WO2016059274A1 - Dispositivo de accionamiento de elementos en entornos de ultra alto vació - Google Patents

Dispositivo de accionamiento de elementos en entornos de ultra alto vació Download PDF

Info

Publication number
WO2016059274A1
WO2016059274A1 PCT/ES2015/070710 ES2015070710W WO2016059274A1 WO 2016059274 A1 WO2016059274 A1 WO 2016059274A1 ES 2015070710 W ES2015070710 W ES 2015070710W WO 2016059274 A1 WO2016059274 A1 WO 2016059274A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
high vacuum
motor
wheel
shaft
Prior art date
Application number
PCT/ES2015/070710
Other languages
English (en)
French (fr)
Inventor
Carles Colldelram Peroliu
Josep Nicolas Roman
Liudmila Nikitina
Original Assignee
Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró filed Critical Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró
Publication of WO2016059274A1 publication Critical patent/WO2016059274A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/16Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and oscillating motion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators

Definitions

  • the present invention relates to an element drive device in ultra-high vacuum environments (UHV). Background of the invention.
  • the ultra-high vacuum environment normally comprises insulated chambers with respect to the outside environment by means of special vacuum joints that are deformed plastically, so that these chambers are difficult to open and close. Due to the long duration of this process and the technical difficulties involved, it is necessary that the maintenance of the devices in these environments be minimized or eliminated, since each maintenance intervention must be carried out outside the ultra-high vacuum environment and It implies having to repeat the process described previously.
  • one of the known drive devices used comprises a spindle mechanism that rotates by means of a stepper motor and that longitudinally displaces a nut that moves by screwing along the spindle.
  • the nut is associated with a fulcrum, which normally consists of a ball that contacts a drive surface.
  • a device for moving elements in ultra-high vacuum environments that does not need to be encapsulated to operate in ultra high vacuum environments, which is more robust, which has less friction and less play between its components and which, therefore, does not It requires maintenance or lubrication, has a much longer life and allows the corresponding elements to be operated more reliably and accurately and with the presence of much larger loads.
  • the objective of the present invention is to solve the drawbacks of the devices known in the art, by providing an element drive device in ultra-high vacuum environments comprising motor means and transmission means associated with said motor means, characterized by the fact that the transmission means comprise rotating shaft means and cam means associated with said rotating shaft means, said cam means being arranged to contact an independent drive surface with respect to said device.
  • the cam means comprise an eccentric section of the tree means that is radially offset with respect to the axis of longitudinal rotation of the tree means and a wheel that rotates around said eccentric section and arranged to contact the driving surface .
  • the device of the present invention allows an element to be operated in an ultra-high vacuum environment (environments with pressures below approximately 10 "9 mbar) by rotating a tree and a cam element associated with said tree.
  • the drive surface may be part of a fixed element, in which case the device will be mounted on an element to be operated, or it may be part of the element to be operated, in which case the device will be mounted on the fixed element.
  • the shaft means comprise a shaft aligned in the longitudinal direction of an output shaft of the motor means.
  • the device comprises at least two support points that include bearings to support the shaft means with rotation capacity.
  • the shaft is mounted and supported to rotate in a solid way, occupying the minimum space and being able to withstand considerable loads applied to the wheel thanks to the bearing support points.
  • the motor means comprise a stepper motor.
  • the stepper motor allows precise turns in a controlled manner, so that it makes it possible to turn the device shaft to a specific and precise position that will correspond to a specific and precise position of the element to be driven through the cam element.
  • the stepper motor is designed so that, when there is an absence of electric power, it always maintains its position stably under any load condition below the maximum allowable.
  • Figure 1 is a perspective view of the drive device of the present invention
  • Figures 2a and 2b are longitudinal sectional views of the device of Figure 1, showing the device in two different operating positions
  • Figure 3 is a perspective view of the drive device of the present invention mounted on a corresponding element to be operated in an ultra-high vacuum environment
  • Figures 4a and 4b are two side views, in partial section, of the device of the present invention and part of the element to be operated in Figure 3, showing two different positions of the device and of the element to be operated that correspond to the positions shown in figures 2a and 2b, respectively.
  • the device 1 comprises a stepper-type electric motor 2 fixed by means of a support 3 to a base 4.
  • the motor 2 has a rotating output shaft 5 at one of its ends, to which a rotating shaft 6 is coupled (see also Figures 2a and 2b).
  • the shaft 6 is arranged substantially aligned with the output shaft 5 of the motor 2.
  • the shaft 6 is connected to the shaft 5 via a connector 7, so that the rotation of the output shaft 5 of the motor 2 rotates the shaft 6 around its G axis of longitudinal rotation correspondingly.
  • the connector 7 is of the type comprising elastic elements that allow absorbing the differences in angular position, radial or axial between axis 5 and shaft 6 in order to obtain a rotation of shaft 6 without vibrations or unwanted movements.
  • the characteristics of the connector 7 will not be explained in more detail as the operation of this type of element is widely known in the art.
  • the shaft 6 is supported by two support points 8 at the base 4.
  • Each support point 8 comprises a body connected at its bottom to the base 4 and having a cylindrical housing or central recess designed to accommodate at least one bearing 9 inside.
  • one of the support points 8 (the one to the leftmost in figures 2a and 2b) is designed to accommodate two ball bearings 9 and the other support point 8 is designed to accommodate a single bearing 9 of balls.
  • the shaft 6 is arranged through the central gap of each support point 8 and supported at said support points 8 through the bearings 9, with its longitudinal axis G aligned with the axis of rotation of the bearings 9 Therefore, the shaft 6 can rotate about its axis G of longitudinal rotation with respect to the support points 8 with minimal friction.
  • the tree 6 has a section 10 that has a diameter greater than that of the rest of the tree 6 and that is radially displaced a distance D from the axis G of longitudinal rotation of the tree 6. That is, the section 10 is eccentric with respect to the axis G of rotation of the tree 6, so that when the tree 6 rotates the longitudinal central axis E of said section 10 it rotates around the axis G of longitudinal rotation of the tree 6 following a circle of radius D around it.
  • a wheel 1 1 is mounted which is supported on the section 10 by ball bearings 12.
  • the bearings 12 allow the wheel 1 1 to freely rotate around section 10 with minimal friction. Therefore, when turning the shaft 6, the wheel 1 1 will rotate around the axis G of rotation following a circle with a radius D and can freely rotate around the central central axis E of the section 10 thanks to the bearings 12.
  • the wheel 1 1 has the function of contacting a driving surface associated with a particular element, so that the movement of the wheel 1 1 will cause the movement of the device 1 with respect to said element or the movement of said element with respect to the device 1. For this reason, the wheel 1 1 has a convex outer profile of a curved shape that allows to achieve a clear and precise point of contact between the surface of the wheel 1 1 and the driving surface.
  • the drive device 1 of the present invention can be seen mounted on an element 13 that will be operated by the device 1.
  • the element consists of a platform 13 for a mirror used in a particle accelerator.
  • the platform 13 is a plate comprising a flexible narrowing 13a at one of its ends, said flexible narrowing 13a having the function of allowing the articulation of the platform 13 around it.
  • the platform 13 is fixed to a bench 14 next to said flexible joint 13a.
  • the opposite end 13b of the platform can swing with respect to the bench 14 thanks to the flexible joint 13a, so that its distance to the bench 14 may vary.
  • the drive device 1 of the present invention is mounted at the end 13b, with its base 4 fixed to the upper face of the platform 13 by means of screws 4a.
  • the bed 14 comprises a protuberance 16 which has an extreme driving surface 16a and which extends in the direction of the device 1.
  • the platform 13 comprises a passage 15a that is aligned with a passage 15b of the base 4.
  • the protuberance 16 can extend through said steps 15a and 15b to contact its driving surface 16a with the wheel 1 1, which is also arranged partially inside step 15b.
  • springs 17 joined at one end to the platform 13 and joined at the other end to the bed 14 deflect the end 13b of the platform 13 in that the device 1 is mounted and, therefore, the device 1 itself, towards the bench 14, tilting the structure counterclockwise in Figure 3.
  • the drive device 1 is in a state in which the motor 2 has rotated the shaft 6 so that the rotation axis E of the wheel 1 1 is in a first position of maximum distance from base 4 and step 15b. Because the contact point between the wheel 1 1 and the driving surface 16a is the only support point between the device 1 and the bench 14, the platform 13 connected to the device 1 is located in a first extreme position in which the distance to the bench 14 is the minimum possible ( Figure 4a).
  • the device 1 is in a state in which the motor 2 has rotated 180 degrees with respect to the position shown in Figures 2a and 4a, so that the axis E of rotation of the wheel 1 1 is in a second position of maximum approach to base 4 and step 15b. Therefore, because the contact point between the wheel 1 1 and the driving surface 16a is the only support point between the device 1 and the bench 14, the device 1 and the platform 13 move away with respect to to the bench 14, so that the platform 13 is located in a second extreme position in which the distance to the bench 14 is the maximum possible ( Figure 4b).
  • the contact between the outer surface of the wheel 1 1 and the driving surface 16a of the protrusion 16 is produced by rolling the wheel 1 1 on said driving surface 16a, so that friction is minimal, further reduced by the fact that the wheel 1 1 will preferably be made of a hardened metal and due to the fact that, as mentioned above, the wheel 1 1 has a convex outer profile of a curved shape that allows to achieve a contact point of smaller surface area and more precise with the drive surface 16a.
  • the configuration of the device 1 of the invention in which the shaft 6 and the wheel 1 1 they are supported by bearings 9, 12 in the base 4 and in the shaft 6, respectively, considerably reduces friction between its mobile components compared to the mechanisms used in the prior art (spindles, threads) in which the contacts between moving parts generate much higher frictions.
  • the rolled contact between the wheel 1 1 and the driving surface 16a also helps reduce friction. Therefore, thanks to the lower friction, the device 1 of the present invention does not require lubrication between its moving parts or maintenance, which is especially advantageous in ultra-high vacuum environments.
  • the configuration of the device 1 makes it possible to obtain a more robust mechanism than the previous mechanisms, since the shaft 6 is supported by two support points 8, so that the load supported by the wheel 1 1 can be absorbed without occurring significant bending in the shaft 6.
  • the device 1 and all its parts are designed to avoid the presence of axial games that could decrease the life of the device 1 and affect the accuracy of the position of the element to be operated.
  • the configuration of the device 1 of the present invention allows the use of components present in the market whose use is compatible with ultra-high vacuum environments. In the case of the 2 stepper motor, the company Phytron sells engines that can be used in vacuums with levels beyond 10 "10 mbar.
  • bearings 9, 12 compatible with ultra-high vacuum environments, with stainless rings, with Si 3 N 4 balls that do not need external lubrication and with special PEEK cages, without lids to contain the lubrication, which could cause the presence of air inside.
  • the Ortech company manufactures bearings of this type. It offers the possibility of manufacturing connectors 7 for shafts compatible with ultra-high vacuum environments. The rest of the components will also be made of suitable materials to work properly in this type of environment.
  • the device 1 of the present invention in ultra high vacuum environments without having to encapsulate any part or component of the device 1 and without the need for lubrication. This makes it possible to obtain a less bulky and easier and cheaper mechanism to manufacture and which can operate continuously, eliminating rest periods or reducing them considerably.
  • the device 1 of the invention also does not require maintenance, so that the considerable associated time losses are avoided.
  • a prototype of the device 1 according to the embodiment described above allows to obtain a very precise movement of the driven element (platform 13), with an accuracy of up to 0.05 ⁇ in a movement range of 5 mm to 10 mm. This prototype worked satisfactorily in an ultra-high vacuum environment without having to encapsulate any part of the device 1 and with loads of up to 250 N, and can also be heated up to 150 degrees Celsius.
  • the device 1 is mounted on the element to be operated (the platform 13) and the driving surface 16a is fixed, in other embodiments, the device 1 could be mounted on a fixed element and the surface 16a of drive could be part of the element to be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

Comprende medios (2) de motor y medios (6, 10, 11) de transmisión asociados a dichos medios (2) de motor. Los medios de transmisión comprenden medios (6) de árbol giratorio y medios (10, 11) de leva asociados a dichos medios (6) de árbol giratorio, estando dispuestos dichos medios (10, 11) de leva para contactar con una superficie (16a) de accionamiento independiente con respecto a dicho dispositivo (1).

Description

DESCRIPCION
Titulo.
Dispositivo de accionamiento de elementos en entornos de ultra alto vacío. Objeto de la invención.
La presente invención se refiere a un dispositivo de accionamiento de elementos en entornos de ultra alto vacío (Ultra-High Vacuum (UHV) en inglés). Antecedentes de la invención.
La necesidad de mover, inclinar o variar la posición de elementos dispuestos en entornos de ultra alto vacío, por ejemplo, en aceleradores de partículas, hace necesario el uso de dispositivos de accionamiento para tal función capaces de trabajar en este entorno y no empeorar la calidad del mismo.
Los entornos de ultra alto vacío hacen que la lubricación de las piezas de estos dispositivos sea muy difícil, ya que la humedad ambiente es inexistente y existen muy pocos lubricantes para trabajar en estas condiciones. Las piezas que trabajan en este tipo de entorno deben ser fabricadas ex profeso y estar hechas de materiales especiales que permiten su funcionamiento prácticamente sin necesidad de lubricación.
Además, en entornos de ultra alto vacío, es necesario realizar un calentamiento de las piezas entre 80 y 300 grados centígrados durante varias semanas mientras se bombean los gases todavía presentes en el entorno. Esto permite que el nivel de vacío sea mucho mejor a temperatura ambiente. A este proceso se le denomina horneado (bake-out). Por otro lado, el entorno de ultra alto vacío comprende normalmente unas cámaras aisladas con respecto al entorno exterior mediante juntas especiales de vacío que se deforman plásticamente, de modo que estas cámaras son difíciles de abrir y cerrar. Debido a la larga duración de este proceso y a las dificultades técnicas que conlleva, es necesario que el mantenimiento de los dispositivos en estos entornos se reduzca al mínimo o se elimine, ya que cada intervención de mantenimiento debe realizarse fuera del entorno de ultra alto vacío e implica tener que repetir el proceso descrito previamente.
En la actualidad, uno de los dispositivos de accionamiento utilizados conocidos comprende un mecanismo de husillo que gira mediante un motor paso a paso y que desplaza longitudinalmente una tuerca que se mueve por enroscamiento a lo largo del husillo. La tuerca está asociada a un punto de apoyo, que consiste normalmente en una bola que contacta con una superficie de accionamiento.
La disposición directa de este tipo de mecanismo en un entorno de ultra alto vacío no es posible, ya que no está diseñado para soportar las condiciones de falta de lubricación presentes en estos entornos. La elevada fricción presente entre el husillo y la tuerca hace necesaria una lubricación que es incompatible con este tipo de entorno. Por lo tanto, es necesario encapsular el mecanismo en aire para aislarlo del entorno de ultra alto vacío y permitir su funcionamiento en condiciones normales y con la lubricación necesaria. Este encapsulado implica una mayor complejidad, voluminosidad y coste del sistema.
Por otra parte, se ha comprobado que este tipo de mecanismo presenta varios problemas a lo largo de su vida útil. Además del problema de la necesidad de encapsulamiento para poder funcionar en entornos de ultra alto vacío y de las elevadas fricciones entre el husillo y la tuerca, el mecanismo tiende a calentarse demasiado, puede presentar demasiado juego y también se producen fricciones entre la bola y la superficie de accionamiento.
Estas fricciones, además del reducido diámetro del husillo debido a la falta de espacio en estos entornos, pueden provocar el fallo del mecanismo por rotura o mal funcionamiento, siendo la reparación de estas averías costosa y complicada y estando limitado el uso de este tipo de mecanismo a cargas reducidas. Finalmente, el dispositivo de accionamiento descrito no puede funcionar de manera continua y prolongada, ya que las fricciones y los aumentos de temperatura en el mecanismo hacen necesario realizar periodos de descanso como mínimo de 3 minutos por cada minuto de funcionamiento.
Sería deseable un dispositivo para mover elementos en entornos de ultra alto vacío que no necesita ser encapsulado para funcionar en entornos de ultra alto vacío, que es más robusto, que presenta menos rozamientos y menos juegos entre sus componentes y que, por lo tanto, no requiere de mantenimiento ni lubricación, tiene una vida útil mucho más prolongada y permite accionar los elementos correspondientes de manera más fiable y precisa y con la presencia de cargas mucho más grandes.
Descripción de la invención.
El objetivo de la presente invención es solventar los inconvenientes que presentan los dispositivos conocidos en la técnica, proporcionando un dispositivo de accionamiento de elementos en entornos de ultra alto vacío que comprende medios de motor y medios de transmisión asociados a dichos medios de motor, caracterizado por el hecho de que los medios de transmisión comprenden medios de árbol giratorio y medios de leva asociados a dichos medios de árbol giratorio, estando dispuestos dichos medios de leva para contactar con una superficie de accionamiento independiente con respecto a dicho dispositivo. Preferiblemente, los medios de leva comprenden un tramo excéntrico de los medios de árbol que está desplazado radialmente con respecto al eje de giro longitudinal de los medios de árbol y una rueda que gira alrededor de dicho tramo excéntrico y dispuesta para contactar con la superficie de accionamiento. El dispositivo de la presente invención permite accionar un elemento en un entorno de ultra alto vacío (entornos con presiones inferiores a aproximadamente 10"9 mbar) mediante el giro de un árbol y de un elemento de leva asociado a dicho árbol. Es decir, todos los componentes móviles del mecanismo del dispositivo de la presente invención se mueven de manera giratoria entre sí y no existe ningún movimiento relativo lineal entre dichos componentes. Esto permite reducir fricciones entre los componentes, ya que es posible disponer rodamientos entre los mismos. Además, el elemento de leva ocupa poco espacio en comparación con los mecanismos de desplazamiento lineal usados en la técnica anterior.
Por otra parte, el hecho de utilizar una rueda como elemento de leva permite prácticamente eliminar los rozamientos entre el dispositivo y la superficie de accionamiento ya que el contacto entre la rueda y la superficie de accionamiento es un contacto por rodadura.
La superficie de accionamiento puede formar parte de un elemento fijo, en cuyo caso el dispositivo estará montado en un elemento a accionar, o puede formar parte del elemento a accionar, en cuyo caso el dispositivo estará montado en el elemento fijo.
También preferiblemente, los medios de árbol comprenden un árbol alineado en la dirección longitudinal de un eje de salida de los medios de motor. Ventajosamente, el dispositivo comprende al menos dos puntos de apoyo que incluyen rodamientos para soportar con capacidad de giro los medios de árbol.
El árbol queda montado y apoyado para girar de manera sólida, ocupando el mínimo espacio y pudiendo soportar cargas considerables aplicadas en la rueda gracias a los puntos de apoyo con rodamientos.
Preferiblemente, los medios de motor comprenden un motor paso a paso.
El motor paso a paso permite realizar giros precisos de manera controlada, de modo que hace posible el giro del árbol del dispositivo hasta una posición determinada y precisa que se corresponderá con una posición determinada y precisa del elemento a accionar a través del elemento de leva. Además, el motor paso a paso está diseñado de modo que, cuando se produce una ausencia de potencia eléctrica, el mismo mantiene siempre su posición de forma estable en cualquier condición de carga inferior a la máxima admisible.
Descripción de las figuras.
Con el fin de facilitar la descripción de cuanto se ha expuesto anteriormente se adjuntan unos dibujos en los que, esquemáticamente y tan sólo a título de ejemplo no limitativo, se representa un caso práctico de realización del dispositivo de la invención, en los cuales: la figura 1 es una vista en perspectiva del dispositivo de accionamiento de la presente invención; las figuras 2a y 2b son vistas en sección longitudinal del dispositivo de la figura 1 , que muestran el dispositivo en dos posiciones de funcionamiento diferentes; la figura 3 es una vista en perspectiva del dispositivo de accionamiento de la presente invención montado en un elemento a accionar correspondiente en un entorno de ultra alto vacío; las figuras 4a y 4b son dos vistas laterales, en sección parcial, del dispositivo de la presente invención y de parte del elemento a accionar de la figura 3, que muestran dos posiciones diferentes del dispositivo y del elemento a accionar que se corresponden con las posiciones mostradas en las figuras 2a y 2b, respectivamente.
Descripción de una realización preferida.
En la figura 1 se muestra una vista general en perspectiva del dispositivo 1 de accionamiento de la presente invención. El dispositivo 1 comprende un motor 2 eléctrico de tipo paso a paso fijado mediante un soporte 3 a una base 4. El motor 2 tiene un eje giratorio 5 de salida en uno de sus extremos, al que está acoplado un árbol giratorio 6 (ver también figuras 2a y 2b). El árbol 6 está dispuesto de forma sustancialmente alineada con el eje 5 de salida del motor 2. El árbol 6 está conectado al eje 5 mediante un conector 7, de modo que el giro del eje 5 de salida del motor 2 hace girar el árbol 6 alrededor de su eje G de giro longitudinal de manera correspondiente.
A efectos de absorber los efectos provocados por una posible desalineación o desplazamiento entre los ejes de giro del eje 5 de salida del motor 2 y del árbol 6, el conector 7 es del tipo que comprende elementos elásticos que permiten absorber las diferencias de posición angular, radial o axial entre el eje 5 y el árbol 6 a efectos de obtener un giro del árbol 6 sin vibraciones ni movimientos no deseados. Las características del conector 7 no se explicarán de forma más detallada por ser el funcionamiento de este tipo de elemento ampliamente conocido en la técnica.
El árbol 6 está soportado por dos puntos 8 de apoyo en la base 4. Cada punto 8 de apoyo comprende un cuerpo unido por su parte inferior a la base 4 y que tiene un alojamiento o hueco central de forma cilindrica diseñado para alojar al menos un rodamiento 9 en su interior. En la realización descrita, uno de los puntos 8 de apoyo (el situado más a la izquierda en las figuras 2a y 2b) está diseñado para alojar dos rodamientos 9 de bolas y el otro punto 8 de apoyo está diseñado para alojar un único rodamiento 9 de bolas.
De este modo, el árbol 6 queda dispuesto atravesando el hueco central de cada punto 8 de apoyo y soportado en dichos puntos 8 de apoyo a través los rodamientos 9, con su eje G de giro longitudinal alineado con el eje de giro de los rodamientos 9. Por lo tanto, el árbol 6 puede girar alrededor de su eje G de giro longitudinal con respecto a los puntos 8 de apoyo con un rozamiento mínimo.
El árbol 6 tiene un tramo 10 que tiene un diámetro superior al del resto del árbol 6 y que está desplazado radialmente una distancia D con respecto al eje G de giro longitudinal del árbol 6. Es decir, el tramo 10 es excéntrico con respecto al eje G de giro del árbol 6, de manera que cuando el árbol 6 gira el eje E central longitudinal de dicho tramo 10 gira alrededor del eje G de giro longitudinal del árbol 6 siguiendo un círculo de radio D alrededor del mismo. Alrededor del tramo 10 está montada una rueda 1 1 que está soportada en el tramo 10 por unos rodamientos 12 de bolas. Los rodamientos 12 permiten que la rueda 1 1 gire libremente alrededor del tramo 10 con un rozamiento mínimo. Por lo tanto, al girar el árbol 6, la rueda 1 1 girará alrededor del eje G de giro siguiendo un círculo con un radio D y podrá rotar libremente alrededor del eje E central longitudinal del tramo 10 gracias a los rodamientos 12.
Tal como se explicará a continuación, la rueda 1 1 tiene la función de contactar con una superficie de accionamiento asociada a un elemento determinado, de modo que el movimiento de la rueda 1 1 provocará el movimiento del dispositivo 1 con respecto a dicho elemento o el movimiento de dicho elemento con respecto al dispositivo 1 . Por este motivo, la rueda 1 1 presenta un perfil exterior convexo de forma curvada que permite conseguir un punto de contacto claro y preciso entre la superficie de la rueda 1 1 y la superficie de accionamiento.
En la figura 3 puede observarse el dispositivo 1 de accionamiento de la presente invención montado en un elemento 13 que será accionado por el dispositivo 1 . En este caso, el elemento consiste en una plataforma 13 para un espejo utilizado en un acelerador de partículas.
La plataforma 13 es una placa que comprende un estrechamiento flexible 13a en uno de sus extremos, teniendo dicho estrechamiento flexible 13a la función de permitir la articulación de la plataforma 13 alrededor del mismo. La plataforma 13 está fijada a una bancada 14 junto a dicha articulación flexible 13a. El extremo opuesto 13b de la plataforma puede bascular con respecto a la bancada 14 gracias a la articulación flexible 13a, de modo que su distancia a la bancada 14 puede variar.
Tal como se ha mencionado anteriormente, el dispositivo 1 de accionamiento de la presente invención está montado en el extremo 13b, con su base 4 fijada a la cara superior de la plataforma 13 mediante unos tornillos 4a.
En una posición que se corresponde con la posición del dispositivo 1 (ver detalle A de la figura 3 y figuras 4a y 4b) la bancada 14 comprende una protuberancia 16 que tiene una superficie 16a extrema de accionamiento y que se extiende en la dirección del dispositivo 1 . La plataforma 13 comprende un paso 15a que está alineado con un paso 15b de la base 4. La protuberancia 16 puede extenderse a través de dichos pasos 15a y 15b para contactar con su superficie 16a de accionamiento con la rueda 1 1 , que también queda dispuesta parcialmente en el interior del paso 15b.
Tal como puede observarse claramente en la figura 3 y especialmente en el detalle A de la figura 3, unos muelles 17 unidos por un extremo a la plataforma 13 y unidos por su otro extremo a la bancada 14 desvían el extremo 13b de la plataforma 13 en el que está montado el dispositivo 1 y, por lo tanto, el propio dispositivo 1 , hacia la bancada 14, haciendo bascular la estructura en sentido anti horario en la figura 3.
Gracias a esta desviación, la superficie exterior de la rueda 1 1 es empujada contra la superficie 16a de accionamiento de la protuberancia 16, de modo que ambas superficies siempre están en contacto y nunca se separan. El punto de contacto entre la rueda 1 1 y la superficie 16a de accionamiento es el único punto de apoyo entre el dispositivo 1 y la bancada 14 y, por lo tanto, el único punto de apoyo entre el extremo 13b de la plataforma 13 y la bancada 14.
Haciendo referencia nuevamente a las figuras 2a y 2b, cuando el motor 2 gira y hace girar el árbol 6, el tramo 10 gira alrededor del eje G de giro del árbol de manera excéntrica, lo que hace que la rueda 1 1 también gire de manera excéntrica con respecto al eje G de giro. En consecuencia, dependiendo de la posición de giro del árbol 6, el eje E de rotación de la rueda 1 1 estará situado más o menos alejado de la base 4 y del paso 15b, siendo la distancia entre la posición más alejada y más cercana de la rueda 1 1 con respecto a la base 4 igual a 2xD.
Haciendo referencia a las figuras 2a y 4a, el dispositivo 1 de accionamiento se encuentra en un estado en el que el motor 2 ha girado el árbol 6 de modo que el eje E de rotación de la rueda 1 1 está en una primera posición de máximo alejamiento con respecto a la base 4 y al paso 15b. Debido a que el punto de contacto entre la rueda 1 1 y la superficie 16a de accionamiento es el único punto de apoyo entre el dispositivo 1 y la bancada 14, la plataforma 13 unida al dispositivo 1 queda situada en una primera posición extrema en la que la distancia a la bancada 14 es la mínima posible (figura 4a).
Haciendo referencia a las figuras 2b y 4b, el dispositivo 1 se encuentra en un estado en el que el motor 2 ha girado 180 grados con respecto a la posición mostrada en las figuras 2a y 4a, de modo que el eje E de rotación de la rueda 1 1 está en una segunda posición de máximo acercamiento a la base 4 y al paso 15b. Por lo tanto, debido a que el punto de contacto entre la rueda 1 1 y la superficie 16a de accionamiento es el único punto de apoyo entre el dispositivo 1 y la bancada 14, el dispositivo 1 y la plataforma 13 se desplazan en alejamiento con respecto a la bancada 14, de modo que la plataforma 13 queda situada en una segunda posición extrema en la que la distancia a la bancada 14 es la máxima posible (figura 4b).
El contacto entre la superficie exterior de la rueda 1 1 y la superficie 16a de accionamiento de la protuberancia 16 se produce por rodadura de la rueda 1 1 sobre dicha superficie 16a de accionamiento, de modo que la fricción es mínima, reducida además por el hecho de que la rueda 1 1 estará realizada preferiblemente en un metal endurecido y por el hecho de que, tal como se ha mencionado anteriormente, la rueda 1 1 presenta un perfil exterior convexo de forma curvada que permite conseguir un punto de contacto de menor superficie y más preciso con la superficie 16a de accionamiento.
De este modo, haciendo girar el motor 2 del dispositivo 1 un ángulo determinado controlado por el operario, es posible hacer girar el árbol 6 de manera correspondiente y, por lo tanto, hacer girar la rueda 1 1 excéntricamente alrededor del eje G a efectos de desplazar el dispositivo 1 y el extremo correspondiente 13b de la plataforma 13 hasta una posición deseada entre la primera posición mostrada en las figuras 2a y 4a y la segunda posición mostrada en las figuras 2b y 4b. El giro del motor 2 a lo largo de un intervalo angular de 180 grados permite disponer la plataforma 13 en una posición deseada entre las dos posiciones extremas descritas anteriormente.
La configuración del dispositivo 1 de la invención, en la que el árbol 6 y la rueda 1 1 están soportados por rodamientos 9, 12 en la base 4 y en el propio árbol 6, respectivamente, disminuye de forma considerable los rozamientos entre sus componentes móviles en comparación con los mecanismos usados en la técnica anterior (husillos, roscas) en los que los contactos entre piezas móviles generan fricciones mucho más elevadas. Además, tal como se ha explicado anteriormente, el contacto rodado entre la rueda 1 1 y la superficie 16a de accionamiento también contribuye a reducir los rozamientos. Por lo tanto, gracias a las menores fricciones, el dispositivo 1 de la presente invención no requiere de lubricación entre sus piezas móviles ni de mantenimiento, lo que resulta especialmente ventajoso en entornos de ultra alto vacío.
Además, la configuración del dispositivo 1 permite obtener un mecanismo más robusto que los mecanismos anteriores, ya que el árbol 6 está apoyado en dos puntos 8 de apoyo, de manera que la carga soportada por la rueda 1 1 puede ser absorbida sin que se produzcan flexiones significativas en el árbol 6. El dispositivo 1 y todas sus piezas están diseñados para evitar la presencia de juegos axiales que podrían disminuir la vida útil del dispositivo 1 y afectar a la precisión de la posición del elemento a accionar. Por otra parte, la configuración del dispositivo 1 de la presente invención permite el uso de componentes presentes en el mercado cuyo uso es compatible con entornos de ultra alto vacío. En el caso del motor 2 paso a paso la empresa Phytron comercializa motores que pueden ser usados en vacíos con niveles más allá de 10"10 mbar. También es posible usar rodamientos 9, 12 compatibles con entornos de ultra alto vacío, con anillos inoxidables, con bolas de Si3N4 que no necesitan lubricación externa y con jaulas especiales de PEEK, sin tapas para contener la lubricación, que podrían provocar la presencia de aire en su interior. La empresa Ortech fabrica rodamientos de este tipo. La empresa Ruland también ofrece la posibilidad de fabricar conectores 7 para ejes compatibles con entornos de ultra alto vacío. El resto de componentes también estarán fabricados en materiales adecuados para trabajar de forma adecuada en este tipo de entornos.
Gracias a las características de solidez y baja fricción del dispositivo 1 y al uso de los componentes compatibles con ultra alto vacío mencionados previamente, es posible utilizar el dispositivo 1 de la presente invención en entornos de ultra alto vacío sin necesidad de tener que encapsular ninguna parte o componente del dispositivo 1 y sin necesidad de lubricación. Esto permite obtener un mecanismo menos voluminoso y más fácil y económico de fabricar y que puede funcionar de manera continua, eliminando los periodos de descanso o reduciéndolos de forma considerable. El dispositivo 1 de la invención tampoco requiere de mantenimiento, de modo que se evitan las pérdidas de tiempo considerables asociadas. A título de ejemplo, se ha comprobado que un prototipo del dispositivo 1 según la realización descrita anteriormente permite obtener un movimiento del elemento accionado (la plataforma 13) muy preciso, con una precisión de hasta 0,05 μηι en un intervalo de movimiento de 5 mm a 10 mm. Dicho prototipo funcionó satisfactoriamente en un entorno de ultra alto vacío sin necesidad de tener que encapsular ninguna parte del dispositivo 1 y con cargas de hasta 250 N, pudiendo además calentarse hasta 150 grados centígrados.
Finalmente, aunque en la realización descrita el dispositivo 1 está montado en el elemento a accionar (la plataforma 13) y la superficie 16a de accionamiento es fija, en otras realizaciones, el dispositivo 1 podría estar montado en un elemento fijo y la superficie 16a de accionamiento podría formar parte del elemento a accionar.

Claims

REIVINDICACIONES
1 . Dispositivo (1 ) de accionamiento de elementos (13) en entornos de ultra alto vacío que comprende medios (2) de motor y medios (6, 10, 1 1 ) de transmisión asociados a dichos medios (2) de motor, caracterizado por el hecho de que los medios de transmisión comprenden medios (6) de árbol giratorio y medios (10, 1 1 ) de leva asociados a dichos medios (6) de árbol giratorio, estando dispuestos dichos medios (10, 1 1 ) de leva para contactar con una superficie (16a) de accionamiento independiente con respecto a dicho dispositivo (1 ).
2. Dispositivo (1 ) según la reivindicación 1 , caracterizado por el hecho de que los medios (10, 1 1 ) de leva comprenden un tramo excéntrico (10) de los medios (6) de árbol que está desplazado radialmente con respecto al eje (G) de giro longitudinal de los medios (6) de árbol y una rueda (1 1 ) que gira alrededor de dicho tramo excéntrico (10) y dispuesta para contactar con la superficie (16a) de accionamiento.
3. Dispositivo (1 ) según la reivindicación 1 o 2, caracterizado por el hecho de que los medios (6) de árbol comprenden un árbol (6) alineado en la dirección longitudinal de un eje (5) de salida de los medios (2) de motor.
4. Dispositivo (1 ) según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que comprende al menos dos puntos (8) de apoyo que incluyen rodamientos (9) para soportar con capacidad de giro los medios (6) de árbol.
5. Dispositivo (1 ) según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que los medios (2) de motor comprenden un motor (2) paso a paso.
PCT/ES2015/070710 2014-10-15 2015-09-30 Dispositivo de accionamiento de elementos en entornos de ultra alto vació WO2016059274A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU201431338 2014-10-15
ES201431338U ES1135807Y (es) 2014-10-15 2014-10-15 Dispositivo de accionamiento de elementos en entornos de ultra alto vacio

Publications (1)

Publication Number Publication Date
WO2016059274A1 true WO2016059274A1 (es) 2016-04-21

Family

ID=52440054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070710 WO2016059274A1 (es) 2014-10-15 2015-09-30 Dispositivo de accionamiento de elementos en entornos de ultra alto vació

Country Status (2)

Country Link
ES (1) ES1135807Y (es)
WO (1) WO2016059274A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973444A (en) * 1974-09-05 1976-08-10 Textron, Inc. Hand-held oscillating tool
EP0570152A2 (en) * 1992-05-15 1993-11-18 Sumitomo Electric Industries, Limited Laser beam scanner
US7129460B1 (en) * 2005-09-02 2006-10-31 Olson Gaylord G Electronic imaging apparatus with high resolution and wide field of view and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973444A (en) * 1974-09-05 1976-08-10 Textron, Inc. Hand-held oscillating tool
EP0570152A2 (en) * 1992-05-15 1993-11-18 Sumitomo Electric Industries, Limited Laser beam scanner
US7129460B1 (en) * 2005-09-02 2006-10-31 Olson Gaylord G Electronic imaging apparatus with high resolution and wide field of view and method

Also Published As

Publication number Publication date
ES1135807Y (es) 2015-04-27
ES1135807U (es) 2015-02-06

Similar Documents

Publication Publication Date Title
ES2868881T3 (es) Dispositivo de precarga para un mecanismo de tornillo de rodillos guiado en rotación
ES2643788T3 (es) Biela oscilante excéntrica de resorte en aplicación CEPS
ES2591009T3 (es) Dirección electromecánica de vehículo de motor
ES2538330T3 (es) Servodirección electromecánica con ajuste de juego para el engranaje helicoidal
ES2582187T3 (es) Mesa de altura ajustable
ES2442878T3 (es) Tornillo de rodillos diferencial
ES2700930T3 (es) Cierre de sobrepresión
ES2527784T3 (es) Junta cardán flexible compacta y vehículo espacial que consta de dicha junta cardán
ES2774954T3 (es) Dispositivo de transmisión de un motor, particularmente para un motor con relación de compresión variable y/o desplazamiento variable
ES2836478T3 (es) Pivote pasante con elementos flexibles y nave espacial que incluye un dicho pivote
US11028874B2 (en) Ball joint
FR3041830B1 (fr) Verin electromecanique
ES2404145T3 (es) Conjunto de articulación mecánica y procedimiento para ensamblar dicho conjunto
ES2734186T3 (es) Accionador electromecánico lineal con antirrotación incorporada
WO2016059274A1 (es) Dispositivo de accionamiento de elementos en entornos de ultra alto vació
CN107035820B (zh) 一种多自由度节圆内啮合环型移动传动装置
US9410531B2 (en) Wind turbine generator
ES2729703T3 (es) Dispositivo para accionar un componente, en particular un componente utilizado en el espacio
JP5539378B2 (ja) リニアアクチュエータ
US20180017040A1 (en) Passive blade pitch control module
ES2731917T3 (es) Sistemas de válvula desmodrómica y sus métodos de funcionamiento
ES2687526T3 (es) Cabezal indexado con dos ejes de giro
ES2374611T3 (es) Accionamiento para un componente que se ha de ajustar.
ES2939458T3 (es) Mecanismo articulado y sistema de apuntamiento articulado que comprende ese mecanismo
KR101133469B1 (ko) 발사부 고저각 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850916

Country of ref document: EP

Kind code of ref document: A1