WO2016060500A2 - 리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지 - Google Patents

리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지 Download PDF

Info

Publication number
WO2016060500A2
WO2016060500A2 PCT/KR2015/010916 KR2015010916W WO2016060500A2 WO 2016060500 A2 WO2016060500 A2 WO 2016060500A2 KR 2015010916 W KR2015010916 W KR 2015010916W WO 2016060500 A2 WO2016060500 A2 WO 2016060500A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
air secondary
secondary battery
cathode catalyst
titanium oxide
Prior art date
Application number
PCT/KR2015/010916
Other languages
English (en)
French (fr)
Other versions
WO2016060500A9 (ko
WO2016060500A3 (ko
Inventor
강용묵
강승호
송경세
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Priority to US15/509,957 priority Critical patent/US20170301924A1/en
Publication of WO2016060500A2 publication Critical patent/WO2016060500A2/ko
Publication of WO2016060500A9 publication Critical patent/WO2016060500A9/ko
Publication of WO2016060500A3 publication Critical patent/WO2016060500A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Cathode catalyst for lithium-air secondary battery, preparation method thereof, and lithium-air secondary battery comprising same
  • One embodiment of the present invention relates to a cathode catalyst for a lithium-air secondary battery, a manufacturing method thereof, and a lithium-air secondary battery including the same.
  • Lithium-ion batteries have become a major player in rechargeable batteries, surpassing the previously developed nickel cadmium or nickel-hydrogen batteries due to their high energy density and long life of 75-160 Wh / kg.
  • Lithium ion batteries are being actively researched to realize greater capacity and output in line with the demands of modern society, and are expected to develop lithium ion batteries with energy densities up to 250 Wh / kg.
  • the need for an energy storage device having a high energy density of 700 Wh / kg or more is required to emerge a new battery system.
  • lithium air secondary batteries have a high output of 10 times higher than lithium secondary batteries, and are environmentally friendly by using oxygen, which is infinitely present in nature, as an active material.
  • the lithium-air secondary battery has a significantly lower exchange efficiency (Round-tr ip ef fi ciency) because the voltage required for layer charging is higher than the voltage emitted by the battery.
  • It is important to improve the exchange efficiency by reducing the overvoltage during oxygen reduction reaction and oxygen evaporation reaction by using a catalyst on the anode.
  • One embodiment of the present invention to provide a cathode catalyst for lithium-air secondary battery, a method for producing the same, and a lithium-air secondary battery including the same to improve the oxygen reduction reaction and oxygen evaporation reaction of the lithium-air battery.
  • One embodiment of the present invention after adding the titanium ion precursor to the solvent, stirring to form a first solution; Adding the organics to a solvent, followed by stirring to form a solution of about 12; After mixing the first and second solutions, spinning the mixed solution to form a nanofiber composite; And heat treating the nanofiber composite to form titanium oxide ( ⁇ ) 2 ) nanofibers.
  • stirring to form a first solution may be performed at room temperature for 0.5 to 2 hours.
  • the titanium ion precursor is titanium isopropoxide (Ti tanium i sopropoxide), titanium butoxide (Ti tanium butoxi de), titanium chloride (Ti tanium chlor ide), titanium nitride (Ti tanium ni tr i de), and titanium Carbide (Ti tanium carbide) may include one or two or more selected from the group consisting of.
  • the method may further include adding 20 to 30 mol% of acetic acid to the first solution.
  • the solvent may include an alcoholic solvent.
  • stirring to form a second solution may be performed at room temperature for 0.5 to 2 hours.
  • the organic material may include one or two or more selected from the group consisting of polyvinyl pyrrol i done, polymethyl methacryl ate, and polystyrene.
  • the solvent may include an alcohol solvent, acetone, distilled water (3 ⁇ 40), or a combination thereof.
  • the molar ratio of the organics to the solvent may be 0.05 to 0.08. After mixing the crab 1 and the second solution, spinning the mixed solution to form a nanofiber composite; In the mixing, the molar ratio of the organic material to the titanium ion precursor may be made from 0.2 to 0.5 .
  • the spinning process may be performed by electrospinning. Heat-treating the nanofiber composite to form titanium oxide (Ti0 2 ) nanofibers; may be performed for 1 to 7 hours in an oxidizing atmosphere, and 400 to 800.
  • the titanium oxide ( T i0 2 ) nanofibers may have a one-dimensional structure.
  • the one-dimensional nanofibers may be anatase titanium oxide nanofibers (Anatase Ti0 2 nano f iber), rutile titanium oxide nanofibers (Rut ile Ti0 2 nano f iber), or a combination thereof.
  • the anatase titanium oxide nanofibers may be prepared by calcining the nanofiber composite at 400 to 500 for 1 to 2 hours.
  • the rutile titanium oxide nanofibers may be prepared by calcining the nanofiber composite at 750 to 800 for 5 to 7 hours.
  • Another embodiment of the present invention provides a cathode catalyst for lithium-air secondary batteries manufactured by the method for preparing the cathode catalyst for lithium-air secondary batteries described above.
  • the lithium-air secondary battery positive electrode including the above-described positive electrode for lithium-air secondary battery; cathode; Electrolyte; And it provides a lithium-air secondary battery comprising a separator.
  • titanium oxide (Ti0 2 ) is made of one-dimensional nanofibers to improve the oxygen reduction reaction and evaporation reaction by improving the positive electrode catalyst for lithium-air secondary battery having excellent electrochemical properties, and a method of manufacturing the same, and It is possible to provide a lithium-air secondary battery comprising the same.
  • FIG. 1 is an X-ray diffraction analysis result of anatase titanium oxide nanofibers and rutile titanium oxide nanofibers according to an embodiment.
  • FIG. 2 is a scanning electron microscope analysis result of the anatase titanium oxide nanofibers according to an embodiment.
  • FIG. 3 is a scanning electron microscope analysis result of rutile titanium oxide nanofibers according to an embodiment.
  • Figure 4 is a transmission electron microscope analysis of the blue Anathas titanium oxide nanofibers in one embodiment.
  • 5 is a transmission electron microscope analysis of rutile titanium oxide nanofibers according to an embodiment.
  • FIG. 6 shows an initial capacity of a lithium-air battery according to another embodiment.
  • FIG. 7 is a diagram showing differential curves of an initial cycle charged and discharged at 200 mA / g (carbon) of a lithium-air battery according to another embodiment.
  • FIG. 8 is a view showing a capacity-limited lifetime characteristics based on the carbon weight specific capacity 1000mAh / g (carbon) of the lithium-air battery according to another embodiment.
  • 9 is a view illustrating Nyqui st characteristics of a lithium-air battery according to another embodiment.
  • the present invention relates to a cathode catalyst for a lithium-air secondary battery capable of improving oxygen reduction reaction and oxygen evaporation reaction of a lithium-air battery, a method for preparing the same, and a method for manufacturing a lithium-air secondary battery including the same.
  • One embodiment of the present invention after adding a titanium ion precursor to the solvent, stirring to form a crab 1 solution; Adding the organic to the solvent, followed by stirring to form a second solution; After mixing the first and crab solutions, spinning the mixture solution to form a nanofiber composite; And heat treating the nanofiber composite to form titanium oxide ( T i 02 ) nanofibers. It provides a method for producing a cathode catalyst for a lithium-air secondary battery comprising a.
  • stirring to form a first solution may be performed at room temperature, 0.5-2 hours, preferably Preferably 1-1.5 hours.
  • stirring is performed for less than 0.5 hours, there is a problem that the titanium ion precursor is not sufficiently dissolved in the solvent, and when it is performed for more than 2 hours, there is a problem that titanium is precipitated.
  • the titanium ion precursors include titanium isopropoxide, titanium tan oxide but titanium chloride, titanium nitride, and titanium nitride.
  • Carbide Ti tanium carbide
  • the solvent may include an alcohol solvent.
  • the alcohol-based solvent may be, for example, ethanol.
  • the step of stirring after adding to the organic solvent, the step of stirring to form a second solution; As in the above-mentioned step of forming the first solution, the phase is 0.5 (2 at room temperature It may be carried out for a time, preferably 1-1.5 hours. At this time, when the stirring is carried out in less than 0.5 hours, there is a problem that the organic material is not dissolved in the solvent, and when carried out for more than 2 hours there is a problem deviating from the viscosity in the second solution.
  • the organic fire may include one or two or more selected from the group consisting of polyvinyl pyrrol i done, polymethyl methacrylate, and polystyrene. .
  • the solvent may include an alcoholic solvent, acetone (acetone), distilled water (3 ⁇ 40), or a combination thereof.
  • the alcohol solvent may be, for example, methanol (methanol) ⁇ propane (butanol), butanol, isopropyl alcohol (i sopropyl al cohol, ⁇ ) and the like.
  • the molar ratio of the organic material to the solvent may be 0.05-0.08, preferably 0.06. If the molar ratio of the organic material to the solvent is less than 0.05, beads (beads) are formed, and if it exceeds 0.08, the thickness of the titanium oxide (Ti0 2 ) nanofibers described below is too thick. .
  • nanofiber composites are formed through process control for spinning.
  • the predetermined ratio is preferably a molar ratio of the organic matter in the second solution to the titanium ion precursor in the first solution is 0.2-0.5.
  • the molar ratio of the organic material to the titanium ion precursor is less than 0.2, there is a problem in that the titanium oxide (Ti0 2 ) nanofibers are not formed or the length of the nanofibers is formed very short, and in the case of exceeding 0.5, titanium oxide (Ti0 2 ) There is a problem that the thickness of the nanofibers becomes too thick.
  • Electrospinning includes: a supply for supplying a solution, a spinneret for spinning a solution supplied through the feeder, a collector for collecting fibers spun through the spinneret, and a voltage for applying a voltage between the spinneret and the collector
  • An electrospinning apparatus including a generator may be used, and a fiber form may be manufactured by supplying an organic / inorganic solution to the feeder and then applying a voltage. This has the advantage of being relatively easy to synthesize the fiber-like material compared to the conventional bottom-up method such as CVD, PVD, or other top-down method.
  • Process control conditions for the electrospinning may include the speed of pushing the mixed solution, the rated voltage, the distance between the needle and the aluminum foil collected, the thickness of the needle, and the like.
  • the speed of pushing the mixed solution is 0.4 to 0.6 ml / h
  • the voltage is 14.5 to 15.5 kV
  • the distance between the needle and the aluminum foil is 8 to 10 cm
  • the thickness of the needle is 23 to 25 gauge.
  • the step of heat-treating the nanofiber composite to form titanium oxide (Ti0 2 ) nanofibers may be performed for 1-7 hours in an oxidizing atmosphere in the air, and 400-700.
  • the heat treatment silver is less than 400, there is a problem that the organic matter is not sufficiently removed, and when the heat treatment silver exceeds 700, the structure of the titanium oxide (Ti0 2 ) nanofibers is not maintained.
  • the heat treatment time is less than 1 hour, there is a problem that the organic matter is not sufficiently removed, when more than 7 hours there is a problem that the structure of the titanium oxide (Ti0 2 ) nanofiber is not maintained.
  • the titanium oxide (Ti0 2 ) nanofibers formed through one embodiment of the present invention is a one-dimensional structure, anatase titanium oxide nanofibers (Anatase Ti0 2 nano f iber), rutile titanium oxide nanofibers (Rut i le Ti0 2 nano f iber), or a combination thereof.
  • the anatase titanium oxide nanofibers may be formed by calcining the nanofiber composites at 400-500 for 1-2 hours, and the rutile titanium oxide nanofibers may form the nanofiber composites at 750-800 at 5-7 It can be formed by calcination in time.
  • titanium oxide nanofibers in which the anatas and rutile phases are mixed are formed.
  • Titanium isopropoxide titanium isopropoxide
  • ethanol titanium isopropoxide
  • acetic acid 25 mol% of acetic acid was added to prevent the precipitation of titanium isopropoxide.
  • polyvinyl pyrrol idone which is an organic substance
  • ethane is added to ethane, followed by stirring at room temperature for 1 hour to prepare a crab 2 solution.
  • concentration of organic matter was adjusted to 5-8 moiy ⁇
  • the first and second solutions were mixed and then stirred to obtain a homogeneous mixed solution.
  • the molar ratio of the organic substance to the titanium oxide precursor in the mixed solution was 1/3.
  • the nanofiber composite was formed through electrospinning with the mixed solution.
  • the electrospinning condition is 0.5 ml
  • voltage is 14.5-15.5 kV
  • the distance between the needle and the aluminum foil to be collected is 9 cm
  • the needle thickness is 23 gauge It was.
  • the nanofiber composite includes an organic material / titanium precursor, and annatase titanium oxide nanofibers (Anatase Ti0 2 nanofiber) in which an organic material was removed by calcining at an oxidative atmosphere in the air for 1 hour at 450 was prepared.
  • the nanofiber composite containing the organic material / titanium precursor can be controlled phase by the calcination temperature and time control.
  • an oxidative atmosphere in the air and calcined at 750 for 5 hours to prepare rutile titanium oxide nanofibers (Rutile Ti0 2 nanofiber) is removed organic matter.
  • Example 2 Preparation of Lithium-Air Battery
  • Lithium-air battery manufacturing method using nitrogen-methylpyrrolidone (N-methylpyrrolidone) as a solvent to mix titanium oxide nanofibers, Ketjen black, PVDF-HFP to 40:45:15 3 ⁇ 4> Prepare the electrode for the air battery first. The prepared slurry is thinly coated on carbon paper and then dried at 120 to 5 hours. After drying, the plate is transferred into a glove box and a cell is prepared using a Swazilok-type eel Is. In this case, lithium metal foils are used as counter electrodes, glass fiber disks are used as separators, and 1M LiCF 3 S0 3 is dissolved in tetraethyleneglycol dimethylether as an electrolyte. Used as Finally, the assembled cell is taken out of the glove box, charged with oxygen gas (99.995%) for 10 minutes at 1 sccm, and subjected to electrochemical characterization. evaluation
  • the anatase titanium oxide is 25.281 degrees 101.
  • each phase namely, anatas and tutyl titanium oxide nanofibers is well shown. 4 and 5, it can be seen that both anatas and rutile titanium oxide nanofibers exhibit a one-dimensional shape.
  • a lithium-air battery prepared by the method of Example 2 using the positive electrode active material containing the catalyst is described in 2-4. Layers and discharges were performed at 200 mA / g (carbon) at 5 V, respectively, and measurement results of the charge and discharge characteristics are shown in FIGS. 6 and 7.
  • FIG. 6 shows a potential plane where oxygen and lithium are combined / decomposed during oxygen reduction and evaporation reaction, and shows that the initial capacity of rutile titanium oxide nanofibers is increased as compared to anatase titanium oxide nanofibers.
  • the evaluation results of the battery prepared without adding the titanium oxide catalyst are also shown.
  • FIG. 8 is a view of capacity-limited lifetime characteristics based on carbon weight specific capacity lOOOOmAh / g carbon), and it is understood that the life of a lithium-air battery using rutile titanium oxide nanofibers is improved compared to anatase titanium oxide nanofibers.
  • the rutile titanium oxide nanofibers have a lower band gap than the anatase titanium oxide nanofibers. It can be seen that the charge transfer resistance decreased due to the improvement of e-. From the above results, it can be seen that rutile titanium oxide nanofibers have reduced contact area of oxygen and lithium ions and diffusion distances of lithium ions compared to anatase titanium oxide nanofibers, thereby greatly improving electric conductivity and ion conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지가 개시된다. 본 발명의 일 구현예는, 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제1 용액을 형성하는 단계; 유기물을 용매에 첨가한 후, 교반하여 제2 용액을 형성하는 단계; 상기 제1 및 제2 용액을 흔합한 후, 상기 혼합 용액을 방사하여 나노섬유 복합체를 형성하는 단계; 및 상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드(Ti02) 나노섬유를 형성하는 단계;를 포함하는 리륨-공기 이차전지용 양극 촉매의 제조방법을 제공한다.

Description

【명세서】
【발명의 명칭】
리튬 -공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지
【기술분야】
본 발명의 일 구현예는 리튬 -공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬 -공기 이차전지에 관한 것이다. 【배경기술】
최근 화석연료의 고갈과 지구온난화 등 자원적 및 환경적인 문제가 대두됨에 따라 신재생에너지에 대한 관심이 커지고 있다. 특히, 전기자동차 (EV , electr ic vehicle) , 하이브리드 전기자동차 (HEV, hybr id electr ic vehic le)나 휴대형 전력저장장치, 분산전원장치 등 산업 전반에서 대형화, 고출력, 고 에너지 밀도의 에너지 저장장치를 필요로 하기 때문에 전지 개발이 산업의 주요한 이슈이다.
리튬 이온 전지는 75-160 Wh/kg 정도의 고 에너지 밀도와 장수명의 특징으로 인하여, 이보다 앞서 개발된 니켈 카드뮴 전지나 니켈 수소 전지를 제치고 이차전지의 주역이 되었다. 리튬 이온 전지는 현대 사회의 요구에 발맞춰 더 큰 용량과 출력을 구현하기 위해 활발히 연구가 진행되고 있고, 앞으로 최대 250 Wh/kg에 달하는 에너지 밀도를 가지는 리튬 이온 전지를 개발할 수 있을 것으로 전망된다. 다만, 전기자동차의 경우 700 Wh/kg 이상의 높은 에너지밀도를 갖는 에너지 저장장치가 필요하기 때문에 새로운 전지 시스템의 출현이 요구되고 있다.
새로이 제시되고 있는 다양한 전지 시스템 중 리튬 공기 이차 전지는 이론 용량이 리튬 이은 이차 전지의 10 배 이상으로 고출력이고, 자연계에 무한히 존재하는 산소를 활물질로 이용하여 친환경적인 특성을 얻을 수 있는 시스템이다, 그러나, 리튬 -공기 이차전지는 층전을 위해 요구되는 전압이 전지가 방출하는 전압보다 높아 교환 효율 (Round-tr ip ef f i ciency)이 현저히 낮고, 수명특성 및 신뢰성 확보가 힘들다는 문제점이 있다. 이러한 문제점을 개선하기 위해서는 양극에 촉매를 사용하여 산소 환원 반웅 및 산소 증발 반웅 시 과전압을 줄여 교환 효율을 향상시키는 것이 관건이다.
따라서, '리튬 -공기 이차전지에서 촉매의 개발은 중요한 인자이며, 현재 리튬 -공기 이차전지에 적합한 촉매 개발은 초기 단계이기 때문에 집중적인 연구가 필요하다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 일 구현예는, 리튬 -공기 전지의 산소 환원 반웅 및 산소 증발 반웅을 향상시킬 수 있는 리튬 -공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬 -공기 이차전지를 제공하고자 한다.
【기술적 해결방법】
본 발명의 일 구현예는, 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제 1 용액을 형성하는 단계; 유기물을 용매에 첨가한 후, 교반하여 거 12 용액을 형성하는 단계; 상기 제 1 및 제 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계; 및 상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (τ )2) 나노섬유를 형성하는 단계;를 포함하는 리튬- 공기 이차전지용 양극 촉매의 제조방법을 제공한다.
상기 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제 1 용액을 형성하는 단계;는, 상온에서 0.5 내지 2시간 수행될 수 있다.
상기 티타늄 이온 전구체는 티타늄 이소프로프옥사이드 (Ti tanium i sopropoxide) , 티타늄 부트옥사이드 (Ti tanium butoxi de) , .티타늄 클로라이드 (Ti tanium chlor ide) , 티타늄 나이트라이드 (Ti tanium ni tr i de) , 및 티타늄 카바이드 (Ti tanium carbide)로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함할 수 있다.
상기 티타늄 이온 전구체가 티타늄 이소프로프옥사이드 (Ti tanium i sopropoxide) 인 경우, 상기 제 1 용액에 아세트산 (acet ic acid)을 20 내지 30 mol% 첨가하는 과정을 더 포함할 수 있다. 상기 용매는 알코을계 용매를 포함할 수 있다.
상기 유기물을 용매에 첨가한 후, 교반하여 제 2 용액을 형성하는 단계;는, 상온에서 0.5 내지 2시간 수행되는 것일 수 있다.
상기 유기물은 폴리비닐피를리돈 (Polyvinyl pyrrol i done) , 폴리메타크릴산아칠 (Polymethyl methacryl ate) , 폴리스틸렌 (Polystyr ene)으로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함하는 것일 수 있다.
상기 용매는 알코올계 용매, 아세톤 (acetone) , 증류수 (¾0), 또는 이들의 조합을 포함할 수 있다.
상기 용매에 대한 상기 유기물의 몰 비율이 0.05 내지 0.08 일 수 있다. 상기 게 1 및 제 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계;에서, 상기 흔합은 상기 티타늄 이온 전구체에 대한 상기 유기물의 몰 비율이 0.2 내지 0.5로 이루어질 수 있다.
상기 방사 공정은 전기 방사 (electrospinning)로 실시하는 것일 수 있다. 상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (Ti02) 나노섬유를 형성하는 단계 ;는 산화성 분위기, 및 400 내지 800에서 1 내지 7시간 수행될 수 있다.
상기 티타늄 옥사이드 (Ti02) 나노섬유는 1차원 구조일 수 있다.
상기 1차원 구조의 나노섬유는 아나타스 티타늄 옥사이드 나노섬유 (Anatase Ti02 nano f iber ) , 루틸 티타늄 옥사이드 나노섬유 (Rut i l e Ti02 nano f iber ) , 또는 이들의 조합일 수 있다.
상기 아나타스 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 400 내지 500에서 1 내지 2시간 하소하여 제조되는 것일 수 있다.
상기 루틸 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 750 내지 800에서 5 내지 7시간 하소하여 제조되는 것일 수 있다.
본 발명의 다른 구현예는, 전술한 리튬 -공기 이차전지용 양극 촉매의 제조방법에 의해 제조된 리튬 -공기 이차전지용 양극 촉매를 제공한다.
본 발명의 또 다른 구현예는, 전술한 리튬 -공기 이차전지용 양극 촉매를 포함하는 리튬 -공기 이차전지용 양극; 음극; 전해질; 및 세퍼레이터를 포함하는 리튬 -공기 이차전지를 제공한다. 【발명의 효과】
본 발명의 일 구현예에 따르면, 티타늄 옥사이드 (Ti02)를 1차원 나노섬유로 제조하여 산소 환원 반웅 및 증발 반웅을 향상시킴으로써 전기화학적 특성이 우수한 리튬 -공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬 -공기 이차전지를 제공할 수 있다.
【도면의 간단한 설명】
도 1은 일 실시예에 따른 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 X선 회절 분석 결과이다.
도 2는 일 실시예에 따른 아나타스 티타늄 옥사이드 나노섬유의 주사전자 현미경 분석 결과이다.
도 3은 일 실시예에 따른 루틸 티타늄 옥사이드 나노섬유의 주사전자 현미경 분석 결과이다.
도 4는 일 실시예에 파른 아나타스 티타늄 옥사이드 나노섬유의 투과전자 현미경 분석 결과이다.
도 5는 일 실시예에 따른 루틸 티타늄 옥사이드 나노섬유의 투과전자 현미경 분석 결과이다.
도 6은 다른 실시예에 따른 리튬 -공기 전지의 초기 용량을 보여주는 도면이다.
도 7은 다른 실시예에 따른 리튬 -공기 전지의 200mA/g(carbon)으로 충ᅳ방전된 초기 사이클의 미분 곡선을 나타내는 도면이다.
도 8은 다른 실시예에 따른 리튬 -공기 전지의 carbon 무게 비 용량 1000mAh/g( carbon)을 기준으로 용량제한 된 수명 특성을 보여주는 도면이다. 도 9는 다른 실시예에 따른 리튬 -공기 전지의 Nyqui st 특성을 보여주는 도면이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명와 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함''한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 본 발명은 리튬 -공기 전지의 산소 환원 반웅 및 산소 증발 반웅을 향상시킬 수 있는 리튬 -공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬 -공기 이차전지를 제조하는 방법에 관한 것이다.
본 발명의 일 구현예는, 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 게 1 용액을 형성하는 단계; 유기물을 용매에 첨가한 후, 교반하여 제 2 용액을 형성하는 단계; 상기 제 1 및 게 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계; 및 상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (Ti02) 나노섬유를 형성하는 단계;를 포함하는 리튬- 공기 이차전지용 양극 촉매의 제조방법을 제공한다.
보다 상세하게, 본 발명의 일 구현예에서, 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제 1 용액을 형성하는 단계;는, 상온 (room temperature)에서 0.5-2시간 수행될 수 있으며, 바람직하게는 1-1.5시간 수행될 수 있다. 이 때, 상기 교반이 0.5시간 미만으로 수행되는 경우 티타늄 이온 전구체가 용매에 층분히 용해되지 않는 문제점이 있고, 2시간을 초과하여 수행되는 경우 티타늄이 석출되는 문제점이 있다.
여기에서, 티타늄 이온 전구체는 티타늄 이소프로프옥사이드 (Ti tanium i sopropoxide) , 티타늄 부트옥사이드 (Ti tanium but oxide) , 티타늄 클로라이드 (Ti tanium chlor ide) , 티타늄 나이트라이드 (Ti tanium ni tr ide) , 및 티타늄 카바이드 (Ti tanium carbide)로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함하는 것일 수 있다.
또한, 용매는 알코올계 용매를 포함할 수 있다. 상기 알코을계 용매는 예컨대, 에탄올 (Ethanol ) 일 수 있다.
이 때, 티타늄 이온 전구체가 티타늄 이소프로프옥사이드인 경우, 제 1 용액을 형성하는 과정에서 상기 티타늄 이소프로프옥사이드가 석출되는 것을 방지하기 위해 상기 제 1 용액에 아세트산 (acet i c acid)을 20-30 mol% 첨가하는 과정을 수행할 수도 있다. 본 발명의 일 구현예에서, 유기물올 용매에 첨가한 후, 교반하여 제 2 용액을 형성하는 단계;는, 전술한 제 1 용액을 형성하는 단계에서와 같이, 상은 (room temperature)에서 0.5ᅳ 2시간 수행될 수 있으며, 바람직하게는 1- 1.5시간 수행될 수 있다. 이 때, 상기 교반이 0.5시간 미만으로 수행되는 경우 유기물이 용매에 층분히 용해되지 않는 문제점이 있고, 2시간을 초과하여 수행되는 경우 제 2 용액에서 점도를 벗어나는 문제점이 있다.
여기에서, 유기불은 폴리비닐피를리돈 (Polyvinyl pyrrol i done) , 폴리메타크릴산아칠 (Po lymethyl methacryl ate) , 폴리스틸렌 (Polystyrene)으로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함하는 것일 수 있다.
또한, 용매는 알코을계 용매, 아세톤 (acetone) , 증류수 (¾0), 또는 이들의 조합을 포함할 수 있다. 상기 알코을계 용매는 예컨대, 메탄올 (methanol )ᅳ 프로판을 (propanol ) , 부탄올 (butanol ), 이소프로필알코올 ( i sopropyl al cohol , ΙΡΑ) 등일 수 있다.
이 때, 상기 용매에 대한 상기 유기물의 몰 비율이 0.05-0.08 일 수 있으며, 바람직하게는 0.06 일 수 있다. 상기 용매에 대한 상기 유기물의 몰 비을이 0.05 미만인 경우에는 비즈 (beads )가 형성되는 문제점이 있고, 0.08을 초과하는 경우에는 후술되는 티타늄 옥사이드 (Ti02) 나노섬유의 두께가 지나치게 두꺼워지는 문제점이 있다.
본 발명의 일 구현예에서, 상기 제 1 및 제 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계;에서는, 전술된 과정에서 형성된 제 1 용액과, 제 2 용액을 소정 비율로 흔합한 후, 방사를 위한 공정 제어를 통해 나노섬유 복합체를 형성하게 된다.
여기에서, 상기 소정 비율은 제 1 용액 내 티타늄 이온 전구체에 대한 제 2 용액 내 유기물의 몰 비율이 0.2-0.5 인 것이 바람직하다. 상기 티타늄 이온 전구체에 대한 상기 유기물의 몰 비율이 0.2 미만인 경우에는 티타늄 옥사이드 (Ti02) 나노섬유가 형성되지 않거나, 나노섬유의 길이가 매우 짧게 형성되는 문제점이 있고, 0.5를 초과하는 경우에는 티타늄 옥사이드 (Ti02) 나노섬유의 두께가 지나치게 두꺼워지는 문제점이 있다.
이 때, 상기 방사 공정은 전기 방사 (el ectrospinning)로 실시하는 것일 수 있다. 전기 방사는 용액을 공급하기 위한 공급기와, 해당 공급기를 통해 공급된 용액을 방사하기 위한 방사노즐, 방사노즐을 통하여 방사되는 섬유를 집적하는 수집기, 및 방사노즐과 수집기 사이에 전압을 인가하기 위한 전압발생기를 포함하는 전기 방사 장치를 사용할 수 있으며, 상기 공급기에 유ᅳ무기 용액을 공급한 후 전압을 인가하여 섬유 형태를 제조할 수 있다. 이는, 기존의 CVD , PVD 등의 bottom-up 방식이나, 여타 top-down 방식의 기술에 비해 섬유형태의 소재를 비교적 쉽게 합성할 수 있다는 장점이 있다.
상기 전기 방사를 위한 공정 제어 조건으로는 흔합된 용액을 밀어추는 속도, 정격 전압, 바늘과 수집되는 알루미늄 호일과의 거리, 바늘의 두께 등이 있을 수 있다. 예컨대, 흔합 용액을 밀어주는 속도는 0.4 내지 0.6 ml /h, 전압은 14.5 내지 15.5 kV, 바늘과 알루미늄 호일과의 거리는 8 내지 10 cm , 바늘의 두께는 23 내지 25 게이지 (gauge) 인 것이 바람직하다.
본 발명의 일 구현예에서, 상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (Ti02) 나노섬유를 형성하는 단계;는 대기 중 산화성 분위기, 및 400- 700에서 1-7시간 수행될 수 있다. 이 때, 열처리 은도가 400 미만인 경우에는 유기물이 충분히 제거되지 않는 문제점이 있고, 700를 초과하는 경우에는 티타늄 옥사이드 (Ti02) 나노섬유의 구조가 유지되지 않는 문제점이 있다. 또한, 열처리 시간이 1시간 미만인 경우에는 유기물이 충분히 제거되지 않는 문제점이 있고, 7시간을 초과하는 경우에는 티타늄 옥사이드 (Ti02) 나노섬유의 구조가 유지되지 않는 문제점이 있다.
보다 구체적으로, 본 발명의 일 구현예를 통해 형성되는 티타늄 옥사이드 (Ti02) 나노섬유는 1차원 구조로서, 아나타스 티타늄 옥사이드 나노섬유 (Anatase Ti02 nano f iber ) , 루틸 티타늄 옥사이드 나노섬유 (Rut i le Ti02 nano f iber ) , 또는 이들의 조합을 포함한다.
이 때, 상기 아나타스 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 400-500에서 1-2시간 하소하여 형성할 수 있고, 상기 루틸 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 750-800에서 5-7시간 하소하여 형성할 수 있다. 또한, 500 초과 및 750 미만에서, 1시간 초과 및 5시간 미만으로 하소하는 경우에는 아나타스 및 루틸 상이 흔합된 티타늄 옥사이드 나노섬유가 형성된다. 【발명의 실시를 위한 형태】
이하 본 발명의 실시예 및 비교예를 기재한다 . 그러나 하기의 실시예는 본 발명의 일 실시예 일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예
실시예 1: 티타늄옥사이드나노섬유의 (TiOg nanofiber) 제조
티타늄 전구체인 티타늄 이소프로프옥사이드 (Titanium isopropoxide)를 에탄올 (ethanol)에 첨가한 후, 상온에서 1시간 동안 교반 (st irr ing)하여 제 1 용액을 준비한다. 이 과정에서 티타늄 이소프로프옥사이드의 석출을 막기 위해 아세트산 (acetic acid)을 25 mol% 첨가하였다.
한편, 에탄을에 유기물인 폴리비닐피를리돈 (Polyvinyl pyrrol idone)을 첨가한 후, 상온에서 1시간 동안 교반하여 게 2 용액을 준비한다. 이 때, 유기물의 농도는 용메 대비 5-8 moiy。까지 조절하였다.
이 후, 상기 제 1 및 제 2 용액을 흔합한 후, 교반하여 균질한 흔합 용액을 수득하였다. 이 때, 흔합 용액 내, 티타늄 옥사이드 전구체에 대한 유기물의 몰비율은 1/3로 하였다.
상기 흔합 용액으로 전기 방사를 통해 나노섬유 복합체를 .형성하였다. 이 때, 전기방사의 조건으로는 상기 흔합 용액을 밀어주는 속도는 0.5 ml, 전압은 14.5-15.5 kV, 바늘과 수집되는 알루미늄 호일과의 거리는 9 cm, 바늘의 두께는 23 게이지 (gauge)를 사용하였다.
이 때, 상기 나노섬유 복합체에는 유기물 /티타늄 전구체가 포함되어 있는데, 대기 중 산화성 분위기, 및 450에서 1시간 동안 하소하여 유기물이 제거된 아나타스 티타늄 옥사이드 나노섬유 (Anatase Ti02 nanofiber)를 제조하였다.
한편, 상기 유기물 /티타늄 전구체가 포함 되어있는 나노섬유 복합체는 하소 온도와 시간 조절에 의해 상의 조절이 가능하다. 일례로, 대기 중 산화성 분위기, 및 750에서 5시간 동안 하소하여 유기물이 제거된 루틸 티타늄 옥사이드 나노섬유 (Rutile Ti02 nanofiber)를 제조하였다. 또한, 700에서 4시간 동안 하소하여 아나타스 및 루틸 상이 흔합된 티타늄 옥사이드 나노섬유를 제조하였다. 실시예 2: 리튬 -공기 전지의 제조
리튬 -공기 전지의 제조 방법은 질소-메틸피를리돈 (N-methylpyrrolidone)을 용매로 사용하여 티타늄 옥사이드 나노섬유와 케첸블랙 (Ketjen black), PVDF- HFP를 40:45:15 ¾>로 섞어 리튬 -공기 전지용 전극을 먼저 제조한다. 제조된 슬러리를 탄소 종이 (carbon paper)에 얇게 바른 후 120에서 5시간 동안 건조한다. 건조 후, 극판을 글러브 박스안으로 옮기고 스와질록-타입의 셀 (Swagelok— type eel Is)을 사용하여 전지를 제조한다. 이 때 , 리튬 금속 포일 (Lithium metal foils)은 카운터 전극으로 사용하며, 세퍼레이터로 유리 섬유 디스크 (Glass Fiber Disk), 전해액으로 테트라에틸렌글리콜 디메틸에테르 (tetraethyleneglycol dimethylether)에 1M LiCF3S03를 교반하여 전해액으로 사용한다. 마지막으로, 조립된 셀은 글러브 박스에서 꺼낸 후, 1 sccm에서 10분 동안 산소 가스 (99.995%)를 넣어 준 후 전기화학 특성 평가를 시행한다. 평가
실험예 1: X선 회절 분석
실시예 1의 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 구조를 분석하기 위하여, X선 회절 분석 결과를 도 1에 나타내었다.
도 1을 참조하면, 아나타스 티타늄 옥사이드는 25.281도 (101),
36.946도 (103), 37.800도 (004), 38.575도 (112), 48.049도 (200), 53.890도 (105), 55.060도 (211)의 2쎄타 (Θ) 각도에서 특징적인 피크 (peak)가 나타났다. 또한, 루틸 티타늄 옥사이드는 27.444도 (110), 36.080도 (101), 39.203도 (200), 41.242도 (111), 44.057도 (210), 54.330도 (211) , 56.644도 (220)의 2쎄타 (Θ) 각도에서 특징적인 피크가 나타났다. 실험예 2: 주사전자 현미경, 투과전자 현미경 분석 ,
실시예 1의 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 형태 및 결정 격자를 분석하기 위하여 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 주사전자 현미경 분석 결과를 각각 도 2 및 도 3에 나타내었다. 또한, 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 투과전자 현미경 분석 결과를 각각 도 4 및 도 5에 나타내었다.
도 2 및 도 3을 참조하면, 각 상, 즉, 아나타스 및 투틸 티타늄 옥사이드 나노섬유의 형태가 잘 나타나 있다. 또한, 도 4 및 도 5를 참조하면, 아나타스 및 루틸 티타늄 옥사이드 나노섬유가 모두 1차원 형태를 나타내고 있음을 알 수 있다.
종합하면, 아나타스 및 루틸 상의 형태가 잘 유지된 티타늄 옥사이드 나노섬유가 제조되었음을 알 수 있다. 실험예 3 : 전기화학특성 평가
실시예 1의 아나타스 티타늄 옥사이드 나노섬유, 및 루틸 티타늄 옥사이드 나노섬유의 촉매 활성에 대한 전기화학 분석 결과를 도 6 내지 도 8에 나타내었다. '
먼저, 상기 촉매를 포함하는 양극 활물질을 사용하여 실시예 2의 방법에 의해 제조된 리튬 -공기 전지를 2-4. 5V에서 200mA/g( carbon)으로 각각 층 ·방전을 실시하여 , 그 충ᅳ방전 특성의 측정 결과를 도 6 및 도 7에 나타내었다.
도 6을 참조하면, 산소 환원 및 증발 반웅 시 산소와 리튬이 결합 /분해되는 전위 평탄면을 나타내고 있으며, 아나타스 티타늄 옥사이드 나노섬유에 비해 루틸 티타늄 옥사이드 나노섬유의 초기 용량이 증가함을 보이고 있다. 대조군으로, 티타늄 옥사이드 촉매를 넣지 않고 제조한 전지의 평가결과도 함께 나타내었다.
도 7은 200mA/g( carbon)으로 각각 충ᅳ방전된 초기 사이클의 미분 곡선으로서, 아나타스 티타늄 옥사이드 나노섬유에 비해 루틸상의 티타늄 옥사이드 나노섬유를 사용한 리튬 -공기 전지의 과전압이 줄어든 것을 확인할 수 있다.
한편, 2~4.5V에서 층 ·방전을 실시하는 동안, 4.2V에서 일정 전압 (constant vol tage)을 유지하였으며, 200mA/g( carbon)으로 carbon 무게 비 용량 lOOOmAh/g carbon)을 기준으로 제한을 하였으며, 20 사이클 (cyc l e) 층 ·방전을 실행하여, 그 층ᅳ방전 특성의 측정 결과를 도 8에 나타내었다. 도 8은 carbon 무게 비 용량 lOOOmAh/g carbon)을 기준으로 용량제한 된 수명 특성을 보기 위한 것으로, 아나타스 티타늄 옥사이드 나노섬유에 비해 루틸 티타늄 옥사이드 나노섬유를 사용한 리튬 -공기 전지의 수명이 향상된 것을 알 수 있다 실험예 4: 임피던스곡선 분석
실시예 2에서 제조된 리튬 -공기 전지를 200mA/g( carbon)으로 방전시킨 후, 0. 1-lOOkHz에서 Nyqui st 특성의 측정 결과를 도 9에 나타내었다.
도 9를 참조하면, 아나타스 티타늄 옥사이드 나노섬유와, 루틸 티타늄 옥사이드 나노섬유를 동일한 회로로 작동 시킨 결과, 루틸 티타늄 옥사이드 나노섬유가 아나타스 티타늄 옥사이드 나노섬유보다 낮은 밴드갭 (band gap)을 가짐으로써 e- 이의 향상으로 인해 전하 이동 저항 (charge transfer resi stance)이 감소했음을 확인할 수 있다. 상기 결과로부터, 루틸 티타늄 옥사이드 나노섬유는 아나타스 티타늄 옥사이드 나노섬유에 비해 산소 및 리튬 이온의 접촉면적 및 리튬 이온의 확산거리가 감소되며, 이로 인해 전기 전도성 및 이온 전도성이 크게 향상되었음을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【청구의 범위】
【청구항 1】
티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제 1 용액을 형성하는 단계;
유기물을 용매에 첨가한 후, 교반하여 제 2 용액을 형성하는 단계;
상기 제 1 및 게 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계; 및
상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (Ti ) 나노섬유를 형성하는 단계
를 포함하는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 2】
저 11 항에 있어서,
상기 티타늄 이온 전구체를 용매에 첨가한 후, 교반하여 제 1 용액을 형성하는 단계;는, 상온에서 0.5 내지 2시간 수행되는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 3】
제 2 항에 있어서 ,
상기 티타늄 이온 전구체는 티타늄 이소프로프옥사이드 (Titanium isopropoxide) , 티타늄 부트옥사이드 (Titanium butoxide) , 티타늄 클로라이드 (Titanium chloride), 티타늄 나이트라이드 (Titanium nitride) , 및 티타늄 카바이드 (Titanium carbide)로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함하는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 4】
제 3 항에 있어서 ,
상기 티타늄 이온 전구체가 티타늄 이소프로프옥사이드 (Titanium isopropoxide) 인 경우, 상기 제 1 용액에 아세트산 (acetic acid)을 20 내지 30 mol% 첨가하는 과정을 더 포함하는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 5】
제 2 항에 있어서,
상기 용매는 알코올계 용매를 포함하는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 6]
제 1 항에 있어서,
상기 유기물을 용매에 첨가한 후, 교반하여 게 2 용액을 형성하는 단계;는, 상온에서 0.5 내지 2시간 수행되는 것인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 7】
제 6 항에 있어서,
상기 유기물은 폴리비닐피를리돈 (Polyvinyl pyrrol i done) , 폴리메타크릴산아칠 (Polymethyl methacryl ate) , 폴리스틸렌 (Polystyrene)으로 이루어진 군에서 선택되는 1 또는 2종 이상을 포함하는 것인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 8】
제 6 항에 있어서,
상기 용매는 알코올계 용매, 아세톤 (acetone) , 증류수 (¾0), 또는 이들의 조합을 포함하는 리륨 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 9】
제 6 항에 있어서,
상기 용매에 대한 상기 유기물의 몰 비율이 0.05 내지 0.08 인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 10】 거 1 l 항에 있어서,
상기 제 1 및 제 2 용액을 흔합한 후, 상기 흔합 용액을 방사하여 나노섬유 복합체를 형성하는 단계;에서,
상기 흔합은 상기 티타늄 이온 전구체에 대한 상기 유기물의 몰 비율이 0.2 내지 0.5 로 이루어지는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 11】
제 1 항에 있어서,
상기 방사 공정은 전기 방사 (electrospinning)로 실시하는 것인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 12】
제 1 항에 있어서,
상기 나노섬유 복합체를 열처리하여 티타늄 옥사이드 (Ti02) 나노섬유를 형성하는 단계;는 산화성 분위기, 및 400 내지 800에서 1 내지 7시간 수행되는 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 13】
제 12 항에 있어서,
상기 티타늄 옥사이드 (Ti02) 나노섬유는 1차원 구조인 리륨 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 14]
제 13 항에 있어서,
상기 1차원 구조의 나노섬유는 아나타스 티타늄 옥사이드 나노섬유 (Anatase Ti02 nano f iber ) , 루틸 티타늄 옥사이드 나노섬유 (Rut i le Ti02 nanof iber ) , 또는 이들의 조합인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 15]
제 14 항에 있어서 상기 아나타스 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 400 내지 500에서 1 내지 2시간 하소하여 제조되는 것인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
【청구항 16】
제 14 항에 있어서,
상기 루틸 티타늄 옥사이드 나노섬유는 상기 나노섬유 복합체를 750 내지 800에서 5 내지 7시간 하소하여 제조되는 것인 리튬 -공기 이차전지용 양극 촉매의 제조방법.
[청구항 17】
제 1 항 내지 제 16 항 중 어느 한 항에 따른 리튬 -공기 이차전지용 양극 촉매의 제조방법에 의해 제조된 리튬 -공기 이차전지용 양극 촉매. [청구항 18】
제 17 항에 따른 리튬-공기 이차전지용 양극 촉매를 포함하는 리튬 -공기 이차전지용 양극;
음극;
전해질; 및
세퍼레이터를 포함하는 리튬 -공기 이차전지 .
PCT/KR2015/010916 2014-10-15 2015-10-15 리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지 WO2016060500A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/509,957 US20170301924A1 (en) 2014-10-15 2015-10-15 Positive electrode catalyst for lithium-air secondary battery, method for manufacturing same, and lithium-air secondary battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140139273A KR101621060B1 (ko) 2014-10-15 2014-10-15 리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬-공기 이차전지
KR10-2014-0139273 2014-10-15

Publications (3)

Publication Number Publication Date
WO2016060500A2 true WO2016060500A2 (ko) 2016-04-21
WO2016060500A9 WO2016060500A9 (ko) 2016-11-10
WO2016060500A3 WO2016060500A3 (ko) 2017-04-27

Family

ID=55747521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010916 WO2016060500A2 (ko) 2014-10-15 2015-10-15 리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지

Country Status (3)

Country Link
US (1) US20170301924A1 (ko)
KR (1) KR101621060B1 (ko)
WO (1) WO2016060500A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102484887B1 (ko) 2016-12-23 2023-01-04 현대자동차주식회사 용액상 방전 반응을 유도하는 퀴논계 액상 촉매를 포함하는 리튬공기전지
KR102484936B1 (ko) 2017-12-29 2023-01-04 현대자동차주식회사 금속 공기 전지
US10886525B2 (en) * 2018-04-02 2021-01-05 Drexel University Free-standing, binder-free metal monoxide/suboxide nanofiber as cathodes or anodes for batteries
KR20200134828A (ko) * 2019-05-23 2020-12-02 현대자동차주식회사 중공 구조체를 포함하는 리튬공기전지용 양극 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766789A (en) * 1995-09-29 1998-06-16 Energetics Systems Corporation Electrical energy devices
KR101451905B1 (ko) * 2012-11-15 2014-10-23 한국에너지기술연구원 리튬-공기 전지용 양극 촉매, 그의 제조방법 및 그를 포함하는 리튬-공기 전지

Also Published As

Publication number Publication date
WO2016060500A9 (ko) 2016-11-10
US20170301924A1 (en) 2017-10-19
KR101621060B1 (ko) 2016-05-16
KR20160044699A (ko) 2016-04-26
WO2016060500A3 (ko) 2017-04-27

Similar Documents

Publication Publication Date Title
US9843045B2 (en) Negative electrode active material and method for producing the same
US8597835B2 (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
Qiu et al. MXenes nanocomposites for energy storage and conversion
KR101939270B1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
EP2909879B1 (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
CN105556710B (zh) 锂二次电池用正极材料
JP7042589B2 (ja) 負極
JP5971279B2 (ja) 電極材料の製造方法
Cai et al. Dual‐confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage
CN103682368A (zh) 一种快充的柔性锂离子电池及其电极的制备方法
Palumbo et al. Silicon few-layer graphene nanocomposite as high-capacity and high-rate anode in lithium-ion batteries
KR101810386B1 (ko) 환원된 그래핀 옥사이드 및 코어쉘 나노입자를 포함하는 나노 복합체 및 그를 포함하는 하이브리드 커패시터
CN109075376A (zh) 非水电解质二次电池
Wu et al. Electrochemical studies on electrospun Li (Li1/3Ti5/3) O4 grains as an anode for Li-ion batteries
Yao et al. Platelike CoO/carbon nanofiber composite electrode with improved electrochemical performance for lithium ion batteries
WO2016060500A2 (ko) 리튬-공기 이차전지용 양극 촉매, 이의 제조방법, 및 이를 포함하는 리튬- 공기 이차전지
KR20160010852A (ko) 리튬 공기 전지, 및 그 제조 방법
CN105934845B (zh) 电器件
Wilhelm et al. Carbon‐coated electrospun V2O5 nanofibers as photoresponsive cathode for lithium‐ion batteries
JP2014519143A (ja) リチウムイオン電池用電極
Xu et al. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries
JP2002241117A (ja) 黒鉛系炭素材料、その製造方法、リチウム二次電池用負極材料およびリチウム二次電池
CN101527370A (zh) 一种动力锂离子电池
KR101188885B1 (ko) 높은 충방전 속도에서 향상된 충방전 특성을 가지는 리튬티타늄산화물 나노 섬유의 제조 방법 및 이를 포함하는 리튬 이차전지
JP2009108444A (ja) メソフェーズピッチ系低温焼成炭素繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851512

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15509957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851512

Country of ref document: EP

Kind code of ref document: A2