WO2016058287A1 - 一种光谱仪的设计方法以及光谱仪 - Google Patents

一种光谱仪的设计方法以及光谱仪 Download PDF

Info

Publication number
WO2016058287A1
WO2016058287A1 PCT/CN2015/070341 CN2015070341W WO2016058287A1 WO 2016058287 A1 WO2016058287 A1 WO 2016058287A1 CN 2015070341 W CN2015070341 W CN 2015070341W WO 2016058287 A1 WO2016058287 A1 WO 2016058287A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
concave grating
diffraction efficiency
angle
incident
Prior art date
Application number
PCT/CN2015/070341
Other languages
English (en)
French (fr)
Inventor
倪凯
周倩
逄锦超
张锦超
田瑞
许明飞
董昊
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2016058287A1 publication Critical patent/WO2016058287A1/zh
Priority to US15/206,992 priority Critical patent/US10345149B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J2003/1842Types of grating

Definitions

  • the present invention relates to a method of designing a spectrometer, and more particularly to a method of designing a spectrometer using a concave grating and a spectrometer.
  • the spectrometer By designing the parameters of the concave grating, the incident angle of the incident slit and the relative position between the devices, the spectrometer is built to realize the detection of light waves in a certain range of wavelengths.
  • the spectrometer built under the existing design method can realize the light wave detection in a wide spectral region, but the corresponding diffraction efficiency in a partial spectral region is low, which cannot meet the demanding application.
  • the technical problem to be solved by the present invention is to make up for the deficiencies of the above prior art, and to propose a spectrometer design method and a spectrometer, which have high diffraction efficiency in most spectral regions, and effectively improve the diffraction efficiency in a wide spectral region.
  • the problem is to make up for the deficiencies of the above prior art, and to propose a spectrometer design method and a spectrometer, which have high diffraction efficiency in most spectral regions, and effectively improve the diffraction efficiency in a wide spectral region.
  • a spectrometer design method is constructed by using a concave grating, three incident slits and three photodetectors to construct a spectrometer, and the spectrometer has a spectral detection range of ⁇ 1 ⁇ ⁇ 5 ;
  • the design method comprises the following steps :1) calculating, according to the fixed structural parameter of the spectrometer, the incident angle value at the single incident slit and the groove period of the concave grating under the incident angle value, based on the optical path function series expansion method, The incident angle value is taken as the value of the incident angle ⁇ A2 of the second incident slit; 2) the blaze angle of the concave grating is estimated, the surface material and the groove structure of the concave grating are determined; 3) the concave surface according to step 2)
  • the parameters of the grating obtain a wavelength-diffraction efficiency curve of the concave grating when the incident angle is ⁇ A2 , and a wavelength-diffraction efficiency curve of the
  • a spectrometer comprising a concave grating, three incident slits and three photodetectors, the fabrication parameters of the concave grating and the positions of the three incident slits and the three photodetectors relative to the concave grating are as follows The design method described is determined.
  • the spectrometer design method of the present invention first determines a single incident angle value, and then determines the other two incident angles and the spectral detection region ( ⁇ 1 ⁇ ⁇ ) by comparing the change angles of the respective incident angles with respect to the wavelength-diffraction efficiency curve at a single incident angle. 5 ) The band cutoff points ⁇ 2 and ⁇ 3 , and then optical design according to the determined three incident angles and five wavelength values, to obtain the recording structure parameters and the use of structural parameters, thereby determining the structure of the concave grating and the concave grating and the three The relative positions between the entrance slits and the three photodetectors are constructed to obtain a spectrometer.
  • the built spectrometer can achieve the desired target and detect light waves in the range of ⁇ 1 ⁇ ⁇ 5 .
  • the spectrometer can make full use of the +2 order diffraction spectrum of the short band and the +1 order diffraction spectrum of the long band.
  • the spectrometer designed by the invention can be used.
  • FIG. 1 is a schematic view showing the optical path structure of a spectrometer according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a spectrometer design method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the spectral distribution of the detection of the photodetector end in the embodiment of the present invention.
  • Figure 5 is a diffraction efficiency of a new structure of a spectrometer and a conventional spectrometer at various wavelengths in a specific embodiment of the invention. Compare the schematics.
  • FIG. 1 it is a schematic diagram of the optical path structure of the spectrometer to be designed for the specific embodiment.
  • the spectrometer consists of three entrance slits, a concave grating and three photodetectors.
  • the photodetector may preferably be a photomultiplier tube, a pyroelectric detector, a semiconductor photodetector or a CCD (Charge-coupled Device) array detector, but is not limited to these.
  • a 1 , A 2 , and A 3 are incident slits
  • B 11 B 12 , B 21 B 22 , and B 31 B 32 are photodetectors.
  • a coordinate system is established with the center O point of the concave grating G as a coordinate origin, and an incident slit, a concave grating G, and a photodetector are sequentially disposed on the optical path in accordance with the light propagation direction.
  • the parameters of the concave grating G and the positions of the entrance slit and the photodetector are designed by the following design method, thereby constructing a concave grating spectrometer capable of detecting light waves having a wavelength range of ⁇ 1 to ⁇ 5 .
  • the incident angle value at the single incident slit and the slot period of the concave grating under the incident angle value are calculated based on the optical path function series expansion method, and the incident incidence is obtained.
  • the angle value is taken as the value of the incident angle ⁇ A2 of the second incident slit.
  • the fixed structural parameters such as the spectral detection range value, the exposure wavelength of the concave grating, the working order, the side length, the base curvature radius, the grating constant, and the width of the three incident slits selected are inherent.
  • the attribute parameters are known.
  • the incident angle of the grating at a single incident slit can be calculated by using the optical path function series expansion method, and the groove period of the concave grating under the incident angle value can be obtained at the same time.
  • the calculated incident angle is taken as the value of ⁇ A2 .
  • the fixed structural parameters of the spectrometer are as shown in Table 1 below:
  • Concave grating side length 30mm
  • the PCGrate software When estimating the blaze angle, you can use the PCGrate software to obtain the short-wavelength band range (for example, the spectral detection range of 190-800 nm, the short-wavelength band in the range of 190 nm to 400 nm) in the entire spectrum detection range at the incident angle ⁇ A2 .
  • the wavelength-diffraction efficiency curve of the concave grating corresponding to the multiple wavelengths respectively as the blaze wavelength is selected by the designer according to experience, so that the diffraction efficiency is relatively high in the long wavelength band +1 level and the short band + 2 level as the final wavelength.
  • the blaze wavelength which in turn is calculated from the blaze wavelength.
  • the estimated short-wavelength +2 blaze wavelength is 240 nm
  • the surface material and the groove structure of the concave grating can be freely selected by the designer.
  • an A1 type material customized in PCGrate is used as the surface material, and the groove shape is zigzag.
  • Other materials, other groove types, such as a trapezoidal structure, may be selected and applied, and are not limited to the above examples.
  • step P3 obtaining a wavelength-diffraction efficiency curve of the concave grating when the incident angle is ⁇ A2 according to the parameter of the concave grating in step P2), and the concave grating at a plurality of angles of the incident angle distribution in the range of -10° to 20° Wavelength-diffraction efficiency curve.
  • a wavelength-diffraction efficiency graph can be obtained using the raster design software PCGrate software.
  • the surface material and the groove structure of the concave grating determined in the step 2) are input into the grating design software PCGrate software to obtain the wavelength-diffraction efficiency curve of the concave grating when the incident angle is ⁇ A2 , and the incident angle distribution is in the -
  • the wavelength-diffraction efficiency curve at a certain incident angle simulated by PCGrate software includes two curves, which are the +1 order diffraction efficiency and the +2 order diffraction efficiency of each wavelength, and the two diffraction efficiency curves are all open parabolic shapes. . It can also be seen from the two curves that the region with higher diffraction efficiency in the +2 order diffraction is concentrated in the relatively short wavelength range, and the region with higher diffraction efficiency in the +1 order diffraction is concentrated in the relatively long wavelength range.
  • FIG. 4 is a schematic diagram showing the spectral distribution of the photodetector end detection in the specific embodiment.
  • the design method uses multiple incident slits to make full use of two orders of diffraction spectra, which can receive both the +2 order diffraction spectrum of the short band and the +1 order diffraction spectrum of the long band. setting three points ⁇ 2, ⁇ 3 and ⁇ 4, designed such that both the received wavelength range of +2 order diffracted light is ⁇ 1 ⁇ ⁇ 2, but received in the wavelength range of 2 ⁇ 1 ⁇ 2 ⁇ 2 + Class 1 diffracted light.
  • the changes are significant ⁇ A1 , ⁇ 3 , ⁇ A3 , ⁇ 2 .
  • ⁇ 1 represents the diffraction efficiency value corresponding to the angle ⁇ A1 at each wavelength in the range of wavelengths ⁇ 1 ⁇ ⁇ 3
  • the relative change absolute value of the diffraction efficiency value corresponding to A2 ;
  • ⁇ 2 represents the relative change absolute value of the diffraction efficiency value corresponding to ⁇ A1 and the diffraction efficiency value corresponding to the angle ⁇ A2 at each wavelength in the range of wavelength 2 ⁇ 1 to 2 ⁇ 3
  • ⁇ 3 represents the relative change absolute value of the diffraction efficiency value corresponding to the angle ⁇ A3 and the diffraction efficiency value corresponding to the angle ⁇ A2 at each wavelength in the range of the wavelength ⁇ 3 to ⁇ 2
  • ⁇ 4 represents the wavelength 2 ⁇ 3 ⁇ 2 ⁇ 2
  • the incident angles of the other two incident slits and the values of the three wavelengths ⁇ 2 , ⁇ 3 , ⁇ 4 are obtained. So far, after the foregoing steps, it has been determined that three sets of angle values, five wavelength values, and grating blaze angles are obtained.
  • the grating blaze angle ⁇ 4.68 ° is estimated.
  • the concave grating and the relative positional arrangement between the optics are designed based on this information as follows.
  • the function function series expansion method is used to optimize the parameters using the optical design software ZEMAX software to obtain the recording structure parameters and the use of structural parameters.
  • the optical design software ZEMAX software is used to bring in three angle values, five wavelength values and the fixed structure parameter values in Table 1 for parameter optimization, and the obtained recording structure is obtained.
  • the parameters and usage structure parameters are shown in Table 2.
  • r 1 and r 2 respectively represent the polar diameters of the two incident points in the polar coordinates when the concave grating is fabricated by holography; ⁇ 1 and ⁇ 2 represent the polar diameter r 1 and the polar diameter r 2 and the x-axis, respectively. Angle.
  • r A1 , r A2 , r A3 represent the polar lengths of the three incident slits in polar coordinates
  • ⁇ A1 , ⁇ A2 , ⁇ A3 represent the polar diameters of the incident points r A1 , r A2 , r A3 and the x-axis respectively
  • B 11 , B 12 , B 21 , B 22 , B 31 , B 32 are the ends of the photodetectors B 11 B 12 , B 21 B 22 , B 31 B 32 Coordinate values within the Cartesian coordinate system.
  • step P6 determining the fabrication parameters of the concave grating according to the groove period of the concave grating in step P1), the blaze angle of the concave grating of step P2), the surface material and the groove structure, and the recording structure parameters obtained in step P5) A concave grating that satisfies the application. According to the above parameters, a holographic method can be used to produce a concave grating that meets the application requirements.
  • step P7) According to the use of the structural parameters obtained in step P5), the positions of the three incident slits and the three photodetectors relative to the concave grating are determined, thereby constructing a spectrometer. According to the length and length information of the structural parameters, the angle information and the coordinate information can determine the position of the concave grating, the slit and the detector, and build the optical path to obtain the concave grating spectrometer.
  • the spectrometer is designed.
  • the light emitted by the light passing through the concave slit grating by the incident slit A 2 is incident on the photodetector B 21 B 22 , and the energy value thereof is detected as E 2 ⁇ .
  • the light incident on detector B 11 B 12 A 1 through the entrance slit of light by the concave grating spectroscope converged emitted, the energy detection ⁇ 1 ⁇ ⁇ 3 and 2 ⁇ 1 ⁇ 2 ⁇ 3 is E 1 ⁇ and compared to E 2 ⁇ .
  • a 3 is incident through the entrance slit by the concave grating spectroscope converged light emitted to the light detector B 31 B 32, the energy detector 2 ⁇ 3 ⁇ ⁇ and 2 ⁇ 3 ⁇ 2 ⁇ 2 E 3 ⁇ and is compared with the E 2 ⁇ .
  • ⁇ 1 represents an absolute value of the relative change in the diffraction efficiency value corresponding to the angle ⁇ A1 with respect to the diffraction efficiency value corresponding to the angle ⁇ A2 at each wavelength in the range of the wavelength ⁇ 1 to ⁇ 3 ;
  • ⁇ 2 represents the range of the wavelength 2 ⁇ 1 to 2 ⁇ 3 At each wavelength in the range, the diffraction efficiency value corresponding to ⁇ A1 is relative to the absolute value of the diffraction efficiency value corresponding to the angle ⁇ A2 ;
  • ⁇ 3 is at each wavelength in the range of wavelength ⁇ 3 to ⁇ 2 , and the angle ⁇ A3 corresponds to diffraction efficiency value with respect to the relative change in the diffraction efficiency value corresponding to the absolute value of the angle ⁇ A2;
  • [eta] at each wavelength in the range of 3 ⁇ 2 ⁇ 2 4 represents a wavelength of 2 ⁇ , the diffraction efficiency value with respect to ⁇ A3 corresponding to a diffraction angle corresponding to ⁇
  • step (1) the spectral overlap region ⁇ 1 ⁇ ⁇ 2 and 2 ⁇ 1 ⁇ 2 ⁇ 2, if for any part of the range of light wavelength [lambda] [lambda] [lambda] is 1 to 2, if the light detector B 21 B 22 does not detect the energy , indicating that there are no wavelengths ⁇ and 2 ⁇ ; if the photodetector B 21 B 22 detects energy, it is denoted as E 2 ⁇ , and proceeds to step (2).
  • a use of the entrance slit and the light detector B 11 B 12 determines ⁇ 1 1 ⁇ ⁇ 3 and 2 ⁇ 1 ⁇ 2 ⁇ 3, using the entrance slit and the light detector A 3 B 31 B 32 determines ⁇ 3 ⁇ ⁇ 2 and 2 ⁇ 3 ⁇ 2 ⁇ 2 . If E 1 ⁇ ⁇ E 2 ⁇ , it means that the light wave ⁇ belongs to the range of ⁇ 1 to ⁇ 3 . If E 3 ⁇ ⁇ E 2 ⁇ , it means that the light wave ⁇ belongs to the range of ⁇ 3 ⁇ ⁇ 2 . If E 1 ⁇ and E 3 ⁇ are equal to zero, it means that there are no wavelengths ⁇ and 2 ⁇ .
  • the concave grating spectrometer designed in the specific embodiment can realize light wave detection in the range of ⁇ 1 to ⁇ 5 .
  • the +2 order diffraction spectrum of the short band ( ⁇ 1 ⁇ ⁇ 2 ) can be utilized, and the +1 order diffraction spectrum of the long band (2 ⁇ 1 ⁇ 2 ⁇ 2 ) can be utilized, compared to the existing spectrometer.
  • Only the +1st-order diffracted light of the entire light wave detection range is utilized, and since the two-stage diffraction spectrum information can be fully utilized, it has high diffraction efficiency.
  • a conventional spectrometer utilizes only +1 order diffracted light without using other orders.
  • the diffraction efficiency is small, and the overall diffraction efficiency is low.
  • the new spectrometer of the present invention adopts two levels of +1 and +2, so there are two curve peaks, and there are two blazed wavelengths, and the wavelengths of the bands are relatively close to each other, so the diffraction efficiency is relatively high. Therefore, the overall diffraction efficiency is higher.
  • a general spectrometer designed for a general design flow is set, and the performance of the spectrometer of the present embodiment in terms of diffraction efficiency is verified by comparing the diffraction efficiency curves of the spectrometer of the present embodiment with a general spectrometer.
  • Ordinary spectrometer including concave grating, one incident slit, two photodetectors.
  • the incident angle is obtained, the structural parameters are recorded, and the structural parameters are used.
  • a blazed wavelength which can make the diffraction efficiency of the whole band relatively good is obtained by PCGrate software, and the blaze angle is determined according to the blaze wavelength.
  • the fabrication parameters of the concave grating are determined according to the blaze angle and the recording structure parameters, and the concave grating satisfying the application is obtained.
  • the position of the incident slit and the two photodetectors relative to the concave grating is determined according to the incident angle and the structural parameters, thereby establishing spectrometer.
  • the diffraction efficiency value at each wavelength (190 nm to 800 nm) of the grating spectrometer and the above conventional spectrometer in the present embodiment was calculated using PCGrate software, and has a graph of diffraction efficiency as shown in FIG.
  • the dashed line is the diffraction efficiency of the spectrometer of the new structure of the present embodiment at each wavelength, and the incident angles are 3°, -6°, and -17.2°, respectively; the solid line is the diffraction efficiency of the ordinary spectrometer at each wavelength, and the incident angle is -4.8°.
  • the two structures are in the same case (the "same case” means: using the same material, the same spectral range, and the other design parameters are the same in the diffraction efficiency analysis except for the incident angle and the blaze angle)
  • the diffraction efficiency of the new structure 190nm-230nm has an increase of 12% to 20%
  • 230nm ⁇ 245nm and 385nm ⁇ 410nm have an increase of about 0-10%
  • 410nm-480nm has a 15% to 30% increase
  • 480nm ⁇ 800nm With an increase of about 30%, the diffraction efficiency in other bands is lower than that of the original spectrometer.
  • the diffraction efficiency of the new structure spectrometer of this embodiment is more than 45%, accounting for 93.4%, and the diffraction efficiency is more than 60%, accounting for 73.8%; for the ordinary structure, the diffraction efficiency of the spectrometer is more than 45%, accounting for 55.7%, diffraction efficiency. More than 60% account for 38.5%, and the diffraction efficiency of this embodiment is significantly improved.
  • the composite use of the band +1 stage and the +2 stage blaze is realized by using three diffraction slits, thereby improving the problem that the diffraction efficiency of most spectral regions of the wide spectrum spectrometer is low.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

公开了一种光谱仪的设计方法以及光谱仪,使用凹面光栅(G)、三个入射狭缝(A 1、A 2、A 3)和三个光探测器(B 11B 12、B 21B 22、B 31B 32)搭建光谱仪,包括以下步骤:1)确定第二入射狭缝的入射角以及凹面光栅的槽型周期;2)估算凹面光栅的闪耀角,确定凹面光栅的表面材料和槽型结构;3)获取入射角度为θ A2时和多个角度下凹面光栅的波长-衍射效率曲线;4)确定入射角θ A1和θ A3的值以及波长λ 2和λ 3的值,并取λ 4等于λ 2;5)得到记录结构参数以及使用结构参数;6)确定凹面光栅的制作参数;7)确定三个入射狭缝和三个光探测器相对于凹面光栅的位置,从而搭建得到光谱仪。这种设计方法得到的光谱仪,在大部分光谱区域内具有较高的衍射效率,有效解决宽光谱区域内衍射效率较低的问题。

Description

一种光谱仪的设计方法以及光谱仪 【技术领域】
本发明涉及光谱仪的设计方法,特别是涉及一种使用凹面光栅的光谱仪的设计方法以及光谱仪。
【背景技术】
近年来,由于环境检测、生物医学、科技农业、军事分析以及工业流程监控等一些需要现场实时测试的应用领域的现代化发展,实验室中的大型光谱仪器已难以满足上述实际使用要求。开发便携式小型光谱仪器产品具有重要的实际意义以及广阔的市场前景。现有小型光谱仪中,有使用凹面光栅进行搭建的光谱仪,通常包括凹面光栅、一个入射狭缝和多个探测器。通过对凹面光栅的制作参数、入射狭缝的入射角度以及各器件之间的相对位置进行设计调整,从而搭建光谱仪,实现在某一波段范围内的光波检测。然而,现有的设计方法下搭建的光谱仪,虽然能实现宽光谱区域的光波检测,但在部分光谱区域内对应的衍射效率却较低,无法满足高要求的应用。
【发明内容】
本发明所要解决的技术问题是:弥补上述现有技术的不足,提出一种光谱仪的设计方法及光谱仪,在大部分光谱区域内具有较高的衍射效率,有效改善宽光谱区域内衍射效率较低的问题。
本发明的技术问题通过以下的技术方案予以解决:
一种光谱仪的设计方法,通过设计,使用凹面光栅、三个入射狭缝和三个光探测器搭建光谱仪,且所述光谱仪的光谱检测范围为λ1~λ5;所述设计方法包括以下步骤:1)根据所述光谱仪的固定结构参数,基于光程函数级数展开法计算得到在单一入射狭缝时的入射角度值和所述入射角度值下所述凹面光栅的槽型周期,将得到的入射角度值作为第二入射狭缝的入射角θA2的值;2)估算所述凹面光栅的闪耀角,确定所述凹面光栅的表面材料和槽型结构;3)根据步骤2)中凹面光栅的参数获取入射角度为θA2时所述凹面光栅的波长-衍射效率曲线,以及入射角度分布在-10°~20°范围内多个角度下所述凹面光栅的波长-衍射效率曲线;4)根据步骤3)得到的多个角度下的衍射效率相对于角度θA2时的衍射效率的变化,确定第一入射狭缝的入射角θA1的值、第三 入射狭缝的入射角θA3的值以及波长λ2和λ3的值,并取λ4等于λ2;5)根据得到的三个入射角θA1、θA2、θA3的值,五个波长λ1、λ2、λ3、λ4、λ5的值以及所述光谱仪的固定结构参数,基于光程函数级数展开法,使用光学设计软件ZEMAX软件进行参数优化,得到记录结构参数以及使用结构参数;6)根据步骤1)中的凹面光栅的槽型周期,步骤2)的凹面光栅的闪耀角、表面材料和槽型结构以及步骤5)得到的记录结构参数确定所述凹面光栅的制作参数,得到满足应用的凹面光栅;7)根据步骤5)得到的使用结构参数,确定三个入射狭缝和三个光探测器相对于所述凹面光栅的位置,从而搭建得到光谱仪。
一种光谱仪,包括凹面光栅、三个入射狭缝和三个光探测器,所述凹面光栅的制作参数以及三个入射狭缝和三个光探测器相对于所述凹面光栅的位置根据如上所述的设计方法确定得到。
本发明与现有技术对比的有益效果是:
本发明的光谱仪的设计方法,先确定单一入射角度值,然后通过各入射角度相对于单一入射角度下的波长-衍射效率曲线的比较变化确定另外两个入射角度以及光谱检测区域(λ1~λ5)内的波段截止点λ2和λ3,进而根据确定的三个入射角度和五个波长值进行光学设计,得到记录结构参数和使用结构参数,进而确定凹面光栅的结构以及凹面光栅与三个入射狭缝、三个光探测器之间的相对位置,搭建得到光谱仪。该搭建的光谱仪能实现预期目标,检测λ1~λ5范围内的光波。检测时,光谱仪可充分利用短波段的+2级衍射光谱和长波段的+1级衍射光谱,相对于现有的光谱仪仅利用光谱检测范围内的+1级衍射光,本发明设计的光谱仪可充分利用衍射信息,从而衍射效率较高,表现在大部分波段范围内的衍射效率均有所提高,且衍射效率高达45%的波段区域占整个光波检测范围的比例也有所提高(达93.4%以上)。
【附图说明】
图1是本发明具体实施方式的光谱仪的光路结构示意图;
图2是本发明具体实施方式的光谱仪设计方法的流程图;
图3是本发明具体实施方式中设计时步骤P3)中在入射角度θA2=-6°时得到的波长-衍射效率曲线图;
图4是本发明具体实施方式中光探测器端探测的光谱分布情况示意图;
图5是发明具体实施方式中新结构的光谱仪与普通光谱仪在各波长处的衍射效率 对比示意图。
【具体实施方式】
下面结合具体实施方式并对照附图对本发明做进一步详细说明。
如图1所示,为本具体实施方式要设计的光谱仪的光路结构示意图。光谱仪包括三个入射狭缝、凹面光栅和三个光探测器。光探测器优选的可以采用光电倍增管、热电探测器、半导体光探测器或者CCD(Charge-coupled Device,电荷耦合器件)阵列探测器,但并非限制于这几种。图1中,A1、A2、A3为入射狭缝,B11B12、B21B22、B31B32为光探测器。以凹面光栅G的中心O点为坐标原点建立坐标系,依光的传播方向,在光路上依次设置入射狭缝、凹面光栅G和光探测器。凹面光栅G的参数以及入射狭缝、光探测器的位置通过如下设计方法设计得到,从而搭建出能够检测波长范围在λ1~λ5的光波的凹面光栅光谱仪。
设计方法的流程图如图2所示,包括以下步骤:
P1)确定第二入射狭缝的入射角以及凹面光栅的槽型周期。具体地,根据光谱仪的固定结构参数,基于光程函数级数展开法计算得到在单一入射狭缝时的入射角度值和所述入射角度值下所述凹面光栅的槽型周期,将得到的入射角度值作为第二入射狭缝的入射角θA2的值。
当需要搭建光谱仪时,其固定结构参数,例如光谱检测范围值,选用的凹面光栅的曝光波长、工作级次、边长、基底曲率半径、光栅常数,选用的三个入射狭缝的宽度等固有属性参数是已知的。根据固定结构参数,使用光程函数级数展开法即可计算得到光栅在单一入射狭缝时的入射角度,并可同时得到所述入射角度值下所述凹面光栅的槽型周期。将该计算的入射角度作为θA2的值。本具体实施例中,光谱仪的固定结构参数如下表1所示:
表1
光谱检测范围 190nm~800nm
凹面光栅的曝光波长 441.6nm
凹面光栅的工作级次 +1
入射狭缝宽度 5μm
凹面光栅边长 30mm
凹面光栅基底曲率半径 83.684mm
光栅常数d/mm 1/650~1/350
从上述参数也可知,λ1=190nm,λ5=800nm。根据表1中的固定结构参数,计算得到入射角为-6°,槽型周期为每毫米350个,则θA2=-6°。
P2)估算凹面光栅的闪耀角,确定凹面光栅的表面材料和槽型结构。
估算闪耀角时,可先使用PCGrate软件得到入射角度θA2下,整个光谱检测范围内的短波波段范围(例如,190~800nm的光谱检测范围,其范围内的短波波段可取190nm~400nm范围)内多个波长分别作为闪耀波长时对应的凹面光栅的波长-衍射效率曲线,由设计者根据经验选取使得衍射效率在长波段+1级的和短波段+2级都相对较高的波长作为最终的闪耀波长,进而由该闪耀波长计算得到闪耀角。例如,在入射角度θA2下,200nm、250、300nm、350nm、400nm分别作为闪耀波长得到五个波长-衍射效率曲线,如发现在250nm下,曲线中短波段(190nm~400nm)的+2级衍射效率和长波段(300nm~800nm)的+1级衍射效率都相对于其它四个波长下相应的衍射效率要高,则将250nm确定作为最终的短波段+2级的闪耀波长。本具体实施方式中,估计的短波段+2级闪耀波长为240nm,进而估算得到的闪耀角为γ=4.68°。
凹面光栅的表面材料和槽型结构可由设计者自由选取,本具体实施方式中选用PCGrate中自定义的一种A1类材料作为表面材料,槽型为锯齿形。其它材料,其它槽型,例如梯形结构均可选择适用,并不限于上述示例情形。
P3)根据步骤P2)中凹面光栅的参数获取入射角度为θA2时所述凹面光栅的波长-衍射效率曲线,以及入射角度分布在-10°~20°范围内多个角度下所述凹面光栅的波长-衍射效率曲线。
具体地,可使用光栅设计软件PCGrate软件得到波长-衍射效率曲线图。将步骤2)确定的所述凹面光栅的表面材料和槽型结构输入光栅设计软件PCGrate软件中,分别得到入射角度为θA2时所述凹面光栅的波长-衍射效率曲线,以及入射角度分布在-10°~20°范围内多个角度下所述凹面光栅的波长-衍射效率曲线。
如图3所示,为本具体实施方式中,在入射角度θA2=-6°时得到的波长-衍射效 率曲线图。PCGrate软件仿真的某一入射角度下的波长-衍射效率曲线包括两条曲线,分别为各波长的+1级衍射效率和+2级衍射效率,两条衍射效率曲线均为开口向下的抛物线形状。从两条曲线也可知,+2级衍射中衍射效率较高的区域集中在相对短波段范围,+1级衍射中衍射效率较高的区域集中在相对长波段范围。选取入射角度在-10°~20°范围下的多个角度,选取的角度越多,设计精度越高,但相应地工作量也较大。相应得到各个角度下对应的波长-衍射效率曲线图,曲线的形状与图3类似,只是在水平方向,竖直方向会有移动,在此不一一列举。
P4)根据步骤P3)得到的多个角度下的衍射效率相对于角度θA2时的衍射效率的变化,确定第一入射狭缝的入射角θA1的值、第三入射狭缝的入射角θA3的值以及波长λ2和λ3的值,并取λ4等于λ2
如图4所示,为本具体实施方式中光探测器端探测的光谱分布情况示意图。本设计方法为使用多个入射狭缝,充分利用两个级次的衍射光谱,既能接收短波段的+2级衍射光谱,又能接收长波段的+1级衍射光谱,则在波段范围内设置三个点λ2、λ3和λ4,经设计,使得既能接收到波长范围在λ1~λ2的+2级衍射光,又能接收到波长范围在2λ1~2λ2的+1级衍射光。通过设计,可检测λ1~λ2的光波,λ4~2λ1,2λ1~λ5范围内的光波,而将λ4设置为等于λ2即可确保检测范围覆盖整个λ1~λ5的范围。
确定另外两个入射狭缝的入射角以及波长λ2和λ3的值时,可按照变化显著的原则进行选取确定。具体地,如某一角度θx下,存在一个波段,设为λ1~λx,其对应的衍射效率相对于入射角度θA2时该波段的衍射效率的变化较显著,则确定θA1=θx,λ3=λx,然后继续比较,如某一角度θy下,存在一个波段,设为λ3~λy,其对应的衍射效率相对于入射角度θA2时该波段的衍射效率的变化较显著,则确定θA3=θy,λ2=λy。如比较的过程中,没有满足条件的θy和λy,则可能是前一步确定的λ3需调整,则返回,重新确定θA1,λ3,直至经过两步比较之后,能确定出满足变化显著的θA1,λ3,θA3,λ2
变化显著的原则为:η1≥1.9η2,η3≥1.9η4;其中,η1表示波长λ1~λ3范围内的各波长处,角度θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η2表示波长2λ1~2λ3范围内的各波长处,θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η3表示波长λ3~λ2范围内的各波长处,角度θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η4表示波长 2λ3~2λ2范围内的各波长处,θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值。本具体实施方式中,设置η1>2.3η2,η1>1%;η3>1.9η4,η3>3%,确定得到角度为θA1=3°,θA3=-17.2°,波长分别为λ3=222nm,λ2=310nm=λ4
经过上述步骤P4)的比较,即获得另外两个入射狭缝的入射角,以及三个波长λ2,λ3,λ4的值。至此,经过前述步骤,已确定得到三组角度值,五个波长值,光栅闪耀角。本具体实施方式中,三组角度值为θA1=3°、θA2=-6°、θA3=-17.2°;五个波长值λ1=190,λ2=310,λ3=222、λ4=310、λ5=800。且估算得到光栅闪耀角γ=4.68°。如下即根据这些信息设计凹面光栅以及光学器件之间的相对位置设置。
P5)根据得到的三个入射角θA1、θA2、θA3的值,五个波长λ1、λ2、λ3、λ4、λ5的值以及所述光谱仪的固定结构参数,基于光程函数级数展开法,使用光学设计软件ZEMAX软件进行参数优化,得到记录结构参数以及使用结构参数。
本具体实施方式中,基于光程函数级数展开法,利用光学设计软件ZEMAX软件,带入三个角度值,五个波长值和表1中的固定结构参数值进行参数优化,得到的记录结构参数以及使用结构参数如表2所示。
表2
Figure PCTCN2015070341-appb-000001
Figure PCTCN2015070341-appb-000002
其中,r1和r2分别代表利用全息法制作凹面光栅时的两个入射点在极坐标下的极径长度;θ1和θ2分别代表极径r1和极径r2与x轴的夹角。rA1、rA2、rA3代表三个入射狭缝在极坐标下的极径长度,θA1、θA2、θA3代表入射点的极径rA1、rA2、rA3分别与x轴的夹角,也即前述确定的入射角;B11、B12、B21、B22、B31、B32为光探测器B11B12、B21B22、B31B32的两端在笛卡尔坐标系内的坐标值。
P6)根据步骤P1)中的凹面光栅的槽型周期,步骤P2)的凹面光栅的闪耀角、表面材料和槽型结构以及步骤P5)得到的记录结构参数确定所述凹面光栅的制作参数,得到满足应用的凹面光栅。按照上述参数要求,使用全息法即可制作出满足应用要求的凹面光栅。
P7)根据步骤P5)得到的使用结构参数,确定三个入射狭缝和三个光探测器相对于所述凹面光栅的位置,从而搭建得到光谱仪。根据使用结构参数中极径长度信息,角度信息以及坐标信息即可确定凹面光栅、狭缝、探测器的位置,搭建光路,从而得到凹面光栅光谱仪。
综上,即设计得到光谱仪。设计的光谱仪工作时,光线通过入射狭缝A2经凹面光栅分光汇聚后出射的光线入射到光探测器B21B22,检测其能量值为E。通过入射狭缝A1经凹面光栅分光汇聚后出射的光线入射到光探测器B11B12,检测λ1~λ3和2λ1~2λ3的能量为E并将其与E比较。通过入射狭缝A3经凹面光栅分光汇聚后出射的光线入射到光探测器B31B32,检测λ3~λ2和2λ3~2λ2的能量为E并将其与E比较。η1表示波长λ1~λ3范围内的各波长处,角度θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η2表示波长2λ1~2λ3范围内的各波长处,θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η3表示波长λ3~λ2范围内的各波长处,角度θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η4表示波长2λ3~2λ2范围内的各波长处,θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值。且三个个光探测器B21B22、B11B12、B31B32在光谱检测时互相不干扰。检测能量值后,按照如下流程判断光波波长范围:
(1):对于光谱重叠区λ1~λ2和2λ1~2λ2,如果对于任意属于λ1~λ2范围内的波长为λ的光波,如果光探测器B21B22没有探测到能量,则表明没有波长λ和2λ;如果光探测器B21B22探测到了能量,则记为E,进入第(2)步。
(2):利用入射狭缝A1和光探测器B11B12判断λ1~λ3和2λ1~2λ3,利用入射狭缝A3和光探测器B31B32判断λ3~λ2和2λ3~2λ2。如果E<E,则表明光波λ属于λ1~λ3范围内。如果E<E,则表明光波λ属于λ3~λ2范围内。若E和E等于零,表明没有波长λ和2λ。
(3):判断E是否等于(1-η1)E或者E是否等于(1-η3)E,如果相等则证明只存在波长为λ的光波,能量为E。如果不相等,进入第(5)步。
(4):判断E是否等于(1-η2)E或者E是否等于(1-η4)E,如果相等则证明只存在波长为2λ的光波,能量为E。如果不相等,进入第(5)步。
(5):其它情况下,λ和2λ都存在,具体能量值可根据探测器上的三次测量值得出。
(6):λ4~2λ1的情况可以直接通过光探测器得到,2λ2~λ5的情况可根据光探测器探测到的能量减去λ4~2λ1的+2级光谱的能量得到。
通过上述(1)至(6)步,可实现λ1~λ2和2λ1~2λ2,λ4~2λ1,2λ2~λ5范围内的光波检测,也即λ1~λ5范围内的光波检测。
本具体实施方式设计的凹面光栅光谱仪,能实现λ1~λ5范围内的光波检测。而光波检测过程中,既能利用短波段(λ1~λ2)的+2级衍射光谱,又能利用长波段(2λ1~2λ2)的+1级衍射光谱,相对于现有的光谱仪仅利用整个光波检测范围的+1级衍射光,由于能充分利用两级衍射光谱信息,从而具有较高的衍射效率。具体地,普通的光谱仪仅利用了+1级的衍射光,而未利用其它级次。在波段的两端,即曲线的两端,衍射效率就会很小,从而整体衍射效率较低。而本发明的新光谱仪其采用了+1和+2级两个级次,所以有两个曲线峰值,存在两个闪耀波长,波段两端距闪耀波长都比较近,所以衍射效率也就比较高,从而整体衍射效率较高。
如下,设置普通设计流程设计的普通光谱仪,通过比较本具体实施方式的光谱仪和普通光谱仪的衍射效率曲线,验证本具体实施方式的光谱仪在衍射效率方面的性能提升。
普通光谱仪:包括凹面光栅,一个入射狭缝,两个光探测器。首先,根据光谱仪的固定结构参数,基于光程函数级数展开法和zemax软件优化,得到入射角度,记录结构参数以及使用结构参数。然后,代入入射角度,利用PCGrate软件求出能使整个波段衍射效率相对较好的闪耀波长,进而根据闪耀波长确定得到闪耀角。本例中,普 通光谱仪的入射角度为-4.8°,闪耀波长在300nm,闪耀角为γ=3.05。最后,根据闪耀角和记录结构参数确定凹面光栅的制作参数,得到满足应用的凹面光栅;根据入射角度和使用结构参数确定入射狭缝和两个光探测器相对于凹面光栅的位置,从而搭建得到光谱仪。
使用PCGrate软件计算本具体实施方式中光栅光谱仪和上述普通光谱仪在各波长(190nm~800nm)下的衍射效率值,具有如图5中所示衍射效率的曲线图。虚线是本具体实施方式的新结构的光谱仪在各个波长处的衍射效率,入射角度分别为3°,-6°,-17.2°;实线是普通光谱仪在各个波长处的衍射效率,入射角度为-4.8°。从图5可知,两种结构在相同情况(所述“相同情况”指:采用相同的材料、相同光谱范围,并且在衍射效率分析时除入射角度和闪耀角不同外,其它设计参数相同)下,新结构的衍射效率:190nm-230nm有12%~20%的提高,230nm~245nm和385nm~410nm有0-10%左右的提高,410nm-480nm有15%~30%的提高,480nm~800nm有30%左右的提高,在其它波段衍射效率相比原来的光谱仪结构则降低了。总体来看,本具体实施方式的新结构光谱仪的衍射效率45%以上的占93.4%,衍射效率60%以上的占73.8%;对于普通结构的光谱仪衍射效率45%以上的占55.7%,衍射效率60%以上的占38.5%,本具体实施方式的衍射效率有显著的提高。
综上,本具体实施方式中,通过采用三个衍射狭缝实现了波段+1级和+2级闪耀的复合使用,从而改善了宽光谱光谱仪大部分光谱区域衍射效率较低的问题。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (8)

  1. 一种光谱仪的设计方法,其特征在于:通过设计,使用凹面光栅、三个入射狭缝和三个光探测器搭建光谱仪,且所述光谱仪的光谱检测范围为λ1~λ5;所述设计方法包括以下步骤:
    1)根据所述光谱仪的固定结构参数,基于光程函数级数展开法计算得到在单一入射狭缝时的入射角度值和所述入射角度值下所述凹面光栅的槽型周期,将得到的入射角度值作为第二入射狭缝的入射角θA2的值;
    2)估算所述凹面光栅的闪耀角,确定所述凹面光栅的表面材料和槽型结构;
    3)根据步骤2)中凹面光栅的参数获取入射角度为θA2时所述凹面光栅的波长-衍射效率曲线,以及入射角度分布在-10°~20°范围内多个角度下所述凹面光栅的波长-衍射效率曲线;
    4)根据步骤3)得到的多个角度下的衍射效率相对于角度θA2时的衍射效率的变化,确定第一入射狭缝的入射角θA1的值、第三入射狭缝的入射角θA3的值以及波长λ2和λ3的值,并取λ4等于λ2
    5)根据得到的三个入射角θA1、θA2、θA3的值,五个波长λ1、λ2、λ3、λ4、λ5的值以及所述光谱仪的固定结构参数,基于光程函数级数展开法,使用光学设计软件ZEMAX软件进行参数优化,得到记录结构参数以及使用结构参数;
    6)根据步骤1)中的凹面光栅的槽型周期,步骤2)的凹面光栅的闪耀角、表面材料和槽型结构以及步骤5)得到的记录结构参数确定所述凹面光栅的制作参数,得到满足应用的凹面光栅;
    7)根据步骤5)得到的使用结构参数,确定三个入射狭缝和三个光探测器相对于所述凹面光栅的位置,从而搭建得到光谱仪。
  2. 根据权利要求1所述的光谱仪的设计方法,其特征在于:所述步骤4)中,根据如下条件确定四个值:确定的四个值使得满足条件:η1≥1.9η2,η3≥1.9η4;其中,η1表示波长λ1~λ3范围内的各波长处,角度θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η2表示波长2λ1~2λ3范围内的各波长处,θA1对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η3表示波长λ3~λ2范围 内的各波长处,角度θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值;η4表示波长2λ3~2λ2范围内的各波长处,θA3对应的衍射效率值相对于角度θA2对应的衍射效率值的相对变化绝对值。
  3. 根据权利要求1所述的光谱仪的设计方法,其特征在于:所述步骤1)中,所述光谱仪的固定结构参数包括光谱检测范围值,所述凹面光栅的曝光波长、工作级次、边长、基底曲率半径、光栅常数,所述三个入射狭缝的宽度。
  4. 根据权利要求1所述的光谱仪的设计方法,其特征在于:所述步骤2)中,估算闪耀角时,使用PCGrate软件得到入射角度θA2下,光谱检测范围内的短波波段范围内多个波长分别作为闪耀波长时对应的凹面光栅的波长-衍射效率曲线,由设计者根据经验选取使得衍射效率在长波段+1级和短波段+2级都相对较高的一个波长作为最终的闪耀波长,进而由该闪耀波长计算得到闪耀角。
  5. 根据权利要求1所述的光谱仪的设计方法,其特征在于:所述步骤2)中,由设计者根据经验确定凹面光栅的表面材料和槽型结构。
  6. 根据权利要求1所述的光谱仪的设计方法,其特征在于:所述步骤3)中,使用光栅设计软件PCGrate软件,输入步骤2)确定的所述凹面光栅的表面材料和槽型结构,分别得到入射角度为θA2时所述凹面光栅的波长-衍射效率曲线,以及入射角度分布在-10°~20°范围内多个角度下所述凹面光栅的波长-衍射效率曲线。
  7. 一种光谱仪,其特征在于:包括凹面光栅、三个入射狭缝和三个光探测器,所述凹面光栅的制作参数以及三个入射狭缝和三个光探测器相对于所述凹面光栅的位置根据权利要求1~6任一项所述的设计方法确定得到。
  8. 根据权利要求7所述的光谱仪,其特征在于:所述光探测器为光电倍增管、热电探测器、半导体光探测器或CCD阵列探测器。
PCT/CN2015/070341 2014-10-15 2015-01-08 一种光谱仪的设计方法以及光谱仪 WO2016058287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/206,992 US10345149B2 (en) 2014-10-15 2016-07-11 Method of spectrometer and spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410545740.3 2014-10-15
CN201410545740.3A CN104296868B (zh) 2014-10-15 2014-10-15 一种光谱仪的设计方法以及光谱仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/206,992 Continuation US10345149B2 (en) 2014-10-15 2016-07-11 Method of spectrometer and spectrometer

Publications (1)

Publication Number Publication Date
WO2016058287A1 true WO2016058287A1 (zh) 2016-04-21

Family

ID=52316698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070341 WO2016058287A1 (zh) 2014-10-15 2015-01-08 一种光谱仪的设计方法以及光谱仪

Country Status (3)

Country Link
US (1) US10345149B2 (zh)
CN (1) CN104296868B (zh)
WO (1) WO2016058287A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212522A1 (ja) * 2016-06-06 2017-12-14 株式会社島津製作所 回折格子及び分光装置
EP3407036B1 (en) * 2017-05-23 2024-02-21 Endress+Hauser Optical Analysis, Inc. Spectrometer with operator assistance for measurement optimization
CN109655156B (zh) * 2018-12-10 2021-03-30 三明学院 太阳光栅光谱仪光学系统优化方法、装置、设备和存储介质
CN109709053B (zh) * 2019-01-16 2021-09-14 北京印刷学院 一种用分光光度计测量素面镭射母版光栅常数的方法
CN110926613B (zh) * 2019-12-18 2021-01-01 复旦大学 一种消慧差宽带高分辨光谱仪
CN115031925B (zh) * 2022-08-10 2022-12-09 歌尔光学科技有限公司 一种光栅检测方法、装置、系统以及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791038B2 (ja) * 1988-06-24 1998-08-27 株式会社日立製作所 分光器及びそれを用いた投影露光装置並びに投影露光方法
US20030067600A1 (en) * 2001-10-10 2003-04-10 Brian Curtiss System and method for multiplexing inputs into a single spectrometer
US20060038997A1 (en) * 2004-08-19 2006-02-23 Julian Jason P Multi-channel, multi-spectrum imaging spectrometer
CN101975611A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 双狭缝凸面光栅成像光谱仪
CN103983354A (zh) * 2014-04-30 2014-08-13 中国科学院长春光学精密机械与物理研究所 双光束分光系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583874B1 (en) * 1999-10-18 2003-06-24 Komatsu, Ltd. Spectrometer with holographic and echelle gratings
US7623235B2 (en) * 2004-03-20 2009-11-24 Seng-Tiong Ho Curved grating spectrometer with very high wavelength resolution
RU2262086C1 (ru) * 2004-04-01 2005-10-10 Лившиц Александр Маркович Способ измерения спектра излучения, спектрометр и малогабаритный спектрометр
FR2953017B1 (fr) * 2009-11-20 2012-05-11 Horiba Jobin Yvon Sas Spectrometre optique a reseau de diffraction concave
WO2012021811A1 (en) * 2010-08-13 2012-02-16 The Penn State Research Foundation Compact spectrometer including a diffractive optical element with dual dispersion and focusing functionality
US10381035B2 (en) * 2013-04-12 2019-08-13 University Of South Carolina All-nanoparticle concave diffraction grating fabricated by self-assembly onto magnetically-recorded templates
CN104048757B (zh) * 2014-06-23 2015-11-18 清华大学深圳研究生院 一种凹面光栅光谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791038B2 (ja) * 1988-06-24 1998-08-27 株式会社日立製作所 分光器及びそれを用いた投影露光装置並びに投影露光方法
US20030067600A1 (en) * 2001-10-10 2003-04-10 Brian Curtiss System and method for multiplexing inputs into a single spectrometer
US20060038997A1 (en) * 2004-08-19 2006-02-23 Julian Jason P Multi-channel, multi-spectrum imaging spectrometer
CN101975611A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 双狭缝凸面光栅成像光谱仪
CN103983354A (zh) * 2014-04-30 2014-08-13 中国科学院长春光学精密机械与物理研究所 双光束分光系统

Also Published As

Publication number Publication date
US20160320237A1 (en) 2016-11-03
US10345149B2 (en) 2019-07-09
CN104296868B (zh) 2016-03-02
CN104296868A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016058287A1 (zh) 一种光谱仪的设计方法以及光谱仪
Shi et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations
WO2003009063A3 (en) Real time analysis of periodic structures on semiconductors
CN108709574B (zh) 一种用于小波奇异性检测的光纤光栅传感系统
CN103630091A (zh) 一种基于激光与图像处理技术的叶面积测量方法
US9664560B2 (en) Double-grating surface-enhanced Raman spectroscopy
CN104729708A (zh) 一种消像散宽光谱探测光栅光谱仪
CN104318550A (zh) 八通道多光谱成像数据处理方法
CN103256981B (zh) 小型柱面镜多光栅光谱分析的光学系统
CN111145351A (zh) 考虑地物类型的Minnaert地形校正模型优化方法
CN102322957B (zh) 一种干涉型高光谱成像仪的光谱漂移检测方法
CN103983356B (zh) 一种光谱定标方法
WO2016176957A1 (zh) 用于制作菲涅尔光栅的优化设计方法
CN101813519A (zh) 光谱仪杂散光校正方法
CN104297829A (zh) 平面变栅距光栅的优化设计方法
WO2016061910A1 (zh) 一种双入射狭缝光谱仪的设计方法以及双入射狭缝光谱仪
JP6245620B2 (ja) 光源評価装置
KR101542894B1 (ko) 적외선 분광용 회전형 간섭계 최적화 방법
WO2016070494A1 (zh) 一种高分辨率光谱仪的设计方法以及光谱仪
CN104048757B (zh) 一种凹面光栅光谱仪
CN114166345A (zh) 一种具有光谱分辨的圆形阵列芯片
CN106918393A (zh) 一种双通道空间外差光谱仪
Yu et al. Influence of light intensity distribution characteristics of light source on measurement results of canopy reflectance spectrometers
CN103900989B (zh) 盐渍土光谱曲线红外波段遥感反演构建方法
KR101598347B1 (ko) 링 필드의 기하학적 분석에 기초한 오프너 영상 분광기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850949

Country of ref document: EP

Kind code of ref document: A1