WO2016058537A1 - Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用 - Google Patents

Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用 Download PDF

Info

Publication number
WO2016058537A1
WO2016058537A1 PCT/CN2015/091944 CN2015091944W WO2016058537A1 WO 2016058537 A1 WO2016058537 A1 WO 2016058537A1 CN 2015091944 W CN2015091944 W CN 2015091944W WO 2016058537 A1 WO2016058537 A1 WO 2016058537A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
ascl1
mcherry
astrocytes
aav
Prior art date
Application number
PCT/CN2015/091944
Other languages
English (en)
French (fr)
Inventor
程乐平
章晓辉
刘月光
缪庆龙
袁嘉成
Original Assignee
中国科学院上海生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海生命科学研究院 filed Critical 中国科学院上海生命科学研究院
Publication of WO2016058537A1 publication Critical patent/WO2016058537A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the functional neuron comprises glutamatergic neurons and/or gamma-aminobutyric acid (GABA) neurons.
  • GABA gamma-aminobutyric acid
  • the expression vector GFAP-AAV vector In another preferred embodiment, the expression vector GFAP-AAV vector.
  • the viral vector comprises a lentiviral FUGW vector.
  • the expression vector comprises the following elements in sequence from the 5' to the 3' end: GFAP-AAV vector: viral ITR sequence + CMV enhancer + human GFAP promoter + Ascl1 and red fluorescent protein mCherry Promoter and coding cassette for the coding cassette + post-transcriptional regulatory element WPRE + viral ITR sequence + ampicillin resistance gene
  • FUGW vector viral ITR sequence + Ubiquitin promoter promoter + Ascl1 coding frame + IRES sequence + green protein GFP coding frame + post-transcriptional regulatory element WPRE + viral ITR sequence + ampicillin gene promoter and coding frame
  • the viral vector is prepared as follows:
  • a polynucleotide sequence having an Ascl1 coding sequence is introduced into a packaging cell of a viral particle to form the viral vector.
  • neuronal cells at least 50% of neuronal cells, preferably at least 60%, 70%, 80%, 90%, or 100% of neurons
  • the cell expresses a neuronal marker Tuj1, MAP2, NeuN or Synapsin I;
  • the neuronal cells do not express markers such as Gfap, S100 ⁇ , Acsbg1, Sox2 or Pax6.
  • test compound when E1 is significantly higher than E0 in the test group, it indicates that the test compound is (a) a candidate compound for treating nervous system diseases; and/or (b) inducing astrocyte transdifferentiation into functional neuronal cells.
  • candidate compound for treating nervous system diseases; and/or inducing astrocyte transdifferentiation into functional neuronal cells.
  • the cell is an astrocyte.
  • said significantly higher than E1 is higher than E0 and has a statistical difference; preferably, E1 ⁇ 2E0.
  • the method further includes the steps of:
  • test compound is (a) a candidate compound for treating a neurological disorder; and/or (b) screening for a star a candidate compound for transdifferentiation of glial cells into functional neuronal cells;
  • Figure 1a-h shows the identification of the segregation and purification of astrocytes.
  • Most of the cells express astrocyte markers GFAP and S100 ⁇ , and a small number of cells express oligodendrocyte marker O4 and CNPase, a small amount of cells expressed NG2, a marker molecule of NG2 glial cells, and no expression of the neuronal marker molecule Tuj1 and the stem cell marker molecules Sox2 and Oct4 were detected.
  • Figure 2d and Figure 2e show that astrocytes also express mature neuronal marker molecules MAP2 and synapsin I 21 days after infection with lentivirus FUGW-Ascl1, respectively.
  • Figure 2f shows the whole cell electrophysiological recording of these neurons.
  • Figure 2g shows that all GFP-positive cells (63 in total) produce action potentials after 30-40 days of lentiviral transfection, and most iN cells (87.3%, 55/63 cells) can be recorded. To spontaneous post-synaptic currents.
  • Figure 2h-i shows the results of infection of astrocytes (astrocytes with GFP markers) from hGFAP-GFP mice with FUW-Ascl1-tdTomato and control viruses.
  • Figure 2h shows that after infection with the control lentivirus FUW-tdTomato containing only red fluorescent protein, the virus-infected cells still maintain the morphology of astrocytes and express GFAP;
  • Figure 2i shows overexpression with lentivirus Ascl1 induces morphological changes in astrocytes and simultaneously expresses Tuj1. These transdifferentiated neurons still have GFP expression.
  • Figure 3 shows the transmitter properties of the induced cells.
  • Figure 3a shows that most iN cells express GABA
  • Figures 3b and 3d show that some iN cells express GABAergic neuronal marker molecules GAD67 and VGAT, respectively.
  • Figures 3c and e show that the control virus-infected cells do not express the GABAergic neuron marker molecule VGAT and the glutamatergic neuron marker molecule VGLUT2, respectively.
  • Figure 3f shows that some iN cells express the glutamatergic neuron marker molecule VGLUT2.
  • Figure 3g shows that some iN cells (19.4%, 7/36 cells) were able to record self-synapses, and when synaptic CNQX was added to the AMPA/kainate glutamate receptor, the self-synaptic current was completely blocked ( 3/3 cells).
  • Figure 3h shows that some iN cells (21%, 8/38 cells) can be recorded from synapses, and when the GABA A receptor antagonist bicuculline is added, the self-synaptic current is completely blocked (5/5 cell).
  • Figure 4a and Figure 4b show that astrocytes taken from the dorsal midbrain of GAD67-GFP mice were infected with lentivirus FUW-Ascl1-tdTomato and that the induced cells were found to express GFP.
  • Figure 4c shows that neuron co-culture isolated from the dorsal midbrain of P5-P7 wild-type mice was added 10 days after induction of iN cells, and almost all cells of tdTomato + GFP + after 29-40 days of lentiviral transfection (97) %, 37/38 cells) can produce action potentials.
  • Figure 4d shows that spontaneous iynaptic currents can be recorded on most iN cells (89%, 34/38 cells).
  • Figures 5a and 5b show that almost all mCherry-positive cells express Acsbg1 after injection of the virus on the dorsal side of the brain for 12 days after birth, 12-15 days after birth, whether injected with the control virus AAV-mCherry or the virus AAV-Ascl1/mCherry.
  • Figures 5c and 5d show that after 3 days of AAV-mCherry infection, the majority of mCherry-positive cells were also GFP-positive cells in both transgenic mice Aldh11-GFP mice and GFAP-GFP mice.
  • Figure 5e shows induction of GFAP-CreERT2 with 4-hydroxytamoxifen (4-OHT); expression of tdTomato in Rosa26-CAG-tdTomato mice, co-localization of tdTomato with Acsbg1.
  • Figure 6 shows that mCherry does not coexist with the marker NG2 of NG2 cells in the same cell.
  • Figure 7a, a' Figure 7d, d' shows that after the control virus AAV-mCherry and virus AAV-Ascl1/mCherry injections, the dorsal midbrain of mice 12-15 days after birth, 3-5 days after immunization, the immunization co-label shows mCherry Not colocalized with NeuN;
  • Figures 7b, b', 7c, c' show that mCherry is not co-localized with NeuN in mice AAV-mCherry 10-14 days and 28-32 days after injection of control virus, respectively.
  • Figure 7g shows that some iN cells express Gad1 after 45 days of virus injection, and Figure 7h shows that some iN cells express VGLUT2.
  • Figures 7i and 7j show that cells isolated from the subventricular zone (SVZ) can produce large numbers of neurospheres and cells isolated from the dorsal midbrain are substantially incapable of producing neurospheres.
  • 7k-7n showed that GFAP-CreERT2 was induced by 4-OHT for 5 days (P12-P16); Rosa26-CAG-tdTomato mice expressed tdTomato, and it was found that tdTomato was still not co-localized with NeuN after 30 days.
  • iN cells induced from GFAP + are derived from postnatal astrocytes rather than neural precursor cells.
  • Figure 9 shows that in the dorsal midbrain of mice after 155 days of injection of virus AAV-Ascl1/mCherry, mCherry expression was still detectable and they co-localized well with NeuN.
  • Figure 10 shows gene expression of mouse iN cells injected with virus AAV-Ascl1/mCherry. Analysis of fluorescent real-time quantitative PCR was performed by sorting mCherry+ cells at different time points (days 4, 10, and 30) by flow cytometric sorting. It was found that the expression of astrocyte marker molecules (Gfap, S100 ⁇ and Acsbg1) was gradually decreased, and the expression of neural cell marker molecules (Tuj1, Map2 and NeuN) was gradually increased, and neural precursor cell marker molecules (Sox2 and Pax6). Basically no expression was detected.
  • astrocyte marker molecules Gfap, S100 ⁇ and Acsbg1
  • neural cell marker molecules Tuj1, Map2 and NeuN
  • Sox2 and Pax6 neural precursor cell marker molecules
  • Figure 11a shows that in the mouse brain slices infected with the control virus AAV-mCherry, the cells detected were found to have lower impedance, higher resting membrane potential, and unable to deliver action potentials.
  • the results of biocytin remodeling showed that the control virus-infected cells had a typical morphology of astrocytes and were connected to adjacent astrocytes via gap junctions.
  • Figures 11b-11e show that in the mouse brain slices infected with virus AAV-Ascl1/mCherry for 7-30 days, in voltage clamp mode, many cells have inward Na + current and outward K + current, and the amplitude varies with infection time.
  • Figure 11i shows that high frequency spontaneous postsynaptic currents were detected on all virus-infected cells (23/23) after 30 days of AAV-Ascl1/mCherry virus infection.
  • Figure 11j shows that further pharmacological experiments indicate that iN cells receive both excitatory glutamate input and inhibitory GABA input.
  • Figure 11k shows that iN cells (mCherry + ) can form synaptic connections with neurons in the midbrain cap (mCherry - ) by dual-whole cell recording, and the GABA A receptor antagonist bicuculline is added to the midbrain cap. Synaptic currents induced in neurons are completely blocked.
  • Figures 12a, a' and 12e, e' show that, in the brain of adult mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, the immunocombination shows that mCherry is not co-localized with NeuN.
  • Figures 12b, b' and Figures 12c, c' show that mCherry is essentially not co-localized with NeuN, either after 16 days or 38 days after virus injection.
  • the electrophysiological experiments of Figure 12d indicate that the control virus AAV-mCherry infected cells have typical astrocyte properties.
  • Figures 12f, 12f' and Figures 12g, 12g' show that mCherry is gradually co-localized with NeuN in mice injected with virus AAV-Ascl1/mCherry, from 63.5 ⁇ 3.1% at 16 days to 92.1 ⁇ 1.5% at 38 days.
  • Figure 12h shows that virus AAV-Ascl1/mCherry infected cells after 15-21 days of infection, most iN cells (9/10) have inward and outward currents in voltage clamp mode and are capable of delivering action potentials.
  • Figure 12i shows that spontaneous post-synaptic currents can be recorded on most iN cells (8/10).
  • Figure 12j shows that the control plasmid AAV-FLEX-NLSGFP infected GFP + cells showed little expression of NeuN.
  • Figure 12k shows that most of the AAV-FLEX-Ascl1/GFP-infected GFP + cells express NeuN after 28 days of infection.
  • FIG. 13 shows that most of the AAV-FLEX-NLSGFP-infected GFP + cells express Acsbg1.
  • Figure 14a shows that most of the mCherry + cells in the dorsal midbrain injury site of adult mice express GFAP 3 days after AAV-mCherry virus injection.
  • Figure 14b shows that mCherry + cells still seldom express NeuN after 30 days of viral infection.
  • Figure 14c shows that most of the mCherry + cells after 7 days of AAV-Ascl1/mCherry virus infection expressed NeuN.
  • Figure 14d shows that AV-Ascl1/mCherry virus-infected mCherry + cells have greater membrane resistance and a more depolarized resting membrane potential after 30 days.
  • Figure 14e shows that the cell is unable to deliver an action potential.
  • Figures 14f-h show that all recorded cells (17/17) were able to deliver multiple action potentials and receive spontaneous excitatory and inhibitory synaptic transmission.
  • Figures 16a-d show that mCherry is hardly expressed in striatal neurons (NeuN + ), microglia (IBA1 + ), oligodendrocytes (Olig2 + ), and NG2 cells (NG2 + ).
  • Figure 16e, f shows approximately 96% of the mCherry + cells expressing astrocyte glutamine synthetase (GS).
  • Figure 16g shows that mCherry + cells express GS 30 days after AAV-mCherry virus injection.
  • Figure 16h shows that most of the mCherry + cells infected with AAV-Ascl1/mCherry virus no longer express GS.
  • Figure 17a a' shows that mCherry + cells showed little expression of NeuN after 30 days of AAV-mCherry virus injection.
  • Figure 17b b'AAV-Ascl1/mCherry virus-infected mCherry + cells express NeuN.
  • Figure 18a shows that AAV-mCherry-infected adult mouse cortical cells (mCherry + ) seldom express NeuN after 30 days of virus injection, while 18b shows that most of the cortical mCherry + cells infected with AAV-Ascl1/mCherry virus express NeuN .
  • Figure 18c shows that cells infected with AAV-Ascl1/mCherry virus 30 have greater membrane resistance and more depolarizing resting membrane potential, and Figures 18d, f show that cells infected with control virus AAV-mCherry for 30 days still show Membrane properties similar to astrocytes.
  • Figure 18e, f shows that in cells infected with AAV-Ascl1/mCherry virus 30, all of the recorded cells (10/10) were able to deliver action potentials.
  • Figure 18g shows that spontaneous excitatory and inhibitory postsynaptic currents can be recorded in these cells (10/10).
  • Figure 19a, b shows that in 7 days after virus injection, in a mouse injected with control virus AAV-mCherry or AAV-Ascl1/mCherry, the immunocombination showed that mCherry was hardly co-localized with BrdU.
  • Figure 19c, d shows that after 15 days of virus injection, in the mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, the immunocombination showed that mCherry was hardly colocalized with Ki67.
  • Figure 19e, f shows that after 30 days of virus injection, in a mouse injected with control virus AAV-mCherry or AAV-Ascl1/mCherry, the immunocombination showed that mCherry was still not co-localized with BrdU.
  • Figure 19g shows that after 30 days of virus injection, in a mouse injected with AAV-Ascl1/mCherry, the immunocombination showed that mCherry was not co-localized with Ki67.
  • Figure 20e-h shows that after 30 days of virus injection, in the striatum and cortex of mice injected with control virus AAV-mCherry or AAV-Ascl1/mCherry, the immunocombination shows that mCherry is rarely associated with oligodendrocytes.
  • the object Olig2 is co-localized.
  • Figures 21A and B show wild type mice (P42-P70) and Gad67-GFP (P51-P55) mice, respectively.
  • Figures 21C and D show neuronal firing patterns induced from juvenile mice as well as adult mice, respectively.
  • Figure 21E shows the classification statistics of the discharge patterns of the dorsal neurons of the brain in the above four mice.
  • Figures 22a, a', b, b' show the expression of GFAP (reactive astrocyte marker) and IBA1 (microglia marker) around the injection site of mice 7 days after AAV injection with a glass electrode. happening.
  • Figures 22c, c', d, d' show the expression of GFAP and IBA1 around the injection site of the mice 7 days after AAV injection with a 31G needle.
  • the present inventors After extensive and intensive research, the present inventors have discovered for the first time that overexpression of the Ascl1 gene or its protein can effectively induce astrocyte transdifferentiation into neuronal cells with normal electrophysiological functions, and in vivo and in vitro. It has such a transdifferentiation effect on astrocytes in normal or damaged form.
  • the inventors have also experimentally confirmed that astrocytes from different sites (dorsal midbrain, striatum, and cerebral cortex) can differentiate into neuronal cells in the presence of Ascl1.
  • the method is expected to be an effective method for culturing neuronal cells in vitro and stimulating the production of new neuronal cells in an adult, and thus is widely used for the treatment of diseases of the nervous system, such as neurodegenerative diseases, central nervous system traumatic diseases and the like.
  • diseases of the nervous system such as neurodegenerative diseases, central nervous system traumatic diseases and the like.
  • the present invention has been completed.
  • Ascl achaete-scute complex homolog-like 1, bHLH transcription factor.
  • Ascl1GenBank: U68534.2 the protein sequence of which is shown in SEQ ID NO.: 1;
  • NCBI Reference Sequence NM_008553.4; the mRNA sequence is shown as SEQ ID NO.: 2.
  • the promoter of Ascl1 is not particularly limited and may be any substance that promotes the expression and/or activity of the Ascl1 gene or its protein, such as a small molecule compound or a promoting miRNA.
  • One skilled in the art can screen Ascl1 promoters according to existing databases. It will be understood that, based on the transdifferentiation-inducing effect of Ascl1 disclosed by the present invention on astrocytes, those skilled in the art can reasonably foresee that any substance which promotes Ascl1 has an induction of transdifferentiation to astrocytes. effect.
  • Astrocytes are the most abundant type of cells in the mammalian brain. They perform many functions, including biochemical support (eg, formation of the blood-brain barrier), providing nutrients to neurons, maintaining extracellular ion balance, and participating in repair and scar formation following brain and spinal cord injury. According to the content of colloidal filaments and the shape of the neurites, astrocytes can be divided into two types: fibrous astrocytes are mostly distributed in the white matter of the brain and spinal cord, with elongated protrusions and few branches. The cytoplasm contains a large amount of colloidal filaments; the protoplasmic astrocyte is mostly distributed in the gray matter, and the cell protrusions are short and the branches are many.
  • the astrocytes which can be used in the present invention are not particularly limited, and include various astrocytes derived from the mammalian central nervous system, for example, derived from the striatum, the spinal cord, the dorsal midbrain or the cerebral cortex, preferably From the dorsal midbrain or cerebral cortex.
  • the specific marker for astrocytes is GFAP, and the astrocyte GFAP expression in gray matter is relatively low, but expresses Acsbg1 and GS.
  • these astrocytes When induced by the method of the invention, these astrocytes exhibit neuron cell-specific markers such as Tuj1, MAP2 and synapsin I.
  • the functional neuronal cells have the following characteristics:
  • the expression vector which can be used in the present invention is not particularly limited, and may be any expression vector containing an Ascl1 protein coding sequence capable of integrating into astrocytes and expressing an exogenous Ascl1 protein.
  • a viral vector which can be any viral vector capable of utilizing the characteristics of a virus to transmit its genome, bringing genetic material into other cells for infection. Can occur in intact living or cell culture. These include lentiviral vectors, adenoviral vectors, herpesvirus vectors, and poxvirus vectors.
  • a preferred expression vector is a lentiviral vector.
  • the cDNA of mouse Ascl1 gene was cloned into the lentiviral expression vector FUGW-IRES-EGFP using conventional PCR technology.
  • FUGW-Ascl1 and the sequence encoding GFP is replaced with other fluorescent proteins, such as tdTomato, to constitute a FUW-Ascl1-tdTomato vector.
  • a method of packaging an Ascl1 lentiviral vector can be carried out according to a conventional method, preferably "Production and purification of lentiviral vectors" (Tiscornia, G., Singer, O. & Verma, The method recorded in IM. Nat. Protoc. 1, 241-245 (2006)) is packaged for lentiviral vectors.
  • the present invention also provides a method of inducing transdifferentiation of astrocytes into functional neuronal cells in vitro and in vivo, respectively.
  • the method comprises the steps of: infecting astrocytes by an Ascl1 vector (eg, a lentivirus), the infected cells are maintained for at least 10 days, more preferably, for more than 20 days, thereby allowing astrocytes Transform into mature neuronal cells.
  • an Ascl1 vector eg, a lentivirus
  • a vector containing Ascl1 can be administered (e.g., injected) to a site where the desired subject contains astrocytes, such as the dorsal midbrain, striatum, or cerebral cortex.
  • astrocytes such as the dorsal midbrain, striatum, or cerebral cortex.
  • administration can inject undamaged and damaged nervous system tissue to induce transdifferentiation of astrocytes in specific parts of the nervous system.
  • the invention also provides a composition useful for inducing astrocytes to form functional neurons.
  • the pharmaceutical composition of the present invention can also treat or prevent a neurodegenerative disease, a neurological traumatic disease, and the like.
  • the pharmaceutical composition of the present invention comprises the above-described expression vector (e.g., viral particle) of the present invention, or the exogenous Ascl1 protein itself, and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention usually contains 10 7 - 10 12 PFU/ml of lentivirus or AAV virus particles, preferably 10 8 - 10 12 PFU/ml of lentivirus or AAV virus particles, more preferably 10 9 -10 12 PFU/ml of lentivirus or AAV virus particles.
  • “Pharmaceutically acceptable carrier” refers to a carrier for the administration of a therapeutic agent, including various excipients and diluents.
  • the term refers to pharmaceutical carriers which are not themselves essential active ingredients and which are not excessively toxic after administration. Suitable carriers are well known to those of ordinary skill in the art.
  • the pharmaceutically acceptable carrier in the composition may contain a liquid such as water, saline, or a buffer.
  • auxiliary substances such as fillers, lubricants, glidants, wetting or emulsifying agents, pH buffering substances and the like may also be present in these carriers.
  • Said The vector may also contain a cell transfection reagent.
  • the pharmaceutical composition of the present invention can be obtained by mixing the expression vector (lentivirus particles) with a pharmaceutically acceptable carrier.
  • the Ascl1 of the present invention can be used for the preparation of induced astrocytes to produce functional neurons, thereby applying newly induced neurons to various diseases associated with decreased neuronal numbers, cell decline, apoptosis, or decreased neuronal function.
  • the nervous system related diseases include epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), neuronal death caused by stroke, and the like.
  • Immunochromatography of cultured cells is referred to "Direct conversion of fibroblasts to functional neurons by defined factors" (Vierbuchen, T. et al. Nature 463, 1035-1041 (2010)). Immunochromatography of tissue sections combined with in situ hybridization and immunization The double-labeled experiment of color development was carried out in accordance with published methods.
  • the primary antibodies used for immunochromatography include: mouse anti-GFAP (Millipore, 1:1,000), rabbit-GFAP (DAKO, 1:1,000), mouse anti-Tuj1 (Covance, 1:500), mouse anti-Map2 ( Sigma, 1:500), rabbit anti-GFP (Invitrogen, 1:1,000), chick anti-GFP (Invitrogen, 1:1,000), mouse anti-NeuN (Millipore, 1:100), rabbit anti-Synapsin I (Mi) Llipore, 1:1,000), rabbit anti-GABA (Sigma, 1:3,000), rabbit anti-GAD67 (Millipore, 1:200), guinea pig anti-VGAT (Synaptic Systems, 1:200), rabbit anti-Dsred ( Clontech, 1:500), mouse anti-Dsred (Santa Cruz, 1:100), rabbit anti-VGLUT1 (Synaptic Systems, 1:500), guinea pig anti-VGLUT2 (Frontier Institute Co., 1:400
  • FITC-, Cy3- and Cy5-conjugated secondary antibodies were purchased from Jackson Immunoresearch.
  • Alexa-350-, Alexa-488- and Alexa-546-conjugated secondary antibodies were purchased from Invitrogen.
  • the AAV virus was performed with reference to the mouse brain map. After the injection of the virus, the midbrain is collected at different time points. The striatum and cerebral cortex are used for immunochromatography or brain slice recording. When preparing a damaged dorsal midbrain model, the injected virus was done with a 5 ml syringe and a 31 G needle.
  • RNA of the cells is extracted, cDNA is synthesized, and then real-time quantitative PCR is detected.
  • GAPDH serves as an internal reference for gene expression levels.
  • the cDNA of mouse Ascl1 gene was cloned into the lentiviral expression vector FUGW-IRES-EGFP to obtain FUGW-Ascl1. Substitution of GFP in the FUGW-Ascl1 plasmid with tdTomato gave FUW-Ascl1-tdTomato.
  • the empty lentiviral expression vectors FUGW and FUW-tdTomato were used as controls, respectively.
  • the packaging of lentivirus is referred to in the "Production and purification of lentiviral vectors" (Tiscornia, G., Singer, O. & Verma, I. M. Nat. Protoc. 1, 241-245 (2006)).
  • the astrocytes were plated for 24 hours and then added with lentivirus. After 24 hours of infection, the medium was changed: DMEM/F12, B27, Glutamax and penicillin/streptomycin. After infection with 6-7, brain-derived neurotrophic factor (BDNF; PeproTech, 20 ng/ml) was added to the medium every three days.
  • BDNF brain-derived neurotrophic factor
  • Astrocytes from the dorsal midbrain of mice 5-7 days after birth were first isolated and purified. The properties of these glial cells were verified by examining molecular markers of different cell types ( Figure 1). The vast majority of cells express astrocyte markers GFAP and S100 ⁇ , a small number of cells express oligodendrocyte marker molecules O4 and CNPase, and a small number of cells express NG2 glial cell marker NG2, which is not detected. Expression of neuronal marker molecule Tuj1 and stem cell marker molecules Sox2 and Oct4.
  • Nissl colorimetric results showed that the cell density of the dorsal midbrain of mice injected with virus AAV-Ascl1/mCherry was substantially comparable to that of mice injected with control virus AAV-mCherry (Fig. 8a-8c). TUNEL staining showed no increase in apoptosis in mice injected with virus AAV-Ascl1/mCherry (Fig. 8d-8h).
  • mCherry was still detectable in the dorsal midbrain of mice 155 days after injection of the virus AAV-Ascl1/mCherry, and they co-localized well with NeuN (Fig. 9). This suggests that iN cells can survive for a longer period of time in vivo.
  • iN cells produced in vivo contain glutamatergic neurons and GABAergic neurons.
  • Induced cells are derived from astrocytes, not neural precursor cells
  • In order to detect the electrophysiological properties of iN cells in vivo whole brain recordings of acute brain slices at different time points after injection of the virus were performed. Infected cells were identified by expression of mCherry.
  • iN cells received both excitatory glutamate input and inhibitory GABA input (Fig. 11j). Finally, it was found by double-cell recording that iN cells (mCherry + ) formed synaptic connections with neurons in the midbrain (mCherry - ) (Fig. 11k). When the antagonist of the GABA A receptor, bicuculline, was added, the synaptic current induced in the neurons of the midbrain was completely blocked (Fig. 11k). This suggests that iN cells can establish GABAergic synaptic connections with surrounding neurons and integrate them into existing neural circuits in the body.
  • This experiment further investigated whether astrocytes in adult mice can be reprogrammed into neurons.
  • the virus AAV-mCherry or AAV-Ascl1/mCherry was injected into wild-type mice of P60 and showed whether mChrrey was co-localized with NeuN.
  • Ascl1 can transduce the dorsal midbrain astrocytes of adult mice into functional neurons in vivo.
  • Cre-dependent Ascl1 can also transdifferentiate adult dorsal midbrain astrocytes into neurons.
  • Damaged midbrain astrocytes can be transdifferentiated into functional neurons
  • a model of stabbing in the dorsal aspect of the midbrain of adult mice was induced by injection of AAV virus AAV-mCherry or AAV-Ascl1/mCherry with a needle.
  • Ascl1 can transduce astrocytes from the adult mouse cerebral cortex into functional neurons.
  • astrocytes are transdifferentiated into neurons rather than oligodendrocytes.
  • this example further compares the electrophysiological properties of transdifferentiated neurons and endogenous neurons in the dorsal midbrain.
  • neuronal dorsal neurons in the wild mouse are divided into five main types based on neuron-specific discharge patterns. It was found that the vast majority of neurons induced from juvenile mice as well as adult mice (P12-P15: 95.6%, 22/23; P60: 100%, 9/9) can be classified into these wild-type mice and Gad67. - The type of discharge of normal neurons in GFP mice (Fig. 21C, D, E). In addition, some induced neurons (P12-P15, 30-49 days: 82.6%, 19/23; P60, 15-21 days: 77.8%, 7/9) exhibited the same neurons as Gad67-GFP mice. The discharge pattern suggests that they are likely to be GABAergic neurons.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种无刚毛鳞甲复合体同源物样1(achaete-scute complex homolog-like 1,Ascl1)基因或其蛋白或其促进剂的用途,(i)用于制备诱导星形胶质细胞形成功能性神经元细胞的药物组合物;和/或(ii)用于制备治疗神经系统疾病的药物组合物,所述神经系统疾病包括神经退行性病变、中枢神经创伤性疾病等。

Description

Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用 技术领域
本发明属于生物技术和细胞治疗领域,具体地,本发明涉及一种诱导星形胶质细胞转分化为功能性神经元细胞的方法及其应用。
背景技术
许多转录因子和染色质表观遗传修饰过程在维持已分化细胞的特性稳定中起着非常重要的作用。然而,诱导多能干细胞(iPS细胞)的研究表明,分化的细胞并不是被不可逆地锁定在其成熟的状态,而是可以通过选择性过量表达特定的转录因子实现去分化。
最近的研究结果发现,特定的转录因子可以直接将成纤维细胞诱导为功能性的神经元,这进一步表明了非神经元细胞可直接转分化为神经元。例如通过过表达转录因子Neurog2或Dlx2可以在体外将出生后小鼠大脑皮层的星形胶质细胞转分化为谷氨酸能神经元或GABA能神经元。一些研究还表明,非神经元细胞在体内可被重新编程为神经元或神经前体细胞。但是,体内的星形胶质细胞能否转分化为神经元以及这些诱导产生的神经元(iN)是否可以整合到已经存在的神经环路中目前还知之甚少。
目前,过表达前神经蛋白Neurog2能够将体外培养的来自于出生早期小鼠大脑皮层的星形胶质细胞重编程为可形成突触联系的谷氨酸能神经元。过表达前神经蛋白NeuroD1能够将小鼠大脑皮层损伤后的反应性星形胶质细胞重编程为神经元。但是,目前还没有可以将正常状态下的星形胶质细胞转分化为功能性神经元的任何方法或路径。
因此,本领域迫切需要寻找一种能够诱导成熟细胞转分化为有活性的神经元细胞的细胞因子,从而在大脑功能修复中开创新的治疗方式。
越来越多的证据支持星形胶质细胞的谱系具有非常高的异质性。可以设想星形胶质细胞的不同来源可能影响其转分化为神经元的效果。在本研究中发现,单个转录因子Ascl1可以在体外有效地将出生后小鼠背侧中脑的星形胶质细胞转分化为可形成突触联系的神经元。此外,还设计了一个在体内特异靶向星形胶质细胞的基因表达系统,发现单个转录因子Ascl1能够诱导体内的星形胶质细胞转分化 为功能性的神经元。
发明内容
本发明提供了Ascl1基因或其蛋白在诱导星形胶质细胞转分化为功能性神经元细胞的用途,以及其在神经系统疾病治疗方面的应用。
本发明第一方面,提供了一种无刚毛鳞甲复合体同源物样1(achaete-scute complex homolog-like 1,Ascl1)基因或其蛋白的用途,(i)用于制备诱导星形胶质细胞形成功能性神经元细胞的药物组合物;和/或(ii)用于制备治疗神经系统疾病的药物组合物。
在另一优选例中,所述的Ascl1基因或其蛋白来源于哺乳动物,较佳地,来源于人、小鼠、大鼠。
在另一优选例中,所述的星形胶质细胞包括正常状态和损伤状态下的星形胶质细胞。
在另一优选例中,所述的Ascl1基因的GenBank号为U68534.2,蛋白序列如SEQ ID NO.:1所示。
在另一优选例中,编码所述的Ascl1基因的mRNA NCBI Reference Sequence号为NM_008553.4,mRNA序列如SEQ ID NO.:2所示。
在另一优选例中,所述的药物组合物包括含有Ascl1编码序列的表达载体(FUGW和GFAP-AAV),和药学上可接受的载体(GFAP-AAV)。
在另一优选例中,所述的星形胶质细胞来源于纹状体、脊髓、背侧中脑或大脑皮层,较佳地,所述的星形胶质细胞来源于皮层、背侧中脑。
在另一优选例中,所述的功能性神经元包括谷氨酸能神经元和/或γ-氨基丁酸(GABA)能神经元。
在另一优选例中,所述的功能性神经元能够发放动作电位并能够形成突触联系。
本发明第二方面,提供了一种表达载体,所述的表达载体含有Ascl1蛋白编码序列,且所述的表达载体可整合入星形胶质细胞,并在星形胶质细胞中表达外源的Ascl1蛋白。
在另一优选例中,所述的表达载体包括质粒、病毒载体。
在另一优选例中,所述的病毒载体可感染星形胶质细胞。
在另一优选例中,所述的表达载体是星形胶质细胞特异性表达载体。
在另一优选例中,所述的表达载体GFAP-AAV载体。
在另一优选例中,所述的病毒载体包括慢病毒FUGW载体。
在另一优选例中,所述的表达载体自5'到3'端依次包括一下元件:GFAP-AAV载体:病毒ITR序列+CMV的增强子+人GFAP的启动子+Ascl1和红色荧光蛋白mCherry的编码框+转录后调控元件WPRE+病毒ITR序列+氨苄抗性基因的启动子和编码框
FUGW载体:病毒ITR序列+Ubiquitin promoter启动子+Ascl1编码框+IRES序列+绿色蛋白GFP的编码框+转录后调控元件WPRE+病毒ITR序列+氨苄抗性基因的启动子和编码框
在另一优选例中,所述的病毒载体制备如下:
将具有Ascl1编码序列的多核苷酸序列导入病毒颗粒的包装细胞中,从而形成所述的病毒载体。
本发明第三方面,提供了一种宿主细胞,所述的宿主细胞的染色体整合有编码Ascl1蛋白的多核苷酸,或所述的宿主细胞含有本发明第二方面所述的表达载体。
在另一优选例中,所述的宿主细胞是星状胶质细胞。
本发明第四方面,提供了一种体外非治疗性的将星形胶质细胞转分化为功能性神经元细胞的方法,包括步骤:
在外源性Ascl1蛋白存在下,培养星形胶质细胞,从而诱导星形胶质细胞形成神经元细胞。
在另一优选例中,所述的外源性Ascl1蛋白是在所述星形胶质细胞内表达外源Ascl1编码序列而产生的外源Ascl1蛋白。
在另一优选例中,所述的外源性Ascl1蛋白是在所述星形胶质细胞内表达外源Ascl1编码序列而产生的外源Ascl1蛋白。
在另一优选例中,所述的外源性Ascl1蛋白通过本发明第二方面所述的表达载体表达获得。
在另一优选例中,所述的表达载体为慢病毒颗粒。
本发明第五方面,提供了一种由星形胶质细胞转分化的功能性神经元细胞和/或神经元细胞群,所述的功能性神经元细胞和/或神经元细胞群由本发明第四方所述的方法制备获得,且所述的功能性神经元细胞和/或神经元细胞群具有以下一种或多种特征:
(a)至少50%的神经元细胞,优选至少60%、70%、80%、90%、或100%的神经元 细胞表达神经元的标志物Tuj1,MAP2、NeuN或Synapsin I;
(b)能够发放动作电位并能够形成突触联系。
在另一优选例中,所述的神经细胞群中,所述的神经元细胞不表达Gfap,S100β、Acsbg1、Sox2或Pax6等标志物。
在另一优选例中,所述的不表达包括基本不表达,例如至少60%、70%、80%、90%、或100%的神经元细胞不表达Gfap,S100β、Acsbg1、Sox2或Pax6等标志物。
本发明第六方面,提供了本发明第五方面所述的功能性神经元的用途,所述的功能性神经元细胞和/或神经元细胞群用于制备治疗神经系统疾病的药物组合物。
在另一优选例中,所述的神经系统疾病包括癫痫、阿尔兹海默症(AD)、帕金森病(PD)、中风引起的神经元死亡等。
本发明第七方面,提供了一种药物组合物,所述的药物组合物包括(A)本发明第二方面所述的表达载体或Ascl蛋白,或(B)本发明第五方面所述的功能性神经元;和(C)药学上可接受的载体。
本发明第八方面,提供了一种治疗神经系统疾病的方法,包括步骤:
向需要的对象施用安全有效量的本发明第七方面所述的药物组合物,从而治疗神经系统疾病。
本发明第九方面,提供了一种(a)筛选治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物的方法,其特征在于,包括步骤:
(i)将测试化合物加入细胞培养体系作为测试组,并将未加入测试化合物的细胞培养体系作为对照组;
(ii)比较测试组中Ascl1基因或其蛋白的表达量和/或活性E1与对照组中的表达量和/或活性E0;
其中,当测试组中E1显著高于E0,则表明所试化合物为(a)治疗神经系统疾病的候选化合物;和/或(b)诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物。
在另一优选例中,所述的细胞为星形胶质细胞。
在另一优选例中,所述的显著高于指的是E1高于E0,且具有统计学差异;优选地,为E1≥2E0。
在另一优选例中,所述的方法还包括步骤:
(iii)将测试化合物加入星形胶质细胞培养体系作为测试组,并将未加入测试化合物的星形胶质细胞培养体系作为对照组;
(iv)比较测试组中星形胶质细胞向功能性神经元转化的比例,从而确定所述测试化合物是否为(a)治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物;
其中,当测试组中星形胶质细胞向功能性神经元转化的比例T1显著高于对照组的比例T0,则表明所述测试化合物为(a)治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1a-h显示了分离纯化的星形胶质细胞的属性鉴定,绝大部分的细胞表达星形胶质细胞的标志分子GFAP和S100β,少量的细胞表达少突胶质细胞的标志分子O4和CNPase,少量的细胞表达NG2胶质细胞的标志分子NG2,没有检测到神经元标志分子Tuj1以及干细胞标志分子Sox2和Oct4的表达。
图2显示了星形胶质细胞在经慢病毒载体诱导发生转分化后表达神经元标志分子表达的情况。图2a-b显示星形胶质细胞转染对照慢病毒载体FUGW 10天后,星形胶质细胞不表达神经元的标志分子Tuj1,仍维持胶质细胞的形态同时表达星形胶质细胞的标志分子GFAP。图2c显示了感染慢病毒FUGW-Ascl1 10天后,大部分星形胶质细胞表达神经元的标志分子Tuj1,同时呈现典型的神经元形态。图2d和图2e分别显示了感染慢病毒FUGW-Ascl1 21天后,星形胶质细胞还表达成熟神经元的标志分子MAP2和synapsin I。图2f显示了对这些神经元进行了全细胞电生理记录。图2g显示,在慢病毒转染30-40天后,所有GFP阳性的细胞(共63个)都能产生动作电位,且绝大多数的iN细胞上(87.3%,55/63个细胞)能记录到自发的突触后电流。图2h-i为FUW-Ascl1-tdTomato及对照病毒感染取自hGFAP-GFP小鼠的星形胶质细胞(星形胶质细胞带有GFP标记)的结果。其中,图2h显示感染只含红色荧光蛋白的对照慢病毒FUW-tdTomato后,被病毒感染的细胞仍然维持星形胶质细胞的形态,并表达GFAP;图2i显示用慢病毒过量表达 Ascl1可诱导星形胶质细胞的形态发生改变,同时表达Tuj1。这些转分化产生的神经元仍然有GFP的表达。
图3显示了所诱导细胞的递质属性。图3a显示大多数iN细胞表达GABA,而图3b和图3d分别显示了部分iN细胞表达GABA能神经元标志分子GAD67和VGAT。图3c和e分别显示了对照病毒感染的细胞不表达GABA能神经元标志分子VGAT以及谷氨酸能神经元标志分子VGLUT2。图3f显示了部分iN细胞表达谷氨酸能神经元标志分子VGLUT2。图3g显示了部分iN细胞(19.4%,7/36个细胞)能记录到自突触,当加入AMPA/kainate谷氨酸受体的拮抗剂CNQX时,自突触的电流被完全阻断(3/3个细胞)。图3h显示了部分iN细胞(21%,8/38个细胞)能记录到自突触,当加入GABAA受体的拮抗剂bicuculline时,自突触的电流被完全阻断(5/5个细胞)。
图4a和图4b显示了用慢病毒FUW-Ascl1-tdTomato感染取自GAD67–GFP小鼠背侧中脑的星形胶质细胞并发现诱导的细胞表达GFP。图4c显示了iN细胞诱导10天后加入从P5-P7野生型小鼠背侧中脑分离出来的神经元共培养,在慢病毒转染29-40天后,几乎所有tdTomato+GFP+的细胞(97%,37/38个细胞)都能产生动作电位。图4d显示了绝大多数的iN细胞上(89%,34/38个细胞)能记录到自发的突触后电流。
图5a和图5b分别显示了出生后12-15天小鼠中脑背侧注射病毒3天后,不论是注射对照病毒AAV-mCherry还是病毒AAV-Ascl1/mCherry,几乎所有mCherry阳性的细胞表达Acsbg1。图5c和图5d分别显示了在AAV-mCherry感染3天后,发现在两种转基因小鼠Aldh1l1-GFP小鼠和GFAP-GFP小鼠中,绝大多数mCherry阳性的细胞同时也是GFP阳性的细胞。图5e显示了用4-hydroxytamoxifen(4-OHT)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现tdTomato与Acsbg1共定位。
图6显示了mCherry不和NG2细胞的标记物NG2共存于同一细胞中。
图7a,a′图7d,d′分别显示在对照病毒AAV-mCherry和病毒AAV-Ascl1/mCherry注射出生后12-15天的小鼠背侧中脑3-5天后,免疫共标显示mCherry均不与NeuN共定位;图7b,b′、7c、c′显示分别在注射对照病毒后10-14天和28-32天AAV-mCherry的小鼠中,mCherry都不与NeuN共定位。图7e,e′和图7f,f′显示在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位:从注射病毒后10-14天44.2±12.5%(n=3,每次计数 309-436个细胞)到注射病毒后28-32天93.1±1.7%(n=3,每次计数412-557个细胞)。图7g显示病毒注射45天后,部分iN细胞表达Gad1,图7h显示还有部分iN细胞表达VGLUT2。图7i和图7j显示从室管膜下区(subventricular zone,SVZ)分离的细胞可以产生大量的神经球而从背侧中脑分离的细胞基本上不能产生神经球。7k-7n显示用4-OHT连续5天(P12-P16)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现30天后tdTomato仍然不与NeuN共定位。因此,从GFAP+诱导产生的iN细胞来源于出生后的星形胶质细胞,而不是神经前体细胞。
图8a-8c显示了注射病毒AAV-Ascl1/mCherry的小鼠背侧中脑的细胞密度与注射对照病毒AAV-mCherry的小鼠基本相当。图8d-8h显示了在注射病毒AAV-Ascl1/mCherry的小鼠中凋亡并没有增加。
图9显示了在注射病毒AAV-Ascl1/mCherry 155天后的小鼠背侧中脑,仍然可以检测到mCherry的表达,而且它们与NeuN存在良好的共定位。
图10显示了注射病毒AAV-Ascl1/mCherry的小鼠iN细胞的基因表达情况。通过用流式细胞分选在不同时间点(第4,10,30天)分选mCherry+的细胞,进行荧光实时定量PCR的分析。发现星形胶质细胞的标志分子(Gfap,S100β和Acsbg1)的表达逐渐降低,神经细胞的标志分子(Tuj1,Map2和NeuN)的表达逐渐升高,神经前体细胞标志分子(Sox2和Pax6)基本上检测不到表达。
图11a显示在感染对照病毒AAV-mCherry的小鼠脑片中,发现检测的细胞具有较低的阻抗,较高的静息膜电位,不能发放动作电位。生物胞素(biocytin)重塑的结果显示,对照病毒感染的细胞具有星形胶质细胞的典型形态,并通过间隙连接与邻近的星形胶质细胞相连。图11b-11e显示在感染病毒AAV-Ascl1/mCherry7-30天的小鼠脑片中,在电压钳模式下,很多细胞具有内向的Na+电流和外向的K+电流,而且振幅随感染时间的增加而增加;而在电流钳模式下,检测的细胞发放动作电位的能力也随之增强,且细胞的形态变得更加复杂。Biocytin重塑的结果也发现检测的细胞形成间隙连接也更少。11f和11g显示了细胞的输入电阻逐渐增加,而静息膜电位逐渐降低。图11h显示Ascl1诱导产生的iN细胞随着感染时间的延长越来越兴奋,感染30天后所有记录的iN细胞都能够高频(50-220Hz)发放动作电位,而对照病毒感染的细胞都展现出类似星形胶质细胞的“非活性”状态。图11i显示在AAV-Ascl1/mCherry病毒感染30天后,发现所有病毒感染的细胞(23/23)上都能检测到高频的自发突触后电流。图11j显示进一步的药理实 验表明iN细胞既接受兴奋性的谷氨酸输入,也接受抑制性的GABA输入。图11k显示通过双全细胞记录发现,iN细胞(mCherry+)与中脑顶盖的神经元(mCherry-)可形成突触联系,加入GABAA受体的拮抗剂bicuculline时,在中脑顶盖的神经元中所诱发的突触电流被完全阻断。
图12a,a′和图12e,e′分别显示了无论是在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的成年小鼠中脑中,免疫共标显示mCherry不与NeuN共定位。图12b,b′和图12c,c′分别显示了不论是在病毒注射16天后或38天后,mCherry都基本上不与NeuN共定位。图12d的电生理的实验表明,对照病毒AAV-mCherry感染的细胞具有典型的星形胶质细胞特性。图12f、12f′和图12g、12g′显示在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位,从16天63.5±3.1%到38天92.1±1.5%。图12h显示病毒AAV-Ascl1/mCherry感染的细胞在感染15-21天后,大多数的iN细胞(9/10)在电压钳模式下具有内向和外向的电流,并能够发放动作电位。图12i显示大多数的iN细胞(8/10)上可记录到自发的突触后电流。图12j显示对照质粒AAV-FLEX-NLSGFP感染的GFP+细胞几乎不表达NeuN。图12k显示经过28天的感染后,AAV-FLEX-Ascl1/GFP感染的GFP+细胞绝大多数表达NeuN。
图13显示AAV-FLEX-NLSGFP感染的GFP+细胞绝大多数表达Acsbg1。
图14a显示在AAV-mCherry病毒注射3天后,成年小鼠背侧中脑损伤部位大多数的mCherry+细胞表达GFAP。图14b显示病毒感染30天后,mCherry+细胞仍然很少表达NeuN。图14c显示AAV-Ascl1/mCherry病毒感染3天后的mCherry+细胞大多数表达NeuN。图14d显示AAV-Ascl1/mCherry病毒感染的mCherry+细胞在30天后具有较大的膜电阻和更去极化的静息膜电位。图14e显示该细胞不能发放动作电位。图14f-h显示所有记录的细胞(17/17)都能够发放多个动作电位并接受自发的兴奋性和抑制性突触传入。
图15显示了在AAV-mCherry病毒注射3天后,成年小鼠背侧中脑损伤部位大多数的mCherry+细胞几乎不表达NeuN。
图16a-d显示了mCherry几乎不表达于纹状体神经元(NeuN+)、小胶质细胞(IBA1+)、少突胶质细胞(Olig2+)和NG2细胞(NG2+)中。图16e,f显示了大约96%的mCherry+细胞表达星形胶质细胞的标志分子谷氨酰胺合成酶(GS)。图16g显示了在AAV-mCherry病毒注射30天后,mCherry+细胞表达GS。图16h显示了AAV-Ascl1/mCherry病毒感染的mCherry+细胞大多数不再表达GS。图16i,j,l 显示了AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(2.9±1.0MΩ中,n=7)、更加超极化的膜电位,同时不能发放动作电位。16k显示了AAV-Ascl1/mCherry病毒感染的mCherry+细胞在电压钳模式下大多数(15/16)能检测到向内和外向的电流。图16m显示了在这些细胞中大部分(12/16)能够记录到自发的兴奋性和抑制性突触后电流。
图17a、a′显示了在AAV-mCherry病毒注射30天后,mCherry+细胞几乎不表达NeuN。图17b、b′AAV-Ascl1/mCherry病毒感染的mCherry+细胞表达NeuN。
图18a显示了在病毒注射30天后,AAV-mCherry感染的成年小鼠皮层细胞(mCherry+)很少表达NeuN,而18b显示了AAV-Ascl1/mCherry病毒感染的皮层mCherry+细胞绝大部分表达NeuN。图18c显示了AAV-Ascl1/mCherry病毒感染30的细胞具有较大的膜电阻和更加去极化的静息膜电位,图18d、f显示了对照病毒AAV-mCherry感染30天的细胞仍表现出与星形胶质细胞相似的膜性质。图18e,f显示了AAV-Ascl1/mCherry病毒感染30的细胞中,所有记录的细胞(10/10)都能够发放动作电位。图18g则显示在这些细胞中(10/10)能够记录到自发的兴奋性和抑制性突触后电流。
图19a,b显示了在病毒注射7天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry几乎不与BrdU共定位。图19c,d显示了在病毒注射15天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry几乎不与Ki67共定位。图19e,f显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry仍然不与BrdU共定位。图19g显示了在病毒注射30天后,在注射AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry不与Ki67共定位。
图20a,b显示了在病毒注射7天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中脑中,免疫共标显示mCherry几乎不与少突胶质细胞的标志物GST-π共定位。图20c,d显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中脑中,免疫共标显示mCherry很少与少突胶质细胞的标志物Olig2共定位。图20e-h显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠纹状体和皮层中,免疫共标显示mCherry很少与少突胶质细胞的标志物Olig2共定位。
图21A、B分别显示了野生型小鼠(P42-P70)和Gad67-GFP(P51-P55)小鼠 的中脑背侧神经元的放电模式。图21C、D分别显示从幼年小鼠以及成年小鼠诱导的神经元放电模式。图21E显示了上述四种小鼠中脑背侧神经元的放电模式的分类统计结果。
图22a、a′,b、b′显示了在用玻璃电极注射AAV 7天后,小鼠注射部位周围GFAP(反应性星形胶质细胞标志物)以及IBA1(小胶质细胞标记物)的表达情况。图22c、c′,d、d′显示了在用31G针头注射AAV 7天后,小鼠注射部位周围GFAP以及IBA1的表达情况。
具体实施方式
本发明人经过广泛而深入的研究,首次意外地发现,过表达Ascl1基因或其蛋白能够有效地将星形胶质细胞诱导转分化为具有正常电生理功能的神经元细胞,且在体内和体外,对正常或损伤形态下的星形胶质细胞均具有这样的转分化作用。此外,本发明人还通过实验证实,不同部位来源(背侧中脑,纹状体以及大脑皮层)的星形胶质细胞均能够在Ascl1的存在下分化为神经元细胞。因此,该方法有望成为体外培养神经元细胞,以及在成人体内刺激产生新神经元细胞的有效方法,从而广泛应用于神经系统疾病的治疗,例如神经退行性病变、中枢神经创伤性疾病等等。在此基础上,完成了本发明。
无刚毛鳞甲复合体同源物样1(Ascl1)基因或其蛋白或其促进剂
无刚毛鳞甲复合体同源物样1基因或其蛋白,Ascl,achaete-scute complex homolog-like 1,bHLH类转录因子。Ascl1GenBank:U68534.2,其蛋白序列如SEQ ID NO.:1所示;
其NCBI Reference Sequence:NM_008553.4;mRNA序列如SEQ ID NO.:2所示。
Ascl1的促进剂没有特殊限制,可以为任何促进Ascl1基因或其蛋白表达和/或活性的物质,例如小分子化合物、促进性的miRNA。本领域技术人员可以根据现有的数据库对Ascl1促进剂进行筛选。应理解,基于本发明公开的Ascl1对星形胶质细胞的转分化诱导作用,本领域技术人员能够合理地预见任何对Ascl1具有促进作用的物质均会对星形胶质细胞具有转分化的诱导作用。
星形胶质细胞
星形胶质细胞,是哺乳动物脑内数量最多的一类细胞。它们执行许多功能,包括生化支撑(例如形成血-脑屏障),为神经元提供营养,维持细胞外离子平衡,并参与脑和脊髓损伤后的修复和瘢痕形成。根据胶质丝的含量以及胞突的形状可将星形胶质细胞分为两种:纤维性星形胶质细胞(fibrous astrocyte)多分布在脑和脊髓的白质,突起细长,分支较少,胞质中含大量胶质丝;原浆性星形胶质细胞(protoplasmic astrocyte),多分布在灰质,细胞突起粗短,分支多。
可用于本发明的星形胶质细胞没有特别限制,包括哺乳动物中枢神经系统来源的各种星形胶质细胞,例如来源于纹状体、脊髓、背侧中脑或大脑皮层,较佳地,来源于背侧中脑或大脑皮层。
在本发明中,各个来源的星形胶质细胞所具有的诱导转化效率均较高,其中大脑皮层来源的细胞诱导效率最高,其次为背侧中脑。
通常,星形胶质细胞的特异性标志物为GFAP,灰质中的星形胶质细胞GFAP表达相对较低,但表达Acsbg1和GS。而当通过本发明方法的诱导后,这些星形胶质细胞表现出神经元细胞特有的标志物,例如Tuj1、MAP2和synapsin I。
功能性神经元
如本文所用,术语“功能性神经元”指的是在外源性Ascl1基因或蛋白存在下,由星形胶质细胞转分化而成的、具有正常神经元电生理活动的神经元细胞,包括GABA能神经元细胞和谷氨酸能神经元细胞。
通常,所述的功能性神经元细胞具有如下特性:
(a)表达神经元的标志物Tuj1、MAP2和Synapsin I;
(b)能够发放动作电位并能够形成突触联系。
表达载体
可用于本发明的表达载体没有特殊限制,可以是含有Ascl1蛋白编码序列的能够整合入星形胶质细胞,并表达外源Ascl1蛋白的任何表达载体。例如病毒载体,其可以是任何能够利用病毒具有传送其基因组的特点,将遗传物质带入其他细胞,进行感染的病毒载体。可发生于完整活体或是细胞培养中。包括慢病毒载体、腺病毒载体、疱疹病毒载体、痘病毒载体。
在本发明中,一种优选的表达载体为慢病毒载体。例如,利用常规PCR技术将小鼠Ascl1基因的cDNA克隆到慢病毒表达载体FUGW-IRES-EGFP中得到 FUGW-Ascl1,并将编码GFP的序列替换成其他荧光蛋白,例如tdTomato,从而构成FUW-Ascl1-tdTomato载体。
在本发明的一个实施例中,一种Ascl1慢病毒载体包装的方法可以按照常规的方法进行,优选地,可采用“Production and purification of lentiviral vectors”(Tiscornia,G.,Singer,O.&Verma,I.M..Nat.Protoc.1,241-245(2006))中记录的方法进行慢病毒载体的包装。
诱导方法
本发明还提供了在体外和体内分别将星形胶质细胞诱导转分化为功能性神经元细胞的方法。
在体外,所述的方法包括步骤:通过Ascl1载体(例如慢病毒)感染星形胶质细胞,感染后的细胞维持培养至少10天,更佳地,20天以上,从而使星形胶质细胞转化为成熟的神经元细胞。
在体内,可将含有Ascl1的载体施用(例如注射)到所需对象含有星形胶质细胞的部位,例如背侧中脑、纹状体或大脑皮层。通常,这种施用可以对未受损和受损的神经系统组织进行注射,从而诱导该神经系统特定部位中的星形胶质细胞进行转分化。
药物组合物以及给药方式
本发明还提供一种可用于将星形胶质细胞诱导形成功能性神经元的组合物。本发明的药物组合物还可治疗或预防神经退行性疾病、神经系统外伤性疾病等等。
本发明药物组合物包括本发明上述的表达载体(例如病毒颗粒)、或外源性Ascl1蛋白本身,和药学上可接受的载体。
在本发明的药物组合物,通常含有107-1012PFU/ml的慢病毒或AAV病毒颗粒,较佳地108-1012PFU/ml的慢病毒或AAV病毒颗粒,更佳地109-1012PFU/ml的慢病毒或AAV病毒颗粒。
“药学上可接受的载体”指用于治疗剂给药的载体,包括各种赋形剂和稀释剂。
术语指这样一些药剂载体:它们本身并不是必要的活性成分,且施用后没有过分的毒性。合适的载体是本领域普通技术人员所熟知的。在组合物中药学上可接受的载体可含有液体,如水、盐水、缓冲液。另外,这些载体中还可能存在辅助性的物质,如填充剂、润滑剂、助流剂、润湿剂或乳化剂、pH缓冲物质等。所述 的载体中还可以含有细胞转染试剂。
通常,将所述表达载体(慢病毒颗粒)和药学上可接受的载体混合后,即可获得的本发明的药物组合物。
本发明所述的组合物的给药方式没有特别限制,代表性的例子包括(但并不限于):静脉注射、皮下注射、脑部注射等。
应用
本发明Ascl1可用于制备诱导星形胶质细胞产生功能性神经元,从而将新诱导的神经元应用于各种由于神经元数量减少、细胞衰退、凋亡或神经元功能下降相关的疾病。其中,所述的神经系统相关疾病包括癫痫、阿尔兹海默症(AD)、帕金森病(PD)、中风引起的神经元死亡等。
本发明有益效果
本发明将单个转录因子Ascl1在体外能将中脑背侧的星形胶质细胞转分化为功能性的神经元。利用特异地在星形胶质细胞中表达的GFAP-AAV载体,Ascl1能够将成年小鼠背侧中脑、纹状体以及躯体感觉皮层的星形胶质细胞转分化为功能性的神经元。这些诱导的神经元逐渐成熟,呈现出神经元的形态并表达神经元的标志分子,而且这些神经元能够发放动作电位,并能够接受其他神经元的突触传入而且能够释放神经递质与其他神经元建立突触联系。因此,该方法有望成为体外培养神经元细胞,以及在成人体内刺激产生新神经元细胞的有效方法,从而广泛应用于神经系统疾病的治疗,例如神经退行性病变、中枢神经创伤性疾病等等。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
通用方法
星形胶质细胞培养
星形胶质细胞的制备参考“Preparation of separate astroglial and  oligodendroglial cell cultures from rat cerebral tissue”(McCarthy,K.D.&de Vell is,J.J.Cell Biol.85,890-902(1980))。取出出生后5-7天小鼠或成年小鼠的背侧中脑,并用0.25%的胰酶消化15分钟。吹散的细胞置于含10%血清的DMEM/F12配液中培养7-9天。经震荡去除少突胶质细胞后,得到的细胞即为星形胶质细胞。
免疫显色
培养细胞的免疫显色参照“Direct conversion of fibroblasts to functional neurons by defined factors”(Vierbuchen,T.et al.Nature 463,1035-1041(2010)).组织切片的免疫显色结合原位杂交及免疫显色的双标实验参照已发表的方法进行。免疫显色用到的一抗包括:mouse anti-GFAP(Millipore,1:1,000),rabbit-GFAP(DAKO,1:1,000),mouse anti-Tuj1(Covance,1:500),mouse anti-Map2(Sigma,1:500),rabbit anti-GFP(Invitrogen,1:1,000),chick anti-GFP(Invitrogen,1:1,000),mouse anti-NeuN(Millipore,1:100),rabbit anti-Synapsin I(Mi llipore,1:1,000),rabbit anti-GABA(Sigma,1:3,000),rabbit anti-GAD67(Millipore,1:200),guinea pig anti-VGAT(Synaptic Systems,1:200),rabbit anti-Dsred(Clontech,1:500),mouse anti-Dsred(Santa Cruz,1:100),rabbit anti-VGLUT1(Synaptic Systems,1:500),guinea pig anti-VGLUT2(Frontier Institute Co.,1:400),rabbit anti-Acsbg1(Abcam,1:100),mouse anti-glutamine synthetase(610518,BD Biosciences,1:200),rabbit anti-Sox2(Mi ll ipore,1:500),mouse anti-S100β(Sigma,1:1,000),rabbit anti-EAAT1(Abcam,1:500),rabbit anti-NG2(Millipore,1:200),rabbit anti-Iba1(Wako,1:500),mouse anti-CNPase(Abcam,1:500),mouse anti-O4(Millipore,1:500),mouse anti-Ascl1(BD Biosciences,1:200),rabbit anti-Sox2(Mi llipore,1:500),rabbit anti-Olig2(AB9610,Millipore,1:500),rabbit anti-DCX(ab77450,Abcam,1:500).
FITC-,Cy3-以及Cy5-偶联的二抗购自Jackson Immunoresearch.Alexa-350-,Alexa-488-与Alexa-546-偶联的二抗购自Invitrogen。
AAV病毒的立体定位注射
AAV病毒参照小鼠脑图谱进行。注射病毒后,在不同时间点收集背部中脑、 纹状体、大脑皮层做免疫显色或脑片记录。制备损伤的背侧中脑模型时,注射病毒用5毫升注射器及31G的针头完成。
流式细胞分选和定量RT-PCR
表达mCherry的细胞通过流式细胞仪进行分选。提取细胞的总RNA,合成cDNA,然后进行实时定量PCR的检测。GAPDH作为基因表达水平的内参。
实施例1 质粒构建与病毒感染
小鼠Ascl1基因的cDNA克隆到慢病毒表达载体FUGW-IRES-EGFP中得到FUGW-Ascl1。用tdTomato替换FUGW-Ascl1质粒中的GFP得到FUW-Ascl1-tdTomato。空的慢病毒表达载体FUGW与FUW-tdTomato分别作为对照。慢病毒的包装参照文献“Production and purification of lentiviral vectors”(Tiscornia,G.,Singer,O.&Verma,I.M.Nat.Protoc.1,241-245(2006))。
星形胶质细胞铺板培养24小时后加入慢病毒,感染24小时后更换培养基:DMEM/F12,B27,Glutamax和青霉素/链霉素。感染6-7后,每三天在培养基中加入脑源性神经营养因子(BDNF;PeproTech公司,20ng/ml)。
为了制备GFAP-AAV载体,用hGFAP启动子(2.2kb)替换AAV-FLEX-Arch-GFP质粒(Addgene)中的CMV启动子。插入mCherry后得到AAV-mCherry质粒。将Ascl1克隆进AAV-mCherry后得到AAV-Ascl1/mCherry质粒。将Ascl1克隆进AAV-FLEX-Arch-GFP得到AAV-FLEX-Ascl1/GFP。AAV-mCherry与AAV-FLEX-NLSGFP作为对照。NLS为核定位信号,其序列为:VPKKKRKVEA。
实施例2 Ascl1将体外的背侧中脑星形胶质细胞转分化为神经元
首先分离纯化出生后5-7天(P5-P7)小鼠背侧中脑的星形胶质细胞。这些胶质细胞的属性通过检查不同细胞类型的分子标记得到验证(图1)。绝大部分的细胞表达星形胶质细胞的标志分子GFAP和S100β,少量的细胞表达少突胶质细胞的标志分子O4和CNPase,少量的细胞表达NG2胶质细胞的标志分子NG2,没有检测到神经元标志分子Tuj1以及干细胞标志分子Sox2和Oct4的表达。
结果
2.1 经转化星形胶质细胞表现成熟神经元标志分子
星形胶质细胞转染对照慢病毒载体FUGW 10天后,星形胶质细胞不表达神经元的标志分子Tuj1(图2a),仍维持胶质细胞的形态同时表达星形胶质细胞的标志分子GFAP(图2b)。与此相反,感染慢病毒FUGW-Ascl1 10天后,大部分星形胶质细胞表达神经元的标志分子Tuj1,同时呈现典型的神经元形态(76.8±6.4%,n=3,每次计数348–384个GFP+细胞,图2c)。感染慢病毒FUGW-Ascl1 21天后,星形胶质细胞还表达成熟神经元的标志分子MAP2(图2d)和synapsin I(图2e)。
2.2 电生理特性检测显示所转化细胞均能为功能性细胞
为了检验由Ascl1转分化得到的神经元(induced neuronal(iN)cells)是否具有神经元的电生理特性,对这些细胞进行了全细胞记录(图2f)。
结果表明,在慢病毒转染30-40天后,所有GFP阳性的细胞(共63个)都能产生动作电位(图2g)。同时,绝大多数的iN细胞上(87.3%,55/63个细胞)能记录到自发的突触后电流(图2g),这说明这些神经元能形成功能性突触。
2.3 验证诱导的神经元来源于星形胶质细胞
为了进一步验证诱导的神经元来源于星形胶质细胞,用慢病毒FUW-Ascl1-tdTomato感染取自hGFAP-GFP小鼠的星形胶质细胞(带有GFP标记)。经Ascl1诱导的细胞其形态发生改变并表达Tuj1,同时仍然有GFP的表达(图2i),而感染只含红色荧光蛋白的对照慢病毒FUW-tdTomato后,被病毒感染的细胞仍然维持星形胶质细胞的形态,并表达GFAP(图2h)。这说明诱导产生的神经元来源于星形胶质细胞。
2.4 通过免疫显色检测iN细胞的递质属性
实验发现,大多数iN细胞表达GABA(74.9±4.5%,n=3,每次计数153-228个GFP+Tuj1+细胞,图3a),其中部分iN细胞表达GABA能神经元标志分子GAD67(图3b)和VGAT(图3d)。另外,发现部分iN细胞表达谷氨酸能神经元标志分子VGLUT2(10.8±3.8%,n=3,每次计数134-280个GFP+Tuj1+细胞,图3f)。这说明iN细胞中含有抑制性神经元以及兴奋性神经元。为了在电生理上进一步证明这一点,检测了iN细胞的自突触(autapse)情况。
结果发现,部分iN细胞(19.4%,7/36个细胞)能记录到自突触(图3g),当加入AMPA/kainate谷氨酸受体的拮抗剂CNQX时,自突触的电流被完全阻断(3/3个细胞)。这说明iN细胞中含有谷氨酸能神经元。
为了验证iN细胞中是否存在GABA的释放,用慢病毒FUW-Ascl1-tdTomato感 染取自GAD67–GFP小鼠背侧中脑的星形胶质细胞(图4a),并发现诱导的细胞表达GFP(图4b),说明它们可能是GABA能的神经元。
iN细胞诱导10天后加入从P5-P7野生型小鼠背侧中脑分离出来的神经元共培养,在慢病毒转染29-40天后,几乎所有tdTomato+GFP+的细胞(97%,37/38个细胞)都能产生动作电位(图4c)。同时,绝大多数的iN细胞上(89%,34/38个细胞)能记录到自发的突触后电流(图4d)。另外,部分iN细胞(21%,8/38个细胞)能记录到自突触,当加入GABAA受体的拮抗剂bicuculline时,自突触的电流被完全阻断(5/5个细胞)(图3h),这说明iN细胞中含有GABA能神经元。
结果表明,出生后早期背侧中脑的星形胶质细胞可以在体外被重编程为功能性的谷氨酸能神经元或GABA能神经元。
实施例3 GFAP-AAV载体有效地感染体内的背侧中脑星形胶质细胞
为了探索星形胶质细胞在体内重编程为神经元的可能性,构建了hGFAP启动子驱动的含红色荧光蛋白(mCherry)的重组腺相关病毒(AAV)载体。将病毒注射到P12-P15的野生型小鼠的一侧顶盖,三天后通过免疫染色可以检测到mCherry的表达。
结果
3.1 mCherry与星形胶质细胞的标记分子Acsbg1免疫共标显示,注射病毒3天后,不论是注射对照病毒AAV-mCherry(96.1±0.7%,n=3,每次计数220-326个细胞;图5a),还是病毒AAV-Ascl1/mCherry(93.1±2.7%,n=3,每次计数130-280个细胞;图5b),几乎所有mCherry阳性的细胞表达Acsbg1(代表细胞是星形胶质细胞)。此外,mCherry和神经元标记分子NeuN的免疫共标表明mCherry不在神经元中表达(图7a,a′,d,d′)。另外还发现mCherry不和NG2细胞的标记物NG2共存于同一细胞中(图6)。
3.2 为了进一步确定GFAP-AAV载体的特异性,使用了两种星形胶质细胞特异性表达GFP的转基因小鼠GFAP-GFP和Aldh1l1-GFP。
在AAV-mCherry感染3天后,发现在两种转基因小鼠Aldh1l1-GFP小鼠(98.7±1.0%,n=3,每次计数426-475个细胞,图5c)和GFAP-GFP小鼠(93.5±1.4%,n=3,每次计数123-186个细胞,图5d)中,绝大多数mCherry阳性的细胞表同时也是GFP阳性的细胞。
另外,用4-hydroxytamoxifen(4-OHT)诱导GFAP-CreERT2; Rosa26-CAG-tdTomato小鼠表达tdTomato,发现tdTomato与Acsbg1共定位(93.8±1.6%,n=3,每次计数169-177个细胞,图5e)。
因此,GFAP启动子驱动的AAV载体可以特异指导外源基因在P12-P15小鼠体内的星形胶质细胞中表达。
实施例4 Ascl1在体内将幼年小鼠背侧中脑星形胶质细胞转变成神经元
将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到P12-P15的野生型小鼠的一侧顶盖,然后在几个不同的时间点收集脑组织样品。
结果
4.1 与对照相比,注射含Ascl1的病毒,逐渐显现出mCherry与NeuN的共定位
在病毒注射3-5天后,无论是在注射对照病毒AAV-mCherry(3.4±0.2%,n=3,每次计数472-489个细胞;图7a,a′),还是病毒AAV-Ascl1/mCherry(4.5±2.3%,n=3,每次计数279-419个细胞;图7d,d′)的小鼠中,免疫共标显示mCherry均不与NeuN共定位。
但是从注射病毒后10-14天44.2±12.5%(n=3,每次计数309-436个细胞)(图7e,e′)到注射病毒后28-32天93.1±1.7%(n=3,每次计数412-557个细胞)(图7f,f′),在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位。
然而,在注射对照病毒AAV-mCherry的小鼠中,不论是在注射病毒后10-14天(4.0±0.5%,n=3,每次计数325-487个细胞;图7b,b′),还是28-32天(3.9±0.4%,n=3,每次计数389-515个细胞;图7c,c′)后,mCherry都不与NeuN共定位。
4.2 注射含Ascl1的病毒未增加神经元细胞的凋亡
尼氏显色结果表明,注射病毒AAV-Ascl1/mCherry的小鼠背侧中脑的细胞密度与注射对照病毒AAV-mCherry的小鼠基本相当(图8a-8c)。TUNEL染色结果显示,在注射病毒AAV-Ascl1/mCherry的小鼠中凋亡并没有增加(图8d-8h)。
在注射病毒AAV-Ascl1/mCherry 155天后的小鼠背侧中脑,仍然可以检测到mCherry的表达,而且它们与NeuN存在良好的共定位(图9)。这说明iN细胞在体内可以存活较长的时间。
4.3 在体产生的iN细胞的递质属性检测
进一步检测了在体产生的iN细胞的递质属性。病毒注射45天后,发现部分iN细胞表达Gad1(13.2±4.2%,n=3,每次计数57-180个细胞;图7g),同时还有部分iN细胞表达VGLUT2(6.5±2.2%,n=3,每次计数48-118个细胞;图7h)。
这说明体内产生的iN细胞含有谷氨酸能神经元和GABA能神经元。
4.4 经诱导的细胞来源于星形胶质细胞,而非神经前体细胞
为了检测P12-P15的野生型小鼠背侧中脑是否存在神经干细胞,分离了体内的细胞进行成球培养实验。从室管膜下区(subventricular zone,SVZ)分离的细胞可以产生大量的神经球(364.9±53.5个神经球/孔(六孔板),n=3,每次计数333-426个神经球;图7i)。而从背侧中脑分离的细胞基本上不能产生神经球(0.8±0.2个神经球/孔(六孔板),n=3,每次计数0-1个神经球;图7j)。另外,为了探索P12GFAP+的细胞是否能够在晚期产生神经元,用4-OHT连续5天(P12-P16)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现30天后tdTomato仍然不与NeuN共定位(图7k-7n)。
这些结果表明,从GFAP+诱导的iN细胞来源于出生后的星形胶质细胞,而不是神经前体细胞。
实施例5 体内iN细胞的电生理特性
为了检测体内iN细胞的电生理特性,对注射病毒后不同时间点的急性脑片进行全细胞记录。感染的细胞用mCherry的表达来鉴定。
结果
5.1 感染含Ascl1病毒的细胞能够产生动作电位
在感染病毒AAV-Ascl1/mCherry 7-30天的小鼠脑片中,发现在电压钳模式下,很多细胞具有内向的Na+电流和外向的K+电流,而且振幅随感染时间的增加而增加(图11b-11e)。与之对应的是,在电流钳模式下,检测的细胞发放动作电位的能力也随之增强(图11b-11e)。进一步地,细胞的形态变得更加复杂,biocytin重塑的结果也发现检测的细胞形成间隙连接也更少(图11b-11e)。与此同时,细胞的输入电阻逐渐增加,而静息膜电位逐渐降低(图11f和11g)。这些结果都表明转录因子Ascl1体内诱导的iN细胞功能逐渐成熟。
然而,在感染对照病毒AAV-mCherry的小鼠脑片中,发现检测的细胞具有较低的阻抗(1.88±0.77MΩ,n=9),较高的静息膜电位(-79.21±0.37mV, n=14),不能发放动作电位(图11a)。同时,生物胞素(biocytin)重塑的结果显示,对照病毒感染的细胞具有星形胶质细胞的典型形态,并通过间隙连接与邻近的星形胶质细胞相连(图11a)。这些结果表明,对照病毒AAV-mCherry特异性地在体内的星形胶质细胞中表达,同时它并没有改变星形细胞的生理特性。
5.2 Ascl1诱导产生的iN随着感染时间延长而更易发生动作电位,其产生的电流能为GABAA受体拮抗剂所阻断
根据电流及电压响应模式的不同,将iN细胞分成4组:非活性细胞(non-active),具有内向电流但不能发放动作电位的细胞(inward),能够发放单个动作电位的细胞(sAP)和能够发放多个动作电位的细胞(mAP)。
结果显示,Ascl1诱导产生的iN细胞随着感染时间的延长越来越兴奋,感染30天后所有记录的iN细胞都能够高频(50-220Hz)发放动作电位(图11h)。而对照病毒感染的细胞都展现出类似星形胶质细胞的“非活性”状态(图11h)。进一步观察到iN细胞中存在自发的突触后电流,随着感染时间的延长,存在自发的突触后电流的iN细胞也越多。在AAV-Ascl1/mCherry病毒感染30天后,发现所有病毒感染的细胞(23/23)上都能检测到高频的自发突触后电流(图11i)。
进一步的药理实验表明iN细胞既接受兴奋性的谷氨酸输入,也接受抑制性的GABA输入(图11j)。最后,通过双全细胞记录发现,iN细胞(mCherry+)与中脑顶盖的神经元(mCherry-)可形成突触联系(图11k)。加入GABAA受体的拮抗剂bicuculline时,在中脑顶盖的神经元中所诱发的突触电流被完全阻断(图11k)。这说明iN细胞能够与周围的神经元建立GABA能突触联系,并整合到体内现有的神经环路中。
实施例6 Ascl1在体内将成年背侧中脑星形胶质细胞转分化为神经元
本实验进一步研究了成年小鼠的星形胶质细胞是否可以被重新编程为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到P60的野生型小鼠中,并显示mChrrey是否与NeuN共定位。
结果
6.1 成年小鼠的星形胶质细胞诱导产生的iN细胞可在体内形成功能性突触
在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位,从16天63.5±3.1%(n=3,每次计数131-266个细胞)(图12f和12f′)到38天92.1±1.5%(n=3,每次计数152-216个细胞)(图12g和12g′)。 电生理记录表明,病毒AAV-Ascl1/mCherry感染的细胞在感染15-21天后,大多数的iN细胞(9/10)在电压钳模式下具有内向和外向的电流,并能够发放动作电位(图12h)。同时,大多数的iN细胞(8/10)上可记录到自发的突触后电流(图12i)。这表明成年小鼠的星形胶质细胞诱导产生的iN细胞可在体内形成功能性突触。
与之相反,在注射5天后,无论是在注射对照病毒AAV-mCherry(4.2±1.4%,n=3,每次计数182-216个细胞;图12a,a′)或AAV-Ascl1/mCherry(5.6±1.6%,n=3,每次计数151-335个细胞;图12e,e′)的小鼠中,免疫共标显示mCherry不与NeuN共定位。随后,实验发现在注射对照病毒AAV-mCherry的小鼠中,不论是在病毒注射16天后(6.7±3.6%,n=3,每次计数236-312个细胞;图12b,b′)或38天后(3.7±1.2%,n=3,每次计数118-144个细胞;图12c,c′),mCherry基本上不与NeuN共定位。电生理的实验表明,对照病毒AAV-mCherry感染的细胞具有典型的星形胶质细胞特性(图12d)。
由此可见,Ascl1在体内可将成年小鼠背侧中脑星形胶质细胞转分化功能性的神经元。
6.2 Cre依赖的Ascl1的表达也可以将成年背侧中脑星形胶质细胞转分化成神经元
根据常规技术,制作了Cre重组酶诱导表达的AAV病毒:AAV-FLEX-NLSGFP和AAV-FLEX-Ascl1/GFP。在AAV载体中含有能够响应Cre重组酶的FLEX序列。将这些腺病毒注射到成年Aldh1l1-Cre转基因小鼠的中脑背侧。
经过28天的感染后,AAV-FLEX-Ascl1/GFP感染的GFP+细胞绝大多数表达NeuN(90.1±2.1%,n=3,每次计数126-170个细胞;图12k)。另外AAV-FLEX-NLSGFP感染的GFP+细胞绝大多数表达Acsbg1(94.8±1.7%,n=3,233-268个细胞每次;图13),这表明Cre重组酶在星形胶质细胞中特异表达。
而对照质粒AAV-FLEX-NLSGFP感染的GFP+细胞几乎不表达NeuN(2.9±1.1%,n=3,每次计数121-181个细胞;图12j),
因此,Cre依赖的Ascl1的表达也可以将成年背侧中脑星形胶质细胞转分化成神经元。
6.3 损伤的中脑星形胶质细胞(反应性细胞)可以转分化为功能性的神经元
通过用针头注射AAV病毒AAV-mCherry或AAV-Ascl1/mCherry造成成年小鼠中脑背侧的刺伤模型。
在AAV-mCherry病毒注射3天后,损伤部位大多数的mCherry+细胞(92.8±1.2%,n=3,每次计数60-117个细胞;图14a)表达GFAP,而几乎不表达NeuN(2.4±1.3%,n=3,每次计数69-107个细胞;图15)。病毒感染30天后,mCherry+细胞仍然很少表达NeuN(2.5±1.2%,n=3,每次计数78-82个细胞;图14b)。AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(5.3±1.9MΩ中,n=6),更多超极化膜电位(-81.2±1.7mV,n=5)(图14d),同时不能发放动作电位(图14e)。
免疫荧光显示,AAV-Ascl1/mCherry病毒感染30天后的mCherry+细胞大多数表达NeuN(54.2±6.9%,n=3,每次计数114-142个细胞;图14c)。AAV-Ascl1/mCherry病毒感染的mCherry+细胞在30天后具有较大的膜电阻(424.7±88.7MΩ中,n=17)和更去极化的静息膜电位(-61.2±1.6mV,n=17)(图14d)。同时,所有记录的细胞(17/17)都能够发放多个动作电位(图14f,g)并接受自发的兴奋性和抑制性突触传入。
这些结果表明,损伤的中脑星形胶质细胞可以转分化为功能性的神经元。
实施例7 Ascl1在体内将成年小鼠纹状体星形胶质细胞转分化成神经元
为了研究Ascl1将星形胶质细胞转分化为神经元是否具有区域特异性,进一步检查成年小鼠的纹状体星形胶质细胞是否可以被重新编程为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到成年野生型小鼠(P60)的纹状体。
免疫染色表明大约96%的mCherry+细胞表达星形胶质细胞的标志分子谷氨酰胺合成酶(GS)(图16e,f)。而mCherry几乎不表达于神经元(NeuN+)、小胶质细胞(IBA1+)、少突胶质细胞(Olig2+)和NG2细胞(NG2+)中(图16a-d,f)。
为了确定AAV病毒感染后mCherry+细胞的性质,进行了mCherry、GS和NeuN的免疫三标染色。结果表明,AAV-Ascl1/mCherry病毒感染的mCherry+细胞大多数不再表达GS(图16h),而是表达NeuN(64.4±3.4%,n=3,每次计数119-129个细胞;图17b)。而在AAV-mCherry病毒注射30天后,mCherry+细胞表达GS(图16g),几乎不表达NeuN(3.2±2.1%,n=3,每次计数104-140个细胞;图17a)。这提示星形胶质细胞转分化成了神经元。
为了进一步研究诱导的神经元是否是功能性的,进行了进一步的电生理分析。实验表明,AAV-Ascl1/mCherry病毒感染的mCherry+细胞在电压钳模式下大多数(15/16)能检测到向内和外向的电流(图16k),在电流钳模式下大多数(13/16) 能够发放动作电位(图16k,l)。此外,在这些细胞中大部分(12/16)能够记录到自发的兴奋性和抑制性突触后电流(图16m)。然而AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(2.9±1.0MΩ中,n=7)、更加超极化的膜电位(-79.0±0.3mV,n=7)(图16i),同时不能发放动作电位(图16j,l)。这表明,成年小鼠纹状体的星形胶质细胞能转分化为功能性的神经元。
实施例8 Ascl1在体内将成年小鼠皮层星形胶质细胞转分化成神经元
8.1 本实施例研究了Ascl1是否可以将成年小鼠皮层的星形胶质细胞转分化为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到成年野生型小鼠(P60)的躯体感觉皮层。
在病毒注射30天后,实验发现AAV-Ascl1/mCherry病毒感染的皮层mCherry+细胞绝大部分表达NeuN(93.9±1.2%,n=3,每次计数132-147个细胞;图18b)。而AAV-mCherry感染的皮层细胞(mCherry+)很少表达NeuN(2.6±0.8%,n=3,每次计数120-133个细胞;图18a)。
而进一步的电生理分析发现,AAV-Ascl1/mCherry病毒感染30的细胞具有较大的膜电阻(163.3±35.9MΩ,n=10)和更加去极化的静息膜电位(-67±2.2mV,n=8)(图18c),并且所有记录的细胞(10/10)都能够发放动作电位(图18e,f)。同样,在这些细胞中(10/10)能够记录到自发的兴奋性和抑制性突触后电流(图18g)。而相比之下,对照病毒AAV-mCherry感染30天的细胞仍表现出与星形胶质细胞相似的膜性质(膜电阻,2.3±0.5MΩ,n=8;静息膜电位,-78.8±0.8mV,n=7,图18c;不能发放动作电位,图18d,f)。
这表明,Ascl1可以将成年小鼠大脑皮层的星形胶质细胞转分化为功能性的神经元。
8.1 为了进一步确定Ascl1诱导星形胶质细胞为神经元是否经过增殖阶段,在病毒注射后的第3-7天以及第3-30天持续地进行腹腔注射BrdU用以标记增殖的细胞。
在注射7天后,无论是在注射对照病毒AAV-mCherry(2.2±0.5%,n=3,每次计数325-410个细胞;图19a)或AAV-Ascl1/mCherry(1.6±0.3%,n=3,每次计数213-307个细胞;图19b)的小鼠中,免疫共标显示mCherry几乎不与BrdU共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry(4.3±1.2%,n=3,每次计数230-363个细胞;图19e)或AAV-Ascl1/mCherry(1.6 ±1.0%,n=3,每次计数204-290个细胞;图19f)的小鼠中,免疫共标显示mCherry仍然几乎不与BrdU共定位。同时,在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry与NeuN共定位,而在注射对照病毒AAV-mCherry的小鼠中,mCherry不与NeuN共定位(图19e,f)。进一步发现,在病毒注射15天后,无论是在注射对照病毒AAV-mCherry(1.0±0.6%,n=3,每次计数192-246个细胞;图19c)或AAV-Ascl1/mCherry(0.9±0.3%,n=3,每次计数185-276个细胞;图19d)的小鼠中,免疫共标显示mCherry几乎不与Ki67共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry(0.5±0.1%,n=3,每次计数171-248个细胞;图19g)的小鼠中,免疫共标显示mCherry仍然几乎不与Ki67共定位。
这些结果表明,Ascl1诱导的体内重编程没有经过增殖阶段。
8.3 本实施例还研究了Ascl1过表达是否可以将星形胶质细胞转变成少突胶质细胞。在注射7天后,无论是在注射对照病毒AAV-mCherry(0.4±0.1%,n=3,每次计数237-303个细胞;图20a)或AAV-Ascl1/mCherry(0.4±0.3%,n=3,每次计数219-338个细胞;图20b)的小鼠中脑,免疫共标显示mCherry几乎不与少突胶质细胞的标志物GST-π共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry(2.8±2.2%,n=3,每次计数308-393个细胞;图20c)或AAV-Ascl1/mCherry(3.3±0.4%,n=3,每次计数278-327个细胞;图20d)的小鼠中脑,免疫共标显示mCherry几乎不与另一个少突胶质细胞的标志物Olig2共定位。而同时,在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry与NeuN共定位(图20d)。这些结果表明,在中脑过表达Ascl1,星形细胞转分化为神经元而不是少突胶质细胞。同时,在注射病毒的纹状体中也发现mCherry几乎不与Olig2共定位,不论是在注射对照病毒AAV-mCherry(3.2±1.2%,n=3,每次计数156-181个细胞;图20e)或AAV-Ascl1/mCherry(4.4±1.7%,n=3,每次计数137-199个细胞;图20f)的脑组织中。进一步,不论是在注射对照病毒AAV-mCherry(3.1±1.4%,n=3,每次计数124-197个细胞;图20g)或AAV-Ascl1/mCherry(3.2±1.4%,n=3,每次计数119-145个细胞;图20h)的皮层脑组织中,mCherry几乎不与Ol ig2共定位。
这些结果表明,在纹状体和皮层中过表达Ascl1,星形细胞也是转分化为神经元而不是少突胶质细胞。
实施例9 中脑背侧的转分化神经元与内源神经元的电生理特性
为了研究转分化的神经元与内源的脑神经元是否具有相似的特性,本实施例进一步比较了中脑背侧的转分化神经元与内源神经元的电生理特性。
对野生型小鼠(P42-P70)和Gad67-GFP(P51-P55)小鼠的急性脑切片的中脑背侧进行全细胞记录,发现神经元的阻抗分别为489.1±131.1MΩ(n=21,野生型小鼠)和326.0±31.9MΩ(n=17,Gad67-GFP小鼠),静息膜电位分别为-57.6±2.0mV(n=19,野生型小鼠)和-57.1±1.9mV(n=15,Gad67-GFP小鼠)(图21A,B)。这些结果与从幼年小鼠(阻抗,177.3±16.6,n=23;静息膜电位,-61.9±1.0,n=8)以及成年小鼠(阻抗,240.0±81.9,n=9;静息膜电位,-61.0±1.2,n=6)(图21C,D)诱导得到的神经元类似。
此外,基于神经元特异性的放电模式,将野生小鼠中脑背侧的神经元分为五种主要类型。发现,绝大多数从幼年小鼠以及成年小鼠(P12-P15:95.6%,22/23;P60:100%,9/9)诱导的神经元都可以归类到这些野生型小鼠和Gad67-GFP小鼠正常神经元的放电类型中(图21C,D,E)。此外,一些诱导的神经元(P12-P15,30-49天:82.6%,19/23;P60,15-21天:77.8%,7/9)展现出与Gad67-GFP小鼠神经元同样的放电模式,暗示它们有可能是GABA能神经元。
总之,这些结果表明,从幼年小鼠以及成年小鼠转分化的神经元与内源的中脑神经元具有类似的电生理特性。
此外,在大多数涉及立体定向注射AAV病毒的实验中,使用直径为18-20微米的玻璃电极进行注射,而在损伤模型中使用直径约260微米的31G针头进行注射。为了比较这两种注射条件的损伤差异,对中脑注射7天后的小鼠进行免疫荧光实验,检测注射部位周围GFAP(反应性星形胶质细胞标志物)以及IBA1(小胶质细胞标记物)的表达情况。结果表明,玻璃电极注射的小鼠注射部位周围GFAP阳性的反应性星形胶质细胞明显少于31G针头注射的小鼠(玻璃电极:14.2±2.2,n=3,图22a,a′;31G针头:113.6±15.7,n=3;图22c,c′)。而且玻璃电极注射的小鼠注射部位周围IBA1阳性的小胶质细胞也明显少于31G针头注射的小鼠(玻璃电极:24.3±5.4,n=3,图22b,b′;31G针头:74.3±12.0,n=3;图22d,d′)。在皮层中,也观察到类似的情况,针头注射的部位周围GFAP或IBA1阳性胶质细胞(GFAP:84.1±12.1;IBA1:57.3±7.5;n=3只小鼠)都明显多于玻璃电极注射的小鼠(GFAP:18.3±0.6;IBA1:18.4±2.9;n=3只小鼠)。这些结果表明,用31G针头注射AAV比玻璃电极注射造成脑组织更 大的损伤。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (11)

  1. 一种无刚毛鳞甲复合体同源物样1(achaete-scute complex homolog-like 1,Ascl1)基因或其蛋白或其促进剂的用途,其特征在于,(i)用于制备诱导星形胶质细胞形成功能性神经元细胞的药物组合物;和/或(ii)用于制备治疗神经系统疾病的药物组合物。
  2. 如权利要求1所述的用途,其特征在于,所述的星形胶质细胞来源于纹状体、脊髓、背侧中脑或大脑皮层,较佳地,所述的星形胶质细胞来源于皮层、背侧中脑。
  3. 如权利要求1中,所述的功能性神经元包括谷氨酸能神经元和/或γ-氨基丁酸(GABA)能神经元。
  4. 一种表达载体,其特征在于,所述的表达载体含有Ascl1蛋白编码序列,且所述的表达载体可整合入星形胶质细胞,并在星形胶质细胞中表达外源的Ascl1蛋白。
  5. 一种宿主细胞,其特征在于,所述的宿主细胞的染色体整合有编码Ascl1蛋白的多核苷酸,或所述的宿主细胞含有权利要求4所述的表达载体。
  6. 一种体外非治疗性的将星形胶质细胞转分化为功能性神经元细胞的方法,其特征在于,包括步骤:
    在外源性Ascl1蛋白存在下,培养星形胶质细胞,从而诱导星形胶质细胞形成神经元细胞。
  7. 如权利要求6所述的方法,其特征在于,所述的外源性Ascl1蛋白通过权利要求4所述的表达载体表达获得。
  8. 一种由星形胶质细胞转分化的功能性神经元细胞和/或神经元细胞群,其特征在于,所述的功能性神经元细胞和/或神经元细胞群由权利要求6所述的方法制备获得,且所述的功能性神经元细胞和/或神经元细胞群具有以下一种或多种特征:
    (a)至少50%的神经元细胞,优选至少60%、70%、80%、90%、或100%的神经元细胞表达神经元的标志物Tuj1,MAP2、NeuN或Synapsin I;
    (b)能够发放动作电位并能够形成突触联系。
  9. 权利要求8所述的功能性神经元细胞和/或神经元细胞群的用途,其特征在于,所述的功能性神经元细胞和/或神经元细胞群用于制备治疗神经系统疾病的药物组合物。
  10. 一种药物组合物,其特征在于,所述的药物组合物包括(A)权利要求4所述的表达载体或Ascl1蛋白,或(B)权利要求8所述的功能性神经元细胞和/或神经元细胞群;和(C)药学上可接受的载体。
  11. 一种(a)筛选治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物的方法,其特征在于,包括步骤:
    (i)将测试化合物加入细胞培养体系作为测试组,并将未加入测试化合物的细胞培养体系作为对照组;
    (ii)比较测试组中Ascl1基因或其蛋白的表达量和/或活性E1与对照组中的表达量和/或活性E0;
    其中,当测试组中E1显著高于E0,则表明所试化合物为(a)治疗神经系统疾病的候选化合物;和/或(b)诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物。
PCT/CN2015/091944 2014-10-17 2015-10-14 Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用 WO2016058537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410555115 2014-10-17
CN201410555115.7 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016058537A1 true WO2016058537A1 (zh) 2016-04-21

Family

ID=55746141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091944 WO2016058537A1 (zh) 2014-10-17 2015-10-14 Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用

Country Status (2)

Country Link
CN (1) CN105535992B (zh)
WO (1) WO2016058537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305846A (zh) * 2018-03-20 2019-10-08 中山大学中山眼科中心 视网膜节细胞的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073855A (zh) * 2018-10-19 2020-04-28 中国科学院上海生命科学研究院 诱导星形胶质细胞转分化为五羟色胺能神经元的方法及应用
CN111484977B (zh) * 2019-01-25 2023-05-16 中国科学院脑科学与智能技术卓越创新中心 重编程产生功能性去甲肾上腺素能神经元的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091048A1 (en) * 2010-01-19 2011-07-28 The Board Of Trustees Of The Leland Stanford Junior University Direct conversion of cells to cells of other lineages
CN102796696A (zh) * 2011-05-27 2012-11-28 复旦大学附属华山医院 一种从人皮肤细胞直接诱导的神经元细胞及其制备方法
WO2013025963A2 (en) * 2011-08-17 2013-02-21 President And Fellows Of Harvard College Conversion of somatic cells into functional spinal motor neurons, and methods and uses thereof
CN103773771A (zh) * 2013-11-28 2014-05-07 南京医科大学 一种转录因子组及其制备方法、应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091048A1 (en) * 2010-01-19 2011-07-28 The Board Of Trustees Of The Leland Stanford Junior University Direct conversion of cells to cells of other lineages
CN102796696A (zh) * 2011-05-27 2012-11-28 复旦大学附属华山医院 一种从人皮肤细胞直接诱导的神经元细胞及其制备方法
WO2013025963A2 (en) * 2011-08-17 2013-02-21 President And Fellows Of Harvard College Conversion of somatic cells into functional spinal motor neurons, and methods and uses thereof
CN103773771A (zh) * 2013-11-28 2014-05-07 南京医科大学 一种转录因子组及其制备方法、应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DING, DAOFANG ET AL.: "Mash1 efficiently reprograms rat astrocytes into neurons", NEURAL REGENERATION RESEARCH, vol. 9, 31 January 2014 (2014-01-31), pages 25 - 32, ISSN: 1876-7958 *
PATTYN, A. ET AL.: "Ascl1/Mash1 is required for the development of central serotonergic neruons", NATURE NEUROSCIENCE, vol. 7, no. 6, 9 May 2004 (2004-05-09), pages 589 - 595 *
PATTYN, A. ET AL.: "Delays in neuronal differentiation in Mash1/Ascl1 mutants", DEVELOPMENTAL BIOLOGY, vol. 295, 4 May 2006 (2006-05-04), pages 67 - 75, ISSN: 1095-564X *
ZHANG, ZHIYUAN ET AL.: "The role of Mash 1 in the neuronal differentiation of the neural stem cells in SVZa", CHINESE JOURNAL OF NEUROMEDICINE, vol. 5, no. 5, 30 May 2006 (2006-05-30), pages 471 - 474, ISSN: 1671-8925 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305846A (zh) * 2018-03-20 2019-10-08 中山大学中山眼科中心 视网膜节细胞的制备方法

Also Published As

Publication number Publication date
CN105535992B (zh) 2020-08-18
CN105535992A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
Liu et al. Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo
US11167044B2 (en) Regenerating functional neurons for treatment of disease in the nervous system
Gransee et al. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury
Kato et al. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein
Tatsumi et al. Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes
CN109069544B (zh) 脑内生成gaba能神经元
Yamashita et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum
Luo et al. Promoting survival, migration, and integration of transplanted Schwann cells by over‐expressing polysialic acid
White et al. Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury
Hoshino et al. GABAergic neuron-specific whole-brain transduction by AAV-PHP. B incorporated with a new GAD65 promoter
Delaunay et al. Early neuronal and glial fate restriction of embryonic neural stem cells
WO2021031810A1 (zh) Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用
Spadafora et al. Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke
Xu et al. Transplanted L1 expressing radial glia and astrocytes enhance recovery after spinal cord injury
Choi et al. Effects of human mesenchymal stem cell transplantation combined with polymer on functional recovery following spinal cord hemisection in rats
WO2016058537A1 (zh) Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用
WO2021032068A1 (zh) Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用
KR20170020721A (ko) 아데노바이러스 e4orf1을 발현하는 신경 세포 및 그 제조 방법과 용도
Chau et al. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke
Kagiava et al. Gene delivery targeted to oligodendrocytes using a lentiviral vector
WO2022052964A1 (zh) 用于重编程的功能性片段、组合及其应用
WO2021228050A1 (zh) 一种诱导胶质细胞转分化为功能性神经元的方法及其应用
Richard et al. Electroporation-based gene transfer for efficient transfection of neural precursor cells
Ye et al. HIF-1-modified BMSCs improve migration and reduce neuronal apoptosis after stroke in rats
US20230303972A1 (en) In vitro genetic disease model cell and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, FORM 1205A DATED 03-08-2017

122 Ep: pct application non-entry in european phase

Ref document number: 15851319

Country of ref document: EP

Kind code of ref document: A1