是设置为:存储默认的衰减值或最近一次调整的衰减值;所述CPU,是设置为:每次调整所述可调光衰减器的衰减值时,将所述调整的衰减值写入至所述存储单元。
可选地,所述CPU,是设置为:在初次上电或复位或掉电重启时,读取所述存储单元中存储的衰减值,向所述可调光衰减器发送衰减命令,所述衰减命令中携带所读取到的衰减值。
可选地,所述光接收模块还包括与所述可调光衰减器相连的光电转换器,所述光电转换器设置为:将经过衰减处理的光信号转换为电信号。
一种调整光模块输入光功率的方法,包括:
接收衰减命令;
根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。
可选地,所述方法还包括:
存储默认的衰减值或最近一次调整的衰减值。
可选地,所述方法还包括:
当所述光模块初次上电或复位或掉电重启时,根据所存储的衰减值对从所述光输入端口接收的光信号进行衰减处理。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执 行指令用于执行上述任一项的方法。
本发明实施例通过采用可调光衰减器对光模块输入的光信号进行衰减处理,从而实现了对光模块的输入光功率的远程调整。这样,省去了由于输入光功率有偏差需要测试人员去现场调试的麻烦,从而省时省力。此外,可调光衰减器稳定性较好,且使用方便。
附图概述
图1为本发明实施例的光模块的示意图;
图2为本发明实施例的光接收模块的示意图;
图3本发明实施例的可调光衰减器的示意图;
图4为本发明实施例的调整光模块输入光功率的方法的流程示意图。
本发明的实施方式
下面结合附图对本发明的实施方式进行详细说明。
本文提供一种光模块,参照图1,在一实施例中,所述光模块1包括光接收模块10、CPU(Central Processing Unit,中央处理器)20。光接收模块10将接收到的光信号转换成电信号。对于收发一体的光模块,还包括光发送模块,该模块与CPU相连,将电信号转换成光信号,发送出去。在本实施例中,光接收模块10包括相连的光输入端口101和可调光衰减器102。所述CPU20设置为:向所述可调光衰减器102发送衰减命令;所述可调光衰减器102设置为:根据所述衰减命令中携带的衰减值,对从所述光输入端口101接收的光信号进行衰减处理。
本实施例,通过在光模块中设置可调光衰减器102,所述可调光衰减器102根据所述CPU20接收的衰减命令,获取光信号的衰减值,对所述光信号进行衰减处理,从而实现了对光模块的输入光功率的远程调整。这样,省去了由于输入光功率有偏差需要测试人员去现场调试的麻烦,从而省时省力。此外,可调光衰减器102稳定性较好,且使用方便。
在一实施例中,如图2所示,在上述图1的实施例的基础上,本实施例 中,光接收模块10还包括与所述可调光衰减器102相连的光电转换器103,所述光电转换器103设置为:将经过衰减处理的光信号转换为电信号。
本实施例中,所述可调光衰减器102位于所述光输入端口101和所述光电转换器103之间,经过可调光衰减器102进行衰减后的光信号通过所述光电转换器103进行转换,从而将光信号转换为电信号。
所述光电转换器103为PIN二极管或者APD二极管。
在一实施例中,如图2所示,在上述图1的实施例的基础上,本实施例中,所述光接收模块还包括串并转换器104,该串并转换器104设置为:将光电转换器103输出的高速的串联电信号转换为低速的并联电信号,并输出。
在一实施例中,如图3所示,在上述图1的实施例的基础上,本实施例中,所述可调光衰减器102包括控制电路1021和执行单元1022:
控制电路1021,设置为:接收所述CPU20发送的衰减命令,根据所述衰减命令中携带的衰减值,控制执行单元1022对从所述光输入端口101接收的光信号进行衰减处理;
执行单元1022,设置为:接收从所述光输入端口101输入的光信号,根据所述控制电路1021的控制,按照所述衰减值对所述光信号进行衰减,并输出衰减后的光信号。
本实施例中,所述衰减值的可调整范围为30dB(分贝)。
在一实施例中,网管系统通过查询发现该光模块可以正常管理后,通过QX口(或其它定义接口)把所需要调节的光功率值命令发给监控系统,监控系统通过S口(或其它定义接口)把该衰减命令转发给业务单板,业务单板通过IIC接口把该命令转发给光模块的CPU20,CPU20将该衰减命令发送给可调光衰减器102的控制电路1021将衰减命令解析后,控制执行单元1022对从所述光输入端口101接收的光信号进行衰减处理,执行单元1022按照所述衰减值对所述光信号进行衰减,并输出衰减后的光信号,从而达到调整输入光功率的目的。
在一实施例中,在上述图1的实施例的基础上,本实施例中,所述光模 块1还包括:存储单元,所述存储单元与CPU20相连,设置为:存储光信号的衰减值。
所述存储单元可以是EEPROM(Electrically Erasable Programmable Read-Only Memory,带电可擦可编程只读存储器)或者FLASH存储器。
所述存储单元可以位于所述可调光衰减器102中;也可以位于所述可调光衰减器102外部,光接收模块10中;也可以位于所述光接收模块10的外部,光模块1中。
在一实施例中,存储单元存储的是默认的衰减值或最近一次调整的衰减值。所述CPU,是设置为:每次调整所述可调光衰减器的衰减值时,将所述调整的衰减值写入至所述存储单元。
在一实施例中,所述CPU,是设置为:在初次上电或复位或掉电重启时,读取所述存储单元中存储的衰减值,向所述可调光衰减器发送衰减命令,所述衰减命令中携带所读取到的衰减值。
本实施例中,可调光衰减器102可以设置默认的衰减值,所述光模块第一次使用时加载的就是默认的衰减值,这个默认的衰减值加上输出光功率的值,在输入光功率的灵敏度范围内。例如默认的衰减值设置为-13dBm(分贝毫瓦),光输入端口101的入光功率的范围一般在±3dBm,那么可调光衰减器102的输出光功率的范围就在-16dBm和-10dBm之间,这个范围既符合PIN二极管的接收灵敏度(≤-17dBm),也符合雪崩光电二极管APD的接收灵敏度(≤-24dBm)。
本实施例中,衰减值通过光模块中的存储单元来存储可调光衰减器102首次调整的默认的衰减值和最近一次调整的衰减值。默认的衰减值是在光模块第一次使用时,不管是采用PIN管还是APD管,可调光衰减器102使用默认的衰减值都可以满足输入光功率要求,通过网管系统的操作界面也可以恢复可调光衰减器102默认的衰减值。
本实施例中,可调光衰减器102可以存储最近一次调整的衰减值,是为了防止单板重启或者单板所在子架掉电后可调光衰减器102的衰减值的重新设定。在单板重启或者单板所在子架掉电后,光模块的CPU20可以读取存储 单元最近一次的可调光衰减器102调整的衰减值,并把这个衰减值转发给可调光衰减器的控制电路1021,可调光衰减器的控制电路1021就可以使可调光衰减器的执行单元1022的衰减值保持在单板重启或者所在子架掉电前的量值上。这样,可以防止单板复位、掉电重启后衰减值需要重新调整,从而提高了调整效率。
本文提供一种调整光模块输入光功率的方法,参照图4,在一实施例中,所述调整光模块输入光功率的方法包括:
S101,接收衰减命令;。
本实施例中,所述衰减值的可调整范围为30dB(分贝)。
S102,根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。
本实施例中,发出衰减命令的是网管系统,网管系统通过查询发现该光模块可以正常管理后,通过QX口(或其它定义接口)把所需要调节的光功率值命令发给监控系统,监控系统通过S口(或其它定义接口)把该衰减命令转发给业务单板,业务单板通过IIC接口把该命令转发给光模块的CPU20,CPU20将该衰减命令发送给可调光衰减器102的控制电路1021将衰减命令解析后,控制执行单元1022对从所述光输入端口101接收的光信号进行衰减处理,执行单元1022按照所述衰减值对所述光信号进行衰减,并输出衰减后的光信号,从而达到调整输入光功率的目的。
在一实施例中,该方法还包括:存储默认的衰减值或最近一次调整的衰减值。
当光模块初次上电或复位或掉电重启时,根据所存储的衰减值对从所述光输入端口接收的光信号进行衰减处理。
这样,可以避免单板复位和掉电重启后又重新调整可调光衰减器102的 衰减值,从而提高了调整效率。
本实施例中,可调光衰减器102可以设置默认的衰减值,所述光模块第一次使用时加载的就是默认的衰减值,这个默认的衰减值加上输出光功率的值,在输入光功率的灵敏度范围内。例如默认的衰减值设置为-13dBm(分贝毫瓦),光输入端口101的入光功率的范围一般在±3dBm,那么可调光衰减器102的输出光功率的范围就在-16dBm和-10dBm之间,这个范围既符合PIN二极管的接收灵敏度(≤-17dBm),也符合雪崩光电二极管APD的接收灵敏度(≤-24dBm)。
本实施例中,衰减值通过光模块中的存储单元来存储可调光衰减器102首次调整的默认的衰减值和最近一次调整的衰减值。默认的衰减值是在光模块第一次使用时,不管是采用PIN管还是APD管,可调光衰减器102使用默认的衰减值都可以满足输入光功率要求,通过网管系统的操作界面也可以恢复可调光衰减器102默认的衰减值。
本实施例中,可调光衰减器102可以存储最近一次调整的衰减值,是为了防止单板重启或者单板所在子架掉电后可调光衰减器102的衰减值的重新设定。在单板重启或者单板所在子架掉电后,光模块的CPU20可以读取存储单元最近一次的可调光衰减器102调整的衰减值,并把这个衰减值转发给可调光衰减器的控制电路1021,可调光衰减器的控制电路1021就可以使可调光衰减器的执行单元1022的衰减值保持在单板重启或者所在子架掉电前的量值上。这样,可以防止单板复位、掉电重启后衰减值需要重新调整,从而提高了调整效率。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过采用可调光衰减器对光模块输入的光信号进行衰减处理,从而实现了对光模块的输入光功率的远程调整。这样,省去了由于输入光功率有偏差需要测试人员去现场调试的麻烦,从而省时省力。此外,可调光衰减器稳定性较好,且使用方便。

Claims (10)

  1. 一种光模块,包括光接收模块和中央处理器CPU,所述光接收模块包括相连的光输入端口和可调光衰减器;
    所述CPU设置为:向所述可调光衰减器发送衰减命令;
    所述可调光衰减器设置为:根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。
  2. 如权利要求1所述的光模块,其中,所述可调光衰减器包括控制电路和执行单元:
    所述控制电路,设置为:接收所述CPU发送的衰减命令,根据所述衰减命令中携带的衰减值,控制所述执行单元对从所述光输入端口接收的光信号进行衰减处理;
    所述执行单元,设置为:接收从所述光输入端口输入的光信号,根据所述控制电路的控制,按照所述衰减值对所述光信号进行衰减,并输出衰减后的光信号。
  3. 如权利要求1或2所述的光模块,还包括:
    存储单元,所述存储单元与CPU相连,设置为:存储光信号的衰减值。
  4. 如权利要求3所述的光模块,其中,
    所述存储单元,是设置为:存储默认的衰减值或最近一次调整的衰减值;
    所述CPU,是设置为:每次调整所述可调光衰减器的衰减值时,将所述调整的衰减值写入至所述存储单元。
  5. 如权利要求4所述的光模块,其中,
    所述CPU,是设置为:在初次上电或复位或掉电重启时,读取所述存储单元中存储的衰减值,向所述可调光衰减器发送衰减命令,所述衰减命令中 携带所读取到的衰减值。
  6. 如权利要求1所述的光模块,其中,所述光接收模块还包括与所述可调光衰减器相连的光电转换器,所述光电转换器设置为:将经过衰减处理的光信号转换为电信号。
  7. 一种调整光模块输入光功率的方法,包括:
    接收衰减命令;
    根据所述衰减命令中携带的衰减值,对从所述光输入端口接收的光信号进行衰减处理。
  8. 如权利要求7所述的调整光模块输入光功率的方法,还包括:
    存储默认的衰减值或最近一次调整的衰减值。
  9. 如权利要求8所述的调整光模块输入光功率的方法,还包括:
    当所述光模块初次上电或复位或掉电重启时,根据所存储的衰减值对从所述光输入端口接收的光信号进行衰减处理。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求7-9任一项的方法。
PCT/CN2015/078210 2014-10-21 2015-05-04 光模块及调整光模块输入光功率的方法 WO2016062059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410564040.9 2014-10-21
CN201410564040.9A CN105591701A (zh) 2014-10-21 2014-10-21 光模块及调整光模块输入光功率的方法

Publications (1)

Publication Number Publication Date
WO2016062059A1 true WO2016062059A1 (zh) 2016-04-28

Family

ID=55760202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078210 WO2016062059A1 (zh) 2014-10-21 2015-05-04 光模块及调整光模块输入光功率的方法

Country Status (2)

Country Link
CN (1) CN105591701A (zh)
WO (1) WO2016062059A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665965A (zh) * 2022-05-09 2022-06-24 北京国科天迅科技有限公司 转光设备、存储介质和测试系统
CN115426052A (zh) * 2022-11-04 2022-12-02 之江实验室 一种光模块接收端过载保护装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487460B (zh) * 2016-11-29 2019-04-30 四川九州电子科技股份有限公司 提高光接收设备盲点扫描测试效率的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696719A (zh) * 2004-05-14 2005-11-16 华为技术有限公司 自动标定装置及方法
CN101179331A (zh) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 一种光模块自动化调试的方法和系统
US20100123949A1 (en) * 2008-11-18 2010-05-20 Fujitsu Limited Optical amplifying device
CN102075260A (zh) * 2011-01-07 2011-05-25 西安电子科技大学 用于量子通信的准单光子源产生装置
JP2012205172A (ja) * 2011-03-28 2012-10-22 Nec Networks & System Integration Corp 光伝送システムにおけるスパンロス自動調整装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882607A (zh) * 2012-09-10 2013-01-16 青岛海信宽带多媒体技术有限公司 光模块及调节光模块接收光功率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696719A (zh) * 2004-05-14 2005-11-16 华为技术有限公司 自动标定装置及方法
CN101179331A (zh) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 一种光模块自动化调试的方法和系统
US20100123949A1 (en) * 2008-11-18 2010-05-20 Fujitsu Limited Optical amplifying device
CN102075260A (zh) * 2011-01-07 2011-05-25 西安电子科技大学 用于量子通信的准单光子源产生装置
JP2012205172A (ja) * 2011-03-28 2012-10-22 Nec Networks & System Integration Corp 光伝送システムにおけるスパンロス自動調整装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665965A (zh) * 2022-05-09 2022-06-24 北京国科天迅科技有限公司 转光设备、存储介质和测试系统
CN114665965B (zh) * 2022-05-09 2022-09-20 北京国科天迅科技有限公司 转光设备、存储介质和测试系统
CN115426052A (zh) * 2022-11-04 2022-12-02 之江实验室 一种光模块接收端过载保护装置及方法

Also Published As

Publication number Publication date
CN105591701A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2016062059A1 (zh) 光模块及调整光模块输入光功率的方法
US9768582B2 (en) Method and apparatus for determining gain of raman optical amplifier and raman optical amplifier
WO2018094975A1 (zh) 一种fso通信系统
CN103166708B (zh) 一种提高遥泵系统输出光信噪比的方法
US8750716B2 (en) Automatic power adjustment system and method for optical network system
CN110492929B (zh) 一种光纤通信模块、控制方法及光纤通信设备
US20160308609A1 (en) Fiber-cut detection method, apparatus, and system for distributed raman fiber amplifier
WO2016107428A1 (zh) 光纤通信系统中自动调节功率的方法和装置
US10892823B2 (en) Optical power compensation method and device
US20210028856A1 (en) Autonomous failure recovery method and system for fiber-optic communication system
US9294195B2 (en) Method, device, and system for saving energy in optical communication
US8885248B2 (en) Raman amplifier gain compression systems and methods based on signal power monitoring
CN103227681B (zh) 波分复用光传输系统通道动态光功率调整方法
CN109495182B (zh) 一种相干光模块的收端定标方法和装置
US20180203494A1 (en) Method and apparatus for controlling hot plug operation of cpu in mobile terminal
CN103004108B (zh) 光功率检测方法、装置、设备和光模块
EP2932629A1 (en) Method of configuring an optical communication network configured for co-propagating raman amplification and an optical communication network element
CN106908138B (zh) 一种用于光纤振动传感的光功率控制方法与装置
CN107846253A (zh) 一种基于fpga和otn的数据采集与传输系统
CN101141204A (zh) 一种光传输系统中光放大器增益控制的方法及装置
WO2021115445A1 (zh) 一种光模块劣化测试方法、系统、设备和存储介质
JP2015061270A (ja) 光通信システム、宅側通信装置、局側通信装置および光通信方法
WO2016188228A1 (zh) 一种分布式自动功率优化系统及方法
WO2019241907A1 (zh) 一种增益控制方法及拉曼光纤放大器
CN105680302A (zh) 一种光模块中激光器发光功率的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851997

Country of ref document: EP

Kind code of ref document: A1