WO2010137142A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2010137142A1
WO2010137142A1 PCT/JP2009/059718 JP2009059718W WO2010137142A1 WO 2010137142 A1 WO2010137142 A1 WO 2010137142A1 JP 2009059718 W JP2009059718 W JP 2009059718W WO 2010137142 A1 WO2010137142 A1 WO 2010137142A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
converter
output
cell system
Prior art date
Application number
PCT/JP2009/059718
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 貴彦
伸之 北村
晃太 真鍋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/059718 priority Critical patent/WO2010137142A1/en
Publication of WO2010137142A1 publication Critical patent/WO2010137142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • Patent Document 1 discloses a multi-output DC-DC converter having a plurality of current resonance type DC-DC converters. This multi-output DC-DC converter outputs a voltage corresponding to each load to the load connected to each current resonance type DC-DC converter.
  • the voltage applied to the input side of the load may rise abnormally.
  • various elements to which the increased voltage is applied may be damaged due to overvoltage.
  • the present invention has been made to solve the above-described problems caused by the prior art, and an object thereof is to provide a fuel cell system capable of avoiding a failure due to an overvoltage of an element.
  • a fuel cell system includes a fuel cell that receives supply of a fuel gas and an oxidant gas and generates power by an electrochemical reaction between the fuel gas and the oxidant gas, and a power generated by the fuel cell
  • An electric power unit that can charge the battery, an electric power consuming device that consumes electric power from the fuel cell and the electric power unit, and a first voltage conversion unit that is disposed between the fuel cell and the electric power consuming device
  • a second voltage converter disposed between the livestock power unit and the power consuming device, a determination unit that determines whether or not a supply voltage supplied to the power consuming device abnormally increases, and Output limiting means for limiting the output of the first voltage converter when the determination means determines that the supply voltage is abnormally increased.
  • the supply voltage supplied to the power consuming device is abnormally increased.
  • the output of the first voltage conversion unit is determined. Since it can restrict
  • the determination unit determines that the supply voltage abnormally increases when the fuel cell is generating power and the supply voltage reaches a predetermined upper limit voltage value or more. It is good.
  • the output of the first voltage conversion unit is limited to suppress an abnormal increase in supply voltage. It becomes possible.
  • the predetermined upper limit voltage value may be set within a range in which various elements to which the supply voltage is applied are not damaged.
  • the determination voltage is abnormally increased. It may be determined.
  • the output of the first voltage conversion unit is limited to suppress an abnormal increase in supply voltage. It becomes possible to do.
  • the predetermined upper limit increase rate is calculated by adding the assumed voltage even when the voltage assumed as the supply voltage after being increased for a predetermined period according to the predetermined upper limit increase rate is supplied. It is good also as setting in the range where the various elements to be damaged do not damage.
  • the output limiting unit reduces the duty ratio that fluctuates by controlling an on / off cycle of a switch included in the first voltage conversion unit, whereby the first voltage conversion unit May be limited.
  • the output of the first voltage converter can be limited, so that it is possible to suppress the abnormal increase of the supply voltage.
  • the output limiting unit may limit the output of the first voltage converter by setting the duty ratio to 0.
  • the output limiting unit may limit the output of the first voltage converter by stopping a switch included in the first voltage converter in an off state.
  • a fuel cell system according to the present invention is used as an on-vehicle power generation system of a fuel cell vehicle (FCHV; Fuel Cell Hybrid Vehicle) will be described.
  • FCHV Fuel Cell Hybrid Vehicle
  • the fuel cell system according to the present invention can also be applied to various mobile bodies (robots, ships, aircrafts, etc.) other than fuel cell vehicles, and further used as power generation equipment for buildings (housing, buildings, etc.). It can be applied to a stationary power generation system.
  • FIG. 1 is a diagram schematically illustrating a fuel cell system according to an embodiment.
  • a fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction between an oxidizing gas and a fuel gas, and a DC / DC converter 3 (first voltage) for the fuel cell.
  • Converter hereinafter referred to as “FC converter”
  • battery 4 as a secondary battery (power storage unit)
  • battery DC / DC converter 5 second voltage converter, hereinafter referred to as “Bat converter”
  • a traction inverter 6 and a traction motor 7 power consuming device
  • a control unit 8 that performs overall control of the entire system.
  • the set of the fuel cell 2 and FC converter 3 and the set of the battery 4 and Bat converter 5 are connected in parallel to the traction inverter 6 and the traction motor 7.
  • the fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked.
  • the single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become.
  • hydrogen gas is supplied to the hydrogen gas passage of one separator, the oxidizing gas is supplied to the oxidizing gas passage of the other separator, and electric power is generated by the chemical reaction of these reaction gases.
  • the FC converter 3 is a DC voltage converter, and has a function of boosting the DC voltage output from the fuel cell 2 and outputting it to the traction inverter 6 on the power consuming device side.
  • the output voltage of the fuel cell 2 is controlled by the FC converter 3.
  • a voltage sensor V ⁇ b> 1 that detects the output voltage of the fuel cell 2 is provided on the input side of the FC converter 3.
  • a voltage sensor V2 for detecting an input voltage (supply voltage, hereinafter referred to as "inverter voltage" Vi to the traction inverter 6 is provided.
  • the FC converter 3 includes elements such as a capacitor, a coil, and a switch.
  • the FC converter 3 changes the duty ratio by switching on / off of the switch in accordance with an instruction from the control unit 8, and outputs a voltage corresponding to the required power generation amount.
  • the battery 4 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and the surplus power of the fuel cell 2 can be charged or supplementarily supplied by control of a battery computer (not shown). ing. Between the battery 4 and the Bat converter 5, a voltage sensor V3 for detecting the output voltage of the battery 4 is provided.
  • the Bat converter 5 is a DC voltage converter, which boosts the DC voltage input from the battery 4 and outputs it to the traction inverter 6 on the power consuming device side, and from the fuel cell 2 or traction motor 7 side. And a function of stepping down the input DC voltage and outputting it to the battery 4.
  • the battery 4 is charged and discharged by the function of the Bat converter 5 as described above.
  • the traction inverter 6 converts a direct current into a three-phase alternating current and supplies it to the traction motor 7.
  • the traction motor 7 is, for example, a three-phase AC motor, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
  • the control unit 8 detects an operation amount of an acceleration operation member (for example, an accelerator) provided in the fuel cell vehicle, and controls an acceleration request value (for example, a required power generation amount from a power consuming device such as the traction motor 7). Receives information and controls the operation of various devices in the system.
  • the power consuming device includes, for example, auxiliary devices necessary for operating the fuel cell 2, various devices involved in traveling of the vehicle (transmission, wheel control device, steering device, Actuators used in suspension systems, etc., passenger space air conditioners (air conditioners), lighting, audio, etc.
  • the control unit 8 physically includes, for example, a CPU, a memory, and an input / output interface.
  • the memory includes a ROM that stores a control program and control data processed by the CPU, and a RAM that is mainly used as various work areas for control processing. These elements are connected to each other via a bus.
  • Various sensors such as a voltage sensor are connected to the input / output interface, and various drivers for driving the traction motor 7 and the like are connected.
  • the CPU receives the detection results of the various sensors via the input / output interface according to the control program stored in the ROM, and processes them using various data in the RAM, whereby various control processes in the fuel cell system 1 are performed. Execute. Further, the CPU controls the entire fuel cell system 1 by outputting control signals to various drivers via the input / output interface.
  • the FC converter output restriction process which is a process unique to the present embodiment, will be described.
  • the FC converter output restriction process reduces the duty ratio of the FC converter 3 and lowers the output Pfc of the FC converter 3 when the inverter voltage of the traveling fuel cell vehicle is assumed to rise abnormally. By this, it is the process which suppresses the abnormal rise of an inverter voltage. As a case where the inverter voltage of the traveling fuel cell vehicle rises abnormally, for example, the fuel cell vehicle may slip.
  • the control unit 8 that executes such FC converter output restriction processing has a function as a determination unit and a function as an output restriction unit described below.
  • the control unit 8 determines whether or not the inverter voltage rises abnormally. Specifically, the control unit 8 determines that the inverter voltage abnormally increases when the fuel cell 2 is generating power and the inverter voltage is equal to or higher than a predetermined upper limit voltage value.
  • the predetermined upper limit voltage value is set within a range in which various elements to which the inverter voltage is applied are not damaged. Examples of the various elements to which the inverter voltage is applied include elements such as capacitors, coils, switches, and ICs included in the FC converter 3, the Bat converter 5, the traction inverter 6, and auxiliary equipment.
  • the predetermined upper limit voltage value is obtained by experiments or the like and is stored in advance in the memory.
  • the requirement for determining that the inverter voltage rises abnormally is not limited to this.
  • the predetermined upper limit increase rate can be provided for each inverter voltage, for example.
  • the inverter voltage and the upper limit increase rate may be associated with each other and stored in the map. This map is stored in memory.
  • the upper limit increase rate for each inverter voltage is added to the predicted inverter voltage even when the predicted inverter voltage after the increase assumed when the inverter voltage is increased for a predetermined period according to the upper limit increase rate is supplied. It can be set within a range where various elements are not damaged.
  • the upper limit increase rate and the predetermined period can be obtained by experiments or the like.
  • the judgment procedure in this case is as follows. First, when the fuel cell 2 is generating power, the inverter voltage at that time is acquired from the voltage sensor V2, and the rate of increase of the inverter voltage at that time is calculated. Subsequently, an upper limit increase rate corresponding to the acquired inverter voltage is extracted from the map. Subsequently, when the calculated increase rate is equal to or higher than the extracted upper limit increase rate, it is determined that the inverter voltage abnormally increases. Thereby, it is possible to suppress an abnormal increase in the inverter voltage without damaging various elements to which the inverter voltage is applied.
  • the inverter voltage rises abnormally. Since the inverter voltage increases when the fuel cell vehicle slips, the control is performed on the assumption that the inverter voltage is likely to reach a predetermined upper limit voltage value or higher when slipping. As a result, the output Pfc of the FC converter 3 can be reduced at the time when slip is detected. Therefore, when the inverter voltage is assumed to rise abnormally, the inverter voltage is reliably lowered early. It becomes possible.
  • the control unit 8 as the output limiting means limits the output of the FC converter 3 when it is determined that the inverter voltage rises abnormally. Specifically, the control unit 8 controls the output voltage of the FC converter 3 by controlling the on / off cycle of the switch included in the FC converter 3 to vary the duty ratio. When it is determined that the inverter voltage rises abnormally, the control unit 8 limits the output of the FC converter 3 by reducing the duty ratio from a normal value based on the required value.
  • the duty ratio at the time of limiting the output of the FC converter 3 only needs to be reduced to a value that allows the inverter voltage to change within a range in which various elements to which the inverter voltage is applied are not damaged. Therefore, it is not always necessary to reduce the duty ratio to zero. However, since the output of the FC converter 3 can be reduced to 0 by reducing the duty ratio to 0, an increase in the inverter voltage can be reliably suppressed.
  • the reduced duty ratio may be a fixed value, or may be calculated according to the inverter voltage at that time or the rate of increase of the inverter voltage.
  • the correspondence relationship between the inverter voltage or the increase rate of the inverter voltage and the duty ratio is stored in advance in the map, and this map is referred to. It may be calculated.
  • the values stored in this map may be obtained by experiments or the like and stored in the memory in advance.
  • the switch included in the FC converter 3 may be stopped in an off state. Therefore, since the output of FC converter 3 can be set to 0, the abnormal rise of inverter voltage can be suppressed reliably.
  • FIG. 2 shows a case where the FC converter output limiting process according to the present embodiment is performed (Example of the present invention) and a case where the inverter voltage is not performed (Comparative Example) when the inverter voltage reaches a predetermined upper limit voltage value or more. It is a timing chart which illustrates transition states, such as various outputs.
  • FIG. 2A shows the transition state of the duty ratio of the FC converter 3
  • FIG. 2B shows the transition state of the output Pfc of the FC converter 3
  • FIG. The transition state of the inverter voltage Vi is shown.
  • 2A, 2B, and 2E the solid line portion after time t2 indicates the transition state in the embodiment, and the dotted line portion indicates the transition state in the comparative example.
  • 2C shows a transition state of the power consumption Pm of the traction motor 7
  • FIG. 2D shows a transition state of the output Pbat of the Bat converter 5.
  • the control unit 8 changes the duty ratio of the FC converter 3 from D to 0 as shown after time t2 in FIG. Reduce towards.
  • the output Pfc of the FC converter 3 decreases.
  • the duty ratio of the FC converter 3 is set to D as shown after time t1 in FIG. It remains maintained. Therefore, as shown after time t1 in FIG. 2B, the output Pfc of the FC converter 3 is also maintained at A [kw].
  • the inverter voltage Vi is reduced by the surplus power generated when the power consumption Pm of the traction motor 7 decreases from A [kw] to B [kw].
  • the inverter voltage Vi breaks through the breakdown voltage Vm of the element at time t3. Thereby, there exists a possibility that an element may be damaged by overvoltage.
  • FC converter output restriction processing in this embodiment will be described using the flowchart shown in FIG.
  • This FC converter output restriction process is started, for example, when the ignition key is turned on, and is repeatedly executed until the operation is completed.
  • control unit 8 determines whether or not the fuel cell 2 is generating power (step S101). When this determination is NO (step S101; NO), the control unit 8 ends the FC converter output restriction process.
  • step S101 when it is determined in step S101 that the fuel cell 2 is generating power (step S101; YES), the control unit 8 determines that the inverter voltage detected by the voltage sensor V2 is greater than or equal to a predetermined upper limit voltage value. It is determined whether or not (step S102). When this determination is NO (step S102; NO), the control unit 8 ends the FC converter output restriction process.
  • step S102 when it is determined in step S102 that the inverter voltage is equal to or higher than the predetermined upper limit voltage value (step S102; YES), the control unit 8 reduces the duty ratio of the FC converter 3 (step S103). .
  • the duty ratio of the FC converter 3 is reduced when the inverter voltage reaches a predetermined upper limit voltage value or more during power generation of the fuel cell 2.
  • the output of the FC converter 3 can be limited.
  • the fuel cell system according to the present invention is suitable for avoiding a failure due to an overvoltage of an element.

Abstract

It is possible to avoid a trouble caused by overvoltage of various elements to which an inverter voltage is applied.  A control unit (8) judges whether a fuel cell (2) is generating electricity and an inverter voltage detected by a voltage sensor (V2) is equal to or above a predetermined upper limit voltage value.  If yes, the control unit (8) reduces the duty ratio of an FC converter (3) and limits the output of the FC converter (3).  This can suppress abnormal increase of the inverter voltage.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 下記特許文献1には、複数の電流共振型DC-DCコンバータを有するマルチ出力DC-DCコンバータが開示されている。このマルチ出力DC-DCコンバータは、各電流共振型DC-DCコンバータに接続されている負荷に対して、それぞれの負荷に応じた電圧を出力する。 Patent Document 1 below discloses a multi-output DC-DC converter having a plurality of current resonance type DC-DC converters. This multi-output DC-DC converter outputs a voltage corresponding to each load to the load connected to each current resonance type DC-DC converter.
特開2007-318938号公報JP 2007-318938 A
 上記マルチ出力DC-DCコンバータにおいて、電源から供給される電力と、負荷で消費される電力との間の需給バランスが崩れると、負荷の入力側に加わる電圧が異常に上昇してしまうことがある。このような場合には、上昇した電圧が加えられる各種素子が過電圧によって故障するおそれがある。 In the multi-output DC-DC converter, when the supply-demand balance between the power supplied from the power source and the power consumed by the load is lost, the voltage applied to the input side of the load may rise abnormally. . In such a case, various elements to which the increased voltage is applied may be damaged due to overvoltage.
 本発明は、上述した従来技術による問題点を解消するためになされたものであり、素子の過電圧による故障を回避することができる燃料電池システムを提供することを目的とする。 The present invention has been made to solve the above-described problems caused by the prior art, and an object thereof is to provide a fuel cell system capable of avoiding a failure due to an overvoltage of an element.
 上述した課題を解決するため、本発明に係る燃料電池システムは、燃料ガスおよび酸化ガスの供給を受けて当該燃料ガスおよび酸化ガスの電気化学反応により発電する燃料電池と、前記燃料電池の発電電力を充電可能な畜電部と、前記燃料電池および前記畜電部からの電力を消費する電力消費装置と、前記燃料電池と前記電力消費装置との間に配置される第一の電圧変換部と、前記畜電部と前記電力消費装置との間に配置される第二の電圧変換部と、前記電力消費装置に供給する供給電圧が異常に上昇するか否かを判定する判定手段と、前記判定手段によって前記供給電圧が異常に上昇すると判定された場合に、前記第一の電圧変換部の出力を制限する出力制限手段と、を備えることを特徴とする。 In order to solve the above-described problems, a fuel cell system according to the present invention includes a fuel cell that receives supply of a fuel gas and an oxidant gas and generates power by an electrochemical reaction between the fuel gas and the oxidant gas, and a power generated by the fuel cell An electric power unit that can charge the battery, an electric power consuming device that consumes electric power from the fuel cell and the electric power unit, and a first voltage conversion unit that is disposed between the fuel cell and the electric power consuming device A second voltage converter disposed between the livestock power unit and the power consuming device, a determination unit that determines whether or not a supply voltage supplied to the power consuming device abnormally increases, and Output limiting means for limiting the output of the first voltage converter when the determination means determines that the supply voltage is abnormally increased.
 この発明によれば、電力消費装置に供給する供給電圧が異常に上昇するか否かを判定することができ、供給電圧が異常に上昇すると判定した場合に、第一の電圧変換部の出力を制限することができるため、供給電圧の異常上昇を抑制することが可能となる。 According to this invention, it is possible to determine whether or not the supply voltage supplied to the power consuming device is abnormally increased. When it is determined that the supply voltage is abnormally increased, the output of the first voltage conversion unit is determined. Since it can restrict | limit, it becomes possible to suppress the abnormal raise of supply voltage.
 上記燃料電池システムにおいて、上記判定手段は、前記燃料電池が発電しているときであって、前記供給電圧が所定上限電圧値以上に達した場合に、前記供給電圧が異常に上昇すると判定することとしてもよい。 In the fuel cell system, the determination unit determines that the supply voltage abnormally increases when the fuel cell is generating power and the supply voltage reaches a predetermined upper limit voltage value or more. It is good.
 このようにすることで、燃料電池の発電中に、供給電圧が所定上限電圧値以上に達した場合に、第一の電圧変換部の出力を制限して供給電圧の異常上昇を抑制することが可能となる。 In this way, when the supply voltage reaches a predetermined upper limit voltage value or more during power generation of the fuel cell, the output of the first voltage conversion unit is limited to suppress an abnormal increase in supply voltage. It becomes possible.
 上記燃料電池システムにおいて、上記所定上限電圧値は、前記供給電圧が加えられる各種素子が損傷しない範囲内に設定されていることとしてもよい。 In the fuel cell system, the predetermined upper limit voltage value may be set within a range in which various elements to which the supply voltage is applied are not damaged.
 このようにすることで、供給電圧が加えられる各種素子を損傷させることなく、供給電圧の異常上昇を抑制することが可能となる。 This makes it possible to suppress an abnormal increase in supply voltage without damaging various elements to which the supply voltage is applied.
 上記燃料電池システムにおいて、上記判定手段は、前記燃料電池が発電しているときであって、前記供給電圧の上昇率が所定上限上昇率以上に達した場合に、前記供給電圧が異常に上昇すると判定することとしてもよい。 In the fuel cell system, when the fuel cell is generating electric power and the increase rate of the supply voltage reaches a predetermined upper limit increase rate or higher, the determination voltage is abnormally increased. It may be determined.
 このようにすることで、燃料電池の発電中に、供給電圧の上昇率が所定上限上昇率以上に達した場合に、第一の電圧変換部の出力を制限して供給電圧の異常上昇を抑制することが可能となる。 In this way, when the rate of increase of the supply voltage reaches a predetermined upper limit increase rate during power generation of the fuel cell, the output of the first voltage conversion unit is limited to suppress an abnormal increase in supply voltage. It becomes possible to do.
 上記燃料電池システムにおいて、上記所定上限上昇率は、当該所定上限上昇率に従って所定期間上昇した後の前記供給電圧として想定される電圧が供給される場合であっても、当該想定される電圧が加えられる各種素子が損傷しない範囲内に設定されていることとしてもよい。 In the fuel cell system, the predetermined upper limit increase rate is calculated by adding the assumed voltage even when the voltage assumed as the supply voltage after being increased for a predetermined period according to the predetermined upper limit increase rate is supplied. It is good also as setting in the range where the various elements to be damaged do not damage.
 このようにすることで、供給電圧が加えられる各種素子を損傷させることなく、供給電圧の異常上昇を抑制することが可能となる。 This makes it possible to suppress an abnormal increase in supply voltage without damaging various elements to which the supply voltage is applied.
 上記燃料電池システムにおいて、上記出力制限手段は、前記第一の電圧変換部に含まれるスイッチのオン/オフ周期を制御することで変動するデューティ比を低減させることで、前記第一の電圧変換部の出力を制限することとしてもよい。 In the fuel cell system, the output limiting unit reduces the duty ratio that fluctuates by controlling an on / off cycle of a switch included in the first voltage conversion unit, whereby the first voltage conversion unit May be limited.
 このようにすることで、供給電圧が異常上昇すると判定された場合に、第一の電圧変換部の出力を制限することができるため、供給電圧の異常上昇を抑制することが可能となる。 By doing in this way, when it is determined that the supply voltage is abnormally increased, the output of the first voltage converter can be limited, so that it is possible to suppress the abnormal increase of the supply voltage.
 上記燃料電池システムにおいて、上記出力制限手段は、前記デューティ比を0にすることで、前記第一の電圧変換部の出力を制限することとしてもよい。 In the fuel cell system, the output limiting unit may limit the output of the first voltage converter by setting the duty ratio to 0.
 このようにすることで、供給電圧が異常上昇すると判定された場合に、第一の電圧変換部の出力を0にすることができるため、供給電圧の異常上昇を確実に抑制することが可能となる。 By doing in this way, when it determines with a supply voltage rising abnormally, since the output of a 1st voltage converter can be set to 0, it can suppress an abnormal increase in supply voltage reliably. Become.
 上記燃料電池システムにおいて、上記出力制限手段は、前記第一の電圧変換部に含まれるスイッチをオフ状態で停止させることで、前記第一の電圧変換部の出力を制限することとしてもよい。 In the fuel cell system, the output limiting unit may limit the output of the first voltage converter by stopping a switch included in the first voltage converter in an off state.
 このようにすることで、供給電圧が異常上昇すると判定された場合に、第一の電圧変換部の出力を0にすることができるため、供給電圧の異常上昇を確実に抑制することが可能となる。 By doing in this way, when it determines with a supply voltage rising abnormally, since the output of a 1st voltage converter can be set to 0, it can suppress an abnormal increase in supply voltage reliably. Become.
 本発明によれば、素子の過電圧による故障を回避することができる。 According to the present invention, a failure due to an overvoltage of the element can be avoided.
実施形態における燃料電池システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the fuel cell system in embodiment. FC用コンバータ出力制限処理の内容を説明するためのタイミングチャートである。It is a timing chart for explaining the contents of FC converter output restriction processing. 実施形態におけるFC用コンバータ出力制限処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the converter output limitation process for FC in embodiment.
 以下、添付図面を参照して、本発明に係る燃料電池システムの好適な実施形態について説明する。実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。なお、本発明に係る燃料電池システムは、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも適用することができ、さらに、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムにも適用することができる。 Hereinafter, preferred embodiments of a fuel cell system according to the present invention will be described with reference to the accompanying drawings. In the embodiment, a case where the fuel cell system according to the present invention is used as an on-vehicle power generation system of a fuel cell vehicle (FCHV; Fuel Cell Hybrid Vehicle) will be described. The fuel cell system according to the present invention can also be applied to various mobile bodies (robots, ships, aircrafts, etc.) other than fuel cell vehicles, and further used as power generation equipment for buildings (housing, buildings, etc.). It can be applied to a stationary power generation system.
 まず、図1を参照して、本実施形態における燃料電池システムの構成について説明する。図1は、実施形態における燃料電池システムを模式的に示した図である。 First, the configuration of the fuel cell system in the present embodiment will be described with reference to FIG. FIG. 1 is a diagram schematically illustrating a fuel cell system according to an embodiment.
 同図に示すように、燃料電池システム1は、反応ガスである酸化ガスおよび燃料ガスの電気化学反応により電力を発生する燃料電池2と、燃料電池用のDC/DCコンバータ3(第一の電圧変換部、以下「FC用コンバータ」という。)と、二次電池としてのバッテリ4(蓄電部)と、バッテリ用のDC/DCコンバータ5(第二の電圧変換部、以下「Bat用コンバータ」という。)と、負荷としてのトラクションインバータ6およびトラクションモータ7(電力消費装置)と、システム全体を統括制御する制御部8とを有する。燃料電池2およびFC用コンバータ3の組と、バッテリ4およびBat用コンバータ5の組は、トラクションインバータ6およびトラクションモータ7に対して並列に接続されている。 As shown in the figure, a fuel cell system 1 includes a fuel cell 2 that generates electric power by an electrochemical reaction between an oxidizing gas and a fuel gas, and a DC / DC converter 3 (first voltage) for the fuel cell. Converter, hereinafter referred to as "FC converter"), battery 4 as a secondary battery (power storage unit), and battery DC / DC converter 5 (second voltage converter, hereinafter referred to as "Bat converter"). ), A traction inverter 6 and a traction motor 7 (power consuming device) as loads, and a control unit 8 that performs overall control of the entire system. The set of the fuel cell 2 and FC converter 3 and the set of the battery 4 and Bat converter 5 are connected in parallel to the traction inverter 6 and the traction motor 7.
 燃料電池2は、例えば、高分子電解質型燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの水素ガス通路に水素ガスが供給され、他方のセパレータの酸化ガス通路に酸化ガスが供給され、これらの反応ガスが化学反応することで電力が発生する。 The fuel cell 2 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of single cells are stacked. The single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become. In this case, hydrogen gas is supplied to the hydrogen gas passage of one separator, the oxidizing gas is supplied to the oxidizing gas passage of the other separator, and electric power is generated by the chemical reaction of these reaction gases.
 FC用コンバータ3は、直流の電圧変換器であり、燃料電池2から出力された直流電圧を昇圧して電力消費装置側であるトラクションインバータ6に出力する機能を有する。このFC用コンバータ3によって燃料電池2の出力電圧が制御される。FC用コンバータ3の入力側には、燃料電池2の出力電圧を検出する電圧センサV1が設けられている。FC用コンバータ3の出力側には、トラクションインバータ6への入力電圧(供給電圧、以下、「インバータ電圧」という。)Viを検出する電圧センサV2が設けられている。 The FC converter 3 is a DC voltage converter, and has a function of boosting the DC voltage output from the fuel cell 2 and outputting it to the traction inverter 6 on the power consuming device side. The output voltage of the fuel cell 2 is controlled by the FC converter 3. A voltage sensor V <b> 1 that detects the output voltage of the fuel cell 2 is provided on the input side of the FC converter 3. On the output side of the FC converter 3, a voltage sensor V2 for detecting an input voltage (supply voltage, hereinafter referred to as "inverter voltage") Vi to the traction inverter 6 is provided.
 FC用コンバータ3は、コンデンサ、コイル、スイッチ等の素子を含んで構成されている。FC用コンバータ3は、制御部8の指示に従ってスイッチのオン/オフを切り替えることで、デューティ比を変動させ、要求発電量に応じた電圧を出力する。 The FC converter 3 includes elements such as a capacitor, a coil, and a switch. The FC converter 3 changes the duty ratio by switching on / off of the switch in accordance with an instruction from the control unit 8, and outputs a voltage corresponding to the required power generation amount.
 バッテリ4は、バッテリセルが積層されて一定の高電圧を端子電圧とし、図示しないバッテリコンピュータの制御によって燃料電池2の余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。バッテリ4とBat用コンバータ5との間には、バッテリ4の出力電圧を検出する電圧センサV3が設けられている。 The battery 4 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and the surplus power of the fuel cell 2 can be charged or supplementarily supplied by control of a battery computer (not shown). ing. Between the battery 4 and the Bat converter 5, a voltage sensor V3 for detecting the output voltage of the battery 4 is provided.
 Bat用コンバータ5は、直流の電圧変換器であり、バッテリ4から入力される直流電圧を昇圧して電力消費装置側であるトラクションインバータ6に出力する機能と、燃料電池2またはトラクションモータ7側から入力される直流電圧を降圧してバッテリ4に出力する機能と、を有する。このようなBat用コンバータ5の機能により、バッテリ4の充放電が実現される。 The Bat converter 5 is a DC voltage converter, which boosts the DC voltage input from the battery 4 and outputs it to the traction inverter 6 on the power consuming device side, and from the fuel cell 2 or traction motor 7 side. And a function of stepping down the input DC voltage and outputting it to the battery 4. The battery 4 is charged and discharged by the function of the Bat converter 5 as described above.
 トラクションインバータ6は、直流電流を三相交流に変換し、トラクションモータ7に供給する。トラクションモータ7は、例えば三相交流モータであり、燃料電池システム1が搭載される燃料電池車両の主動力源を構成する。 The traction inverter 6 converts a direct current into a three-phase alternating current and supplies it to the traction motor 7. The traction motor 7 is, for example, a three-phase AC motor, and constitutes a main power source of a fuel cell vehicle on which the fuel cell system 1 is mounted.
 制御部8は、燃料電池車両に設けられた加速操作部材(例えば、アクセル)の操作量を検出し、加速要求値(例えば、トラクションモータ7等の電力消費装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、電力消費装置には、トラクションモータ7の他に、例えば、燃料電池2を作動させるために必要な補機装置、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等が含まれる。 The control unit 8 detects an operation amount of an acceleration operation member (for example, an accelerator) provided in the fuel cell vehicle, and controls an acceleration request value (for example, a required power generation amount from a power consuming device such as the traction motor 7). Receives information and controls the operation of various devices in the system. In addition to the traction motor 7, the power consuming device includes, for example, auxiliary devices necessary for operating the fuel cell 2, various devices involved in traveling of the vehicle (transmission, wheel control device, steering device, Actuators used in suspension systems, etc., passenger space air conditioners (air conditioners), lighting, audio, etc.
 制御部8は、物理的には、例えば、CPUと、メモリと、入出力インターフェースとを有する。メモリは、CPUで処理される制御プログラムや制御データを記憶するROMと、主として制御処理のための各種作業領域として使用されるRAMとを有する。これらの要素は、互いにバスを介して接続されている。入出力インターフェースには、電圧センサ等の各種センサが接続されているとともに、トラクションモータ7等を駆動させるための各種ドライバが接続されている。 The control unit 8 physically includes, for example, a CPU, a memory, and an input / output interface. The memory includes a ROM that stores a control program and control data processed by the CPU, and a RAM that is mainly used as various work areas for control processing. These elements are connected to each other via a bus. Various sensors such as a voltage sensor are connected to the input / output interface, and various drivers for driving the traction motor 7 and the like are connected.
 CPUは、ROMに記憶された制御プログラムに従って、入出力インターフェースを介して各種センサでの検出結果を受信し、RAM内の各種データ等を用いて処理することで、燃料電池システム1における各種制御処理を実行する。また、CPUは、入出力インターフェースを介して各種ドライバに制御信号を出力することにより、燃料電池システム1全体を制御する。以下において、制御部8で実行される各種制御処理のうち、本実施形態に特有の処理であるFC用コンバータ出力制限処理について説明する。 The CPU receives the detection results of the various sensors via the input / output interface according to the control program stored in the ROM, and processes them using various data in the RAM, whereby various control processes in the fuel cell system 1 are performed. Execute. Further, the CPU controls the entire fuel cell system 1 by outputting control signals to various drivers via the input / output interface. Hereinafter, among the various control processes executed by the control unit 8, the FC converter output restriction process, which is a process unique to the present embodiment, will be described.
 FC用コンバータ出力制限処理は、走行している燃料電池車両のインバータ電圧が異常に上昇すると想定される場合に、FC用コンバータ3のデューティ比を低減させ、FC用コンバータ3の出力Pfcを低下させることによって、インバータ電圧の異常上昇を抑制する処理である。走行している燃料電池車両のインバータ電圧が異常に上昇する場合としては、例えば、燃料電池車両がスリップした場合がある。 The FC converter output restriction process reduces the duty ratio of the FC converter 3 and lowers the output Pfc of the FC converter 3 when the inverter voltage of the traveling fuel cell vehicle is assumed to rise abnormally. By this, it is the process which suppresses the abnormal rise of an inverter voltage. As a case where the inverter voltage of the traveling fuel cell vehicle rises abnormally, for example, the fuel cell vehicle may slip.
 このようなFC用コンバータ出力制限処理を実行する制御部8は、以下に記載する判定手段としての機能と、出力制限手段としての機能とを有する。 The control unit 8 that executes such FC converter output restriction processing has a function as a determination unit and a function as an output restriction unit described below.
 判定手段としての制御部8は、インバータ電圧が異常に上昇するか否かを判定する。具体的に、制御部8は、燃料電池2が発電中であり、かつ、インバータ電圧が所定上限電圧値以上である場合に、インバータ電圧が異常に上昇すると判定する。所定上限電圧値は、インバータ電圧が加えられる各種素子が損傷しない範囲内に設定する。インバータ電圧が加えられる各種素子としては、例えば、FC用コンバータ3、Bat用コンバータ5、トラクションインバータ6、補機装置等に含まれるコンデンサ、コイル、スイッチ、IC等の素子が該当する。なお、所定上限電圧値は、実験等により求められ、予めメモリに格納される。 The control unit 8 as a determination unit determines whether or not the inverter voltage rises abnormally. Specifically, the control unit 8 determines that the inverter voltage abnormally increases when the fuel cell 2 is generating power and the inverter voltage is equal to or higher than a predetermined upper limit voltage value. The predetermined upper limit voltage value is set within a range in which various elements to which the inverter voltage is applied are not damaged. Examples of the various elements to which the inverter voltage is applied include elements such as capacitors, coils, switches, and ICs included in the FC converter 3, the Bat converter 5, the traction inverter 6, and auxiliary equipment. The predetermined upper limit voltage value is obtained by experiments or the like and is stored in advance in the memory.
 なお、インバータ電圧が異常に上昇すると判定するための要件は、これに限定されない。例えば、燃料電池2が発電中であり、かつ、インバータ電圧の上昇率が所定上限上昇率以上である場合に、インバータ電圧が異常に上昇すると判定することとしてもよい。所定上限上昇率は、例えば、インバータ電圧ごとに設けることができる。この場合に、インバータ電圧と上限上昇率とを対応付けてマップに記憶すればよい。このマップはメモリに格納する。インバータ電圧ごとの上限上昇率は、そのインバータ電圧からその上限上昇率に従って所定期間上昇したときに想定される上昇後の予測インバータ電圧が供給される場合であっても、この予測インバータ電圧が加えられる各種素子が損傷しない範囲内に設定することができる。上限上昇率や所定期間は、実験等により求めることができる。 Note that the requirement for determining that the inverter voltage rises abnormally is not limited to this. For example, it may be determined that the inverter voltage abnormally increases when the fuel cell 2 is generating power and the increase rate of the inverter voltage is equal to or greater than a predetermined upper limit increase rate. The predetermined upper limit increase rate can be provided for each inverter voltage, for example. In this case, the inverter voltage and the upper limit increase rate may be associated with each other and stored in the map. This map is stored in memory. The upper limit increase rate for each inverter voltage is added to the predicted inverter voltage even when the predicted inverter voltage after the increase assumed when the inverter voltage is increased for a predetermined period according to the upper limit increase rate is supplied. It can be set within a range where various elements are not damaged. The upper limit increase rate and the predetermined period can be obtained by experiments or the like.
 この場合の判定手順は以下のようになる。最初に、燃料電池2が発電している際に、その時点のインバータ電圧を電圧センサV2から取得するとともに、その時点のインバータ電圧の上昇率を算出する。続いて、取得したインバータ電圧に対応する上限上昇率をマップから抽出する。続いて、算出した上昇率が、抽出した上限上昇率以上である場合にインバータ電圧が異常に上昇すると判定する。これにより、インバータ電圧が加えられる各種素子を損傷させることなく、インバータ電圧の異常上昇を抑制することが可能となる。 The judgment procedure in this case is as follows. First, when the fuel cell 2 is generating power, the inverter voltage at that time is acquired from the voltage sensor V2, and the rate of increase of the inverter voltage at that time is calculated. Subsequently, an upper limit increase rate corresponding to the acquired inverter voltage is extracted from the map. Subsequently, when the calculated increase rate is equal to or higher than the extracted upper limit increase rate, it is determined that the inverter voltage abnormally increases. Thereby, it is possible to suppress an abnormal increase in the inverter voltage without damaging various elements to which the inverter voltage is applied.
 また、例えば、燃料電池車両がスリップしたことを検出した場合に、インバータ電圧が異常に上昇すると判定することとしてもよい。これは、燃料電池車両がスリップをするとインバータ電圧が上昇することから、スリップをした場合にはインバータ電圧が所定上限電圧値以上に達する可能性が高いと想定して制御するものである。これにより、スリップを検出した時点でFC用コンバータ3の出力Pfcを低下させることが可能となるため、インバータ電圧が異常に上昇することが想定される場合に、早期、確実にインバータ電圧を低下させることが可能となる。 Also, for example, when it is detected that the fuel cell vehicle slips, it may be determined that the inverter voltage rises abnormally. Since the inverter voltage increases when the fuel cell vehicle slips, the control is performed on the assumption that the inverter voltage is likely to reach a predetermined upper limit voltage value or higher when slipping. As a result, the output Pfc of the FC converter 3 can be reduced at the time when slip is detected. Therefore, when the inverter voltage is assumed to rise abnormally, the inverter voltage is reliably lowered early. It becomes possible.
 出力制限手段としての制御部8は、インバータ電圧が異常に上昇すると判定された場合に、FC用コンバータ3の出力を制限する。具体的に、制御部8は、FC用コンバータ3に含まれるスイッチのオン/オフ周期を制御してデューティ比を変動させることで、FC用コンバータ3の出力電圧を制御する。制御部8は、インバータ電圧が異常に上昇すると判定された場合には、デューティ比を、要求値に基づく通常時の値よりも低減させることで、FC用コンバータ3の出力を制限する。 The control unit 8 as the output limiting means limits the output of the FC converter 3 when it is determined that the inverter voltage rises abnormally. Specifically, the control unit 8 controls the output voltage of the FC converter 3 by controlling the on / off cycle of the switch included in the FC converter 3 to vary the duty ratio. When it is determined that the inverter voltage rises abnormally, the control unit 8 limits the output of the FC converter 3 by reducing the duty ratio from a normal value based on the required value.
 FC用コンバータ3の出力を制限する際のデューティ比は、インバータ電圧が加えられる各種素子が損傷しない範囲でインバータ電圧を推移させることが可能な値に低減することができればよい。したがって、必ずしもデューティ比を0にまで低減させる必要はない。ただし、デューティ比を0に低減させることで、FC用コンバータ3の出力を0にすることができるため、インバータ電圧の上昇を確実に抑えることができる。 The duty ratio at the time of limiting the output of the FC converter 3 only needs to be reduced to a value that allows the inverter voltage to change within a range in which various elements to which the inverter voltage is applied are not damaged. Therefore, it is not always necessary to reduce the duty ratio to zero. However, since the output of the FC converter 3 can be reduced to 0 by reducing the duty ratio to 0, an increase in the inverter voltage can be reliably suppressed.
 低減後のデューティ比は、固定値であってもよいし、その時点のインバータ電圧やインバータ電圧の上昇率に応じて算出することとしてもよい。インバータ電圧やインバータ電圧の上昇率に応じて算出する場合には、例えば、インバータ電圧やインバータ電圧の上昇率とデューティ比との対応関係を予めマップに記憶させておき、このマップを参照することで算出してもよい。このマップに記憶させる値は、実験等により求め、予めメモリに格納することとすればよい。 The reduced duty ratio may be a fixed value, or may be calculated according to the inverter voltage at that time or the rate of increase of the inverter voltage. When calculating according to the inverter voltage or the increase rate of the inverter voltage, for example, the correspondence relationship between the inverter voltage or the increase rate of the inverter voltage and the duty ratio is stored in advance in the map, and this map is referred to. It may be calculated. The values stored in this map may be obtained by experiments or the like and stored in the memory in advance.
 なお、FC用コンバータ3の出力電圧を制御する際に、FC用コンバータ3に含まれるスイッチをオフ状態で停止させることとしてもよい。これにより、FC用コンバータ3の出力を0にすることができるため、インバータ電圧の異常上昇を確実に抑制することができる。 In addition, when controlling the output voltage of the FC converter 3, the switch included in the FC converter 3 may be stopped in an off state. Thereby, since the output of FC converter 3 can be set to 0, the abnormal rise of inverter voltage can be suppressed reliably.
 図2を参照して、FC用コンバータ出力制限処理の内容について具体的に説明する。図2は、インバータ電圧が所定上限電圧値以上に達したときに、本実施形態におけるFC用コンバータ出力制限処理を実施する場合(本発明の実施例)と、実施しない場合(比較例)とにおける各種出力等の推移状態を例示するタイミングチャートである。 Referring to FIG. 2, the details of the FC converter output restriction process will be described in detail. FIG. 2 shows a case where the FC converter output limiting process according to the present embodiment is performed (Example of the present invention) and a case where the inverter voltage is not performed (Comparative Example) when the inverter voltage reaches a predetermined upper limit voltage value or more. It is a timing chart which illustrates transition states, such as various outputs.
 図2の(a)は、FC用コンバータ3のデューティ比の推移状態を示し、図2の(b)は、FC用コンバータ3の出力Pfcの推移状態を示し、図2の(e)は、インバータ電圧Viの推移状態を示す。図2の(a)、(b)、(e)における時間t2以降の実線部分は実施例での推移状態を示し、点線部分は比較例での推移状態を示す。図2の(c)は、トラクションモータ7の消費電力Pmの推移状態を示し、図2の(d)は、Bat用コンバータ5の出力Pbatの推移状態を示す。 2A shows the transition state of the duty ratio of the FC converter 3, FIG. 2B shows the transition state of the output Pfc of the FC converter 3, and FIG. The transition state of the inverter voltage Vi is shown. 2A, 2B, and 2E, the solid line portion after time t2 indicates the transition state in the embodiment, and the dotted line portion indicates the transition state in the comparative example. 2C shows a transition state of the power consumption Pm of the traction motor 7, and FIG. 2D shows a transition state of the output Pbat of the Bat converter 5. FIG.
 まず、本発明の実施例における各推移状態について説明する。例えば、時間t1において走行中の燃料電池車両がスリップした場合、図2の(c)に示すように車輪を駆動させるトラクションモータ7の消費電力Pmが低下する。図2の(c)では、トラクションモータ7の消費電力PmがA[kw]からB[kw]に低下している。 First, each transition state in the embodiment of the present invention will be described. For example, when the traveling fuel cell vehicle slips at time t1, the power consumption Pm of the traction motor 7 that drives the wheels decreases as shown in FIG. In FIG. 2C, the power consumption Pm of the traction motor 7 is reduced from A [kw] to B [kw].
 スリップによりトラクションモータ7の消費電力Pmが低下した後も、図2の(b)に示すFC用コンバータ3の出力Pfcが、A[kw]のまま維持されると、余剰電力が発生する。余剰電力が発生した場合には、図2の(d)の時間t1以降に示すように、Bat用コンバータ5が、余剰電力をバッテリ4に出力し、バッテリを充電させる。 Even after the power consumption Pm of the traction motor 7 is reduced due to the slip, if the output Pfc of the FC converter 3 shown in FIG. 2B is maintained at A [kw], surplus power is generated. When surplus power is generated, the Bat converter 5 outputs the surplus power to the battery 4 to charge the battery, as shown after time t1 in FIG.
 余剰電力がBat用コンバータ5の上限充電量C[kw]を超えている場合には、図2の(e)の時間t1以降に示すように、バッテリ4に充電されない余剰電力によってインバータ電圧Viが上昇する。 When the surplus power exceeds the upper limit charge amount C [kw] of the Bat converter 5, as shown after the time t <b> 1 in FIG. To rise.
 時間t2において、インバータ電圧Viが所定上限電圧値Vtに到達すると、制御部8は、図2の(a)の時間t2以降に示すように、FC用コンバータ3のデューティ比を、Dから0に向けて低減させる。この結果、図2の(b)の時間t2以降に示すように、FC用コンバータ3の出力Pfcが低下する。これにより、図2の(e)の時間t2以降に示すように、インバータ電圧Viの異常上昇は抑制される。 When the inverter voltage Vi reaches the predetermined upper limit voltage value Vt at time t2, the control unit 8 changes the duty ratio of the FC converter 3 from D to 0 as shown after time t2 in FIG. Reduce towards. As a result, as shown after time t2 in FIG. 2B, the output Pfc of the FC converter 3 decreases. Thereby, as shown after time t2 of (e) of Drawing 2, abnormal rise of inverter voltage Vi is controlled.
 これに対して、比較例の場合には、時間t1において走行中の燃料電池車両がスリップすると、図2の(a)の時間t1以降に示すように、FC用コンバータ3のデューティ比はDに維持されたままとなる。したがって、図2の(b)の時間t1以降に示すように、FC用コンバータ3の出力PfcもA[kw]のまま維持されることとなる。この結果、トラクションモータ7の消費電力PmがA[kw]からB[kw]に低下することで発生した余剰電力によって、図2の(e)の時間t1以降に示すように、インバータ電圧Viが上昇し、時間t3において、インバータ電圧Viが素子の耐圧Vmを突破する。これにより、素子が過電圧により損傷してしまうおそれがある。 On the other hand, in the case of the comparative example, when the traveling fuel cell vehicle slips at time t1, the duty ratio of the FC converter 3 is set to D as shown after time t1 in FIG. It remains maintained. Therefore, as shown after time t1 in FIG. 2B, the output Pfc of the FC converter 3 is also maintained at A [kw]. As a result, as shown in the time t1 and after in FIG. 2 (e), the inverter voltage Vi is reduced by the surplus power generated when the power consumption Pm of the traction motor 7 decreases from A [kw] to B [kw]. The inverter voltage Vi breaks through the breakdown voltage Vm of the element at time t3. Thereby, there exists a possibility that an element may be damaged by overvoltage.
 次に、図3に示すフローチャートを用いて、本実施形態におけるFC用コンバータ出力制限処理の流れについて説明する。このFC用コンバータ出力制限処理は、例えば、イグニッションキーがONされたときに開始され、運転が終了するまで繰り返し実行される。 Next, the flow of FC converter output restriction processing in this embodiment will be described using the flowchart shown in FIG. This FC converter output restriction process is started, for example, when the ignition key is turned on, and is repeatedly executed until the operation is completed.
 最初に、制御部8は、燃料電池2が発電中であるか否かを判定する(ステップS101)。この判定がNOである場合(ステップS101;NO)に、制御部8はFC用コンバータ出力制限処理を終了する。 First, the control unit 8 determines whether or not the fuel cell 2 is generating power (step S101). When this determination is NO (step S101; NO), the control unit 8 ends the FC converter output restriction process.
 一方、ステップS101の判定において、燃料電池2が発電中であると判定された場合(ステップS101;YES)に、制御部8は、電圧センサV2により検出されるインバータ電圧が、所定上限電圧値以上であるか否かを判定する(ステップS102)。この判定がNOである場合(ステップS102;NO)に、制御部8はFC用コンバータ出力制限処理を終了する。 On the other hand, when it is determined in step S101 that the fuel cell 2 is generating power (step S101; YES), the control unit 8 determines that the inverter voltage detected by the voltage sensor V2 is greater than or equal to a predetermined upper limit voltage value. It is determined whether or not (step S102). When this determination is NO (step S102; NO), the control unit 8 ends the FC converter output restriction process.
 一方、ステップS102の判定において、インバータ電圧が所定上限電圧値以上であると判定された場合(ステップS102;YES)に、制御部8は、FC用コンバータ3のデューティ比を低減させる(ステップS103)。 On the other hand, when it is determined in step S102 that the inverter voltage is equal to or higher than the predetermined upper limit voltage value (step S102; YES), the control unit 8 reduces the duty ratio of the FC converter 3 (step S103). .
 上述してきたように、本実施形態における燃料電池システム1によれば、燃料電池2の発電中に、インバータ電圧が所定上限電圧値以上に達した場合に、FC用コンバータ3のデューティ比を低減させてFC用コンバータ3の出力を制限することができる。これにより、インバータ電圧の異常上昇を抑制することができるため、インバータ電圧が加えられる各種素子の過電圧による故障を回避することができる。 As described above, according to the fuel cell system 1 of the present embodiment, the duty ratio of the FC converter 3 is reduced when the inverter voltage reaches a predetermined upper limit voltage value or more during power generation of the fuel cell 2. Thus, the output of the FC converter 3 can be limited. Thereby, since the abnormal rise of an inverter voltage can be suppressed, the failure by the overvoltage of the various elements to which an inverter voltage is added can be avoided.
 本発明に係る燃料電池システムは、素子の過電圧による故障を回避させることに適している。 The fuel cell system according to the present invention is suitable for avoiding a failure due to an overvoltage of an element.
 1…燃料電池システム、2…燃料電池、3…FC用コンバータ、4…バッテリ、5…Bat用コンバータ、6…トラクションインバータ、7…トラクションモータ、8…制御部、V1,V2,V3…電圧センサ。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel cell, 3 ... FC converter, 4 ... Battery, 5 ... Bat converter, 6 ... Traction inverter, 7 ... Traction motor, 8 ... Control part, V1, V2, V3 ... Voltage sensor .

Claims (8)

  1.  燃料ガスおよび酸化ガスの供給を受けて当該燃料ガスおよび酸化ガスの電気化学反応により発電する燃料電池と、
     前記燃料電池の発電電力を充電可能な畜電部と、
     前記燃料電池および前記畜電部からの電力を消費する電力消費装置と、
     前記燃料電池と前記電力消費装置との間に配置される第一の電圧変換部と、
     前記畜電部と前記電力消費装置との間に配置される第二の電圧変換部と、
     前記電力消費装置に供給する供給電圧が異常に上昇するか否かを判定する判定手段と、
     前記判定手段によって前記供給電圧が異常に上昇すると判定された場合に、前記第一の電圧変換部の出力を制限する出力制限手段と、
     を備えることを特徴とする燃料電池システム。
    A fuel cell that receives supply of the fuel gas and the oxidizing gas and generates power by an electrochemical reaction of the fuel gas and the oxidizing gas;
    An animal power unit capable of charging the power generated by the fuel cell;
    A power consuming device that consumes power from the fuel cell and the livestock power unit;
    A first voltage converter disposed between the fuel cell and the power consuming device;
    A second voltage conversion unit disposed between the livestock power unit and the power consuming device;
    Determining means for determining whether or not a supply voltage supplied to the power consuming device abnormally increases;
    An output limiting means for limiting the output of the first voltage converter when the determination means determines that the supply voltage is abnormally increased;
    A fuel cell system comprising:
  2.  前記判定手段は、前記燃料電池が発電しているときであって、前記供給電圧が所定上限電圧値以上に達した場合に、前記供給電圧が異常に上昇すると判定することを特徴とする請求項1記載の燃料電池システム。 The determination means determines that the supply voltage is abnormally increased when the fuel cell is generating power and the supply voltage reaches a predetermined upper limit voltage value or more. 1. The fuel cell system according to 1.
  3.  前記所定上限電圧値は、前記供給電圧が加えられる各種素子が損傷しない範囲内に設定されていることを特徴とする請求項2記載の燃料電池システム。 3. The fuel cell system according to claim 2, wherein the predetermined upper limit voltage value is set within a range in which various elements to which the supply voltage is applied are not damaged.
  4.  前記判定手段は、前記燃料電池が発電しているときであって、前記供給電圧の上昇率が所定上限上昇率以上に達した場合に、前記供給電圧が異常に上昇すると判定することを特徴とする請求項1記載の燃料電池システム。 The determination means determines that the supply voltage is abnormally increased when the fuel cell is generating power and the increase rate of the supply voltage reaches a predetermined upper limit increase rate or more. The fuel cell system according to claim 1.
  5.  前記所定上限上昇率は、当該所定上限上昇率に従って所定期間上昇した後の前記供給電圧として想定される電圧が供給される場合であっても、当該想定される電圧が加えられる各種素子が損傷しない範囲内に設定されていることを特徴とする請求項4記載の燃料電池システム。 The predetermined upper limit increase rate does not damage various elements to which the assumed voltage is applied even when the assumed voltage is supplied as the supply voltage after rising for a predetermined period according to the predetermined upper limit increase rate. The fuel cell system according to claim 4, wherein the fuel cell system is set within a range.
  6.  前記出力制限手段は、前記第一の電圧変換部に含まれるスイッチのオン/オフ周期を制御することで変動するデューティ比を低減させることで、前記第一の電圧変換部の出力を制限することを特徴とする請求項1~5のいずれか1項に記載の燃料電池システム。 The output limiting means limits the output of the first voltage converter by reducing a varying duty ratio by controlling an on / off cycle of a switch included in the first voltage converter. The fuel cell system according to any one of claims 1 to 5, wherein:
  7.  前記出力制限手段は、前記デューティ比を0にすることで、前記第一の電圧変換部の出力を制限することを特徴とする請求項6に記載の燃料電池システム。 The fuel cell system according to claim 6, wherein the output limiting means limits the output of the first voltage conversion unit by setting the duty ratio to zero.
  8.  前記出力制限手段は、前記第一の電圧変換部に含まれるスイッチをオフ状態で停止させることで、前記第一の電圧変換部の出力を制限することを特徴とする請求項1~7のいずれか1項に記載の燃料電池システム。 8. The output limiting unit limits the output of the first voltage converter by stopping a switch included in the first voltage converter in an off state. The fuel cell system according to claim 1.
PCT/JP2009/059718 2009-05-27 2009-05-27 Fuel cell system WO2010137142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059718 WO2010137142A1 (en) 2009-05-27 2009-05-27 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059718 WO2010137142A1 (en) 2009-05-27 2009-05-27 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2010137142A1 true WO2010137142A1 (en) 2010-12-02

Family

ID=43222283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059718 WO2010137142A1 (en) 2009-05-27 2009-05-27 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2010137142A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109130899A (en) * 2018-09-13 2019-01-04 清华大学 A kind of electric car high-power wireless charging unit and energy management method suitable for low temperature environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036312A (en) * 1998-07-16 2000-02-02 Fuji Electric Co Ltd Direct current output fuel cell power generation set
JP2000078834A (en) * 1998-08-28 2000-03-14 Hitachi Ltd Semiconductor power converter
JP2003187822A (en) * 2001-12-20 2003-07-04 Sony Corp Proton conductor, membrane electrode, junction, fuel cell, fuel cell system, and voltage converter
JP2007318938A (en) * 2006-05-26 2007-12-06 Honda Motor Co Ltd Power system for fuel-cell vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036312A (en) * 1998-07-16 2000-02-02 Fuji Electric Co Ltd Direct current output fuel cell power generation set
JP2000078834A (en) * 1998-08-28 2000-03-14 Hitachi Ltd Semiconductor power converter
JP2003187822A (en) * 2001-12-20 2003-07-04 Sony Corp Proton conductor, membrane electrode, junction, fuel cell, fuel cell system, and voltage converter
JP2007318938A (en) * 2006-05-26 2007-12-06 Honda Motor Co Ltd Power system for fuel-cell vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109130899A (en) * 2018-09-13 2019-01-04 清华大学 A kind of electric car high-power wireless charging unit and energy management method suitable for low temperature environment

Similar Documents

Publication Publication Date Title
JP5354222B2 (en) Fuel cell system
JP4222337B2 (en) Power supply system having a plurality of power supplies and vehicle having the same
JP5143665B2 (en) Electric power system and fuel cell vehicle
US8273490B2 (en) Fuel cell system
JP4397739B2 (en) Method for setting voltage state of fuel cell vehicle
WO2010143247A1 (en) Fuel cell system and power control method thereof
US10179513B2 (en) Power net system of fuel cell vehicle and method for controlling the same
US20120098507A1 (en) Converter control device
US9919604B2 (en) Power net system of fuel cell vehicle and method for controlling the same
WO2011021263A1 (en) Fuel cell system
CN108493524B (en) Fuel cell system
JP5794121B2 (en) Fuel cell system
CN108695528B (en) Voltage control method and system for fuel cell
JP5446467B2 (en) Fuel cell system
JP5188367B2 (en) DC / DC converter device and control method thereof
JP2011004460A (en) Voltage converter and fuel cell system
JP5428526B2 (en) Fuel cell system
JP2010288326A (en) Fuel cell system
JP2010135258A (en) Fuel cell system
WO2010137142A1 (en) Fuel cell system
JP5167026B2 (en) Fuel cell system
WO2012063300A1 (en) Fuel cell output control device
JP2010218953A (en) Fuel cell system
WO2010146689A1 (en) Fuel battery system
JP5370726B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP