WO2016060201A1 - カバー部材 - Google Patents

カバー部材 Download PDF

Info

Publication number
WO2016060201A1
WO2016060201A1 PCT/JP2015/079162 JP2015079162W WO2016060201A1 WO 2016060201 A1 WO2016060201 A1 WO 2016060201A1 JP 2015079162 W JP2015079162 W JP 2015079162W WO 2016060201 A1 WO2016060201 A1 WO 2016060201A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
preferable
cover member
dielectric constant
Prior art date
Application number
PCT/JP2015/079162
Other languages
English (en)
French (fr)
Inventor
智晴 長谷川
伸一 宇南山
勝寿 中山
周平 野村
和孝 小野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016060201A1 publication Critical patent/WO2016060201A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass

Definitions

  • the present invention relates to a cover member.
  • Fingerprint authentication methods include an optical method, a thermal method, a pressure method, and a capacitance method, and the capacitance method is considered to be superior from the viewpoint of sensing sensitivity and power consumption.
  • the electrostatic capacity type sensor detects a local change in electrostatic capacitance at a site where an object to be detected approaches or comes into contact.
  • the configuration of a general electrostatic capacity type sensor (hereinafter also simply referred to as a sensor) measures the distance between an electrode disposed in the sensor and an object to be detected based on the magnitude of the electrostatic capacity.
  • a sensor measures the distance between an electrode disposed in the sensor and an object to be detected based on the magnitude of the electrostatic capacity.
  • an image is acquired using the fact that the capacitance decreases in the concave portion and the capacitance increases in the convex portion according to the unevenness of the fingerprint. That is, the concave / convex pattern of the fingerprint can be recognized by arranging the electrodes in the sensor in a matrix manner and measuring each capacitance.
  • the fingerprint authentication function using a capacitive sensor is mounted on mobile devices such as smartphones, mobile phones, and tablet personal computers because it is small and light and consumes low power.
  • a cover member for protecting the sensor is provided on the upper part of the sensor.
  • Patent Document 2 discloses a film for a fingerprint authentication sensor using a resin material such as polyethylene terephthalate.
  • Patent Document 3 discloses a cover member for sapphire as a cover member for a capacitive sensor used for fingerprint authentication.
  • a further improvement in sensing sensitivity is required for electrostatic capacity sensors, particularly fingerprint authentication sensors.
  • electrostatic capacity sensors particularly fingerprint authentication sensors.
  • a capacitive sensor is mounted on a portable device or the like, there is a risk of dropping or collision due to external use.
  • Such a cover member for a capacitive sensor is required to have excellent scratch resistance in order to prevent scratches caused by dropping or collision.
  • the conventional cover member has not been able to sufficiently achieve both sensing sensitivity and scratch resistance.
  • an object of the present invention is to provide a cover member that contributes to the improvement of sensing sensitivity of a capacitive sensor and has excellent scratch resistance.
  • the present invention has found that the above-mentioned problems can be solved by providing a cover member using glass having a high relative dielectric constant and high Vickers hardness as a cover member for a capacitive sensor, and has completed the present invention.
  • the cover member according to an embodiment of the present invention includes at least glass, and the glass has a Vickers hardness Hv of 600 or more, and the glass has a first surface and a second surface facing the first surface.
  • the relative dielectric constant of the glass at a frequency of 1 MHz is 12 or more.
  • a cover glass provided with the glass whose Vickers hardness Hv is 600 or more and whose relative dielectric constant at a frequency of 1 MHz is 12 or more is also provided.
  • the present invention it is possible to provide a cover member that contributes greatly to improving the sensing sensitivity of the capacitive sensor and has excellent scratch resistance.
  • FIG. 1 is a cross-sectional view of an example of a fingerprint authentication sensor.
  • the cover member of the present embodiment includes at least glass, and the glass has a Vickers hardness Hv of 600 or more, the glass has a first surface and a second surface facing the first surface, and the frequency of the glass The relative dielectric constant at 1 MHz is 12 or more.
  • the cover member of the present embodiment is useful for protecting the sensor unit as well as functioning as one member for operating the capacitive sensor. In the following, the cover member of the present embodiment may be simply referred to as “cover member”.
  • the cover member of this embodiment includes at least glass.
  • the glass in the cover member of the present embodiment has a first surface and a second surface facing the first surface.
  • the first surface of the glass is a surface on the side opposite to the sensor side when the cover member is provided on the upper part of the capacitive sensor.
  • the 2nd surface of the said glass is a surface facing the said 1st surface, and when a cover member is provided in the upper part of an electrostatic capacitance type sensor, it is a surface located in the sensor side.
  • the relative dielectric constant of the glass in the cover member of this embodiment at a frequency of 1 MHz is 12 or more, preferably 13 or more, and more preferably 17 or more.
  • the detected capacitance can be increased, and a capacitive sensor having excellent sensing sensitivity can be realized.
  • sufficient sensing sensitivity can be maintained even if the glass is thickened to increase the strength of the cover member.
  • a difference in capacitance according to the fine irregularities of the fingertip fingerprint becomes large, so that detection can be performed with high sensing sensitivity.
  • the upper limit of the relative dielectric constant of the glass in the cover member of the present embodiment is not particularly limited. However, if it is too high, the dielectric loss increases, the power consumption increases, and the reaction may be slow. . Therefore, the relative dielectric constant of the glass at a frequency of 1 MHz is preferably 1000 or less, and more preferably 100 or less.
  • the relative dielectric constant of the glass in the cover member of the present embodiment can be measured by using, for example, an alternating current impedance method, the capacitance of a capacitance in which electrodes are formed on both surfaces of the glass.
  • the Vickers hardness Hv of the glass in the cover member of the present embodiment is 600 or more, preferably 650 or more, and more preferably 700 or more.
  • the glass has a Vickers hardness of 600 or more, it is possible to sufficiently prevent the cover member from being scratched due to a collision with a colliding object from the outside.
  • the capacitive sensor is mounted on a portable device or the like, it is possible to sufficiently prevent the cover member from being scratched due to dropping or collision of the portable device or the like. Furthermore, damage to the sensor portion protected by the cover member can be sufficiently prevented.
  • the upper limit of the Vickers hardness of the glass in the cover member of this embodiment is not particularly limited, but if it is too high, it may cause difficulty in polishing and processing. Therefore, the Vickers hardness of the glass is, for example, 1200 or less, and preferably 1000 or less.
  • the Vickers hardness of the glass in the cover member of this embodiment can be measured by a Vickers hardness test described in, for example, Japanese Industrial Standard JIS Z 2244 (2009).
  • the cover member of the present embodiment for example, an appropriate material of glass constituting the cover member is selected, the composition of the material is appropriately adjusted, and various processing conditions that can be performed as necessary.
  • the glass can have a relative dielectric constant of 12 or more at a frequency of 1 MHz and a Vickers hardness Hv of 600 or more.
  • the thickness of the glass in the cover member of the present embodiment is preferably 0.8 mm or less, more preferably 0.7 mm or less, still more preferably 0.6 mm or less, and particularly preferably 0.5 mm or less. It is. The thinner the glass, the greater the detected capacitance and the better the sensing sensitivity.
  • the lower limit of the thickness of the glass in the cover member of the present embodiment is not particularly limited. However, when the glass becomes excessively thin, the strength tends to decrease and it is difficult to exhibit an appropriate function as the cover member. Therefore, the thickness of glass is 0.01 mm or more, for example, Preferably it is 0.1 mm or more, More preferably, it is 0.2 mm or more.
  • the cover member of the present embodiment When the cover member of the present embodiment is provided on the upper part of the capacitive sensor, the glass in the cover member only needs to be thin only in the region facing the capacitive sensor. Therefore, the thickness of the region of the glass that does not face the capacitive sensor may be greater than 0.8 mm. Thereby, the rigidity of a cover member can be improved.
  • the cover member of this embodiment and the glass in this cover member may be shape
  • the arithmetic average roughness (Ra) of the glass surface in the cover member of the present embodiment is not particularly limited, but the arithmetic average roughness Ra of the first surface is preferably 300 nm or less, and preferably 30 nm or less. More preferred.
  • the arithmetic average roughness Ra of the first surface of the glass is 300 nm or less, it is preferable from the viewpoint of increasing the sensing sensitivity because it is sufficiently smaller than the degree of unevenness of the fingerprint of the finger.
  • the lower limit of the arithmetic average roughness Ra of the first surface of the glass is not particularly limited, but is preferably 0.3 nm or more, and more preferably 1.0 nm or more.
  • the arithmetic average roughness Ra of the first surface of the glass is preferably 0.3 nm or more from the viewpoint of improving the strength.
  • arithmetic mean roughness Ra of the 1st surface of the said glass can be adjusted with selection of an abrasive grain, a grinding
  • arithmetic mean roughness Ra of the 1st surface of the said glass can be measured based on Japanese Industrial Standard JISB0601 (1994).
  • the arithmetic average roughness Ra of the second surface of the glass is not particularly limited, and may be the same as or different from the first surface.
  • each step is not particularly limited and may be appropriately selected, and conventionally known steps can be typically applied.
  • the raw materials of each component are prepared so as to have the composition described later, and heated and melted in a glass melting furnace.
  • the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness by a conventionally known forming method, and gradually cooled.
  • the glass forming method include a float method, a press method, a fusion method, a downdraw method, and a rollout method.
  • a float method suitable for mass production is suitable.
  • continuous molding methods other than the float method that is, the fusion method and the downdraw method are also suitable.
  • the glass formed into a flat shape or a block shape is reheated and press-molded in a melted state, or the molten glass is pressed.
  • the cover member of this embodiment is obtained by performing processes such as cutting and polishing.
  • a printed layer is provided on the second surface of the glass used for the cover member of the present embodiment.
  • the thickness of the printing layer is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less in order to keep the capacitance of the cover member high.
  • the printing layer can be formed from, for example, an ink composition containing a predetermined color material.
  • the ink composition contains, in addition to the color material, a binder, a dispersant, a solvent, and the like as necessary.
  • the color material may be any color material (colorant) such as a pigment or a dye, and can be used alone or in combination of two or more.
  • the color material can be appropriately selected depending on the desired color. For example, when a light shielding property is required, a black color material or the like is preferably used.
  • the binder is not particularly limited, and examples thereof include polyurethane resins, phenol resins, epoxy resins, urea melamine resins, silicone resins, phenoxy resins, methacrylic resins, acrylic resins, polyarylate resins, polyesters. Resins, polyolefin resins, polystyrene resins, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl acetate, polyvinylidene chloride, polycarbonate, celluloses, polyacetal, and other known resins (thermoplastic resins, thermosetting Curable resin and photo-curable resin).
  • a binder can be used individually or in combination of 2 or more types.
  • the printing method for forming the printing layer is not particularly limited, and an appropriate printing method such as a gravure printing method, a flexographic printing method, an offset printing method, a relief printing method, or a screen printing method can be applied.
  • the minimum absorbance at a wavelength of 380 nm to 780 nm is preferably 0.01 or more, more preferably 0.05 or more, and 0.10 or more. Is more preferably 0.20 or more, and particularly preferably 0.30 or more.
  • the minimum value of the extinction coefficient at a wavelength of 380 nm to 780 nm is preferably 0.3 mm ⁇ 1 or more, and more preferably 0.7 mm ⁇ 1 or more. It is more preferably 1 mm ⁇ 1 or more, further preferably 2 mm ⁇ 1 or more, further preferably 3 mm ⁇ 1 or more, and particularly preferably 4 mm ⁇ 1 or more.
  • the absorbance and extinction coefficient of the cover member having the glass and the printed layer of the present embodiment can be calculated by the same method as the above-described method for calculating the absorbance and extinction coefficient of glass.
  • the cover member of the present embodiment may include a printing layer on the first surface of the glass as necessary.
  • a printing layer on the first surface of the glass as necessary.
  • other layers such as an antiglare layer by etching or coating liquid coating, an antireflection layer, an anti-fingerprint layer (AFP layer), a protective film, etc. You may provide the adhesion layer for bonding, etc. suitably.
  • the cover member using crystallized glass can be manufactured as follows, for example. First, a glass raw material is first prepared, and glass of the mother composition (mother glass) is obtained by melting and cooling. Thereafter, the glass of the mother composition is again heat-treated to grow a fine crystal phase in the mother glass to obtain a crystallized glass.
  • the kind and size of crystals to be deposited can be controlled, and thereby the relative dielectric constant of the crystallized glass can be controlled.
  • the obtained crystallized glass is subjected to processing such as cutting and polishing, and a cover member for a capacitive sensor using the crystallized glass is obtained. It is also possible to perform processing immediately after the mother glass is manufactured, and then perform heat treatment for crystallization.
  • the conditions of each step in producing a cover member using crystallized glass can be appropriately selected in consideration of the composition of the mother glass, the degree of crystallization, and the like.
  • the heat treatment conditions for obtaining the crystallized glass by performing the heat treatment on the mother glass are not particularly limited, but the relative dielectric constant at a frequency of 1 MHz is 12 or more, and the Vickers hardness Hv is 600.
  • the heating temperature is, for example, 900 ° C. to 1200 ° C., preferably 1000 ° C. to 1050 ° C.
  • the heating time is, for example, 1 hour to 24 hours, preferably 5 hours to 10 hours.
  • the composition of the crystallized glass is not particularly limited as long as a desired dielectric constant and surface hardness can be obtained and a practical production process can be applied.
  • the surface hardness for example, silicate-based or borosilicate crystallized glass containing SiO 2 for forming hard glass, borate-based glass containing B 2 O 3 as a glass forming component , Phosphate-based crystallized glass containing P 2 O 5 as a glass-forming component, and Li 2 O, Na 2 O, K 2 O, MgO, CaO,
  • the glass include one or more of SrO, BaO, PbO, TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 .
  • transition metals and rare earth elements for coloring.
  • transition metals and rare earth elements include Cr, Mn, Fe, Co, Ni, Cu, Nd, Eu, Gd, Tb, Tm, Yb, and Er.
  • composition of the glass of each system will be described.
  • content of each component is described with the mol% of an oxide basis.
  • SiO 2 is a component that forms a glass skeleton. If it is less than 20%, the viscosity of the glass decreases and it becomes difficult to suppress the crystal phase minutely, so 20% or more is preferable. More preferably, it is 25% or more, and further preferably 30% or more. If it exceeds 70%, the meltability may be significantly deteriorated, so 70% or less is preferable. More preferably, it is 60% or less, More preferably, it is 50% or less.
  • Al 2 O 3 is a component that suppresses phase separation of glass, improves chemical durability, improves surface hardness, and can be a component of a crystal phase. In order to sufficiently obtain the above effects, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 30%, the meltability may be remarkably deteriorated, so 30% or less is preferable. More preferably, it is 25% or less, More preferably, it is 20% or less.
  • Alkali metals Li 2 O, Na 2 O and K 2 O are components that enhance solubility.
  • the total amount is preferably 1% or more, more preferably 2% or more.
  • a total amount is 40% or less. 35% or less is more preferable, and 30% or less is more preferable.
  • Alkaline earth metals MgO, CaO, SrO and BaO are components that increase solubility and improve surface hardness, and can be components of the crystal phase.
  • the total amount is preferably 1% or more, more preferably 3% or more.
  • the stability of the glass may be impaired, so 50% or less is preferable.
  • the total amount is more preferably 40% or less, and further preferably 30% or less.
  • PbO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 45%, the specific gravity may increase, so 45% or less is preferable. It is more preferably 40% or less, and further preferably 30% or less.
  • TiO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleating agent and promotes nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable, 32% or less is more preferable, and 30% or less is more preferable.
  • ZrO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleation agent and accelerates nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 15%, coloring may be remarkable, so 15% or less is preferable, 12% or less is more preferable, and 10% or less is more preferable.
  • P 2 O 5 is a component that causes aggregation in the silicate glass and acts as a nucleating agent for crystallization to promote nucleation.
  • 1% or more is preferable, and 3% or more is more preferable. If it exceeds 10%, the surface hardness may decrease, so 10% or less is preferable, and 5% or less is more preferable.
  • NiO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 15%, the melting temperature may increase, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less.
  • Ta 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 35%, the melting temperature may increase, so 35% or less is preferred, 30% or less is more preferred, and 25% or less is even more preferred.
  • Nb 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 30%, the melting temperature may increase, so 30% or less is preferred, 20% or less is more preferred, and 15% or less is even more preferred.
  • Bi 2 O 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 50%, coloring may be remarkable, so 50% or less is preferable, 45% or less is more preferable, and 43% or less is more preferable.
  • WO 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 2% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable. More preferably, it is 30% or less, More preferably, it is 28% or less.
  • the glass of the following composition ranges is preferable.
  • SiO 2 is a component that forms a glass skeleton. If it is less than 8%, the viscosity of the glass decreases and it becomes difficult to suppress the crystal phase minutely, so 8% or more is preferable. More preferably, it is 10% or more, More preferably, it is 15% or more. If it exceeds 60%, the meltability may be remarkably deteriorated, so 60% or less is preferable. More preferably, it is 50% or less, More preferably, it is 45% or less.
  • B 2 O 3 is a component that forms a glass skeleton and enhances meltability. If it is less than 1%, there is a tendency that it does not contribute to improvement of meltability, so 1% or more is preferable. More preferably, it is 2% or more, and further preferably 5% or more. If it exceeds 50%, the surface hardness is lowered, and the homogeneity may be deteriorated due to phase separation or volatilization, so 50% or less is preferable. More preferably, it is 45% or less, More preferably, it is 40% or less.
  • Al 2 O 3 is a component that suppresses phase separation of glass, improves chemical durability, improves surface hardness, and can be a component of a crystal phase.
  • 1% or more is preferable, and 2% or more is more preferable. If it exceeds 20%, the meltability may be remarkably deteriorated, so 20% or less is preferable. More preferably, it is 16% or less, More preferably, it is 14% or less.
  • Alkali metals Li 2 O, Na 2 O and K 2 O are components that enhance solubility.
  • the total amount is preferably 1% or more, more preferably 2% or more.
  • a total amount is 40% or less. 35% or less is more preferable, and 30% or less is more preferable.
  • Alkaline earth metals MgO, CaO, SrO and BaO are components that increase solubility and improve surface hardness, and can be components of the crystal phase.
  • the total amount is preferably 1% or more, more preferably 3% or more.
  • the stability of the glass may be impaired, so 50% or less is preferable.
  • the total amount is more preferably 40% or less, and further preferably 30% or less.
  • PbO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 45%, the specific gravity may increase, so 45% or less is preferable. It is more preferably 40% or less, and further preferably 30% or less.
  • TiO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleating agent and promotes nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable, 32% or less is more preferable, and 30% or less is more preferable.
  • ZrO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleation agent and accelerates nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 15%, coloring may be remarkable, so 15% or less is preferable, 12% or less is more preferable, and 10% or less is more preferable.
  • P 2 O 5 is a component that causes aggregation in the silicate glass and acts as a nucleating agent for crystallization to promote nucleation.
  • 1% or more is preferable, and 3% or more is more preferable. If it exceeds 10%, the weather resistance is deteriorated and the surface hardness may be lowered, so that it is preferably 10% or less, more preferably 5% or less.
  • NiO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 15%, the melting temperature may increase, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less.
  • Ta 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 35%, the melting temperature may increase, so 35% or less is preferred, 30% or less is more preferred, and 25% or less is even more preferred.
  • Nb 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 30%, the melting temperature may increase, so 30% or less is preferred, 20% or less is more preferred, and 15% or less is even more preferred.
  • Bi 2 O 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. Since coloring may become remarkable when it is 50% or more, 50% or less is preferable, 45% or less is more preferable, and 43% or less is more preferable.
  • WO 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 2% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable. More preferably, it is 30% or less, More preferably, it is 28% or less.
  • borosilicate crystallized glass glass having the following composition range is preferable.
  • P 2 O 5 is a component that forms a glass skeleton. Preferably it is 10% or more, More preferably, it is 15% or more, More preferably, it is 20% or more. On the other hand, if it exceeds 50%, the weather resistance deteriorates and the strength may be lowered. More preferably, it is 40% or less, More preferably, it is 38% or less, More preferably, it is 36% or less.
  • SiO 2 is a component that forms a glass skeleton. If it is less than 3%, the viscosity of the glass is lowered and it is difficult to suppress the crystal phase minutely, so 3% or more is preferable. More preferably, it is 4% or more, More preferably, it is 10% or more. If it exceeds 50%, the meltability may be significantly deteriorated, so 50% or less is preferable. More preferably, it is 46% or less, More preferably, it is 30% or less.
  • Al 2 O 3 is a component that suppresses phase separation of glass, improves chemical durability, improves surface hardness, and can be a component of a crystal phase.
  • 1% or more is preferable, and 2% or more is more preferable. If it exceeds 20%, the meltability may be remarkably deteriorated, so 20% or less is preferable. More preferably, it is 16% or less, More preferably, it is 14% or less.
  • B 2 O 3 is a component that forms a glass skeleton and enhances meltability. If it is less than 1%, it tends not to contribute to improvement of meltability, so 1% or more is preferable. Preferably it is 2% or more, More preferably, it is 5% or more. If it exceeds 30%, the surface hardness is lowered, and the homogeneity may be deteriorated due to phase separation or volatilization, so 30% or less is preferable. More preferably, it is 25% or less, More preferably, it is 20% or less.
  • Alkali metals Li 2 O, Na 2 O and K 2 O are components that enhance solubility.
  • the total amount is preferably 1% or more, more preferably 2% or more.
  • a total amount is 40% or less. 35% or less is more preferable, and 30% or less is more preferable.
  • Alkaline earth metals MgO, CaO, SrO and BaO are components that increase solubility and improve surface hardness, and can be components of the crystal phase.
  • the total amount is preferably 1% or more, more preferably 3% or more.
  • the stability of the glass may be impaired, so 50% or less is preferable.
  • the total amount is more preferably 40% or less, and further preferably 30% or less.
  • PbO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 45%, the specific gravity may increase, so 45% or less is preferable. It is more preferably 40% or less, and further preferably 30% or less.
  • TiO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleating agent and promotes nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable, 32% or less is more preferable, and 30% or less is more preferable.
  • ZrO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleation agent and accelerates nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 15%, coloring may be remarkable, so 15% or less is preferable, 12% or less is more preferable, and 10% or less is more preferable.
  • NiO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 15%, the melting temperature may increase, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less.
  • Ta 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 35%, the melting temperature may increase, so 35% or less is preferred, 30% or less is more preferred, and 25% or less is even more preferred.
  • Bi 2 O 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. Since coloring may become remarkable when it is 50% or more, 50% or less is preferable, 45% or less is more preferable, and 43% or less is more preferable.
  • WO 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 2% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable. More preferably, it is 30% or less, More preferably, it is 28% or less.
  • glass having the following composition range is preferable.
  • B 2 O 3 is a component that forms a glass skeleton. If it is less than 15%, it tends not to contribute to improvement of meltability, so 15% or more is preferable. More preferably, it is 20% or more, More preferably, it is 24% or more. If it exceeds 70%, the surface hardness is lowered and the homogeneity may be deteriorated due to phase separation or volatilization, so 70% or less is preferable. More preferably, it is 65% or less, More preferably, it is 60% or less.
  • Al 2 O 3 is a component that suppresses phase separation of glass, improves chemical durability, improves surface hardness, and can be a component of a crystal phase.
  • 1% or more is preferable, and 2% or more is more preferable. If it exceeds 40%, the meltability may be remarkably deteriorated, so that it is preferably 40% or less. More preferably, it is 16% or less, More preferably, it is 14% or less.
  • Alkali metals Li 2 O, Na 2 O and K 2 O are components that enhance solubility.
  • the total amount is preferably 1% or more, more preferably 2% or more.
  • a total amount is 40% or less. 35% or less is more preferable, and 30% or less is more preferable.
  • Alkaline earth metals MgO, CaO, SrO and BaO are components that increase solubility and improve surface hardness, and can be components of the crystal phase.
  • the total amount is preferably 1% or more, more preferably 3% or more.
  • the total amount is more than 50%, the stability of the glass may be impaired. Therefore, the total amount is preferably 50% or less.
  • the total amount is more preferably 40% or less, and further preferably 30% or less.
  • PbO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 45%, the specific gravity may increase, so 45% or less is preferable. It is more preferably 40% or less, and further preferably 30% or less.
  • TiO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleating agent and promotes nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable, 32% or less is more preferable, and 30% or less is more preferable.
  • ZrO 2 is a component that increases the relative dielectric constant and improves the surface hardness, and is a component that acts as a nucleation agent and accelerates nucleation during crystallization of glass. In order to sufficiently obtain the above effects, 1% or more is preferable, and 3% or more is more preferable. If it exceeds 15%, coloring may be remarkable, so 15% or less is preferable, 12% or less is more preferable, and 10% or less is more preferable.
  • P 2 O 5 is a component that causes aggregation in the borate glass and acts as a nucleating agent during crystallization to promote nucleation.
  • 1% or more is preferable, and 3% or more is more preferable. If it exceeds 10%, the weather resistance is deteriorated and the surface hardness may be lowered, so that it is preferably 10% or less, more preferably 5% or less.
  • NiO is a component that increases the dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 15%, the melting temperature may increase, so it is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less.
  • Ta 2 O 5 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 35%, the melting temperature may increase, so 35% or less is preferred, 30% or less is more preferred, and 25% or less is even more preferred.
  • Bi 2 O 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 1% or more is preferable, and 2% or more is more preferable. If it exceeds 50%, coloring may be remarkable, so 50% or less is preferable, 45% or less is more preferable, and 43% or less is more preferable.
  • WO 3 is a component that increases the relative dielectric constant. In order to increase the relative dielectric constant, 2% or more is preferable, and 3% or more is more preferable. If it exceeds 35%, coloring may be remarkable, so 35% or less is preferable. More preferably, it is 30% or less, More preferably, it is 28% or less.
  • La 2 O 3 is a component that increases the relative dielectric constant and improves weather resistance.
  • the content is preferably 5% or more, and more preferably 7% or more.
  • it is preferably 25% or less, more preferably 22% or less.
  • Gd 2 O 3 is a component that increases the relative dielectric constant, improves weather resistance, and improves the stability of the glass by coexisting with La 2 O 3 .
  • the content is preferably 1% or more, and more preferably 2% or more. In order not to lower the stability of the glass, it is preferably 20% or less, more preferably 18% or less.
  • the total amount of Nb 2 O 5 , Bi 2 O 3 , TiO 2 , WO 3 , La 2 O 3 , Gd 2 O 3 , ZrO 2 , Ta 2 O 5 and BaO is also used to increase the dielectric constant. 6% or more, preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more. In order not to lower the stability of the glass, 60% or less is preferable, 55% or less is more preferable, and 50% or less is more preferable.
  • glass having the following composition range is preferable.
  • the refractive index at the d-line is preferably 1.6 or more. Also, in the case of glass containing no P 2 O 5, it is preferable that the refractive index at the d-line is 1.8 or more. Thereby, the dielectric constant of glass can be raised. In addition, the refractive index in d line
  • Glass can be easily formed into a plate-like member by hot or cold processing.
  • the glass in the present embodiment it has a relative dielectric constant suitable for sensing and can be easily processed into a thin plate shape as compared with conventional sapphire, for example, and is suitable for mass production and cost reduction. is there.
  • the cover member of this embodiment has a feature that it is easy to process while having high scratch resistance.
  • the Vickers hardness (Hv) is 600 or more, preferably 650 or more, more preferably 680 or more, and further preferably 700 or more.
  • the degree of wear is 40 or more in order to improve workability for flat plate processing, mirror surface processing, or end surface processing by grinding and polishing. Preferably it is 45 or more, More preferably, it is 50 or more.
  • the degree of wear can be measured, for example, by the method described in Japan Optical Glass Industry Association Standard JOGIS-10.
  • the manufacturing method of the cover member using the glass of this embodiment is as follows, for example. First, a glass raw material is first prepared to have a predetermined composition, heated, melted and clarified, then formed into a predetermined shape, and subsequently cooled to obtain a plate-like or massive glass. The obtained glass is subjected to processing such as cutting, cutting, and polishing to obtain a cover member using glass. At this time, the cover member can be obtained by cutting or cutting glass formed into a plate having a predetermined thickness into a desired shape. It can also be processed by slicing a glass molded into a rod shape and polishing it smoothly.
  • the cover member can also be obtained by forming glass into a flat plate by hot pressing or redrawing and then processing it into a predetermined shape.
  • precision press molding using a gob that has been float molded as a preform does not require polishing, a large number of cover members can be manufactured at low cost.
  • the composition of the glass forming the cover member is not particularly limited as long as the relative permittivity is high and desired sensing characteristics can be obtained, but in order to improve the relative permittivity and maximize the sensing efficiency, for example, A system containing P 2 O 5 and further containing one or more components of Nb 2 O 5 , Bi 2 O 3 , TiO 2 and WO 3 , B 2 O 3 , La 2 O 3 , Nb 2 O 5 ZrO 2 , Ta 2 O 5 , a system containing one or more components of WO 3 and BaO, a system containing SiO 2 and a system containing one or more components of Nb 2 O 5 and TiO 2 , mainly Bi 2 O 3 Examples thereof include a system containing as a component and a system containing TeO 2 as a main component.
  • the system shown above is an example, and the system is not particularly limited as long as the intended purpose can be achieved. Further, tin oxide, antimony oxide, sulfate, halogens such as fluorine and chlorine, and nitrogen may be contained in order to improve clarity, meltability, moldability, and mechanical properties. However, in all glass systems used as a cover member in the present embodiment, As 2 O 3 , PbO, CdO, ThO 2 and HgO, which are components that adversely affect the environment, are derived from raw materials. It must not be included unless it is inevitably mixed as an impurity.
  • glass having the following composition range is preferable.
  • the composition is expressed in mol% based on oxide unless otherwise specified.
  • Nb 2 O 5 10-50% TiO 2 0-30% WO 3 0-40% Bi 2 O 3 0-30%
  • P 2 O 5 is a component that forms this glass-based skeleton and vitrifies, but when the content is too small, the devitrification of the glass becomes large and the glass cannot be obtained, so 15% or more is preferable, 18% or more is more preferable. On the other hand, if the content is too large, the relative dielectric constant is lowered, so that the object of the invention may not be achieved. Therefore, the content is preferably 40% or less, and more preferably 35% or less.
  • B 2 O 3 is a component that improves devitrification resistance and decreases the coefficient of thermal expansion when added to glass, but if the content is too large, the relative permittivity may be decreased. Therefore, 18% or less is preferable and 15% or less is more preferable.
  • SiO 2 is a component that stabilizes the glass by adding a trace amount and improves devitrification resistance. However, if the content is too large, the relative dielectric constant may decrease, so that 10% The following is preferable, and 8% or less is more preferable.
  • Nb 2 O 5 is a component that simultaneously improves the dielectric constant and also has the effect of improving weather resistance. Therefore, the content is preferably 1% or more, and more preferably 8% or more. On the other hand, if the content is too large, devitrification becomes strong and the glass may not be obtained. Therefore, the content is preferably 40% or less, and more preferably 35% or less.
  • TiO 2 is a component that improves the relative permittivity, but if the content is too large, the coloring of the glass becomes strong, the loss in the scattering layer increases, and the purpose of improving the light extraction efficiency cannot be achieved. There is a risk that. Therefore, the content is preferably 15% or less, and more preferably 13% or less.
  • WO 3 is a component that improves the dielectric constant, lowers the glass transition temperature, and lowers the firing temperature. However, when introduced excessively, the glass is colored, and there is a possibility that the light extraction efficiency is lowered.
  • the content is preferably 40% or less, and more preferably 35% or less.
  • Bi 2 O 3 is a component that improves the relative dielectric constant, and can be introduced into the glass in a relatively large amount while maintaining the stability of the glass. However, when introduced excessively, there is a possibility that the glass will be colored and the transmittance will be lowered. Therefore, the content is preferably 30% or less, more preferably 25% or less.
  • the total amount of components of Nb 2 O 5 , TiO 2 , WO 3 , and Bi 2 O 3 is preferably 10% or more, more preferably 20% or more, and 25% or more. Is more preferable.
  • the total amount of these components is preferably 60% or less, and more preferably 55% or less.
  • Ta 2 O 5 is a component that improves the dielectric constant. However, if the amount added is too large, the devitrification resistance may be lowered, and the price is high. % Or less is preferable, and 5% or less is more preferable.
  • Alkali metal oxides (R 2 O) such as Li 2 O, Na 2 O, and K 2 O are components that have the effect of improving the meltability and lowering the glass transition temperature. Therefore, it is desirable to contain one or more of these.
  • the total amount of Li 2 O + Na 2 O + K 2 O is desirably 5% or more, and more preferably 10% or more. However, when it contains excessively, there exists a possibility that the stability of glass may be impaired. Therefore, the total amount is preferably 40% or less, and more preferably 35% or less.
  • Li 2 O is a component for decreasing the glass transition temperature and improving the solubility.
  • the content is desirably 20% or less, and more desirably 15% or less.
  • Both Na 2 O and K 2 O are components that improve the meltability. However, if they are contained excessively, the relative permittivity may be lowered, and desired sensing characteristics may not be achieved. Therefore, each content is preferably 20% or less, and more preferably 15% or less.
  • ZnO is a component that improves the dielectric constant and lowers the glass transition temperature. However, if added excessively, the devitrification of the glass is increased, and there is a possibility that a homogeneous glass cannot be obtained. Therefore, the content is preferably 20% or less, and more preferably 18% or less.
  • BaO is a component that improves the dielectric constant and at the same time improves the solubility, but if added excessively, the stability of the glass may be impaired, so its content is preferably 20% or less, More preferably, it is 18% or less.
  • MgO, CaO and SrO are components that improve the meltability, but at the same time, they are components that lower the relative dielectric constant, and therefore all are preferably 10% or less, and more preferably 8% or less.
  • the total amount of the above components is preferably 90% or more, more preferably 93% or more, and further preferably 95% or more.
  • a clarifier, a vitrification accelerating component, a relative dielectric constant adjusting component, or the like may be added in a small amount as long as necessary glass characteristics are not impaired.
  • Sb 2 O 3 and SnO 2 are mentioned as the fining agent
  • GeO 2 , Ga 2 O 3 and In 2 O 3 are used as the vitrification promoting component
  • ZrO 2 is used as the relative dielectric constant adjusting component, such as Y 2 O 3, La 2 O 3, Gd 2 O 3, Yb 2 O 3 and the like.
  • B 2 O 3 20-60% SiO 2 0-20% Li 2 O 0-20% Na 2 O 0-10% K 2 O 0-10% ZnO 0-40% La 2 O 3 0-25% Gd 2 O 3 0-20% Y 2 O 3 0-20% Yb 2 O 3 0-20% TiO 2 0-20% ZrO 2 0-15% Ta 2 O 5 0-15% Nb 2 O 5 0-15% WO 3 0-15% Bi 2 O 3 0-20% BaO 0-30%
  • B 2 O 3 is a network forming oxide. If the content is too small, glass may not be formed or the devitrification resistance of the glass may be lowered. Therefore, the content is preferably 20% or more, and more preferably 25% or more. On the other hand, if the content is too large, the relative dielectric constant is lowered and the resistance may be further lowered. Therefore, the content is 60% or less, more preferably 55% or less.
  • SiO 2 is a component that improves the stability of the glass when added to this type of glass. However, if the amount introduced is too large, the relative permittivity may be decreased or the glass transition temperature may be increased. Therefore, the content is preferably 20% or less, and more preferably 18% or less.
  • Li 2 O is a component that lowers the glass transition temperature and improves moldability. However, when the introduction amount is too large, the devitrification resistance of the glass may be lowered. Therefore, the content is preferably 20% or less, and more preferably 18% or less.
  • Na 2 O and K 2 O improve solubility, because it may decrease the devitrification resistance decreases and the dielectric constant of is provided by the introduction, preferably 10% or less, respectively, and more preferably 8% or less .
  • the introduction amount is preferably 5% or more, and more preferably 7% or more.
  • the amount is preferably 40% or less, and more preferably 35% or less. .
  • La 2 O 3 is a component that achieves a high relative dielectric constant and improves weather resistance when introduced into B 2 O 3 glass. Therefore, the content is preferably 5% or more, and more preferably 7% or more. On the other hand, when the introduction amount is too large, the glass transition temperature may be high, or the devitrification resistance of the glass may be reduced, and a homogeneous glass may not be obtained. Therefore, the content is preferably 25% or less, and more preferably 22% or less.
  • Gd 2 O 3 is a component that achieves a high relative dielectric constant and improves weather resistance when introduced into B 2 O 3 glass, and improves the stability of the glass by coexisting with La 2 O 3.
  • the content is preferably 20% or less, and more preferably 18% or less.
  • Y 2 O 3 and Yb 2 O 3 achieve a high relative dielectric constant, improve the weather resistance when introduced into B 2 O 3 glass, and improve the stability of the glass by coexisting with La 2 O 3
  • the content is preferably 20% or less, and preferably 18% or less.
  • Rare earth oxides such as La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , and Yb 2 O 3 are components for achieving a high dielectric constant and improving the weather resistance of glass.
  • the total amount of components, La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 is preferably 5% or more, and more preferably 8% or more.
  • it is preferably 30% or less, and more preferably 25% or less.
  • TiO 2 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may be lowered or the liquidus temperature may be excessively increased. % Or less, more preferably 15% or less, and even more preferably 10% or less.
  • ZrO 2 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may be lowered, or the liquidus temperature may be excessively improved. % Or less, more preferably 10% or less, and even more preferably 8% or less.
  • Ta 2 O 5 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may be lowered or the liquidus temperature may be excessively increased. Is preferably 15% or less, and more preferably 13% or less.
  • Nb 2 O 5 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may be lowered, or the liquidus temperature may be excessively improved. Is preferably 15% or less, and more preferably 10% or less.
  • WO 3 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may be lowered or the liquidus temperature may be excessively increased. % Or less, and more preferably 10% or less.
  • Bi 2 O 3 is a component for improving the relative dielectric constant. However, if the content is too large, the devitrification resistance may decrease, or the glass may be colored to cause a decrease in transmittance. The amount is preferably 15% or less, and more preferably 13% or less.
  • BaO is a component that improves the relative dielectric constant, but if the content is too large, the devitrification resistance may be lowered. Therefore, it is preferably 30% or less, and more preferably 25% or less. Preferably, it is more preferably 20% or less.
  • the total amount of Nb 2 O 5 , TiO 2 , WO 3 , La 2 O 3 , ZrO 2 , Ta 2 O 5 and BaO is preferably 10% or more. However, if the total amount of these components is too large, the stability of the glass may be impaired, so 60% or less is preferable.
  • the total amount of the components described above is preferably 90% or more, and more preferably 95% or more. Even components other than those described above may be added within the range not impairing the effects of the present invention for the purpose of clarifying and improving solubility. Examples of such components include Sb 2 O 3 , SnO 2 , MgO, CaO, SrO, GeO 2 , Ga 2 O 3 , In 2 O 3 , and fluorine.
  • SiO 2 30-75% B 2 O 3 0-20% Nb 2 O 5 0-50% TiO 2 0-30% Bi 2 O 3 0-15% ZrO 2 0-15% BaO 0-50% Nb 2 O 5 + TiO 2 + Bi 2 O 3 + ZrO 2 + BaO 6-40% Li 2 O 0-30% Na 2 O 0-30% K 2 O 0-30% Li 2 O + Na 2 O + K 2 O 0-40% MgO 0-20% CaO 0-20% SrO 0-20% ZnO 0-20%
  • SiO 2 is a component that functions as a network former for forming glass. If its content is too small, glass may not be formed, so it is preferably 30% or more, and 40% or more. Is more preferable. Moreover, since there exists a possibility that a viscosity may become high and solubility may fall when there is too much content, it is preferable that it is 75% or less.
  • B 2 O 3 helps to form glass by adding a relatively small amount with SiO 2 to reduce devitrification. However, if the content is too large, the relative dielectric constant may be lowered. It is preferably 20% or less, and more preferably 18% or less.
  • Nb 2 O 5 is a component for improving the dielectric constant, but in order to achieve a predetermined dielectric constant characteristic, its content is preferably 1% or more, and preferably 3% or more. Is more preferable, and 5% or more is more preferable. However, when added excessively, the devitrification resistance of the glass is lowered, and there is a possibility that a homogeneous glass cannot be obtained. Therefore, the content is desirably 50% or less, and more preferably 45% or less.
  • TiO 2 is a component for improving the dielectric constant, but in order to achieve a predetermined dielectric constant characteristic, its content is preferably 1% or more, more preferably 3% or more. Preferably, 5% or more is more preferable. However, when added excessively, the devitrification resistance of the glass is lowered, and there is a possibility that a homogeneous glass cannot be obtained. Therefore, the content is desirably 30% or less, and more desirably 20% or less.
  • Bi 2 O 3 is a component for improving the relative dielectric constant, but if added excessively, the devitrification resistance of the glass is lowered, a homogeneous glass cannot be obtained, and further, coloring is caused, and the scattering layer is formed. There is a risk of increasing loss due to absorption when light propagates. Therefore, the content is desirably 15% or less, and more desirably 12% or less.
  • ZrO 2 is a component that improves the relative dielectric constant without deteriorating the coloring degree.
  • the content is preferably 15% or less, and more preferably 10% or less.
  • BaO is a component that improves the dielectric constant and at the same time improves the solubility. However, when it is excessively contained, the stability of the glass is impaired, and there is a possibility that a homogeneous glass cannot be obtained. % Or less is preferable, and 45% or less is more preferable.
  • the total amount of the components of Nb 2 O 5 , Bi 2 O 3 , TiO 2 , ZrO 2 and BaO is preferably 6% or more, and 8% or more. Is more preferable. On the other hand, if this total amount is too large, the devitrification resistance of the glass may be reduced or coloring may occur, so 40% or less is preferable, 35% or less is more preferable, and 30% or less. Is more preferable.
  • Li 2 O, Na 2 O and K 2 O are components that improve the solubility and lower the glass transition temperature, and further increase the affinity with the glass substrate. Therefore, the total amount Li 2 O + Na 2 O + K 2 O of these components is preferably 1% or more, and more preferably 3% or more. On the other hand, when the total amount of these components is too large, the devitrification resistance of the glass is lowered, and there is a possibility that a homogeneous glass cannot be obtained. Therefore, the total amount is preferably 40% or less, 33% The following is more preferable. Further, Li 2 O, Na 2 O and K 2 each content of O is preferably 30% or less, respectively, and more preferably 25% or less.
  • MgO, CaO, SrO and ZnO are components that improve the solubility of the glass. If added appropriately, the devitrification resistance of the glass is lowered, but if it is excessively contained, the devitrification becomes higher and the glass is homogeneous. Therefore, the content is preferably 20% or less, and more preferably 15% or less.
  • the total amount of the components described above is desirably 90% or more in the cover member of the present embodiment.
  • components other than those described above may be added within the range not impairing the effects of the present invention for the purpose of clarifying and improving solubility. Examples of such components include Sb 2 O 3 , SnO 2 , GeO 2 , Ga 2 O 3 , In 2 O 3 , WO 3 , Ta 2 O 5 , La 2 O 3 , Gd 2 O 3 , Y 2 O. 3 , Yb 2 O 3 and the like.
  • Bi 2 O 3 10-50% B 2 O 3 0-60% SiO 2 0-60%
  • Bi 2 O 3 is a component that achieves a high relative dielectric constant and stably forms glass even when introduced in a large amount. Therefore, the content is preferably 10% or more, and more preferably 15% or more. On the other hand, when added excessively, the glass is colored, devitrification becomes high, and there is a possibility that a homogeneous glass cannot be obtained. Therefore, the content is preferably 50% or less, and more preferably 45% or less.
  • B 2 O 3 is a component that works as a network former and assists glass formation in a glass containing a large amount of Bi 2 O 3 , and its content is preferably 1% or more, and more preferably 3% or more. However, when the addition amount is too large, the relative dielectric constant of the glass may be lowered, so 60% or less is preferable, and 50% or less is more preferable.
  • SiO 2 is a component that works to assist glass formation using Bi 2 O 3 as a network former. However, if the content is too large, the relative dielectric constant may be lowered. % Or less is more preferable.
  • the total amount is preferably 10% or more, and more preferably 15% or more.
  • the relative dielectric constant may be lowered. Therefore, it is preferably 60% or less, and more preferably 50% or less.
  • P 2 O 5 is a component that assists in glass formation and suppresses deterioration of the degree of coloring.
  • the content when the content is too large, it may cause a decrease in relative permittivity, so 20% or less is preferable. % Or less is more preferable.
  • Li 2 O, Na 2 O and K 2 O are components for improving the glass solubility and further lowering the glass transition temperature.
  • the devitrification resistance of the glass is lowered and is homogeneous. There is a risk that the glass cannot be obtained. For this reason, 15% or less is preferable respectively, and 13% or less is more preferable.
  • the total amount of the above alkali oxide components, Li 2 O + Na 2 O + K 2 O is too large, the relative dielectric constant may be lowered, and the devitrification resistance of the glass may be further lowered.
  • 25% or less is more preferable.
  • TiO 2 is a component that improves the relative dielectric constant. However, if the content is too large, coloring may occur or the devitrification resistance may be reduced, and a homogeneous glass may not be obtained. Therefore, the content is preferably 15% or less, and more preferably 10% or less.
  • Nb 2 O 5 is a component that improves the relative dielectric constant. However, if the amount introduced is too large, the devitrification resistance of the glass is lowered, and a stable glass may not be obtained. Therefore, the content is preferably 20% or less, and more preferably 18% or less.
  • TeO 2 is a component that improves the relative dielectric constant without deteriorating the coloring degree. However, when it is excessively introduced, the devitrification resistance is lowered and may cause coloring, so its content is 20%. The following is preferable, and 15% or less is more preferable.
  • GeO 2 is a component that improves the stability of the glass while maintaining a relatively high dielectric constant. However, since it is extremely expensive, the content is preferably 10% or less, more preferably 8% or less. Preferably, it is not included.
  • Ga 2 O 3 is a component that improves the stability of the glass while maintaining a relatively high dielectric constant. However, since it is extremely expensive, the content is preferably 10% or less, and 8% or less. Is more preferable, and it is still more preferable not to contain.
  • the total amount of the components described above is preferably 90% or more, and more preferably 95% or more.
  • Even components other than those described above may be added within the range not impairing the effects of the present invention for purposes such as clarifying, improving solubility, and adjusting relative dielectric constant. Examples of such components include Sb 2 O 3 , SnO 2 , MgO, CaO, SrO, In 2 O 3 , ZrO 2 , Ta 2 O 5 , WO 3 , La 2 O 3 , Gd 2 O 3 , Y 2. O 3 , Yb 2 O 3 , Al 2 O 3 and the like can be mentioned.
  • the refractive index at d-line (wavelength 587.6 nm) is preferably 1.6 or more. Also, in the case of glass containing no P 2 O 5, it is preferable that the refractive index at the d-line is 1.8 or more. Thereby, the dielectric constant of glass can be raised.
  • cover glass a cover glass provided with the glass whose Vickers hardness Hv is 600 or more and the relative dielectric constant in a frequency of 1 MHz is 12 or more as a cover glass used for a cover member.
  • the “cover glass” in the present embodiment is not a concept limited to a cover glass made only of the glass, and when a printed layer, an antiglare layer, or the like is formed on the surface of the glass, the glass
  • the concept includes the print layer, the antiglare layer, and the like.
  • Capacitive sensor The cover member of the present embodiment is useful as a cover member for a capacitive sensor, and can be used without particular limitation as long as it is a capacitive sensor. Capacitive sensors can be used for various applications such as touch panels for mobile devices such as smartphones, automatic teller machines for banks, door locks for automobiles, and personal authentication devices for entrance management in buildings. . In addition, a capacitive sensor having a fingerprint authentication function (hereinafter also simply referred to as a fingerprint authentication sensor) can be suitably used particularly for portable devices such as a smartphone, a mobile phone, and a tablet personal computer. Hereinafter, a fingerprint authentication sensor will be described as an example of the capacitive sensor provided with the cover member of the present embodiment.
  • FIG. 1 shows a cross-sectional view of an example of a fingerprint authentication sensor.
  • a plurality of electrodes 3 are provided on a substrate 2 at a predetermined interval, and a cover member 4 is provided thereon.
  • a plurality of electrodes 3 are provided on the substrate 2 at a predetermined interval in the direction perpendicular to the paper surface.
  • the valley (recess) 6 of the finger 5 the distance between the valley (recess) 6 and the electrode 3 is large, so that the amount of accumulated charge is reduced.
  • the crest (convex portion) 7 of the finger 5 since the distance between the crest (convex portion) 7 and the electrode 3 is small, the amount of accumulated charge increases. The amount of charge at each point generated in this way is measured and converted into an image, whereby the shape of the fingerprint is detected as an image.
  • the cover member of this embodiment includes at least glass having a high Vickers hardness Hv of 600 or higher and a high dielectric constant of 12 or higher at a frequency of 1 MHz. Therefore, the cover member of the present embodiment has a high contribution to the improvement of the sensing sensitivity of the capacitive sensor and has high scratch resistance, and the capacitive sensor cover such as a fingerprint authentication sensor. It is useful as a member.
  • glass raw materials such as nitrates were appropriately selected and weighed so as to be 300 cm 3 as glass.
  • the mixed raw materials were put into a platinum crucible, put into a resistance heating electric furnace at 800 to 1100 ° C., melted for 1 hour, defoamed and homogenized.
  • the obtained molten glass was poured into a mold material, held at a temperature lower than the glass transition point of each glass for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min to obtain a glass block.
  • This glass block was cut and ground, and finally both surfaces were processed into mirror surfaces to obtain a plate glass having a size of 15 mm ⁇ 15 mm and a thickness of 0.8 mm.
  • Table 1 shows the results of measuring the Vickers hardness Hv, the relative dielectric constant at a frequency of 1 MHz, and the refractive index at the d-line (wavelength 587.6 nm) for the glasses according to each Example and each Comparative Example.
  • All the glasses according to the comparative examples had a relative dielectric constant of less than 12 at a frequency of 1 MHz. Further, when the Vickers hardness Hv of the glasses according to Comparative Examples 3 to 5 was measured, it was less than 600. On the other hand, all the glasses according to the respective examples had a high relative dielectric constant of 12 or more at a frequency of 1 MHz and a high Vickers hardness Hv of 600 or more.
  • the sensing sensitivity was tested.
  • a plurality of electrodes were provided on the substrate at predetermined intervals as shown in FIG. 1, and a cover member was provided thereon to form a fingerprint authentication sensor.
  • the fingerprint-shaped images detected using a fingerprint authentication sensor comprising the glass of Examples 1 and 2 as a cover member were both clear.
  • each of the glasses of Comparative Examples 1 to 5 is used as a cover member, and a plurality of electrodes are provided on the substrate at predetermined intervals as shown in FIG. 1, and a cover member is provided thereon to form a fingerprint authentication sensor.
  • the fingerprint-shaped images detected using a fingerprint authentication sensor provided with the glasses of Comparative Examples 1 to 5 as cover members were all unclear. From this, it was found that glass having a relative dielectric constant of 12 or more shows high sensing sensitivity.
  • the glass of each example shows high scratch resistance and high sensing sensitivity, and is useful as a constituent material for a cover member for a capacitive sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、少なくともガラスを備え、前記ガラスのビッカース硬度Hvが600以上であり、前記ガラスは第1面と前記第1面に対向する第2面を有し、前記ガラスの周波数1MHzにおける比誘電率が12以上であるカバー部材に関する。本発明のカバー部材は、静電容量方式センサーのセンシング感度の向上への寄与が高く、かつ耐擦傷性に優れる。

Description

カバー部材
 本発明は、カバー部材に関する。
 近年、電子機器や情報機器類における高度なセキュリティ対策として、指紋を個人の認証に用いる方法が盛んに用いられている。指紋認証の方法には、光学方式、感熱方式、圧力方式、静電容量方式などがあるが、センシング感度や消費電力の観点から静電容量方式が優れているとされている。
 静電容量方式センサーは、被検出物が接近、または、接触した部位の局所的な静電容量の変化を検出する。一般的な静電容量方式センサー(以下、単にセンサーとも呼ぶ)の構成は、該センサー内に配置された電極と被検出物との距離を静電容量の大きさによって測定する。特許文献1に開示されるように、指紋認証の場合、指紋の凹凸に応じ、凹部では静電容量が低下し、凸部で静電容量が増加することを利用して画像を取得する。すなわち、該センサー内に電極を行列方式で並べ、それぞれの静電容量を測ることにより指紋の凹凸パターンを認識できる。
 静電容量方式センサーを用いた指紋認証機能は、小型軽量で消費電力が低いことから、特にスマートフォンや携帯電話、タブレット型パーソナルコンピューターなどの携帯機器類に搭載されている。該センサーの上部には、該センサーを保護するためのカバー部材が設けられている。
 従来、このカバー部材には樹脂材料などが用いられてきた。たとえば、特許文献2には、ポリエチレンテレフタレートなど樹脂材料を用いた指紋認証センサー用のフィルムが開示されている。
 また、特許文献3には、指紋認証に用いられる静電容量方式センサー用のカバー部材として、サファイアを用いたものが開示されている。
日本国特開平9-218006号公報 日本国特開2003-280759号公報 国際公開第2013/173773号
 ここで、静電容量方式センサー、特に、指紋認証用センサー等には、センシング感度のさらなる向上が求められている。また、たとえば静電容量方式センサーが携帯機器等に搭載される場合、外部での使用による落下や衝突の危険性がある。このような静電容量方式センサー用のカバー部材には、落下や衝突による擦傷を防ぐために優れた耐擦傷性が求められている。しかしながら、従来のカバー部材では、センシング感度と耐擦傷性を十分に両立できていなかった。
 上記課題を鑑みて、本発明は、静電容量方式センサーのセンシング感度の向上への寄与が高く、かつ耐擦傷性の優れたカバー部材を提供することを目的とする。
 本発明は、静電容量方式センサー用カバー部材として、比誘電率が高く、ビッカース硬度の高いガラスを用いたカバー部材を提供することによって、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明の一実施形態に係るカバー部材は、少なくともガラスを備え、前記ガラスのビッカース硬度Hvが600以上であり、前記ガラスは第1面と前記第1面に対向する第2面を有し、前記ガラスの周波数1MHzにおける比誘電率が12以上である。また、本実施形態によれば、ビッカース硬度Hvが600以上であり、周波数1MHzにおける比誘電率が12以上であるガラスを備えるカバーガラスも提供される。
 本発明によれば、静電容量方式センサーのセンシング感度の向上への寄与が高く、かつ耐擦傷性の優れたカバー部材を提供できる。
図1は、指紋認証用センサーの一例の断面図を示す。
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施形態に限定されることはない。また、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えられる。
(カバー部材)
 本実施形態のカバー部材は、少なくともガラスを備え、前記ガラスのビッカース硬度Hvが600以上であり、前記ガラスは第1面と前記第1面に対向する第2面を有し、前記ガラスの周波数1MHzにおける比誘電率が12以上である。本実施形態のカバー部材は、静電容量方式センサーを作動させるための一つの部材として機能するとともに、センサー部を保護するために、有用に用いられる。なお、以下において、本実施形態のカバー部材を、単に「カバー部材」ということがある。
 本実施形態のカバー部材は、少なくともガラスを備えている。本実施形態のカバー部材におけるガラスは第1面と当該第1面に対向する第2面とを有する。ここで、当該ガラスの第1面とは、静電容量方式センサーの上部にカバー部材を設けたときに、センサー側とは反対側となる面である。また、当該ガラスの第2面とは、当該第1面に対向する面であり、静電容量方式センサーの上部にカバー部材を設けたときに、センサー側に位置する面である。
 本実施形態のカバー部材におけるガラスの周波数1MHzでの比誘電率は、12以上であり、好ましくは13以上であり、より好ましくは17以上である。ガラスの比誘電率が12以上であると、検出される静電容量を大きくでき、優れたセンシング感度を有する静電容量方式センサーを実現できる。または、カバー部材の強度を増すためにガラスを厚くしても十分なセンシング感度を維持できる。特に、指先の指紋の微細な凹凸を検出する指紋認証の場合にも、指先の指紋の微細な凹凸に応じた静電容量の差が大きくなるため、高いセンシング感度で検出できる。また、本実施形態のカバー部材におけるガラスの比誘電率の上限については、特に限定されないが、過度に高すぎると誘電損失が大きくなり、消費電力が増加し、また、反応が遅くなる場合がある。したがって、当該ガラスの周波数1MHzでの比誘電率は、好ましくは1000以下であり、より好ましくは100以下である。
 なお、本実施形態のカバー部材におけるガラスの比誘電率は、当該ガラスの両面に電極を作製したキャパシタンスの静電容量を、例えば交流インピーダンス法を用いて測定できる。
 本実施形態のカバー部材におけるガラスのビッカース硬度Hvは、600以上であり、好ましくは650以上であり、より好ましくは700以上である。当該ガラスのビッカース硬度が600以上であると、外部からの衝突物との衝突に起因するカバー部材の擦傷を十分に防止できる。また、静電容量方式センサーが携帯機器等に搭載される場合には、携帯機器等の落下や衝突に起因するカバー部材の擦傷を十分に防止できる。さらに、カバー部材により保護されるセンサー部の破損等を、十分に防止できる。また、本実施形態のカバー部材におけるガラスのビッカース硬度の上限は、特に限定されないが、過度に高すぎると研磨や加工に困難を来す場合がある。したがって、当該ガラスのビッカース硬度は、たとえば1200以下であり、好ましくは1000以下である。
 なお、本実施形態のカバー部材におけるガラスのビッカース硬度は、たとえば日本工業規格JIS Z 2244(2009)に記載される、ビッカース硬さ試験により測定できる。
 本実施形態のカバー部材は、たとえば、カバー部材を構成するガラスの適切な材料を選択し、またその材料の組成等を適宜調整することや、必要に応じて行われうる各種処理条件等により、当該ガラスの周波数1MHzにおける比誘電率が12以上であり、ビッカース硬度Hvが600以上であるものとできる。
 また、本実施形態のカバー部材におけるガラスの厚みは、好ましくは0.8mm以下であり、より好ましくは0.7mm以下であり、さらに好ましくは0.6mm以下であり、特に好ましくは0.5mm以下である。ガラスが薄いほど、検出される静電容量が大きくなり、センシング感度が向上する。一方、本実施形態のカバー部材におけるガラスの厚みの下限は、特に限定されないが、ガラスが過度に薄くなると、強度が低下し、カバー部材としての適切な機能を発揮し難くなる傾向がある。したがって、ガラスの厚みは、たとえば0.01mm以上であり、好ましくは0.1mm以上であり、より好ましくは0.2mm以上である。
 本実施形態のカバー部材が静電容量方式センサーの上部に設けられるとき、カバー部材におけるガラスは、該静電容量方式センサーに対向する領域のみが薄くなっていればよい。従って、ガラスの該静電容量方式センサーに対向しない領域の厚みは、0.8mmより大きくてもよい。これにより、カバー部材の剛性を高められる。
 また、本実施形態のカバー部材、および該カバー部材におけるガラスは、3次元形状に成形されていてもよく、例えばガラスの第1面を凸面または凹面とすることができる。
 本実施形態のカバー部材におけるガラスの表面の算術平均粗さ(Ra)は、特に限定されないが、その第1面の算術平均粗さRaが300nm以下であることが好ましく、30nm以下であることがより好ましい。当該ガラスの第1面の算術平均粗さRaが300nm以下であると、指の指紋の凹凸の程度と比べて十分に小さくなるため、センシング感度が高くなる点で好ましい。また、当該ガラスの第1面の算術平均粗さRaの下限も、特に限定されないが、好ましくは0.3nm以上であり、より好ましくは1.0nm以上である。当該ガラスの第1面の算術平均粗さRaが0.3nm以上であると、強度が向上する点で好ましい。なお、当該ガラスの第1面の算術平均粗さRaは、研磨砥粒や研磨方法等の選択により調整できる。また、当該ガラスの第1面の算術平均粗さRaは、日本工業規格JIS B0601 (1994)に基づいて測定できる。
 一方、当該ガラスの第2面の算術平均粗さRaも特に限定されるものではなく、第1面と同じであってもよく、あるいは異なっていてもよい。
 本実施形態のカバー部材の製造方法では、各工程は特に限定されず適切に選択すればよく、典型的には従来公知の工程を適用できる。例えば、まず、各成分の原料を後述する組成となるように調合し、ガラス溶融窯で加熱溶融する。バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、従来公知の成形法により所定の厚さのガラス板に成形し、徐冷する。
 ガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法、ダウンドロー法及びロールアウト法が挙げられる。特に、大量生産に適したフロート法が好適である。また、フロート法以外の連続成形法、すなわち、フュージョン法およびダウンドロー法も好適である。また、ガラスを平板状以外の、例えば凹状もしくは凸状に成形して用いる場合、平板状やブロック状等に成形したガラスを再加熱し、溶融させた状態でプレス成形したり、溶融ガラスをプレス型上に流し出し、プレス成形することで、所望の形状に成形される。
 成形したガラスを必要に応じて研削および研磨処理した後、洗浄および乾燥する。その後、切断、研磨などの加工を施すことにより、本実施形態のカバー部材が得られる。
 本実施形態のカバー部材に用いられるガラスの第2面には、印刷層が設けられることが好ましい。印刷層を設けることにより、カバー部材を介して静電容量方式センサーが視認されることを効果的に防止したり、所望の色を付与でき、優れた外観性が得られる。印刷層の厚みは、カバー部材の静電容量を高く維持するためには、20μm以下が好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。
 印刷層は、たとえば、所定の色材を含むインク組成物により形成できる。当該インク組成物は、色材の他、必要に応じてバインダー、分散剤や溶剤などを含むものである。色材としては、顔料や染料などいずれの色材(着色剤)であってもよく、単独で又は2種以上を組み合わせて使用できる。なお、色材は所望される色によって適宜選択できるが、たとえば、遮光性が求められる場合には、黒系色材等が好ましく用いられる。また、バインダーとしては、特に制限されず、例えば、ポリウレタン系樹脂、フェノール系樹脂、エポキシ系樹脂、尿素メラミン系樹脂、シリコーン系樹脂、フェノキシ樹脂、メタクリル系樹脂、アクリル系樹脂、ポリアリレート樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリカーボネート、セルロース類、ポリアセタール等の公知の樹脂(熱可塑性樹脂、熱硬化性樹脂や光硬化性樹脂など)などが挙げられる。バインダーは単独で又は2種以上を組み合わせて使用できる。
 印刷層を形成するための印刷法は特に限定されるものではなく、グラビア印刷法、フレキソ印刷法、オフセット印刷法、凸版印刷法、スクリーン印刷法などの適宜な印刷法を適用できる。
 本実施形態のカバー部材は、印刷層が設けられる場合、波長380nm~780nmにおける吸光度の最小値が0.01以上であることが好ましく、0.05以上であることがより好ましく、0.10以上であることがさらに好ましく、0.20以上であることがよりさらに好ましく、0.30以上であることが特に好ましい。当該吸光度の最小値を0.01以上とすることで、所望の遮光性が得られるため、カバー部材に光が透過することを効果的に抑制できる。
 本実施形態のカバー部材は、印刷層が設けられる場合、波長380nm~780nmにおける吸光係数の最小値が0.3mm-1以上であることが好ましく、0.7mm-1以上であることがより好ましく、1mm-1以上であることがさらに好ましく、2mm-1以上であることがよりさらに好ましく、3mm-1以上であることがよりさらに好ましく、4mm-1以上であることが特に好ましい。当該吸光係数の最小値を0.3mm-1以上とすることで、所望の遮光性が得られるため、カバー部材に光が透過することを効果的に抑制できる。
 本実施形態におけるガラスの吸光度の算出方法は、以下のとおりである。ガラス板の両面を鏡面研磨し、厚さtを測定する。このガラス板の分光透過率Tを測定する(例えば、日本分光株式会社製、紫外可視近赤外分光光度計V-570を用いる)。そして、吸光度AをA=-log10Tの関係式を用いて算出する。
 本実施形態におけるガラスの吸光係数の算出方法は、以下の通りである。ガラス板の両面を鏡面研磨し、厚さtを測定する。このガラス板の分光透過率Tを測定する(例えば、日本分光株式会社製、紫外可視近赤外分光光度計V-570を用いる)。そして、吸光係数βを、T=10-βtの関係式を用いて算出する。
 なお、本実施形態のガラスおよび印刷層を有するカバー部材の吸光度および吸光係数は、上述のガラスの吸光度および吸光係数の算出方法と同様の方法により算出できる。
 また、本実施形態のカバー部材は、必要に応じて、ガラスの第1面に印刷層を備えてもよい。また、印刷層以外にも、所望される機能や特性等に応じて、エッチングや塗布液コートによる防眩層、反射防止層、耐指紋層(AFP層)等のその他の層や、保護フィルム、貼合のための粘着層等を適宜備えてもよい。
 以下、本発明のカバー部材およびその製造方法のいくつかの実施形態について説明し、その後該カバー部材の用いられる静電容量方式センサーについて説明する。
[第一の実施形態・結晶化ガラス]
 以下、本発明の第一の実施形態である、結晶化ガラスを用いたカバー部材について、カバー部材を製造する方法と、カバー部材に用いられる結晶化ガラスの好ましい形態の順に説明する。
 結晶化ガラスを用いたカバー部材は、たとえば、以下のようにして製造できる。まず、初めにガラス原料を調合し、溶解および冷却により母組成のガラス(母ガラス)を得る。その後、母組成のガラスを再度加熱処理することにより、母ガラス中に微小な結晶相を成長させることによって結晶化ガラスを得る。ここで、母ガラスの組成や、加熱処理の時間及び温度を適宜調整することにより、析出させる結晶の種類と大きさを制御でき、それにより、結晶化ガラスの比誘電率を制御できる。
 その後、得られた結晶化ガラスに対して切断、研磨などの加工を施し、結晶化ガラスを用いた静電容量方式センサー用のカバー部材が得られる。なお、母ガラス作製の直後に加工を施し、その後結晶化のための熱処理を施すことも可能である。
 結晶化ガラスを用いたカバー部材を作製するにあたっての各工程の条件は、母ガラスの組成や結晶化の程度等を考慮して適宜選択できる。ここで、母ガラスに加熱処理を施して結晶化ガラスを得るにあたっての加熱処理条件としても、特に限定されるものではないが、周波数1MHzにおける比誘電率を12以上とし、かつビッカース硬度Hvを600以上とするためには、加熱温度はたとえば900℃~1200℃であり、好ましくは1000℃~1050℃である。また、加熱時間はたとえば1時間~24時間であり、好ましくは5時間~10時間である。
 静電容量方式センサー用のカバー部材として、所望の比誘電率と、表面硬度が得られ、実用的な作製プロセスが適用可能であれば、結晶化ガラスの組成は特に限定されないが、比誘電率と表面硬度を両立させるためには、たとえば硬質なガラスを形成するためのSiOを含有するシリケート系又はボロシリケート系結晶化ガラス、ガラス形成成分としてBを含有するホウ酸塩系ガラス、ガラス形成成分としてPを含有するリン酸塩系結晶化ガラスであって、比誘電率の高い結晶を析出させるためにLiO、NaO、KO、MgO、CaO、SrO、BaO、PbO、TiO、ZrO、Nb、Ta、WO及びBiのうち一種類以上を含有する系のガラスなどが挙げられる。
 また、着色のための遷移金属や希土類元素を含有させることが可能である。そのような元素に、Cr、Mn、Fe、Co、Ni、Cu、Nd、Eu、Gd、Tb、Tm、Yb、Erなどがあげられる。
 以下、各系のガラスの組成について説明する。なお、各成分の含有量は、酸化物基準のmol%表記である。
<シリケート系ガラス>
 まず、シリケート系ガラスについて説明する。
 SiOはガラスの骨格を形成する成分である。20%未満であるとガラスの粘性が低下し結晶相を微小に抑制することが難しくなるため、20%以上が好ましい。より好ましくは25%以上であり、さらに好ましくは30%以上である。70%超であると溶融性が著しく悪化するおそれがあるため、70%以下が好ましい。より好ましくは60%以下であり、さらに好ましくは50%以下である。
 Alはガラスの分相を抑制し、化学的耐久性を向上させ、表面硬度を向上させ、結晶相の成分となりえる成分である。上記の効果を十分に得る為には1%以上が好ましく、2%以上がより好ましい。30%よりも多いと溶融性が著しく悪くなるおそれがあるため、30%以下が好ましい。より好ましくは25%以下であり、さらに好ましくは20%以下である。
 アルカリ金属のLiO、NaOおよびKOは溶解性を高める成分である。溶解性を高めるためには合量で1%以上が好ましく、2%以上がより好ましい。一方多量に含有させると表面硬度が低下するおそれがある為、合量は40%以下であることが好ましい。35%以下がより好ましく、30%以下がさらに好ましい。
 アルカリ土類金属のMgO、CaO、SrOおよびBaOは溶解性を高め、表面硬度を向上させる成分であり、結晶相の成分となりえる。上記の効果を十分に得るには合量で1%以上が好ましく、3%以上がより好ましい。一方で合量が50%よりも多いとガラスの安定性が損なわれるおそれがあるため、50%以下が好ましい。合量は40%以下がより好ましく、30%以下がさらに好ましい。
 PbOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、3%以上がより好ましい。45%よりも多いと比重が高くなるおそれがあるため、45%以下が好ましい。40%以下がより好ましく、30%以下がさらに好ましい。
 TiOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなるおそれがあるため、35%以下が好ましく、32%以下がより好ましく、30%以下がさらに好ましい。
 ZrOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。15%よりも多いと着色が著しくなるおそれがあるため、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましい。
 Pはシリケート系ガラスの中で凝集を起こし、結晶化の際の核形成剤として働き核形成を促進させる成分である。核形成剤としての効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。10%よりも多いと、表面硬度が低下するおそれがある為、10%以下が好ましく、5%以下がより好ましい。
 NiOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。15%よりも多いと溶融温度が高くなるおそれがあるため、15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 Taは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。35%よりも多いと溶融温度が高くなるおそれがあるため、35%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。
 Nbは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。30%よりも多いと溶融温度が高くなるおそれがあるため、30%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましい。
 Biは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。50%よりも多いと着色が著しくなるおそれがあるため、50%以下が好ましく、45%以下がより好ましく、43%以下がさらに好ましい。
 WOは比誘電率を高める成分である。比誘電率を高めるには2%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなる恐れがあるため、35%以下が好ましい。より好ましくは30%以下であり、さらに好ましくは28%以下である。
 シリケート系結晶化ガラスにおいては、以下の組成範囲のガラスが好ましい。
  SiO 20~70%
  Al 0~30%
  LiO+NaO+KO 0~40%
  MgO+CaO+SrO+BaO 0~50%
  PbO 0~45%
  TiO 0~45%
  ZrO 0~15%
  P 0~10%
  NiO 0~15%
  Ta 0~35%
  Nb 0~30%
  Bi 0~50%
  WO 0~35%
<ボロシリケート系ガラス>
 つづいて、ボロシリケート系ガラスについて説明する。
 SiOはガラスの骨格を形成する成分である。8%未満であるとガラスの粘性が低下し結晶相を微小に抑制することが難しくなるため、8%以上が好ましい。より好ましくは10%以上であり、さらに好ましくは15%以上である。60%よりも多いと溶融性が著しく悪化するおそれがあるため、60%以下が好ましい。より好ましくは50%以下であり、さらに好ましくは45%以下である。
 Bはガラスの骨格を形成し、溶融性を高める成分である。1%未満であると溶融性の向上に寄与しない傾向があるため、1%以上が好ましい。より好ましくは2%以上であり、さらに好ましくは5%以上である。50%よりも多いと表面硬度が低下する他、分相や揮散のために均質性が悪くなるおそれがあるため、50%以下が好ましい。より好ましくは45%以下であり、さらに好ましくは40%以下である。
 Alはガラスの分相を抑制し、化学的耐久性を向上させ、表面硬度を向上させ、結晶相の成分となりえる成分である。分相抑制と化学的耐久性の向上のためには1%以上が好ましく、2%以上がより好ましい。20%よりも多いと溶融性が著しく悪くなるおそれがあるため、20%以下が好ましい。より好ましくは16%以下であり、さらに好ましくは14%以下である。
 アルカリ金属のLiO、NaOおよびKOは溶解性を高める成分である。溶解性を高めるためには合量で1%以上が好ましく、2%以上がより好ましい。一方多量に含有させると表面硬度が低下するおそれがある為、合量は40%以下であることが好ましい。35%以下がより好ましく、30%以下がさらに好ましい。
 アルカリ土類金属のMgO、CaO、SrOおよびBaOは溶解性を高め、表面硬度を向上させる成分であり、結晶相の成分となりえる。上記の効果を十分に得るには合量で1%以上が好ましく、3%以上がより好ましい。一方で合量が50%よりも多いとガラスの安定性が損なわれるおそれがあるため、50%以下が好ましい。合量は40%以下がより好ましく、30%以下がさらに好ましい。
 PbOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、3%以上がより好ましい。45%よりも多いと比重が高くなるおそれがあるため、45%以下が好ましい。40%以下がより好ましく、30%以下がさらに好ましい。
 TiOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなるおそれがあるため、35%以下が好ましく、32%以下がより好ましく、30%以下がさらに好ましい。
 ZrOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。15%よりも多いと着色が著しくなるおそれがあるため、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましい。
 Pはシリケート系ガラスの中で凝集を起こし、結晶化の際の核形成剤として働き核形成を促進させる成分である。核形成剤としての効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。10%よりも多いと、耐候性が悪くなり、表面硬度が低下するおそれがある為、10%以下が好ましく、5%以下がより好ましい。
 NiOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。15%よりも多いと溶融温度が高くなるおそれがあるため、15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 Taは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。35%よりも多いと溶融温度が高くなるおそれがあるため、35%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。
 Nbは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。30%よりも多いと溶融温度が高くなるおそれがあるため、30%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましい。
 Biは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。50%以上だと着色が著しくなるおそれがあるため、50%以下が好ましく、45%以下がより好ましく、43%以下がさらに好ましい。
 WOは比誘電率を高める成分である。比誘電率を高めるには2%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなる恐れがあるため、35%以下が好ましい。より好ましくは30%以下であり、さらに好ましくは28%以下である。
 ボロシリケート系結晶化ガラスにおいては、以下の組成範囲のガラスが好ましい。
  SiO 8~60%
  Al 0~20%
  B 1~50%
  LiO+NaO+KO 0~40%
  MgO+CaO+SrO+BaO 0~50%
  PbO 0~45%
  TiO 0~35%
  ZrO 0~15%
  P 0~10%
  NiO 0~15%
  Ta 0~35%
  Nb 0~30%
  Bi 0~50%
  WO 0~35%
<リン酸塩系ガラス>
 つづいて、リン酸塩系ガラスについて説明する。
 Pはガラスの骨格を形成する成分である。好ましくは10%以上であり、より好ましくは15%以上であり、さらに好ましくは20%以上である。一方、50%超であると耐候性が悪くなり、強度が低下するおそれがあるため、50%以下が好ましい。より好ましくは40%以下であり、さらに好ましくは38%以下であり、よりさらに好ましくは36%以下である。
 SiOはガラスの骨格を形成する成分である。3%未満であるとガラスの粘性が低下し結晶相を微小に抑制することが難しくなるため、3%以上が好ましい。より好ましくは4%以上であり、さらに好ましくは10%以上である。50%よりも多いと溶融性が著しく悪化するおそれがあるため、50%以下が好ましい。より好ましくは46%以下であり、さらに好ましくは30%以下である。
 Alはガラスの分相を抑制し、化学的耐久性を向上させ、表面硬度を向上させ、結晶相の成分となりえる成分である。分相抑制と化学的耐久性の向上のためには1%以上が好ましく、2%以上がより好ましい。20%よりも多いと溶融性が著しく悪くなるおそれがあるため、20%以下が好ましい。より好ましくは16%以下であり、さらに好ましくは14%以下である。
 Bはガラスの骨格を形成し、溶融性を高める成分である。1%未満であると溶融性の向上に寄与しない傾向にあるため、1%以上が好ましい。好ましくは2%以上であり、より好ましくは5%以上である。30%よりも多いと表面硬度が低下する他、分相や揮散のために均質性が悪くなるおそれがあるため、30%以下が好ましい。より好ましくは25%以下であり、さらに好ましくは20%以下である。
 アルカリ金属のLiO、NaOおよびKOは溶解性を高める成分である。溶解性を高めるためには合量で1%以上が好ましく、2%以上がより好ましい。一方多量に含有させると表面硬度が低下するおそれがある為、合量は40%以下であることが好ましい。35%以下がより好ましく、30%以下がさらに好ましい。
 アルカリ土類金属のMgO、CaO、SrOおよびBaOは溶解性を高め、表面硬度を向上させる成分であり、結晶相の成分となりえる。上記の効果を十分に得るには合量で1%以上が好ましく、3%以上がより好ましい。一方で合量が50%よりも多いとガラスの安定性が損なわれるおそれがあるため、50%以下が好ましい。合量は40%以下がより好ましく、30%以下がさらに好ましい。
 PbOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、3%以上がより好ましい。45%よりも多いと比重が高くなるおそれがあるため、45%以下が好ましい。40%以下がより好ましく、30%以下がさらに好ましい。
 TiOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなるおそれがあるため35%以下が好ましく、32%以下がより好ましく、30%以下がさらに好ましい。
 ZrOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。15%よりも多いと着色が著しくなるおそれがあるため、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましい。
 NiOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。15%よりも多いと溶融温度が高くなるおそれがあるため、15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 Taは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。35%よりも多いと溶融温度が高くなるおそれがあるため、35%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。
 Biは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。50%以上だと着色が著しくなるおそれがあるため、50%以下が好ましく、45%以下がより好ましく、43%以下がさらに好ましい。
 WOは比誘電率を高める成分である。比誘電率を高めるには2%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなる恐れがあるため、35%以下が好ましい。より好ましくは30%以下であり、さらに好ましくは28%以下である。
 リン酸塩系結晶化ガラスにおいては、以下の組成範囲のガラスが好ましい。
  SiO 0~50%
  Al 0~20%
  B 0~30%
  LiO+NaO+KO 0~40%
  MgO+CaO+SrO+BaO 0~50%
  PbO 0~45%
  TiO 0~35%
  ZrO 0~15%
  P 10~50%
  NiO 0~15%
  Ta 0~35%
  Bi 0~50%
  WO 0~35%
<ホウ酸塩系ガラス>
 つづいて、ホウ酸塩系ガラスについて説明する。
 Bはガラスの骨格を形成する成分である。15%未満であると溶融性の向上に寄与しない傾向にあるため、15%以上が好ましい。より好ましくは20%以上であり、さらに好ましくは24%以上である。70%超であると表面硬度が低下する他、分相や揮散のために均質性が悪くなるおそれがあるため、70%以下が好ましい。より好ましくは65%以下であり、さらに好ましくは60%以下である。
 Alはガラスの分相を抑制し、化学的耐久性を向上させ、表面硬度を向上させ、結晶相の成分となりえる成分である。分相抑制と化学的耐久性の向上のためには1%以上が好ましく、2%以上がより好ましい。40%よりも多いと溶融性が著しく悪くなるおそれがあるため、40%以下であることが好ましい。より好ましくは16%以下であり、さらに好ましくは14%以下である。
 アルカリ金属のLiO、NaOおよびKOは溶解性を高める成分である。溶解性を高めるためには合量で1%以上が好ましく、2%以上がより好ましい。一方多量に含有させると表面硬度が低下するおそれがある為、合量は40%以下であることが好ましい。35%以下がより好ましく、30%以下がさらに好ましい。
 アルカリ土類金属のMgO、CaO、SrOおよびBaOは溶解性を高め、表面硬度を向上させる成分であり、結晶相の成分となりえる。上記の効果を十分に得るには合量で1%以上が好ましく、3%以上がより好ましい。一方で合量が50%よりも多いとガラスの安定性が損なわれるおそれがあるため、合量は50%以下が好ましい。合量は40%以下がより好ましく、30%以下がさらに好ましい。
 PbOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、3%以上がより好ましい。45%よりも多いと比重が高くなるおそれがあるため、45%以下が好ましい。40%以下がより好ましく、30%以下がさらに好ましい。
 TiOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなるおそれがあるため、35%以下が好ましく、32%以下がより好ましく、30%以下がさらに好ましい。
 ZrOは比誘電率を高め、表面硬度を向上させる成分であり、またガラスの結晶化の際に核形成剤として働き核形成を促進させる成分である。上記の効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。15%よりも多いと着色が著しくなるおそれがあるため、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましい。
 Pはホウ酸塩系ガラスの中で凝集を起こし、結晶化の際の核形成剤として働き核形成を促進させる成分である。核形成剤としての効果を十分に得る為には1%以上が好ましく、3%以上がより好ましい。10%よりも多いと、耐候性が悪くなり、表面硬度が低下するおそれがある為、10%以下が好ましく、5%以下がより好ましい。
 NiOは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。15%よりも多いと溶融温度が高くなるおそれがあるため、15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 Taは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。35%よりも多いと溶融温度が高くなるおそれがあるため、35%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。
 Biは比誘電率を高める成分である。比誘電率を高めるには1%以上が好ましく、2%以上がより好ましい。50%超だと着色が著しくなるおそれがあるため、50%以下が好ましく、45%以下がより好ましく、43%以下がさらに好ましい。
 WOは比誘電率を高める成分である。比誘電率を高めるには2%以上が好ましく、3%以上がより好ましい。35%よりも多いと着色が著しくなる恐れがあるため、35%以下が好ましい。より好ましくは30%以下であり、さらに好ましくは28%以下である。
 Laは比誘電率を高め、耐侯性を向上させる成分である。上記の効果を十分に得るためには、5%以上であることが好ましく、7%以上であることがより好ましい。ガラスの耐失透性を低下させないために、25%以下が好ましく、22%以下がより好ましい。
 Gdは比誘電率を高め、耐侯性を向上させ、Laと共存させることにより、ガラスの安定性を向上させる成分である。上記の効果を十分に得るためには、1%以上であることが好ましく、2%以上であることがより好ましい。ガラスの安定性を低下させないために、20%以下が好ましく、18%以下がさらに好ましい。
 Nb、Bi、TiO、WO、La、Gd、ZrO、Ta及びBaOの成分の合量は、比誘電率を高めるためにも、6%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。ガラスの安定性を低下させないために、60%以下が好ましく、55%以下がより好ましく、50%以下がさらに好ましい。
 以上に記載の成分以外であっても、必要なガラスの特性を損なわない範囲で、清澄、溶解性向上やガラス化促進、比誘電率調整などの目的で少量添加してもよい。この様な成分として、例えばSO、SnO、F、Cl、Sb、ZnOなどが挙げられる。
 ホウ酸塩系結晶化ガラスにおいては、以下の組成範囲のガラスが好ましい。
  Al 0~40%
  B 15~70%
  LiO+NaO+KO 0~40%
  MgO+CaO+SrO+BaO 0~50%
  PbO 0~45%
  TiO 0~35%
  ZrO 0~15%
  P 0~10%
  NiO 0~15%
  Ta 0~35%
  Bi 0~50%
  WO 0~35%
 いずれの実施形態に係るガラスにおいても、Pを含有するガラスの場合、d線(波長587.6nm)での屈折率が1.6以上であることが好ましい。また、Pを含有しないガラスの場合、d線での屈折率が1.8以上であることが好ましい。これにより、ガラスの比誘電率を高められる。なお、ガラスのd線(波長587.6nm)での屈折率は、Vブロック法などにより測定できる。
[第二の実施形態・高比誘電率ガラス]
 以下、本発明の第二の実施形態である、高比誘電率ガラスを用いたカバー部材について説明する。
 ガラスは、熱間あるいは冷間での加工により、容易に板状の部材へと成形が可能である。特に本実施形態におけるガラスを用いることにより、従来の例えばサファイアと比較して、センシングに適した比誘電率を持ち、かつ薄板状に加工することが容易となり、大量生産および低コスト化に好適である。
 本実施形態のカバー部材は、高い耐擦傷性を有しながら、加工を行うのが容易であるという特長を有する。耐擦傷性を高めるため、ビッカース硬度(Hv)は、600以上であり、好ましくは650以上、より好ましくは680以上、さらに好ましくは700以上である。一方、研削・研磨加工により平板加工や鏡面加工あるいは端面加工に対する加工性を向上させるため、摩耗度は40以上である。好ましくは45以上であり、さらに好ましくは50以上である。なお、摩耗度は、たとえば日本光学硝子工業会規格 JOGIS-10に記載の方法により測定できる。
 本実施形態のガラスを用いたカバー部材の製造方法は、たとえば以下のとおりである。まず、初めにガラス原料を所定の組成となるように調合し、加熱溶解、清澄した後、所定の形状に成形し、引続いて冷却することにより板状または塊状ガラスを得る。得られたガラスを切抜きあるいは切断、研磨などの加工を施し、ガラスを用いたカバー部材を得られる。この際、所定の厚みの板状に成形したガラスを所望の形状に切断ないし切り出すことによりカバー部材を得られる。また棒状に成形したガラスをスライス加工し、平滑に研磨することでも加工できる。さらには、ガラスを熱間でプレス法あるいはリドロー法によって平板に成形し、その後所定の形状に加工することによってもカバー部材を得られる。特に、浮上成形したゴブをプリフォームとして用いた精密プレス成形は、研磨の必要性が無いため、安価大量にカバー部材を製造できる。
 カバー部材を形成するガラスの組成としては、比誘電率が高く、所望のセンシング特性が得られれば特に限定はされないが、比誘電率を向上させ、センシング効率を最大化するためには、例えば、Pを含有し、さらにNb、Bi、TiOおよびWOの一成分以上を含有する系、Bを含有し、La、Nb、ZrO、Ta、WOおよびBaOの一成分以上を含有する系、SiOを含有し、NbおよびTiOの一成分以上を含有する系、Biを主成分として含有する系、TeOを主成分として含有する系などが挙げられる。なお、上記に示した系は例であり、所期の目的を達成できれば、特に上記に限定されるものではない。また清澄性、溶融性、成形性、機械的特性を向上させる意味で、酸化スズ、酸化アンチモン、硫酸塩、あるいはフッ素、塩素等のハロゲン類や窒素を含有していてもよい。ただし、これらは、本実施形態においてカバー部材として使用する全てのガラス系において、環境に対して悪影響を及ぼす成分である、As、PbO、CdO、ThOおよびHgOについては、原料由来の不純物としてやむを得ず混入する場合を除いて含んでいてはならない。
 Pを含有し、Nb、Bi、TiOおよびWOの一成分以上を含有する成分においては、以下の組成範囲のガラスが好ましい。なお、以下組成については特に限定のない限り、酸化物基準のmol%で表記する。
  P 15~40%
  SiO 0~35%
  B 0~18%
  Nb 10~50%
  TiO 0~30%
  WO 0~40%
  Bi 0~30%
  ただし、Nb+TiO+WO+Bi 10~60%
  LiO 0~20%
  NaO 0~20%
  KO 0~20%
  ただしLiO+NaO+KO 0~40%
  MgO 0~10%
  CaO 0~10%
  SrO 0~10%
  BaO 0~20%
  ZnO 0~20%
  Ta 0~10%
 各成分の含有量及びその成分を含有させる効果は以下のとおりである。
 Pは、このガラス系の骨格を形成しガラス化させる成分であるが、含有量が小さすぎる場合、ガラスの失透性が大きくなりガラスを得られなくなるため、15%以上が好ましく、18%以上がより好ましい。一方、含有量が大きすぎると比誘電率が低下するため、発明の目的を達成できなくなるおそれがある。従って、含有量は40%以下が好ましく、35%以下がより好ましい。
 Bは、ガラス中に添加することにより耐失透性を向上させ、熱膨張率を低下させる成分であるが、含有量が大きすぎる場合、比誘電率が低下してしまうおそれがあるため、18%以下が好ましく、15%以下がより好ましい。
 SiOは、微量を添加することによりガラスを安定化させ、耐失透性を向上させる成分であるが、含有量が大きすぎる場合、比誘電率が低下してしまうおそれがあるため、10%以下が好ましく、8%以下がより好ましい。
 Nbは、比誘電率を向上させ、耐侯性を高める効果も同時に有する成分である。そのため、含有量は、1%以上が好ましく、8%以上がより好ましい。一方、含有量が大きすぎると、失透性が強まりガラスが得られなくなってしまうおそれがあるため、その含有量は40%以下が好ましく、35%以下がより好ましい。
 TiOは、比誘電率を向上させる成分であるが、含有量が大きすぎるとガラスの着色が強くなり、散乱層における損失が大きくなってしまい、光取り出し効率の向上という目的を達成できなくなってしまうおそれがある。そのため含有量は15%以下が好ましく、13%以下であるとさらに好ましい。
 WOは、比誘電率を向上させ、ガラス転移温度を低下させ焼成温度を低下させる成分であるが、過度に導入するとガラスが着色してしまい、光取り出し効率の低下をもたらすおそれがあるため、その含有量は40%以下が好ましく、35%以下がさらに好ましい。
 Biは比誘電率を向上させる成分であり、ガラスの安定性を維持しながら比較的多量にガラス中に導入できる。しかしながら過度に導入することにより、ガラスが着色し、透過率が低下してしまうという問題点が発生するおそれがあるため、含有量は30%以下が好ましく、25%以下がより好ましい。
 比誘電率を所望の値よりも高くするためには、上記Nb、TiO、WOおよびBiのうちの少なくとも一成分を含有することが好ましい。具体的にはNb、TiO、WO、Biの成分の合量が10%以上であることが好ましく、20%以上であることがより好ましく、25%以上であることがさらに好ましい。一方これらの成分の合量が大きすぎる場合、着色したり、失透性が強くなりすぎるおそれがあるため、60%以下であることが好ましく、55%以下であることがより好ましい。
 Taは比誘電率を向上させる成分であるが、添加量が大きすぎる場合、耐失透性が低下してしまうおそれがあることに加え、価格が高いことから、その含有量は10%以下が好ましく、5%以下がより好ましい。
 LiO、NaO、KO等のアルカリ金属酸化物(RO)は、溶融性を向上させ、ガラス転移温度を低下させる効果をもつ効果を有する成分である。そのため、これらの1種類または2種類以上を含有していることが望ましい。LiO+NaO+KOの合量として5%以上を含むことが望ましく、10%以上であることがより好ましい。しかしながら、過剰に含有させると、ガラスの安定性を損なってしまうおそれがある。そのため、合量は40%以下であることが好ましく、35%以下であることがより好ましい。
 LiOは、ガラス転移温度を低下させ、溶解性を向上させるための成分である。しかしながら、含有量が多すぎると失透性が高くなりすぎ、均質なガラスを得られなくなるおそれがある。そのため、含有量は20%以下であることが望ましく、15%以下であることがさらに好ましい。
 NaOおよびKOはいずれも溶融性を向上させる成分であるが、過度の含有により、比誘電率が低下し、所望のセンシング特性を達成できなくなってしまうおそれがある。そのため、含有量はそれぞれ20%以下であることが好ましく、15%以下であることがより好ましい。
 ZnOは、比誘電率を向上させ、ガラス転移温度を低下させる成分であるが、過剰に添加するとガラスの失透性が高くなり均質なガラスを得られなくなるおそれがある。そのため、含有量は20%以下であることが好ましく、18%以下がより好ましい。
 BaOは、比誘電率を向上させると同時に、溶解性を向上させる成分であるが、過剰に添加するとガラスの安定性を損なうおそれがあるため、その含有量は20%以下であることが好ましく、18%以下であることがより好ましい。
 MgO、CaOおよびSrOは、溶融性を向上させる成分であるが、同時に比誘電率を低下させる成分であるため、いずれも10%以下であることが好ましく、8%以下であることがより好ましい。
 高比誘電率かつ安定なガラスを得るためには、上記成分の合量は、90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることがさらに好ましい。
 以上に記載の成分の他に、必要なガラスの特性を損なわない範囲で、清澄剤やガラス化促進成分、比誘電率調整成分などを少量添加しても良い。具体的には、清澄剤としてはSbやSnOが挙げられ、ガラス化促進成分としては、GeO、Ga及びInO3、比誘電率調整成分としては、ZrO、Y、La、Gd、Ybなどが挙げられる。
 また、Bを含有し、La、Nb、ZrO、Ta、WOおよびBaOの一成分以上を含有する系としては、以下の組成範囲のものが好ましい。
  B 20~60%
  SiO 0~20%
  LiO 0~20%
  NaO 0~10%
  KO 0~10%
  ZnO 0~40%
  La 0~25%
  Gd 0~20%
  Y 0~20%
  Yb 0~20%
  TiO 0~20%
  ZrO 0~15%
  Ta 0~15%
  Nb 0~15%
  WO 0~15%
  Bi 0~20%
  BaO 0~30%
  ただし、La+TiO+Nb+ZrO+Ta+WO+BaO 10~60%
 各成分の効果は以下の通りである。
 Bは、ネットワーク形成酸化物である。含有量が少なすぎる場合、ガラス形成しなくなるか、ガラスの耐失透性の低下をもたらすおそれがあるため、20%以上含有することが好ましく、25%以上であることがより好ましい。一方、含有量が多すぎると、比誘電率が低下し、さらに対抗性の低下を招くおそれがあるため、含有量は60%以下、より好ましくは55%以下である。
 SiOは、この系のガラス中に添加されるとガラスの安定性を向上させる成分であるが、導入量が大きすぎる場合、比誘電率の低下やガラス転移温度の上昇をもたらすおそれがある。そのため、含有量は20%以下が好ましく、18%以下がより好ましい。
 LiOは、ガラス転移温度を低下させる成分であり、成形性を向上させる。しかしながら、導入量が大きすぎる場合、ガラスの耐失透性が低下してしまうおそれがある。そのため、含有量は20%以下が好ましく、18%以下がより好ましい。
 NaOおよびKOは溶解性を向上させるが、導入により耐失透性の低下や比誘電率の低下がもたらされるおそれがあるため、それぞれ10%以下が好ましく、8%以下がより好ましい。
 ZnOは、ガラスの比誘電率を向上させるとともに、ガラス転移温度を低下させ成形性を向上させる。そのため、導入量は5%以上が好ましく、7%以上がより好ましい。一方、添加量が大きすぎる場合、耐失透性が低下してしまい均質なガラスが得られなくなってしまうおそれがあるため、40%以下であることが好ましく、35%以下であることがより好ましい。
 Laは高比誘電率を達成し、かつB系ガラスに導入すると耐侯性を向上させる成分である。そのため、含有量は5%以上であることが好ましく、7%以上であることがより好ましい。一方、導入量が大きすぎる場合、ガラス転移温度が高くなったり、ガラスの耐失透性が低下し、均質なガラスが得られなくなってしまうおそれがある。そのため、含有量は25%以下が好ましく、22%以下がさらに好ましい。
 Gdは高比誘電率を達成し、かつB系ガラスに導入すると耐侯性を向上させ、Laと共存させることにより、ガラスの安定性を向上させる成分であるが、導入量が大きすぎる場合、ガラスの安定性が低下してしまうおそれがあるため、その含有量は20%以下が好ましく、18%以下がさらに好ましい。
 YおよびYbは高比誘電率を達成し、かつB系ガラスに導入すると耐侯性を向上させ、Laと共存させることにより、ガラスの安定性を向上させる成分であるが、導入量が大きすぎる場合、ガラスの安定性が低下してしまうおそれがあるため、含有量はそれぞれ20%以下であることが好ましく、18%以下であることが好ましい。
 La、Gd、Y、Ybといった希土類酸化物は、高比誘電率を達成し、かつガラスの耐侯性を向上させるための成分であるため、これらの成分の合量、La+Gd+Y+Ybは5%以上であることが好ましく、8%以上であることがより好ましい。しかしながら、導入量が大きすぎる場合、ガラスの耐失透性が低下し、均質なガラスを得られなくなるおそれがあるため、30%以下であることが好ましく、25%以下であることがより好ましい。
 TiOは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、液相温度が過度に向上してしまうおそれがあるため、含有量は20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。
 ZrOは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、液相温度が過度に向上してしまうおそれがあるため、含有量は15%以下であることが好ましく、10%以下であることがより好ましく、8%以下であることがさらに好ましい。
 Taは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、液相温度が過度に向上してしまうおそれがあるため、含有量は15%以下であることが好ましく、13%以下であることがより好ましい。
 Nbは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、液相温度が過度に向上してしまうおそれがあるため、含有量は15%以下であることが好ましく、10%以下であることがより好ましい。
 WOは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、液相温度が過度に向上してしまうおそれがあるため、含有量は15%以下であることが好ましく、10%以下であることがより好ましい。
 Biは比誘電率を向上させるための成分であるが、含有量が大きすぎると耐失透性が低下したり、ガラスに着色が生じ透過率の低下をもたらすおそれがあるため、含有量は15%以下であることが好ましく、13%以下であることがより好ましい。
 BaOは比誘電率を向上させる成分であるが、含有量が大きすぎると耐失透性が低下してしまうおそれがあるため、30%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。
 比誘電率を高めるため、Nb、TiO、WO、La、ZrO、TaおよびBaOの成分の合量は10%以上が好ましい。しかしながらこの成分の合量が大きすぎる場合、ガラスの安定性が損なわれるおそれがあるため、60%以下が好ましい。
 本発明の目的に合致させるためには、本実施形態のカバー部材において、以上に記載の成分の合量は90%以上であることが望ましく、95%以上であることがさらに好ましい。以上に記載の成分以外であっても、清澄、溶解性向上などの目的で本発明の効果を損なわない範囲で添加しても良い。このような成分として、例えば、Sb、SnO、MgO、CaO、SrO、GeO、Ga、In、フッ素等が挙げられる。
 SiOを含有し、Nb、TiO、BiおよびBaOのうち一成分以上を含有する系としては、以下の組成範囲のものが好ましい。
  SiO 30~75%
  B 0~20%
  Nb 0~50%
  TiO 0~30%
  Bi 0~15%
  ZrO 0~15%
  BaO 0~50%
  Nb+TiO+Bi+ZrO+BaO 6~40%
  LiO 0~30%
  NaO 0~30%
  KO 0~30%
  LiO+NaO+KO 0~40%
  MgO 0~20%
  CaO 0~20%
  SrO 0~20%
  ZnO 0~20%
 SiOはガラス形成をさせるためのネットワークフォーマとして働く成分であり、その含有量が少なすぎるとガラスを形成しなくなってしまうおそれがあるため30%以上であることが好ましく、40%以上であることがより好ましい。また、含有量が多すぎると、粘性が高くなり、溶解性が低下するおそれがあるため、75%以下であることが好ましい。
 BはSiOと比較的少量添加することによりガラス形成を助け失透性を低下させるが、含有量が多すぎると、比誘電率の低下をもたらすおそれがあるため、その含有量は20%以下であることが好ましく、18%以下であることがより好ましい。
 Nbは比誘電率を向上させるための成分であるが、所定の比誘電率特性を達成するためには、その含有量は1%以上であることが好ましく、3%以上であることがより好ましく、5%以上がさらに好ましい。しかしながら、過剰に添加することによりガラスの耐失透性を低下させ、均質なガラスを得られなくなるおそれがある。そのため、その含有量は50%以下であることが望ましく、45%以下であることがより好ましい。
 TiOは比誘電率を向上させるための成分であるが、所定の比誘電率特性を達成するためには、その含有量は1%以上であることが好ましく、3%以上であることがより好ましく、5%以上がさらに好ましい。しかしながら、過剰に添加することによりガラスの耐失透性を低下させ、均質なガラスを得られなくなるおそれがある。そのため、その含有量は30%以下であることが望ましく、20%以下であることがより好ましい。
 Biは比誘電率を向上させるための成分であるが、過剰に添加することによりガラスの耐失透性を低下させ、均質なガラスを得られなくなり、さらに着色をもたらし、散乱層を光が伝播する際の吸収による損失を大きくしてしまうおそれがある。そのため、その含有量は15%以下であることが望ましく、12%以下であることがより好ましい。
 ZrOは着色度を悪化させること無く比誘電率を向上させる成分であるが、含有量が大きすぎる場合、ガラスの耐失透性が低下し、均質なガラスが得られなくなってしまうおそれがある。そのため、含有量は15%以下が好ましく、10%以下がより好ましい。
 BaOは比誘電率を向上させると同時に溶解性を向上させる成分であるが、過度に含有した場合、ガラスの安定性を損ない、均質なガラスを得られなくなるおそれがあるため、その含有量は50%以下が好ましく、45%以下がより好ましい。
 高比誘電率のガラスを得るためには、Nb、Bi、TiO、ZrOおよびBaOの成分の合量が6%以上であることが好ましく、8%以上であることがより好ましい。一方、この合量が大きすぎると、ガラスの耐失透性が低下したり、着色を生じたりするおそれがあるため、40%以下が好ましく、35%以下がより好ましく、30%以下であることがさらに好ましい。
 LiO、NaOおよびKOは溶解性を向上させるとともにガラス転移温度を低下させる成分であり、さらにガラス基板との親和性を高める成分である。そのためこれらの成分の合量LiO+NaO+KOは、1%以上であることが好ましく、3%以上であることがより好ましい。一方、これら成分の合量が大きすぎる場合、ガラスの耐失透性が低くなり、均質なガラスが得られなくなるおそれがあるため、その合量は、40%以下であることが好ましく、33%以下であることがより好ましい。
 また、LiO、NaOおよびKOの各含有量は、それぞれ30%以下であることが好ましく、25%以下であることがより好ましい。
 MgO、CaO、SrOおよびZnOはガラスの溶解性を向上させる成分であり、適度に添加するとガラスの耐失透性を低下させられるが、過度に含有すると失透性が高くなってしまい均質なガラスを得られなくなるおそれがあるため、その含有量はそれぞれ20%以下が好ましく、15%以下がより好ましい。
 本発明の目的に合致させるためには、本実施形態のカバー部材において、以上に記載の成分の合量は90%以上であることが望ましい。また、以上に記載の成分以外であっても、清澄、溶解性向上などの目的で本発明の効果を損なわない範囲で添加しても良い。このような成分として、例えば、Sb、SnO、GeO、Ga、In、WO、Ta、La、Gd、Y、Yb等が挙げられる。
 Biを主成分として含有し、ガラス形成助剤としてSiO、Bなどを含有する系としては、以下の組成範囲のものが好適である。
  Bi 10~50%
  B 0~60%
  SiO 0~60%
  ただし、B+SiO 10~60%
  P 0~20%
  LiO 0~15%
  NaO 0~15%
  KO 0~15%
  TiO 0~15%
  Nb 0~20%
  TeO 0~20%
  GeO 0~10%
  Ga 0~10%
 Biは、高比誘電率を達成し、かつ多量に導入しても安定にガラスを形成する成分である。そのため、その含有量は、10%以上が好ましく、15%以上がより好ましい。一方、過剰に添加すると、ガラスに着色が生じ、失透性が高くなり、均質なガラスを得られなくなってしまうおそれがある。そのため、含有量は50%以下が好ましく、45%以下がより好ましい。
 Bは、Biを多量に含むガラスにおいて、ネットワークフォーマとして働き、ガラス形成を助ける成分であり、その含有量は、1%以上が好ましく、3%以上がより好ましい。しかしながら、添加量が大きすぎる場合、ガラスの比誘電率が低下してしまうおそれがあるため、60%以下が好ましく、50%以下がより好ましい。
 SiOは、Biをネットワークフォーマとしてガラス形成を助ける働きをする成分であるが、含有量が大きすぎる場合、比誘電率の低下をもたらすおそれがあるため、60%以下が好ましく、50%以下がより好ましい。
 BとSiOは、組み合わせることによってガラス形成を向上させるため、その合量は10%以上であることが好ましく、15%以上であることがより好ましい。一方、導入量が大きすぎる場合、比誘電率が低下してしまうおそれがあるため、60%以下であることが好ましく、50%以下であることがより好ましい。
 Pは、ガラス形成を助けるとともに、着色度の悪化を抑制する成分であるが、含有量が大きすぎる場合、比誘電率の低下をもたらすおそれがあるため、20%以下が好ましく、18%以下がより好ましい。
 LiO、NaOおよびKOは、ガラス溶解性を向上させ、さらにガラス転移温度を低下させるための成分であるが、過度に含有するとガラスの耐失透性が低下し、均質なガラスを得られなくなってしまうおそれがある。このため、それぞれ15%以下が好ましく、13%以下がより好ましい。また、以上のアルカリ酸化物成分の合量、LiO+NaO+KOが大きすぎると比誘電率の低下を招き、さらにガラスの耐失透性を低下させるおそれがあるため、30%以下が好ましく、25%以下がより好ましい。
 TiOは、比誘電率を向上させる成分であるが、含有量が大きすぎる場合、着色を生じたり、耐失透性が低下し、均質なガラスを得られなくなってしまうおそれがある。そのため、含有量は15%以下が好ましく、10%以下がより好ましい。
 Nbは比誘電率を向上させる成分であるが、導入量が大きすぎるとガラスの耐失透性が低下し、安定なガラスが得られなくなってしまうおそれがある。そのため、含有量は20%以下であることが好ましく、18%以下であることがさらに好ましい。
 TeOは着色度を悪化させずに比誘電率を向上させる成分であるが、過度の導入により、耐失透性が低下し、着色の原因となるおそれがあるため、その含有量は20%以下が好ましく、15%以下がより好ましい。
 GeOは、比誘電率を比較的高く維持しつつ、ガラスの安定性を向上させる成分であるが、極めて高価であるため、含有量は10%以下が好ましく、8%以下であることがより好ましく、含まないことがさらに好ましい。
 Gaは、比誘電率を比較的高く維持しつつ、ガラスの安定性を向上させる成分であるが、極めて高価であるため、含有量は10%以下が好ましく、8%以下であることがより好ましく、含まないことがさらに好ましい。
 本発明の目的に合致させるためには、本実施形態のカバー部材において、以上に記載の成分の合量は90%以上であることが望ましく、95%以上であることがさらに好ましい。以上に記載の成分以外であっても、清澄、溶解性向上、比誘電率調整などの目的で本発明の効果を損なわない範囲で添加しても良い。このような成分として、例えば、Sb、SnO、MgO、CaO、SrO、In、ZrO、Ta、WO、La、Gd、Y、Yb、Al等が挙げられる。
 Pを含有するガラスの場合、d線(波長587.6nm)での屈折率が1.6以上であることが好ましい。また、Pを含有しないガラスの場合、d線での屈折率が1.8以上であることが好ましい。これにより、ガラスの比誘電率を高められる。
(カバーガラス)
 また、本発明によれば、カバー部材に用いられるカバーガラスとして、ビッカース硬度Hvが600以上であり、周波数1MHzにおける比誘電率が12以上であるガラスを備えるカバーガラスが提供される。なお、本実施形態における「カバーガラス」とは、当該ガラスのみからなるカバーガラスに限定された概念ではなく、当該ガラスの表面に印刷層や防眩層等が形成される場合には、当該ガラスとともに当該印刷層や防眩層等をも含めた概念である。
(静電容量方式センサー)
 本実施形態のカバー部材は、静電容量方式センサー用カバー部材として有用であり、静電容量方式センサーであれば、特に制限されることなく使用できる。静電容量方式センサーは、たとえば、スマートフォンなどの携帯機器類のタッチパネルや、銀行の現金自動預け払い機、自動車のドアロック、建物内への入場管理などの個人認証装置といった種々の用途に使用できる。また、指紋認証機能を有する静電容量方式センサー(以下、単に指紋認証用センサーともいう)は、特にスマートフォンや携帯電話、タブレット型パーソナルコンピューターなどの携帯機器類に好適に使用できる。以下、本実施形態のカバー部材を備えた静電容量方式センサーについて、指紋認証用センサーを一例として説明する。
 図1に、指紋認証用センサーの一例の断面図を示す。図1に示される指紋認証用センサー1においては、基板2の上に複数の電極3が所定の間隔を隔てて設けられており、その上にカバー部材4が設けられている。なお、図1には示されていないが、紙面に垂直な方向においても、基板2の上に複数の電極3が所定の間隔を隔てて設けられている。カバー部材4の上に指5が接触すると、指5が有する指紋の凹凸に応じて、指5と電極3の間に電荷がたまる。ここで、指5と電極3の間の距離が大きくなるほど、静電容量が小さくなり、たまる電荷量が少なくなる。したがって、指5の谷(凹部)6においては、その谷(凹部)6と電極3の間の距離が大きいため、たまる電荷量は少なくなる。一方、指5の山(凸部)7においては、その山(凸部)7と電極3の間の距離が小さいため、たまる電荷量は多くなる。このようにして発生する各点における電荷量を測定し、画像に変換することで、指紋の形状が画像として検出される。
 本実施形態のカバー部材は、ビッカース硬度Hvが600以上と高く、かつ、周波数1MHzにおける比誘電率が12以上と高いガラスを少なくとも備えている。したがって、本実施形態のカバー部材は、静電容量方式センサーのセンシング感度の向上への寄与が高く、かつ高い耐擦傷性を有しており、指紋認証用センサー等の静電容量方式センサー用カバー部材として有用である。
 以下、本発明を実施例によって説明するが、本発明はこれらにより限定されるものではない。
 表1に示す実施例1~2及び比較例1~5のそれぞれについて、「組成(mol%)」の欄にモル百分率表示で示す組成になるように、酸化物、水酸化物、炭酸塩または硝酸塩等一般に使用されているガラス原料を適宜選択し、ガラスとして300cmとなるように秤量した。ついで、混合した原料を白金製るつぼに入れ、800~1100℃の抵抗加熱式電気炉に投入して、1時間溶融し、脱泡、均質化した。
 得られた溶融ガラスを型材に流し込み、各ガラスのガラス転移点より低い温度で1時間保持した後、1℃/分の速度で室温まで冷却し、ガラスブロックを得た。このガラスブロックを切断、研削し、最後に両面を鏡面に加工して、サイズが15mm×15mm、厚みが0.8mmである板状ガラスを得た。
 各実施例および各比較例に係るガラスについて、ビッカース硬度Hv、周波数1MHzにおける比誘電率、およびd線(波長587.6nm)での屈折率を測定した結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 各比較例に係るガラスは、いずれも周波数1MHzにおける比誘電率が12未満であった。また、比較例3~5に係るガラスについてビッカース硬度Hvを測定したところ、600未満であった。
 一方で、各実施例に係るガラスは、いずれも、周波数1MHzにおける比誘電率が12以上と高く、かつ600以上の高いビッカース硬度Hvを有していた。
 まず、耐擦傷性試験を行った。これら実施例1~2、比較例1~5について耐擦傷性試験を実施したところ、比較例3~5のガラスについては表面に無数の傷が発生した。一方実施例1~2、比較例1~2のガラスについては表面にほぼ傷が発生せず、非常に良好な耐擦傷性を示した。このことからビッカース硬度Hv600以上のガラスは高い耐擦傷性を示すことが分かった。
 続いて、センシング感度に関し試験を行った。実施例1および2のガラスをそれぞれカバー部材として、図1のように基板の上に複数の電極を所定の間隔を隔てて設け、その上にカバー部材を設けて指紋認証用センサーを形成した。実施例1及び2のガラスをカバー部材として備える指紋認証用センサーを用いて検出した指紋の形状の画像は、いずれも鮮明であった。
 一方、比較例1~5のガラスをそれぞれカバー部材として、図1のように基板の上に複数の電極を所定の間隔を隔てて設け、その上にカバー部材を設けて指紋認証用センサーを形成した。比較例1~5のガラスをカバー部材として備える指紋認証用センサーを用いて検出した指紋の形状の画像は、いずれも不鮮明であった。このことから比誘電率が12以上のガラスは高いセンシング感度を示すことが分かった。
 以上より、各実施例のガラスは、高い耐擦傷性と高いセンシング感度を示し静電容量方式センサー用カバー部材の構成材料として有用である。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年10月17日付けで出願された日本特許出願(特願2014-213223)に基づいており、その全体が引用により援用される。
 1 指紋認証用センサー
 2 基板
 3 電極
 4 カバー部材
 5 指
 6 谷(凹部)
 7 山(凸部)

Claims (13)

  1.  少なくともガラスを備え、
     前記ガラスのビッカース硬度Hvが600以上であり、
     前記ガラスは第1面と前記第1面に対向する第2面を有し、
     前記ガラスの周波数1MHzにおける比誘電率が12以上であるカバー部材。
  2.  前記ガラスの厚みが0.8mm以下である請求項1に記載のカバー部材。
  3.  前記ガラスの前記第2面に印刷層が設けられ、
     前記印刷層の厚みが20μm以下である請求項1または2に記載のカバー部材。
  4.  前記カバー部材の波長380nm~780nmにおける吸光係数の最小値が0.7mm-1以上である、請求項3に記載のカバー部材。
  5.  前記カバー部材の波長380nm~780nmにおける吸光度の最小値が0.01以上である、請求項3または4に記載のカバー部材。
  6.  前記ガラスの前記第1面の表面粗さRaが300nm以下である請求項1~5のいずれか1項に記載のカバー部材。
  7.  前記ガラスが、酸化物基準のmol%表記で、Nb、Bi、TiO、WO、La、Gd、ZrO、Ta及びBaOを、合量で、6%以上含有する請求項1~6のいずれか1項に記載のカバー部材。
  8.  前記ガラスが、酸化物基準のmol%表記で、Pを15~40%含有する請求項1~6のいずれか1項に記載のカバー部材。
  9.  前記ガラスが、酸化物基準のmol%表記で、Bを20~60%含有する請求項1~6のいずれか1項に記載のカバー部材。
  10.  前記ガラスが、酸化物基準のmol%表記で、SiOを30~75%含有する請求項1~6のいずれか1項に記載のカバー部材。
  11.  静電容量方式センサーに用いられる請求項1~10のいずれか1項に記載のカバー部材。
  12.  指紋認証用センサーに用いられる請求項11に記載のカバー部材。
  13.  ビッカース硬度Hvが600以上であり、周波数1MHzにおける比誘電率が12以上であるガラスを備えるカバーガラス。
PCT/JP2015/079162 2014-10-17 2015-10-15 カバー部材 WO2016060201A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213223 2014-10-17
JP2014-213223 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016060201A1 true WO2016060201A1 (ja) 2016-04-21

Family

ID=55746742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079162 WO2016060201A1 (ja) 2014-10-17 2015-10-15 カバー部材

Country Status (2)

Country Link
TW (1) TW201628987A (ja)
WO (1) WO2016060201A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082199A1 (ja) * 2015-11-12 2017-05-18 旭硝子株式会社 印刷層付き板及びこれを用いた表示装置、並びに機能層付き車載表示装置用ガラス
US10331934B2 (en) 2015-11-20 2019-06-25 Idex Asa Electronic sensor supported on rigid substrate
US10387707B2 (en) 2016-06-24 2019-08-20 Idex Asa Reinforcement panel for fingerprint sensor cover
US10675791B2 (en) 2016-09-02 2020-06-09 Idex Biometrics Asa Method of manufacturing a cover member suitable for a fingerprint sensor
US10713461B2 (en) 2017-09-19 2020-07-14 IDEX Biometrtics ASA Double sided sensor module suitable for integration into electronic devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477839A (zh) * 2023-03-13 2023-07-25 华南理工大学 一种适用于高频微波通信的低介电磷酸盐玻璃及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001531A (ja) * 2006-06-20 2008-01-10 Ohara Inc ガラス
JP2012174053A (ja) * 2011-02-22 2012-09-10 Sony Corp カバー材及び電子機器
JP2013035721A (ja) * 2011-08-09 2013-02-21 Asahi Glass Co Ltd ガラス板の製造方法およびディスプレイ装置用化学強化ガラス
JP2013189326A (ja) * 2012-03-12 2013-09-26 Hoya Corp 電子機器用カバーガラスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001531A (ja) * 2006-06-20 2008-01-10 Ohara Inc ガラス
JP2012174053A (ja) * 2011-02-22 2012-09-10 Sony Corp カバー材及び電子機器
JP2013035721A (ja) * 2011-08-09 2013-02-21 Asahi Glass Co Ltd ガラス板の製造方法およびディスプレイ装置用化学強化ガラス
JP2013189326A (ja) * 2012-03-12 2013-09-26 Hoya Corp 電子機器用カバーガラスの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082199A1 (ja) * 2015-11-12 2017-05-18 旭硝子株式会社 印刷層付き板及びこれを用いた表示装置、並びに機能層付き車載表示装置用ガラス
US10331934B2 (en) 2015-11-20 2019-06-25 Idex Asa Electronic sensor supported on rigid substrate
US10776600B2 (en) 2015-11-20 2020-09-15 Idex Biometrics Asa Electronic sensor supported on rigid substrate
US10387707B2 (en) 2016-06-24 2019-08-20 Idex Asa Reinforcement panel for fingerprint sensor cover
US10675791B2 (en) 2016-09-02 2020-06-09 Idex Biometrics Asa Method of manufacturing a cover member suitable for a fingerprint sensor
US10713461B2 (en) 2017-09-19 2020-07-14 IDEX Biometrtics ASA Double sided sensor module suitable for integration into electronic devices

Also Published As

Publication number Publication date
TW201628987A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
WO2016060201A1 (ja) カバー部材
US11420898B2 (en) High strength ultrathin glass and method of making the same
KR102182662B1 (ko) 전자 디바이스 구조체 및 그 내부에 사용되는 극박 유리 시트
JP7041612B2 (ja) 傷つき難い表面を有する積層ガラス物品
US10071933B2 (en) Chemically toughened flexible ultrathin glass
US20210078899A1 (en) Ultrathin glass with special chamfer shape and high strength
US20170081240A1 (en) Method for producing chemically tempered glass
US20170217825A1 (en) Cover member
CN106470951B (zh) 化学强化用玻璃和化学强化玻璃
EP3330754B1 (en) Light guiding panel and laminated light guiding panel using same
US20160224822A1 (en) Cover member, personal digital assistant and display device including the same, and method of manufacturing cover glass
US8604693B2 (en) Plasma display device containing cover glass and substrates having similar thermal expansion coefficients
JP7184791B2 (ja) 高い接触耐性を有するフレキシブル超薄ガラス
EP2594536A1 (en) Glass plate
WO2013099994A1 (ja) 静電容量式タッチセンサ用表面ガラス
JP6597950B2 (ja) 強化ガラス及び強化用ガラス
TWI752252B (zh) 化學強化玻璃及化學強化玻璃的製造方法
CN113165969A (zh) 化学强化玻璃板、包含化学强化玻璃的保护玻璃以及电子设备
KR20200139156A (ko) 화학 강화용 유리
JP2020521700A (ja) 接触耐性の高いフレキシブル超薄ガラス
WO2014166250A1 (en) Chemically toughened glass
US20230159383A1 (en) Sheet-like glass article, method for producing same, and use thereof
TW201741690A (zh) 玻璃物品
JP2016121050A (ja) ガラス成形体およびガラス成形体の製造方法
CN116348424A (zh) 具有改善的机械耐久性的可调式玻璃组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15850363

Country of ref document: EP

Kind code of ref document: A1