WO2016059708A1 - Power supply system and control method for power supply system - Google Patents

Power supply system and control method for power supply system Download PDF

Info

Publication number
WO2016059708A1
WO2016059708A1 PCT/JP2014/077605 JP2014077605W WO2016059708A1 WO 2016059708 A1 WO2016059708 A1 WO 2016059708A1 JP 2014077605 W JP2014077605 W JP 2014077605W WO 2016059708 A1 WO2016059708 A1 WO 2016059708A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
voltage
series
fuel cell
Prior art date
Application number
PCT/JP2014/077605
Other languages
French (fr)
Japanese (ja)
Inventor
充彦 松本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/077605 priority Critical patent/WO2016059708A1/en
Publication of WO2016059708A1 publication Critical patent/WO2016059708A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a power supply system that supplies power to a load by selecting at least one of the series power supplies and a control method for the power supply system.
  • a series power supply in which a fuel cell and a secondary battery are connected in series is connected to a matrix converter, and the series power supply is There are systems that use and supply power to the motor.
  • JP 4589056B discloses a power conversion device in which a fuel cell of a series power supply is connected to the positive side of a matrix converter, and a battery as the other power source is connected to the negative side of the matrix converter.
  • the present invention has been made paying attention to such a problem, and a power supply system and a control of the power supply system that reduce wasteful processing performed when power is supplied from a series power supply with a simple configuration. It aims to provide a method.
  • a power supply system that selects at least one power source among series power sources in which a first power source and a second power source are connected in series and supplies power to a load is charged or discharged.
  • Secondary battery a fuel cell connected in series with the secondary battery, and power conversion means for converting power output from at least one of the series power supplies into AC power.
  • the positive terminal of the secondary battery is connected to the first power terminal of the power conversion means as the positive terminal of the series power supply
  • the positive terminal of the fuel cell is connected to the positive terminal and the negative terminal of the series power supply. It connects with the negative electrode terminal of the said secondary battery with respect to the 2nd power supply terminal of the said power conversion means between terminals.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a functional configuration of a controller that controls the power supply system.
  • FIG. 3 is a block diagram illustrating a detailed configuration of a control unit that controls power generation of the fuel cell.
  • FIG. 4 is a block diagram illustrating an example of a detailed configuration of a control unit that controls voltage distribution of the series power supply.
  • FIG. 5 is a block diagram illustrating an example of a detailed configuration of a control unit that controls the motor.
  • FIG. 6A is a diagram illustrating an example of voltage waveforms of a series power supply and a single power supply that generate a U-phase voltage signal supplied to the motor.
  • FIG. 6A is a diagram illustrating an example of voltage waveforms of a series power supply and a single power supply that generate a U-phase voltage signal supplied to the motor.
  • FIG. 6B is a diagram illustrating an example of voltage waveforms of a series power supply and a single power supply when charging power to the secondary battery.
  • FIG. 7 is a diagram illustrating a modulation rate for modulating the voltage of the series power supply and the single power supply for the U-phase voltage signal.
  • FIG. 8 is a diagram illustrating a technique for generating a PWM signal according to a modulation rate for a series power supply and a single power supply.
  • FIG. 9A is a diagram illustrating switching control executed by the series power converter when the torque required for the motor increases.
  • FIG. 9B is a diagram illustrating an example of switching control executed by the series power converter when the torque required for the motor is reduced.
  • FIG. 1 is a diagram illustrating a configuration of a power supply system 100 according to an embodiment of the present invention.
  • the power supply system 100 selects at least one of the series power supplies in which two power supplies are connected in series and supplies power to the electric load.
  • the positive power supply is referred to as a first power supply
  • the negative power supply is referred to as a second power supply.
  • One of the first power source and the second power source is referred to as a single power source.
  • the power supply system 100 includes a fuel cell stack 10, a backflow prevention diode 11, an auxiliary machine 12, a control device 13, a secondary battery 20, a control device 21, a series power conversion device 30, and a first power supply capacitor. 41, a second power supply capacitor 42, and a controller 50.
  • the power supply system 100 includes current sensors 111 to 113, a voltage sensor 121 and a voltage sensor 122, and a current sensor 131 and a current sensor 132.
  • the electric motor 200 is an electric load connected to a series power supply.
  • the electric motor 200 is realized by a three-phase AC motor including a U phase, a V phase, and a W phase.
  • a permanent magnet synchronous motor is used as the three-phase AC motor.
  • the electric motor 200 is mounted on a vehicle and has a function as an electric motor for driving the vehicle and a function as a generator for regenerating a braking force of the vehicle. For this reason, at the time of braking of the vehicle, the electric motor 200 can charge the regenerative power to the secondary battery 20.
  • the fuel cell stack 10 is a direct current power source for supplying electric power to the electric motor 200.
  • the fuel cell stack 10 is supplied with a cathode gas (oxidant gas) containing oxygen and an anode gas (fuel gas) containing hydrogen to generate electric power according to an electric load.
  • the fuel cell stack 10 is a stack of a plurality of fuel cells.
  • the fuel cell has an electrolyte membrane, an anode electrode (fuel electrode), and a cathode electrode (oxidant electrode), and the electrolyte membrane is sandwiched between the anode electrode and the cathode electrode.
  • an anode gas supplied to the anode electrode and a cathode gas supplied to the cathode electrode cause an electrochemical reaction at the electrolyte membrane to generate electric power.
  • the electrochemical reaction proceeds as follows at both the anode and cathode electrodes.
  • Anode electrode 2H 2 ⁇ 4H + + 4e- (1)
  • Cathode electrode 4H + + 4e- + O 2 ⁇ 2H 2 O (2)
  • an electromotive force is generated and water is generated by the electrochemical reactions (1) and (2). Since a plurality of fuel cells are connected in series to the fuel cell stack 10, the sum of the cell voltages generated in each fuel cell becomes the output voltage of the fuel cell stack 10.
  • the fuel cell stack 10 is supplied with cathode gas and anode gas by a cathode gas supply / discharge device and an anode gas supply / discharge device (not shown), respectively.
  • the cathode gas supply / discharge device includes a compressor that supplies cathode gas to the fuel cell stack 10, a cathode pressure regulating valve that adjusts the pressure of the cathode gas, and the like.
  • the anode gas supply / discharge device includes an anode pressure regulating valve that supplies anode gas to the fuel cell stack 10 from a high-pressure tank that stores the anode gas, a purge valve that discharges anode off-gas from the fuel cell stack 10, and the like.
  • the backflow prevention diode 11 is connected to the positive electrode terminal 10 ⁇ / b> A of the fuel cell stack 10 and prevents a current flowing back to the fuel cell stack 10.
  • the auxiliary machine 12 is a component that assists the operation of the fuel cell stack 10 and is operated by the electric power output from the fuel cell stack 10.
  • the auxiliary machine 12 includes a cathode compressor that supplies a cathode gas to the fuel cell stack 10 and a cooling water pump that circulates cooling water through the fuel cell stack 10.
  • the control device 13 controls the operation of the auxiliary machine 12 and is controlled by the controller 50.
  • the control device 13 controls the operation amounts of, for example, a cathode compressor and a cooling water pump.
  • control device 13 detects the state quantity of the auxiliary machine 12.
  • the state quantity of the auxiliary machine 12 is a parameter necessary for measuring the power consumption of the auxiliary machine 12. For example, when measuring the power consumption of the cathode compressor, the rotational speed and torque of the cathode compressor are detected. Is done. The control device 13 outputs the detected state quantity to the controller 50.
  • the secondary battery 20 is a power source for discharging or charging electric power to the electric motor 200.
  • the secondary battery 20 is used as a power source that assists the power of the fuel cell stack 10.
  • the secondary battery 20 is realized by, for example, a lithium ion battery.
  • the control device 21 monitors the charge / discharge state of the secondary battery 20.
  • the control device 21 detects the current flowing through the secondary battery 20 and the voltage of the secondary battery 20, and calculates SOC (State Of Charge) indicating the battery capacity of the secondary battery 20. Further, the control device 21 outputs secondary battery information including the SOC of the secondary battery 20, the temperature of the secondary battery 20, allowable discharge power, and allowable charge power to the controller 50.
  • SOC State Of Charge
  • the series power converter 30 is power conversion means in which a series power source in which a first power source and a second power source are connected in series is connected in parallel. By supplying the voltage of the series power supply to the electric motor 200 by the series power converter 30, it is possible to ensure a voltage that is not inferior to the induced voltage generated in the electric motor 200.
  • the series power supply conversion device 30 selects at least one of the series power supplies and connects the selected power supply to the electric load.
  • the series power converter 30 is controlled by the controller 50.
  • the serial power converter 30 performs switching control for converting the power output from the selected power source into AC power, and supplies the AC power converted by the switching control to the electric motor 200.
  • the series power converter 30 is realized by a three-level inverter, for example.
  • the series power supply converter 30 is provided with a first power supply terminal 311, a second power supply terminal 312, and a ground terminal 313 for connecting a series power supply in which two power supplies are connected in series.
  • the first power supply terminal 311 is a terminal to which the positive terminal of the positive power supply among the series power supplies is connected.
  • the second power supply terminal 312 is a terminal to which the positive terminal of the negative power supply and the negative terminal of the positive power supply are connected in the series power supply.
  • the ground terminal 313 is a terminal to which the negative terminal of the negative power supply is connected among the series power supplies.
  • the series power converter 30 is connected to a U-phase terminal 321 to which a U-phase power line of the electric motor 200 is connected, a V-phase terminal 322 to which a V-phase power line is connected, and a W-phase power line.
  • W-phase terminal 323 is provided.
  • the serial power converter 30 includes a bidirectional converter 31, a serial power connection 32, and a ground power connection 33.
  • the bidirectional conversion unit 31 is a second switch unit that connects or blocks between the second power supply terminal 312 and the electric motor 200.
  • the bidirectional conversion unit 31 outputs the voltage of the second power supply terminal 312 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 by switching control of the controller 50, respectively.
  • the bidirectional conversion unit 31 includes switching circuits 1u, 1v, and 1w that supply AC power to the electric motor 200, a switching circuit 4u that blocks current flowing from the first power supply terminal 311 and the electric motor 200 to the second power supply terminal 312, 4v and 4w.
  • a switching circuit 1u and a switching circuit 4u are connected in series to the U-phase power line Lu.
  • the switching circuit 1u is a circuit that outputs a voltage supplied from the second power supply terminal 312 to the U-phase power supply line Lu, and includes a transistor Tr and a diode Di.
  • Tr and Di the transistors and diodes of the switching circuit 1u are denoted by symbols Tr and Di, and the other switching circuits are omitted.
  • the transistor Tr is a switching element that performs an on / off operation that switches between a conductive state and a non-conductive state, and is realized by, for example, an IGBT (Insulated Gate Bipolar Transistors).
  • the transistor Tr of the switching circuit 1 u is a first transistor that supplies or cuts off current from the second power supply terminal 312 to the electric motor 200.
  • the transistor Tr and the diode Di are connected in parallel to each other so that the direction of the current flowing through the transistor Tr is opposite to the direction of the current passing through the diode Di (forward direction). That is, the diode Di is connected in parallel to the transistor Tr, and allows current to pass from the electric motor 200 to the second power supply terminal 312.
  • the switching circuit 4u is a circuit that outputs a voltage supplied from the U-phase power supply line Lu to the second power supply terminal 312, and is configured by a transistor Tr and a diode Di as in the switching circuit 1u.
  • the transistor Tr of the switching circuit 4u is connected so that a current flows in a direction opposite to that of the transistor Tr of the switching circuit 1u. That is, the transistor Tr of the switching circuit 4 u is a second transistor that supplies or cuts off current from the electric motor 200 to the second power supply terminal 312.
  • both the switching circuit 1v and the switching circuit 4v are connected to the V-phase power line Lv, and both the switching circuit 1w and the switching circuit 4w are connected to the W-phase power line Lw.
  • the serial power supply connection unit 32 is a first switch unit that connects or disconnects the first power supply terminal 311 and the electric motor 200.
  • the series power supply connection unit 32 outputs the series voltage output from the first power supply terminal 311 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 under the switching control of the controller 50.
  • the serial power supply connection unit 32 includes switching circuits 2u, 2v, and 2w.
  • the switching circuits 2u, 2v, and 2w are connected to U-phase, V-phase, and W-phase power supply lines Lu, Lv, and Lw, respectively, and have the same configuration as the switching circuit 1u.
  • the transistors Tr of the switching circuits 2u, 2v, and 2w supply or block current from the first power supply terminal 311 to the electric motor 200.
  • Each diode Di is connected in parallel to the transistor Tr, and allows current to pass from the electric motor 200 to the first power supply terminal 311.
  • the ground power supply connection unit 33 is a third switch unit that connects or disconnects the grounded ground line Lg and the electric motor 200.
  • the ground power supply connection unit 33 outputs the ground voltage of the ground terminal 313 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 under the switching control of the controller 50, respectively.
  • the ground power supply connection unit 33 includes switching circuits 3u, 3v, and 3w.
  • the switching circuits 3u, 3v, and 3w are connected to the U-phase, V-phase, and W-phase power lines Lu, Lv, and Lw, respectively, and have the same configuration as the switching circuit 1u.
  • the switching circuits 1u to 1w, the switching circuits 2u to 2w, the switching circuits 3u to 3w, and the transistors Tr of the switching circuits 4u to 4w are each controlled to be switched by the controller 50.
  • a PWM signal Pulse Width Modulation for executing switching control is supplied from the controller 50 to the control terminal (gate terminal) of each transistor Tr.
  • PWM signal Pulse Width Modulation
  • each of the transistors Tr is alternately switched between a conductive state (ON) and a non-conductive state (OFF).
  • the series voltage of the series power supply 101 is converted into a three-phase AC voltage by switching control of the series power supply connection unit 32 and the ground power supply connection unit 33. Further, the bidirectional conversion unit 31 and the ground power source connection unit 33 are subjected to switching control, whereby the voltage of the fuel cell stack 10 is converted into a three-phase AC voltage.
  • the bidirectional conversion unit 31, the series power supply connection unit 32, and the ground power supply connection unit 33 are subjected to switching control so that the series voltage of the series power supply 101 and the voltage of the fuel cell stack 10 correspond to the induced voltage of the electric motor 200. Switched three-phase AC voltage is generated.
  • the first power supply capacitor 41 is connected in parallel to the first power supply and is used to adjust the electric power extracted from the first power supply.
  • One electrode of the first power supply capacitor 41 is connected to the first power supply terminal 311, and the other electrode is connected to the second power supply terminal 312.
  • the second power supply capacitor 42 is connected in parallel to the second power supply and is used for adjusting the electric power extracted from the second power supply.
  • One electrode of the second power supply capacitor 42 is connected to the second power supply terminal 312, and the other electrode is connected to the ground terminal 313.
  • the secondary battery 20 is for assisting the fuel cell stack 10, and the upper limit value of the current that can be extracted from the secondary battery 20 is smaller than the upper limit value of the current that can be output from the fuel cell stack 10. . For this reason, when the power supplied from the series power supply to the electric motor 200 increases according to the driver's request, the current taken out from the secondary battery 20 exceeds the upper limit value, and the secondary battery 20 deteriorates.
  • the current in the electric motor 200 is controlled by switching the bidirectional converter 31 so that the current output from the positive electrode terminal 20A of the secondary battery 20 to the negative electrode terminal 10B of the fuel cell stack 10 does not exceed the upper limit value. Is returned to the second power supply terminal.
  • the positive terminal of the auxiliary secondary battery 20 is connected as the first power source to the first power terminal 311 of the series power converter 30, and the fuel cell stack 10 as the second power source is connected to the second power terminal 312.
  • the positive electrode terminal and the negative electrode terminal of the secondary battery 20 were connected. That is, the series power supply 101 in which the positive electrode terminal 10 ⁇ / b> A of the fuel cell stack 10 was connected to the negative electrode terminal 20 ⁇ / b> B of the secondary battery 20 was connected in parallel to the series power supply conversion device 30.
  • controller 50 that controls the series power converter 30 in such a state will be described with reference to the drawings.
  • the controller 50 is a control unit that controls the power supply system 100.
  • the controller 50 is configured by a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 50 receives detection signals from the current sensors 111 to 113, the voltage sensor 121 and the voltage sensor 122, and the current sensor 131 and the current sensor 132.
  • the current sensor 111 is provided on a power supply line between the positive electrode terminal 20 ⁇ / b> A of the secondary battery 20 and the first power supply terminal 311.
  • the current sensor 111 detects the magnitude of the current taken out from the secondary battery 20.
  • the current detected by the current sensor 111 is referred to as “secondary battery current”.
  • the current sensor 112 is provided on a power supply line between the positive electrode terminal 10A of the fuel cell stack 10 and the anode terminal of the backflow prevention diode 11.
  • the current sensor 112 detects the magnitude of current taken from the fuel cell stack 10.
  • the current detected by the current sensor 112 is referred to as “stack current”.
  • the current sensor 112 constitutes a power generation detection unit that detects the power generated by the fuel cell stack 10.
  • the current sensor 113 is connected to a power supply line between the second power supply terminal 312 and a portion (contact point) where the negative electrode terminal 20B of the secondary battery 20 and the positive electrode terminal 10A of the fuel cell stack 10 are connected.
  • the current sensor 113 detects the magnitude of the current output from the fuel cell stack 10 to the second power supply terminal 312.
  • the voltage sensor 121 is connected in parallel to the secondary battery 20 and the first power supply capacitor 41, and detects the magnitude of the voltage Vb of the secondary battery 20.
  • the voltage detected by the voltage sensor 121 is referred to as “secondary battery voltage”.
  • the voltage sensor 122 is connected in parallel to the fuel cell stack 10 and the second power supply capacitor 42, and detects the magnitude of the voltage Va of the fuel cell stack 10.
  • the voltage detected by the voltage sensor 122 is referred to as “stack voltage”.
  • the voltage sensor 122 constitutes a power generation detection unit that detects the power generated by the fuel cell stack 10.
  • the current sensor 131 is provided on a U-phase power supply line wired from the U-phase terminal 321 to the electric motor 200.
  • Current sensor 131 detects the magnitude of the current supplied to the U-phase power supply line of electric motor 200.
  • the current sensor 132 is provided on a W-phase power supply line wired from the W-phase terminal 323 to the electric motor 200.
  • Current sensor 132 detects the magnitude of the current supplied to the W-phase power line of electric motor 200.
  • the controller 50 receives detection signals from a position sensor 61 that detects the position of the rotor that constitutes the electric motor 200 and an accelerator opening sensor 62 that detects the opening of the accelerator pedal as an operation amount of the driver.
  • the position sensor 61 is composed of, for example, a rotary encoder.
  • the controller 50 calculates the motor rotation speed of the electric motor 200 based on the detection signal output from the position sensor 61, and is necessary for driving the electric motor 200 based on the motor rotation speed and the opening degree of the accelerator pedal. The required torque is calculated.
  • the controller 50 sets the operating point of the auxiliary machine 12 based on the required torque, and turns on / off each of the transistors Tr in the series power supply converter 30. That is, based on the required torque of the electric motor 200, the controller 50 alternately connects the bidirectional conversion unit 31 and the series power supply connection unit 32 and the ground power supply connection unit 33 from the cutoff state (off) to the connection state (on). Switch to.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the controller 50 in the present embodiment.
  • the controller 50 includes a motor required torque calculation unit 510, a stack power generation control unit 520, a series power supply voltage distribution control unit 530, and a motor control unit 540.
  • the motor request torque calculation unit 510 calculates the motor request torque required to drive the electric motor 200 based on the motor rotation speed and the accelerator opening.
  • the motor rotation speed is calculated based on the detection signal output from the position sensor 61.
  • the accelerator opening is the accelerator pedal opening detected by the accelerator opening sensor 62.
  • the required motor torque calculation unit 510 stores in advance a required torque map in which a motor required torque is associated with each operating point of the electric motor 200.
  • the motor request torque calculation unit 510 acquires the motor rotation speed and the accelerator opening, the motor request torque calculation unit 510 refers to the request torque map, and requests a motor request associated with the operating point specified by the motor rotation speed and the accelerator opening. Calculate the torque.
  • the motor request torque calculation unit 510 outputs the calculated motor request torque T * to the motor control unit 540 and the stack power generation control unit 520.
  • the stack power generation control unit 520 calculates a target value of the current extracted from the fuel cell stack 10 based on the secondary battery information, the motor rotation speed, and the motor required torque T * .
  • target current the target value of the current taken out from the fuel cell stack 10 is referred to as “target current”.
  • the secondary battery information is information related to charging / discharging of the secondary battery 20, and is information output from the control device 21.
  • the secondary battery information includes the SOC of the secondary battery 20, the charge allowable power, and the discharge allowable power.
  • the stack power generation control unit 520 outputs the calculated target current to the series power supply voltage distribution control unit 530.
  • the series power supply voltage distribution control unit 530 calculates a voltage distribution coefficient for distributing the three-phase AC voltage supplied to the electric motor 200 to the fuel cell stack 10 and the series power supply 101 based on the target current of the fuel cell stack 10. To do.
  • the voltage distribution coefficient of the fuel cell stack 10 here indicates the ratio of the voltage of the fuel cell stack 10 in the three-phase AC voltage supplied to the electric motor 200, and the voltage distribution coefficient of the series power supply 101 is the fuel cell stack. The ratio of the series voltage of 10 and the secondary battery 20 is shown.
  • the AC voltage of each phase supplied to the electric motor 200 is “1.0”, and the sum of the voltage distribution coefficient of the fuel cell stack 10 and the voltage distribution coefficient of the series power supply 101 is “1.0”. It is determined not to exceed.
  • the voltage distribution coefficient of the fuel cell stack 10 and the voltage distribution coefficient of the series power supply 101 can each take a negative (minus) value or a positive (plus) value.
  • the voltage distribution coefficient of the fuel cell stack 10 is set to a negative value. Therefore, it is possible to prevent the stack current from being taken out when power is supplied from the series power supply 101 to the electric motor 200.
  • the series power supply voltage distribution control unit 530 outputs the voltage distribution coefficient ⁇ a of the fuel cell stack 10 and the voltage distribution coefficient ⁇ ab of the series power supply 101 to the motor control unit 540.
  • the motor control unit 540 performs switching control on the series power converter 30 based on the motor required torque T * and the voltage distribution coefficients ⁇ a and ⁇ ab of the fuel cell stack 10 and the series power supply 101 to control the electric motor 200. Supply phase AC voltage.
  • the motor control unit 540 generates a PWM signal for performing switching control according to the motor required torque T * , and supplies the PWM signal to each transistor Tr in the series power converter 30. As a result, the voltage of the series power supply 101 and the voltage of the fuel cell stack 10 are switched according to the motor required torque T * to generate a three-phase AC voltage.
  • the detailed configuration of the motor control unit 540 will be described later with reference to FIG.
  • FIG. 3 is a block diagram illustrating an example of a detailed configuration of the stack power generation control unit 520.
  • the stack power generation control unit 520 includes a motor request power calculation unit 521, a charge / discharge request power calculation unit 522, an addition unit 523, a stack generation power calculation unit 524, a stack output power calculation unit 525, a subtraction unit 526, A stack target current calculation unit 527. Further, the stack power generation control unit 520 includes an auxiliary machine operating point setting unit 528.
  • the motor required power calculator 521 drives the electric motor 200 based on the motor required torque T * calculated by the motor required torque calculator 510 and the motor rotation speed calculated using the position sensor 61. Calculate the required motor power requirement.
  • a required power map in which motor required power is associated with each operating point of motor required torque and motor rotation speed is stored in advance in the motor required power calculation unit 521.
  • the motor request power calculation unit 521 When the motor request power calculation unit 521 acquires the motor request torque T * and the detected motor rotation speed, the motor request power calculation unit 521 refers to the request power map and sets the operation point specified by the motor request torque T * and the motor rotation speed. The corresponding motor power demand is calculated. The required motor power calculation unit 521 outputs the calculated required motor power to the addition unit 523.
  • the required charge / discharge power calculation unit 522 calculates the required charge / discharge power of the secondary battery 20 based on the SOC, the charge allowable power, and the discharge allowable power included in the secondary battery information from the control device 21. Both the charge allowable power and the discharge allowable power are positive values.
  • the charge / discharge required power calculation unit 522 obtains power that can be charged or discharged from the secondary battery 20 based on the SOC of the secondary battery 20, and sets the power within a range from allowable charge power to allowable discharge power. The power after limiting is calculated as the required charge / discharge power.
  • a secondary battery request map in which SOC and chargeable / dischargeable power are associated with each other for each temperature of the secondary battery 20 is stored in advance in the charge / discharge required power calculation unit 522.
  • the charge / discharge required power calculation unit 522 calculates chargeable / dischargeable power with reference to the secondary battery request map specified by the temperature of the secondary battery 20.
  • the charge / discharge required power calculation unit 522 outputs the calculated charge / discharge power to the addition unit 523.
  • the charge / discharge required power calculation unit 522 When it is necessary to charge the secondary battery 20, the charge / discharge required power calculation unit 522 outputs positive (plus) charge / discharge required power, and when the secondary battery 20 can discharge the electric motor 200. The negative charge power is output.
  • the addition unit 523 calculates the required power generation required for the fuel cell stack 10 from the electric motor 200 and the secondary battery 20 by adding the required charge / discharge power to the required motor power.
  • the stack generated power calculation unit 524 requests the fuel cell stack 10 from the auxiliary machine 12 in addition to the electric motor 200 and the secondary battery 20 by using the generated power demand and the state quantity of the auxiliary machine 12 from the control device 13. The generated power is calculated.
  • the stack generated power calculation unit 524 constitutes a power generation calculation unit that calculates the generated power of the fuel cell stack 10 based on the required motor power required for the electric motor 200 and the required charge / discharge power of the secondary battery 20. To do.
  • the stack generated power calculation unit 524 calculates the power consumed by the auxiliary machine 12 based on the state quantity of the auxiliary machine 12.
  • the cathode compressor, the cooling water pump, and the cooling water heater are connected to the fuel cell stack 10 as the auxiliary machine 12, the rotation speed and torque of the cathode compressor and the cooling water pump are input to the stack generated power calculation unit 524. Is done.
  • the stack generated power calculation unit 524 estimates the power consumption of the cathode compressor from the rotation speed and torque of the cathode compressor, and estimates the power consumption of the cooling water pump from the rotation speed and torque of the cooling water pump. Further, the stack generated power calculation unit 524 calculates the power consumption of the coolant heater from the target value of the power supplied to the coolant heater. The stack generated power calculation unit 524 adds the power consumption of the cathode compressor, the cooling water pump, and the cooling water heater, and calculates the total value as the power consumption of the auxiliary machine 12.
  • the stack generated power calculation unit 524 calculates the generated power required for the fuel cell stack 10 by adding the power consumption of the auxiliary machine 12 to the required power generation output from the adder 523. Stack generated power calculation unit 524 outputs the generated power to subtraction unit 526.
  • the stack output power calculation unit 525 calculates the output power output from the fuel cell stack 10 by multiplying the stack current detected by the current sensor 112 and the stack voltage detected by the voltage sensor 122. Stack generated power calculation unit 524 outputs the output power to subtraction unit 526.
  • the subtraction unit 526 calculates a deviation of the generated power of the fuel cell stack 10 by subtracting the output power calculated by the stack output power calculation unit 525 from the generated power calculated by the stack generated power calculation unit 524.
  • the subtraction unit 526 outputs the deviation to the stack target current calculation unit 527.
  • the stack target current calculation unit 527 calculates a target current extracted from the fuel cell stack 10 based on the deviation of the generated power of the fuel cell stack 10.
  • the stack target current calculation unit 527 calculates the target current so that the deviation of the generated power becomes zero. For example, the stack target current calculation unit 527 increases the target current as the deviation of the generated power is larger than zero, and decreases the target current as the deviation of the generated power is smaller than zero. In this way, the stack target current calculation unit 527 performs feedback control of the target current.
  • the stack target current calculation unit 527 limits the target current based on the current limit value of the fuel cell stack 10.
  • the current limit value is a predetermined value determined in order to prevent deterioration of the fuel cell.
  • the stack target current calculation unit 527 outputs the limited target current to the series power supply voltage distribution control unit 530. Specifically, the stack target current calculation unit 527 outputs the current limit value as the target current when the target current is larger than the current limit value, and outputs the target current when the target current is equal to or less than the current limit value. Output without limiting the current.
  • the stack power generation control unit 520 controls the current extracted from the fuel cell stack 10 based on the motor required torque T * and the secondary battery information.
  • the auxiliary machine operating point setting unit 528 sets the operating point of the auxiliary machine 12 based on the target current of the fuel cell stack 10.
  • the auxiliary machine operating point setting unit 528 when the auxiliary machine operating point setting unit 528 acquires the target current, it refers to a predetermined map and calculates the target flow rate and the target pressure of the cathode gas associated with the target current. Then, the auxiliary machine operating point setting unit 528 calculates the opening command value of the cathode pressure regulating valve for adjusting the pressure of the cathode gas and the torque command value of the cathode compressor based on the target current and the target pressure of the cathode gas.
  • the auxiliary machine operating point setting unit 528 calculates the target flow rate of the cooling water with reference to a predetermined map based on the target current of the fuel cell stack 10, and the torque of the cooling water pump from the target flow rate. Calculate the command value.
  • the auxiliary machine operating point setting unit 528 outputs a command value for the auxiliary machine 12 such as a cathode compressor or a cooling water pump to the control device 13.
  • the control device 13 controls the operation of the cathode compressor and the operation of the cooling water pump according to the command value.
  • FIG. 4 is a block diagram illustrating an example of a detailed configuration of the series power supply voltage distribution control unit 530.
  • the series power supply voltage distribution control unit 530 includes a subtracting unit 531, a single power distribution coefficient calculating unit 532, a distribution coefficient upper limit holding unit 533, a series power distribution coefficient calculating unit 534, a measured charge / discharge power calculating unit 535, A subtracting unit 536, a discharge allowable threshold value holding unit 537, a discharge excess determination unit 538, and a series power distribution coefficient correction unit 539 are included.
  • the subtracting unit 531 subtracts the stack current detected by the current sensor 112 from the target current calculated by the stack target current calculating unit 527, and uses the subtracted value as a deviation between the target current and the stack current. The result is output to the calculation unit 532.
  • the single power distribution coefficient calculating unit 532 calculates the voltage distribution coefficient ⁇ a of the fuel cell stack 10 that is a single power source based on the deviation output from the subtracting unit 531. Based on the voltage distribution coefficient ⁇ a , the motor control unit 540 uses the voltage of the fuel cell stack 10 to generate a part of the target voltage of each phase (first distribution voltage).
  • the single power distribution coefficient calculation unit 532 is generated by the bidirectional conversion unit 31 and the ground power supply connection unit 33 among the phase voltages controlled by the motor control unit 540 based on the power required for the fuel cell stack 10.
  • a first distribution voltage control unit configured to control the first distribution voltage to be generated.
  • the single power distribution coefficient calculation unit 532 calculates the voltage distribution coefficient ⁇ a of the fuel cell stack 10 based on the deviation between the target current and the stack current. For example, the single power distribution coefficient calculation unit 532 increases the rate of increase of the voltage distribution coefficient ⁇ a of the fuel cell stack 10 as the deviation between the target current and the stack current increases.
  • the single power distribution coefficient calculation unit 532 generates fuel according to the deviation between the power required for the electric motor 200 and the generated power calculated based on the charge / discharge required power and the output power detected by the current sensor 112.
  • the first distribution voltage generated by the voltage of the battery stack 10 is increased or decreased.
  • the single power distribution coefficient calculation unit 532 feedback-controls the voltage distribution coefficient ⁇ a of the fuel cell stack 10 so that the deviation output from the subtraction unit 531 converges to zero. For example, the single power distribution coefficient calculating unit 532 increases the increase rate of the voltage distribution coefficient ⁇ a as the deviation output from the subtracting unit 531 is larger than zero. On the other hand, the single power distribution coefficient calculation unit 532 decreases the increase rate of the voltage distribution coefficient ⁇ a as the deviation output from the subtraction unit 531 decreases. The single power distribution coefficient calculation unit 532 outputs the voltage distribution coefficient ⁇ a of the fuel cell stack 10 to the motor control unit 540 and the series power distribution coefficient calculation unit 534.
  • the distribution coefficient upper limit holding unit 533 is “1” as an upper limit value for limiting the total value ( ⁇ a + ⁇ ab ) of the voltage distribution coefficient ⁇ a of the fuel cell stack 10 and the voltage distribution coefficient ⁇ ab of the series power supply 101. Hold.
  • the series power distribution coefficient calculation unit 534 subtracts the voltage distribution coefficient ⁇ a of the fuel cell stack 10 from the upper limit value held in the distribution coefficient upper limit value holding unit 533, and uses the subtraction value (1- ⁇ a ) as the series power supply.
  • the voltage division coefficient 101 is output to the series power distribution coefficient correction unit 539.
  • the measured charge / discharge power calculation unit 535 multiplies the secondary battery current detected by the current sensor 111 by the secondary battery voltage detected by the voltage sensor 121, thereby calculating the measured charge / discharge power of the secondary battery 20. Calculate. That is, the measured charge / discharge power calculation unit 535 constitutes a discharge detection unit that detects the discharge power of the secondary battery 20.
  • the measured charge / discharge power calculation unit 535 When the secondary battery 20 is charged with power, the measured charge / discharge power calculation unit 535 outputs positive (plus) measured charge / discharge power to the subtraction unit 536, and the power is discharged from the secondary battery 20. Sometimes, negative (minus) measured charge / discharge power is output to the subtractor 536.
  • the subtraction unit 536 calculates the excess discharge amount of the secondary battery 20 by inverting the sign of the measured charge / discharge power and subtracting the discharge allowable power from the inverted value.
  • the discharge allowable power is a parameter acquired from the control device 21 and is a positive (plus) value.
  • the subtraction unit 536 multiplies the measured charge / discharge power by “ ⁇ 1” so that the power at the time of discharge becomes positive, and subtracts the discharge allowable power from the multiplied value. As a result, when the measured discharge power exceeds the discharge allowable power, the excess discharge amount becomes positive.
  • the discharge allowable threshold holding unit 537 holds “0” as a threshold set for determining overdischarge.
  • the excess discharge determination unit 538 determines that the secondary battery 20 does not deteriorate when the excess discharge amount output from the subtraction unit 536 is equal to or less than the threshold value of the discharge allowable threshold value holding unit 537, and sets zero (0). The data is output to the series power distribution coefficient correction unit 539. On the other hand, the excess discharge determination unit 538 determines that the secondary battery 20 is deteriorated when the excess discharge amount is larger than the threshold, and outputs the excess discharge amount from the subtraction unit 536 to the series power distribution coefficient correction unit 539. .
  • the series power supply distribution coefficient correction unit 539 uses the output value (1- ⁇ a ) from the series power distribution coefficient calculation unit 534 as the series power supply 101. Is output to the motor control unit 540 as a voltage distribution coefficient ⁇ ab .
  • the series power distribution coefficient correction unit 539 uses the series power supply connection unit 32 and the ground power supply connection unit 33 among the phase voltages controlled by the motor control unit 540 based on the voltage distribution coefficient ⁇ a of the fuel cell stack 10.
  • a second distribution voltage controller that controls the generated second distribution voltage is configured.
  • the series power distribution coefficient correction unit 539 determines the voltage distribution coefficient ⁇ of the series power supply 101 more than the output value (1- ⁇ a ) from the series power distribution coefficient calculation unit 534. Correct so that ab becomes smaller.
  • the series power distribution coefficient correction unit 539 performs feedback control on the voltage distribution coefficient ⁇ ab of the series power supply 101 so that the excess discharge amount converges to zero. Specifically, the series power distribution coefficient correction unit 539 makes the voltage distribution coefficient ⁇ ab of the series power supply 101 smaller than the output value (1 ⁇ a ) as the discharge excess amount increases.
  • the series power supply distribution coefficient correction unit 539 controls the second distribution voltage so that the discharge power detected by the measured charge / discharge power calculation unit 535 does not exceed the dischargeable power of the secondary battery 20.
  • the series power supply voltage distribution control unit 530 increases or decreases the voltage distribution coefficient ⁇ a of the fuel cell stack 10 in accordance with the deviation between the stack current and the target current.
  • the series power supply voltage distribution control unit 530 sets the voltage distribution coefficient of the series power supply 101 so that the sum of the voltage distribution coefficient ⁇ a of the fuel cell stack 10 and the voltage distribution coefficient ⁇ ab of the series power supply 101 becomes “1”. Set ⁇ ab . Thereby, the fuel cell stack 10 and the secondary battery 20 can be efficiently used according to the driver request.
  • the series power supply voltage distribution control unit 530 determines the voltage distribution coefficient ⁇ ab of the series power supply 101 according to the excess amount. Make it smaller. Thereby, since the electric power discharged from the secondary battery 20 is reduced, an excessive voltage drop due to the overdischarge of the secondary battery 20 can be prevented.
  • FIG. 5 is a block diagram illustrating an example of a detailed configuration of the motor control unit 540.
  • the motor control unit 540 vector-controls the electric power supplied to the electric motor 200 using the DC voltage of the fuel cell stack 10 and the secondary battery 20 based on the motor required torque T * . That is, the motor control unit 540 drives the electric motor 200 with high accuracy by performing feedback control of the current flowing through the coil in accordance with the rotor position of the electric motor 200.
  • the motor control unit 540 includes a target voltage control unit 540A, a voltage distribution calculation unit 545, a modulation factor calculation unit 546, a PWM generation unit 547, a UVW phase / dq axis converter 548, and a phase angle / angular velocity calculation unit 549. Including.
  • the target voltage control unit 540A constitutes a voltage control unit that controls the phase voltage supplied to the electric motor 200 based on the torque required for the electric motor 200.
  • the target voltage control unit 540A includes a dq axis current calculation unit 541, subtracters 5411 and 5412, a dq axis current controller 542, adders 5421 and 5422, a non-interference controller 543, and a dq axis / UVW phase conversion. Instrument 544.
  • UVW phase / dq axis converter 548 and the phase angle / angular velocity calculation unit 549 used for feedback control will be described.
  • the phase angle / angular velocity calculator 549 calculates the electrical phase angle ⁇ e and the electrical angular velocity ⁇ e of the electric motor 200 based on the detection signal output from the position sensor 61.
  • the phase angle / angular velocity calculation unit 549 outputs the calculated electrical angular velocity ⁇ e to the dq axis current calculation unit 541 and the non-interference controller 543, and the electrical phase angle ⁇ e to the dq axis / UVW phase converter 544. And UVW phase / dq axis converter 548.
  • the UVW phase / dq-axis converter 548 converts the current of the U-axis, V-phase, and W-phase triaxial coordinates into the current of the d-axis and q-axis biaxial coordinates.
  • the UVW phase / dq axis converter 548 uses the U phase measurement current i u detected by the current sensor 131 and the W phase measurement current i w detected by the current sensor 132 to use the U phase, the V phase, and the W phase.
  • the W-phase current is obtained so that the sum of the currents of the phases becomes zero.
  • the UVW phase / dq axis converter 548 converts the U phase measurement current i u , the V phase current, and the W phase measurement current i w into the d axis measurement current i based on the electrical phase angle ⁇ e of the electric motor 200. d and q-axis current i q .
  • the UVW phase / dq axis converter 548 outputs the d axis measurement current i d to the subtractor 5411 and outputs the q axis current i q to the subtractor 5412.
  • dq-axis current calculation unit 541 subtracters 5411 and 5412, dq-axis current controller 542, adders 5421 and 5422, non-interference controller 543, dq-axis / UVW phase converter 544, voltage distribution calculation unit 545, modulation
  • the rate calculation unit 546 and the PWM generation unit 547 will be described.
  • the dq-axis current calculation unit 541 uses the motor request torque T * calculated by the motor request torque calculation unit 510 and the electrical angular velocity ⁇ e calculated by the phase angle / angular velocity calculation unit 549 to use the d-axis target current i. d * and q-axis target current i d * are calculated.
  • the dq-axis current calculation unit 541 outputs the d-axis target current i d * to the non-interference controller 543 and the subtractor 5411, and outputs the q-axis target current i d * to the non-interference controller 543 and the subtractor 5412. .
  • Subtractor 5411 subtracts the d-axis measured current i d from the d-axis target current i d *, it calculates the deviation between the d-axis target current i d * and the d-axis measurement current i d.
  • the subtractor 5411 outputs the deviation to the dq axis current controller 542.
  • Subtractor 5412 subtracts the q-axis measured current i q from the q-axis target current i q *, and calculates the deviation between the q-axis target current i q * and the q-axis measurement current i q.
  • the subtractor 5412 outputs the deviation to the dq axis current controller 542.
  • the dq-axis current controller 542 feedback-controls the d-axis target voltage and the q-axis target voltage so that both the deviation of the d-axis target current and the deviation of the q-axis target current converge to zero.
  • the non-interference controller 543 uses the d-axis target current i d * , the q-axis target current i q *, and the electrical angular velocity ⁇ e of the electric motor 200 to generate a component that causes the d-axis current and the q-axis current to interfere with each other. A d-axis voltage correction value and a q-axis voltage correction value for removal are calculated. The non-interference controller 543 outputs the d-axis voltage correction value to the adder 5421 and outputs the q-axis voltage correction value to the adder 5422.
  • the adder 5421 adds the d-axis voltage correction value to the d-axis target voltage output from the dq-axis current controller 542, thereby correcting the interference component between the d-axis current and the q-axis current.
  • D-axis target voltage v d is calculated.
  • Adder 5421 outputs the d-axis target voltage v d to dq-axis / UVW phase converter 544.
  • the adder 5422 adds the q-axis voltage correction value to the q-axis target voltage output from the dq-axis current controller 542, thereby correcting the interference component between the d-axis current and the q-axis current.
  • Q-axis target voltage v q is calculated.
  • Adder 5422 outputs q-axis target voltage v d to dq-axis / UVW phase converter 544.
  • the dq axis / UVW phase converter 544 converts the d axis target voltage v d and the q axis target voltage v q into a U phase target voltage v u and a V phase target voltage v based on the electrical phase angle ⁇ e of the electric motor 200. v, and to coordinate transformation to the W-phase target voltage v w.
  • the dq axis / UVW phase converter 544 outputs the U-phase target voltage v u , the V-phase target voltage v v , and the W-phase target voltage v w to the voltage distribution calculation unit 545.
  • the voltage distribution calculation unit 545 is a voltage of each phase of the series power supply 101 and the fuel cell stack 10 assigned to the target voltage of each phase of the U-phase target voltage v u , the V-phase target voltage v v , and the W-phase target voltage v w. Are respectively calculated.
  • the voltage distribution calculation unit 545 acquires a series power supply voltage distribution control unit 530 and the voltage distribution coefficient gamma ab series power supply 101, the fuel cell stack 10 and a voltage distribution coefficient gamma a.
  • the voltage distribution calculation unit 545 multiplies the target voltage of each phase by the voltage distribution coefficient ⁇ a of the fuel cell stack 10 to thereby obtain the U-phase target distribution voltage v ua and V-phase target distribution voltage v of the fuel cell stack 10. va and the W-phase target distribution voltage v wa are calculated.
  • the voltage distribution calculation unit 545 outputs the target distribution voltage of each phase to the modulation factor calculation unit 546.
  • the voltage distribution calculation unit 545 multiplies the target voltage of each phase by the voltage distribution coefficient ⁇ ab of the series power supply 101 to thereby obtain a U-phase target distribution voltage v uab , a V-phase target distribution voltage v vab , And the W-phase target distribution voltage v wab is calculated.
  • the voltage distribution calculation unit 545 outputs the target distribution voltage of each phase to the modulation factor calculation unit 546.
  • the modulation factor calculation unit 546 performs the switching operation of each transistor Tr in the series power converter 300 based on the target distribution voltage of each phase calculated by the voltage distribution calculation unit 545 for each of the fuel cell stack 10 and the series power supply 101.
  • the modulation factor for determining the phase is calculated for each phase.
  • the modulation factor calculating unit 546 the power supplied from the fuel cell stack 10 to the U-phase of the electric motor 200, as follows, and a stack voltage V a and the U-phase target distribution voltage v ua * The U-phase modulation factor m ua for the voltage of the fuel cell stack 10 is calculated.
  • stack voltage V a in the formula (3) is detected by a voltage sensor 122.
  • Offset a as follows, obtained using a voltage distribution coefficient of the voltage distribution coefficient gamma ab and the fuel cell stack 10 of the series power supply 101 gamma a.
  • the modulation factor calculation unit 546 calculates the V-phase modulation factor m va by replacing the U-phase target distribution voltage v ua * in the equation (3) with the V-phase target voltage v va * and also in the equation (3).
  • the W-phase modulation rate m wa is calculated by substituting the U-phase target distribution voltage v ua * for the W-phase target distribution voltage v wa * .
  • the modulation factor calculator 546 outputs the calculated U-phase modulation factor m ua , V-phase modulation factor m va and W-phase modulation factor m wa to the PWM generator 547.
  • the modulation factor calculation unit 546 uses the voltage V ab of the series power supply 101 and the U-phase target distribution voltage v uab of the series power supply 101 for the power supplied from the series power supply 101 to the U phase of the electric motor 200 as follows. * by using the calculated U-phase modulation factor m uab of series power supply 101.
  • the voltage V ab of the series power supply 101 in the equation (5) is obtained by adding the secondary battery voltage V a detected by the voltage sensor 121 and the stack voltage V b detected by the voltage sensor 122. It is done. Further, Offset ab, as follows, obtained using a voltage distribution coefficient gamma ab series power supply 101, a voltage distribution coefficient of the series power supply 101 gamma ab.
  • the modulation factor calculation unit 546 calculates the V-phase modulation factor m vab by replacing the U-phase target distribution voltage v uab * in the equation (5) with the V-phase target distribution voltage v vab * and also calculates the equation (3).
  • the U phase target distribution voltage v uab * in the middle is replaced with the W phase target distribution voltage v wab * to calculate the W phase modulation factor m wab .
  • modulation factor calculation unit 546 outputs U-phase modulation factor m uab , V-phase modulation factor m vab , and W-phase modulation factor m wab for voltage V ab of series power supply 101 to PWM generation unit 547.
  • the PWM generation unit 547 includes modulation rates m uab , m vab and m wab for each phase regarding the voltage of the series power supply 101, and modulation rates m ua , m va and m wa for each phase regarding the voltage of the fuel cell stack 10. Based on the above, a PWM signal for controlling the series power converter 30 is generated. Then, the PWM generation unit 547 supplies the generated PWM signal to the gate terminal of each transistor Tr in the series power supply converter 30.
  • FIG. 6A shows the U-phase target voltage v u output from the dq axis / UVW phase converter 544, the U-phase target distribution voltage v ua * of the fuel cell stack 10 output from the voltage distribution calculation unit 545, and the series power supply 101. It is a figure which shows an example with U phase target distribution voltage vuab * of .
  • the U-phase target distribution voltage v ua * of the fuel cell stack 10 is obtained by multiplying the U-phase target voltage v u by the voltage distribution coefficient ⁇ a of the fuel cell stack 10 by the voltage distribution calculation unit 545 as described in FIG. This is the value obtained.
  • the U-phase target distribution voltage v ua * of the fuel cell stack 10 corresponds to the first distribution voltage.
  • the U-phase target distribution voltage v uab * of the series power supply 101 is obtained by multiplying the U-phase target voltage v u by the voltage distribution coefficient ⁇ ab of the series power supply 101 by the voltage distribution calculation unit 545 as described in FIG. Value. Note that the U-phase target distribution voltage v uab * of the series power supply 101 corresponds to the second distribution voltage.
  • the U-phase target voltage v u is converted into a U-phase target distribution voltage v ua * of the fuel cell stack 10 and a U-phase target distribution voltage v uab * of the series power supply 101 by the voltage distribution calculation unit 545. Distributed.
  • the voltage distribution coefficient ⁇ ab of the series power supply 101 is set to a positive value by the series power supply voltage distribution control unit 530. Therefore, the U-phase target distribution voltage v of the series power supply 101 is set.
  • the phase of uab is the same as the U-phase target voltage v u .
  • FIG. 6B is a diagram illustrating an example of the U-phase target distribution voltage v ua of the fuel cell stack 10 and the U-phase target distribution voltage v uab * of the series power supply 101 when the secondary battery 20 is charged with electric power.
  • the U-phase target voltage v u is the same as the waveform shown in FIG. 6A.
  • the U-phase target distribution voltage v ua * of the fuel cell stack 10 has a larger amplitude than the target voltage v u
  • the U-phase target distribution voltage v uab * of the series power supply 101 is U-phase.
  • the phase is shifted by 180 degrees with respect to the target voltage v u .
  • the voltage distribution coefficient ⁇ ab of the series power supply 101 is set to a negative value by the series power supply voltage distribution control unit 530. Therefore, the U-phase target distribution voltage v uab of the series power supply 101 is set. Is inverted with respect to the phase of the U-phase target voltage v u .
  • Figure 7 is a diagram showing an example of a U-phase modulation factor m uab the U-phase modulation index m ua and series power supply 101 of the fuel cell stack 10 calculated by modulation factor calculating unit 546.
  • the U-phase modulation factor mua for the voltage of the fuel cell stack 10 is a value obtained by performing the calculation process shown in Expression (3) by the modulation factor calculation unit 546, as described in FIG. Further, Offset a of the U-phase modulation factor mu is a value obtained by performing the arithmetic processing shown in the equation (4).
  • the U-phase modulation factor m uab for the voltage of the series power supply 101 is a value obtained by performing the calculation process shown in Expression (5) by the modulation factor calculation unit 546, as described in FIG. Further , Offset ab of the U-phase modulation factor muab is a value obtained by performing the arithmetic processing shown in Expression (6).
  • the PWM generation unit 547 includes a signal generation circuit that generates a triangular wave and a comparator that compares the triangular wave with a modulation rate.
  • a triangular wave indicated by a solid line is a carrier wave for generating a PWM signal supplied to each transistor Tr of the switching circuits 1u, 1v, and 1w.
  • the triangular wave indicated by the solid line is pulse-modulated based on the U-phase modulation factor m ua of the fuel cell stack 10.
  • the transistor Tr of the switching circuit 1 u when the U-phase modulation factor m ua of the fuel cell stack 10 is lower than the solid triangular wave, the transistor Tr of the switching circuit 1 u is turned on, and when the U-phase modulation factor m ua is higher than the solid triangular wave. The transistor Tr of the switching circuit 1u is turned off.
  • a triangular wave indicated by a broken line is a carrier wave for generating a PWM signal supplied to the gate terminal of each transistor Tr of the switching circuits 2u, 2v and 2w.
  • the triangular wave indicated by the broken line is pulse-modulated by the U-phase modulation factor m uab of the series power supply 101.
  • the transistor Tr of the switching circuit 2 u when the U-phase modulation factor m uab of the series power supply 101 is lower than the dotted triangular wave, the transistor Tr of the switching circuit 2 u is turned on, and when the U-phase modulation factor m uab is higher than the broken triangular wave, The transistor Tr of the switching circuit 2u is turned off.
  • Offset ab and Offset a are fixed to “ ⁇ 0.5” so that the value obtained by adding the U-phase modulation factor m uab and the U-phase modulation factor m ua does not exceed “+1”. Only 50% of the total power of the series power supply 101 can be used.
  • the offset a and the offset ab are changed to “+1” according to the state of the series power supply 101.
  • the output power of the series power supply 101 can be used up to 100% according to the requirements of the electric motor 200.
  • FIG. 8 is a diagram illustrating a method for generating a PWM signal in the PWM generation unit 547.
  • PWM signal when the U-phase variation rate m ua series power supply 101 of the fuel cell stack 10 and a U-phase fluctuation rate m uab constant is shown.
  • FIG. 8 (a) is a diagram showing the two triangular wave shown in FIG. 7, the U-phase fluctuation rate m ua of the fuel cell stack 10, the series power supply 101 and a U-phase fluctuation rate m uab.
  • FIG. 8B shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 1u.
  • FIG. 8C shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 2u.
  • FIG. 8D is a diagram showing a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 4u.
  • FIG. 8E shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 3u.
  • the horizontal axis of each drawing is a common time axis. Note that when an L (Low) level PWM signal is supplied to the gate terminal of the transistor Tr, the transistor Tr is turned on (ON), and an H (High) level PWM signal is supplied to the gate terminal of the transistor Tr. Then, the transistor Tr is turned off (OFF).
  • the solid triangular wave Prior to time t0, as shown in FIG. 8 (a), the solid triangular wave is larger than the U-phase fluctuation rate mua of the fuel cell stack 10, so that as shown in FIG. 8 (b), the switching circuit 1u
  • the PWM signal is set to L level.
  • the PWM signal of the switching circuit 2u is at the H level as shown in FIG. 8 (c). Is set to
  • the PWM signal of the switching circuit 4u is switched from the L level to the H level.
  • the PWM signal of the switching circuit 1u and the PWM signal of the switching circuit 2u are both at the L level, as shown in FIG. 8E.
  • the PWM signal of the switching circuit 3u is switched from the L level to the H level.
  • PWM signal of the switching circuit 1u is L Switch from level to H level.
  • the PWM signal of the switching circuit 3u changes from H level to L level. Can be switched to. That is, as shown in the following equation, when at least one of the transistor Tr of the switching circuit 1u and the transistor Tr of the switching circuit 2u is ON, the transistor Tr of the switching circuit 3u is set OFF.
  • Tr 1u indicates the ON state of the transistor Tr in the switching circuit 1u
  • Tr 2u indicates the ON state of the transistor Tr in the switching circuit 2u
  • Tr 3u indicates the ON state of the transistor Tr in the switching circuit 3u.
  • the broken-line triangular wave becomes smaller than the U-phase variation rate muab , so that the PWM signal of the switching circuit 2u is switched to the H level as shown in FIG.
  • the transistor Tr of the switching circuit 4u is set OFF.
  • Tr 4u indicates the ON state of the transistor Tr of the switching circuit 4u
  • Tr 2u indicates the ON state of the transistor Tr of the switching circuit 2u.
  • the PWM signal of the switching circuit 2u is switched to the H level
  • the PWM signal of the switching circuit 3u is switched to the L level as shown in FIG. 8 (e) according to the equation (7).
  • the triangular wave of the broken line becomes larger than the U-phase fluctuation rate muab , so that the PWM signal of the switching circuit 2u is switched to the L level as shown in FIG. 8C.
  • the PWM signal of the switching circuit 3u is switched to the H level according to the equation (7).
  • PWM generator 547 generates a PWM signal of the switching circuit 1u compared to solid carrier and the U-phase fluctuation rate m ua, the switching circuit compared with the broken line of the carrier and the U-phase fluctuation rate m ua A 2u PWM signal is generated.
  • the PWM generation unit 547 inverts the PWM signal of the switching circuit 2u according to the equation (8) to generate the PWM signal of the switching circuit 4u, and generates the PWM signal of the switching circuit 3u according to the equation (7).
  • the PWM generation unit 547 similarly generates PWM signals for the V phase and the W phase.
  • FIG. 9A is a diagram illustrating the operation of the series power converter 30 when accelerating the vehicle in the present embodiment.
  • the discharge allowable power of the secondary battery 20 is set as the upper limit, and the power output from the series power supply 101, that is, the power of the secondary battery 20 is electrically driven by the series power converter 30.
  • the motor 200 is discharged.
  • the series power supply conversion device 30 functions as an inverter of the series power supply 101.
  • the remaining power obtained by subtracting the discharge power of the secondary battery 20 from the required power of the electric motor 200 is directly output from the fuel cell stack 10 to the electric motor 200 via the second power supply terminal 312 by the series power converter 30. Is done. At this time, the series power converter 30 functions as an inverter of the fuel cell stack 10.
  • the current of the electric motor 200 is returned to the negative electrode terminal of the fuel cell stack 10 as compared with the case where the fuel cell stack 10 is connected to the first power supply terminal 311 and the secondary battery 20 is connected to the second power supply terminal 312. This eliminates the need for unnecessary switching control.
  • FIG. 9B is a diagram illustrating the operation of the series power converter 30 when the acceleration is finished.
  • the electric power is supplied to the electric motor 200 only by the fuel cell stack 10 by the series power converter 30. That is, the series power converter 30 functions as an inverter of the fuel cell stack 10.
  • the power supply system 100 selects at least one single power supply from the series power supplies 101 and supplies AC power to the load.
  • the power supply system 100 outputs power from at least one of a secondary battery 20 that charges or discharges power, a fuel cell stack 10 that is connected in series to a negative electrode terminal 20B of the secondary battery 20, and a series power supply 101. It includes a series power converter 30 that converts the generated power into AC power.
  • the positive terminal 20A of the secondary battery 20 is connected to the first power terminal 311 of the series power converter 30 as the positive terminal of the series power supply 101.
  • the positive terminal 10A of the fuel cell stack 10 is connected to the second power terminal 312 of the series power converter 30 between the positive terminal and the negative terminal of the series power supply 101 together with the negative terminal 20B of the secondary battery 20. .
  • the series power supply conversion device 30 does not perform a useless process of returning the current in the electric motor 200 to the series power supply 101, and the electric power from the series power supply 101. 200 can be powered.
  • the series power conversion device 30 and the power supplied from the series power supply 101 to the first power supply terminal 311 and the fuel cell stack 10 to the second power supply terminal 312 are used.
  • AC power is generated using the power supplied to. Specifically, the AC power is generated by switching the voltage of the series power supply 101 and the voltage of the fuel cell stack 10 according to the motor required torque.
  • the voltage of the series power supply 101 must be increased, and the current flowing through the electric motor 200 increases, so that the temperature of the series power supply conversion device 30 and the electric motor 200 increases. End up. As a result, it is necessary to increase the power supply voltage of the series power converter 30 and to take measures against heat, resulting in an increase in manufacturing cost.
  • the series power conversion device 30 includes a series power connection unit 32 that connects or blocks between the first power terminal 311 and the electric motor 200, and a second power terminal 312. And a bidirectional conversion unit 31 that connects or disconnects the electric motor 200 and a ground power source connection unit 33 that connects or disconnects the ground line Lg and the electric motor 200. Then, the controller 50 alternately switches the bidirectional conversion unit 31 and the ground power source connection unit 33 to the connected state based on the torque required for the electric motor 200, and in series from the bidirectional conversion unit 31 according to the increase in the required torque. The power source is switched to the power source connection unit 32.
  • the transistor Tr that supplies or cuts off current from the first power supply terminal 311 to the electric motor 200, and the first power supply terminal 311 from the electric motor 200. are connected in parallel with a diode Di through which a current passes.
  • a first transistor Tr that supplies or cuts off current from the second power supply terminal 312 to the electric motor 200 and a second transistor that supplies or cuts off current from the electric motor 200 to the second power supply terminal 312. Tr is connected in series.
  • the first transistor Tr corresponds to the transistor of the switching circuit 1u
  • the second transistor Tr corresponds to the transistor of the switching circuit 4u.
  • the switching circuits 1u, 1v, and 1w of the bidirectional conversion unit 31 are connected to each other from the fuel cell stack 10 via the diode Di of the series power supply connection unit 32. Electric power is supplied to the secondary battery 20. As a result, useless switching control during acceleration can be reduced, and the secondary battery 20 can be charged with the electric power of the fuel cell stack 10 as shown in FIG. 9B.
  • the auxiliary machine 12 is connected in parallel to the fuel cell stack 10 without going through the series power supply converter 30.
  • the power generated by the fuel cell stack 10 is supplied to the auxiliary machine 12 without going through the series power converter 30 and the electric motor 200, so that it is possible to supply power to the auxiliary machine 12 with little power loss. .
  • the controller 50 includes the single power distribution coefficient calculation unit 532 and the series power distribution coefficient correction unit 539 illustrated in FIG. 4 and the target voltage control unit 540A illustrated in FIG.
  • the target voltage control unit 540A controls the phase voltage supplied to the electric motor 200, for example, the U-phase target voltage v u * shown in FIG. 6A, based on the motor required torque required for the electric motor 200.
  • the single power distribution coefficient calculation unit 532 uses the bidirectional conversion unit 31 and the ground power supply connection unit 33 among the phase voltages controlled by the target voltage control unit 540A based on the generated power required for the fuel cell stack 10.
  • the generated first distribution voltage for example, the U-phase target distribution voltage v ua * of the fuel cell stack 10 is controlled.
  • the series power distribution coefficient correction unit 539 generates a second distribution generated by the series power supply connection unit 32 and the ground power supply connection unit 33 among the phase voltages controlled by the target voltage control unit 540A based on the first distribution voltage.
  • the voltage for example, the U-phase target distribution voltage v uab * of the series power supply 101 is controlled.
  • the series power supply conversion device 30 can assist the secondary battery 20 of the series power supply 101 with a shortage of required power of the electric motor 200 while reducing unnecessary processing during acceleration.
  • the stack generated power calculation unit 524 generates the generated power of the fuel cell stack 10 based on the required power of the electric motor 200 and the required charge / discharge power of the secondary battery 20. Is calculated.
  • the single power distribution coefficient calculation unit 532 increases or decreases the first distribution voltage according to the deviation between the target current calculated based on the generated power and the stack current detected by the current sensor 112.
  • the series power distribution coefficient correction unit 539 corrects the second divided voltage according to the first distribution voltage.
  • the stack current when the stack current is small with respect to the target current, the first distribution voltage increases, so the second distribution voltage decreases.
  • the stack current when the stack current is larger than the target current, the first distribution voltage decreases, and therefore the second distribution voltage increases.
  • the series power distribution coefficient correction unit 539 increases or decreases the second distribution voltage according to the deviation between the generated power calculated by the stack generated power calculation unit 524 and the generated power detected by the current sensor 112.
  • the electric power discharged from the secondary battery 20 is increased / decreased according to the power generation state of the fuel cell stack 10, so that the electric power is supplied from the secondary battery 20 to the electric motor 200 in accordance with the transient change in the required motor power. Can be replenished. Therefore, it is possible to satisfy both the drive request of the electric motor 200 and the power generation request of the fuel cell stack 10.
  • the series power distribution coefficient correction unit 539 limits the second distribution voltage so that the discharge power detected by the measured charge / discharge power calculation unit 535 does not exceed the dischargeable power of the secondary battery 20. To do. Thereby, since the overdischarge of the secondary battery 20 is suppressed, the deterioration of the secondary battery 20 can be avoided.
  • the present invention is not limited to this. For example, you may use what comprises 24 or more switching elements.

Abstract

This power supply system, in which at least one power source is selected from a series power source consisting of a first power source and second power source connected in series, and power is supplied to a load, includes a secondary battery that charges or discharges power, a fuel cell that is connected in series to the secondary battery, and a power conversion means that converts the power output from at least one of the power sources of the series power source into AC power. In the power supply system, a positive electrode terminal of the secondary battery is connected to a first power source terminal of the power conversion means as a positive electrode terminal of the series power source, and the positive electrode terminal of the fuel cell is connected, along with the negative electrode terminal of the secondary battery, to a second power source terminal of the power conversion means which is between the positive electrode terminal and negative electrode terminal of the series power source.

Description

電力供給システム及び電力供給システムの制御方法Power supply system and control method of power supply system
 この発明は、直列電源のうち少なくとも一方の電源を選択して負荷に電力を供給する電力供給システム及び電力供給システムの制御方法に関する。 The present invention relates to a power supply system that supplies power to a load by selecting at least one of the series power supplies and a control method for the power supply system.
 モータに電力を供給するシステムとして、モータで発生する誘起電圧よりも高い電圧を確保するために、燃料電池及び二次電池を直列に接続した直列電源をマトリックスコンバータに接続して、その直列電源を用いてモータに電力を供給するシステムがある。 As a system for supplying electric power to a motor, in order to secure a voltage higher than the induced voltage generated in the motor, a series power supply in which a fuel cell and a secondary battery are connected in series is connected to a matrix converter, and the series power supply is There are systems that use and supply power to the motor.
 JP4589056Bには、直列電源のうちの燃料電池をマトリックスコンバータの正極側に接続し、マトリックスコンバータの負極側にはもう一方の電源であるバッテリを接続した電力変換装置が開示されている。 JP 4589056B discloses a power conversion device in which a fuel cell of a series power supply is connected to the positive side of a matrix converter, and a battery as the other power source is connected to the negative side of the matrix converter.
 上述の電力変換装置では、燃料電池からモータに供給される電力をバッテリの電力によって補助するときには、バッテリから放電できる電流よりも大きな電流が直列電源からモータに供給される。このため、直列電源からモータに電力を供給するときには、燃料電池の負極端子とバッテリの正極端子との間の電源ラインを通じて、モータからの電流を燃料電池の負極端子へ戻すためのスイッチング制御が実行される。 In the above power converter, when the power supplied from the fuel cell to the motor is assisted by the battery power, a current larger than the current that can be discharged from the battery is supplied from the series power supply to the motor. Therefore, when power is supplied from the series power supply to the motor, switching control is performed to return the current from the motor to the negative terminal of the fuel cell through the power line between the negative terminal of the fuel cell and the positive terminal of the battery. Is done.
 このようなスイッチング制御を実行するには、電源の電圧を高くしなければならず、またモータに流れる電流が増加するためコンバータの温度上昇を考慮した対策を講じる必要があり、製造コストが増加してしまうという問題がある。 In order to execute such switching control, it is necessary to increase the voltage of the power supply, and since the current flowing to the motor increases, it is necessary to take measures in consideration of the temperature rise of the converter, which increases the manufacturing cost. There is a problem that it ends up.
 本発明は、このような問題点に着目してなされたものであり、簡易な構成により、直列電源から電力を供給するときに行われる無駄な処理を削減する電力供給システム及び電力供給システムの制御方法を提供することを目的とする。 The present invention has been made paying attention to such a problem, and a power supply system and a control of the power supply system that reduce wasteful processing performed when power is supplied from a series power supply with a simple configuration. It aims to provide a method.
 本発明のある実施形態によれば、第1電源及び第2電源を直列に接続した直列電源のうち少なくとも一方の電源を選択して負荷に電力を供給する電力供給システムは、電力を充電又は放電する二次電池と、前記二次電池に対して直列に接続される燃料電池と、前記直列電源のうち少なくとも一方の電源から出力される電力を交流電力に変換する電力変換手段とを含む。電力供給システムでは、前記二次電池の正極端子が、前記直列電源の正極端子として前記電力変換手段の第1電源端子に接続され、前記燃料電池の正極端子が、前記直列電源の正極端子と負極端子との間における前記電力変換手段の第2電源端子に対して前記二次電池の負極端子とともに接続される。 According to an embodiment of the present invention, a power supply system that selects at least one power source among series power sources in which a first power source and a second power source are connected in series and supplies power to a load is charged or discharged. Secondary battery, a fuel cell connected in series with the secondary battery, and power conversion means for converting power output from at least one of the series power supplies into AC power. In the power supply system, the positive terminal of the secondary battery is connected to the first power terminal of the power conversion means as the positive terminal of the series power supply, and the positive terminal of the fuel cell is connected to the positive terminal and the negative terminal of the series power supply. It connects with the negative electrode terminal of the said secondary battery with respect to the 2nd power supply terminal of the said power conversion means between terminals.
図1は、本発明の実施形態における電力供給システムの構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a power supply system according to an embodiment of the present invention. 図2は、電力供給システムを制御するコントローラの機能構成を示すブロック図である。FIG. 2 is a block diagram illustrating a functional configuration of a controller that controls the power supply system. 図3は、燃料電池の発電を制御する制御部の詳細構成を示すブロック図である。FIG. 3 is a block diagram illustrating a detailed configuration of a control unit that controls power generation of the fuel cell. 図4は、直列電源の電圧分配を制御する制御部の詳細構成の一例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of a detailed configuration of a control unit that controls voltage distribution of the series power supply. 図5は、モータを制御する制御部の詳細構成の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of a detailed configuration of a control unit that controls the motor. 図6Aは、モータに供給されるU相の電圧信号を生成する直列電源及び単電源の電圧波形の一例を示す図である。FIG. 6A is a diagram illustrating an example of voltage waveforms of a series power supply and a single power supply that generate a U-phase voltage signal supplied to the motor. 図6Bは、二次電池に電力を充電するときの直列電源及び単電源の電圧波形の一例を示す図である。FIG. 6B is a diagram illustrating an example of voltage waveforms of a series power supply and a single power supply when charging power to the secondary battery. 図7は、U相の電圧信号について直列電源及び単電源の電圧を変調する変調率を示す図である。FIG. 7 is a diagram illustrating a modulation rate for modulating the voltage of the series power supply and the single power supply for the U-phase voltage signal. 図8は、直列電源及び単電源についての変調率に従ってPWM信号を生成する手法を示す図である。FIG. 8 is a diagram illustrating a technique for generating a PWM signal according to a modulation rate for a series power supply and a single power supply. 図9Aは、モータに要求されるトルクが上昇したときに直列電源変換装置で実行されるスイッチング制御を示す図である。FIG. 9A is a diagram illustrating switching control executed by the series power converter when the torque required for the motor increases. 図9Bは、モータに要求されるトルクが低下したときに直列電源変換装置で実行されるスイッチング制御の一例を示す図である。FIG. 9B is a diagram illustrating an example of switching control executed by the series power converter when the torque required for the motor is reduced.
 (第1実施形態)
 以下、添付図面を参照しながら、本発明の第1実施形態について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の実施形態における電力供給システム100の構成を示す図である。 FIG. 1 is a diagram illustrating a configuration of a power supply system 100 according to an embodiment of the present invention.
 電力供給システム100は、2つの電源を直列に接続した直列電源のうち少なくとも一方の電源を選択して電気負荷に電力を供給するものである。以下では、直列電源のうち正極側の電源を第1電源といい、負極側の電源を第2電源という。また第1電源及び第2電源のうちいずれか一方の電源を単電源という。 The power supply system 100 selects at least one of the series power supplies in which two power supplies are connected in series and supplies power to the electric load. In the following, among the series power supplies, the positive power supply is referred to as a first power supply, and the negative power supply is referred to as a second power supply. One of the first power source and the second power source is referred to as a single power source.
 電力供給システム100は、燃料電池スタック10と、逆流阻止ダイオード11と、補機12と、制御装置13と、二次電池20と、制御装置21と、直列電源変換装置30と、第1電源コンデンサ41と、第2電源コンデンサ42と、コントローラ50とを含む。また、電力供給システム100は、電流センサ111~113と、電圧センサ121及び電圧センサ122と、電流センサ131及び電流センサ132とを備える。 The power supply system 100 includes a fuel cell stack 10, a backflow prevention diode 11, an auxiliary machine 12, a control device 13, a secondary battery 20, a control device 21, a series power conversion device 30, and a first power supply capacitor. 41, a second power supply capacitor 42, and a controller 50. The power supply system 100 includes current sensors 111 to 113, a voltage sensor 121 and a voltage sensor 122, and a current sensor 131 and a current sensor 132.
 電動モータ200は、直列電源に接続される電気負荷である。本実施形態では、電動モータ200は、U相、V相、W相からなる三相の交流モータにより実現される。三相交流モータとしては、例えば、永久磁石同期モータが用いられる。 The electric motor 200 is an electric load connected to a series power supply. In the present embodiment, the electric motor 200 is realized by a three-phase AC motor including a U phase, a V phase, and a W phase. For example, a permanent magnet synchronous motor is used as the three-phase AC motor.
 電動モータ200は、車両に搭載され、車両を駆動するための電動機としての機能と、車両の制動力を回生するための発電機としての機能とを有する。このため、車両の制動時には、電動モータ200により二次電池20に回生電力を充電することが可能となる。 The electric motor 200 is mounted on a vehicle and has a function as an electric motor for driving the vehicle and a function as a generator for regenerating a braking force of the vehicle. For this reason, at the time of braking of the vehicle, the electric motor 200 can charge the regenerative power to the secondary battery 20.
 燃料電池スタック10は、電動モータ200に電力を供給するための直流電源である。燃料電池スタック10は、酸素を含有するカソードガス(酸化剤ガス)と水素を含有するアノードガス(燃料ガス)との供給を受けて電気負荷に応じて発電する。 The fuel cell stack 10 is a direct current power source for supplying electric power to the electric motor 200. The fuel cell stack 10 is supplied with a cathode gas (oxidant gas) containing oxygen and an anode gas (fuel gas) containing hydrogen to generate electric power according to an electric load.
 燃料電池スタック10は、複数枚の燃料電池を積層したものである。燃料電池は、電解質膜とアノード電極(燃料極)とカソード電極(酸化剤極)とを有し、電解質膜は、アノード電極とカソード電極とで挟まれている。この燃料電池は、アノード電極に供給されるアノードガスと、カソード電極に供給されるカソードガスとが電解質膜で電気化学反応を起こして発電する。アノード電極及びカソード電極の両極では、以下のとおり、電気化学反応が進行する。 The fuel cell stack 10 is a stack of a plurality of fuel cells. The fuel cell has an electrolyte membrane, an anode electrode (fuel electrode), and a cathode electrode (oxidant electrode), and the electrolyte membrane is sandwiched between the anode electrode and the cathode electrode. In this fuel cell, an anode gas supplied to the anode electrode and a cathode gas supplied to the cathode electrode cause an electrochemical reaction at the electrolyte membrane to generate electric power. The electrochemical reaction proceeds as follows at both the anode and cathode electrodes.
   アノード電極 :  2H2 →4H+ +4e-       ・・・(1)
   カソード電極 :  4H+ +4e- +O2 →2H2O ・・・(2)
 燃料電池では、上記(1)及び(2)の電気化学反応によって、起電力が発生するとともに水が生成される。燃料電池スタック10には複数枚の燃料電池が直列に接続されているため、各燃料電池に生じるセル電圧の総和が、燃料電池スタック10の出力電圧となる。
Anode electrode: 2H 2 → 4H + + 4e- (1)
Cathode electrode: 4H + + 4e- + O 2 → 2H 2 O (2)
In the fuel cell, an electromotive force is generated and water is generated by the electrochemical reactions (1) and (2). Since a plurality of fuel cells are connected in series to the fuel cell stack 10, the sum of the cell voltages generated in each fuel cell becomes the output voltage of the fuel cell stack 10.
 燃料電池スタック10には、不図示のカソードガス給排装置及びアノードガス給排装置によって、カソードガス及びアノードガスがそれぞれ供給される。カソードガス給排装置は、燃料電池スタック10にカソードガスを供給するコンプレッサや、カソードガスの圧力を調整するカソード調圧弁などにより構成される。アノードガス給排装置は、アノードガスが貯蔵された高圧タンクから燃料電池スタック10にアノードガスを供給するアノード調圧弁や、燃料電池スタック10からアノードオフガスを排出するパージ弁などにより構成される。 The fuel cell stack 10 is supplied with cathode gas and anode gas by a cathode gas supply / discharge device and an anode gas supply / discharge device (not shown), respectively. The cathode gas supply / discharge device includes a compressor that supplies cathode gas to the fuel cell stack 10, a cathode pressure regulating valve that adjusts the pressure of the cathode gas, and the like. The anode gas supply / discharge device includes an anode pressure regulating valve that supplies anode gas to the fuel cell stack 10 from a high-pressure tank that stores the anode gas, a purge valve that discharges anode off-gas from the fuel cell stack 10, and the like.
 逆流阻止ダイオード11は、燃料電池スタック10の正極端子10Aに接続され、燃料電池スタック10に逆流する電流を阻止する。 The backflow prevention diode 11 is connected to the positive electrode terminal 10 </ b> A of the fuel cell stack 10 and prevents a current flowing back to the fuel cell stack 10.
 補機12は、燃料電池スタック10の動作を補助する部品であり、燃料電池スタック10から出力される電力によって作動する。補機12は、燃料電池スタック10にカソードガスを供給するカソードコンプレッサや、燃料電池スタック10に冷却水を循環させる冷却水ポンプなどにより構成される。 The auxiliary machine 12 is a component that assists the operation of the fuel cell stack 10 and is operated by the electric power output from the fuel cell stack 10. The auxiliary machine 12 includes a cathode compressor that supplies a cathode gas to the fuel cell stack 10 and a cooling water pump that circulates cooling water through the fuel cell stack 10.
 制御装置13は、補機12の動作を制御するものであり、コントローラ50によって制御される。制御装置13は、例えば、カソードコンプレッサや、冷却水ポンプなどの操作量を制御する。 The control device 13 controls the operation of the auxiliary machine 12 and is controlled by the controller 50. The control device 13 controls the operation amounts of, for example, a cathode compressor and a cooling water pump.
 また、制御装置13は、補機12の状態量を検出する。補機12の状態量とは、補機12の消費電力を計測するのに必要となるパラメータであり、例えば、カソードコンプレッサの消費電力を計測する場合には、カソードコンプレッサの回転速度及びトルクが検出される。制御装置13は、その検出した状態量をコントローラ50に出力する。 Further, the control device 13 detects the state quantity of the auxiliary machine 12. The state quantity of the auxiliary machine 12 is a parameter necessary for measuring the power consumption of the auxiliary machine 12. For example, when measuring the power consumption of the cathode compressor, the rotational speed and torque of the cathode compressor are detected. Is done. The control device 13 outputs the detected state quantity to the controller 50.
 二次電池20は、電動モータ200に電力を放電又は充電するための電源である。本実施形態では、二次電池20は、燃料電池スタック10の電力を補助する電源として用いられる。二次電池20は、例えば、リチウムイオンバッテリにより実現される。 The secondary battery 20 is a power source for discharging or charging electric power to the electric motor 200. In the present embodiment, the secondary battery 20 is used as a power source that assists the power of the fuel cell stack 10. The secondary battery 20 is realized by, for example, a lithium ion battery.
 制御装置21は、二次電池20の充放電状態を監視するものである。制御装置21は、二次電池20に流れる電流と二次電池20の電圧とを検出し、二次電池20の電池容量を示すSOC(State Of Charge)を算出する。また、制御装置21は、二次電池20のSOC、二次電池20の温度、放電許容電力、充電許容電力を含む二次電池情報をコントローラ50に出力する。 The control device 21 monitors the charge / discharge state of the secondary battery 20. The control device 21 detects the current flowing through the secondary battery 20 and the voltage of the secondary battery 20, and calculates SOC (State Of Charge) indicating the battery capacity of the secondary battery 20. Further, the control device 21 outputs secondary battery information including the SOC of the secondary battery 20, the temperature of the secondary battery 20, allowable discharge power, and allowable charge power to the controller 50.
 直列電源変換装置30は、第1電源及び第2電源を直列に接続した直列電源が並列に接続される電力変換手段である。直列電源変換装置30によって直列電源の電圧を電動モータ200に供給することにより、電動モータ200に生じる誘起電圧に負けない電圧を確保することができる。 The series power converter 30 is power conversion means in which a series power source in which a first power source and a second power source are connected in series is connected in parallel. By supplying the voltage of the series power supply to the electric motor 200 by the series power converter 30, it is possible to ensure a voltage that is not inferior to the induced voltage generated in the electric motor 200.
 直列電源変換装置30は、直列電源のうち少なくとも一方の電源を選択して、その選択された電源を電気負荷に接続する。直列電源変換装置30は、コントローラ50によって制御される。 The series power supply conversion device 30 selects at least one of the series power supplies and connects the selected power supply to the electric load. The series power converter 30 is controlled by the controller 50.
 直列電源変換装置30は、選択した電源から出力される電力を交流電力に変換するためのスイッチング制御を実行し、このスイッチング制御によって変換された交流電力を電動モータ200に供給する。直列電源変換装置30は、例えば3レベルインバータにより実現される。 The serial power converter 30 performs switching control for converting the power output from the selected power source into AC power, and supplies the AC power converted by the switching control to the electric motor 200. The series power converter 30 is realized by a three-level inverter, for example.
 直列電源変換装置30には、2つの電源が直列に接続された直列電源を接続するための第1電源端子311、第2電源端子312、及び、接地端子313が設けられている。 The series power supply converter 30 is provided with a first power supply terminal 311, a second power supply terminal 312, and a ground terminal 313 for connecting a series power supply in which two power supplies are connected in series.
 第1電源端子311は、直列電源のうち正極側の電源の正極端子が接続される端子である。第2電源端子312は、直列電源のうち負極側の電源の正極端子、及び、正極側の電源の負極端子が接続される端子である。接地端子313は、直列電源のうち負極側の電源の負極端子が接続される端子である。 The first power supply terminal 311 is a terminal to which the positive terminal of the positive power supply among the series power supplies is connected. The second power supply terminal 312 is a terminal to which the positive terminal of the negative power supply and the negative terminal of the positive power supply are connected in the series power supply. The ground terminal 313 is a terminal to which the negative terminal of the negative power supply is connected among the series power supplies.
 また、直列電源変換装置30には、電動モータ200のうちのU相電源線が接続されるU相端子321と、V相電源線が接続されるV相端子322と、W相電源線が接続されるW相端子323とが設けられている。 The series power converter 30 is connected to a U-phase terminal 321 to which a U-phase power line of the electric motor 200 is connected, a V-phase terminal 322 to which a V-phase power line is connected, and a W-phase power line. W-phase terminal 323 is provided.
 直列電源変換装置30は、双方向変換部31と、直列電源接続部32と、接地電源接続部33とを備える。 The serial power converter 30 includes a bidirectional converter 31, a serial power connection 32, and a ground power connection 33.
 双方向変換部31は、第2電源端子312と電動モータ200との間を接続又は遮断する第2のスイッチ部である。双方向変換部31は、第2電源端子312の電圧を、コントローラ50のスイッチング制御により、U相端子321、V相端子322及びW相端子323にそれぞれ出力する。 The bidirectional conversion unit 31 is a second switch unit that connects or blocks between the second power supply terminal 312 and the electric motor 200. The bidirectional conversion unit 31 outputs the voltage of the second power supply terminal 312 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 by switching control of the controller 50, respectively.
 双方向変換部31は、電動モータ200に交流電力を供給するスイッチング回路1u、1v及び1wと、第1電源端子311及び電動モータ200から第2電源端子312に流れる電流を遮断するスイッチング回路4u、4v及び4wとを備える。 The bidirectional conversion unit 31 includes switching circuits 1u, 1v, and 1w that supply AC power to the electric motor 200, a switching circuit 4u that blocks current flowing from the first power supply terminal 311 and the electric motor 200 to the second power supply terminal 312, 4v and 4w.
 U相の電源線Luには、スイッチング回路1u及びスイッチング回路4uが直列に接続される。 A switching circuit 1u and a switching circuit 4u are connected in series to the U-phase power line Lu.
 スイッチング回路1uは、第2電源端子312から供給される電圧をU相の電源線Luに出力する回路であり、トランジスタTrとダイオードDiとにより構成される。なお、ここでは、便宜上、スイッチング回路1uのトランジスタ及びダイオードのみに符号Tr及びDiを付し、他のスイッチング回路については省略している。 The switching circuit 1u is a circuit that outputs a voltage supplied from the second power supply terminal 312 to the U-phase power supply line Lu, and includes a transistor Tr and a diode Di. Here, for the sake of convenience, only the transistors and diodes of the switching circuit 1u are denoted by symbols Tr and Di, and the other switching circuits are omitted.
 トランジスタTrは、導通状態と非導通状態とに切り替わるオン・オフ動作をするスイッチング素子であり、例えばIGBT(Insulated Gate Bipolar Transistors)により実現される。スイッチング回路1uのトランジスタTrは、第2電源端子312から電動モータ200に電流を供給又は遮断する第1トランジスタである。 The transistor Tr is a switching element that performs an on / off operation that switches between a conductive state and a non-conductive state, and is realized by, for example, an IGBT (Insulated Gate Bipolar Transistors). The transistor Tr of the switching circuit 1 u is a first transistor that supplies or cuts off current from the second power supply terminal 312 to the electric motor 200.
 トランジスタTrとダイオードDiとは、トランジスタTrを流れる電流の向きが、ダイオードDiを通過する電流の向き(順方向)とは逆向きとなるように、互いに並列に接続される。すなわち、ダイオードDiは、トランジスタTrに対して並列に接続され、電動モータ200から第2電源端子312に電流を通過させる。 The transistor Tr and the diode Di are connected in parallel to each other so that the direction of the current flowing through the transistor Tr is opposite to the direction of the current passing through the diode Di (forward direction). That is, the diode Di is connected in parallel to the transistor Tr, and allows current to pass from the electric motor 200 to the second power supply terminal 312.
 スイッチング回路4uは、U相の電源線Luから供給される電圧を第2電源端子312に出力する回路であり、スイッチング回路1uと同様にトランジスタTrとダイオードDiとにより構成される。 The switching circuit 4u is a circuit that outputs a voltage supplied from the U-phase power supply line Lu to the second power supply terminal 312, and is configured by a transistor Tr and a diode Di as in the switching circuit 1u.
 スイッチング回路4uのトランジスタTrは、スイッチング回路1uのトランジスタTrとは逆方向に電流が流れるように接続される。すなわち、スイッチング回路4uのトランジスタTrは、電動モータ200から第2電源端子312に電流を供給又は遮断する第2トランジスタである。 The transistor Tr of the switching circuit 4u is connected so that a current flows in a direction opposite to that of the transistor Tr of the switching circuit 1u. That is, the transistor Tr of the switching circuit 4 u is a second transistor that supplies or cuts off current from the electric motor 200 to the second power supply terminal 312.
 スイッチング回路1u及びスイッチング回路4uと同様に、V相の電源線Lvにはスイッチング回路1v及びスイッチング回路4vが共に接続され、W相の電源線Lwにはスイッチング回路1w及びスイッチング回路4wが共に接続される。 Similarly to the switching circuit 1u and the switching circuit 4u, both the switching circuit 1v and the switching circuit 4v are connected to the V-phase power line Lv, and both the switching circuit 1w and the switching circuit 4w are connected to the W-phase power line Lw. The
 直列電源接続部32は、第1電源端子311と電動モータ200との間を接続又は遮断する第1のスイッチ部である。直列電源接続部32は、第1電源端子311から出力される直列電圧を、コントローラ50のスイッチング制御により、U相端子321、V相端子322及びW相端子323にそれぞれ出力する。 The serial power supply connection unit 32 is a first switch unit that connects or disconnects the first power supply terminal 311 and the electric motor 200. The series power supply connection unit 32 outputs the series voltage output from the first power supply terminal 311 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 under the switching control of the controller 50.
 直列電源接続部32は、スイッチング回路2u、2v及び2wを備える。スイッチング回路2u、2v及び2wは、それぞれU相、V相及びW相の電源線Lu、Lv及びLwに接続され、共にスイッチング回路1uと同様の構成である。 The serial power supply connection unit 32 includes switching circuits 2u, 2v, and 2w. The switching circuits 2u, 2v, and 2w are connected to U-phase, V-phase, and W-phase power supply lines Lu, Lv, and Lw, respectively, and have the same configuration as the switching circuit 1u.
 具体的には、スイッチング回路2u、2v及び2wの各トランジスタTrは、第1電源端子311から電動モータ200に電流を供給又は遮断する。また、各ダイオードDiは、トランジスタTrに対して並列に接続され、電動モータ200から第1電源端子311に電流を通過させる。 Specifically, the transistors Tr of the switching circuits 2u, 2v, and 2w supply or block current from the first power supply terminal 311 to the electric motor 200. Each diode Di is connected in parallel to the transistor Tr, and allows current to pass from the electric motor 200 to the first power supply terminal 311.
 接地電源接続部33は、接地された接地線Lgと電動モータ200との間を接続又は遮断する第3のスイッチ部である。接地電源接続部33は、接地端子313の接地電圧を、コントローラ50のスイッチング制御により、U相端子321、V相端子322及びW相端子323にそれぞれ出力する。 The ground power supply connection unit 33 is a third switch unit that connects or disconnects the grounded ground line Lg and the electric motor 200. The ground power supply connection unit 33 outputs the ground voltage of the ground terminal 313 to the U-phase terminal 321, the V-phase terminal 322, and the W-phase terminal 323 under the switching control of the controller 50, respectively.
 接地電源接続部33は、スイッチング回路3u、3v及び3wを備える。スイッチング回路3u、3v及び3wは、それぞれU相、V相及びW相の電源線Lu、Lv及びLwに接続され、共にスイッチング回路1uと同様の構成である。 The ground power supply connection unit 33 includes switching circuits 3u, 3v, and 3w. The switching circuits 3u, 3v, and 3w are connected to the U-phase, V-phase, and W-phase power lines Lu, Lv, and Lw, respectively, and have the same configuration as the switching circuit 1u.
 スイッチング回路1u~1w、スイッチング回路2u~2w、スイッチング回路3u~3w、及び、スイッチング回路4u~4wのトランジスタTrの各々は、コントローラ50によってスイッチング制御される。 The switching circuits 1u to 1w, the switching circuits 2u to 2w, the switching circuits 3u to 3w, and the transistors Tr of the switching circuits 4u to 4w are each controlled to be switched by the controller 50.
 具体的には、スイッチング制御を実行するためのPWM信号(Pulse Width Modulation)がコントローラ50から各トランジスタTrの制御端子(ゲート端子)に供給される。このPWM信号によってトランジスタTrの各々は導通状態(オン)又は非導通状態(オフ)に交互に切り替えられる。 Specifically, a PWM signal (Pulse Width Modulation) for executing switching control is supplied from the controller 50 to the control terminal (gate terminal) of each transistor Tr. By this PWM signal, each of the transistors Tr is alternately switched between a conductive state (ON) and a non-conductive state (OFF).
 例えば、直列電源変換装置30では、直列電源接続部32と接地電源接続部33とをスイッチング制御することにより、直列電源101の直列電圧が三相交流電圧に変換される。また、双方向変換部31と接地電源接続部33とをスイッチング制御することにより、燃料電池スタック10の電圧が三相交流電圧に変換される。 For example, in the series power converter 30, the series voltage of the series power supply 101 is converted into a three-phase AC voltage by switching control of the series power supply connection unit 32 and the ground power supply connection unit 33. Further, the bidirectional conversion unit 31 and the ground power source connection unit 33 are subjected to switching control, whereby the voltage of the fuel cell stack 10 is converted into a three-phase AC voltage.
 さらに、双方向変換部31と直列電源接続部32と接地電源接続部33とをスイッチング制御することにより、直列電源101の直列電圧と燃料電池スタック10の電圧とが電動モータ200の誘起電圧に応じて切り替えられた三相交流電圧が生成される。 Further, the bidirectional conversion unit 31, the series power supply connection unit 32, and the ground power supply connection unit 33 are subjected to switching control so that the series voltage of the series power supply 101 and the voltage of the fuel cell stack 10 correspond to the induced voltage of the electric motor 200. Switched three-phase AC voltage is generated.
 第1電源コンデンサ41は、第1電源に並列に接続され、第1電源から取り出される電力を調整するために用いられる。第1電源コンデンサ41の一方の電極は、第1電源端子311に接続され、他方の電極は、第2電源端子312に接続される。 The first power supply capacitor 41 is connected in parallel to the first power supply and is used to adjust the electric power extracted from the first power supply. One electrode of the first power supply capacitor 41 is connected to the first power supply terminal 311, and the other electrode is connected to the second power supply terminal 312.
 第2電源コンデンサ42は、第2電源に並列に接続され、第2電源から取り出される電力を調整するために用いられる。第2電源コンデンサ42の一方の電極は、第2電源端子312に接続され、他方の電極は、接地端子313に接続される。 The second power supply capacitor 42 is connected in parallel to the second power supply and is used for adjusting the electric power extracted from the second power supply. One electrode of the second power supply capacitor 42 is connected to the second power supply terminal 312, and the other electrode is connected to the ground terminal 313.
 上述のようなシステムでは、仮に、直列電源変換装置30の第1電源端子311に燃料電池スタック10が接続され、第2電源端子312に二次電池20が接続されると、直列電源から電動モータ200に電力を供給する場合に無駄なスイッチング制御を実行しなければならない。 In the system as described above, if the fuel cell stack 10 is connected to the first power supply terminal 311 of the series power supply conversion device 30 and the secondary battery 20 is connected to the second power supply terminal 312, the electric motor from the series power supply is used. When power is supplied to 200, useless switching control must be executed.
 具体的には、車両が加速するときには、電動モータ200によって燃料電池スタック10から取り出される電流が大きくなり、これに伴い、燃料電池スタック10に直列接続された二次電池20からも大きな電流が取り出されることになる。 Specifically, when the vehicle accelerates, the current taken from the fuel cell stack 10 by the electric motor 200 increases, and accordingly, a large current is also taken from the secondary battery 20 connected in series to the fuel cell stack 10. Will be.
 しかしながら、二次電池20は、燃料電池スタック10を補助するためのものであり、二次電池20から取り出すことができる電流の上限値は、燃料電池スタック10から出力できる電流の上限値よりも小さい。そのため、ドライバの要求によって直列電源から電動モータ200に供給される電力が大きくなると、二次電池20から取り出される電流が上限値を超えてしまい、二次電池20が劣化することになる。 However, the secondary battery 20 is for assisting the fuel cell stack 10, and the upper limit value of the current that can be extracted from the secondary battery 20 is smaller than the upper limit value of the current that can be output from the fuel cell stack 10. . For this reason, when the power supplied from the series power supply to the electric motor 200 increases according to the driver's request, the current taken out from the secondary battery 20 exceeds the upper limit value, and the secondary battery 20 deteriorates.
 この対策として二次電池20の正極端子20Aから燃料電池スタック10の負極端子10Bに出力される電流が上限値を超えないように、双方向変換部31をスイッチング制御して電動モータ200内の電流が第2電源端子に戻される。 As a countermeasure against this, the current in the electric motor 200 is controlled by switching the bidirectional converter 31 so that the current output from the positive electrode terminal 20A of the secondary battery 20 to the negative electrode terminal 10B of the fuel cell stack 10 does not exceed the upper limit value. Is returned to the second power supply terminal.
 このような処理を実現するには、電源の電圧を高くすることが必要となり、また電動モータ200に流れる電流が増加するため、直列電源変換装置30を構成する各トランジスタTrの温度、及び、電動モータ200の温度が上昇するので熱対策を講じる必要もある。このため、直列電源変換装置30の製造コストが増加してしまう。 In order to realize such processing, it is necessary to increase the voltage of the power source, and the current flowing through the electric motor 200 increases. Therefore, the temperature of each transistor Tr constituting the series power source conversion device 30 and the electric motor Since the temperature of the motor 200 rises, it is necessary to take measures against heat. For this reason, the manufacturing cost of the serial power converter 30 increases.
 そこで本実施形態では、直列電源変換装置30の第1電源端子311に第1電源として補助用の二次電池20の正極端子を接続し、第2電源端子312に第2電源として燃料電池スタック10の正極端子、及び、二次電池20の負極端子を接続した。すなわち、二次電池20の負極端子20Bに燃料電池スタック10の正極端子10Aが接続された直列電源101を直列電源変換装置30に並列に接続した。 Therefore, in the present embodiment, the positive terminal of the auxiliary secondary battery 20 is connected as the first power source to the first power terminal 311 of the series power converter 30, and the fuel cell stack 10 as the second power source is connected to the second power terminal 312. The positive electrode terminal and the negative electrode terminal of the secondary battery 20 were connected. That is, the series power supply 101 in which the positive electrode terminal 10 </ b> A of the fuel cell stack 10 was connected to the negative electrode terminal 20 </ b> B of the secondary battery 20 was connected in parallel to the series power supply conversion device 30.
 このような状態において直列電源変換装置30を制御するコントローラ50の詳細構成について図面を参照して説明する。 The detailed configuration of the controller 50 that controls the series power converter 30 in such a state will be described with reference to the drawings.
 コントローラ50は、電力供給システム100を制御する制御部である。コントローラ50は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。 The controller 50 is a control unit that controls the power supply system 100. The controller 50 is configured by a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
 コントローラ50には、電流センサ111~113、電圧センサ121及び電圧センサ122、並びに電流センサ131及び電流センサ132からの各検出信号が入力される。 The controller 50 receives detection signals from the current sensors 111 to 113, the voltage sensor 121 and the voltage sensor 122, and the current sensor 131 and the current sensor 132.
 電流センサ111は、二次電池20の正極端子20Aと第1電源端子311との間の電源線に設けられる。電流センサ111は、二次電池20から取り出される電流の大きさを検出する。以下では、電流センサ111により検出された電流のことを「二次電池電流」という。 The current sensor 111 is provided on a power supply line between the positive electrode terminal 20 </ b> A of the secondary battery 20 and the first power supply terminal 311. The current sensor 111 detects the magnitude of the current taken out from the secondary battery 20. Hereinafter, the current detected by the current sensor 111 is referred to as “secondary battery current”.
 電流センサ112は、燃料電池スタック10の正極端子10Aと逆流阻止ダイオード11のアノード端子との間の電源線に設けられる。電流センサ112は、燃料電池スタック10から取り出される電流の大きさを検出する。以下では、電流センサ112により検出された電流のことを「スタック電流」という。なお、電流センサ112は、燃料電池スタック10の発電電力を検出する発電検出部を構成する。 The current sensor 112 is provided on a power supply line between the positive electrode terminal 10A of the fuel cell stack 10 and the anode terminal of the backflow prevention diode 11. The current sensor 112 detects the magnitude of current taken from the fuel cell stack 10. Hereinafter, the current detected by the current sensor 112 is referred to as “stack current”. The current sensor 112 constitutes a power generation detection unit that detects the power generated by the fuel cell stack 10.
 電流センサ113は、二次電池20の負極端子20Bと燃料電池スタック10の正極端子10Aとが接続された部分(接点)と第2電源端子312との間の電源線に接続される。電流センサ113は、燃料電池スタック10から第2電源端子312に出力される電流の大きさを検出する。 The current sensor 113 is connected to a power supply line between the second power supply terminal 312 and a portion (contact point) where the negative electrode terminal 20B of the secondary battery 20 and the positive electrode terminal 10A of the fuel cell stack 10 are connected. The current sensor 113 detects the magnitude of the current output from the fuel cell stack 10 to the second power supply terminal 312.
 電圧センサ121は、二次電池20及び第1電源コンデンサ41に対して並列に接続され、二次電池20の電圧Vbの大きさを検出する。以下では、電圧センサ121により検出された電圧のことを「二次電池電圧」という。 The voltage sensor 121 is connected in parallel to the secondary battery 20 and the first power supply capacitor 41, and detects the magnitude of the voltage Vb of the secondary battery 20. Hereinafter, the voltage detected by the voltage sensor 121 is referred to as “secondary battery voltage”.
 電圧センサ122は、燃料電池スタック10及び第2電源コンデンサ42に対して並列に接続され、燃料電池スタック10の電圧Vaの大きさを検出する。以下では、電圧センサ122により検出された電圧のことを「スタック電圧」という。なお、電圧センサ122は、燃料電池スタック10の発電電力を検出する発電検出部を構成する。 The voltage sensor 122 is connected in parallel to the fuel cell stack 10 and the second power supply capacitor 42, and detects the magnitude of the voltage Va of the fuel cell stack 10. Hereinafter, the voltage detected by the voltage sensor 122 is referred to as “stack voltage”. The voltage sensor 122 constitutes a power generation detection unit that detects the power generated by the fuel cell stack 10.
 電流センサ131は、U相端子321から電動モータ200に配線されるU相電源線に設けられる。電流センサ131は、電動モータ200のU相電源線に供給される電流の大きさを検出する。 The current sensor 131 is provided on a U-phase power supply line wired from the U-phase terminal 321 to the electric motor 200. Current sensor 131 detects the magnitude of the current supplied to the U-phase power supply line of electric motor 200.
 電流センサ132は、W相端子323から電動モータ200に配線されるW相電源線に設けられる。電流センサ132は、電動モータ200のW相電源線に供給される電流の大きさを検出する。 The current sensor 132 is provided on a W-phase power supply line wired from the W-phase terminal 323 to the electric motor 200. Current sensor 132 detects the magnitude of the current supplied to the W-phase power line of electric motor 200.
 さらにコントローラ50には、電動モータ200を構成するロータの位置を検出する位置センサ61、及びドライバの操作量としてアクセルペダルの開度を検出するアクセル開度センサ62からの検出信号がそれぞれ入力される。位置センサ61は、例えばロータリエンコーダなどにより構成される。 Further, the controller 50 receives detection signals from a position sensor 61 that detects the position of the rotor that constitutes the electric motor 200 and an accelerator opening sensor 62 that detects the opening of the accelerator pedal as an operation amount of the driver. . The position sensor 61 is composed of, for example, a rotary encoder.
 コントローラ50は、位置センサ61から出力される検出信号に基づいて電動モータ200のモータ回転速度を算出し、そのモータ回転速度とアクセルペダルの開度とに基づいて、電動モータ200の駆動に必要となる要求トルクを演算する。 The controller 50 calculates the motor rotation speed of the electric motor 200 based on the detection signal output from the position sensor 61, and is necessary for driving the electric motor 200 based on the motor rotation speed and the opening degree of the accelerator pedal. The required torque is calculated.
 コントローラ50は、その要求トルクに基づいて、補機12の運転点を設定するとともに、直列電源変換装置30内のトランジスタTrの各々をオン・オフ動作させる。すなわち、コントローラ50は、電動モータ200の要求トルクに基づいて、双方向変換部31及び直列電源接続部32の一方と接地電源接続部33とを交互に遮断状態(オフ)から接続状態(オン)に切り替える。 The controller 50 sets the operating point of the auxiliary machine 12 based on the required torque, and turns on / off each of the transistors Tr in the series power supply converter 30. That is, based on the required torque of the electric motor 200, the controller 50 alternately connects the bidirectional conversion unit 31 and the series power supply connection unit 32 and the ground power supply connection unit 33 from the cutoff state (off) to the connection state (on). Switch to.
 図2は、本実施形態におけるコントローラ50の機能構成の一例を示すブロック図である。 FIG. 2 is a block diagram illustrating an example of a functional configuration of the controller 50 in the present embodiment.
 コントローラ50は、モータ要求トルク演算部510と、スタック発電制御部520と、直列電源電圧分配制御部530と、モータ制御部540とを含む。 The controller 50 includes a motor required torque calculation unit 510, a stack power generation control unit 520, a series power supply voltage distribution control unit 530, and a motor control unit 540.
 モータ要求トルク演算部510は、モータ回転速度及びアクセル開度に基づいて、電動モータ200を駆動するのに必要となるモータ要求トルクを演算する。なお、モータ回転速度は、位置センサ61から出力される検出信号に基づいて算出される。またアクセル開度は、アクセル開度センサ62によって検出されるアクセルペダルの開度のことである。 The motor request torque calculation unit 510 calculates the motor request torque required to drive the electric motor 200 based on the motor rotation speed and the accelerator opening. The motor rotation speed is calculated based on the detection signal output from the position sensor 61. The accelerator opening is the accelerator pedal opening detected by the accelerator opening sensor 62.
 モータ要求トルク演算部510には、電動モータ200の運転点ごとにモータ要求トルクが対応付けられた要求トルクマップが予め記憶される。そしてモータ要求トルク演算部510は、モータ回転速度とアクセル開度とを取得すると、要求トルクマップを参照し、そのモータ回転速度とアクセル開度とで特定される運転点に対応付けられたモータ要求トルクを算出する。 The required motor torque calculation unit 510 stores in advance a required torque map in which a motor required torque is associated with each operating point of the electric motor 200. When the motor request torque calculation unit 510 acquires the motor rotation speed and the accelerator opening, the motor request torque calculation unit 510 refers to the request torque map, and requests a motor request associated with the operating point specified by the motor rotation speed and the accelerator opening. Calculate the torque.
 モータ要求トルク演算部510は、算出したモータ要求トルクT*をモータ制御部540とスタック発電制御部520とに出力する。 The motor request torque calculation unit 510 outputs the calculated motor request torque T * to the motor control unit 540 and the stack power generation control unit 520.
 スタック発電制御部520は、二次電池情報とモータ回転速度とモータ要求トルクT*とに基づいて、燃料電池スタック10から取り出される電流の目標値を演算する。燃料電池スタック10から取り出される電流の目標値のことを以下では「目標電流」という。 The stack power generation control unit 520 calculates a target value of the current extracted from the fuel cell stack 10 based on the secondary battery information, the motor rotation speed, and the motor required torque T * . Hereinafter, the target value of the current taken out from the fuel cell stack 10 is referred to as “target current”.
 なお、二次電池情報とは、二次電池20の充放電に関す情報のことであり、制御装置21から出力される情報である。二次電池情報には、二次電池20のSOC、充電許容電力、及び放電許容電力が含まれている。 The secondary battery information is information related to charging / discharging of the secondary battery 20, and is information output from the control device 21. The secondary battery information includes the SOC of the secondary battery 20, the charge allowable power, and the discharge allowable power.
 また、スタック発電制御部520の詳細構成については図3で後述する。スタック発電制御部520は、算出した目標電流を直列電源電圧分配制御部530に出力する。 The detailed configuration of the stack power generation control unit 520 will be described later with reference to FIG. The stack power generation control unit 520 outputs the calculated target current to the series power supply voltage distribution control unit 530.
 直列電源電圧分配制御部530は、燃料電池スタック10の目標電流に基づいて、電動モータ200に供給される三相交流電圧を燃料電池スタック10及び直列電源101に分配するための電圧分配係数を演算する。 The series power supply voltage distribution control unit 530 calculates a voltage distribution coefficient for distributing the three-phase AC voltage supplied to the electric motor 200 to the fuel cell stack 10 and the series power supply 101 based on the target current of the fuel cell stack 10. To do.
 ここにいう燃料電池スタック10の電圧分配係数は、電動モータ200に供給される三相交流電圧のうち、燃料電池スタック10の電圧の割合を示し、直列電源101の電圧分配係数は、燃料電池スタック10と二次電池20との直列電圧の割合を示す。 The voltage distribution coefficient of the fuel cell stack 10 here indicates the ratio of the voltage of the fuel cell stack 10 in the three-phase AC voltage supplied to the electric motor 200, and the voltage distribution coefficient of the series power supply 101 is the fuel cell stack. The ratio of the series voltage of 10 and the secondary battery 20 is shown.
 本実施形態では、電動モータ200に供給される各相の交流電圧を「1.0」として、燃料電池スタック10の電圧分配係数と直列電源101の電圧分配係数との和が「1.0」を超えないように定められる。燃料電池スタック10の電圧分配係数、及び、直列電源101の電圧分配係数は、それぞれ負(マイナス)の値又は正(プラス)の値を採り得る。 In the present embodiment, the AC voltage of each phase supplied to the electric motor 200 is “1.0”, and the sum of the voltage distribution coefficient of the fuel cell stack 10 and the voltage distribution coefficient of the series power supply 101 is “1.0”. It is determined not to exceed. The voltage distribution coefficient of the fuel cell stack 10 and the voltage distribution coefficient of the series power supply 101 can each take a negative (minus) value or a positive (plus) value.
 例えば、燃料電池スタック10に供給されるガスの応答遅れなどが原因でスタック電流を増やすことができないときは、燃料電池スタック10の電圧配分係数は負の値に設定される。これにより、直列電源101から電動モータ200に電力を供給するときにスタック電流が取り出されるのを防止することができる。 For example, when the stack current cannot be increased due to a response delay of the gas supplied to the fuel cell stack 10, the voltage distribution coefficient of the fuel cell stack 10 is set to a negative value. Thereby, it is possible to prevent the stack current from being taken out when power is supplied from the series power supply 101 to the electric motor 200.
 なお、直列電源電圧分配制御部530の詳細構成については図4で後述する。直列電源電圧分配制御部530は、燃料電池スタック10の電圧分配係数γaと直列電源101の電圧分配係数γabとをモータ制御部540に出力する。 The detailed configuration of the series power supply voltage distribution control unit 530 will be described later with reference to FIG. The series power supply voltage distribution control unit 530 outputs the voltage distribution coefficient γ a of the fuel cell stack 10 and the voltage distribution coefficient γ ab of the series power supply 101 to the motor control unit 540.
 モータ制御部540は、モータ要求トルクT*と、燃料電池スタック10及び直列電源101の電圧分配係数γa及びγabとに基づいて、直列電源変換装置30をスイッチング制御して電動モータ200に三相交流電圧を供給する。 The motor control unit 540 performs switching control on the series power converter 30 based on the motor required torque T * and the voltage distribution coefficients γ a and γ ab of the fuel cell stack 10 and the series power supply 101 to control the electric motor 200. Supply phase AC voltage.
 具体的には、モータ制御部540は、モータ要求トルクT*に応じてスイッチング制御をするためのPWM信号を生成し、そのPWM信号を直列電源変換装置30内の各トランジスタTrに供給する。これにより、直列電源101の電圧及び燃料電池スタック10の電圧がモータ要求トルクT*に応じて切り替えられて三相交流電圧が生成される。なお、モータ制御部540の詳細構成については図5で後述する。 Specifically, the motor control unit 540 generates a PWM signal for performing switching control according to the motor required torque T * , and supplies the PWM signal to each transistor Tr in the series power converter 30. As a result, the voltage of the series power supply 101 and the voltage of the fuel cell stack 10 are switched according to the motor required torque T * to generate a three-phase AC voltage. The detailed configuration of the motor control unit 540 will be described later with reference to FIG.
 図3は、スタック発電制御部520の詳細構成の一例を示すブロック図である。 FIG. 3 is a block diagram illustrating an example of a detailed configuration of the stack power generation control unit 520.
 スタック発電制御部520は、モータ要求電力演算部521と、充放電要求電力演算部522と、加算部523と、スタック発電電力演算部524と、スタック出力電力演算部525と、減算部526と、スタック目標電流演算部527とを含む。さらにスタック発電制御部520は、補機運転点設定部528を備える。 The stack power generation control unit 520 includes a motor request power calculation unit 521, a charge / discharge request power calculation unit 522, an addition unit 523, a stack generation power calculation unit 524, a stack output power calculation unit 525, a subtraction unit 526, A stack target current calculation unit 527. Further, the stack power generation control unit 520 includes an auxiliary machine operating point setting unit 528.
 モータ要求電力演算部521は、モータ要求トルク演算部510で演算されたモータ要求トルクT*と、位置センサ61を用いて算出されたモータ回転速度とに基づいて、電動モータ200を駆動するのに必要となるモータ要求電力を演算する。 The motor required power calculator 521 drives the electric motor 200 based on the motor required torque T * calculated by the motor required torque calculator 510 and the motor rotation speed calculated using the position sensor 61. Calculate the required motor power requirement.
 本実施形態では、モータ要求トルクとモータ回転速度との運転点ごとにモータ要求電力が対応付けられた要求電力マップが、モータ要求電力演算部521に予め記憶されている。 In this embodiment, a required power map in which motor required power is associated with each operating point of motor required torque and motor rotation speed is stored in advance in the motor required power calculation unit 521.
 モータ要求電力演算部521は、モータ要求トルクT*と検出されたモータ回転速度とを取得すると、要求電力マップを参照し、そのモータ要求トルクT*とモータ回転速度とで特定された運転点に対応するモータ要求電力を算出する。モータ要求電力演算部521は、算出したモータ要求電力を加算部523に出力する。 When the motor request power calculation unit 521 acquires the motor request torque T * and the detected motor rotation speed, the motor request power calculation unit 521 refers to the request power map and sets the operation point specified by the motor request torque T * and the motor rotation speed. The corresponding motor power demand is calculated. The required motor power calculation unit 521 outputs the calculated required motor power to the addition unit 523.
 充放電要求電力演算部522は、制御装置21からの二次電池情報に含まれるSOC、充電許容電力及び放電許容電力に基づいて、二次電池20の充放電要求電力を演算する。充電許容電力及び放電許容電力は、共に正の値である。 The required charge / discharge power calculation unit 522 calculates the required charge / discharge power of the secondary battery 20 based on the SOC, the charge allowable power, and the discharge allowable power included in the secondary battery information from the control device 21. Both the charge allowable power and the discharge allowable power are positive values.
 例えば、充放電要求電力演算部522は、二次電池20のSOCに基づいて二次電池20の充電又は放電可能な電力を求め、その電力を、充電許容電力から放電許容電力までの範囲内に制限し、制限した後の電力を充放電要求電力として算出する。 For example, the charge / discharge required power calculation unit 522 obtains power that can be charged or discharged from the secondary battery 20 based on the SOC of the secondary battery 20, and sets the power within a range from allowable charge power to allowable discharge power. The power after limiting is calculated as the required charge / discharge power.
 本実施形態では、二次電池20の温度ごとにSOCと充放電可能電力とが互いに対応付けられた二次電池要求マップが、充放電要求電力演算部522に予め記憶されている。そして、充放電要求電力演算部522は、二次電池20の温度によって特定された二次電池要求マップを参照して充放電可能電力を算出する。充放電要求電力演算部522は、算出した充放電電力を加算部523に出力する。 In the present embodiment, a secondary battery request map in which SOC and chargeable / dischargeable power are associated with each other for each temperature of the secondary battery 20 is stored in advance in the charge / discharge required power calculation unit 522. The charge / discharge required power calculation unit 522 calculates chargeable / dischargeable power with reference to the secondary battery request map specified by the temperature of the secondary battery 20. The charge / discharge required power calculation unit 522 outputs the calculated charge / discharge power to the addition unit 523.
 充放電要求電力演算部522は、二次電池20を充電する必要がある場合には、正(プラス)の充放電要求電力を出力し、二次電池20から電動モータ200に放電できる場合には、負(マイナス)の充放電要求電力を出力する。 When it is necessary to charge the secondary battery 20, the charge / discharge required power calculation unit 522 outputs positive (plus) charge / discharge required power, and when the secondary battery 20 can discharge the electric motor 200. The negative charge power is output.
 加算部523は、モータ要求電力に充放電要求電力を加算することにより、電動モータ200及び二次電池20から燃料電池スタック10に要求される発電要求電力を算出する。 The addition unit 523 calculates the required power generation required for the fuel cell stack 10 from the electric motor 200 and the secondary battery 20 by adding the required charge / discharge power to the required motor power.
 二次電池20を充電する必要がある場合には、加算部523から、モータ要求電力に対して充電可能な電力が加えられた値が、発電要求電力として出力される。一方、二次電池20から電動モータ200に放電できる場合には、加算部523から、モータ要求電力から放電可能な電力が引かれた値が、発電要求電力として出力される。 When it is necessary to charge the secondary battery 20, a value obtained by adding the chargeable power to the motor required power is output from the adder 523 as the power generation required power. On the other hand, when the secondary battery 20 can be discharged to the electric motor 200, a value obtained by subtracting the electric power that can be discharged from the motor required power is output from the adding unit 523 as the power generation required power.
 スタック発電電力演算部524は、発電要求電力と、制御装置13からの補機12の状態量とを用いて、電動モータ200及び二次電池20に加えて補機12から燃料電池スタック10に要求される発電電力を演算する。 The stack generated power calculation unit 524 requests the fuel cell stack 10 from the auxiliary machine 12 in addition to the electric motor 200 and the secondary battery 20 by using the generated power demand and the state quantity of the auxiliary machine 12 from the control device 13. The generated power is calculated.
 すなわち、スタック発電電力演算部524は、電動モータ200に必要なモータ要求電力と、二次電池20の充放電要求電力とに基づいて、燃料電池スタック10の発電電力を演算する発電演算部を構成する。 That is, the stack generated power calculation unit 524 constitutes a power generation calculation unit that calculates the generated power of the fuel cell stack 10 based on the required motor power required for the electric motor 200 and the required charge / discharge power of the secondary battery 20. To do.
 また、スタック発電電力演算部524は、補機12の状態量に基づいて、補機12で消費される電力を算出する。 Further, the stack generated power calculation unit 524 calculates the power consumed by the auxiliary machine 12 based on the state quantity of the auxiliary machine 12.
 例えば、カソードコンプレッサ、冷却水ポンプ及び冷却水ヒータが、補機12として燃料電池スタック10に接続された状態では、カソードコンプレッサと冷却水ポンプの回転速度及びトルクが、スタック発電電力演算部524に入力される。 For example, when the cathode compressor, the cooling water pump, and the cooling water heater are connected to the fuel cell stack 10 as the auxiliary machine 12, the rotation speed and torque of the cathode compressor and the cooling water pump are input to the stack generated power calculation unit 524. Is done.
 そして、スタック発電電力演算部524は、カソードコンプレッサの回転速度及びトルクからカソードコンプレッサの消費電力を推定するとともに、冷却水ポンプの回転速度及びトルクから冷却水ポンプの消費電力を推定する。また、スタック発電電力演算部524は、冷却水ヒータに供給される電力の目標値から冷却水ヒータの消費電力を算出する。スタック発電電力演算部524は、カソードコンプレッサ、冷却水ポンプ及び冷却水ヒータの各消費電力を合算し、その合算値を補機12の消費電力として算出する。 The stack generated power calculation unit 524 estimates the power consumption of the cathode compressor from the rotation speed and torque of the cathode compressor, and estimates the power consumption of the cooling water pump from the rotation speed and torque of the cooling water pump. Further, the stack generated power calculation unit 524 calculates the power consumption of the coolant heater from the target value of the power supplied to the coolant heater. The stack generated power calculation unit 524 adds the power consumption of the cathode compressor, the cooling water pump, and the cooling water heater, and calculates the total value as the power consumption of the auxiliary machine 12.
 スタック発電電力演算部524は、補機12の消費電力を、加算部523から出力される発電要求電力に加算することにより、燃料電池スタック10に要求される発電電力を算出する。スタック発電電力演算部524は、その発電電力を減算部526に出力する。 The stack generated power calculation unit 524 calculates the generated power required for the fuel cell stack 10 by adding the power consumption of the auxiliary machine 12 to the required power generation output from the adder 523. Stack generated power calculation unit 524 outputs the generated power to subtraction unit 526.
 スタック出力電力演算部525は、電流センサ112で検出されるスタック電流と、電圧センサ122で検出されるスタック電圧とを乗算することにより、燃料電池スタック10から出力された出力電力を演算する。スタック発電電力演算部524は、その出力電力を減算部526に出力する。 The stack output power calculation unit 525 calculates the output power output from the fuel cell stack 10 by multiplying the stack current detected by the current sensor 112 and the stack voltage detected by the voltage sensor 122. Stack generated power calculation unit 524 outputs the output power to subtraction unit 526.
 減算部526は、スタック発電電力演算部524で演算された発電電力から、スタック出力電力演算部525で演算された出力電力を減算することにより、燃料電池スタック10の発電電力の偏差を算出する。減算部526は、その偏差をスタック目標電流演算部527に出力する。 The subtraction unit 526 calculates a deviation of the generated power of the fuel cell stack 10 by subtracting the output power calculated by the stack output power calculation unit 525 from the generated power calculated by the stack generated power calculation unit 524. The subtraction unit 526 outputs the deviation to the stack target current calculation unit 527.
 スタック目標電流演算部527は、燃料電池スタック10の発電電力の偏差に基づいて、燃料電池スタック10から取り出される目標電流を演算する。 The stack target current calculation unit 527 calculates a target current extracted from the fuel cell stack 10 based on the deviation of the generated power of the fuel cell stack 10.
 スタック目標電流演算部527は、発電電力の偏差がゼロとなるように目標電流を算出する。例えば、スタック目標電流演算部527は、発電電力の偏差がゼロよりも大きいときほど目標電流を大きくし、発電電力の偏差がゼロよりも小さいときほど目標電流を小さくする。このようにスタック目標電流演算部527は、目標電流をフィードバック制御する。 The stack target current calculation unit 527 calculates the target current so that the deviation of the generated power becomes zero. For example, the stack target current calculation unit 527 increases the target current as the deviation of the generated power is larger than zero, and decreases the target current as the deviation of the generated power is smaller than zero. In this way, the stack target current calculation unit 527 performs feedback control of the target current.
 そして、スタック目標電流演算部527は、燃料電池スタック10の電流制限値により目標電流を制限する。電流制限値は、燃料電池の劣化を防止するために定められた所定の値である。 The stack target current calculation unit 527 limits the target current based on the current limit value of the fuel cell stack 10. The current limit value is a predetermined value determined in order to prevent deterioration of the fuel cell.
 スタック目標電流演算部527は、制限した後の目標電流を直列電源電圧分配制御部530に出力する。具体的には、スタック目標電流演算部527は、目標電流が電流制限値よりも大きい場合には、電流制限値を目標電流として出力し、目標電流が電流制限値以下である場合には、目標電流を制限せずに出力する。 The stack target current calculation unit 527 outputs the limited target current to the series power supply voltage distribution control unit 530. Specifically, the stack target current calculation unit 527 outputs the current limit value as the target current when the target current is larger than the current limit value, and outputs the target current when the target current is equal to or less than the current limit value. Output without limiting the current.
 このように、スタック発電制御部520は、モータ要求トルクT*と二次電池情報とに基づいて、燃料電池スタック10から取り出される電流を制御する。 As described above, the stack power generation control unit 520 controls the current extracted from the fuel cell stack 10 based on the motor required torque T * and the secondary battery information.
 補機運転点設定部528は、燃料電池スタック10の目標電流に基づいて補機12の運転点を設定する。 The auxiliary machine operating point setting unit 528 sets the operating point of the auxiliary machine 12 based on the target current of the fuel cell stack 10.
 例えば、補機運転点設定部528は、目標電流を取得すると、予め定められたマップを参照し、その目標電流に対応付けられたカソードガスの目標流量及び目標圧力を演算する。そして、補機運転点設定部528は、カソードガスの目標電流及び目標圧力に基づいて、カソードガスの圧力を調整するカソード調圧弁の開度指令値とカソードコンプレッサのトルク指令値とを算出する。 For example, when the auxiliary machine operating point setting unit 528 acquires the target current, it refers to a predetermined map and calculates the target flow rate and the target pressure of the cathode gas associated with the target current. Then, the auxiliary machine operating point setting unit 528 calculates the opening command value of the cathode pressure regulating valve for adjusting the pressure of the cathode gas and the torque command value of the cathode compressor based on the target current and the target pressure of the cathode gas.
 同様に、補機運転点設定部528は、燃料電池スタック10の目標電流に基づいて、予め定められたマップを参照して冷却水の目標流量を演算し、その目標流量から冷却水ポンプのトルク指令値を算出する。補機運転点設定部528は、カソードコンプレッサや冷却水ポンプなどの補機12に対する指令値を制御装置13に出力する。制御装置13は、その指令値に従ってカソードコンプレッサの動作や冷却水ポンプの動作を制御する。 Similarly, the auxiliary machine operating point setting unit 528 calculates the target flow rate of the cooling water with reference to a predetermined map based on the target current of the fuel cell stack 10, and the torque of the cooling water pump from the target flow rate. Calculate the command value. The auxiliary machine operating point setting unit 528 outputs a command value for the auxiliary machine 12 such as a cathode compressor or a cooling water pump to the control device 13. The control device 13 controls the operation of the cathode compressor and the operation of the cooling water pump according to the command value.
 図4は、直列電源電圧分配制御部530の詳細構成の一例を示すブロック図である。 FIG. 4 is a block diagram illustrating an example of a detailed configuration of the series power supply voltage distribution control unit 530.
 直列電源電圧分配制御部530は、減算部531と、単電源分配係数演算部532と、分配係数上限値保持部533と、直列電源分配係数算出部534と、計測充放電電力演算部535と、減算部536と、放電許容閾値保持部537と、放電超過判定部538と、直列電源分配係数補正部539とを含む。 The series power supply voltage distribution control unit 530 includes a subtracting unit 531, a single power distribution coefficient calculating unit 532, a distribution coefficient upper limit holding unit 533, a series power distribution coefficient calculating unit 534, a measured charge / discharge power calculating unit 535, A subtracting unit 536, a discharge allowable threshold value holding unit 537, a discharge excess determination unit 538, and a series power distribution coefficient correction unit 539 are included.
 減算部531は、スタック目標電流演算部527で演算される目標電流から、電流センサ112で検出されるスタック電流を減算し、その減算した値を目標電流とスタック電流との偏差として単電源分配係数演算部532に出力する。 The subtracting unit 531 subtracts the stack current detected by the current sensor 112 from the target current calculated by the stack target current calculating unit 527, and uses the subtracted value as a deviation between the target current and the stack current. The result is output to the calculation unit 532.
 単電源分配係数演算部532は、減算部531から出力される偏差に基づいて、単電源である燃料電池スタック10の電圧分配係数γaを演算する。この電圧分配係数γaに基づいて、モータ制御部540は、燃料電池スタック10の電圧を用いて、各相の目標電圧のうちの一部の電圧(第1分配電圧)を生成する。 The single power distribution coefficient calculating unit 532 calculates the voltage distribution coefficient γ a of the fuel cell stack 10 that is a single power source based on the deviation output from the subtracting unit 531. Based on the voltage distribution coefficient γ a , the motor control unit 540 uses the voltage of the fuel cell stack 10 to generate a part of the target voltage of each phase (first distribution voltage).
 すなわち、単電源分配係数演算部532は、燃料電池スタック10に要求される電力に基づいて、モータ制御部540で制御される相電圧のうち、双方向変換部31及び接地電源接続部33で生成される第1分配電圧を制御する第1分配電圧制御部を構成する。 That is, the single power distribution coefficient calculation unit 532 is generated by the bidirectional conversion unit 31 and the ground power supply connection unit 33 among the phase voltages controlled by the motor control unit 540 based on the power required for the fuel cell stack 10. A first distribution voltage control unit configured to control the first distribution voltage to be generated.
 単電源分配係数演算部532は、目標電流とスタック電流との偏差に基づいて、燃料電池スタック10の電圧分配係数γaを算出する。例えば、単電源分配係数演算部532は、目標電流とスタック電流との偏差が大きくなるほど、燃料電池スタック10の電圧分配係数γaの増加速度を高くする。  The single power distribution coefficient calculation unit 532 calculates the voltage distribution coefficient γ a of the fuel cell stack 10 based on the deviation between the target current and the stack current. For example, the single power distribution coefficient calculation unit 532 increases the rate of increase of the voltage distribution coefficient γ a of the fuel cell stack 10 as the deviation between the target current and the stack current increases.
 すなわち、単電源分配係数演算部532は、電動モータ200に必要な電力及び充放電要求電力に基づいて演算された発電電力と、電流センサ112で検出される出力電力との偏差に応じて、燃料電池スタック10の電圧により生成される第1分配電圧を増減させる。 In other words, the single power distribution coefficient calculation unit 532 generates fuel according to the deviation between the power required for the electric motor 200 and the generated power calculated based on the charge / discharge required power and the output power detected by the current sensor 112. The first distribution voltage generated by the voltage of the battery stack 10 is increased or decreased.
 本実施形態では、単電源分配係数演算部532は、減算部531から出力される偏差がゼロに収束するように燃料電池スタック10の電圧分配係数γaをフィードバック制御する。例えば、単電源分配係数演算部532は、減算部531から出力される偏差がゼロよりも大きくなるほど、電圧分配係数γaの増加速度を高くする。一方、単電源分配係数演算部532は、減算部531から出力される偏差が小さくなるほど、電圧分配係数γaの増加速度を低くする。単電源分配係数演算部532は、燃料電池スタック10の電圧分配係数γaをモータ制御部540と直列電源分配係数算出部534とに出力する。 In the present embodiment, the single power distribution coefficient calculation unit 532 feedback-controls the voltage distribution coefficient γ a of the fuel cell stack 10 so that the deviation output from the subtraction unit 531 converges to zero. For example, the single power distribution coefficient calculating unit 532 increases the increase rate of the voltage distribution coefficient γ a as the deviation output from the subtracting unit 531 is larger than zero. On the other hand, the single power distribution coefficient calculation unit 532 decreases the increase rate of the voltage distribution coefficient γ a as the deviation output from the subtraction unit 531 decreases. The single power distribution coefficient calculation unit 532 outputs the voltage distribution coefficient γ a of the fuel cell stack 10 to the motor control unit 540 and the series power distribution coefficient calculation unit 534.
 分配係数上限値保持部533は、燃料電池スタック10の電圧分配係数γaと直列電源101の電圧分配係数γabとの合計値(γa+γab)を制限するための上限値として「1」を保持する。 The distribution coefficient upper limit holding unit 533 is “1” as an upper limit value for limiting the total value (γ a + γ ab ) of the voltage distribution coefficient γ a of the fuel cell stack 10 and the voltage distribution coefficient γ ab of the series power supply 101. Hold.
 直列電源分配係数算出部534は、分配係数上限値保持部533に保持された上限値から、燃料電池スタック10の電圧分配係数γaを減算し、その減算値(1-γa)を直列電源101の電圧分圧係数として、直列電源分配係数補正部539に出力する。 The series power distribution coefficient calculation unit 534 subtracts the voltage distribution coefficient γ a of the fuel cell stack 10 from the upper limit value held in the distribution coefficient upper limit value holding unit 533, and uses the subtraction value (1-γ a ) as the series power supply. The voltage division coefficient 101 is output to the series power distribution coefficient correction unit 539.
 計測充放電電力演算部535は、電流センサ111で検出された二次電池電流と、電圧センサ121で検出された二次電池電圧とを乗算することにより、二次電池20の計測充放電電力を演算する。すなわち、計測充放電電力演算部535は、二次電池20の放電電力を検出する放電検出部を構成する。 The measured charge / discharge power calculation unit 535 multiplies the secondary battery current detected by the current sensor 111 by the secondary battery voltage detected by the voltage sensor 121, thereby calculating the measured charge / discharge power of the secondary battery 20. Calculate. That is, the measured charge / discharge power calculation unit 535 constitutes a discharge detection unit that detects the discharge power of the secondary battery 20.
 計測充放電電力演算部535は、二次電池20に電力が充電されているときには、正(プラス)の計測充放電電力を減算部536に出力し、二次電池20から電力が放電されているときには、負(マイナス)の計測充放電電力を減算部536に出力する。 When the secondary battery 20 is charged with power, the measured charge / discharge power calculation unit 535 outputs positive (plus) measured charge / discharge power to the subtraction unit 536, and the power is discharged from the secondary battery 20. Sometimes, negative (minus) measured charge / discharge power is output to the subtractor 536.
 減算部536は、その計測充放電電力の符号を反転させ、その反転させた値から放電許容電力を減算することにより、二次電池20の放電超過量を算出する。放電許容電力は、制御装置21から取得されるパラメータであり、正(プラス)の値である。 The subtraction unit 536 calculates the excess discharge amount of the secondary battery 20 by inverting the sign of the measured charge / discharge power and subtracting the discharge allowable power from the inverted value. The discharge allowable power is a parameter acquired from the control device 21 and is a positive (plus) value.
 具体的には、減算部536は、放電時の電力がプラスとなるように計測充放電電力に「-1」を乗算し、その乗算した値から放電許容電力を減算する。これにより、計測放電電力が放電許容電力を超えたときには放電超過量がプラスになる。 Specifically, the subtraction unit 536 multiplies the measured charge / discharge power by “−1” so that the power at the time of discharge becomes positive, and subtracts the discharge allowable power from the multiplied value. As a result, when the measured discharge power exceeds the discharge allowable power, the excess discharge amount becomes positive.
 放電許容閾値保持部537は、過放電を判定するために設定される閾値として「0」を保持する。 The discharge allowable threshold holding unit 537 holds “0” as a threshold set for determining overdischarge.
 放電超過判定部538は、減算部536から出力される放電超過量が、放電許容閾値保持部537の閾値以下である場合には、二次電池20が劣化しないと判定し、ゼロ(0)を直列電源分配係数補正部539に出力する。一方、放電超過判定部538は、放電超過量が閾値よりも大きい場合には、二次電池20が劣化すると判定し、減算部536からの放電超過量を直列電源分配係数補正部539に出力する。 The excess discharge determination unit 538 determines that the secondary battery 20 does not deteriorate when the excess discharge amount output from the subtraction unit 536 is equal to or less than the threshold value of the discharge allowable threshold value holding unit 537, and sets zero (0). The data is output to the series power distribution coefficient correction unit 539. On the other hand, the excess discharge determination unit 538 determines that the secondary battery 20 is deteriorated when the excess discharge amount is larger than the threshold, and outputs the excess discharge amount from the subtraction unit 536 to the series power distribution coefficient correction unit 539. .
 直列電源分配係数補正部539は、放電超過判定部538から出力される放電超過量がゼロである場合には、直列電源分配係数算出部534からの出力値(1-γa)を直列電源101の電圧分配係数γabとしてモータ制御部540に出力する。 When the excess discharge amount output from the excess discharge determination unit 538 is zero, the series power supply distribution coefficient correction unit 539 uses the output value (1-γ a ) from the series power distribution coefficient calculation unit 534 as the series power supply 101. Is output to the motor control unit 540 as a voltage distribution coefficient γ ab .
 すなわち、直列電源分配係数補正部539は、燃料電池スタック10の電圧分配係数γaに基づいて、モータ制御部540で制御される相電圧のうち、直列電源接続部32及び接地電源接続部33により生成される第2分配電圧を制御する第2分配電圧制御部を構成する。 That is, the series power distribution coefficient correction unit 539 uses the series power supply connection unit 32 and the ground power supply connection unit 33 among the phase voltages controlled by the motor control unit 540 based on the voltage distribution coefficient γ a of the fuel cell stack 10. A second distribution voltage controller that controls the generated second distribution voltage is configured.
 一方、直列電源分配係数補正部539は、放電超過量がゼロよりも大きい場合には、直列電源分配係数算出部534からの出力値(1-γa)よりも直列電源101の電圧分配係数γabが小さくなるように補正する。 On the other hand, when the excess discharge amount is greater than zero, the series power distribution coefficient correction unit 539 determines the voltage distribution coefficient γ of the series power supply 101 more than the output value (1-γ a ) from the series power distribution coefficient calculation unit 534. Correct so that ab becomes smaller.
 例えば、直列電源分配係数補正部539は、放電超過量がゼロに収束するように直列電源101の電圧分配係数γabをフィードバック制御する。具体的には、直列電源分配係数補正部539は、放電超過量が大きくなるほど、直列電源101の電圧分配係数γabを出力値(1-γa)よりも小さくする。 For example, the series power distribution coefficient correction unit 539 performs feedback control on the voltage distribution coefficient γ ab of the series power supply 101 so that the excess discharge amount converges to zero. Specifically, the series power distribution coefficient correction unit 539 makes the voltage distribution coefficient γ ab of the series power supply 101 smaller than the output value (1−γ a ) as the discharge excess amount increases.
 すなわち、直列電源分配係数補正部539は、計測充放電電力演算部535により検出される放電電力が二次電池20の放電可能電力を超えないように、第2分配電圧を制御する。 That is, the series power supply distribution coefficient correction unit 539 controls the second distribution voltage so that the discharge power detected by the measured charge / discharge power calculation unit 535 does not exceed the dischargeable power of the secondary battery 20.
 このように、直列電源電圧分配制御部530は、スタック電流と目標電流との偏差に応じて、燃料電池スタック10の電圧分配係数γaを増減させる。これと共に直列電源電圧分配制御部530は、燃料電池スタック10の電圧分配係数γaと直列電源101の電圧分配係数γabとの和が「1」となるように、直列電源101の電圧分配係数γabを設定する。これにより、ドライバ要求に合わせて燃料電池スタック10と二次電池20とを効率よく利用することができる。 As described above, the series power supply voltage distribution control unit 530 increases or decreases the voltage distribution coefficient γ a of the fuel cell stack 10 in accordance with the deviation between the stack current and the target current. At the same time, the series power supply voltage distribution control unit 530 sets the voltage distribution coefficient of the series power supply 101 so that the sum of the voltage distribution coefficient γ a of the fuel cell stack 10 and the voltage distribution coefficient γ ab of the series power supply 101 becomes “1”. Set γ ab . Thereby, the fuel cell stack 10 and the secondary battery 20 can be efficiently used according to the driver request.
 そして二次電池20の計測放電電力の絶対値が、放電許容電力よりも大きくなった場合には、直列電源電圧分配制御部530は、その超過量に応じて直列電源101の電圧分配係数γabを小さくする。これにより、二次電池20から放電される電力が減少されるので、二次電池20の過放電に伴う過度な電圧低下を防止することができる。 When the absolute value of the measured discharge power of the secondary battery 20 becomes larger than the discharge allowable power, the series power supply voltage distribution control unit 530 determines the voltage distribution coefficient γ ab of the series power supply 101 according to the excess amount. Make it smaller. Thereby, since the electric power discharged from the secondary battery 20 is reduced, an excessive voltage drop due to the overdischarge of the secondary battery 20 can be prevented.
 図5は、モータ制御部540の詳細構成の一例を示すブロック図である。 FIG. 5 is a block diagram illustrating an example of a detailed configuration of the motor control unit 540.
 モータ制御部540は、モータ要求トルクT*に基づいて、燃料電池スタック10及び二次電池20の直流電圧を用いて電動モータ200に供給される電力をベクトル制御する。すなわち、モータ制御部540は、電動モータ200のロータ位置に応じてコイルに流す電流をフィードバック制御することにより、電動モータ200を精度良く駆動させる。 The motor control unit 540 vector-controls the electric power supplied to the electric motor 200 using the DC voltage of the fuel cell stack 10 and the secondary battery 20 based on the motor required torque T * . That is, the motor control unit 540 drives the electric motor 200 with high accuracy by performing feedback control of the current flowing through the coil in accordance with the rotor position of the electric motor 200.
 モータ制御部540は、目標電圧制御部540Aと、電圧分配演算部545と、変調率演算部546と、PWM生成部547と、UVW相/dq軸変換器548と、位相角・角速度演算部549とを含む。 The motor control unit 540 includes a target voltage control unit 540A, a voltage distribution calculation unit 545, a modulation factor calculation unit 546, a PWM generation unit 547, a UVW phase / dq axis converter 548, and a phase angle / angular velocity calculation unit 549. Including.
 目標電圧制御部540Aは、電動モータ200に要求されるトルクに基づいて、電動モータ200に供給される相電圧を制御する電圧制御部を構成する。目標電圧制御部540Aは、dq軸電流演算部541と、減算器5411及び5412と、dq軸電流制御器542と、加算器5421及び5422と、非干渉制御器543と、dq軸/UVW相変換器544とを含む。 The target voltage control unit 540A constitutes a voltage control unit that controls the phase voltage supplied to the electric motor 200 based on the torque required for the electric motor 200. The target voltage control unit 540A includes a dq axis current calculation unit 541, subtracters 5411 and 5412, a dq axis current controller 542, adders 5421 and 5422, a non-interference controller 543, and a dq axis / UVW phase conversion. Instrument 544.
 まず、フィードバック制御に用いられるUVW相/dq軸変換器548及び位相角・角速度演算部549について説明する。 First, the UVW phase / dq axis converter 548 and the phase angle / angular velocity calculation unit 549 used for feedback control will be described.
 位相角・角速度演算部549は、位置センサ61から出力される検出信号に基づいて、電動モータ200の電気位相角θe及び電気角速度ωeを演算する。 The phase angle / angular velocity calculator 549 calculates the electrical phase angle θ e and the electrical angular velocity ω e of the electric motor 200 based on the detection signal output from the position sensor 61.
 位相角・角速度演算部549は、演算した電気角速度ωeを、dq軸電流演算部541と非干渉制御器543とに出力するとともに、電気位相角θeを、dq軸/UVW相変換器544とUVW相/dq軸変換器548とに出力する。 The phase angle / angular velocity calculation unit 549 outputs the calculated electrical angular velocity ω e to the dq axis current calculation unit 541 and the non-interference controller 543, and the electrical phase angle θ e to the dq axis / UVW phase converter 544. And UVW phase / dq axis converter 548.
 UVW相/dq軸変換器548は、U相、V相及びW相の3軸座標の電流をd軸及びq軸の2軸座標の電流に変換する。UVW相/dq軸変換器548は、電流センサ131で検出されたU相計測電流iuと、電流センサ132で検出されたW相計測電流iwとを用いて、U相、V相及びW相の各電流の総和がゼロとなるようにW相電流を求める。 The UVW phase / dq-axis converter 548 converts the current of the U-axis, V-phase, and W-phase triaxial coordinates into the current of the d-axis and q-axis biaxial coordinates. The UVW phase / dq axis converter 548 uses the U phase measurement current i u detected by the current sensor 131 and the W phase measurement current i w detected by the current sensor 132 to use the U phase, the V phase, and the W phase. The W-phase current is obtained so that the sum of the currents of the phases becomes zero.
 そして、UVW相/dq軸変換器548は、電動モータ200の電気位相角ωeに基づいて、U相計測電流iu、V相電流、及びW相計測電流iwを、d軸計測電流id、及びq軸電流iqに変換する。UVW相/dq軸変換器548は、d軸計測電流idを減算器5411に出力し、q軸電流iqを減算器5412に出力する。 The UVW phase / dq axis converter 548 converts the U phase measurement current i u , the V phase current, and the W phase measurement current i w into the d axis measurement current i based on the electrical phase angle ω e of the electric motor 200. d and q-axis current i q . The UVW phase / dq axis converter 548 outputs the d axis measurement current i d to the subtractor 5411 and outputs the q axis current i q to the subtractor 5412.
 次にdq軸電流演算部541、減算器5411及び5412、dq軸電流制御器542、加算器5421及び5422、非干渉制御器543、dq軸/UVW相変換器544、電圧分配演算部545、変調率演算部546並びにPWM生成部547について説明する。 Next, dq-axis current calculation unit 541, subtracters 5411 and 5412, dq-axis current controller 542, adders 5421 and 5422, non-interference controller 543, dq-axis / UVW phase converter 544, voltage distribution calculation unit 545, modulation The rate calculation unit 546 and the PWM generation unit 547 will be described.
 dq軸電流演算部541は、モータ要求トルク演算部510で算出されたモータ要求トルクT*と、位相角・角速度演算部549で算出された電気角速度ωeとを用いて、d軸目標電流id *とq軸目標電流id *とを演算する。 The dq-axis current calculation unit 541 uses the motor request torque T * calculated by the motor request torque calculation unit 510 and the electrical angular velocity ω e calculated by the phase angle / angular velocity calculation unit 549 to use the d-axis target current i. d * and q-axis target current i d * are calculated.
 dq軸電流演算部541は、d軸目標電流id *を非干渉制御器543と減算器5411とに出力し、q軸目標電流id *を非干渉制御器543と減算器5412に出力する。 The dq-axis current calculation unit 541 outputs the d-axis target current i d * to the non-interference controller 543 and the subtractor 5411, and outputs the q-axis target current i d * to the non-interference controller 543 and the subtractor 5412. .
 減算器5411は、d軸目標電流id *からd軸計測電流idを減算することにより、d軸目標電流id *とd軸計測電流idとの偏差を算出する。減算器5411は、その偏差をdq軸電流制御器542に出力する。 Subtractor 5411 subtracts the d-axis measured current i d from the d-axis target current i d *, it calculates the deviation between the d-axis target current i d * and the d-axis measurement current i d. The subtractor 5411 outputs the deviation to the dq axis current controller 542.
 減算器5412は、q軸目標電流iq *からq軸計測電流iqを減算することにより、q軸目標電流iq *とq軸計測電流iqとの偏差を算出する。減算器5412は、その偏差をdq軸電流制御器542に出力する。 Subtractor 5412 subtracts the q-axis measured current i q from the q-axis target current i q *, and calculates the deviation between the q-axis target current i q * and the q-axis measurement current i q. The subtractor 5412 outputs the deviation to the dq axis current controller 542.
 dq軸電流制御器542は、d軸目標電流の偏差とq軸目標電流の偏差とが共にゼロに収束するように、d軸目標電圧とq軸目標電圧とをフィードバック制御する。 The dq-axis current controller 542 feedback-controls the d-axis target voltage and the q-axis target voltage so that both the deviation of the d-axis target current and the deviation of the q-axis target current converge to zero.
 非干渉制御器543は、d軸目標電流id *とq軸目標電流iq *と電動モータ200の電気角速度ωeとを用いて、d軸電流とq軸電流とが互いに干渉する成分を取り除くためのd軸電圧補正値とq軸電圧補正値とを演算する。非干渉制御器543は、d軸電圧補正値を加算器5421に出力し、q軸電圧補正値を加算器5422に出力する。 The non-interference controller 543 uses the d-axis target current i d * , the q-axis target current i q *, and the electrical angular velocity ω e of the electric motor 200 to generate a component that causes the d-axis current and the q-axis current to interfere with each other. A d-axis voltage correction value and a q-axis voltage correction value for removal are calculated. The non-interference controller 543 outputs the d-axis voltage correction value to the adder 5421 and outputs the q-axis voltage correction value to the adder 5422.
 加算器5421は、dq軸電流制御器542から出力されるd軸目標電圧に対してd軸電圧補正値を加算することにより、d軸電流とq軸電流との干渉成分が抑制される補正後のd軸目標電圧vdを算出する。加算器5421は、そのd軸目標電圧vdをdq軸/UVW相変換器544に出力する。 The adder 5421 adds the d-axis voltage correction value to the d-axis target voltage output from the dq-axis current controller 542, thereby correcting the interference component between the d-axis current and the q-axis current. D-axis target voltage v d is calculated. Adder 5421 outputs the d-axis target voltage v d to dq-axis / UVW phase converter 544.
 加算器5422は、dq軸電流制御器542から出力されるq軸目標電圧に対してq軸電圧補正値を加算することにより、d軸電流とq軸電流との干渉成分が抑制される補正後のq軸目標電圧vqを算出する。加算器5422は、そのq軸目標電圧vdをdq軸/UVW相変換器544に出力する。 The adder 5422 adds the q-axis voltage correction value to the q-axis target voltage output from the dq-axis current controller 542, thereby correcting the interference component between the d-axis current and the q-axis current. Q-axis target voltage v q is calculated. Adder 5422 outputs q-axis target voltage v d to dq-axis / UVW phase converter 544.
 dq軸/UVW相変換器544は、電動モータ200の電気位相角θeに基づいて、d軸目標電圧vd及びq軸目標電圧vqを、U相目標電圧vu、V相目標電圧vv、及びW相目標電圧vwに座標変換する。dq軸/UVW相変換器544は、U相目標電圧vu、V相目標電圧vv、及びW相目標電圧vwを電圧分配演算部545に出力する。 The dq axis / UVW phase converter 544 converts the d axis target voltage v d and the q axis target voltage v q into a U phase target voltage v u and a V phase target voltage v based on the electrical phase angle θ e of the electric motor 200. v, and to coordinate transformation to the W-phase target voltage v w. The dq axis / UVW phase converter 544 outputs the U-phase target voltage v u , the V-phase target voltage v v , and the W-phase target voltage v w to the voltage distribution calculation unit 545.
 電圧分配演算部545は、U相目標電圧vu、V相目標電圧vv、及びW相目標電圧vwの各相の目標電圧に割り当てられる各相の直列電源101及び燃料電池スタック10の電圧をそれぞれ演算する。 The voltage distribution calculation unit 545 is a voltage of each phase of the series power supply 101 and the fuel cell stack 10 assigned to the target voltage of each phase of the U-phase target voltage v u , the V-phase target voltage v v , and the W-phase target voltage v w. Are respectively calculated.
 本実施形態では、電圧分配演算部545は、直列電源電圧分配制御部530から直列電源101の電圧分配係数γabと、燃料電池スタック10の電圧分配係数γaとを取得する。 In the present embodiment, the voltage distribution calculation unit 545 acquires a series power supply voltage distribution control unit 530 and the voltage distribution coefficient gamma ab series power supply 101, the fuel cell stack 10 and a voltage distribution coefficient gamma a.
 そして、電圧分配演算部545は、燃料電池スタック10の電圧分配係数γaを各相の目標電圧に乗算することにより、燃料電池スタック10のU相目標分配電圧vua、V相目標分配電圧vva、及びW相目標分配電圧vwaを算出する。電圧分配演算部545は、これらの各相の目標分配電圧を変調率演算部546に出力する。 Then, the voltage distribution calculation unit 545 multiplies the target voltage of each phase by the voltage distribution coefficient γ a of the fuel cell stack 10 to thereby obtain the U-phase target distribution voltage v ua and V-phase target distribution voltage v of the fuel cell stack 10. va and the W-phase target distribution voltage v wa are calculated. The voltage distribution calculation unit 545 outputs the target distribution voltage of each phase to the modulation factor calculation unit 546.
 さらに、電圧分配演算部545は、直列電源101の電圧分配係数γabを各相の目標電圧に乗算することにより、直列電源101のU相目標分配電圧vuab、V相目標分配電圧vvab、及びW相目標分配電圧vwabを算出する。電圧分配演算部545は、これらの各相の目標分配電圧を変調率演算部546に出力する。 Further, the voltage distribution calculation unit 545 multiplies the target voltage of each phase by the voltage distribution coefficient γ ab of the series power supply 101 to thereby obtain a U-phase target distribution voltage v uab , a V-phase target distribution voltage v vab , And the W-phase target distribution voltage v wab is calculated. The voltage distribution calculation unit 545 outputs the target distribution voltage of each phase to the modulation factor calculation unit 546.
 変調率演算部546は、燃料電池スタック10及び直列電源101の各々について、電圧分配演算部545で算出された各相の目標分配電圧に基づき、直列電源変換装置300内の各トランジスタTrのスイッチング動作を決める変調率を各相ごとに演算する。 The modulation factor calculation unit 546 performs the switching operation of each transistor Tr in the series power converter 300 based on the target distribution voltage of each phase calculated by the voltage distribution calculation unit 545 for each of the fuel cell stack 10 and the series power supply 101. The modulation factor for determining the phase is calculated for each phase.
 本実施形態では、変調率演算部546は、燃料電池スタック10から電動モータ200のU相に供給される電力について、次式のとおり、スタック電圧VaとU相目標分配電圧vua *とを用いて、燃料電池スタック10の電圧についてのU相変調率muaを算出する。 In the present embodiment, the modulation factor calculating unit 546, the power supplied from the fuel cell stack 10 to the U-phase of the electric motor 200, as follows, and a stack voltage V a and the U-phase target distribution voltage v ua * The U-phase modulation factor m ua for the voltage of the fuel cell stack 10 is calculated.
Figure JPOXMLDOC01-appb-M000001
 ここで、式(3)中のスタック電圧Vaは、電圧センサ122により検出される。また、Offsetaは、次式のとおり、直列電源101の電圧分配係数γabと燃料電池スタック10の電圧分配係数γaとを用いて求められる。
Figure JPOXMLDOC01-appb-M000001
Here, stack voltage V a in the formula (3) is detected by a voltage sensor 122. Further, Offset a, as follows, obtained using a voltage distribution coefficient of the voltage distribution coefficient gamma ab and the fuel cell stack 10 of the series power supply 101 gamma a.
Figure JPOXMLDOC01-appb-M000002
 そして、変調率演算部546は、式(3)中のU相目標分配電圧vua *をV相目標電圧vva *に代えてV相変調率mvaを演算するとともに、式(3)中のU相目標分配電圧vua *をW相目標分配電圧vwa *に代えてW相変調率mwaを算出する。変調率演算部546は、算出したU相変調率mua、V相変調率mva及びW相変調率mwaをPWM生成部547に出力する。
Figure JPOXMLDOC01-appb-M000002
The modulation factor calculation unit 546 calculates the V-phase modulation factor m va by replacing the U-phase target distribution voltage v ua * in the equation (3) with the V-phase target voltage v va * and also in the equation (3). The W-phase modulation rate m wa is calculated by substituting the U-phase target distribution voltage v ua * for the W-phase target distribution voltage v wa * . The modulation factor calculator 546 outputs the calculated U-phase modulation factor m ua , V-phase modulation factor m va and W-phase modulation factor m wa to the PWM generator 547.
 また、変調率演算部546は、直列電源101から電動モータ200のU相に供給される電力について、次式のとおり、直列電源101の電圧Vabと直列電源101のU相目標分配電圧vuab *とを用いて、直列電源101についてのU相変調率muabを算出する。 Further, the modulation factor calculation unit 546 uses the voltage V ab of the series power supply 101 and the U-phase target distribution voltage v uab of the series power supply 101 for the power supplied from the series power supply 101 to the U phase of the electric motor 200 as follows. * by using the calculated U-phase modulation factor m uab of series power supply 101.
Figure JPOXMLDOC01-appb-M000003
 ここで、式(5)中の直列電源101の電圧Vabは、電圧センサ121で検出された二次電池電圧Vaと、電圧センサ122で検出されたスタック電圧Vbとを加算して求められる。また、Offsetabは、次式のとおり、直列電源101の電圧分配係数γabと、直列電源101の電圧分配係数γabとを用いて求められる。
Figure JPOXMLDOC01-appb-M000003
Here, the voltage V ab of the series power supply 101 in the equation (5) is obtained by adding the secondary battery voltage V a detected by the voltage sensor 121 and the stack voltage V b detected by the voltage sensor 122. It is done. Further, Offset ab, as follows, obtained using a voltage distribution coefficient gamma ab series power supply 101, a voltage distribution coefficient of the series power supply 101 gamma ab.
Figure JPOXMLDOC01-appb-M000004
 そして、変調率演算部546は、式(5)中のU相目標分配電圧vuab *をV相目標分配電圧vvab *に代えてV相変調率mvabを演算するとともに、式(3)中のU相目標分配電圧vuab *をW相目標分配電圧vwab *に代えてW相変調率mwabを演算する。そして変調率演算部546は、直列電源101の電圧VabについてのU相変調率muab、V相変調率mvab、W相変調率mwabをPWM生成部547に出力する。
Figure JPOXMLDOC01-appb-M000004
The modulation factor calculation unit 546 calculates the V-phase modulation factor m vab by replacing the U-phase target distribution voltage v uab * in the equation (5) with the V-phase target distribution voltage v vab * and also calculates the equation (3). The U phase target distribution voltage v uab * in the middle is replaced with the W phase target distribution voltage v wab * to calculate the W phase modulation factor m wab . Then, modulation factor calculation unit 546 outputs U-phase modulation factor m uab , V-phase modulation factor m vab , and W-phase modulation factor m wab for voltage V ab of series power supply 101 to PWM generation unit 547.
 PWM生成部547は、直列電源101の電圧についての各相の変調率muab、mvab及びmwabと、燃料電池スタック10の電圧についての各相の変調率mua、mva及びmwaとに基づいて、直列電源変換装置30を制御するためのPWM信号を生成する。そしてPWM生成部547は、その生成したPWM信号を直列電源変換装置30内の各トランジスタTrのゲート端子に供給する。 The PWM generation unit 547 includes modulation rates m uab , m vab and m wab for each phase regarding the voltage of the series power supply 101, and modulation rates m ua , m va and m wa for each phase regarding the voltage of the fuel cell stack 10. Based on the above, a PWM signal for controlling the series power converter 30 is generated. Then, the PWM generation unit 547 supplies the generated PWM signal to the gate terminal of each transistor Tr in the series power supply converter 30.
 次に、モータ制御部540で演算される各相の目標電圧及び目標分配電圧の演算結果、並びにモータ制御部540から出力されるPWM信号の生成手法について説明する。 Next, the calculation result of the target voltage and target distribution voltage of each phase calculated by the motor control unit 540 and the method of generating the PWM signal output from the motor control unit 540 will be described.
 図6Aは、dq軸/UVW相変換器544から出力されるU相目標電圧vuと、電圧分配演算部545から出力される燃料電池スタック10のU相目標分配電圧vua *及び直列電源101のU相目標分配電圧vuab *との一例を示す図である。 6A shows the U-phase target voltage v u output from the dq axis / UVW phase converter 544, the U-phase target distribution voltage v ua * of the fuel cell stack 10 output from the voltage distribution calculation unit 545, and the series power supply 101. It is a figure which shows an example with U phase target distribution voltage vuab * of .
 ここでは、燃料電池スタック10だけでなく二次電池20を用いて電動モータ200に電力を供給したときの演算結果が示されている。 Here, the calculation result when electric power is supplied to the electric motor 200 using not only the fuel cell stack 10 but also the secondary battery 20 is shown.
 燃料電池スタック10のU相目標分配電圧vua *は、図5で述べたとおり、電圧分配演算部545によって、U相目標電圧vuに燃料電池スタック10の電圧分配係数γaが乗算されて得られる値である。なお、燃料電池スタック10のU相目標分配電圧vua *は、第1分配電圧に相当する。 The U-phase target distribution voltage v ua * of the fuel cell stack 10 is obtained by multiplying the U-phase target voltage v u by the voltage distribution coefficient γ a of the fuel cell stack 10 by the voltage distribution calculation unit 545 as described in FIG. This is the value obtained. The U-phase target distribution voltage v ua * of the fuel cell stack 10 corresponds to the first distribution voltage.
 直列電源101のU相目標分配電圧vuab *は、図5で述べたとおり、電圧分配演算部545によって、U相目標電圧vuに直列電源101の電圧分配係数γabが乗算されて得られる値である。なお、直列電源101のU相目標分配電圧vuab *は、第2分配電圧に相当する。 The U-phase target distribution voltage v uab * of the series power supply 101 is obtained by multiplying the U-phase target voltage v u by the voltage distribution coefficient γ ab of the series power supply 101 by the voltage distribution calculation unit 545 as described in FIG. Value. Note that the U-phase target distribution voltage v uab * of the series power supply 101 corresponds to the second distribution voltage.
 図6Aに示すように、U相目標電圧vuは、電圧分配演算部545によって、燃料電池スタック10のU相目標分配電圧vua *と直列電源101のU相目標分配電圧vuab *とに分配される。 As shown in FIG. 6A, the U-phase target voltage v u is converted into a U-phase target distribution voltage v ua * of the fuel cell stack 10 and a U-phase target distribution voltage v uab * of the series power supply 101 by the voltage distribution calculation unit 545. Distributed.
 このように、二次電池20が放電できるときには、直列電源電圧分配制御部530によって直列電源101の電圧分配係数γabが正の値に設定されるので、直列電源101のU相目標分配電圧vuabの位相はU相目標電圧vuと同じになる。 As described above, when the secondary battery 20 can be discharged, the voltage distribution coefficient γ ab of the series power supply 101 is set to a positive value by the series power supply voltage distribution control unit 530. Therefore, the U-phase target distribution voltage v of the series power supply 101 is set. The phase of uab is the same as the U-phase target voltage v u .
 図6Bは、二次電池20に電力を充電するときの燃料電池スタック10のU相目標分配電圧vuaと直列電源101のU相目標分配電圧vuab *との一例を示す図である。なお、U相目標電圧vuは、図6Aに示した波形と同じである。 FIG. 6B is a diagram illustrating an example of the U-phase target distribution voltage v ua of the fuel cell stack 10 and the U-phase target distribution voltage v uab * of the series power supply 101 when the secondary battery 20 is charged with electric power. The U-phase target voltage v u is the same as the waveform shown in FIG. 6A.
 図6Bに示すように、燃料電池スタック10のU相目標分配電圧vua *については目標電圧vuよりも振幅が大きく、かつ、直列電源101のU相目標分配電圧vuab *についてはU相目標電圧vuに対して位相が180度ずれている。 As shown in FIG. 6B, the U-phase target distribution voltage v ua * of the fuel cell stack 10 has a larger amplitude than the target voltage v u , and the U-phase target distribution voltage v uab * of the series power supply 101 is U-phase. The phase is shifted by 180 degrees with respect to the target voltage v u .
 このように二次電池20を充電するときには、直列電源電圧分配制御部530によって直列電源101の電圧分配係数γabが負の値に設定されるので、直列電源101のU相目標分配電圧vuabの位相はU相目標電圧vuの位相に対して反転する。 When charging the secondary battery 20 in this way, the voltage distribution coefficient γ ab of the series power supply 101 is set to a negative value by the series power supply voltage distribution control unit 530. Therefore, the U-phase target distribution voltage v uab of the series power supply 101 is set. Is inverted with respect to the phase of the U-phase target voltage v u .
 そして、直列電源101の電圧分配係数γabをゼロよりも下げた分だけ、燃料電池スタック10のU相目標分配電圧vua *が増やされるので、U相目標分配電圧vua *の振幅は、U相目標電圧vuよりも大きくなる。 Then, an amount corresponding to a voltage distribution coefficient gamma ab series power supply 101 is lowered than zero, since the U-phase target distribution voltage of the fuel cell stack 10 v ua * is increased, the amplitude of the U-phase target distribution voltage v ua * is It becomes larger than the U-phase target voltage v u .
 なお、図6A及び図6BではU相目標分配電圧vua *及びvuab *についてのみ説明したが、V相目標分配電圧vva *及びvvab *については、U相目標分配電圧vua *及びvuab *に対して振幅が同じで位相が120度シフトした波形となる。また、W相目標分配電圧vwa *及びvwab *については、U相目標分配電圧vua *及びvuab *に対して振幅が同じで位相が240度シフトした波形となる。 6A and 6B, only the U-phase target distribution voltages v ua * and v uab * have been described. However, the V-phase target distribution voltages v va * and v vab * have the U-phase target distribution voltages v ua * and The waveform has the same amplitude with respect to v uab * and a phase shifted by 120 degrees. The W-phase target distribution voltages v wa * and v wab * have the same amplitude and a phase shifted by 240 degrees with respect to the U-phase target distribution voltages v ua * and v uab * .
 図7は、変調率演算部546で算出された燃料電池スタック10のU相変調率mua及び直列電源101のU相変調率muabの一例を示す図である。 Figure 7 is a diagram showing an example of a U-phase modulation factor m uab the U-phase modulation index m ua and series power supply 101 of the fuel cell stack 10 calculated by modulation factor calculating unit 546.
 燃料電池スタック10の電圧についてのU相変調率muaは、図5で述べたとおり、変調率演算部546によって、式(3)に示した演算処理が行われて得られる値である。また、U相変調率muaのOffsetaは、式(4)に示した演算処理が行われて得られる値である。 The U-phase modulation factor mua for the voltage of the fuel cell stack 10 is a value obtained by performing the calculation process shown in Expression (3) by the modulation factor calculation unit 546, as described in FIG. Further, Offset a of the U-phase modulation factor mu is a value obtained by performing the arithmetic processing shown in the equation (4).
 直列電源101の電圧についてのU相変調率muabは、図5で述べたとおり、変調率演算部546によって、式(5)に示した演算処理が行われて得られる値である。また、U相変調率muabのOffsetabは、式(6)に示した演算処理が行われて得られる値である。 The U-phase modulation factor m uab for the voltage of the series power supply 101 is a value obtained by performing the calculation process shown in Expression (5) by the modulation factor calculation unit 546, as described in FIG. Further , Offset ab of the U-phase modulation factor muab is a value obtained by performing the arithmetic processing shown in Expression (6).
 また、図7には、PWM信号を生成するために用いられる2つの三角波が実線と破線とにより示されている。なお、PWM生成部547には、三角波を生成する信号発生回路と、三角波と変調率とを比較する比較器とが備えられている。 Further, in FIG. 7, two triangular waves used for generating the PWM signal are indicated by a solid line and a broken line. Note that the PWM generation unit 547 includes a signal generation circuit that generates a triangular wave and a comparator that compares the triangular wave with a modulation rate.
 実線で示された三角波は、スイッチング回路1u、1v及び1wの各トランジスタTrに供給されるPWM信号を生成するための搬送波である。ここでは、実線で示された三角波は、燃料電池スタック10のU相変調率muaに基づいてパルス変調される。 A triangular wave indicated by a solid line is a carrier wave for generating a PWM signal supplied to each transistor Tr of the switching circuits 1u, 1v, and 1w. Here, the triangular wave indicated by the solid line is pulse-modulated based on the U-phase modulation factor m ua of the fuel cell stack 10.
 具体的には、燃料電池スタック10のU相変調率muaが実線の三角波よりも低いときには、スイッチング回路1uのトランジスタTrがオンになり、U相変調率muaが実線の三角波よりも高いときには、スイッチング回路1uのトランジスタTrがオフになる。 Specifically, when the U-phase modulation factor m ua of the fuel cell stack 10 is lower than the solid triangular wave, the transistor Tr of the switching circuit 1 u is turned on, and when the U-phase modulation factor m ua is higher than the solid triangular wave. The transistor Tr of the switching circuit 1u is turned off.
 破線で示された三角波は、スイッチング回路2u、2v及び2wの各トランジスタTrのゲート端子に供給されるPWM信号を生成するための搬送波である。ここでは、破線で示された三角波は、直列電源101のU相変調率muabによってパルス変調される。 A triangular wave indicated by a broken line is a carrier wave for generating a PWM signal supplied to the gate terminal of each transistor Tr of the switching circuits 2u, 2v and 2w. Here, the triangular wave indicated by the broken line is pulse-modulated by the U-phase modulation factor m uab of the series power supply 101.
 具体的には、直列電源101のU相変調率muabが破線の三角波よりも低いときには、スイッチング回路2uのトランジスタTrがオンになり、U相変調率muabが破線の三角波よりも高いときには、スイッチング回路2uのトランジスタTrがオフになる。 Specifically, when the U-phase modulation factor m uab of the series power supply 101 is lower than the dotted triangular wave, the transistor Tr of the switching circuit 2 u is turned on, and when the U-phase modulation factor m uab is higher than the broken triangular wave, The transistor Tr of the switching circuit 2u is turned off.
 図7に示すように、U相変調率muabのOffsetabとU相変調率muaのOffsetaとは、式(4)及び式(6)に示したとおり、両者を加算したときに「1.0」となるように設定される。 As shown in FIG. 7, when the Offset ab and U-phase modulation factor m ua of Offset a U-phase modulation factor m uab, as shown in equation (4) and (6), obtained by adding both " 1.0 ".
 仮に、U相変調率muabとU相変調率muaとを加算した値が「+1」を超えないように、OffsetabとOffsetaとを共に「-0.5」に固定してしまうと、直列電源101の全電力に対して50%の電力しか使用できなくなる。 If both Offset ab and Offset a are fixed to “−0.5” so that the value obtained by adding the U-phase modulation factor m uab and the U-phase modulation factor m ua does not exceed “+1”. Only 50% of the total power of the series power supply 101 can be used.
 このため、式(4)及び式(6)を用いることにより、直列電源101の状態に応じてOffseta及びOffsetabが足して「+1」となるように変更される。これにより、直列電源101の出力電力を電動モータ200の要求に合わせて100%まで使用することが可能になる。 For this reason, by using the equations (4) and (6), the offset a and the offset ab are changed to “+1” according to the state of the series power supply 101. As a result, the output power of the series power supply 101 can be used up to 100% according to the requirements of the electric motor 200.
 図8は、PWM生成部547においてPWM信号を生成する手法を示す図である。ここでは、理解を容易にするために、燃料電池スタック10のU相変動率muaと直列電源101のU相変動率muabとを一定としたときのPWM信号が示されている。 FIG. 8 is a diagram illustrating a method for generating a PWM signal in the PWM generation unit 547. Here, for ease of understanding, PWM signal when the U-phase variation rate m ua series power supply 101 of the fuel cell stack 10 and a U-phase fluctuation rate m uab constant is shown.
 図8(a)は、図7に示した2つの三角波と、燃料電池スタック10のU相変動率muaと、直列電源101のU相変動率muabとを示す図である。 8 (a) is a diagram showing the two triangular wave shown in FIG. 7, the U-phase fluctuation rate m ua of the fuel cell stack 10, the series power supply 101 and a U-phase fluctuation rate m uab.
 図8(b)は、スイッチング回路1uのトランジスタTrのゲート端子に供給されるPWM信号を示す図である。図8(c)は、スイッチング回路2uのトランジスタTrのゲート端子に供給されるPWM信号を示す図である。 FIG. 8B shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 1u. FIG. 8C shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 2u.
 図8(d)は、スイッチング回路4uのトランジスタTrのゲート端子に供給されるPWM信号を示す図である。図8(e)は、スイッチング回路3uのトランジスタTrのゲート端子に供給されるPWM信号を示す図である。 FIG. 8D is a diagram showing a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 4u. FIG. 8E shows a PWM signal supplied to the gate terminal of the transistor Tr of the switching circuit 3u.
 図8(a)から図8(e)までの各図面の横軸は互いに共通の時間軸である。なお、トランジスタTrのゲート端子にL(Low)レベルのPWM信号が供給されると、トランジスタTrが導通状態(ON)になり、トランジスタTrのゲート端子にH(High)レベルのPWM信号が供給されると、トランジスタTrが非導通状態(OFF)になる。 8A to 8E, the horizontal axis of each drawing is a common time axis. Note that when an L (Low) level PWM signal is supplied to the gate terminal of the transistor Tr, the transistor Tr is turned on (ON), and an H (High) level PWM signal is supplied to the gate terminal of the transistor Tr. Then, the transistor Tr is turned off (OFF).
 時刻t0よりも前では、図8(a)に示すように、実線の三角波が燃料電池スタック10のU相変動率muaよりも大きいため、図8(b)に示すように、スイッチング回路1uのPWM信号はLレベルに設定されている。また、図8(a)に示すように、破線の三角波が直列電源101のU相変動率muabよりも小さいため、図8(c)に示すように、スイッチング回路2uのPWM信号はHレベルに設定されている。 Prior to time t0, as shown in FIG. 8 (a), the solid triangular wave is larger than the U-phase fluctuation rate mua of the fuel cell stack 10, so that as shown in FIG. 8 (b), the switching circuit 1u The PWM signal is set to L level. Further, as shown in FIG. 8 (a), since the broken-line triangular wave is smaller than the U-phase fluctuation rate muab of the series power supply 101, the PWM signal of the switching circuit 2u is at the H level as shown in FIG. 8 (c). Is set to
 時刻t0を経過すると、図8(a)に示すように、破線の三角波が直列電源101のU相変動率muabよりも大きくなる。このため、図8(c)に示すように、スイッチング回路2uのPWM信号がLレベルからHレベルに切り替えられる。 When the time t0 has elapsed, the broken-line triangular wave becomes larger than the U-phase variation rate muab of the series power supply 101 as shown in FIG. For this reason, as shown in FIG. 8C, the PWM signal of the switching circuit 2u is switched from the L level to the H level.
 このとき、図8(d)に示すように、スイッチング回路4uのPWM信号がLレベルからHレベルに切り替えられる。これと共に、図8(b)及び図8(c)に示すように、スイッチング回路1uのPWM信号とスイッチング回路2uのPWM信号とが共にLレベルになるため、図8(e)に示すように、スイッチング回路3uのPWM信号がLレベルからHレベルに切り替えられる。 At this time, as shown in FIG. 8 (d), the PWM signal of the switching circuit 4u is switched from the L level to the H level. At the same time, as shown in FIGS. 8B and 8C, the PWM signal of the switching circuit 1u and the PWM signal of the switching circuit 2u are both at the L level, as shown in FIG. 8E. The PWM signal of the switching circuit 3u is switched from the L level to the H level.
 時刻t1を経過すると、図8(b)に示すように、実線の三角波がU相変動率muaよりも小さくなるため、図8(b)に示すように、スイッチング回路1uのPWM信号がLレベルからHレベルに切り替えられる。 When the elapsed time t1, as shown in FIG. 8 (b), since the solid line of the triangular wave is smaller than the U-phase fluctuation rate m ua, as shown in FIG. 8 (b), PWM signal of the switching circuit 1u is L Switch from level to H level.
 また、接地線への短絡を防止するために、スイッチング回路1uのPWM信号とスイッチング回路2uのPWM信号との少なくとも一方がHレベルになったときには、スイッチング回路3uのPWM信号がHレベルからLレベルに切り替えられる。すなわち、次式のとおり、スイッチング回路1uのトランジスタTrとスイッチング回路2uのトランジスタTrとの少なくとも一方がONのときには、スイッチング回路3uのトランジスタTrがOFFに設定される。 In order to prevent a short circuit to the ground line, when at least one of the PWM signal of the switching circuit 1u and the PWM signal of the switching circuit 2u becomes H level, the PWM signal of the switching circuit 3u changes from H level to L level. Can be switched to. That is, as shown in the following equation, when at least one of the transistor Tr of the switching circuit 1u and the transistor Tr of the switching circuit 2u is ON, the transistor Tr of the switching circuit 3u is set OFF.
Figure JPOXMLDOC01-appb-M000005
 ここで、Tr1uは、スイッチング回路1uのトランジスタTrのON状態を示し、Tr2uは、スイッチング回路2uのトランジスタTrのON状態を示し、Tr3uは、スイッチング回路3uのトランジスタTrのON状態を示す。
Figure JPOXMLDOC01-appb-M000005
Here, Tr 1u indicates the ON state of the transistor Tr in the switching circuit 1u, Tr 2u indicates the ON state of the transistor Tr in the switching circuit 2u, and Tr 3u indicates the ON state of the transistor Tr in the switching circuit 3u. .
 このため、時刻t1を経過すると、スイッチング回路1uのPWM信号がHレベルに切り替えられるため、図8(e)に示すように、スイッチング回路3uのPWM信号がHレベルからLレベルに切り替えられる。 Therefore, when the time t1 elapses, the PWM signal of the switching circuit 1u is switched to the H level, so that the PWM signal of the switching circuit 3u is switched from the H level to the L level as shown in FIG. 8 (e).
 時刻t2を経過すると、図8(a)に示すように、実線の三角波がU相変動率muaよりも大きくなるため、図8(b)に示すように、スイッチング回路1uのPWM信号はHレベルからLレベルに切り替えられる。これに伴い、スイッチング回路1u及びスイッチング回路2uが共にOFFになるため、式(7)に従って、図8(e)に示すように、スイッチング回路3uのPWM信号がHレベルに切り替えられる。 When the time t2 elapses, the solid-line triangular wave becomes larger than the U-phase fluctuation rate mua as shown in FIG. 8A, so that the PWM signal of the switching circuit 1u is H as shown in FIG. Switch from level to L level. As a result, both the switching circuit 1u and the switching circuit 2u are turned off, and the PWM signal of the switching circuit 3u is switched to the H level as shown in FIG.
 時刻t3を経過すると、破線の三角波がU相変動率muabよりも小さくなるため、図8(c)に示すように、スイッチング回路2uのPWM信号がHレベルに切り替えられる。このとき、二次電池20の正極と負極の短絡を防止するために、次式にとおり、スイッチング回路2uのトランジスタTrがONのときには、スイッチング回路4uのトランジスタTrがOFFに設定される。 When the time t3 has elapsed, the broken-line triangular wave becomes smaller than the U-phase variation rate muab , so that the PWM signal of the switching circuit 2u is switched to the H level as shown in FIG. At this time, in order to prevent a short circuit between the positive electrode and the negative electrode of the secondary battery 20, when the transistor Tr of the switching circuit 2u is ON as shown in the following equation, the transistor Tr of the switching circuit 4u is set OFF.
Figure JPOXMLDOC01-appb-M000006
 ここで、Tr4uは、スイッチング回路4uのトランジスタTrのON状態を示し、Tr2uは、スイッチング回路2uのトランジスタTrのON状態を示す。
Figure JPOXMLDOC01-appb-M000006
Here, Tr 4u indicates the ON state of the transistor Tr of the switching circuit 4u, and Tr 2u indicates the ON state of the transistor Tr of the switching circuit 2u.
 さらに、スイッチング回路2uのPWM信号がHレベルに切り替えられたことにより、式(7)に従って、図8(e)に示すように、スイッチング回路3uのPWM信号がLレベルに切り替えられる。 Further, as the PWM signal of the switching circuit 2u is switched to the H level, the PWM signal of the switching circuit 3u is switched to the L level as shown in FIG. 8 (e) according to the equation (7).
 時刻t4を経過すると、破線の三角波がU相変動率muabよりも大きくなるため、図8(c)に示すように、スイッチング回路2uのPWM信号がLレベルに切り替えられる。これに伴い、式(7)に従って、図8(e)に示すように、スイッチング回路3uのPWM信号がHレベルに切り替えられる。 When the time t4 has elapsed, the triangular wave of the broken line becomes larger than the U-phase fluctuation rate muab , so that the PWM signal of the switching circuit 2u is switched to the L level as shown in FIG. 8C. Along with this, as shown in FIG. 8E, the PWM signal of the switching circuit 3u is switched to the H level according to the equation (7).
 時刻t5を経過すると、実線の三角波がU相変動率muaよりも小さくなるため、図8(b)に示すように、スイッチング回路1uのPWM信号はHレベルに切り替えられる。これに伴い、式(7)に従って、図8(e)に示すように、スイッチング回路3uのPWM信号がHレベルからLレベルに切り替えられる。 When the elapsed time t5, the solid line of the triangular wave is to become smaller than the U-phase fluctuation rate m ua, as shown in FIG. 8 (b), PWM signal of the switching circuit 1u is switched to H level. Along with this, as shown in FIG. 8E, the PWM signal of the switching circuit 3u is switched from the H level to the L level according to the equation (7).
 時刻t6を経過すると、実線の三角波がU相変動率muaよりも大きくなるため、図8(b)に示すように、スイッチング回路1uのPWM信号はHレベルからLレベルに切り替えられる。これに伴い、式(7)に従って、図8(e)に示すように、スイッチング回路3uのPWM信号がLレベルからHレベルに切り替えられる。 When the elapsed time t6, since the solid line of the triangular wave is larger than the U-phase fluctuation rate m ua, as shown in FIG. 8 (b), PWM signal of the switching circuit 1u is switched from H level to L level. Accordingly, the PWM signal of the switching circuit 3u is switched from the L level to the H level as shown in FIG.
 このように、PWM生成部547は、実線の搬送波とU相変動率muaと比較してスイッチング回路1uのPWM信号を生成し、破線の搬送波とU相変動率muaと比較してスイッチング回路2uのPWM信号を生成する。 Thus, PWM generator 547 generates a PWM signal of the switching circuit 1u compared to solid carrier and the U-phase fluctuation rate m ua, the switching circuit compared with the broken line of the carrier and the U-phase fluctuation rate m ua A 2u PWM signal is generated.
 そして、PWM生成部547は、式(8)に従って、スイッチング回路2uのPWM信号を反転させてスイッチング回路4uのPWM信号を生成し、式(7)に従ってスイッチング回路3uのPWM信号を生成する。 The PWM generation unit 547 inverts the PWM signal of the switching circuit 2u according to the equation (8) to generate the PWM signal of the switching circuit 4u, and generates the PWM signal of the switching circuit 3u according to the equation (7).
 なお、図8では、電動モータ200のU相に関するPWM信号の生成手法についてのみ説明したが、PWM生成部547ではV相、及びW相についても同様にPWM信号が生成される。 Although only the method for generating the PWM signal related to the U phase of the electric motor 200 has been described with reference to FIG. 8, the PWM generation unit 547 similarly generates PWM signals for the V phase and the W phase.
 図9Aは、本実施形態における車両を加速するときの直列電源変換装置30の動作を示す図である。 FIG. 9A is a diagram illustrating the operation of the series power converter 30 when accelerating the vehicle in the present embodiment.
 図9Aに示すように、車両を加速したときには、二次電池20の放電許容電力を上限とし、直列電源変換装置30によって、直列電源101から出力される電力、つまり二次電池20の電力が電動モータ200に放電される。このとき、直列電源変換装置30は、直列電源101のインバータとして機能している。 As shown in FIG. 9A, when the vehicle is accelerated, the discharge allowable power of the secondary battery 20 is set as the upper limit, and the power output from the series power supply 101, that is, the power of the secondary battery 20 is electrically driven by the series power converter 30. The motor 200 is discharged. At this time, the series power supply conversion device 30 functions as an inverter of the series power supply 101.
 さらに、電動モータ200の要求電力から二次電池20の放電電力を減算した残りの電力が、直列電源変換装置30によって、燃料電池スタック10から第2電源端子312を介して電動モータ200へ直接出力される。このとき、直列電源変換装置30は、燃料電池スタック10のインバータとして機能している。 Further, the remaining power obtained by subtracting the discharge power of the secondary battery 20 from the required power of the electric motor 200 is directly output from the fuel cell stack 10 to the electric motor 200 via the second power supply terminal 312 by the series power converter 30. Is done. At this time, the series power converter 30 functions as an inverter of the fuel cell stack 10.
 このため、燃料電池スタック10を第1電源端子311に接続し、二次電池20を第2電源端子312に接続した場合に比べて、電動モータ200の電流を燃料電池スタック10の負極端子に戻すという無駄なスイッチング制御が必要なくなる。 Therefore, the current of the electric motor 200 is returned to the negative electrode terminal of the fuel cell stack 10 as compared with the case where the fuel cell stack 10 is connected to the first power supply terminal 311 and the secondary battery 20 is connected to the second power supply terminal 312. This eliminates the need for unnecessary switching control.
 したがって、ドライバの要求によって電動モータ200の要求電力が上昇したときには、直列電源変換装置30での無駄なスイッチング制御を実行せずに、電動モータ200の大きな誘起電力に負けない電圧が電動モータ200に供給される。このため、電動モータ200の加速時において直列電源変換装置30での無駄な処理を削減しつつ、加速に必要となるモータ要求トルクを実現することが可能になる。 Therefore, when the required power of the electric motor 200 is increased due to the driver's request, a voltage that is not defeated by the large induced power of the electric motor 200 is generated in the electric motor 200 without performing useless switching control in the series power converter 30. Supplied. For this reason, it is possible to realize the required motor torque required for acceleration while reducing unnecessary processing in the series power converter 30 when the electric motor 200 is accelerated.
 図9Bは、加速を終了するときの直列電源変換装置30の動作を示す図である。 FIG. 9B is a diagram illustrating the operation of the series power converter 30 when the acceleration is finished.
 図9Bに示すように、ドライバの要求によって加速が終了するときには、モータ要求トルクが下がるため、電動モータ200の誘起電圧が低下する。 As shown in FIG. 9B, when the acceleration is terminated by the driver's request, the motor required torque is decreased, and the induced voltage of the electric motor 200 is decreased.
 このときには、燃料電池スタック10の過渡的な発電不足は解消しているため、直列電源変換装置30によって、燃料電池スタック10のみで電動モータ200に電力が供給される。すなわち、直列電源変換装置30は、燃料電池スタック10のインバータとして機能している。 At this time, since the transient shortage of power generation in the fuel cell stack 10 has been resolved, the electric power is supplied to the electric motor 200 only by the fuel cell stack 10 by the series power converter 30. That is, the series power converter 30 functions as an inverter of the fuel cell stack 10.
 仮に、燃料電池スタック10から電動モータ200の要求電力よりも大きな電力が出力されるときには、直列電源変換装置30によって、余剰の電力が二次電池20へ充電される。 Temporarily, when electric power larger than the required electric power of the electric motor 200 is output from the fuel cell stack 10, surplus electric power is charged into the secondary battery 20 by the series power supply conversion device 30.
 本発明の本実施形態によれば、電力供給システム100は、直列電源101のうち少なくとも一方の単電源を選択して負荷に交流電力を供給する。この電力供給システム100は、電力を充電又は放電する二次電池20と、二次電池20の負極端子20Bに対して直列に接続される燃料電池スタック10と、直列電源101のうち少なくとも一方から出力される電力を交流電力に変換する直列電源変換装置30を含む。 According to this embodiment of the present invention, the power supply system 100 selects at least one single power supply from the series power supplies 101 and supplies AC power to the load. The power supply system 100 outputs power from at least one of a secondary battery 20 that charges or discharges power, a fuel cell stack 10 that is connected in series to a negative electrode terminal 20B of the secondary battery 20, and a series power supply 101. It includes a series power converter 30 that converts the generated power into AC power.
 この電力供給システム100では、二次電池20の正極端子20Aが、直列電源101の正極端子として直列電源変換装置30の第1電源端子311に接続される。そして燃料電池スタック10の正極端子10Aが、直列電源101の正極端子と負極端子との間の直列電源変換装置30の第2電源端子312に対して二次電池20の負極端子20Bとともに接続される。 In this power supply system 100, the positive terminal 20A of the secondary battery 20 is connected to the first power terminal 311 of the series power converter 30 as the positive terminal of the series power supply 101. The positive terminal 10A of the fuel cell stack 10 is connected to the second power terminal 312 of the series power converter 30 between the positive terminal and the negative terminal of the series power supply 101 together with the negative terminal 20B of the secondary battery 20. .
 これにより、電動モータ200の要求電力が増加するときに、直列電源変換装置30は、電動モータ200内の電流を直列電源101に戻すという無駄な処理を実行せずに、直列電源101から電動モータ200に電力を供給することができる。 As a result, when the required power of the electric motor 200 increases, the series power supply conversion device 30 does not perform a useless process of returning the current in the electric motor 200 to the series power supply 101, and the electric power from the series power supply 101. 200 can be powered.
 したがって、簡易な構成により、直列電源変換装置30で行われる無駄な処理を削減することができる。 Therefore, it is possible to reduce useless processing performed by the series power converter 30 with a simple configuration.
 また本実施形態では、直列電源変換装置30は、電動モータ200の要求電力が増加するときには、直列電源101から第1電源端子311に供給される電力と、燃料電池スタック10から第2電源端子312に供給される電力とを用いて交流電力を生成する。具体的には、この交流電力は、直列電源101の電圧と燃料電池スタック10の電圧とをモータ要求トルクに応じて切り替えることにより生成される。 In this embodiment, when the required power of the electric motor 200 increases, the series power conversion device 30 and the power supplied from the series power supply 101 to the first power supply terminal 311 and the fuel cell stack 10 to the second power supply terminal 312 are used. AC power is generated using the power supplied to. Specifically, the AC power is generated by switching the voltage of the series power supply 101 and the voltage of the fuel cell stack 10 according to the motor required torque.
 これにより、車両の加速時には、二次電池20から放電できない分の電力が、燃料電池スタック10から電動モータ200に供給されるので、電流を戻す処理を削減しつつ、電動モータ200の誘起電圧に負けない電圧を確保することができる。 As a result, when the vehicle is accelerated, power that cannot be discharged from the secondary battery 20 is supplied from the fuel cell stack 10 to the electric motor 200, so that the process of returning the current is reduced and the induced voltage of the electric motor 200 is reduced. A voltage that is not lost can be secured.
 また電流を戻す処理を実現するには、直列電源101の電圧を高くしなければならず、また電動モータ200に流れる電流が増加するので直列電源変換装置30、及び電動モータ200の温度が上昇してしまう。その結果、直列電源変換装置30の電源電圧を高くし、かつ、熱対策を講じる必要があることから、製造コストが増加してしまう。 Further, in order to realize the process of returning the current, the voltage of the series power supply 101 must be increased, and the current flowing through the electric motor 200 increases, so that the temperature of the series power supply conversion device 30 and the electric motor 200 increases. End up. As a result, it is necessary to increase the power supply voltage of the series power converter 30 and to take measures against heat, resulting in an increase in manufacturing cost.
 このため、二次電池20を燃料電池スタック10の上段に配置することにより、加速時における直列電源変換装置30での電流を戻す処理が削減されるので、製造コストの増加を抑制しつつ、必要最低限の構成で電源電圧を確保することができるようになる。 For this reason, since the process which returns the electric current in the serial power converter 30 at the time of acceleration is reduced by arrange | positioning the secondary battery 20 in the upper stage of the fuel cell stack 10, it is required, suppressing the increase in manufacturing cost. The power supply voltage can be secured with the minimum configuration.
 また本実施形態では、図1に示したように、直列電源変換装置30は、第1電源端子311と電動モータ200との間を接続又は遮断する直列電源接続部32と、第2電源端子312と電動モータ200との間を接続又は遮断する双方向変換部31と、接地線Lgと電動モータ200との間を接続又は遮断する接地電源接続部33とを含む。そしてコントローラ50は、電動モータ200に要求されるトルクに基づいて、双方向変換部31及び接地電源接続部33を交互に接続状態に切り替え、要求トルクの増加に応じて双方向変換部31から直列電源接続部32に電源を切り替える。 In the present embodiment, as shown in FIG. 1, the series power conversion device 30 includes a series power connection unit 32 that connects or blocks between the first power terminal 311 and the electric motor 200, and a second power terminal 312. And a bidirectional conversion unit 31 that connects or disconnects the electric motor 200 and a ground power source connection unit 33 that connects or disconnects the ground line Lg and the electric motor 200. Then, the controller 50 alternately switches the bidirectional conversion unit 31 and the ground power source connection unit 33 to the connected state based on the torque required for the electric motor 200, and in series from the bidirectional conversion unit 31 according to the increase in the required torque. The power source is switched to the power source connection unit 32.
 これにより、電動モータ200に生じる誘起電圧が大きくなったときには、直列電源101の電圧の割合が大きくなるため、加速時に大きくなる誘起電圧に負けない電圧を電動モータ200に供給することが可能となる。 As a result, when the induced voltage generated in the electric motor 200 increases, the voltage ratio of the series power supply 101 increases, so that it is possible to supply the electric motor 200 with a voltage that does not lose the induced voltage that increases during acceleration. .
 また本実施形態では、図1に示したように、直列電源接続部32では、第1電源端子311から電動モータ200に電流を供給又は遮断するトランジスタTrと、電動モータ200から第1電源端子311に電流が通過するダイオードDiとが並列に接続される。 In the present embodiment, as shown in FIG. 1, in the series power supply connection portion 32, the transistor Tr that supplies or cuts off current from the first power supply terminal 311 to the electric motor 200, and the first power supply terminal 311 from the electric motor 200. Are connected in parallel with a diode Di through which a current passes.
 さらに、双方向変換部31では、第2電源端子312から電動モータ200に電流を供給又は遮断する第1トランジスタTrと、電動モータ200から第2電源端子312に電流を供給又は遮断する第2トランジスタTrとが直列に接続されている。例えば、第1トランジスタTrは、スイッチング回路1uのトランジスタに対応し、第2トランジスタTrは、スイッチング回路4uのトランジスタに対応する。 Further, in the bidirectional conversion unit 31, a first transistor Tr that supplies or cuts off current from the second power supply terminal 312 to the electric motor 200 and a second transistor that supplies or cuts off current from the electric motor 200 to the second power supply terminal 312. Tr is connected in series. For example, the first transistor Tr corresponds to the transistor of the switching circuit 1u, and the second transistor Tr corresponds to the transistor of the switching circuit 4u.
 このため、図9Bに示したように、双方向変換部31のスイッチング回路1u、1v及び1wを接続状態にすることにより、燃料電池スタック10から、直列電源接続部32のダイオードDiを介して二次電池20に電力が供給される。これにより、加速時に無駄なスイッチング制御を削減することができると共に、図9Bに示したように、燃料電池スタック10の電力を二次電池20に充電することが可能になる。 For this reason, as shown in FIG. 9B, the switching circuits 1u, 1v, and 1w of the bidirectional conversion unit 31 are connected to each other from the fuel cell stack 10 via the diode Di of the series power supply connection unit 32. Electric power is supplied to the secondary battery 20. As a result, useless switching control during acceleration can be reduced, and the secondary battery 20 can be charged with the electric power of the fuel cell stack 10 as shown in FIG. 9B.
 また本実施形態では、補機12は、直列電源変換装置30を介さずに燃料電池スタック10に対して並列に接続される。これにより、燃料電池スタック10の発電電力が直列電源変換装置30及び電動モータ200を介さずに補機12に供給されるので、電力損失の少ない状態で補機12に電力を供給することができる。 In this embodiment, the auxiliary machine 12 is connected in parallel to the fuel cell stack 10 without going through the series power supply converter 30. As a result, the power generated by the fuel cell stack 10 is supplied to the auxiliary machine 12 without going through the series power converter 30 and the electric motor 200, so that it is possible to supply power to the auxiliary machine 12 with little power loss. .
 また本実施形態では、コントローラ50は、図4に示した単電源分配係数演算部532及び直列電源分配係数補正部539と、図5に示した目標電圧制御部540Aとを備えている。目標電圧制御部540Aは、電動モータ200に要求されるモータ要求トルクに基づいて、電動モータ200に供給される相電圧、例えば図6Aに示したU相目標電圧vu *を制御する。 In the present embodiment, the controller 50 includes the single power distribution coefficient calculation unit 532 and the series power distribution coefficient correction unit 539 illustrated in FIG. 4 and the target voltage control unit 540A illustrated in FIG. The target voltage control unit 540A controls the phase voltage supplied to the electric motor 200, for example, the U-phase target voltage v u * shown in FIG. 6A, based on the motor required torque required for the electric motor 200.
 そして単電源分配係数演算部532は、燃料電池スタック10に要求される発電電力に基づいて、目標電圧制御部540Aで制御される相電圧のうち、双方向変換部31及び接地電源接続部33で生成される第1分配電圧、例えば燃料電池スタック10のU相目標分配電圧vua *を制御する。 Then, the single power distribution coefficient calculation unit 532 uses the bidirectional conversion unit 31 and the ground power supply connection unit 33 among the phase voltages controlled by the target voltage control unit 540A based on the generated power required for the fuel cell stack 10. The generated first distribution voltage, for example, the U-phase target distribution voltage v ua * of the fuel cell stack 10 is controlled.
 また直列電源分配係数補正部539は、第1分配電圧に基づいて、目標電圧制御部540Aにより制御される相電圧のうち、直列電源接続部32及び接地電源接続部33により生成される第2分配電圧、例えば直列電源101のU相目標分配電圧vuab *を制御する。 Also, the series power distribution coefficient correction unit 539 generates a second distribution generated by the series power supply connection unit 32 and the ground power supply connection unit 33 among the phase voltages controlled by the target voltage control unit 540A based on the first distribution voltage. The voltage, for example, the U-phase target distribution voltage v uab * of the series power supply 101 is controlled.
 これにより、直列電源変換装置30は、加速時の無駄な処理を削減しつつ、電動モータ200の要求電力に対する不足分を直列電源101の二次電池20により補助することが可能になる。 Thus, the series power supply conversion device 30 can assist the secondary battery 20 of the series power supply 101 with a shortage of required power of the electric motor 200 while reducing unnecessary processing during acceleration.
 また本実施形態では、図3で述べたとおり、スタック発電電力演算部524は、電動モータ200の要求電力と、二次電池20の充放電要求電力とに基づいて、燃料電池スタック10の発電電力を演算する。 In the present embodiment, as described in FIG. 3, the stack generated power calculation unit 524 generates the generated power of the fuel cell stack 10 based on the required power of the electric motor 200 and the required charge / discharge power of the secondary battery 20. Is calculated.
 そして単電源分配係数演算部532は、その発電電力に基づいて算出された目標電流と、電流センサ112で検出されるスタック電流との偏差に応じて第1分配電圧を増減させる。直列電源分配係数補正部539は、この第1分配電圧に応じて第2分圧電圧を補正する。 The single power distribution coefficient calculation unit 532 increases or decreases the first distribution voltage according to the deviation between the target current calculated based on the generated power and the stack current detected by the current sensor 112. The series power distribution coefficient correction unit 539 corrects the second divided voltage according to the first distribution voltage.
 これにより、目標電流に対してスタック電流が小さい場合には、第1分配電圧が大きくなるので、第2分配電圧が減少する。一方、目標電流に対してスタック電流が大きい場合には、第1分配電圧が小さくなるので、第2分配電圧が増加する。 Thereby, when the stack current is small with respect to the target current, the first distribution voltage increases, so the second distribution voltage decreases. On the other hand, when the stack current is larger than the target current, the first distribution voltage decreases, and therefore the second distribution voltage increases.
 すなわち、直列電源分配係数補正部539は、スタック発電電力演算部524により演算される発電電力と、電流センサ112により検出される発電電力との偏差に応じて、第2分配電圧を増減させる。 That is, the series power distribution coefficient correction unit 539 increases or decreases the second distribution voltage according to the deviation between the generated power calculated by the stack generated power calculation unit 524 and the generated power detected by the current sensor 112.
 これにより、燃料電池スタック10の発電状態に応じて二次電池20から放電される電力が増減されるので、モータ要求電力の過渡的な変化に合わせて二次電池20から電動モータ200に電力を補充することができる。したがって、電動モータ200の駆動要求と燃料電池スタック10の発電要求とを両立することができる。 As a result, the electric power discharged from the secondary battery 20 is increased / decreased according to the power generation state of the fuel cell stack 10, so that the electric power is supplied from the secondary battery 20 to the electric motor 200 in accordance with the transient change in the required motor power. Can be replenished. Therefore, it is possible to satisfy both the drive request of the electric motor 200 and the power generation request of the fuel cell stack 10.
 また本実施形態では、直列電源分配係数補正部539は、計測充放電電力演算部535により検出される放電電力が、二次電池20の放電可能電力を超えないように、第2分配電圧を制限する。これにより、二次電池20の過放電が抑制されるので、二次電池20の劣化を回避することができる。 In the present embodiment, the series power distribution coefficient correction unit 539 limits the second distribution voltage so that the discharge power detected by the measured charge / discharge power calculation unit 535 does not exceed the dischargeable power of the secondary battery 20. To do. Thereby, since the overdischarge of the secondary battery 20 is suppressed, the deterioration of the secondary battery 20 can be avoided.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、本実施形態では、直列電源変換装置30は、12個のスイッチング素子で構成される例について説明したが、これに限定されるものではない。例えば24個以上のスイッチング素子で構成されるものを使用しても良い。 For example, in the present embodiment, the example in which the series power conversion device 30 is configured by 12 switching elements has been described, but the present invention is not limited to this. For example, you may use what comprises 24 or more switching elements.
 なお、上記実施形態は、適宜組み合わせ可能である。 In addition, the said embodiment can be combined suitably.

Claims (9)

  1.  第1電源及び第2電源を直列に接続した直列電源のうち少なくとも一方の電源を選択して負荷に電力を供給する電力供給システムであって、
     電力を充電又は放電する二次電池と、
     前記二次電池に対して直列に接続される燃料電池と、
     前記直列電源のうち少なくとも一方の電源から出力される電力を交流電力に変換する電力変換手段と、を含み、
     前記二次電池の正極端子が、前記直列電源の正極端子として前記電力変換手段の第1電源端子に接続され、
     前記燃料電池の正極端子が、前記直列電源の正極端子と負極端子との間における前記電力変換手段の第2電源端子に対して前記二次電池の負極端子とともに接続される、
    電力供給システム。
    A power supply system that selects at least one power source among series power sources in which a first power source and a second power source are connected in series and supplies power to a load,
    A secondary battery that charges or discharges power;
    A fuel cell connected in series to the secondary battery;
    Power conversion means for converting power output from at least one of the series power supplies into AC power, and
    A positive terminal of the secondary battery is connected to a first power terminal of the power conversion means as a positive terminal of the series power supply;
    The positive terminal of the fuel cell is connected together with the negative terminal of the secondary battery to the second power terminal of the power conversion means between the positive terminal and the negative terminal of the series power supply.
    Power supply system.
  2.  請求項1に記載の電力供給システムであって、
     前記電力変換手段は、前記負荷が増加するときには、前記直列電源から前記第1電源端子に供給される電力と、前記燃料電池から前記第2電源端子に供給される電力とを交流電力に変換して前記負荷に供給する、
    電力供給システム。
    The power supply system according to claim 1,
    When the load increases, the power conversion means converts power supplied from the series power supply to the first power supply terminal and power supplied from the fuel cell to the second power supply terminal into AC power. To supply the load
    Power supply system.
  3.  請求項1又は請求項2に記載の電力供給システムであって、
     前記負荷は、交流モータであり、
     前記電力変換手段は、
     前記第1電源端子と前記交流モータとの間を接続又は遮断する第1のスイッチ部と、
     前記第2電源端子と前記交流モータとの間を接続又は遮断する第2のスイッチ部と、
     接地された接地線と前記交流モータとの間を接続又は遮断する第3のスイッチ部と、を含み、
     前記交流モータに要求されるトルクに基づいて、前記第1又は前記第2のスイッチ部と前記第3のスイッチ部とを交互に接続状態に切り替える制御部と、を含む、
    電力供給システム。
    The power supply system according to claim 1 or 2,
    The load is an AC motor,
    The power conversion means includes
    A first switch unit for connecting or blocking between the first power supply terminal and the AC motor;
    A second switch unit for connecting or blocking between the second power supply terminal and the AC motor;
    A third switch unit for connecting or disconnecting between the grounded grounding wire and the AC motor;
    A control unit that alternately switches the first or second switch unit and the third switch unit to a connected state based on torque required for the AC motor,
    Power supply system.
  4.  請求項3に記載の電力供給システムであって、
     前記第1のスイッチ部は、
     前記第1電源端子から前記交流モータに電流を供給又は遮断するトランジスタと、
     前記トランジスタに対して並列に接続され、前記交流モータから前記第1電源端子に電流が通過するダイオードと、を含み、
     前記第2のスイッチ部は、
     前記第2電源端子から前記交流モータに電流を供給又は遮断する第1トランジスタと、
     前記交流モータから前記第2電源端子に電流を供給又は遮断する第2トランジスタと、を含む、
    電力供給システム。
    The power supply system according to claim 3,
    The first switch unit includes:
    A transistor for supplying or blocking current from the first power supply terminal to the AC motor;
    A diode connected in parallel to the transistor and passing a current from the AC motor to the first power supply terminal,
    The second switch unit includes:
    A first transistor that supplies or cuts off current from the second power supply terminal to the AC motor;
    A second transistor that supplies or cuts off current from the AC motor to the second power supply terminal,
    Power supply system.
  5.  請求項1から請求項4までのいずれか1項に記載の電力供給システムであって、
     前記燃料電池の動作を補助する補機をさらに含み、
     前記補機は、前記電力変換手段を介さずに前記燃料電池に対して並列に接続される、
    電力供給システム。
    A power supply system according to any one of claims 1 to 4,
    An auxiliary machine for assisting the operation of the fuel cell;
    The auxiliary machine is connected in parallel to the fuel cell without going through the power conversion means,
    Power supply system.
  6.  請求項3又は請求項4に記載の電力供給システムであって、
     前記制御部は、
     前記交流モータに要求されるトルクに基づいて、前記交流モータに供給される相電圧を制御する電圧制御部と、
     前記燃料電池に要求される電力に基づいて、前記電圧制御部により制御される相電圧のうち、前記第2のスイッチ部及び前記第3のスイッチ部により生成される第1分配電圧を制御する第1分配電圧制御部と、
     前記第1分配電圧制御部により制御される第1分配電圧に基づいて、前記電圧制御部により制御される相電圧のうち、前記第1のスイッチ部及び前記第3のスイッチ部により生成される第2分配電圧を制御する第2分配電圧制御部と、
    を含む、
    電力供給システム。
    The power supply system according to claim 3 or 4,
    The controller is
    A voltage control unit that controls a phase voltage supplied to the AC motor based on torque required for the AC motor;
    Based on the electric power required for the fuel cell, a first distribution voltage that is generated by the second switch unit and the third switch unit among the phase voltages controlled by the voltage control unit is controlled. 1 distribution voltage control unit;
    Based on the first distribution voltage controlled by the first distribution voltage control unit, out of phase voltages controlled by the voltage control unit, the first switch unit and the third switch unit generate the first voltage. A second distribution voltage control unit for controlling two distribution voltages;
    including,
    Power supply system.
  7.  請求項6に記載の電力供給システムであって、
     前記燃料電池の発電電力を検出する発電検出部と、
     前記交流モータに必要な電力と前記二次電池の充放電要求電力とに基づいて、前記燃料電池の発電電力を演算する発電演算部と、を含み、
     前記第2分配電圧制御部は、前記発電演算部により演算される発電電力と前記発電検出部により検出される発電電力との偏差に応じて、前記第2分配電圧を増減させる、
    電力供給システム。
    The power supply system according to claim 6,
    A power generation detection unit for detecting power generated by the fuel cell;
    A power generation calculation unit that calculates the generated power of the fuel cell based on the power required for the AC motor and the charge / discharge required power of the secondary battery,
    The second distribution voltage control unit increases or decreases the second distribution voltage according to a deviation between the generated power calculated by the power generation calculation unit and the generated power detected by the power generation detection unit.
    Power supply system.
  8.  請求項6又は請求項7に記載の電力供給システムにおいて、
     前記二次電池の放電電力を検出する放電検出部をさらに含み、
     前記第2分配電圧制御部は、前記放電検出部により検出される放電電力が、前記二次電池の放電可能電力を超えないように、前記第2分配電圧を制限する、
    電力供給システム。
    The power supply system according to claim 6 or 7,
    A discharge detector for detecting discharge power of the secondary battery;
    The second distribution voltage control unit limits the second distribution voltage so that the discharge power detected by the discharge detection unit does not exceed the dischargeable power of the secondary battery.
    Power supply system.
  9.  電力を充電又は放電する二次電池と、前記二次電池に対して直列に接続される燃料電池と、直列電源のうち少なくとも一方の電源から出力される電力を交流電力に変換する電力変換手段と、を含む電力供給システムの制御方法であって、
     前記直列電源の正極端子の電圧として、前記二次電池の正極端子の電圧を前記電力変換手段の第1電源端子に供給するステップと、
     前記燃料電池の正極端子の電圧を、前記直列電源の正極端子と負極端子との間における前記電力変換手段の第2電源端子に供給するステップと、
    を含む電力供給システムの制御方法。
    A secondary battery for charging or discharging electric power, a fuel cell connected in series to the secondary battery, and power conversion means for converting electric power output from at least one of the series power supplies into AC power A method for controlling an electric power supply system including:
    Supplying the voltage of the positive terminal of the secondary battery to the first power terminal of the power conversion means as the voltage of the positive terminal of the series power supply;
    Supplying the voltage of the positive terminal of the fuel cell to the second power terminal of the power conversion means between the positive terminal and the negative terminal of the series power supply;
    A method for controlling an electric power supply system including:
PCT/JP2014/077605 2014-10-16 2014-10-16 Power supply system and control method for power supply system WO2016059708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077605 WO2016059708A1 (en) 2014-10-16 2014-10-16 Power supply system and control method for power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077605 WO2016059708A1 (en) 2014-10-16 2014-10-16 Power supply system and control method for power supply system

Publications (1)

Publication Number Publication Date
WO2016059708A1 true WO2016059708A1 (en) 2016-04-21

Family

ID=55746278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077605 WO2016059708A1 (en) 2014-10-16 2014-10-16 Power supply system and control method for power supply system

Country Status (1)

Country Link
WO (1) WO2016059708A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334476A (en) * 2018-09-29 2019-02-15 潍柴动力股份有限公司 A kind of new fuel cell automotive control system and control method
WO2019101531A1 (en) * 2017-11-27 2019-05-31 Robert Bosch Gmbh Method for controlling an inverter, inverter apparatus, and electrical drive system
WO2019145301A1 (en) * 2018-01-24 2019-08-01 Robert Bosch Gmbh Fuel cell system, in particular for a vehicle
CN112118981A (en) * 2018-03-12 2020-12-22 捷普有限公司 Multilevel motor driver with integrated battery charger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108773A (en) * 2003-10-01 2005-04-21 Toyota Motor Corp Fuel cell system, control method of fuel cell system and its computer program, and computer program recording medium
JP2006025518A (en) * 2004-07-07 2006-01-26 Nissan Motor Co Ltd Power converter and dual power supply vehicle mounting it
JP2006033955A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Control method of power converter and electric vehicle driven by using the same
JP2006033956A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Controller of motor driving system
JP2006060912A (en) * 2004-08-19 2006-03-02 Toyota Motor Corp Power conversion device and vehicle provided with it
JP2007244137A (en) * 2006-03-10 2007-09-20 Nissan Motor Co Ltd Power converter
JP2010022104A (en) * 2008-07-09 2010-01-28 Panasonic Corp Power converter for fuel cell
JP2010207041A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Power conversion equipment
JP2010206973A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Power converter
JP2010207040A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Power conversion equipment
JP2011004464A (en) * 2009-06-16 2011-01-06 Toshiba Corp Power conversion equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108773A (en) * 2003-10-01 2005-04-21 Toyota Motor Corp Fuel cell system, control method of fuel cell system and its computer program, and computer program recording medium
JP2006025518A (en) * 2004-07-07 2006-01-26 Nissan Motor Co Ltd Power converter and dual power supply vehicle mounting it
JP2006033955A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Control method of power converter and electric vehicle driven by using the same
JP2006033956A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Controller of motor driving system
JP2006060912A (en) * 2004-08-19 2006-03-02 Toyota Motor Corp Power conversion device and vehicle provided with it
JP2007244137A (en) * 2006-03-10 2007-09-20 Nissan Motor Co Ltd Power converter
JP2010022104A (en) * 2008-07-09 2010-01-28 Panasonic Corp Power converter for fuel cell
JP2010206973A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Power converter
JP2010207041A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Power conversion equipment
JP2010207040A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Power conversion equipment
JP2011004464A (en) * 2009-06-16 2011-01-06 Toshiba Corp Power conversion equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101531A1 (en) * 2017-11-27 2019-05-31 Robert Bosch Gmbh Method for controlling an inverter, inverter apparatus, and electrical drive system
WO2019145301A1 (en) * 2018-01-24 2019-08-01 Robert Bosch Gmbh Fuel cell system, in particular for a vehicle
CN112118981A (en) * 2018-03-12 2020-12-22 捷普有限公司 Multilevel motor driver with integrated battery charger
CN109334476A (en) * 2018-09-29 2019-02-15 潍柴动力股份有限公司 A kind of new fuel cell automotive control system and control method
CN109334476B (en) * 2018-09-29 2020-09-29 潍柴动力股份有限公司 Fuel cell automobile control system and control method

Similar Documents

Publication Publication Date Title
JP4760465B2 (en) Power converter
KR101052847B1 (en) Converter control device
EP3300153A1 (en) Power adjustment system and control method therefor
EP3335924B1 (en) Power adjustment system and control method therefor
JP5429403B2 (en) Boost converter controller
JP6228620B2 (en) Power supply system
JP5887077B2 (en) Power supply system and fuel cell vehicle
WO2016059708A1 (en) Power supply system and control method for power supply system
US11114959B2 (en) Electric motor driving system and method
CN110299887B (en) Motor driving system
WO2016059709A1 (en) Fuel cell system and impedance measurement method
CN107681936B (en) Dual-energy-source open-winding motor driving system for vehicle and power distribution method thereof
JP4992253B2 (en) Power converter
JP6724585B2 (en) Fuel cell system
JP5512423B2 (en) Fuel cell vehicle
JP5474681B2 (en) Electric car
WO2012063300A1 (en) Fuel cell output control device
JP4797371B2 (en) Power converter control method
JP2007068296A (en) Power conversion apparatus
JP5430506B2 (en) Electric car
JP5545035B2 (en) Motor drive device and electric vehicle
JP2023013793A (en) Power conversion device for fuel cells, and fuel cell system
JP2011167070A (en) Power conversion apparatus
JP2012060822A (en) Power converter and power supply
JP2006236619A (en) Fuel cell power source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14904166

Country of ref document: EP

Kind code of ref document: A1