WO2016107428A1 - 光纤通信系统中自动调节功率的方法和装置 - Google Patents

光纤通信系统中自动调节功率的方法和装置 Download PDF

Info

Publication number
WO2016107428A1
WO2016107428A1 PCT/CN2015/097922 CN2015097922W WO2016107428A1 WO 2016107428 A1 WO2016107428 A1 WO 2016107428A1 CN 2015097922 W CN2015097922 W CN 2015097922W WO 2016107428 A1 WO2016107428 A1 WO 2016107428A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
power
span
communication system
amplifier
Prior art date
Application number
PCT/CN2015/097922
Other languages
English (en)
French (fr)
Inventor
张立军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016107428A1 publication Critical patent/WO2016107428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to the field of network communications, and more particularly to a method and apparatus for automatically adjusting power in a fiber optic communication system.
  • the power of the optical amplifier of each optical relay node and the attenuation of the optical attenuator are fixed after the system is built, and are not adjusted at any time.
  • the power of some amplifiers is manually adjusted only when the attenuation of the fiber causes a fission in the performance of the optical receiver.
  • the change in attenuation due to aging and the like is a slow process. For a single span, the change value is not large.
  • the fiber attenuation variation of a system within 5 years is 0.1 dB/Km, which is difficult for maintenance personnel to detect.
  • This kind of change can not be adjusted in a targeted manner, that is, the input power of the downstream node after the adjustment is maintained to maintain the initial value of the configuration; and the manual adjustment is high for the maintenance personnel, and the maintenance personnel are required to the optical fiber communication system and the network management system.
  • the platform has the knowledge to be competent.
  • the impact of fiber attenuation changes will be severe, and as the age of use increases, system instability and bit error rate increase. Therefore, how to keep the attenuation of each optical relay node unchanged is an urgent problem to be solved.
  • the main object of the present invention is to provide a method and device for automatically adjusting power in a fiber-optic communication system, which aims to solve a long-distance multi-span optical fiber communication system, and the system is unstable and error caused by attenuation of each optical relay node.
  • the present invention provides a method for automatically adjusting power in an optical fiber communication system, and the method for automatically adjusting power in the optical fiber communication system includes the following steps:
  • the step of obtaining the attenuation of the optical fibers in each span includes:
  • the relay node includes an optical amplifier including a preamplifier and a post amplifier, and the step of obtaining attenuation of the optical fibers in each span includes:
  • the step of adjusting the gain of the optical amplifier or the attenuator corresponding to the relay node in the span according to the obtained attenuation of the optical fibers in each span includes:
  • the gain of the optical amplifier or attenuator corresponding to the relay node within the span is adjusted.
  • the step of adjusting the gain of the optical amplifier corresponding to the relay node in the inter-segment includes:
  • the present invention further provides an apparatus for automatically adjusting power in an optical fiber communication system, wherein the apparatus for automatically adjusting power in the optical fiber communication system includes:
  • the adjustment module is configured to adjust the gain of the optical amplifier or the attenuator of the relay node corresponding to the span according to the obtained attenuation value of the fiber in each span.
  • the apparatus for automatically adjusting power in the optical fiber communication system further includes:
  • Preset module set to preset the attenuation value of the fiber in each span.
  • the obtaining module comprises:
  • a collecting unit configured to collect an output optical power of the preamplifier and an input optical power of the post amplifier
  • a calculating unit configured to calculate a current attenuation value according to an output optical power of the preamplifier and an input optical power of the post amplifier, the current attenuation value being an input optical power of the post amplifier and the The difference between the output optical power of the preamplifier.
  • the adjustment module comprises:
  • the determining unit is configured to compare and analyze the obtained attenuation value of the optical fiber in each span and the preset attenuation value in the corresponding span to determine whether the attenuation value of the optical fiber changes;
  • the adjustment unit is configured to adjust the gain of the optical amplifier or attenuator corresponding to the relay node within the span if a change occurs.
  • the adjusting unit is further arranged to adjust the output optical power of the pre-stage optical amplifier if a change occurs to ensure that the input power of the post-amplifier maintains an initial value.
  • the method for automatically adjusting power in a fiber-optic communication system obtains attenuation of an optical fiber in each span Value; adjusts the gain of the optical amplifier or attenuator corresponding to the relay node in the span according to the obtained attenuation value of the fiber in each span.
  • the invention automatically adjusts the gain of the relay node according to the line attenuation, compensates for the power variation of the receiving end caused by the problem of the aging of the optical fiber, the automatic control, the real-time adjustment of the power, the operability is good, the difficulty is low, and the influence on the system is small compared with the manual adjustment. .
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for automatically adjusting power in an optical fiber communication system according to the present invention
  • FIG. 2 is a schematic structural view of an optical fiber communication system for automatically adjusting power according to the present invention
  • FIG. 3 is a schematic flow chart of a second embodiment of a method for automatically adjusting power in an optical fiber communication system according to the present invention
  • FIG. 4 is a detailed flow chart of the steps of obtaining the attenuation of the optical fibers in each span as described in FIG. 1;
  • FIG. 5 is a refinement flow diagram of the steps of adjusting the gain of an optical amplifier or an attenuator of a relay node in a span according to the obtained attenuation value of the optical fiber in each span according to the obtained method;
  • FIG. 6 is a detailed flow chart of the steps of adjusting the gain of the optical amplifier corresponding to the relay node in the span according to FIG. 5;
  • FIG. 7 is a schematic diagram of functional modules of a first embodiment of an apparatus for automatically adjusting power in an optical fiber communication system according to the present invention.
  • FIG. 8 is a schematic diagram of functional modules of a second embodiment of an apparatus for automatically adjusting power in an optical fiber communication system according to the present invention.
  • FIG. 9 is a schematic diagram of functional modules of the acquisition module in FIG. 7;
  • FIG. 10 is a schematic diagram of functional modules of the adjustment module of FIG. 7.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for automatically adjusting power in an optical fiber communication system according to the present invention.
  • the present invention A method of automatically adjusting power in a provided fiber optic communication system, comprising the steps of:
  • Step S100 Acquire attenuation of the optical fibers in each span.
  • FIG. 2 is a schematic structural diagram of an optical fiber communication system for automatically adjusting power according to the present invention.
  • an optical fiber communication system for automatically adjusting power includes an optical transmission unit OTU, an optical amplifier OA, and an optical fiber communication system for automatic adjustment.
  • the optical attenuator LA is an unnecessary configuration
  • the optical amplifier OA may be an EDFA (Erbium-doped Optical Fiber Amplifier) or a DRA (Distributed).
  • EDFA Erbium-doped Optical Fiber Amplifier
  • DRA Distributed
  • Raman Amplifier distributed optical amplifier, there is no actual physical line between the devices that automatically adjust power in each optical relay node and fiber-optic communication system.
  • the dotted line in Figure 2 indicates the automatic adjustment of power in the fiber-optic communication system.
  • the apparatus for automatically adjusting power in the optical fiber communication system records the input Pn in (the input of the nth relay node) and the output Pn out (the output of the nth relay node) of each optical relay node node.
  • the value of the optical power, and the attenuation (Ln) of the fiber of the initial line is calculated.
  • the power value of the optical relay of each node can also be collected in real time, and the average value in a certain time is calculated accordingly.
  • Step S200 Adjust, according to the obtained attenuation values of the optical fibers in each span, the gain of the optical amplifier or the attenuator corresponding to the relay node in the span.
  • the device for automatically adjusting power in the optical fiber communication system is based on the obtained attenuation value of the optical fiber in each span, and if the calculated current attenuation value and the recorded initial attenuation value are different, it indicates that the optical fiber is aging due to reasons such as aging of the optical fiber.
  • the attenuation value changes, and the optical relay node on the optical fiber generates attenuation.
  • by adjusting the attenuation value of the attenuator LA_n-1 of the optical relay node node n-1 or the gain value of the optical amplifier OA_n-1 The input power of node node_n remains unchanged.
  • the method for automatically adjusting power in the optical fiber communication system identifies a weak change amount of power of each node, automatically adjusts the gain of the power amplifier and the attenuator according to the variation of the line attenuation, and compensates for the problem of fiber aging and the like.
  • FIG. 3 is a schematic flowchart diagram of a second embodiment of a method for automatically adjusting power in an optical fiber communication system according to the present invention.
  • the optical relay node includes a preamplifier and a post amplifier, and based on the first embodiment, The method for automatically adjusting power in the optical fiber communication system provided by the second embodiment further includes the following steps before step S100:
  • Step S100A Presetting the attenuation value of the optical fibers in each span.
  • the device for automatically adjusting power in the fiber-optic communication system presets the attenuation value of the fiber in each span, and the preset attenuation value of the fiber in the set span can be obtained as follows:
  • the device for automatically adjusting power pre-collects each optical relay node, including the output power of the transmitting end OTU, the input and output power of each optical amplifier/optical attenuator OA/LA, and the receiving end ORU. input power. Based on this, the attenuation of the fibers of each span is calculated as the initial value of the attenuation of each span. The difference between the initial output optical power of the preamplifier of the optical relay node collected in each span and the initial input optical power of the post amplifier is obtained, and the attenuation values preset for each span are obtained.
  • FIG. 4 is a schematic diagram of a refinement process of step S100 in FIG. 1, and step S100 includes:
  • Step S100a collecting output optical power of the preamplifier and input optical power of the post amplifier.
  • the device for automatically adjusting power in the optical fiber communication system collects current optical relay nodes, including the output power of the current transmitting end OTU, the input and output power of each optical amplifier/optical attenuator OA/LA, and the input power of the receiving end ORU. Based on this, the attenuation of the current fiber of each span is calculated as the current attenuation value of each span.
  • Step S100b Calculating a current attenuation value according to an output optical power of the preamplifier and an input optical power of the post amplifier, where the current attenuation value is an input optical power of the post amplifier and the preamplifier The difference between the output optical power of the amplifier.
  • the device for automatically adjusting power in the optical fiber communication system performs the difference processing between the current output optical power of the preamplifier of each optical relay node collected in each span and the current input optical power of the post amplifier, and obtains the current current of each span. Attenuation value.
  • FIG. 5 is a schematic flowchart of the refinement of step S200 in FIG. 1, and step S200 includes:
  • Step S200a Compare and analyze the obtained attenuation values of the optical fibers in the spans and the preset attenuation values in the corresponding spans to determine whether the attenuation value of the optical fiber changes.
  • the device for automatically adjusting power in the optical fiber communication system compares the calculated current attenuation value with a preset attenuation value to determine whether the attenuation value of the optical fiber changes. For example, if the calculated current attenuation value is the same as the preset attenuation value, the attenuation value of the optical fiber does not change, and if the calculated current attenuation value is different from the preset attenuation value, the optical fiber is The attenuation value changes.
  • Step S200b if a change occurs, adjust the gain of the optical amplifier or attenuator corresponding to the relay node in the span.
  • the device that automatically adjusts the power in the optical fiber communication system detects that the calculated current attenuation value is different from the recorded attenuation initial value, it indicates that the attenuation value has changed due to aging, etc., by adjusting the current output light of the preamplifier.
  • the power is such that the input power of the post amplifier remains unchanged.
  • FIG. 6 is a schematic diagram of the refinement process of step S200b in FIG. 5, and step S200b includes:
  • Step S200B Adjusting the output optical power of the pre-stage optical amplifier to ensure that the input power of the post-stage amplifier maintains an initial value.
  • the device that automatically adjusts the power in the optical fiber communication system detects that the calculated current attenuation value is different from the recorded attenuation initial value, it indicates that the attenuation value has changed due to aging, etc., by adjusting the current output light of the preamplifier.
  • the current input optical power of the power or post-amplifier keeps the output power of the post-amplifier constant, ensuring that the input power of the post-amplifier remains at its initial value.
  • the method for automatically adjusting power in the optical fiber communication system provided by this embodiment automatically adjusts the gain of the amplifier according to the attenuation of the optical fiber, and adjusts the attenuation of the optical attenuator in the optical fiber, so that the input power of the optical amplifier in each relay node is always maintained.
  • the preset attenuation values are the same, ensuring that the power input to the optical receiver remains the same as the preset attenuation value after passing through multiple optical amplifiers, enhancing system stability.
  • FIG. 7 is a schematic diagram of functional modules of a first embodiment of an apparatus for automatically adjusting power in an optical fiber communication system according to the present invention.
  • the apparatus for automatically adjusting power in the optical fiber communication system provided by the present invention includes:
  • the obtaining module 10 is configured to obtain attenuation of the optical fibers in each span;
  • the adjustment module 20 is configured to adjust the gain of the optical amplifier or the attenuator corresponding to the relay node in the span according to the obtained attenuation values of the fibers in the respective spans.
  • FIG. 2 is a schematic structural diagram of an optical fiber communication system for automatically adjusting power according to the present invention.
  • an optical fiber communication system for automatically adjusting power includes an optical transmission unit OTU, an optical amplifier OA, and an optical fiber communication system for automatic adjustment.
  • the optical amplifier OA can be an EDFA, or can be a DRA, each optical relay node and a device for automatically adjusting power in the optical fiber communication system There is no actual physical line between them.
  • the dotted line in Figure 2 indicates that the device that automatically adjusts the power in the fiber-optic communication system needs to obtain the power performance of the corresponding single board, and the devices that automatically adjust the power in each optical relay node and the optical fiber communication system. Information exchange requires the use of an existing master board.
  • the acquisition module 10 of the apparatus for automatically adjusting power in the optical fiber communication system records the input Pn in (the input of the nth relay node) and the output Pn out (the nth) of each optical relay node node.
  • the output of the node is the value of the optical power, and the attenuation (Ln) of the fiber of the initial line is calculated.
  • the power can be acquired once every time.
  • the rate of collection is not required to be fast. For example, it can be collected every fifteen minutes.
  • the power value of the optical relay of each node can also be collected in real time, and the average value in a certain time is calculated accordingly.
  • the adjustment module 20 of the device for automatically adjusting power in the optical fiber communication system detects that the calculated current attenuation value and the recorded attenuation initial value are different, indicating that the attenuation value of the optical fiber changes due to aging of the optical fiber, etc., on the optical fiber.
  • the optical relay node generates attenuation.
  • the input power of the node node_n remains unchanged.
  • the device for automatically adjusting power in the optical fiber communication system identifies a weak change amount of power of each node, automatically adjusts the gain of the power amplifier and the attenuator according to the variation of the line attenuation, and compensates for the problem of fiber aging and the like. Receiver power change; automatic control, real-time power adjustment, better maneuverability, less difficulty, less impact on the system than manual adjustment.
  • FIG. 8 is a schematic diagram of functional modules of a second embodiment of an apparatus for automatically adjusting power in an optical fiber communication system according to the present invention.
  • the optical power communication system provided by the second embodiment automatically adjusts power.
  • the device also includes:
  • the preset module 40 is configured to preset attenuation values of the fibers in the respective spans.
  • the preset module 30 of the device for automatically adjusting power in the fiber-optic communication system presets the attenuation value of the fiber in each span, and the preset attenuation value of the fiber in the set span can be obtained as follows:
  • the preset module 30 of the device for automatically adjusting power in the optical fiber communication system pre-collects each optical relay node, including the output power of the transmitting end OTU, and the input and output power of each level optical amplifier/optical attenuator OA/LA before comparative analysis. Receiving The input power of the end ORU. Based on this, the attenuation of the fibers of each span is calculated as the initial value of the attenuation of each span. The difference between the initial output optical power of the preamplifier of the optical relay node collected in each span and the initial input optical power of the post amplifier is obtained, and the attenuation values preset for each span are obtained.
  • FIG. 9 is a schematic diagram of functional modules of the acquiring module in FIG. 7 , where the acquiring module 10 includes:
  • the collecting unit 11 is configured to collect an output optical power of the preamplifier and an input optical power of the post amplifier;
  • the calculating unit 12 is configured to calculate a current attenuation value according to an output optical power of the preamplifier and an input optical power of the post amplifier, where the current attenuation value is an input optical power of the post amplifier The difference between the output optical power of the preamplifier.
  • the collecting unit 11 of the device for automatically adjusting power in the optical fiber communication system collects the current optical relay nodes, including the output power of the current transmitting end OTU, the input and output power of each level optical amplifier/optical attenuator OA/LA, and the receiving end ORU input power. Based on this, the attenuation of the current fiber of each span is calculated as the current attenuation value of each span.
  • the computing unit 12 of the device for automatically adjusting power in the optical fiber communication system performs the difference processing on the current output optical power of the preamplifier of the optical relay node collected in each span and the current input optical power of the post amplifier, and obtains each The current attenuation value across the segment.
  • FIG. 10 is a schematic diagram of functional modules of the adjustment module of FIG. 7, and the adjustment module 20 includes:
  • the determining unit 21 is configured to compare and analyze the obtained attenuation value of the optical fiber in each span and the preset attenuation value in the corresponding span to determine whether the attenuation value of the optical fiber changes;
  • the adjustment unit 22 is arranged to adjust the gain of the optical amplifier or attenuator of the relay node in the corresponding span if a change occurs.
  • the judging unit 21 of the apparatus for automatically adjusting power in the optical fiber communication system compares the calculated current attenuation value with a preset attenuation value to determine whether the attenuation value of the optical fiber changes. For example, if the calculated current attenuation value is the same as the preset attenuation value, the attenuation value of the optical fiber does not change, and if the calculated current attenuation value is different from the preset attenuation value, the optical fiber is The attenuation value changes.
  • the adjusting unit 22 of the device for automatically adjusting power in the optical fiber communication system detects that the calculated current attenuation value and the recorded initial attenuation value are different, indicating that the attenuation value of the optical fiber changes due to aging, etc., by adjusting the preceding stage.
  • the current output optical power of the amplifier keeps the input power of the post amplifier unchanged.
  • the apparatus for automatically adjusting power in the optical fiber communication system provided by this embodiment, the adjusting unit 22 is further configured to adjust the output optical power of the pre-stage optical amplifier to ensure the rear-stage amplifier if a change occurs.
  • the input power remains at the initial value.
  • the adjusting unit 22 of the device for automatically adjusting power in the optical fiber communication system detects that the calculated current attenuation value and the recorded initial attenuation value are different, indicating that the attenuation value has changed due to aging, etc., and the optical relay node on the optical fiber Attenuation is generated by adjusting the current output optical power of the preamplifier or the current input optical power of the post amplifier so that the output power of the post amplifier remains unchanged, ensuring that the input power of the post amplifier remains at an initial value.
  • the device for automatically adjusting power in the optical fiber communication system provided by this embodiment automatically adjusts the gain of the amplifier according to the attenuation of the optical fiber, and adjusts the attenuation of the optical attenuator in the optical fiber, so that the input power of the optical amplifier in each relay node is always maintained.
  • the preset attenuation values are the same, ensuring that the power input to the optical receiver remains the same as the preset attenuation value after passing through multiple optical amplifiers, enhancing system stability.
  • an attenuation value of an optical fiber in each span is obtained; and an optical amplifier or an attenuator corresponding to the relay node in the span is adjusted according to the obtained attenuation value of the optical fiber in each span Gain.
  • the invention automatically adjusts the gain of the relay node according to the line attenuation, compensates for the power variation of the receiving end caused by the problem of the aging of the optical fiber, the automatic control, the real-time adjustment of the power, the operability is good, the difficulty is low, and the influence on the system is small compared with the manual adjustment. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光纤通信系统中自动调节功率的方法,通过获取各个跨段内的光纤的衰减值;根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。本发明还公开了一种光纤通信系统中自动调节功率的装置。本发明根据线路衰减自动调节功率放大器、衰减器的增益,弥补光纤老化等问题带来的接收端功率变化;自动控制,功率实时调节,相比人为调节,可操作性好、难度低、对系统影响小。

Description

光纤通信系统中自动调节功率的方法和装置 技术领域
本发明涉及网络通讯领域,尤其涉及光纤通信系统中自动调节功率的方法和装置。
背景技术
目前的光纤通信系统中,各光中继节点的光放大器的功率和光衰减器的衰减都是在系统搭建完成后便固定不变了的,并不会随时进行调节。只有当光纤的衰减变化引起光接收机的性能发生裂变的时候,才会手动对某些放大器的功率进行调节。由于老化等原因所带来的衰减的变化是一个缓慢的过程,对于单跨段来说变化值并不大,比如某系统5年内的光纤衰减变化为0.1dB/Km,维护人员很难察觉到这种变化,从而无法针对性地进行调节,即保证调节后其下游节点的输入功率保持配置的初始值;并且手动调节对维护人员来说,要求较高,需要维护人员对光纤通信系统以及网管平台都有所了解才以胜任。另外对于长距离多跨段的光纤通信系统,光纤衰减的变化带来影响会很严重,且随着使用年限的增加,会导致系统不稳定、误码率增加。因此,如何保持各光中继节点的衰减不变,是一个亟待解决的问题。
发明内容
本发明的主要目的在于提供一种光纤通信系统中自动调节功率的方法和装置,旨在解决长距离多跨段的光纤通信系统,各光中继节点产生衰减而导致的系统不稳定、误码率增加的问题。
为实现上述目的,本发明提供的一种光纤通信系统中自动调节功率的方法,所述光纤通信系统中自动调节功率的方法包括以下步骤:
获取各个跨段内的光纤的衰减;
将当前衰减值与预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
如果发生变化,则调节中继节点的增益。
在本发明的实施例中,所述获取各个跨段内的光纤的衰减的步骤之前包括:
预置各个跨段内的光纤的衰减值。
在本发明的实施例中,所述中继节点包括光放大器,所述光放大器包括前级放大器和后级放大器,所述获取各个跨段内的光纤的衰减的步骤包括:
收集所述前级放大器的输出光功率和所述后级放大器的输入光功率;
根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
在本发明的实施例中,所述根据获取的各个跨段内的光纤的衰减,调节对应跨段内中继节点的光放大器或者衰减器的增益的步骤包括:
将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
在本发明的实施例中,所述调节对应跨段内中继节点的光放大器的增益的步骤包括:
调节所述前级光放大器的输出光功率,
为了解决上述的技术问题,本发明进一步提供一种光纤通信系统中自动调节功率的装置,所述光纤通信系统中自动调节功率的装置,包括:
获取模块,设置为获取各个跨段内的光纤的衰减;
调节模块,设置为根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。
在本发明的实施例中,所述光纤通信系统中自动调节功率的装置还包括:
预置模块,设置为预置各个跨段内的光纤的衰减值。
在本发明的实施例中,所述获取模块包括:
收集单元,设置为收集所述前级放大器的输出光功率和所述后级放大器的输入光功率;
计算单元,设置为根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
在本发明的实施例中,所述调节模块包括:
判断单元,设置为将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
调节单元,设置为如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
在本发明的实施例中,所述调节单元,还设置为如果发生变化,则调节所述前级光放大器的输出光功率,确保后级放大器的输入功率保持初始值。
本发明提供的光纤通信系统中自动调节功率的方法,通过获取各个跨段内的光纤的衰减 值;根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。本发明根据线路衰减自动调节中继节点的增益,弥补光纤老化等问题带来的接收端功率变化;自动控制,功率实时调节,相比人为调节,可操作性好、难度低、对系统影响小。
附图说明
图1为本发明光纤通信系统中自动调节功率的方法第一实施例的流程示意图;
图2为本发明自动调节功率的光纤通信系统的结构示意图;
图3为本发明光纤通信系统中自动调节功率的方法第二实施例的流程示意图;
图4为图1中所述获取各个跨段内的光纤的衰减的步骤的细化流程示意图;
图5为图1中所述根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益的步骤的细化流程示意图;
图6为图5中所述调节对应跨段内中继节点的光放大器的增益的步骤的细化流程示意图;
图7为本发明光纤通信系统中自动调节功率的装置第一实施例的功能模块示意图;
图8为本发明光纤通信系统中自动调节功率的装置第二实施例的功能模块示意图;
图9为图7中所述获取模块的功能模块示意图;
图10为图7中所述调节模块的功能模块示意图。
本发明目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种光纤通信系统中自动调节功率的方法,参照图1,图1为本发明光纤通信系统中自动调节功率的方法第一实施例的流程示意图,在第一实施例中,本发明提供的光纤通信系统中自动调节功率的方法,包括以下步骤:
步骤S100、获取各个跨段内的光纤的衰减。
如图2所示,图2为本发明自动调节功率的光纤通信系统的结构示意图,在图2中,自动调节功率的光纤通信系统包括光发送单元OTU、光放大器OA、光纤通信系统中自动调节功率的装置APU和光衰减器LA,在本实施例中,光衰减器LA为非必要配置,光放大器OA可以为EDFA(Erbium-doped Optical Fiber Amplifier,掺铒光纤放大器),也可以为DRA(Distributed Raman Amplifier,分布式拉曼放大器),各个光中继节点和光纤通信系统中自动调节功率的装置之间并没有实际物理线路,图2中的虚线表示光纤通信系统中自动调节功率 的装置需要获得相应的单板的功率性能,各个光中继节点和光纤通信系统中自动调节功率的装置二者信息交互需要利用已有主控单板。在本实施例中,光纤通信系统中自动调节功率的装置记录了各个光中继节点node的输入Pn in(第n个中继节点的输入)和输出Pn out(第n个中继节点的输出)光功率的值,并计算得到初始的各个线路的光纤的衰减(Ln)。光纤通信系统中自动调节功率的装置工作时,可以每隔一段时间获取一次功率。因为光纤衰减变化是一个缓慢的过程,因此收集的速率不要求很快。比如可以每十五分钟收集一次。为降低每次采集性能量引入的误差,以及光纤通信系统中光功率微弱的波动带来的影响,也可以实时收集各个节点光中继的功率值,依此计算一定时间内的平均值从而作为当前的功率值,然后依此计算各个跨段的当前衰减量,当前衰减值Ln=Pn in-P(n-1)out。
步骤S200、根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。
光纤通信系统中自动调节功率的装置根据获取的各个跨段内的光纤的衰减值,若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于光纤的老化等原因,光纤的衰减值发生了变化,光纤上的光中继节点产生了衰减,此时,通过调节光中继节点node n-1的衰减器LA_n-1的衰减值或者光放大器OA_n-1的增益值,使得节点node_n的输入功率保持不变。
本实施例提供的光纤通信系统中自动调节功率的方法,识别各个节点的功率的微弱的变化量,根据线路衰减的变化量自动调节功率放大器、衰减器的增益,弥补光纤老化等问题带来的接收端功率变化;自动控制,功率实时调节,相比人为调节,可操作性好、难度低、对系统影响小。
参照图3,图3为本发明光纤通信系统中自动调节功率的方法第二实施例的流程示意图,所述光中继节点包括前级放大器和后级放大器,在第一实施例的基础上,第二实施例提供的光纤通信系统中自动调节功率的方法,步骤S100之前还包括以下步骤:
步骤S100A、预置各个跨段内的光纤的衰减值。
光纤通信系统中自动调节功率的装置预置各个跨段内的光纤的衰减值,所述设定跨段内的光纤的预置的衰减值可以通过如下方式获取:
光纤通信系统中自动调节功率的装置在对比分析前,预先收集各个光中继节点,包括发送端OTU的输出功率,各级光放大器/光衰减器OA/LA的输入输出功率,接收端ORU的输入功率。并依此计算出各个跨段的光纤的衰减量,作为各个跨段的衰减的初始值。并将各个跨段收集的光中继节点的前级放大器的初始输出光功率和后级放大器的初始输入光功率进行作差处理后,得出各个跨段预置的衰减值。
参照图4,图4为图1中步骤S100的细化流程示意图,步骤S100包括:
步骤S100a、收集所述前级放大器的输出光功率和所述后级放大器的输入光功率。
光纤通信系统中自动调节功率的装置收集当前各个光中继节点,包括当前发送端OTU的输出功率,各级光放大器/光衰减器OA/LA的输入输出功率,接收端ORU的输入功率。并依此计算出当前各个跨段的光纤的衰减量,作为各个跨段的当前衰减值。
步骤S100b、根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
光纤通信系统中自动调节功率的装置将各个跨段收集的光中继节点的前级放大器的当前输出光功率和后级放大器的当前输入光功率进行作差处理后,得出各个跨段的当前衰减值。
参照图5,图5为图1中步骤S200的细化流程示意图,步骤S200包括:
步骤S200a、将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化。
光纤通信系统中自动调节功率的装置将计算得出的当前衰减值与预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化。例如,如果计算得出的当前衰减值与预置的衰减值相同,则所述光纤的衰减值未发生变化,如果计算得出的当前衰减值与预置的衰减值不相同,则所述光纤的衰减值发生变化。
步骤S200b、如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
光纤通信系统中自动调节功率的装置若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于老化等原因,衰减值发生了变化,通过调节所述前级放大器的当前输出光功率,使得后级放大器的输入功率保持不变。
参照图6,图6为图5中步骤S200b的细化流程示意图,步骤S200b包括:
步骤S200B、调节所述前级光放大器的输出光功率,确保后级放大器的输入功率保持初始值。
光纤通信系统中自动调节功率的装置若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于老化等原因,衰减值发生了变化,通过调节所述前级放大器的当前输出光功率或后级放大器的当前输入光功率,使得后级放大器的输出功率保持不变,确保后级放大器的输入功率保持初始值。
本实施例提供的光纤通信系统中自动调节功率的方法,根据光纤的衰减来自动调节放大器的增益,调节光纤中光衰减器的衰减,使得各个中继节点中的光放大器的输入功率一直保持和预置的衰减值相同,从而确保经过多个光放大器后,输入给光接收机的功率仍然保持和预置的衰减值相同,增强系统的稳定性。
参见图7,图7为本发明光纤通信系统中自动调节功率的装置第一实施例的功能模块示意 图,在第一实施例中,本发明提供的光纤通信系统中自动调节功率的装置,包括:
获取模块10,设置为获取各个跨段内的光纤的衰减;
调节模块20,设置为根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。
如图2所示,图2为本发明自动调节功率的光纤通信系统的结构示意图,在图2中,自动调节功率的光纤通信系统包括光发送单元OTU、光放大器OA、光纤通信系统中自动调节功率的装置APU和衰减器LA,在本实施例中,衰减器LA为非必要配置,光放大器OA可以为EDFA,也可以为DRA,各个光中继节点和光纤通信系统中自动调节功率的装置之间并没有实际物理线路,图2中的虚线表示光纤通信系统中自动调节功率的装置需要获得相应的单板的功率性能,各个光中继节点和光纤通信系统中自动调节功率的装置二者信息交互需要利用已有主控单板。在本实施例中,光纤通信系统中自动调节功率的装置的获取模块10记录了各个光中继节点node的输入Pn in(第n个中继节点的输入)和输出Pn out(第n个中继节点的输出)光功率的值,并计算得到初始的各个线路的光纤的衰减(Ln)。光纤通信系统中自动调节功率的装置工作时,可以每隔一段时间获取一次功率。因为光纤衰减变化是一个缓慢的过程,因此收集的速率不要求很快。比如可以每十五分钟收集一次。为降低每次采集性能量引入的误差,以及光纤通信系统中光功率微弱的波动带来的影响,也可以实时收集各个节点光中继的功率值,依此计算一定时间内的平均值从而作为当前的功率值,然后依此计算各个跨段的当前衰减量,当前衰减值Ln=Pn in-P(n-1)out。
光纤通信系统中自动调节功率的装置的调节模块20若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于光纤的老化等原因,光纤的衰减值发生了变化,光纤上的光中继节点产生了衰减,此时,通过调节光中继节点node n-1的衰减器LA_n-1的衰减值或者光放大器OA_n-1的增益值,使得节点node_n的输入功率保持不变。
本实施例提供的光纤通信系统中自动调节功率的装置,识别各个节点的功率的微弱的变化量,根据线路衰减的变化量自动调节功率放大器、衰减器的增益,弥补光纤老化等问题带来的接收端功率变化;自动控制,功率实时调节,相比人为调节,可操作性好、难度低、对系统影响小。
参见图8,图8为本发明光纤通信系统中自动调节功率的装置第二实施例的功能模块示意图,在第一实施例的基础上,第二实施例提供的光纤通信系统中自动调节功率的装置,还包括:
预置模块40,设置为预置各个跨段内的光纤的衰减值。
光纤通信系统中自动调节功率的装置的预置模块30预置各个跨段内的光纤的衰减值,所述设定跨段内的光纤的预置的衰减值可以通过如下方式获取:
光纤通信系统中自动调节功率的装置的预置模块30在对比分析前,预先收集各个光中继节点,包括发送端OTU的输出功率,各级光放大器/光衰减器OA/LA的输入输出功率,接收 端ORU的输入功率。并依此计算出各个跨段的光纤的衰减量,作为各个跨段的衰减的初始值。并将各个跨段收集的光中继节点的前级放大器的初始输出光功率和后级放大器的初始输入光功率进行作差处理后,得出各个跨段预置的衰减值。
参照图9,图9为图7中所述获取模块的功能模块示意图,所述获取模块10包括:
收集单元11,设置为收集所述前级放大器的输出光功率和所述后级放大器的输入光功率;
计算单元12,设置为根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
光纤通信系统中自动调节功率的装置的收集单元11收集当前各个光中继节点,包括当前发送端OTU的输出功率,各级光放大器/光衰减器OA/LA的输入输出功率,接收端ORU的输入功率。并依此计算出当前各个跨段的光纤的衰减量,作为各个跨段的当前衰减值。
光纤通信系统中自动调节功率的装置的计算单元12将各个跨段收集的光中继节点的前级放大器的当前输出光功率和后级放大器的当前输入光功率进行作差处理后,得出各个跨段的当前衰减值。
参照图10,图10为图7中所述调节模块的功能模块示意图,所述调节模块20包括:
判断单元21,设置为将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
调节单元22,设置为如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
光纤通信系统中自动调节功率的装置的判断单元21将计算得出的当前衰减值与预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化。例如,如果计算得出的当前衰减值与预置的衰减值相同,则所述光纤的衰减值未发生变化,如果计算得出的当前衰减值与预置的衰减值不相同,则所述光纤的衰减值发生变化。
光纤通信系统中自动调节功率的装置的调节单元22若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于老化等原因,光纤衰减值发生了变化,通过调节所述前级放大器的当前输出光功率,使得后级放大器的输入功率保持不变。
进一步参见图10,本实施例提供的光纤通信系统中自动调节功率的装置,所述调节单元22,还设置为如果发生变化,则调节所述前级光放大器的输出光功率,确保后级放大器的输入功率保持初始值。
光纤通信系统中自动调节功率的装置的调节单元22若检测到计算出来的当前衰减值和记录的衰减初始值不同,则说明由于老化等原因,衰减值发生了变化,光纤上的光中继节点产生了衰减,通过调节所述前级放大器的当前输出光功率或后级放大器的当前输入光功率,使得后级放大器的输出功率保持不变,确保后级放大器的输入功率保持初始值。
本实施例提供的光纤通信系统中自动调节功率的装置,根据光纤的衰减来自动调节放大器的增益,调节光纤中光衰减器的衰减,使得各个中继节点中的光放大器的输入功率一直保持和预置的衰减值相同,从而确保经过多个光放大器后,输入给光接收机的功率仍然保持和预置的衰减值相同,增强系统的稳定性。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
基于本发明实施例提供的上述技术方案,获取各个跨段内的光纤的衰减值;根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。本发明根据线路衰减自动调节中继节点的增益,弥补光纤老化等问题带来的接收端功率变化;自动控制,功率实时调节,相比人为调节,可操作性好、难度低、对系统影响小。

Claims (10)

  1. 一种光纤通信系统中自动调节功率的方法,所述光纤通信系统中自动调节功率的方法包括以下步骤:
    获取各个跨段内的光纤的衰减值;
    根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。
  2. 如权利要求1所述的光纤通信系统中自动调节功率的方法,其中,所述获取各个跨段内的光纤的衰减值的步骤之前包括:
    预置各个跨段内的光纤的衰减初始值。
  3. 如权利要求1所述的光纤通信系统中自动调节功率的方法,其中,所述中继节点包括光放大器,所述光放大器包括前级放大器和后级放大器,所述获取各个跨段内的光纤的衰减值的步骤包括:
    收集所述前级放大器的输出光功率和所述后级放大器的输入光功率;
    根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
  4. 如权利要求1所述的光纤通信系统中自动调节功率的方法,其中,所述根据获取的各个跨段内的光纤的衰减,调节对应跨段内中继节点的光放大器或者衰减器的增益的步骤包括:
    将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
    如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
  5. 如权利要求4所述的光纤通信系统中自动调节功率的方法,其中,所述调节对应跨段内中继节点的光放大器的增益各的步骤包括:
    调节所述前级光放大器的输出光功率,确保后级放大器的输入功率保持初始值。
  6. 一种光纤通信系统中自动调节功率的装置,所述光纤通信系统中自动调节功率的装置,包括:
    获取模块,设置为获取各个跨段内的光纤的衰减;
    调节模块,设置为根据获取的各个跨段内的光纤的衰减值,调节对应跨段内中继节点的光放大器或者衰减器的增益。
  7. 如权利要求6所述的光纤通信系统中自动调节功率的装置,其中,所述光纤通信系统中自 动调节功率的装置还包括:
    预置模块,设置为预置各个跨段内的光纤的衰减初始值。
  8. 如权利要求6所述的光纤通信系统中自动调节功率的装置,其中,所述获取模块包括:
    收集单元,设置为收集所述前级放大器的输出光功率和所述后级放大器的输入光功率;
    计算单元,设置为根据所述前级放大器的输出光功率和所述后级放大器的输入光功率,计算出当前衰减值,所述当前衰减值为所述后级放大器的输入光功率与所述前级放大器的输出光功率两者之间的差值。
  9. 如权利要求8所述的光纤通信系统中自动调节功率的装置,其中,所述调节模块包括:
    判断单元,设置为将获取的各个跨段内的光纤的衰减值与对应跨段内预置的衰减值进行对比分析,判断所述光纤的衰减值是否发生变化;
    调节单元,设置为如果发生变化,则调节对应跨段内中继节点的光放大器或者衰减器的增益。
  10. 如权利要求6或7所述的光纤通信系统中自动调节功率的装置,其中,所述调节单元,还设置为如果发生变化,则调节所述前级光放大器的输出光功率,确保后级放大器的输入功率保持初始值。
PCT/CN2015/097922 2014-12-31 2015-12-18 光纤通信系统中自动调节功率的方法和装置 WO2016107428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410855453.2 2014-12-31
CN201410855453.2A CN105812065A (zh) 2014-12-31 2014-12-31 光纤通信系统中自动调节功率的方法和装置

Publications (1)

Publication Number Publication Date
WO2016107428A1 true WO2016107428A1 (zh) 2016-07-07

Family

ID=56284219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097922 WO2016107428A1 (zh) 2014-12-31 2015-12-18 光纤通信系统中自动调节功率的方法和装置

Country Status (2)

Country Link
CN (1) CN105812065A (zh)
WO (1) WO2016107428A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463081A (zh) * 2017-05-27 2019-11-15 华为技术有限公司 一种光功率的补偿方法及设备
CN116896410A (zh) * 2023-08-14 2023-10-17 大庆亿莱检验检测技术服务有限公司 一种光纤中继信号监测传输方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547871B (zh) 2017-09-21 2022-07-15 中兴通讯股份有限公司 无源光网络上行光的放大方法及网络单元
CN111416665B (zh) * 2019-01-07 2022-04-15 中国移动通信有限公司研究院 一种光纤通信方法、装置、设备及存储介质
CN110336609B (zh) * 2019-05-31 2021-03-30 中山大学 一种多跨段光纤传输系统优化方法
CN112583489A (zh) * 2019-09-30 2021-03-30 中兴通讯股份有限公司 一种光网络功率控制自动方法及装置、存储介质
CN113691346B (zh) * 2021-08-20 2024-05-17 国家电网有限公司信息通信分公司 一种光功率调节单元、装置、系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490970A (zh) * 2003-09-19 2004-04-21 烽火通信科技股份有限公司 一种动态增益均衡方法以及使用该方法的光传输系统
CN101364845A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种波分网络中光功率调整的方法及系统
CN102299738A (zh) * 2011-07-01 2011-12-28 华为技术有限公司 获得光网络链路性能参数的方法及装置
CN104202094A (zh) * 2014-08-28 2014-12-10 北京邮电大学 一种模式光功率控制方法及装置
CN104243048A (zh) * 2014-08-28 2014-12-24 北京邮电大学 相干光通信系统中基于单纯形的传输性能优化方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490970A (zh) * 2003-09-19 2004-04-21 烽火通信科技股份有限公司 一种动态增益均衡方法以及使用该方法的光传输系统
CN101364845A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种波分网络中光功率调整的方法及系统
CN102299738A (zh) * 2011-07-01 2011-12-28 华为技术有限公司 获得光网络链路性能参数的方法及装置
CN104202094A (zh) * 2014-08-28 2014-12-10 北京邮电大学 一种模式光功率控制方法及装置
CN104243048A (zh) * 2014-08-28 2014-12-24 北京邮电大学 相干光通信系统中基于单纯形的传输性能优化方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463081A (zh) * 2017-05-27 2019-11-15 华为技术有限公司 一种光功率的补偿方法及设备
US10892823B2 (en) 2017-05-27 2021-01-12 Huawei Technologies Co., Ltd. Optical power compensation method and device
CN116896410A (zh) * 2023-08-14 2023-10-17 大庆亿莱检验检测技术服务有限公司 一种光纤中继信号监测传输方法
CN116896410B (zh) * 2023-08-14 2024-02-13 大庆亿莱检验检测技术服务有限公司 一种光纤中继信号监测传输方法

Also Published As

Publication number Publication date
CN105812065A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2016107428A1 (zh) 光纤通信系统中自动调节功率的方法和装置
KR101238852B1 (ko) 수신기 판정 레벨의 최적 조정 방법 및 장치
CN101296034B (zh) 传输监测信息方法和装置、及无源光网络系统
EP2787668A1 (en) Method and apparatus for balancing link performance
US11495936B2 (en) Optical amplifier assembly and detection method for dynamically executable optical time-domain reflection detection
CN103166708B (zh) 一种提高遥泵系统输出光信噪比的方法
US10135525B2 (en) Fiber-cut detection method, apparatus, and system for distributed Raman fiber amplifier
US8139285B2 (en) Raman amplifying device and control method
US20140029937A1 (en) Method, apparatus, and system for monitoring and adjusting optical power
US8908264B2 (en) Reducing transients in an optical amplifier
CN103973368B (zh) 一种自适应色散补偿调整方法
US20050047781A1 (en) Method and system for automatically setting gain for an amplifier in an optical network
CN103227681B (zh) 波分复用光传输系统通道动态光功率调整方法
US7593640B2 (en) Method of dynamically controlling an optical module
CN112217561B (zh) C+l波段的光功率自动均衡方法及系统
US7112777B2 (en) Method and apparatus for protecting optical receivers from overload optical signals
Suzuki et al. 128× 8 split and 60 km long-reach PON transmission using 27 dB-gain hybrid burst-mode optical fiber amplifier and commercial giga-bit PON system
CA2482803C (en) Systems and methods for compensating for signal transients
CN104410452B (zh) 一种长距离相干光通信系统传输性能优化方法
Du et al. Optical label-enabled low-cost DWDM optical network performance monitoring using novel DSP processing
CN102201863A (zh) 一种光功率调测方法和装置
CA2524832A1 (en) Method for pre-emphasizing an optical multiplex signal
US7239807B2 (en) Variable clamp equalization method and apparatus
Verma et al. Flattening the gain in 16 channel EDFA-WDM system by gain flattening filter
CN113315597B (zh) 一种波分系统中纤缆衰耗自动补偿的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875106

Country of ref document: EP

Kind code of ref document: A1