WO2012063300A1 - Fuel cell output control device - Google Patents

Fuel cell output control device Download PDF

Info

Publication number
WO2012063300A1
WO2012063300A1 PCT/JP2010/069819 JP2010069819W WO2012063300A1 WO 2012063300 A1 WO2012063300 A1 WO 2012063300A1 JP 2010069819 W JP2010069819 W JP 2010069819W WO 2012063300 A1 WO2012063300 A1 WO 2012063300A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
voltage
output
value
Prior art date
Application number
PCT/JP2010/069819
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 金子
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/069819 priority Critical patent/WO2012063300A1/en
Publication of WO2012063300A1 publication Critical patent/WO2012063300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an output control device for a fuel cell.
  • a technique disclosed in Japanese Patent No. 4163222 is known.
  • the current of the fuel cell is controlled by a boost converter disposed at the subsequent stage of the fuel cell.
  • Patent Document 1 In the case of rapid warm-up required at the time of starting the fuel cell when, for example, the outside air temperature drops below the freezing point, it is necessary to directly control the output voltage of the fuel cell to control the target voltage. Although it is desirable for shortening, the control method of Patent Document 1 cannot directly control the output voltage of the fuel cell, and a voltage-current conversion map showing the relationship between the output voltage and the output current of the fuel cell. Is required. In addition, since the relationship between the voltage and the current changes every moment depending on the operating state of the fuel cell, it is difficult to accurately and quickly respond to the demand for rapid warm-up.
  • the output power of the fuel cell cannot be directly controlled.
  • the output power of the fuel cell cannot be quickly increased to the target power value. .
  • the amount of power supplied from the secondary power supply (the amount taken out) may be excessive and exceed the allowable power of the secondary power supply.
  • the present invention has been made to solve the above-described problems caused by the prior art, and an object of the present invention is to make it possible to realize output control of a fuel cell that is highly responsive to various power generation requirements.
  • the present invention provides a power control apparatus for controlling the output power of a fuel cell so that the output power of the fuel cell becomes a target power during normal operation of the fuel cell or a request for rapid power generation.
  • a configuration is adopted in which voltage control for controlling the output voltage of the fuel cell to be a target voltage when the fuel cell is required to be quickly warmed up can be switched.
  • the rapid warm-up is an operation that is performed, for example, when the temperature of the power generation part is rapidly raised when the outside air temperature decreases to improve the startability.
  • this is an operation in which power generation is intentionally performed with less reactive gas supplied to the fuel cell compared to normal (steady) power generation, and power loss is large compared to normal power generation. It is realized by squeezing rather than.
  • the fuel cell is operated with the air stoichiometric ratio set to a predetermined value or higher so that high power generation efficiency can be obtained while suppressing power loss.
  • a rapid power generation request for example, when the required power generation amount exceeds a predetermined threshold set in advance, such as when sudden acceleration is requested when the vehicle is mounted, or when the required power generation amount exceeds the output power of the fuel cell.
  • a duty calculation unit that calculates a duty command value to be given to a boost converter that boosts the output voltage of the fuel cell and outputs the boosted voltage to the load side, and is calculated using the output power and the target power of the fuel cell.
  • any one of the first duty command value and the second duty command value calculated using the output voltage and the target voltage of the fuel cell may be provided to the boost converter.
  • the duty calculation unit is configured to calculate the first duty command value using an output power change amount and a target power change amount obtained based on an output power and a target power of the fuel cell, respectively. May be.
  • the duty calculation unit is configured to calculate the second duty command value using an output voltage change amount and a target voltage change amount respectively obtained based on an output voltage and a target voltage of the fuel cell. May be.
  • the first duty command value is selected during the normal operation or when the rapid power generation is requested, and the second duty command value is selected when the rapid warm-up is requested.
  • You may be comprised so that a control switching part may be provided.
  • the boost converter may be configured to include a booster circuit having a plurality of phases and a correction logic for equalizing a reactor current flowing through the booster circuit in each phase.
  • the correction logic corrects the duty command value according to a first calculation unit that calculates an average value of the reactor current flowing through each phase and a difference between the reactor current flowing through each phase and the average value. And a second calculation unit that calculates a value.
  • FIG. 1 is a configuration diagram schematically showing one embodiment of an output control device for a fuel cell according to the present invention.
  • FIG. It is a block diagram which shows 1st Embodiment of the duty calculating part of FIG.
  • FIG. 2 is a block diagram illustrating an embodiment of a first boost converter of FIG. 1.
  • FIG. 4 is a block diagram illustrating one embodiment of the correction logic of FIG. It is a block diagram which shows the 1st modification of the duty calculating part of FIG. It is a block diagram which shows the 2nd modification of the Duty calculating part of FIG. It is a block diagram which shows the 3rd modification of the duty calculating part of FIG. It is a block diagram which shows 2nd Embodiment of the duty calculating part of FIG.
  • the fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction between an oxidizing gas, which is a reaction gas, and the fuel gas.
  • the power generation state of the fuel cell 2 is controlled by a control unit 11. Controlled by.
  • the fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked.
  • the single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become.
  • the fuel cell 2 is provided with a voltage sensor Sv for detecting the output terminal voltage and a current sensor Si for detecting the output current.
  • a first boost converter 5 is connected to the fuel cell 2.
  • the first boost converter 5 is a DC voltage converter, and has a function of adjusting the DC voltage input from the fuel cell 2 and outputting it to the inverter 4 side.
  • a drive motor 6 is connected to the first boost converter 5 via an inverter 4, and a battery 9 as a secondary battery and various auxiliary machines 10 are connected via a second boost converter 8. Has been.
  • the second boost converter 8 is a DC voltage converter, and adjusts the DC voltage input from the battery 9 and outputs it to the inverter 4 side, and the DC voltage input from the fuel cell 2 or the drive motor 6. And adjusting the output to the battery 9.
  • Such a function of the second boost converter 8 realizes charging / discharging of the battery 9.
  • the battery 9 is charged with surplus power obtained by stacking battery cells, using a constant high voltage as a terminal voltage, and drawing out the power consumed by the entire load including the drive motor 6 from the output power of the fuel cell 2.
  • the drive motor 6 can be supplementarily supplied with electric power. If the battery 9 continues to be used in a region where the SOC (State Of Of Charge), which is the remaining capacity, is extremely high or low, there is a risk of deterioration. For this reason, it is preferable to directly control the output power of the fuel cell 2 when, for example, sudden acceleration is requested or during normal operation.
  • SOC State Of Of Charge
  • the drive motor 6 is a three-phase AC motor, for example, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
  • the inverter 4 to which the drive motor 6 is connected converts a direct current into a three-phase alternating current and supplies it to the drive motor 6.
  • the control unit 11 is a higher-level control device that controls the operation of various devices in the system based on the operation amount of an acceleration operation member (accelerator or the like) provided in the fuel cell vehicle.
  • a duty calculation unit 12 for calculating a duty command value to be given to the first boost converter is provided. That is, the fuel cell output control apparatus according to the present invention includes the first boost converter 5, the control unit 11, and the duty calculation unit 12 in the present embodiment.
  • the first controller 15 related to power control of the fuel cell 2 and the second controller 16 related to voltage control of the fuel cell 2 are mutually connected. Connected in series.
  • the first controller 15 includes, as a positive component, an output power command value (hereinafter referred to as power command value P_ref) of the fuel cell 2 output from the control unit 11 which is a host control device, and the current sensor Si and The current value of the output power of the fuel cell 2 calculated from each output value of the voltage sensor Sv (hereinafter, the current power value P_mes) is input as a negative component.
  • power command value P_ref an output power command value of the fuel cell 2 output from the control unit 11 which is a host control device
  • the current value of the output power of the fuel cell 2 calculated from each output value of the voltage sensor Sv hereinafter, the current power value P_mes
  • a difference value between the power command value P_ref and the current power value P_mes (hereinafter referred to as a power difference value ⁇ P), that is, a power generation shortage amount with respect to the required power amount to the fuel cell 2, or this power difference value.
  • a correction value for the output voltage of the fuel cell 2 based on ⁇ P (hereinafter, voltage correction value V_cor) is calculated and output to the second controller 16.
  • the second controller 16 includes the power difference value ⁇ P or the voltage correction value V_cor, and the output voltage command value (hereinafter referred to as voltage command value V_ref) of the fuel cell 2 output from the control unit 11 which is a higher-level control device. And the current value of the output voltage of the fuel cell 2 output from the voltage sensor Sv (hereinafter, voltage current value V_mes) is input as a negative component. That is, the second controller 16 receives the voltage difference value ⁇ V between the voltage command value V_ref and the current voltage value V_mes, and the power difference value ⁇ P output from the first controller 15 or the voltage correction value V_cor. Is done. The second controller 16 outputs a duty command value for the first boost converter 5 based on these values.
  • the output control of the fuel cell based on one of the command values can be performed.
  • the power control for controlling the output power of the fuel cell 2 to be the target power and the voltage control for controlling the output voltage of the fuel cell 2 to be the target voltage can be switched.
  • the voltage command value V_ref and the current voltage value V_mes are forcibly set to zero, or the voltage command value V_ref is forcibly set to the same voltage current value V_mes.
  • the first controller 15 By forcibly setting the output value to zero, the output voltage of the fuel cell 2 can be directly controlled to the target value.
  • the duty command value to be given to the first boost converter 5 is determined. If the converter is a multi-phase converter, even if the duty command value given to each phase is the same due to a slight difference in circuit impedance between each phase, the reactor current of each phase varies. Resulting in. In such a case, a surge voltage is generated at a higher level in a phase in which a relatively large current flows compared to the other phases, and a margin until breakdown is relatively reduced. .
  • a correction duty is calculated so that the currents actually flowing in the respective phases of the first boost converter 5 are equal to the duty command value output from the second controller 16, and this correction duty is calculated as the duty command. Add to the value.
  • the first boost converter 5 has a reactor current value for each phase in addition to the U-phase, V-phase, and W-phase boost circuits 51, 52, and 53.
  • Sensors 54, 55, 56 to be detected, and correction logic 57 for calculating the correction duty based on the reactor current values from these sensors 54, 55, 56 are provided.
  • FIG. 3 shows that as shown in FIG.
  • the correction logic 57 includes an averaging processing unit (first calculation unit) 571 and a PI control unit (second calculation unit) 572, and the reactor current in each phase The average value is calculated by the averaging processing unit 571, and the duty command value of the phase in which the reactor current larger than the average value is flowing is reduced by PI control (control in which proportional operation and integration operation are combined) in the PI control unit 572. To do.
  • FIG. 4 only the portion related to the calculation of the correction duty for the U phase is shown, and the portion related to the calculation of the correction duty for the other V and W phases is omitted.
  • the correction duty is calculated by the averaging processing unit and the PI control unit as in the U phase.
  • FIG. 4 illustrates three phases, the same configuration can be applied to any number of phases as long as the phases are plural.
  • the reactor current in each phase is equalized even when there is a slight difference in the circuit impedance between the phases while performing power control or voltage control of the fuel cell 2. Therefore, it is possible to suppress a relative margin decrease until breakdown due to a difference in circuit impedance and a variation in surge voltage.
  • the method for calculating the correction duty is not limited to the above method.
  • the duty command value to be given to the phase may be set in advance so as to be higher than the other phases.
  • the setting in that case may be determined according to, for example, the distribution of the impedance of each phase.
  • the differential value of the power command value P_ref (hereinafter referred to as power differential command value Pdot_ref), that is, the amount of change per predetermined time of the power command value P_ref is calculated. Is output to the second controller 22. Then, the second controller 22 has the power differential command value Pdot_ref and the voltage command value Vref as positive components, and the differential value of the current power value Pmes (hereinafter, power differential current value Pdot_mes), that is, the power The change amount per predetermined time of the current value P_mes and the current voltage value V_mes from the voltage sensor Sv are input as negative components.
  • the second controller 22 includes a power differential difference value ⁇ Pdot, which is a difference value between the power differential command value Pdot_ref and the current power differential value Pdot_mes, and a differential value between the voltage command value V_ref and the current voltage value V_mes.
  • Voltage difference value ⁇ V is input, and a duty command value for first boost converter 5 is output based on these values.
  • the differential power value ⁇ Pdot which is the differential value
  • the second controller 22 instead of the differential power value ⁇ P
  • the duty command value is output. Therefore, it is possible to control the output of the fuel cell 2 with higher responsiveness particularly during normal operation or when sudden acceleration is requested.
  • the power command value P_ref is input to the first controller 15 as a positive component, and the current power value P_mes is input as a negative component.
  • the first controller 15 calculates a power difference value ⁇ P that is a difference value between the power command value P_ref and the current power value P_mes, or a correction value V_cor for the output voltage of the fuel cell 2 based on the power difference value ⁇ P. And output to the second controller 16. Up to this point, the process is the same as in the first embodiment.
  • the second controller 32 of the present modification includes a power differential value ⁇ P or a voltage correction value V_cor output from the first controller 15 and a differential value of the voltage command value V_ref (hereinafter, voltage differential command value).
  • Vdot_ref that is, the amount of change of the voltage command value V_ref per predetermined time is a positive component
  • the differential value of the current voltage value V_mes (hereinafter, voltage differential current value Pdot_mes), that is, per predetermined time of the current voltage value V_mes.
  • the second controller 32 receives the voltage difference value ⁇ P or the voltage correction value V_cor, and the voltage differential difference value ⁇ Vdot that is the difference value between the voltage differential command value Vdot_ref and the voltage differential current value Vdot_mes. Based on this value, the duty command value for the first boost converter 5 is output.
  • the voltage differential difference value ⁇ Vdot which is a differential value
  • the voltage difference value ⁇ V which is a difference value between the voltage command value V_ref and the current voltage value V_mes
  • the power command value P_ref is input to the first controller 21 as a positive component, and the current power value P_mes is input as a negative component. Based on these values, a power differential command value Pdot_ref is calculated and output to the second controller 42. Up to this point, it is the same as the first modification.
  • the second controller 42 of the present modification includes the power differentiation command value Pdot_ref and the voltage differentiation command value Vdot_ref output from the first controller 21 as positive components, for example, the first control.
  • the power differential current value Pdot_mes and the voltage differential current value Pdot_mes output from the device 21 are input as negative components. That is, the second controller 42 includes a power differential difference value ⁇ Pdot that is a difference value between the power differential command value Pdot_ref and the current power differential value Pdot_mes, and a differential value between the voltage differential command value Vdot_ref and the voltage differential current value Vdot_mes.
  • the voltage differential difference value ⁇ Vdot is input, and a duty command value for the first boost converter is output based on these values.
  • the power differential difference value ⁇ Pdot and the voltage differential difference value ⁇ Vdot are input to the second controller 42 and the duty command value is Since it is output, the output control of the fuel cell 2 having high responsiveness to various situations such as normal operation, rapid warm-up request, and rapid acceleration request becomes possible.
  • the first controller 15 related to the power control of the fuel cell 2 and the second controller 16 related to the voltage control of the fuel cell 2 are connected in series with each other.
  • the two embodiments are different in that the first controller 61 and the second controller 62 are connected in parallel to each other.
  • the first controller 61 in the present embodiment receives the power command value V_ref as a positive component and the current power value P_mes as a negative component. That is, the first controller 61 receives a power difference value ⁇ P that is a difference value between the power command value P_ref and the current power value P_mes, in other words, a power generation shortage amount with respect to the required power amount for the fuel cell 2. . Up to this point, the process is the same as in the first embodiment. However, the first controller 61 in the present embodiment is different from the first embodiment in that it outputs a first duty command value for the first boost converter 5 based on the power difference value ⁇ P. .
  • the voltage controller value V_ref is input as a positive component and the current voltage value V_mes is input as a negative component to the second controller 62 in the present embodiment.
  • the second controller 62 receives a voltage difference value ⁇ V that is a difference value between the voltage command value V_ref and the current voltage value V_mes, and the second controller 62 outputs a voltage difference value ⁇ V to the first boost converter 5 based on the voltage difference value ⁇ V. 2 Duty command value is output.
  • a switch (control switching unit) 63 is provided downstream (downstream) of the first controller 61 and the second controller 62.
  • the switch 63 is for selecting a final duty command value to be given to the first boost converter 5, and it is preferable to control the power of the fuel cell 2, for example, during normal operation or when sudden acceleration is requested. It is preferable to select the first duty command value output from the first controller 61 and to control the voltage of the fuel cell 2. For example, when a rapid warm-up request is requested, the second duty output value is output from the second controller 62.
  • the switching operation is controlled based on a switching command from the control unit 11, which is a higher-level control device, so as to select the duty command value.
  • the output control of the fuel cell 2 based on one of the command values can be performed. Accordingly, for example, during normal operation or when sudden acceleration is requested, it is possible to select and execute the control of the energy management entity that controls the output power of the fuel cell 2 to the target value, while for example, when requesting rapid warm-up, Control for directly controlling the output voltage of the fuel cell 2 to the target value can be selected and executed.
  • the first controller 71 receives the power differentiation command value Pdot_ref as a positive component and the power differentiation current value Pdot_mes as a negative component. Based on these values, the first duty command value for the first boost converter 5 is output.
  • the second controller 62 receives the voltage command value P_ref as a positive component and the current voltage value P_mes as a negative component. Based on these values, the first controller 62 A second duty command value for boost converter 5 is output.
  • the power differential difference value ⁇ Pdot that is a differential value of the power difference value ⁇ Pdot that is the difference value between the power command value P_ref and the current power value P_mes is the first difference. Since the first duty command value is output to the first controller 71 and the first duty command value is selected at the time of normal operation or sudden acceleration request, a fuel cell with higher responsiveness is selected. 2 output control becomes possible.
  • the first controller 61 receives the power command value P_ref as a positive component and the current power value P_mes, as in the second embodiment. Is input as a negative component, and the first duty command value for the first boost converter 5 is output based on these values.
  • the second controller 82 is supplied with the voltage differentiation command value Pdot_ref as a positive component and the voltage differentiation current value Pdot_mes as a negative component. Based on these values, the second controller 82 supplies the second differential with respect to the first boost converter 5. The duty command value is output.
  • a voltage differential difference value ⁇ Vdot which is a differential value of the voltage difference value ⁇ Pdot which is a difference value between the voltage command value V_ref and the current voltage value V_mes is a second value. Therefore, when the second duty command value is selected at the time of a quick warm-up request, for example, the output of the fuel cell 2 with higher response is output. Control becomes possible.
  • the first controller 71 has the power differential command value Pdot_ref as a positive component and the power differential current as in the first modified example.
  • the value Pdot_mes is input as a negative component, and a first duty command value for the first boost converter 5 is output based on these values.
  • the second controller 82 receives the voltage differentiation command value Pdot_ref as a positive component and the voltage differentiation current value Pdot_mes as a negative component, and the first controller based on these values.
  • the second duty command value for the step-up converter 5 is output.
  • a power differential difference value ⁇ Pdot which is a differential value between the power differential command value Pdot_ref and the current power differential value Pdot_mes
  • a voltage differential command A voltage differential difference value ⁇ Vdot which is a difference value between the value Pdot_ref and the voltage differential current value Pdot_mes, is input to the first controller 71 and the second controller 82, respectively, and the first duty command value or the second duty Since either one of these is selected and output, output control of the fuel cell 2 with high responsiveness according to various operating states of the fuel cell 2 such as normal operation, rapid warm-up request, and rapid acceleration request Is possible.
  • the fuel cell output control device according to the present invention is mounted on a fuel cell vehicle
  • various mobile bodies other than the fuel cell vehicle robot, ship, aircraft, etc.
  • the fuel cell output control apparatus according to the present invention can also be applied.
  • the present invention can also be applied to an output control device for a fuel cell according to the present invention and a stationary power generation system used as power generation equipment for buildings (housing, buildings, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

[Problem] To achieve output control for a high-response fuel cell even with a variety of power generation requirements. [Solution] Power control that controls the output power of a fuel cell (2) when that fuel cell (2) is operated normally or when there are rapid power generation requirements at a target power and voltage control that controls the output voltage of the fuel cell (2) to a target voltage when rapid warm-up of the fuel cell (2) is required are switchable. For example, calculation sections (61, 62) that calculate duty instruction values provided to a boost converter (5), which boosts the output voltage of the fuel cell 2 and outputs to the load side, are provided. Either a first duty instruction value calculated using the output power and target power for the fuel cell (2) or a second duty instruction value calculated using the output voltage and target voltage for the fuel cell (2) is provided to the boost converter (5).

Description

燃料電池の出力制御装置Fuel cell output control device
 本発明は、燃料電池の出力制御装置に関する。 The present invention relates to an output control device for a fuel cell.
 燃料電池車両に用いられる電源システムとして、例えば日本国特許第4163222号公報に開示された技術が知られている。この電源システムにおいては、燃料電池の電流を当該燃料電池の後段に配置された昇圧コンバータで制御している。 As a power supply system used for a fuel cell vehicle, for example, a technique disclosed in Japanese Patent No. 4163222 is known. In this power supply system, the current of the fuel cell is controlled by a boost converter disposed at the subsequent stage of the fuel cell.
日本国特許第4163222号公報Japanese Patent No. 4163222
 ところで、例えば外気温が氷点下まで低下した場合の燃料電池の始動時に要求される急速暖機の際には、燃料電池の出力電圧を直接制御して目標電圧に制御することが暖機所要時間を短縮するうえでは望ましいのであるが、特許文献1の制御方法では、燃料電池の出力電圧を直接制御することができず、燃料電池の出力電圧と出力電流との関係を示す電圧-電流変換マップなどが必要となる。しかも、この電圧と電流の関係は、燃料電池の運転状態によって時々刻々と変化するものであることから、急速暖機の要求に的確かつ迅速に対応することが困難である。 By the way, in the case of rapid warm-up required at the time of starting the fuel cell when, for example, the outside air temperature drops below the freezing point, it is necessary to directly control the output voltage of the fuel cell to control the target voltage. Although it is desirable for shortening, the control method of Patent Document 1 cannot directly control the output voltage of the fuel cell, and a voltage-current conversion map showing the relationship between the output voltage and the output current of the fuel cell. Is required. In addition, since the relationship between the voltage and the current changes every moment depending on the operating state of the fuel cell, it is difficult to accurately and quickly respond to the demand for rapid warm-up.
 また、特許文献1の制御方法では、燃料電池の出力電力を直接制御することができず、例えば燃料電池車両の急加速要求時には、燃料電池の出力電力を目標電力値まで速やかに上げることができない。このため、その不足分を補うために二次電池等の二次電源からの電力補給が必要となる場合がある。そのような場合に、二次電源からの電力補給量(持ち出し量)が過大となって当該二次電源の許容電力を超えることがあると、二次電池保護の観点からは好ましくない。 Further, in the control method of Patent Document 1, the output power of the fuel cell cannot be directly controlled. For example, when the fuel cell vehicle requires a rapid acceleration, the output power of the fuel cell cannot be quickly increased to the target power value. . For this reason, it may be necessary to supply power from a secondary power source such as a secondary battery in order to compensate for the shortage. In such a case, it is not preferable from the viewpoint of protecting the secondary battery that the amount of power supplied from the secondary power supply (the amount taken out) may be excessive and exceed the allowable power of the secondary power supply.
 このように、例えば急速暖機要求時等のように、燃料電池の出力電圧を直接制御することが好ましい場合がある一方で、例えば急加速要求時や通常(定常)運転時などのように、燃料電池システム全体のエネルギーマネージメントの観点から、燃料電池の出力電力を直接制御することが好ましい場合もある。 In this way, it may be preferable to directly control the output voltage of the fuel cell, for example, at the time of a quick warm-up request, for example, while at the time of a rapid acceleration request or normal (steady) operation, for example, From the viewpoint of energy management of the entire fuel cell system, it may be preferable to directly control the output power of the fuel cell.
 本発明は、上述した従来技術による問題点を解消するためになされたものであり、様々な発電要求に対しても応答性の高い燃料電池の出力制御を実現可能にすることを目的とする。 The present invention has been made to solve the above-described problems caused by the prior art, and an object of the present invention is to make it possible to realize output control of a fuel cell that is highly responsive to various power generation requirements.
 上述した課題を解決するため、本発明は、燃料電池の出力制御装置において、前記燃料電池の通常運転時又は急速発電要求時に当該燃料電池の出力電力が目標電力となるように制御する電力制御と、前記燃料電池の急速暖機要求時に当該燃料電池の出力電圧が目標電圧となるように制御する電圧制御と、が切換可能となる構成を採用した。 In order to solve the above-described problems, the present invention provides a power control apparatus for controlling the output power of a fuel cell so that the output power of the fuel cell becomes a target power during normal operation of the fuel cell or a request for rapid power generation. In addition, a configuration is adopted in which voltage control for controlling the output voltage of the fuel cell to be a target voltage when the fuel cell is required to be quickly warmed up can be switched.
 なお、急速暖機とは、例えば外気温低下時に発電部位を急速に昇温させて始動性を向上させる際に行なわれる運転である。具体的には、燃料電池に供給される反応ガスが通常(定常)発電時に比して少なく、かつ通常発電に比して電力損失が大きい発電を敢えて行なう運転が該当し、例えばエアストイキ比を通常よりも絞ることによって実現される。
 なお、通常発電の際には、電力損失を抑えて高い発電効率が得られるように、エアストイキ比を所定値以上に設定した状態で燃料電池が運転される。
 また、急速発電要求時とは、例えば車両搭載時における急加速要求時のように、要求発電量が予め設定された所定の閾値を上回るときや、要求発電量が燃料電池の出力電力を上回るとき等をいう。
Note that the rapid warm-up is an operation that is performed, for example, when the temperature of the power generation part is rapidly raised when the outside air temperature decreases to improve the startability. Specifically, this is an operation in which power generation is intentionally performed with less reactive gas supplied to the fuel cell compared to normal (steady) power generation, and power loss is large compared to normal power generation. It is realized by squeezing rather than.
During normal power generation, the fuel cell is operated with the air stoichiometric ratio set to a predetermined value or higher so that high power generation efficiency can be obtained while suppressing power loss.
In addition, when a rapid power generation request is made, for example, when the required power generation amount exceeds a predetermined threshold set in advance, such as when sudden acceleration is requested when the vehicle is mounted, or when the required power generation amount exceeds the output power of the fuel cell. Etc.
 上記構成において、前記燃料電池の出力電圧を昇圧して負荷側へと出力する昇圧コンバータに与えるDuty指令値を演算するDuty演算部を備え、前記燃料電池の出力電力及び目標電力を用いて算出された第1のDuty指令値と、前記燃料電池の出力電圧及び目標電圧を用いて算出された第2のDuty指令値のいずれか一方が前記昇圧コンバータに与えられるように構成されていてもよい。 In the above configuration, a duty calculation unit is provided that calculates a duty command value to be given to a boost converter that boosts the output voltage of the fuel cell and outputs the boosted voltage to the load side, and is calculated using the output power and the target power of the fuel cell. In addition, any one of the first duty command value and the second duty command value calculated using the output voltage and the target voltage of the fuel cell may be provided to the boost converter.
 上記構成において、前記Duty演算部は、前記燃料電池の出力電力及び目標電力に基づいてそれぞれ求められる出力電力変化量及び目標電力変化量を用いて前記第1のDuty指令値を算出するように構成されていてもよい。 In the above configuration, the duty calculation unit is configured to calculate the first duty command value using an output power change amount and a target power change amount obtained based on an output power and a target power of the fuel cell, respectively. May be.
 上記構成において、前記Duty演算部は、前記燃料電池の出力電圧及び目標電圧に基づいてそれぞれ求められる出力電圧変化量及び目標電圧変化量を用いて前記第2のDuty指令値を算出するように構成されていてもよい。 In the above configuration, the duty calculation unit is configured to calculate the second duty command value using an output voltage change amount and a target voltage change amount respectively obtained based on an output voltage and a target voltage of the fuel cell. May be.
 上記構成において、前記昇圧コンバータに与えるDuty指令値として、前記通常運転時又は急速発電要求時には前記第1のDuty指令値を選択し、前記急速暖機要求時には前記第2のDuty指令値を選択する制御切換部を備えるように構成されていてもよい。 In the above configuration, as the duty command value to be given to the boost converter, the first duty command value is selected during the normal operation or when the rapid power generation is requested, and the second duty command value is selected when the rapid warm-up is requested. You may be comprised so that a control switching part may be provided.
 上記構成において、前記昇圧コンバータは、複数相の昇圧回路と、各相における前記昇圧回路を流れるリアクトル電流を均等化するための補正ロジックと、を備えるように構成されていてもよい。 In the above configuration, the boost converter may be configured to include a booster circuit having a plurality of phases and a correction logic for equalizing a reactor current flowing through the booster circuit in each phase.
 上記構成において、前記補正ロジックは、各相を流れるリアクトル電流の平均値を演算する第1の演算部と、各相を流れるリアクトル電流と前記平均値との差分に応じて前記Duty指令値に対する補正値を演算する第2の演算部と、を備えるように構成されていてもよい。 In the above configuration, the correction logic corrects the duty command value according to a first calculation unit that calculates an average value of the reactor current flowing through each phase and a difference between the reactor current flowing through each phase and the average value. And a second calculation unit that calculates a value.
 本発明によれば、様々な発電要求に対しても応答性の高い燃料電池の出力制御を実現することができる。 According to the present invention, it is possible to realize output control of a fuel cell that is highly responsive to various power generation requirements.
本発明に係る燃料電池の出力制御装置の一実施形態を概略的に示した構成図である。1 is a configuration diagram schematically showing one embodiment of an output control device for a fuel cell according to the present invention. FIG. 図1のDuty演算部の第1実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the duty calculating part of FIG. 図1の第1の昇圧コンバータの一実施形態を示すブロック図である。FIG. 2 is a block diagram illustrating an embodiment of a first boost converter of FIG. 1. 図3の補正ロジックの一実施形態を示すブロック図である。FIG. 4 is a block diagram illustrating one embodiment of the correction logic of FIG. 図2のDuty演算部の第1変形例を示すブロック図である。It is a block diagram which shows the 1st modification of the duty calculating part of FIG. 図2のDuty演算部の第2変形例を示すブロック図である。It is a block diagram which shows the 2nd modification of the Duty calculating part of FIG. 図2のDuty演算部の第3変形例を示すブロック図である。It is a block diagram which shows the 3rd modification of the duty calculating part of FIG. 図1のDuty演算部の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the duty calculating part of FIG. 図8のDuty演算部の第1変形例を示すブロック図である。It is a block diagram which shows the 1st modification of the duty calculating part of FIG. 図8のDuty演算部の第2変形例を示すブロック図である。It is a block diagram which shows the 2nd modification of the duty calculating part of FIG. 図8のDuty演算部の第3変形例を示すブロック図である。It is a block diagram which shows the 3rd modification of the duty calculating part of FIG.
 以下、添付図面を参照して、本発明に係る燃料電池の出力制御装置を備えた燃料電池システムの実施形態について説明する。本実施形態では、この燃料電池システムを更に燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。 Hereinafter, an embodiment of a fuel cell system including a fuel cell output control device according to the present invention will be described with reference to the accompanying drawings. In the present embodiment, a case will be described in which this fuel cell system is further used as an on-vehicle power generation system of a fuel cell vehicle (FCHV; Fuel Cell Hybrid Vehicle).
 まず、図1を参照して、燃料電池システムの構成について説明する。
図1に示すように、燃料電池システム1は、反応ガスである酸化ガスと燃料ガスの電気化学反応により電力を発生する燃料電池2を備えており、この燃料電池2の発電状態は制御部11によって制御される。
First, the configuration of the fuel cell system will be described with reference to FIG.
As shown in FIG. 1, the fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction between an oxidizing gas, which is a reaction gas, and the fuel gas. The power generation state of the fuel cell 2 is controlled by a control unit 11. Controlled by.
 燃料電池2は、例えば、高分子電解質形燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。この燃料電池2には、その出力端子電圧を検出するための電圧センサSvと、出力電流を検出するための電流センサSiが取り付けられている。 The fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked. The single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become. The fuel cell 2 is provided with a voltage sensor Sv for detecting the output terminal voltage and a current sensor Si for detecting the output current.
 さらに、燃料電池2には、第1の昇圧コンバータ5が接続されている。この第1の昇圧コンバータ5は、直流の電圧変換器であり、燃料電池2から入力された直流電圧を調整してインバータ4側に出力する機能を有する。また、第1の昇圧コンバータ5には、インバータ4を介して駆動モータ6が接続されていると共に、第2の昇圧コンバータ8を介して二次電池であるバッテリ9及び各種の補機10が接続されている。 Furthermore, a first boost converter 5 is connected to the fuel cell 2. The first boost converter 5 is a DC voltage converter, and has a function of adjusting the DC voltage input from the fuel cell 2 and outputting it to the inverter 4 side. A drive motor 6 is connected to the first boost converter 5 via an inverter 4, and a battery 9 as a secondary battery and various auxiliary machines 10 are connected via a second boost converter 8. Has been.
 第2の昇圧コンバータ8は、直流の電圧変換器であり、バッテリ9から入力された直流電圧を調整してインバータ4側に出力する機能と、燃料電池2または駆動モータ6から入力された直流電圧を調整してバッテリ9に出力する機能と、を有する。このような第2の昇圧コンバータ8の機能により、バッテリ9の充放電が実現される。 The second boost converter 8 is a DC voltage converter, and adjusts the DC voltage input from the battery 9 and outputs it to the inverter 4 side, and the DC voltage input from the fuel cell 2 or the drive motor 6. And adjusting the output to the battery 9. Such a function of the second boost converter 8 realizes charging / discharging of the battery 9.
 バッテリ9は、バッテリセルが積層されて一定の高電圧を端子電圧とし、燃料電池2の出力電力のうち駆動モータ6を含む負荷全体で消費される電力等を指し引いた余剰電力を充電したり、駆動モータ6に対して補助的に電力を供給することが可能になっている。バッテリ9は、その残存容量であるSOC(State Of Charge)が極端に高い領域あるいは低い領域で使用され続けると、劣化が進むおそれがある。このため、例えば急加速要求時や通常運転時は、燃料電池2の出力電力を直接制御することが好ましい。 The battery 9 is charged with surplus power obtained by stacking battery cells, using a constant high voltage as a terminal voltage, and drawing out the power consumed by the entire load including the drive motor 6 from the output power of the fuel cell 2. The drive motor 6 can be supplementarily supplied with electric power. If the battery 9 continues to be used in a region where the SOC (State Of Of Charge), which is the remaining capacity, is extremely high or low, there is a risk of deterioration. For this reason, it is preferable to directly control the output power of the fuel cell 2 when, for example, sudden acceleration is requested or during normal operation.
 駆動モータ6は、例えば三相交流モータであり、燃料電池システム1が搭載される燃料電池車両の主動力源を構成する。駆動モータ6が接続されたインバータ4は、直流電流を三相交流に変換し、駆動モータ6に供給する。 The drive motor 6 is a three-phase AC motor, for example, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted. The inverter 4 to which the drive motor 6 is connected converts a direct current into a three-phase alternating current and supplies it to the drive motor 6.
 制御部11は、燃料電池車両に設けられた加速操作部材(アクセル等)の操作量等に基づいて、システム内の各種機器の動作を制御する上位の制御装置である。この制御部11と第1の昇圧コンバータ5との間には、第1の昇圧コンバータに与えるDuty指令値を演算するためのDuty演算部12が設けられている。つまり、本発明に係る燃料電池の出力制御装置は、本実施形態では、第1の昇圧コンバータ5と、制御部11と、Duty演算部12とを備えて構成されている。 The control unit 11 is a higher-level control device that controls the operation of various devices in the system based on the operation amount of an acceleration operation member (accelerator or the like) provided in the fuel cell vehicle. Between the control unit 11 and the first boost converter 5, a duty calculation unit 12 for calculating a duty command value to be given to the first boost converter is provided. That is, the fuel cell output control apparatus according to the present invention includes the first boost converter 5, the control unit 11, and the duty calculation unit 12 in the present embodiment.
 次に、図2を参照しながら、図1に示すDuty演算部12の第1の実施形態について詳細に説明する。この第1の実施形態に係るDuty演算部12においては、燃料電池2の電力制御に関連する第1の制御器15と、燃料電池2の電圧制御に関連する第2の制御器16とが互いに直列に接続されている。 Next, the first embodiment of the duty calculation unit 12 shown in FIG. 1 will be described in detail with reference to FIG. In the duty calculation unit 12 according to the first embodiment, the first controller 15 related to power control of the fuel cell 2 and the second controller 16 related to voltage control of the fuel cell 2 are mutually connected. Connected in series.
 第1の制御器15には、上位の制御装置である制御部11から出力された燃料電池2の出力電力指令値(以下、電力指令値P_ref)がプラス成分として、また、前記電流センサSiおよび電圧センサSvの各出力値から算出された燃料電池2の出力電力の現在値(以下、電力現在値P_mes)がマイナス成分として、それぞれ入力される。 The first controller 15 includes, as a positive component, an output power command value (hereinafter referred to as power command value P_ref) of the fuel cell 2 output from the control unit 11 which is a host control device, and the current sensor Si and The current value of the output power of the fuel cell 2 calculated from each output value of the voltage sensor Sv (hereinafter, the current power value P_mes) is input as a negative component.
 第1の制御器15では、電力指令値P_refと電力現在値P_mesとの差分値(以下、電力差分値ΔP)、すなわち、燃料電池2への要求電力量に対する発電不足量、又はこの電力差分値ΔPに基づく燃料電池2の出力電圧に対する補正値(以下、電圧補正値V_cor)が算出され、第2の制御器16に出力される。 In the first controller 15, a difference value between the power command value P_ref and the current power value P_mes (hereinafter referred to as a power difference value ΔP), that is, a power generation shortage amount with respect to the required power amount to the fuel cell 2, or this power difference value. A correction value for the output voltage of the fuel cell 2 based on ΔP (hereinafter, voltage correction value V_cor) is calculated and output to the second controller 16.
 第2の制御器16には、この電力差分値ΔP又は電圧補正値V_corと、上位の制御装置である制御部11から出力された燃料電池2の出力電圧指令値(以下、電圧指令値V_ref)とがプラス成分として、また、前記電圧センサSvから出力された燃料電池2の出力電圧の現在値(以下、電圧現在値V_mes)がマイナス成分として、それぞれ入力される。つまり、第2の制御器16には、電圧指令値V_refと電圧現在値V_mesとの電圧差分値ΔVと、第1の制御器15から出力された電力差分値ΔP又は電圧補正値V_corとが入力される。
 そして、第2の制御器16からは、これらの値に基づいて第1の昇圧コンバータ5に対するDuty指令値が出力される。
The second controller 16 includes the power difference value ΔP or the voltage correction value V_cor, and the output voltage command value (hereinafter referred to as voltage command value V_ref) of the fuel cell 2 output from the control unit 11 which is a higher-level control device. And the current value of the output voltage of the fuel cell 2 output from the voltage sensor Sv (hereinafter, voltage current value V_mes) is input as a negative component. That is, the second controller 16 receives the voltage difference value ΔV between the voltage command value V_ref and the current voltage value V_mes, and the power difference value ΔP output from the first controller 15 or the voltage correction value V_cor. Is done.
The second controller 16 outputs a duty command value for the first boost converter 5 based on these values.
 この実施形態では、電力指令値P_refと電圧指令値V_refの両方の入力が受付可能であるだけでなく、そのどちらか一方の指令値に基づく燃料電池の出力制御が可能となる。言い換えれば、燃料電池2の出力電力が目標電力となるように制御する電力制御と、燃料電池2の出力電圧が目標電圧となるように制御する電圧制御とが切換可能になっている。 In this embodiment, not only the input of both the power command value P_ref and the voltage command value V_ref can be accepted, but the output control of the fuel cell based on one of the command values can be performed. In other words, the power control for controlling the output power of the fuel cell 2 to be the target power and the voltage control for controlling the output voltage of the fuel cell 2 to be the target voltage can be switched.
 例えば通常(定常)運転時や急加速(急速発電)要求時には、電圧指令値V_refと電圧現在値V_mesを強制的にゼロに設定する、あるいは電圧指令値V_refを強制的に電圧現在値V_mesと同一値に設定することで、燃料電池2の出力電力を目標値に制御するエネルギーマネージメント主体の制御を実施することが可能になる一方で、例えば急速暖機要求時には、第1の制御器15からの出力値を強制的にゼロに設定することで、燃料電池2の出力電圧を直接目標値に制御することが可能になる。 For example, during normal (steady) operation or sudden acceleration (rapid power generation) request, the voltage command value V_ref and the current voltage value V_mes are forcibly set to zero, or the voltage command value V_ref is forcibly set to the same voltage current value V_mes. By setting the value, it becomes possible to perform the control of the energy management main body that controls the output power of the fuel cell 2 to the target value. On the other hand, for example, at the time of a rapid warm-up request, the first controller 15 By forcibly setting the output value to zero, the output voltage of the fuel cell 2 can be directly controlled to the target value.
 ところで、前記第1実施形態においては、燃料電池2の出力電力や出力電圧を制御するために、第1の昇圧コンバータ5に与えるDuty指令値を決定するものであるが、第1の昇圧コンバータ5が多相化されたコンバータである場合には、各相間の回路インピーダンスのわずかな違いにより、たとえ各相に与えられたDuty指令値が同一であっても、各相のリアクトル電流にばらつきが発生してしまう。そして、かかる場合には、他の相と比較して相対的に電流が多めに流れる相においては、サージ電圧が高めに発生することになり、耐圧破壊までのマージンが相対的に低下してしまう。 By the way, in the first embodiment, in order to control the output power and output voltage of the fuel cell 2, the duty command value to be given to the first boost converter 5 is determined. If the converter is a multi-phase converter, even if the duty command value given to each phase is the same due to a slight difference in circuit impedance between each phase, the reactor current of each phase varies. Resulting in. In such a case, a surge voltage is generated at a higher level in a phase in which a relatively large current flows compared to the other phases, and a margin until breakdown is relatively reduced. .
 そこで、多相化された第1の昇圧コンバータ5を使用する場合には、各相におけるリアクトル電流を均等化するべく、例えば以下のように構成しておくことが好ましい。
 すなわち、第2の制御器16から出力されたDuty指令値に対して実際に第1の昇圧コンバータ5の各相に流れる電流が均等になるような補正Dutyを算出し、この補正DutyをDuty指令値に加算する。
Therefore, when using the first step-up converter 5 that has been made multiphase, it is preferable to configure, for example, the following in order to equalize the reactor current in each phase.
That is, a correction duty is calculated so that the currents actually flowing in the respective phases of the first boost converter 5 are equal to the duty command value output from the second controller 16, and this correction duty is calculated as the duty command. Add to the value.
 具体的には、例えば図3に示すように、第1の昇圧コンバータ5は、U相,V相,W相の各昇圧回路51,52,53の他に、各相のリアクトル電流値をそれぞれ検出するセンサ54,55,56と、これらセンサ54,55,56からのリアクトル電流値に基づき前記補正Dutyを算出する補正ロジック57とを備えてなる。
 この補正ロジック57は、例えば図4に示すように、平均化処理部(第1の演算部)571とPI制御部(第2の演算部)572とを備えてなり、各相におけるリアクトル電流の平均値を平均化処理部571で算出し、この平均値よりも大きなリアクトル電流が流れている相のDuty指令値をPI制御部572におけるPI制御(比例動作と積分動作を組み合わせた制御)によって小さくする。
Specifically, for example, as shown in FIG. 3, the first boost converter 5 has a reactor current value for each phase in addition to the U-phase, V-phase, and W- phase boost circuits 51, 52, and 53. Sensors 54, 55, 56 to be detected, and correction logic 57 for calculating the correction duty based on the reactor current values from these sensors 54, 55, 56 are provided.
For example, as shown in FIG. 4, the correction logic 57 includes an averaging processing unit (first calculation unit) 571 and a PI control unit (second calculation unit) 572, and the reactor current in each phase The average value is calculated by the averaging processing unit 571, and the duty command value of the phase in which the reactor current larger than the average value is flowing is reduced by PI control (control in which proportional operation and integration operation are combined) in the PI control unit 572. To do.
 なお、図4においては、U相に対する補正Dutyの演算に関連する部分についてのみ示しており、他のV相及びW相に対する補正Dutyの演算に関連する部分については図示を省略しているが、これらV相及びW相においてもU相と同様に平均化処理部とPI制御部とによって補正Dutyが演算される。また、図4では3相について例示しているが、複数相であれば何相であっても同様の構成が適用可能である。 In FIG. 4, only the portion related to the calculation of the correction duty for the U phase is shown, and the portion related to the calculation of the correction duty for the other V and W phases is omitted. In the V phase and the W phase, the correction duty is calculated by the averaging processing unit and the PI control unit as in the U phase. Further, although FIG. 4 illustrates three phases, the same configuration can be applied to any number of phases as long as the phases are plural.
 以上の第1の昇圧コンバータ5によれば、燃料電池2の電力制御あるいは電圧制御を実施しつつ、たとえ各相間の回路インピーダンスにわずかな違いがあっても、各相におけるリアクトル電流が均等化される内部処理が行なわれるので、回路インピーダンスの違いひいてはサージ電圧のばらつきに起因する耐圧破壊までの相対的なマージン低下を抑制することが可能になる。 According to the first boost converter 5 described above, the reactor current in each phase is equalized even when there is a slight difference in the circuit impedance between the phases while performing power control or voltage control of the fuel cell 2. Therefore, it is possible to suppress a relative margin decrease until breakdown due to a difference in circuit impedance and a variation in surge voltage.
 なお、補正Dutyの算出方法は上記の方法に限らず、例えば第1の昇圧コンバータの工場出荷時に各相の回路インピーダンスを測定しておき、他の相よりもインピーダンスの高い相がある場合には、その相に与えるDuty指令値を他の相よりも高くなるよう予め設定しておいてもよい。その場合の設定は、例えば各相のインピーダンスの配分に応じて決定してもよい。 The method for calculating the correction duty is not limited to the above method. For example, when the circuit impedance of each phase is measured at the time of factory shipment of the first boost converter and there is a phase having a higher impedance than the other phases. The duty command value to be given to the phase may be set in advance so as to be higher than the other phases. The setting in that case may be determined according to, for example, the distribution of the impedance of each phase.
<第1実施形態の変形例>
 次に、図5乃至図7を参照しながら、第1の実施形態におけるDuty演算部12の変形例について説明する。
[第1変形例]
 図5に示すように、第1変形例のDuty演算部20において、第1の制御器21には、電力指令値P_refがプラス成分として、また、電力現在値P_mesがマイナス成分として、それぞれ入力される。ここまでは、第1の実施形態と同じである。
<Modification of First Embodiment>
Next, a modification of the duty calculation unit 12 in the first embodiment will be described with reference to FIGS.
[First Modification]
As shown in FIG. 5, in the duty calculation unit 20 of the first modification, the power command value P_ref is input to the first controller 21 as a positive component, and the current power value P_mes is input as a negative component. The Up to this point, the process is the same as in the first embodiment.
 しかし、本変形例の第1の制御器21では、電力指令値P_refの微分値(以下、電力微分指令値Pdot_ref)、すなわち、電力指令値P_refの所定時間当たりの変化量が算出され、これが第2の制御器22に出力される。そして、第2の制御器22には、この電力微分指令値Pdot_refと電圧指令値Vrefとがプラス成分として、また、電力現在値Pmesの微分値(以下、電力微分現在値Pdot_mes)、すなわち、電力現在値P_mesの所定時間当たりの変化量と、前記電圧センサSvからの電圧現在値V_mesとがマイナス成分として、それぞれ入力される。 However, in the first controller 21 of the present modification, the differential value of the power command value P_ref (hereinafter referred to as power differential command value Pdot_ref), that is, the amount of change per predetermined time of the power command value P_ref is calculated. Is output to the second controller 22. Then, the second controller 22 has the power differential command value Pdot_ref and the voltage command value Vref as positive components, and the differential value of the current power value Pmes (hereinafter, power differential current value Pdot_mes), that is, the power The change amount per predetermined time of the current value P_mes and the current voltage value V_mes from the voltage sensor Sv are input as negative components.
 つまり、第2の制御器22には、電力微分指令値Pdot_refと電力微分現在値Pdot_mesとの差分値である電力微分差分値ΔPdotと、電圧指令値V_refと電圧現在値V_mesとの差分値である電圧差分値ΔVが入力され、これらの値に基づいて第1の昇圧コンバータ5に対するDuty指令値が出力される。 That is, the second controller 22 includes a power differential difference value ΔPdot, which is a difference value between the power differential command value Pdot_ref and the current power differential value Pdot_mes, and a differential value between the voltage command value V_ref and the current voltage value V_mes. Voltage difference value ΔV is input, and a duty command value for first boost converter 5 is output based on these values.
 この変形例では、前記第1の実施形態と比較して、電力差分値ΔPの代わりにその微分値である電力微分差分値ΔPdotが第2の制御器22に入力されてDuty指令値が出力されるので、特に通常運転時や急加速要求時等には、より応答性の高い燃料電池2の出力制御が可能となる。 In this modification, compared with the first embodiment, the differential power value ΔPdot, which is the differential value, is input to the second controller 22 instead of the differential power value ΔP, and the duty command value is output. Therefore, it is possible to control the output of the fuel cell 2 with higher responsiveness particularly during normal operation or when sudden acceleration is requested.
[第2変形例]
 図6に示すように、第2変形例のDuty演算部30において、第1の制御器15には、電力指令値P_refがプラス成分として、また、電力現在値P_mesがマイナス成分として、それぞれ入力される。そして、第1の制御器15では、電力指令値P_refと電力現在値P_mesとの差分値である電力差分値ΔP、又はこの電力差分値ΔPに基づく燃料電池2の出力電圧に対する補正値V_corが算出され、第2の制御器16に出力される。ここまでは、第1の実施形態と同じである。
[Second Modification]
As shown in FIG. 6, in the duty calculation unit 30 of the second modified example, the power command value P_ref is input to the first controller 15 as a positive component, and the current power value P_mes is input as a negative component. The The first controller 15 calculates a power difference value ΔP that is a difference value between the power command value P_ref and the current power value P_mes, or a correction value V_cor for the output voltage of the fuel cell 2 based on the power difference value ΔP. And output to the second controller 16. Up to this point, the process is the same as in the first embodiment.
 しかし、本変形例の第2の制御器32には、第1の制御器15から出力された電力差分値ΔP又は電圧補正値V_corと、電圧指令値V_refの微分値(以下、電圧微分指令値Vdot_ref)、すなわち、電圧指令値V_refの所定時間当たりの変化量がプラス成分として、また、電圧現在値V_mesの微分値(以下、電圧微分現在値Pdot_mes)、すなわち、電圧現在値V_mesの所定時間当たりの変化量がマイナス成分として、それぞれ入力される。
 つまり、第2の制御器32には、電圧差分値ΔP又は電圧補正値V_corと、電圧微分指令値Vdot_refと電圧微分現在値Vdot_mesとの差分値である電圧微分差分値ΔVdotとが入力され、これらの値に基づいて第1の昇圧コンバータ5に対するDuty指令値が出力される。
However, the second controller 32 of the present modification includes a power differential value ΔP or a voltage correction value V_cor output from the first controller 15 and a differential value of the voltage command value V_ref (hereinafter, voltage differential command value). Vdot_ref), that is, the amount of change of the voltage command value V_ref per predetermined time is a positive component, and the differential value of the current voltage value V_mes (hereinafter, voltage differential current value Pdot_mes), that is, per predetermined time of the current voltage value V_mes. Are input as negative components.
That is, the second controller 32 receives the voltage difference value ΔP or the voltage correction value V_cor, and the voltage differential difference value ΔVdot that is the difference value between the voltage differential command value Vdot_ref and the voltage differential current value Vdot_mes. Based on this value, the duty command value for the first boost converter 5 is output.
 この変形例では、前記第1の実施形態と比較して、電圧指令値V_refと電圧現在値V_mesとの差分値である電圧差分値ΔVの代わりにその微分値である電圧微分差分値ΔVdotが第2の制御器32に入力されてDuty指令値が出力されるので、例えば急速暖機要求時などには、より応答性の高い燃料電池2の出力制御が可能となる。 In this modified example, the voltage differential difference value ΔVdot, which is a differential value, instead of the voltage difference value ΔV, which is a difference value between the voltage command value V_ref and the current voltage value V_mes, is compared with the first embodiment. Since the duty command value is output by being input to the second controller 32, output control of the fuel cell 2 with higher responsiveness is possible, for example, when a quick warm-up is requested.
[第3変形例]
 図7に示すように、第3変形例のDuty演算部40において、第1の制御器21には、電力指令値P_refがプラス成分として、また、電力現在値P_mesがマイナス成分として、それぞれ入力され、これらの値に基づいて電力微分指令値Pdot_refが算出され、第2の制御器42に出力される。ここまでは、第1変形例と同じである。
[Third Modification]
As shown in FIG. 7, in the duty calculation unit 40 of the third modified example, the power command value P_ref is input to the first controller 21 as a positive component, and the current power value P_mes is input as a negative component. Based on these values, a power differential command value Pdot_ref is calculated and output to the second controller 42. Up to this point, it is the same as the first modification.
 しかし、本変形例の第2の制御器42には、第1の制御器21から出力された電力微分指令値Pdot_refと、電圧微分指令値Vdot_refとがプラス成分として、また、例えば第1の制御器21から出力された電力微分現在値Pdot_mesと、電圧微分現在値Pdot_mesとがマイナス成分として入力される。
 つまり、第2の制御器42には、電力微分指令値Pdot_refと電力微分現在値Pdot_mesとの差分値である電力微分差分値ΔPdotと、電圧微分指令値Vdot_refと電圧微分現在値Vdot_mesとの差分値である電圧微分差分値ΔVdotとが入力され、これらの値に基づいて第1の昇圧コンバータに対するDuty指令値が出力される。
However, the second controller 42 of the present modification includes the power differentiation command value Pdot_ref and the voltage differentiation command value Vdot_ref output from the first controller 21 as positive components, for example, the first control. The power differential current value Pdot_mes and the voltage differential current value Pdot_mes output from the device 21 are input as negative components.
That is, the second controller 42 includes a power differential difference value ΔPdot that is a difference value between the power differential command value Pdot_ref and the current power differential value Pdot_mes, and a differential value between the voltage differential command value Vdot_ref and the voltage differential current value Vdot_mes. The voltage differential difference value ΔVdot is input, and a duty command value for the first boost converter is output based on these values.
 この変形例では、前記第1の実施形態や第1,第2変形例と比較して、電力微分差分値ΔPdot及び電圧微分差分値ΔVdotが第2の制御器42に入力されてDuty指令値が出力されるので、通常運転時、急速暖機要求時、急加速要求時など、多様な状況に対して応答性の高い燃料電池2の出力制御が可能となる。 In this modification, compared with the first embodiment and the first and second modifications, the power differential difference value ΔPdot and the voltage differential difference value ΔVdot are input to the second controller 42 and the duty command value is Since it is output, the output control of the fuel cell 2 having high responsiveness to various situations such as normal operation, rapid warm-up request, and rapid acceleration request becomes possible.
<第2の実施形態>
 次に、図8を参照しながら、本発明の第2の実形態施に係るDuty演算部60について詳細に説明する。
<Second Embodiment>
Next, the duty calculation unit 60 according to the second embodiment of the present invention will be described in detail with reference to FIG.
 前記第1の実施形態では、燃料電池2の電力制御に関連する第1の制御器15と、燃料電池2の電圧制御に関連する第2の制御器16とが互いに直列に接続されていたのに対し、本実施形態では、第1の制御器61と第2の制御器62とが互いに並列に接続されている点で両実施形態は相違している。 In the first embodiment, the first controller 15 related to the power control of the fuel cell 2 and the second controller 16 related to the voltage control of the fuel cell 2 are connected in series with each other. On the other hand, in the present embodiment, the two embodiments are different in that the first controller 61 and the second controller 62 are connected in parallel to each other.
 本実施形態における第1の制御器61には、電力指令値V_refがプラス成分として、また、電力現在値P_mesがマイナス成分として、それぞれ入力される。つまり、第1の制御器61には、電力指令値P_refと電力現在値P_mesとの差分値である電力差分値ΔP、言い換えれば、燃料電池2への要求電力量に対する発電不足量が入力される。ここまでは、前記第1の実施形態と同じである。
 しかし、本実施形態における第1の制御器61は、この電力差分値ΔPに基づいて第1の昇圧コンバータ5に対する第1のDuty指令値を出力する点で第1の実施形態と相違している。
The first controller 61 in the present embodiment receives the power command value V_ref as a positive component and the current power value P_mes as a negative component. That is, the first controller 61 receives a power difference value ΔP that is a difference value between the power command value P_ref and the current power value P_mes, in other words, a power generation shortage amount with respect to the required power amount for the fuel cell 2. . Up to this point, the process is the same as in the first embodiment.
However, the first controller 61 in the present embodiment is different from the first embodiment in that it outputs a first duty command value for the first boost converter 5 based on the power difference value ΔP. .
 また、本実施形態における第2の制御器62には、電圧指令値V_refがプラス成分として、また、電圧現在値V_mesがマイナス成分として、それぞれ入力される。つまり、第2の制御器62には、電圧指令値V_refと電圧現在値V_mesとの差分値である電圧差分値ΔVが入力され、この電圧差分値ΔVに基づいて第1の昇圧コンバータ5に対する第2のDuty指令値が出力される。 Also, the voltage controller value V_ref is input as a positive component and the current voltage value V_mes is input as a negative component to the second controller 62 in the present embodiment. In other words, the second controller 62 receives a voltage difference value ΔV that is a difference value between the voltage command value V_ref and the current voltage value V_mes, and the second controller 62 outputs a voltage difference value ΔV to the first boost converter 5 based on the voltage difference value ΔV. 2 Duty command value is output.
 第1の制御器61と第2の制御器62の後段(下流)には、スイッチ(制御切換部)63が設けられている。このスイッチ63は、第1の昇圧コンバータ5に対して与える最終的なDuty指令値を選択するためものであり、燃料電池2を電力制御することが好ましい例えば通常運転時や急加速要求時は、第1の制御器61から出力される第1のDuty指令値を選択し、燃料電池2を電圧制御することが好ましい例えば急速暖機要求時は、第2の制御器62から出力される第2のDuty指令値を選択するように、例えば上位の制御装置である制御部11からの切換指令に基づいて切換動作が制御される。 A switch (control switching unit) 63 is provided downstream (downstream) of the first controller 61 and the second controller 62. The switch 63 is for selecting a final duty command value to be given to the first boost converter 5, and it is preferable to control the power of the fuel cell 2, for example, during normal operation or when sudden acceleration is requested. It is preferable to select the first duty command value output from the first controller 61 and to control the voltage of the fuel cell 2. For example, when a rapid warm-up request is requested, the second duty output value is output from the second controller 62. For example, the switching operation is controlled based on a switching command from the control unit 11, which is a higher-level control device, so as to select the duty command value.
 この実施形態においても、電力指令値P_refと電圧指令値V_refの両方の入力が受け付け可能であるだけでなく、そのどちらか一方の指令値に基づく燃料電池2の出力制御が可能となる。従って、例えば通常運転時や急加速要求時には、燃料電池2の出力電力を目標値に制御するエネルギーマネージメント主体の制御を選択して実行することが可能になる一方で、例えば急速暖機要求時には、燃料電池2の出力電圧を直接目標値に制御する制御を選択して実行することが可能になる。 Also in this embodiment, not only can the input of both the power command value P_ref and the voltage command value V_ref be accepted, but the output control of the fuel cell 2 based on one of the command values can be performed. Accordingly, for example, during normal operation or when sudden acceleration is requested, it is possible to select and execute the control of the energy management entity that controls the output power of the fuel cell 2 to the target value, while for example, when requesting rapid warm-up, Control for directly controlling the output voltage of the fuel cell 2 to the target value can be selected and executed.
<第2実施形態の変形例>
 前記第2実施形態においても、前記第1実施形態に対する変形と同様の変形を適用することが可能である。
<Modification of Second Embodiment>
Also in the second embodiment, it is possible to apply a modification similar to the modification of the first embodiment.
[第1変形例]
 図9に示すように、第1変形例に係るDuty演算部70において、第1の制御器71には、電力微分指令値Pdot_refがプラス成分として、また、電力微分現在値Pdot_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第1のDuty指令値が出力される。また、第2の制御器62には、第2実施形態と同様に、電圧指令値P_refがプラス成分として、また、電圧現在値P_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第2のDuty指令値が出力される。
[First Modification]
As shown in FIG. 9, in the duty calculation unit 70 according to the first modified example, the first controller 71 receives the power differentiation command value Pdot_ref as a positive component and the power differentiation current value Pdot_mes as a negative component. Based on these values, the first duty command value for the first boost converter 5 is output. Similarly to the second embodiment, the second controller 62 receives the voltage command value P_ref as a positive component and the current voltage value P_mes as a negative component. Based on these values, the first controller 62 A second duty command value for boost converter 5 is output.
 この変形例では、前記第2の実施形態と比較して、電力指令値P_refと電力現在値P_mesとの差分値である電力差分値ΔPの代わりにその微分値である電力微分差分値ΔPdotが第1の制御器71に入力されて第1のDuty指令値が出力されるので、通常運転時又は急加速要求時に第1のDuty指令値が選択された場合には、より応答性の高い燃料電池2の出力制御が可能となる。 In this modification, compared with the second embodiment, the power differential difference value ΔPdot that is a differential value of the power difference value ΔPdot that is the difference value between the power command value P_ref and the current power value P_mes is the first difference. Since the first duty command value is output to the first controller 71 and the first duty command value is selected at the time of normal operation or sudden acceleration request, a fuel cell with higher responsiveness is selected. 2 output control becomes possible.
[第2変形例]
 図10に示すように、第2変形例に係るDuty演算部80において、第1の制御器61には、第2実施形態と同様、電力指令値P_refがプラス成分として、また、電力現在値P_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第1のDuty指令値が出力される。しかし、第2の制御器82には、電圧微分指令値Pdot_refがプラス成分として、また、電圧微分現在値Pdot_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第2のDuty指令値が出力される。
[Second Modification]
As shown in FIG. 10, in the duty calculation unit 80 according to the second modification, the first controller 61 receives the power command value P_ref as a positive component and the current power value P_mes, as in the second embodiment. Is input as a negative component, and the first duty command value for the first boost converter 5 is output based on these values. However, the second controller 82 is supplied with the voltage differentiation command value Pdot_ref as a positive component and the voltage differentiation current value Pdot_mes as a negative component. Based on these values, the second controller 82 supplies the second differential with respect to the first boost converter 5. The duty command value is output.
 この変形例では、前記第2実施形態と比較して、電圧指令値V_refと電圧現在値V_mesとの差分値である電圧差分値ΔPの代わりにその微分値である電圧微分差分値ΔVdotが第2の制御器82に入力されて第2のDuty指令値が出力されるので、例えば急速暖機要求時に第2のDuty指令値が選択された場合には、より応答性の高い燃料電池2の出力制御が可能となる。 In this modified example, as compared with the second embodiment, a voltage differential difference value ΔVdot which is a differential value of the voltage difference value ΔPdot which is a difference value between the voltage command value V_ref and the current voltage value V_mes is a second value. Therefore, when the second duty command value is selected at the time of a quick warm-up request, for example, the output of the fuel cell 2 with higher response is output. Control becomes possible.
[第3変形例]
 図11に示すように、第3変形例に係るDuty演算部90において、第1の制御器71には、第1変形例と同様、電力微分指令値Pdot_refがプラス成分として、また、電力微分現在値Pdot_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第1のDuty指令値が出力される。また、第2の制御器82には、第2変形例と同様、電圧微分指令値Pdot_refがプラス成分として、また、電圧微分現在値Pdot_mesがマイナス成分として入力され、これらの値に基づいて第1の昇圧コンバータ5に対する第2のDuty指令値が出力される。
[Third Modification]
As shown in FIG. 11, in the duty calculation unit 90 according to the third modified example, the first controller 71 has the power differential command value Pdot_ref as a positive component and the power differential current as in the first modified example. The value Pdot_mes is input as a negative component, and a first duty command value for the first boost converter 5 is output based on these values. Similarly to the second modified example, the second controller 82 receives the voltage differentiation command value Pdot_ref as a positive component and the voltage differentiation current value Pdot_mes as a negative component, and the first controller based on these values. The second duty command value for the step-up converter 5 is output.
 この変形例では、前記第2の実施形態や第1,2変形例と比較して、電力微分指令値Pdot_refと電力微分現在値Pdot_mesとの差分値である電力微分差分値ΔPdotと、電圧微分指令値Pdot_refと電圧微分現在値Pdot_mesとの差分値である電圧微分差分値ΔVdotがそれぞれ第1の制御器71及び第2の制御器82に入力されて、第1のDuty指令値又は第2のDutyのいずれか一方が選択されて出力されるので、通常運転時、急速暖機要求時、急加速要求時など、様々な燃料電池2の運転状態に応じて応答性の高い燃料電池2の出力制御が可能となる。 In this modified example, compared with the second embodiment and the first and second modified examples, a power differential difference value ΔPdot which is a differential value between the power differential command value Pdot_ref and the current power differential value Pdot_mes, and a voltage differential command A voltage differential difference value ΔVdot, which is a difference value between the value Pdot_ref and the voltage differential current value Pdot_mes, is input to the first controller 71 and the second controller 82, respectively, and the first duty command value or the second duty Since either one of these is selected and output, output control of the fuel cell 2 with high responsiveness according to various operating states of the fuel cell 2 such as normal operation, rapid warm-up request, and rapid acceleration request Is possible.
 なお、上述した第2実施形態およびその第1乃至第3変形例において、各種の微分値は1回微分値についてのみ説明したが、微分回数は任意の複数回でもよい。 In the above-described second embodiment and the first to third modifications thereof, the various differential values have been described only for the single differential value, but the number of differential operations may be any plural number.
 また、上述した実施形態においては、本発明に係る燃料電池の出力制御装置を燃料電池車両に搭載した場合について説明しているが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも本発明に係る燃料電池の出力制御装置を適用することができる。また、本発明に係る燃料電池の出力制御装置、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用することもできる。 Further, in the above-described embodiment, the case where the fuel cell output control device according to the present invention is mounted on a fuel cell vehicle has been described, but various mobile bodies other than the fuel cell vehicle (robot, ship, aircraft, etc.) The fuel cell output control apparatus according to the present invention can also be applied. Further, the present invention can also be applied to an output control device for a fuel cell according to the present invention and a stationary power generation system used as power generation equipment for buildings (housing, buildings, etc.).
 1…燃料電池システム、2…燃料電池、4…インバータ、5…第1の昇圧コンバータ、6…駆動モータ、8…第2の昇圧コンバータ、9…バッテリ、10…補機、11…制御部、12,20,30,40,60,70,80,90…Duty演算部、…第1の制御器、…第2の制御器、51,52,53…各昇圧回路、54,55,56…センサ、57…補正ロジック、63…スイッチ(制御切換部)、571…平均化処理部(第1の演算部)、572…PI制御部(第2の演算部) DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel cell, 4 ... Inverter, 5 ... 1st boost converter, 6 ... Drive motor, 8 ... 2nd boost converter, 9 ... Battery, 10 ... Auxiliary machine, 11 ... Control part, 12, 20, 30, 40, 60, 70, 80, 90 ... Duty calculation unit, ... first controller, ... second controller, 51, 52, 53 ... each booster circuit, 54, 55, 56 ... Sensor 57... Correction logic 63 Switch (control switching unit) 571 Averaging processing unit (first arithmetic unit) 572 PI controller (second arithmetic unit)

Claims (7)

  1.  燃料電池の出力を制御する装置であって、
     前記燃料電池の通常運転時又は急速発電要求時に当該燃料電池の出力電力が目標電力となるように制御する電力制御と、前記燃料電池の急速暖機要求時に当該燃料電池の出力電圧が目標電圧となるように制御する電圧制御と、が切換可能である燃料電池の出力制御装置。
    An apparatus for controlling the output of a fuel cell,
    Power control for controlling the output power of the fuel cell to be a target power at the time of normal operation of the fuel cell or a request for rapid power generation, and the output voltage of the fuel cell at a target voltage when a rapid warm-up request is requested An output control device for a fuel cell, which can be switched between voltage control to be controlled to be
  2.  請求項1に記載の燃料電池の出力制御装置において、
     前記燃料電池の出力電圧を昇圧して負荷側へと出力する昇圧コンバータに与えるDuty指令値を演算するDuty演算部を備え、
     前記燃料電池の出力電力及び目標電力を用いて算出された第1のDuty指令値と、前記燃料電池の出力電圧及び目標電圧を用いて算出された第2のDuty指令値のいずれか一方が前記昇圧コンバータに与えられる燃料電池の出力制御装置。
    In the fuel cell output control device according to claim 1,
    A duty calculation unit for calculating a duty command value to be given to a boost converter that boosts the output voltage of the fuel cell and outputs the boosted voltage to the load side;
    One of the first duty command value calculated using the output power and target power of the fuel cell and the second duty command value calculated using the output voltage and target voltage of the fuel cell is the A fuel cell output control device applied to a boost converter.
  3.  請求項2に記載の燃料電池の出力制御装置において、
     前記Duty演算部は、前記燃料電池の出力電力及び目標電力に基づいてそれぞれ求められる出力電力変化量及び目標電力変化量を用いて前記第1のDuty指令値を算出する燃料電池の出力制御装置。
    In the fuel cell output control device according to claim 2,
    The duty calculation unit is a fuel cell output control device that calculates the first duty command value by using an output power change amount and a target power change amount respectively obtained based on an output power and a target power of the fuel cell.
  4.  請求項2に記載の燃料電池の出力制御装置において、
     前記Duty演算部は、前記燃料電池の出力電圧及び目標電圧に基づいてそれぞれ求められる出力電圧変化量及び目標電圧変化量を用いて前記第2のDuty指令値を算出する燃料電池の出力制御装置。
    In the fuel cell output control device according to claim 2,
    The duty calculation unit is a fuel cell output control device that calculates the second duty command value using an output voltage change amount and a target voltage change amount respectively obtained based on an output voltage and a target voltage of the fuel cell.
  5.  請求項2乃至4に記載の燃料電池の出力制御装置において、
     前記昇圧コンバータに与えるDuty指令値として、前記通常運転時又は急速発電要求時には前記第1のDuty指令値を選択し、前記急速暖機要求時には前記第2のDuty指令値を選択する制御切換部を備える燃料電池の出力制御装置。
    In the fuel cell output control device according to claim 2,
    As a duty command value to be given to the boost converter, a control switching unit that selects the first duty command value at the time of the normal operation or rapid power generation request, and selects the second duty command value at the time of the rapid warm-up request. An output control device for a fuel cell.
  6.  請求項2乃至5に記載の燃料電池の出力制御装置において、
     前記昇圧コンバータは、複数相の昇圧回路と、
     各相における前記昇圧回路を流れるリアクトル電流を均等化するための補正ロジックと、を備える燃料電池の出力制御装置。
    In the fuel cell output control device according to any one of claims 2 to 5,
    The boost converter includes a multi-phase boost circuit;
    And a correction logic for equalizing a reactor current flowing through the booster circuit in each phase.
  7.  請求項6に記載の燃料電池の出力制御装置において、
     前記補正ロジックは、前記各相を流れるリアクトル電流の平均値を演算する第1の演算部と、
     各相を流れるリアクトル電流と前記平均値との差分に応じて前記Duty指令値に対する補正値を演算する第2の演算部と、を備える燃料電池の出力制御装置。
     
    The fuel cell output control device according to claim 6,
    The correction logic includes a first calculation unit that calculates an average value of the reactor current flowing through each phase;
    A fuel cell output control device comprising: a second calculation unit that calculates a correction value for the duty command value according to a difference between a reactor current flowing through each phase and the average value.
PCT/JP2010/069819 2010-11-08 2010-11-08 Fuel cell output control device WO2012063300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069819 WO2012063300A1 (en) 2010-11-08 2010-11-08 Fuel cell output control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069819 WO2012063300A1 (en) 2010-11-08 2010-11-08 Fuel cell output control device

Publications (1)

Publication Number Publication Date
WO2012063300A1 true WO2012063300A1 (en) 2012-05-18

Family

ID=46050484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069819 WO2012063300A1 (en) 2010-11-08 2010-11-08 Fuel cell output control device

Country Status (1)

Country Link
WO (1) WO2012063300A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895527A (en) * 2012-12-24 2014-07-02 现代自动车株式会社 Boost control method and system for boost converter
JP2014166110A (en) * 2013-02-27 2014-09-08 Honda Motor Co Ltd Two power supply load drive system and fuel-cell vehicle
JPWO2013065132A1 (en) * 2011-11-01 2015-04-02 トヨタ自動車株式会社 Fuel cell output control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580867A (en) * 1991-09-19 1993-04-02 Toshiba Corp Power conditioner for fuel battery
JP2006309977A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Fuel cell system
JP2007048628A (en) * 2005-08-10 2007-02-22 Toyota Motor Corp Fuel cell power supply controller, fuel cell system, and method for controlling fuel cell power supply
JP2009064754A (en) * 2007-09-10 2009-03-26 Honda Motor Co Ltd Fuel cell system and its starting method
JP2009070574A (en) * 2007-09-10 2009-04-02 Nissan Motor Co Ltd Fuel cell system and its control method
JP2009152131A (en) * 2007-12-21 2009-07-09 Toyota Motor Corp Fuel cell system
JP2009159689A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580867A (en) * 1991-09-19 1993-04-02 Toshiba Corp Power conditioner for fuel battery
JP2006309977A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Fuel cell system
JP2007048628A (en) * 2005-08-10 2007-02-22 Toyota Motor Corp Fuel cell power supply controller, fuel cell system, and method for controlling fuel cell power supply
JP2009064754A (en) * 2007-09-10 2009-03-26 Honda Motor Co Ltd Fuel cell system and its starting method
JP2009070574A (en) * 2007-09-10 2009-04-02 Nissan Motor Co Ltd Fuel cell system and its control method
JP2009152131A (en) * 2007-12-21 2009-07-09 Toyota Motor Corp Fuel cell system
JP2009159689A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013065132A1 (en) * 2011-11-01 2015-04-02 トヨタ自動車株式会社 Fuel cell output control device
CN103895527A (en) * 2012-12-24 2014-07-02 现代自动车株式会社 Boost control method and system for boost converter
JP2014166110A (en) * 2013-02-27 2014-09-08 Honda Motor Co Ltd Two power supply load drive system and fuel-cell vehicle

Similar Documents

Publication Publication Date Title
JP4506980B2 (en) Hybrid fuel cell system and voltage conversion control method thereof
JP5812523B2 (en) Fuel cell system
JP5062518B2 (en) Fuel cell system
JP5863062B2 (en) Power system
US8663862B2 (en) Fuel cell system
JP4967588B2 (en) Converter control device
WO2007066676A1 (en) Multi-phase converter, hybrid fuel cell system, and power supply control method
US9450261B2 (en) Fuel cell system with regulation of DC/DC converter passing power
EP3335924B1 (en) Power adjustment system and control method therefor
KR102119779B1 (en) Power supply system of fuel cell and control method of the same
JP5786952B2 (en) Fuel cell output control device
JP4314165B2 (en) Hybrid fuel cell system
JP2015138760A (en) power output device
US9987931B2 (en) Method of disconnecting secondary battery and electric power supply system
WO2012063300A1 (en) Fuel cell output control device
JP5780126B2 (en) Fuel cell system
JP2010057284A (en) Vehicle power supply
JP2018032580A (en) Fuel cell system
JP6819855B2 (en) Fuel cell system
WO2010137142A1 (en) Fuel cell system
JP2010244843A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP