WO2016058441A1 - 一种激光冲击强化方法及装置 - Google Patents

一种激光冲击强化方法及装置 Download PDF

Info

Publication number
WO2016058441A1
WO2016058441A1 PCT/CN2015/086628 CN2015086628W WO2016058441A1 WO 2016058441 A1 WO2016058441 A1 WO 2016058441A1 CN 2015086628 W CN2015086628 W CN 2015086628W WO 2016058441 A1 WO2016058441 A1 WO 2016058441A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
laser
linearly polarized
laser shock
workpiece
Prior art date
Application number
PCT/CN2015/086628
Other languages
English (en)
French (fr)
Inventor
邹世坤
曹子文
巩水利
车志刚
Original Assignee
中国航空工业集团公司北京航空制造工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航空工业集团公司北京航空制造工程研究所 filed Critical 中国航空工业集团公司北京航空制造工程研究所
Publication of WO2016058441A1 publication Critical patent/WO2016058441A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation

Definitions

  • the invention relates to a laser shock peening technology, in particular to a laser shock reinforced method and device.
  • Laser shock peening uses a strong pulsed laser to generate a high-temperature and high-pressure plasma by absorbing the transparent medium transparent to the laser on the metal surface and absorbing the layer, and causing the strong shock wave to plastically deform the metal material and obtain the residual compressive stress of the surface layer to improve the fatigue of the metal structure. performance.
  • Laser shock peening is the only surface strengthening technology in laser processing that requires the laser to pass through the transparent constraining layer and then to the processing workpiece.
  • the commonly used constraining medium is water. Due to the particularity of laser shock strengthening, the laser peak power density is high and the variation range is required. Small (GW/cm 2 or more, within 10% variation range), it is necessary to pass through the transparent constraining layer to reach the workpiece strengthening position. Some structures must be obliquely incident at a large inclination angle. The reflection of the laser not only causes energy loss, but also causes process instability. Causes damage to the workpiece in the reflective area. During the laser shock peening process, the strong pulsed laser passes through the water layer to the surface of the metal.
  • the reflection coefficient is related to the polarization state of the light and the angle between the laser and the interface normal.
  • the laser vertical incidence method is generally adopted, and the reflection loss of about 3% of the laser is not considered, and the reflection damage is not caused.
  • the laser shock reinforcement in the prior art is generally adopted.
  • the circularly polarized light will produce a large reflection when the laser beam is strengthened by the large tilt angle, which not only causes the energy of the laser shock enhancement to be lowered, but also the reflected laser light causes damage to the nearby processing surface.
  • the invention provides a laser shock enhancement method, which comprises: converting polarized light outputted by a laser into linearly polarized light parallel to an incident surface of a constraining layer; setting an incident direction of the linearly polarized light to an angle of an object to be strengthened
  • the workpiece is subjected to laser shock peening in the range of 30° to 45°.
  • the present invention also provides a laser shock reinforced device, comprising: a conversion module for converting polarized light output by a laser into linearly polarized light parallel to an incident surface of a constraining layer; and a control module for controlling the optical rotator or the workpiece
  • the orientation is laser shock-strengthened by setting the angle between the incident direction of the linearly polarized light and the workpiece to a range of 30° to 45°.
  • Figure 1 is a graph showing the variation of the reflection coefficient and angle of the polarization inversion laser
  • FIG. 2 is a flow chart of a laser shock strengthening method according to the present invention.
  • FIG. 3 is a schematic view of an embodiment of the present invention.
  • Fig. 4 is a schematic view showing the laser output as a circularly polarized light which is decomposed by a polarization beam splitter.
  • Laser shock reinforced is generally incident on the surface of the workpiece in a direction perpendicular to the working surface to be strengthened.
  • the reflection coefficient of the laser on the water surface is relatively small, about 3%, so it can be ignored.
  • the inventor studied the reflection coefficient formula it was found that when the polarization direction is perpendicular to the incident surface (reflection 1) and the polarization direction is parallel to the incident surface of the polarized light (reflection 2), the variation of the laser reflection coefficient and angle of the two polarization directions is shown in Fig. 1.
  • the polarization direction is parallel
  • the laser When the laser is incident on the water surface with the Brewster angle of 53.1 degrees at the air/water interface as the incident angle, the laser has no reflection on the water surface.
  • the angle When the angle is close to this angle, the laser reflection coefficient is very low.
  • the invention utilizes the linearly polarized laser to reflect the characteristics of the two interfaces, and adopts the angle close to the Brewster angle to perform laser shock strengthening, achieving zero reflection or small reflection coefficient, and effectively solving the laser impact strengthening process without using the large dip laser shock strengthening. problem.
  • the present invention provides a laser shock strengthening method, comprising:
  • Step S101 converting polarized light output by the laser into linearly polarized light perpendicular to the water surface constraining layer
  • step S102 the workpiece is subjected to laser shock strengthening by setting the angle between the incident direction of the linearly polarized light and the workpiece to be strengthened to a range of 30° to 45°.
  • the polarized light output by the laser in this embodiment is converted into circularly polarized light (if it is elliptically polarized light, which is also performed with reference to a circularly polarized light scheme) or linearly polarized light.
  • the laser light is not reflected.
  • the present invention also provides a laser shock reinforced device, the device comprising:
  • a rotator that converts the polarized light output by the laser into linearly polarized light perpendicular to the water-constrained layer
  • the control module is configured to control the rotator to perform laser shock peening on the workpiece by setting the angle between the incident direction of the linearly polarized light and the workpiece to a range of 30° to 45°.
  • FIG. 3 it is a schematic diagram of an embodiment of a laser shock peening device according to the present invention, which uses laser to enhance linear polarization light into linearly polarized light, and converts the circularly polarized light 301 output by the laser into a constrained beam through the polarization beam splitter 302.
  • the linearly polarized light 304 perpendicular to the incident plane of the layer and the linearly polarized light 303 parallel to the incident surface of the constraining layer, and the linearly polarized light 304 perpendicular to the incident surface of the constraining layer are further converted into linearly polarized light parallel to the incident surface of the constraining layer by the rotator 305.
  • the direction of the linearly polarized light 304 is the vertical direction of the incident surface in 306, and the workpiece is subjected to a laser shock peening process by setting the incident direction of the workpiece 306 to be strengthened and the linearly polarized light to a range of 30° to 45°.
  • the polarization direction of 304 is actually the vertical paper direction (horizontal direction).
  • the commonly used laser output is circularly polarized light.
  • the X, Y, and Z coordinate systems are used.
  • the plane composed of X and Z represents the incident surface in Fig. 3.
  • the thick line arrow X is the laser propagation direction, and the circular polarization.
  • the light travels around the thick spiral and passes through the polarizing beam splitter to be decomposed into a vertical polarization direction (Z direction in Figure 4) and a horizontal polarization direction (Y direction in Figure 4), and a linear polarization perpendicular to the incident surface of the constraining layer.
  • the light ((Y-direction polarized light in Fig.
  • a quarter-wave plate may be used to convert the circularly polarized light output by the laser into linearly polarized light having a vibration plane at an angle of 45° to the optical axis of the wave plate; and then the vibrating surface is passed through the optical rotator.
  • the linearly polarized light at an angle of 45 with the optical axis of the wave plate is converted into linearly polarized light parallel to the incident surface of the constraining layer.
  • laser shock enhancement can be directly performed according to the above method. If it is horizontally linearly polarized, a 90° optical rotator can be used to change the horizontally linearly polarized light into a vertically linearly polarized light. Then, the workpiece and the incident direction of the laser are in the range of 30 to 45 degrees, and the reflection of the laser on the water surface is also small, which can be used for the laser shock reinforced processing.
  • the laser impact enhancement is performed at an angle close to the Brewster angle, achieving zero reflection or a small reflection coefficient, effectively solving the problem that the laser impact enhancement cannot be performed by the large dip laser shock enhancement process.
  • the laser impact enhancement of complex structures such as the integral leaf disk inevitably has the problem of large-angle laser shock enhancement. This patent successfully solves the problem of laser reflection on the water surface, which is of great significance to the process promotion in this field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光冲击强化方法及装置,方法包括将激光器输出的偏振光(301)转化为与约束层入射面平行的线偏振光(303);将所述的线偏振光的入射方向与待强化工件(306)的夹角设置为30°~45°的范围对工件进行激光冲击强化。

Description

一种激光冲击强化方法及装置 技术领域
本发明涉及激光冲击强化技术,具体的讲是一种激光冲击强化方法及装置。
背景技术
激光冲击强化采用强脉冲激光通过对激光透明的约束介质在金属表面并吸收层吸收后产生高温高压等离子体,并导致强冲击波使金属材料产生塑性变形并获得表层残余压应力从而提高金属结构的疲劳性能。
激光冲击强化是激光加工中唯一要求激光通过透明约束层然后到达加工工件进行加工的表面强化技术,目前常用的约束介质是水,由于激光冲击强化的特殊性,激光峰值功率密度高并且要求变化范围小(GW/cm2以上,变化范围10%以内),需要穿过透明约束层到达工件强化位置,有些结构必须要大倾角倾斜入射,激光的反射不仅会造成能量损失造成工艺不稳定,也会造成反射区域的工件损伤。激光冲击强化过程中强脉冲激光要通过水层到金属表层,由于光波通过不同折射率的界面要产生反射,反射系数与光的偏振状态、激光与界面法线的夹角有关系,待强化位置无遮挡条件下一般采用激光垂直入射方式,不考虑激光3%左右反射损失,也不造成反射损伤,但对某些复杂结构由于空间干涉激光只能倾斜入射,现有技术中激光冲击强化一般采用的圆偏振光在大倾角激光冲击强化时会产生较大的反射,不仅导致激光冲击强化的能量降低,而且反射的激光会导致附近加工表面的损伤。
发明内容
本发明提供了一种激光冲击强化方法,包括:将激光器输出的偏振光转化为与约束层入射面平行的线偏振光;将所述的线偏振光的入射方向与待强化工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
此外,本发明还提供了一种激光冲击强化装置,包括:转化模块,用于将激光器输出的偏振光转化为与约束层入射面平行的线偏振光;控制模块,用于控制旋光器或者工件方位以将所述的线偏振光的入射方向与工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为偏振反向激光反射系数跟角度的变化规律图;
图2为本发明一种激光冲击强化方法的流程图;
图3为本发明一实施方式示意图;
图4为激光器输出为圆偏振光通过偏振分光镜分解后的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
激光冲击强化一般采用激光与待强化的工作面垂直的方向入射到工件表面,这种情况下激光在水面的反射系数比较小,在3%左右,因此可以忽略不计。发明人在研究反射系数公式时发现,当偏振方向垂直入射面(反射1)和偏振方向平行入射面的偏振光(反射2)时,两种偏振方向激光反射系数跟角度的变化规律如图1所示(图示中系数为矢量),偏振方向平行入 射面的偏振光,当激光在水面以空气/水界面的布儒斯特角53.1度作为入射角入射时,激光在水面无反射,接近该角度时,激光反射系数很低。本发明利用线偏振激光在两界面反射特性,采用布儒斯特角接近的角度进行激光冲击强化,实现零反射或者反射系数很小,有效解决激光冲击强化过程中不能采用大倾角激光冲击强化的问题。
如图2所示,本发明提供了一种激光冲击强化方法,包括:
步骤S101,将激光器输出的偏振光转化为与水面约束层垂直的线偏振光;
步骤S102,将线偏振光的入射方向与待强化工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
其中,本实施例中激光器输出的偏振光转为圆偏振光(如果是椭圆偏振光,同样参照圆偏振光方案执行)或线偏振光。在本发明实施例中,将线偏振光的入射方向与工件的夹角方向设置为36.9°时,激光无反射。
此外,本发明还提供了一种激光冲击强化装置,装置包括:
旋光器,将激光器输出的偏振光转化为与水面约束层垂直的线偏振光;
控制模块,用于控制旋光器以将所述的线偏振光的入射方向与工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
如图3所示,为本发明激光冲击强化装置一实施例的示意图,其利用圆偏振激光转化为线偏振光进行激光强化,将激光器输出的圆偏振光301通过偏振分光镜302转化为与约束层入射面垂直的线偏振光304和与约束层入射面平行的线偏振光303,与约束层入射面垂直的线偏振光304通过旋光器305进一步转化为与约束层入射面平行的线偏振光,线偏振光304的方向是306中入射面垂直方向,将待强化工件306与线偏振光的入射方向设置成30°~45°的范围对工件进行激光冲击强化工艺处理。304的偏振方向实际为垂直纸面方向(水平方向)。
通常采用的激光器输出为圆偏振光,如图4所示,采用X、Y、Z三坐标系,X,Z组成的平面代表图3中入射面,粗线箭头X为激光传播方向,圆偏振光是绕粗线螺旋线前进的,通过偏振分光镜后可分解为垂直偏振方向(图4中Z向)与水平偏振方向((图4中Y向),与约束层入射面垂直的线偏振光((图4中Y向偏振光)通过旋光器转化为与约束层入射面平行的线偏振光((图4中Z向),然后工件与激光入射方向成36.9°,在此情况下激光无反射。即使工件与激光入射方向不能严格地成36.9°,而是成30°~45°的范围,激光在水面的反射也很小,可以用于激光冲击强化加工工艺。
另外,本发明具体实施时,也可以采用1/4波片,将激光器输出的圆偏振光转化为振动面与波片光轴成45°角的线偏振光;然后通过旋光器,将振动面与波片光轴成45°角的线偏振光转变成与约束层入射面平行的线偏振光。
如果激光器输出的直接就是线偏振光,如果是垂直线偏振光,可直接按照以上方法进行激光冲击强化,如果是水平线偏振光,可采用90°旋光器将水平线偏振光改变成垂直线偏振光,然后工件与激光入射方向成30~45°的范围,激光在水面的反射也很小,可以用于激光冲击强化加工工艺。
本发明实施例中,由于在工件整体叶盘等结构激光冲击强化过程中,不可避免地存在激光大倾角斜入射激光冲击强化的方案,采用本技术方案可以减小激光在水面的反射,提高激光冲击强化能量利用效率、减少反射激光对结构的损失。
利用线偏振激光在两界面反射特性,采用布儒斯特角接近的角度进行激光冲击强化,实现零反射或者反射系数很小,有效解决激光冲击强化过程中不能采用大倾角激光冲击强化的问题,整体叶盘等复杂结构激光冲击强化不可避免存在大倾角激光冲击强化问题,本专利成功解决激光在水面的反射难题,对本领域的工艺推广具有重要意义。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种激光冲击强化方法,其中所述的方法包括:
    将激光器输出的偏振光转化为与约束层入射面平行的线偏振光;
    将所述的线偏振光的入射方向与待强化工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
  2. 如权利要求1所述的激光冲击强化方法,其中所述的激光器输出的偏振光为圆偏振光或线偏振光。
  3. 如权利要求1所述的激光冲击强化方法,其中所述的方法包括:
    将所述的线偏振光的入射方向与工件的夹角方向设置为36.9°。
  4. 一种激光冲击强化装置,其中所述的装置包括:
    转化模块,用于将激光器输出的偏振光与约束层入射面平行的线偏振光;
    控制模块,用于控制旋光器以将所述的线偏振光的入射方向与工件的夹角设置为30°~45°的范围对工件进行激光冲击强化。
  5. 如权利要求4所述的激光冲击强化装置,其中所述的激光器输出的偏振光为圆偏振光或线偏振光。
  6. 如权利要求5所述的激光冲击强化装置,其中所述的转化模块包括:
    偏振分光镜,用于将激光器输出的圆偏振光转化为与约束层入射面平行的线偏振光和与约束层入射面垂直的线偏振光;
    旋光器,用于将与约束层入射面垂直的线偏振光转变成与约束层入射面平行的线偏振光。
  7. 如权利要求5所述的激光冲击强化装置,其中所述的转化模块包括:
    1/4波片,将激光器输出的圆偏振光转化为振动面与波片光轴成45°角的线偏振光;
    旋光器,用于将振动面与波片光轴成45°角的线偏振光转变成与约束层入射面平行的线偏振光。
  8. 如权利要求6或7所述的激光冲击强化装置,其中,将所述的与约束层入射面平行的线偏振光的入射方向与工件的夹角方向设置为36.9°。
PCT/CN2015/086628 2014-10-13 2015-08-11 一种激光冲击强化方法及装置 WO2016058441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410539316.8 2014-10-13
CN201410539316.8A CN104357648B (zh) 2014-10-13 2014-10-13 一种激光冲击强化方法及装置

Publications (1)

Publication Number Publication Date
WO2016058441A1 true WO2016058441A1 (zh) 2016-04-21

Family

ID=52524954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086628 WO2016058441A1 (zh) 2014-10-13 2015-08-11 一种激光冲击强化方法及装置

Country Status (2)

Country Link
CN (1) CN104357648B (zh)
WO (1) WO2016058441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357648B (zh) * 2014-10-13 2017-04-05 中国航空工业集团公司北京航空制造工程研究所 一种激光冲击强化方法及装置
CN113832334A (zh) * 2021-09-25 2021-12-24 温州大学 一种控制裂纹扩展的激光冲击强化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088903A1 (en) * 1999-09-30 2001-04-04 General Electric Company Simultaneous offset dual sided laser shock peening
CN1572891A (zh) * 2003-05-30 2005-02-02 通用电气公司 烟雾减少的激光冲击硬化
CN101474723A (zh) * 2009-01-21 2009-07-08 西安天瑞达光电技术发展有限公司 一种光隔离激光冲击强化双面对冲装置
CN103487945A (zh) * 2013-09-30 2014-01-01 中国科学院光电技术研究所 一种高效率偏振纯化装置
CN104357648A (zh) * 2014-10-13 2015-02-18 中国航空工业集团公司北京航空制造工程研究所 一种激光冲击强化方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156530B2 (ja) * 1993-12-07 2001-04-16 トヨタ自動車株式会社 レーザショック処理方法および装置
CN100385331C (zh) * 2006-05-31 2008-04-30 哈尔滨工业大学 基于双池受激布里渊散射系统的激光脉冲整形装置和方法
CN101276126A (zh) * 2008-04-23 2008-10-01 清华大学 双布儒斯特角非线性光学晶体及其切割方法
CN101745740B (zh) * 2009-12-23 2013-07-10 江苏大学 金属板料环形光斑激光冲击成形方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088903A1 (en) * 1999-09-30 2001-04-04 General Electric Company Simultaneous offset dual sided laser shock peening
CN1572891A (zh) * 2003-05-30 2005-02-02 通用电气公司 烟雾减少的激光冲击硬化
CN101474723A (zh) * 2009-01-21 2009-07-08 西安天瑞达光电技术发展有限公司 一种光隔离激光冲击强化双面对冲装置
CN103487945A (zh) * 2013-09-30 2014-01-01 中国科学院光电技术研究所 一种高效率偏振纯化装置
CN104357648A (zh) * 2014-10-13 2015-02-18 中国航空工业集团公司北京航空制造工程研究所 一种激光冲击强化方法及装置

Also Published As

Publication number Publication date
CN104357648A (zh) 2015-02-18
CN104357648B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
US11203798B2 (en) Laser shock peening apparatus for surface of workpiece, and laser shock peening method
Li et al. Efficient asymmetric transmission of elastic waves in thin plates with lossless metasurfaces
CN103100537B (zh) 一种水下激光清洗方法及清洗头
WO2016058441A1 (zh) 一种激光冲击强化方法及装置
Zhao et al. Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators
CN102289078A (zh) 一种激光合束系统及一种激光合束方法
CN104503098A (zh) 激光合束系统
US10768434B2 (en) Laser beam combining system
CN103326230B (zh) 一种实现全固态激光器高功率输出的并联合束方法
CN203589447U (zh) 轴锥体、光学谐振腔及激光器
US20210391682A1 (en) Method and Device for Laser Radiation Modulation
CN110850601A (zh) 利用超表面实现图像相加和相减运算的方法
Eritsyan et al. Crystals with an open wave-vector surface: Peculiarities of reflection and possibilities of designing flat lenses
CN103713389A (zh) 激光器及其光斑调节组件
Zhang et al. Suppression of transverse stimulated Raman scattering or transverse stimulated Brillouin scattering
CN219465073U (zh) 一种用于工件表面强化的飞秒激光加工系统
CN203773081U (zh) 一种反射相位延迟镜
WO2020019658A1 (zh) 一种光组件及其制造方法
Antonov et al. New acoustooptic effect: Constant high diffraction efficiency in wide range of acoustic power
CN204179480U (zh) 基于电机平移的1064nm与355nm波长自由切换输出激光器
CN217982030U (zh) 一种激光光束转化器
CN103777266A (zh) 一种反射相位延迟镜及其制备方法
CN203365809U (zh) 带有分光功能的回波隔离器
Kotov Bragg diffraction of three-color radiation in a paratellurite crystal
Dong-Hai et al. Focusing of surface acoustic wave on a piezoelectric crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851556

Country of ref document: EP

Kind code of ref document: A1