WO2016058179A1 - 无线通信方法及系统 - Google Patents

无线通信方法及系统 Download PDF

Info

Publication number
WO2016058179A1
WO2016058179A1 PCT/CN2014/088819 CN2014088819W WO2016058179A1 WO 2016058179 A1 WO2016058179 A1 WO 2016058179A1 CN 2014088819 W CN2014088819 W CN 2014088819W WO 2016058179 A1 WO2016058179 A1 WO 2016058179A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
mode
transmission
receiving
transmission mode
Prior art date
Application number
PCT/CN2014/088819
Other languages
English (en)
French (fr)
Inventor
文荣
何佳
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14904007.3A priority Critical patent/EP3182610B1/en
Priority to PCT/CN2014/088819 priority patent/WO2016058179A1/zh
Priority to CN201480081619.8A priority patent/CN106716857B/zh
Priority to KR1020177009382A priority patent/KR20170048583A/ko
Priority to JP2017519642A priority patent/JP2017536025A/ja
Publication of WO2016058179A1 publication Critical patent/WO2016058179A1/zh
Priority to US15/469,028 priority patent/US10313895B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a wireless communication method and system.
  • the existing base station (BS) and user equipment (User Equipment, UE) use broadcast mode when communicating, the beam is wide, and the coverage is wide. Users in the same sector beam can only be distinguished by frequency. Within a given frequency band bandwidth, each user occupies a small bandwidth and is time division multiplexed with a small capacity. In contrast, the millimeter wave has a higher frequency band and a narrower beam. Beamforming technology enables high-gain directional narrow beams, and each user can perform space division through multiple narrow beams. / or frequency division multiplexing, to obtain multiplexing gain, improve communication capacity.
  • the beam forming technology requires that the antenna spacing be no more than 1/2 of the wavelength.
  • LOS Line Of Sight
  • MIMO Multiple-Input Multiple-Output
  • the communication quality of the MIMO communication system is poor.
  • an object of the present invention is to provide a wireless communication method and system, which divides a receiving/transmitting antenna unit into M/N sub-arrays to form M/N units by partitioning the receiving and transmitting antennas. Spatially separated, less correlated beams form a similar MIMO structure for the transmission dimension. The transmit mode of the transmit and receive antennas is obtained by searching, ensuring high communication quality.
  • a wireless communication system comprising:
  • the transmitting end includes a transmitting module having at least two antenna units, and the transmitting module transmits M different spatially directed narrow beams according to quality of service (QoS) requirements, and switches the transmitting mode according to a preset switching rule, where The set of spatial pointing of the M narrow beams constitutes a transmission mode;
  • QoS quality of service
  • the receiving end includes a receiving module having at least two antenna units, and the receiving module receives N beams according to the QoS, and forms a transmission channel between the M narrow beams of the transmitting end and the N beams of the receiving end;
  • the receiving end calculates the quality of the transmission channel in different transmission modes, searches for a transmission mode that satisfies the QoS requirement, and feeds back the transmission mode to the transmitting end. If the transmission channel quality corresponding to all the transmission modes is traversed, the QOS requirement cannot be met.
  • the transmission mode is to feed back the channel quality optimal transmission mode to the transmitting end; wherein M and N are integers greater than or equal to 1.
  • the transmitting end includes a transmitting control unit, configured to control spatial orientation of M narrow beams transmitted by the transmitting end
  • the receiving end includes a receiving control unit, Controlling receiving N beams, a transmission channel is formed between the transmitting end and the receiving end.
  • the transmitting end further includes a first switching rule preset unit, configured to set the switching rule, where the first switching rule preset unit performs a preset switching
  • the transmitting mode is periodically switched, and the transmitting control unit controls the transmitting module to emit M narrow beams pointed by different spaces according to the transmitting mode.
  • the receiving end further includes a processing unit, where the processing unit calculates the location according to the M narrow beam loaded known sequence and the signals received by the N beams The channel quality of the transport channel, wherein the known sequences of the M narrow beam loads are orthogonal to each other.
  • the processing unit includes a first calculating unit and a second calculating unit, where the first calculating unit is received according to the known sequence and the N beams Signaling, calculating respective matrix elements of the channel matrix corresponding to the transmission channel, the second calculating unit performing SVD decomposition on the channel matrix, obtaining channel singular values of the channel matrix, and calculating according to the channel singular values Channel capacity of the transport channel, wherein the channel quality includes the channel singular value and the channel capacity.
  • the receiving end further includes a feedback unit, where the feedback unit includes a determining unit, a sorting unit, and a notification unit, where the determining unit determines that the second calculating unit calculates Whether the channel quality satisfies the QoS, and if yes, the notification unit feeds back, by the receiving control unit, the transmission mode that satisfies the QoS and the transmission channel quality corresponding to the transmission mode to the transmitting end; if not, the The sorting unit sorts the current transmission mode and the previous transmission mode according to the channel capacity; after experiencing all the transmission modes in the first switching rule preset unit, if the determining unit does not search for the QoS that is satisfied Transmitting mode, the notification unit And transmitting, by the sorting unit, a transmission mode having an optimal channel capacity and a corresponding transmission channel quality in the transmission mode to the transmitting end by using the receiving control unit.
  • the feedback unit includes a determining unit, a sorting unit, and a notification unit, where the determining unit determines that the second
  • the receiving end further includes a second switching rule preset unit, where the second switching rule preset unit switches the receiving mode of the receiving end by using a preset period,
  • the switching period of the second switching rule preset unit is a predetermined multiple of a switching period of the first switching rule preset unit, where the predetermined multiple is a transmission mode of the first switching rule preset unit.
  • the different transmission modes of the transmitting end form different transmission channels with different receiving modes of the receiving end;
  • the feedback unit is further configured to search for a transport channel that satisfies the QoS, and the determining unit determines whether the channel quality of the transport channel satisfies the QoS, and if yes, the notification unit and the transmission that satisfies the QoS a receiving mode, a transmitting mode, and a channel quality corresponding to the channel are sent to the receiving control unit, where the receiving control unit sets a receiving mode of the receiving end to a receiving mode sent by the notifying unit, and uses the receiving mode to The transmitting end feedbacks the transmission mode and the channel quality in the transmission mode;
  • the sorting unit sorts the transport channels according to channel quality
  • the determining unit After traversing all the receiving modes in the second switching rule presetting unit, the determining unit does not search for a transport channel that satisfies QoS, and the notifying unit transmits the transport channel having the optimal channel capacity according to the sorted result.
  • the receiving mode, the transmitting mode, and the channel quality are sent to the receiving control unit, and the receiving control unit sets the receiving mode of the receiving end to a receiving mode sent by the feedback unit, and feeds back to the transmitting end in the receiving mode.
  • the transmission mode and channel quality After traversing all the receiving modes in the second switching rule presetting unit, the determining unit does not search for a transport channel that satisfies QoS, and the notifying unit transmits the transport channel having the optimal channel capacity according to the sorted result.
  • the receiving mode, the transmitting mode, and the channel quality are sent to the receiving control unit, and the receiving control unit sets the receiving mode of the receiving end to a receiving mode sent by the feedback unit, and feeds back to the transmitting end in the receiving mode.
  • the transmitting end further includes a configuration unit, where the configuration unit includes a determining unit and a transmitting configuration unit, the determining unit sets a decision threshold, and collects the receiving end And the number of the feedback singular values is greater than the number of the decision thresholds to obtain the maximum number of transmission data streams of the transport channel, and the transmitting configuration unit is configured according to the maximum number of transmitted data streams and the QoS requirement.
  • the transmitting module configures a transmission mode and a resource allocation scheme.
  • a wireless communication method including:
  • the transmitting module of the transmitting end transmits M narrow beams pointed by different spaces, and the receiving module of the receiving end receives N beams to form a transmission channel, where M and N are large.
  • the switching the transmission mode according to the preset switching rule includes:
  • the channel quality in the current transmission mode is obtained according to the known sequence of the M narrow beam loads and the signals received by the N wide beams of the receiving end, include:
  • the channel quality includes a channel singular value and a channel capacity.
  • the searching for a transmission mode that meets the QoS requirement and feeding the transmission mode to the transmitting end, when traversing the transmission channel quality corresponding to all the transmission modes, cannot be found.
  • the channel quality optimal transmission mode is fed back to the transmitting end, including:
  • the transmission mode that satisfies the QoS and the channel quality information corresponding to the transmission mode are fed back to the transmitting end, otherwise, according to the channel quality,
  • the firing mode is sorted and the next launch mode search is entered;
  • the transmission mode satisfying the QoS is not searched, and the transmission mode with the optimal channel capacity and the corresponding channel obtained by sorting through a wide beam are obtained. Quality feedback to the transmitting end.
  • the obtaining the channel quality in the current transmission mode according to the signals received by the N beams of the receiving end further includes:
  • the transmission mode is fed back to the transmitter, including:
  • the transmission channel satisfying the QoS is not searched, and the combination of the reception mode and the transmission mode having the maximum channel quality is obtained according to the result of the ranking, and the reception mode of the receiving end is set to A receiving mode having a maximum channel capacity, and transmitting a transmission mode and channel quality having an optimal channel quality to the transmitting end in this receiving mode.
  • the channel quality calculated by the receiving end meets the quality of service
  • the channel quality and the transmission mode that meet the quality of service are fed back to the transmitting end. After that, it also includes:
  • the transmitting mode of the transmitting end is set to a transmitting mode fed back by the receiving end.
  • the method further includes:
  • the transmitting module of the transmitting end performs transmission mode selection and resource allocation.
  • the transmitting mode selection and resource allocation are performed on the transmitting module of the transmitting end according to the quality of service requirement and the channel quality and the transmitting mode fed back by the receiving end. include:
  • a transmission mode and a resource allocation scheme are selected.
  • the transmission wireless communication method and system provided by the embodiments of the present invention enable the transmitting module to transmit M narrow beams according to the QoS requirement, and the receiving end receives N beams to form an N ⁇ M transmission channel, and calculates different transmissions.
  • the transmission channel quality in the mode to know the transmission mode that satisfies the QoS requirement; if the transmission mode satisfying the QOS requirement is not found, the transmission mode with the best channel quality is fed back to the transmitting end, which can improve the communication quality.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a wireless communication system according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a transmitting module transmitting a narrow beam.
  • FIG. 4 is a block diagram of the processing unit shown in FIG. 2.
  • FIG. 5 is a block diagram of the feedback unit shown in FIG. 2.
  • Figure 6 is a block diagram of the configuration unit shown in Figure 2.
  • 7(a) to 7(c) are schematic diagrams of transmission modes and resource allocations at different QoS levels.
  • FIG. 8 is a schematic block diagram of a wireless communication system according to a second embodiment of the present invention.
  • FIG. 9 is a flowchart of a wireless communication method according to a first embodiment of the present invention.
  • FIG. 10 is a flowchart of a wireless communication method according to a second embodiment of the present invention.
  • a first embodiment of the present invention provides a wireless communication system, where the wireless communication system includes a transmitting end 100 and a receiving end 200, and the transmitting end 100 and the receiving end 200 can pass wireless.
  • the method of communication performs mutual transmission of data, wherein the transmitting end 100 includes a transmitting module 120 having at least two antenna units, and the transmitting module 120 transmits M different spatial pointing according to quality of service (QoS) requirements.
  • QoS quality of service
  • a narrow beam (a beam with a narrower coverage) and switching the transmission mode with a preset switching rule, wherein the set of spatial orientations of the M narrow beams constitutes a transmission mode.
  • the transmitting end 100 may be a base station (BS) or a user equipment (User Equipment, UE), and has a transmitting module 120, and The transmitting module 120 includes at least two antenna units.
  • the transmitting end 100 includes a transmitting control unit 110, and the transmitting control unit 110 controls the transmitting module 120 to transmit M narrow beams pointed by different spaces according to QoS requirements of the system.
  • the set of spatial orientations of the M narrow beams constitutes a transmission mode, such as the spatial orientation of the first narrow beam is ⁇ 1 , and the spatial orientation of the second narrow beam is ⁇ 2 , ... the space of the Mth narrow beam
  • the angle is ⁇ M
  • the current transmission mode is recorded as ⁇ 1 , ⁇ 2 ... ⁇ M ⁇ .
  • the transmitting end 100 further includes a first switching rule preset unit 130, where the first switching rule preset unit 130 presets a switching rule of the transmitting mode of the transmitting end 100, thereby
  • the transmission control unit 110 switches the transmission mode of the transmitting end 100 according to the switching rule set by the first switching rule preset unit 130. Specifically, after the transmitting control unit 110 acquires one switching rule provided by the first switching rule preset unit 130, set the M narrow beams that are transmitted by the transmitting end 100 according to the transmission mode defined by the switching rule.
  • Spatial pointing as a possible switching rule, can be defined as: dividing the entire space into M zones whose spatial pointing is by ⁇ and Two parameters are determined, where ⁇ is the horizontal angle of the narrow beam,
  • the spatial region of the first narrow beam distribution is [ ⁇ 1min , ⁇ 1max ] and That is, the first narrow beam beam1 is in the spatial region [ ⁇ 1min , ⁇ 1max ] and Scanning, in the same way, the spatial region allocated by the kth narrow beam beamk (2 ⁇ k ⁇ M) is [ ⁇ kmin , ⁇ kmax ] and And beamk region of space [ ⁇ kmin, ⁇ kmax] and The scan is between so that the spatial orientation of the narrow beam varies within these spatial regions.
  • the definition of the spatial pointing may be represented by three-dimensional Cartesian coordinates or other representation methods, or may not be partitioned.
  • the switching rule defined by the first switching rule preset unit 130 may have other definitions, such as switching the transmission mode according to a preset codebook sequence, and switching according to the preset codebook. Mode, space division can be performed, each beam is switched according to its own codebook; space division is not required, and M narrow beams are switched according to a certain rule as a whole, and spatial division and beam switching are performed together, and no space division is performed here. Limited.
  • the first switching rule preset unit 130 switches the switching rule once every predetermined period T1, that is, the transmitting end 100 switches the transmission mode every time the period T1 is performed, such as the initial transmission mode.
  • the first transmission mode after one cycle T1, it switches to the second transmission mode, after two cycles T1, switches to the third transmission mode, and so on, after the t-1th cycle T1, switches to the tth Launch mode.
  • the receiving end 200 may be a BS or a UE, the receiving end 200 has a receiving module 220, and the receiving module 220 includes at least two antenna units.
  • the receiving end 200 includes a receiving control unit 210, and the receiving control unit 210 causes the receiving module 220 to receive N beams according to the QoS, so that a relationship is formed between the transmitting end 100 and the receiving end 200.
  • a transmission channel wherein the known sequence is a sequence containing information known to both the transmitting end 100 and the receiving end 200, and different known sequences of different narrow beam loadings are different, preferably,
  • the known sequences of different narrow beam loads are orthogonal to each other such that the N beams of the receiving end 200 can distinguish the known sequences.
  • the receiving end 200 further includes a processing unit 230, configured to process signals received by the N wide beams from the transmitting end 100.
  • the processing unit 230 includes a first computing unit 231 and a second computing unit 232.
  • the transmission channel may be represented by a channel matrix H, which is an N ⁇ M matrix, and its matrix element H nm (1 ⁇ n ⁇ N, 1 ⁇ m ⁇ M) represents a channel fading coefficient between the nth wide beam and the mth narrow beam, and the channel fading coefficient can be estimated according to an existing channel estimation algorithm, and further
  • the first calculating unit 231 calculates the channel matrix H obtained.
  • the second calculating unit 232 calculates a channel capacity of the transport channel according to the channel matrix H.
  • the second calculating unit 232 may perform SVD decomposition on the channel matrix H to obtain a channel singular value of the channel matrix H, and the SVD of the channel matrix H is decomposed into:
  • the channel singular value satisfies the relationship ⁇ 1 ⁇ ⁇ 2 ⁇ ... ⁇ ⁇ Q ⁇ 0, assuming that the ⁇ i (1 ⁇ i ⁇ Q ) is greater than 0
  • the number is r, that is, the rank of the channel matrix H is r, and the transmission channel can be regarded as composed of r independent parallel subchannels by the SVD decomposition described above, and each subchannel corresponds to one channel.
  • the channel singular value ⁇ i (1 ⁇ i ⁇ r) of the matrix H is used to represent the amplitude gain of the corresponding subchannel, such as ⁇ 1 indicating the first subchannel
  • the amplitude gain, ⁇ 2 represents the amplitude gain of the second subchannel, etc., and the larger the amplitude gain, the more suitable the subchannel is for data transmission.
  • the second calculating unit 232 further calculates a channel capacity of the transport channel by using a Shannon formula according to the channel singular value, and the calculation formula is:
  • I is the channel capacity of the transmission channel
  • SNR is a signal to noise ratio, which is generated by the receiving end 200 during signal amplification.
  • the method for calculating the channel capacity by the second calculating unit 232 may also be other algorithms, and the method for calculating the channel capacity is not specifically limited in the present invention.
  • the receiving end 200 further includes a feedback unit 240, where the feedback unit 240 includes a determining unit 241, a sorting unit 242, and a notifying unit 243, and the determining unit 241. Determine whether the channel quality calculated by the second calculating unit 232 satisfies the QoS.
  • the receiving end 200 calculates the channel quality of the tth channel, and Comparing the t-channel quality with the QoS to determine the location Whether the t-channel quality satisfies the QoS, and when the determining unit 241 determines that the t-th channel quality meets the QoS, the notification unit 243 feeds back the t-th transmission mode to the transmitting end 100, t
  • the channel quality information and the corresponding precoding matrix and other feedback information, wherein the precoding matrix information may be a codebook serial number selected from a codebook set according to the channel quality, or may be a V matrix obtained by SVD decomposition.
  • the matrix consisting of the first K columns serves as the originating precoding matrix, where: K is the maximum number of transmitted data streams of the transport channel.
  • the first sorting unit 242 transmits the tth transmission mode and the previous t-1 transmissions according to the channel quality.
  • the modes are sorted, such as up/down ordering of the transmission modes according to the size of the channel capacity.
  • the notification unit 243 According to the sorting result of the sorting unit 242, the transmission mode with the optimal channel quality and the feedback information such as the corresponding channel quality and the precoding matrix are sent to the transmitting end 100.
  • the notification unit 243 sends the feedback information to the receiving control unit 210, and the receiving control unit 210 forms a beam of wide beam by a predetermined beamforming algorithm, and loads the feedback information into the The wide beam is then described, and then the receiving module 220 is controlled to transmit the wide beam outward.
  • the feedback information sent by the receiving end 200 may not include the precoding matrix, and the transmitting end 100 may be automatically obtained by the channel quality fed back by the receiving end 200.
  • Information of the precoding matrix For example, in the Long Term Evolution (LTE) protocol, multiple sets of precoding matrices are defined, and the transmitting end 100 can select a required precoding matrix from the LTE protocol according to the channel quality indicator.
  • LTE Long Term Evolution
  • the transmitting end 100 further includes a configuration unit 140, where the M narrow beams of the transmitting end 100 receive the receiving end 200 and send through a bundle of wide beams.
  • the transmission control unit 110 sets the transmission mode of the transmitting end 100 to the transmission mode fed back by the receiving end 200, and the configuration unit 140 performs transmission mode selection and resources on the transmitting module 120. distribution.
  • the configuration unit 140 includes a decision unit 141 and a transmission configuration unit 142, and the decision unit 141 sets a decision threshold ⁇ 0 when the channel singular value ⁇ i (1 ⁇ i ⁇ r) is greater than or equal to the
  • the threshold ⁇ 0 is determined, it indicates that the subchannel corresponding to the singular value is suitable for data transmission, and vice versa, indicating that the subchannel corresponding to the singular value is not suitable for data transmission, and the determining unit 141 collects the channel singular value.
  • ⁇ i (1 ⁇ i ⁇ r) is greater than or equal to the number of the decision threshold ⁇ 0 , such as when the number of ⁇ i (1 ⁇ i ⁇ r) greater than ⁇ 0 is K, indicating the transmission channel
  • the maximum number of transmitted data streams is K. It can be understood that, in other embodiments of the present invention, when the second calculating unit 232 calculates the channel capacity by using another algorithm, the determining unit 141 performs a decision in a manner corresponding to the algorithm. The number of streams suitable for data transmission is obtained, which is not specifically limited in the present invention.
  • the transmitting end 100 can use all antenna units to generate a narrow beam for communication (in this case, only one output narrow beam, that is, a single output), that is, the working mode of Beam forming, as shown in FIG. 7 (a) ) shown.
  • K>1 for the QoS requirements with higher communication quality requirements, as shown in Fig.
  • the K may also be the same value, and then transmit the same power to the beam1, beam2, and beam3 through the precoding matrix, that is, the effect of transmitting diversity gain is realized by using multiple narrow beams.
  • K>1 for the QoS requirement with high rate requirement as shown in FIG. 7(c)
  • different data can be transmitted by using each data stream under the premise of ensuring communication quality, that is, the beam1, beam2, and beam3 are transmitted.
  • the transmit power is distributed to beam1, beam2, and beam3 through the precoding matrix, that is, the effect of multiplexing gain is realized by using multiple narrow beams.
  • the transmission configuration unit 142 sends a transmission mode and a resource allocation scheme to the transmission control unit 110, and the transmission control unit 110 controls the transmitting module 120 to send a corresponding narrow beam according to the transmission mode and the resource allocation scheme. Power distribution is performed for each narrow beam to perform data transmission with the receiving end 200 in the transmission mode and resource allocation scheme.
  • M>1, N>1 multiple input multiple output
  • the QoS requirements and the actual calculated channel quality and other factors are determined, and the present invention is not specifically limited.
  • the transmitting end 100 transmits M narrow beams according to the QoS requirement, and the receiving end 200 receives N wide beams to form a transmission channel, and passes the first switching rule. Then, the switching rule preset by the preset unit 130 switches the transmission mode of the transmitting end 100, and calculates the channel quality of the transmission channel in different transmission modes according to the processing unit 230, thereby searching for a transmission mode that satisfies the QoS. Or a transmission mode with optimal channel quality.
  • the configuration unit 140 selects to perform beam forming, transmission diversity, or transmission multiplexing according to actual needs according to the feedback information of the receiving end 200.
  • the invention constructs a class transmission channel structure and obtains a set of transmission channels with good channel quality by searching, and can obtain diversity gain or multiplexing gain compared with the conventional Beam forming system.
  • FIG. 8 is a block diagram of a wireless communication system according to a second embodiment of the present invention.
  • the wireless communication system includes the units and modules of the first embodiment, which are different.
  • the receiving end 200 receives the M narrow beams of the transmitting end 100 through the N narrow beams.
  • the channel gain of the transmission channel is determined by the transmission mode of the transmitting end 100 and the receiving mode of the receiving end 200, wherein the set of spatial pointing of the N narrow beams of the receiving end 200 constitutes a Receive mode.
  • the receiving end 200 further includes a second switching rule preset unit 250, where the second switching rule preset unit 250 sets a switching rule of the receiving mode of the receiving end 200 to switch the The receiving mode of the receiving end 200 is described.
  • the switching period of the second switching rule preset unit 250 is T2, and T2 is a predetermined multiple of T1, wherein the preset multiple is the number of transmission modes included in the first switching rule preset unit 130.
  • the transmitter is assumed as a first end 100 of a predetermined rule switching unit 130 switching cycle is T1, and the first switching unit 130 comprises a predetermined rule within a rule M 1 th switching (i.e. transmit mode M 1)
  • the period T2 of the second switching rule preset unit 250 is T1*M 1 .
  • the second switching rule preset unit 250 of the receiving end 200 switches the receiving mode once.
  • the first switching rule preset unit 250 of the receiving end 200 includes N 1 switching rules (ie, N 1 transmission modes)
  • N 1 switching rules ie, N 1 transmission modes
  • M 1 ⁇ N 1 transport channels correspondingly, there are M 1 ⁇ N 1 channel matrices.
  • the channel matrix formed by the first transmission mode and the first receiving mode may be represented by H11, then Hij (1 ⁇ i ⁇ M 1 , 1 ⁇ j ⁇ N 1 ) represents a channel matrix formed by the ith transmission mode and the jth reception mode.
  • the first calculating unit 231 of the processing unit 230 calculates each channel matrix Hij
  • the second calculating unit 232 calculates the data according to the first calculating unit 231.
  • the channel matrix Hij calculates the channel singular values of the respective channel matrices Hij, and further calculates the channel capacity of each channel matrix Hij.
  • the determining unit 241 of the feedback unit 240 determines whether the channel quality of the channel matrix Hij satisfies the QoS, and if yes, the notification unit sends information such as channel quality, transmission mode, and reception mode of the channel matrix satisfying the QoS.
  • the receiving setting unit 210 sets the receiving mode of the receiving end 200 to the receiving mode sent by the notifying unit 241 (ie, the receiving mode that satisfies the QoS), and receives the mode Feeding information about the transmission mode and channel quality of the QoS to the transmitting end 100; if the determining unit 241 determines that the channel matrix does not satisfy the QoS, the sorting unit 242 according to the channel capacity of the channel matrix The channel matrix is ordered.
  • the notifying unit 243 sets the channel matrix with the optimal channel capacity and
  • the feedback information of the corresponding transmitting mode, the receiving mode, the channel quality, and the like are transmitted to the receiving control module 210, and the receiving control module 210 sets the receiving mode of the receiving end 200 to the above according to the information of the notifying unit 243.
  • the receiving module fed back by the notification unit 243 feeds back the transmission mode and channel quality of the transmission channel having the largest channel capacity to the transmitting end 100 in this receiving mode.
  • the transmitting end 100 receives and jointly detects the feedback information sent by the receiving end 100 through the M narrow beams, and sets its transmission mode to the reflection mode fed back by the receiving end 200.
  • the transmitting end 100 and the receiving end 200 perform data transmission by using the transmitting mode and the receiving mode that satisfy QoS or have the largest channel capacity.
  • the channel matrix that satisfies the QoS or has the largest channel capacity sorted by the sorting unit 242 is H45, that is, when the transmitting mode of the transmitting end 100 is the fourth transmitting mode, and the receiving mode of the receiving end 200 is the fifth.
  • the transmission has the largest channel capacity
  • the reflection mode of the transmitting end 100 is set to the fourth transmitting mode
  • the receiving mode of the receiving end 200 is set to the fifth receiving mode
  • the transmitting mode is used.
  • the mode and the receive mode perform data transmission such that the transmission channel can obtain as large a gain as possible to meet QoS requirements.
  • FIG. 9 is a schematic diagram of a wireless communication method according to a first embodiment of the present invention. Including the following steps:
  • the transmitting module of the transmitting end transmits M narrow beams pointed by different spaces, and the receiving module of the receiving end receives N beams to form a transmission channel, where M and N are greater than or equal to 1. Integer.
  • the wireless communication system includes a transmitting end 100 and a receiving end 200, where the transmitting end 100 can be a base station (BS) or a user equipment (User Equipment, UE), and the receiving
  • the terminal 200 can also be a BS or a UE, the transmitting end 100 has a transmitting module, the receiving end 200 has a receiving module, and the transmitting module and the receiving module comprise at least two antenna units, and the antenna unit is available.
  • BS base station
  • UE User Equipment
  • the terminal 200 can also be a BS or a UE
  • the transmitting end 100 has a transmitting module
  • the receiving end 200 has a receiving module
  • the transmitting module and the receiving module comprise at least two antenna units, and the antenna unit is available.
  • the transmitting module and the receiving module may be phased array antennas, and the phased array antenna has a phase shifter, and the phase shifter can control spatial pointing of the narrow beam emitted by the antenna unit, and The phase shift value of the phase shifter is controlled to control the transmitting end to emit a plurality of narrow beams pointed by different spaces.
  • the transmitting module of the transmitting end 100 transmits M different spatially directed narrow beams according to the QoS requirement
  • the receiving end 200 is configured according to the receiving end 200 according to the QoS requirement.
  • the QoS requirement receives N beams, wherein the transmitting module and the receiving module include at least two antenna units, and M and N are integers greater than 1 or equal to 1.
  • the M narrow beams are loaded with a known sequence
  • the known sequence is a sequence including information that is known by both the transmitting end 100 and the receiving end 200, and the M narrow
  • the known sequences are loaded on the beam, and the known sequences loaded on different narrow beams are also different.
  • the known sequences of different narrow beam loads are orthogonal to each other, so that the receiving end 100 can be opposite.
  • M narrow beams are used for differentiation.
  • the transmitting end 100 transmits M spaces to different narrow beams (such as beam1 to beam4 in FIG. 3), and spatial directions of different narrow beams are different, wherein the M narrow beams are different.
  • the spatially directed set constitutes a transmission mode, such as the spatial orientation of the first narrow beam is ⁇ 1 , the spatial orientation of the second narrow beam is ⁇ 2 , ... the spatial orientation of the Mth narrow beam is ⁇ M , then
  • the secondary emission mode is denoted as ⁇ 1 , ⁇ 2 ... ⁇ M ⁇ .
  • the switching transmission mode changes the spatial orientation of the narrow beam, and in any two different transmission modes, the spatial orientation of at least one narrow beam is different.
  • the variation rule of the spatial orientation of the narrow beam may be given by the handover rule. As a possible handover rule, it may be defined as follows: It is assumed that the entire space is divided into M zones, and the spatial direction of the narrow beam is oriented by ⁇ .
  • the spatial region of the first narrow beam distribution is [ ⁇ 1min , ⁇ 1max ] and That is, the first narrow beam beam1 is in the spatial region [ ⁇ 1min , ⁇ 1max ] and Scanning, in the same way, the spatial region allocated by the kth narrow beam beamk (2 ⁇ k ⁇ M) is [ ⁇ kmin , ⁇ kmax ] and And beamk region of space [ ⁇ kmin, ⁇ kmax] and The scanning is performed such that the spatial orientation of the narrow beam changes continuously within these spatial regions.
  • the definition of the spatial pointing may be represented by three-dimensional Cartesian coordinates or other representation methods, or may not be partitioned.
  • the switching rule may have other definitions, such as switching the transmission mode according to a preset codebook sequence, and performing spatial division for each mode of switching according to the preset codebook, each beam According to the respective codebook switching; space division is not required, and the M narrow beams are switched according to a certain rule as a whole, and the spatial division and the beam switching are performed together, and the space division is not limited here.
  • the transmitting end 100 switches the transmission mode once every predetermined period T1, and can mark the transmission mode, for example, the first transmission mode is the first transmission mode, and after one cycle T1. Switching to the second transmission mode, switching to the third transmission mode after two cycles T1, and so on, after the t-1th cycle T1, switching to the tth transmission mode.
  • the method may include the following steps:
  • the channel matrix H in the current transmission mode is calculated according to the signal received by the receiving end and the known sequence.
  • the M narrow beams transmitted by the transmitting end 100 are spatially propagated according to their specified spatial directions, and the receiving end 200 receives and jointly detects the M narrow beams through N wide beams.
  • Signaling, thereby forming an N ⁇ M transmission channel the channel gain of the transmission channel is jointly determined by the transmitting end 100 and the receiving end 200, and the gain of the receiving end 200 is fixed Gain, by searching the transmission mode of the transmitting end 100, a transmission channel having different gains can be obtained.
  • the transmission channel may be represented by a channel matrix H, which is an N ⁇ M matrix, and the matrix element H nm (1 ⁇ n ⁇ N, 1 ⁇ m ⁇ M) represents A channel fading coefficient between the nth wide beam and the mth narrow beam, the channel fading coefficient being given according to an existing channel estimation algorithm, thereby obtaining the channel matrix H.
  • the channel matrix H is subjected to SVD decomposition to obtain a channel singular value of the channel matrix H, and the channel capacity of the transport channel is calculated according to the channel singular value.
  • the receiving end 200 may calculate the channel quality of the transport channel after generating the channel matrix H.
  • the channel quality is mainly evaluated by channel singular values and channel capacity.
  • the channel singular value may be obtained by performing SVD decomposition on the channel matrix H, and the SVD of the channel matrix H is decomposed into:
  • the transport channel can be regarded as composed of r independent parallel subchannels, and each subchannel corresponds to a channel matrix H
  • the channel singular value ⁇ i (1 ⁇ i ⁇ r), the channel singular value ⁇ i (1 ⁇ i ⁇ r) is used to represent the amplitude gain of the corresponding subchannel, such as ⁇ 1 indicating the amplitude of the first subchannel Gain, ⁇ 2 represents the amplitude gain of the second subchannel, etc., and the larger the amplitude gain, the more suitable the subchannel is for data transmission.
  • the channel capacity of the transport channel can be given by the Shannon formula:
  • the SNR is a signal to noise ratio, which is generated by the receiving end 200 during signal amplification.
  • the method for calculating the channel capacity may also be For other algorithms, the invention is not specifically limited.
  • the method may include the following steps:
  • the transmission mode that satisfies the QoS and the channel quality information corresponding to the transmission mode are fed back to the transmitting end, otherwise, according to the channel quality
  • the transmission mode is sorted and the next transmission mode search is entered.
  • the transmitting end 100 switches the transmission mode by using the period T1
  • the receiving end 200 also calculates the channel quality corresponding to the transmission mode by using the period T1
  • the current transmission mode of the transmitting end 100 is t
  • the receiving end 200 calculates the t-th channel quality.
  • the receiving end 200 compares the calculated t-th channel quality corresponding to the t-th transmission mode with the QoS to determine whether the t-th channel quality satisfies the QoS, where the QoS mainly includes a transmission rate.
  • the demand and the bit error rate requirement when the receiving end 200 calculates that the tth channel quality satisfies the QoS, the receiving end 200 sends the tth transmission mode to the transmitting end 100 through a wide beam.
  • the information of the t channel quality and the feedback information such as the corresponding precoding matrix, wherein the precoding matrix information may be a codebook sequence selected from the codebook set according to the channel quality, or may be a V matrix obtained by SVD decomposition.
  • the matrix consisting of the first K columns serves as the originating precoding matrix, where: K is the maximum number of data streams that the transport channel can support for transmission.
  • the receiving end 200 sorts the tth transmission mode and the previous t-1 transmission modes according to the channel quality, as may be The size of the channel capacity sorts the transmission mode in descending or ascending order.
  • the transmission mode satisfying QOS is not searched, and the transmission mode with the optimal channel capacity and the corresponding channel quality are fed back to the transmitting end through a wide beam.
  • the transmitting end 100 traverses all the transmission modes in the switching rule, and still does not search for a transmission mode that satisfies the QoS, the receiving end 200 will have a result according to the ranking.
  • Feedback information such as transmission mode, channel quality, and precoding matrix of maximum channel capacity A wide beam is transmitted to the transmitting end 100.
  • the feedback information may not include the precoding matrix, and the transmitting end 100 may select the precoding matrix by using the channel quality fed back by the receiving end.
  • the transmitting end 100 may select the precoding matrix by using the channel quality fed back by the receiving end.
  • LTE Long Term Evolution
  • multiple sets of precoding matrices are defined, and the transmitting end 100 can select a required precoding matrix from the LTE protocol according to the channel quality.
  • the receiving end 200 generates a wide beam, and loads the feedback information on the wide beam, and the M narrow beams of the transmitting end receive and jointly detect the feedback sent by the receiving end 200.
  • Information and selecting a modulation and coding scheme (MCS) according to the feedback information, completing a precoding operation, and setting a transmission mode of the transmitting end 100 to a transmission mode fed back by the receiving end 200.
  • MCS modulation and coding scheme
  • the transmission mode fed back by the receiving end 200 may be a transmission mode that satisfies QoS, or may be a transmission mode that does not satisfy QoS requirements, but has an optimal channel capacity among all transmission modes.
  • the transmitting end 100 performs transmission mode selection and resource allocation according to the QoS requirement of the system and the feedback information of the receiving end 200, and may include the following steps:
  • ⁇ i (1 ⁇ i ⁇ r)
  • ⁇ i r non-zero singular values ⁇ i (1 ⁇ i ⁇ r) are obtained, wherein if the value of the ⁇ i is compared If it is small, it means that the amplitude gain of the subchannel corresponding to the singular value ⁇ i is small, and when data is transmitted by using the subchannel, the data may be annihilated by noise.
  • the transmitting end 100 sets a decision threshold ⁇ 0 , and when the channel singular value ⁇ i (1 ⁇ i ⁇ r) is greater than or equal to the decision threshold ⁇ 0 , it indicates that the subchannel corresponding to the singular value is suitable for performing Data transmission, on the other hand, is not suitable for data transmission. If the number of ⁇ i (1 ⁇ i ⁇ r) greater than ⁇ 0 is K, it means that the transmission channel can simultaneously transmit at most K data streams.
  • K>1 for the QoS requirements with high communication quality requirements, as shown in FIG.
  • the same data can be transmitted by using each data stream, that is, the beam1, beam2, and beam3 all transmit the same data, and then The transmit power is distributed to beam1, beam2, and beam3 through the precoding matrix, that is, the effect of diversity gain is realized by using a plurality of narrow beams.
  • K>1 for the QoS requirement with high rate requirement as shown in FIG. 7(c)
  • different data can be transmitted by using each data stream under the premise of ensuring communication quality, that is, the beam1, beam2, and beam3 are transmitted.
  • the transmit power is distributed to beam1, beam2, and beam3 through the precoding matrix, that is, the effect of multiplexing gain is realized by using multiple narrow beams.
  • the specific channel mode is determined by factors such as the QoS requirement and the actually calculated channel quality, and the present invention does not specifically limit .
  • the present invention when the algorithm is used to calculate the channel capacity, the present invention performs a decision in a manner corresponding to the algorithm to obtain a flow number suitable for data transmission, and the present invention Not limited.
  • the transmitting end 100 transmits M narrow beams according to the QoS requirement, and the receiving end 200 receives the M narrow beams by generating N wide beams to form a transmission channel.
  • Switching the transmission mode of the transmitting end 100 by using a preset switching rule, and processing the M narrow beams transmitted by the transmitting end 100 according to the receiving end 200, and obtaining channel quality information corresponding to the transmitting mode Obtaining a transmission mode that satisfies the QoS by searching, and feeding back to the transmitting end 100, so that the transmitting end 100 sets its transmission mode to the receiving end 200 feedback transmission mode to select a beam forming according to actual needs.
  • transmit diversity, or transport multiplexing can obtain a diversity or transmission gain by comparing a conventional Beam forming system by constructing a class transmission structure and obtaining a set of transmission channels with good channel quality.
  • FIG. 10 is a transmission wireless communication method according to a second embodiment of the present invention, which includes at least the following steps:
  • the transmitting module of the transmitting end transmits M narrow beams pointed by different spaces, and the receiving module of the receiving end receives N beams to form a transmission channel, where M and N are greater than or equal to 1. Integer.
  • the transmitting end 100 and the receiving end 200 are both BSs and can transmit or receive narrow beams.
  • the receiving end receives M narrow beams of the transmitting end by using N narrow beams, thereby forming a transmission channel.
  • the channel gain of the transmission channel is determined by the transmission mode of the transmitting end 100 and the receiving mode of the receiving end 200, and the channel gains of the transmission channels formed by different transmission modes and different receiving modes are different, wherein A set of spatial pointing sets of N narrow beams form a receiving mode.
  • the channel gain of the transmission channel is determined by the transmission mode of the transmitting end and the receiving mode of the receiving end, it is necessary to simultaneously switch the transmitting mode of the transmitting end to the receiving mode of the receiving end to search for A transmission channel that satisfies QoS or has a large channel quality.
  • the receiving end 200 presets a switching rule, and switches its receiving mode according to the switching rule, the switching period of the receiving mode of the receiving end 200 is T2, and the T2 is a preset multiple of the period T1.
  • the transmitting end 100 and the receiving end 200 simultaneously perform the switching of the transmission mode, and after the transmitting end 100 traverses one transmission mode, the receiving end 200 switches the receiving mode once.
  • the receiving end 200 has N 1 switching rules (ie, N 1 transmission modes)
  • N 1 transmission modes when the receiving end 200 traverses all receiving modes, a total of M 1 *N 1 transmission channels are generated, correspondingly, M 1 * N 1 channel matrix
  • H11 can be used to represent the channel matrix formed by the first transmission mode and the first reception mode, and then Hij ( 1 ⁇ i ⁇ M 1 1 ⁇ j ⁇ N 1 ) A channel matrix formed by the ith transmission mode and the jth reception mode.
  • the receiving mode that satisfies the QoS is set to the receiving mode of the receiving end, and the transmitting mode that satisfies the QoS is fed back to the transmitting end by using the receiving mode and Channel quality, otherwise, sorting the channel matrix according to the channel quality;
  • the receiving end 200 calculates the channel quality of each channel matrix Hij, and compares the channel quality with the QoS to determine whether the channel quality satisfies the QoS, and if yes, Generating channel quality that satisfies QoS, corresponding transmission mode, and receiving mode information, and setting the receiving mode of the receiving end 200 to a receiving mode that satisfies QoS, and then feeding back the channel satisfying QoS to the transmitting end 100 in the receiving mode. Quality and corresponding launch mode. If not, the channel matrix is sorted with the previously obtained channel matrix, such as sorting according to channel capacity.
  • the channel matrix satisfying the QoS is not searched, and according to the result of the sorting, the receiving mode of the receiving end is set to the receiving mode with the largest channel capacity, and The receiving mode feeds back to the transmitting end the transmission mode and channel quality with the largest channel capacity.
  • the receiving end 200 when the receiving end 200 traverses all the switching rules, that is, after traversing all the receiving modes, and still searches for a channel matrix that satisfies the QoS, the receiving end 200 acquires according to the sorted result.
  • the channel quality of the quality channel matrix and the corresponding transmission mode when the receiving end 200 traverses all the switching rules, that is, after traversing all the receiving modes, and still searches for a channel matrix that satisfies the QoS.
  • the switching rule of the transmission mode of the receiving end 200 and the switching rule of the transmitting mode of the transmitting end 100 may be the same or different, and the invention is not limited.
  • the M narrow beams of the transmitting end 100 receive and jointly detect the feedback information on the N narrow beams of the receiving end 200 (the space of the N narrow beams points to the QoS obtained by step 205) a receiving mode or a receiving mode definition having a maximum channel capacity, and selecting a Modulation and Coding Scheme (MCS) according to the feedback information, completing a precoding operation, and setting a transmission mode of the transmitting end 100.
  • MCS Modulation and Coding Scheme

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输无线通信系统,包括:发射端,包括具有至少两个天线单元的发射模组,发射模组根据服务质量(QoS)需求发射M个不同空间指向的窄波束,并以预设的切换规则切换发射模式,其中,所述M个窄波束的空间指向的集合构成一种发射模式;接收端,包括具有至少两个天线单元的接收模组,接收模组根据所述QoS接收N个波束,发射端的M个窄波束与接收端的N个波束之间形成传输信道;接收端计算不同发射模式下的传输信道质量,搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,如果遍历了所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端;其中,M、N均为大于或等于1的整数。

Description

无线通信方法及系统 技术领域
本发明涉及无线通信领域,尤其涉及一种无线通信方法及系统。
背景技术
现有的基站(Base Station,BS)和用户设备(User Equipment,UE)在进行通信时均采用广播形式,波束很宽,覆盖范围广,同一扇区波束内的用户只能通过频率区分,在给定频段带宽内,每个用户占有带宽小,且是时分复用,容量小。相比之下,毫米波(Millimeter wave)的频段更高,波束较窄,利用波束成型(Beam forming)技术可实现高增益的定向窄波束,每个用户可以通过多个窄波束进行空分和/或频分复用,获得复用增益,提高通信容量。
Beam forming技术要求天线间距不大于波长的1/2,而在视距(Line Of Sight,LOS)条件下,多输入多输出(Multiple-Input Multiple-Output,MIMO)信道的非相关性需要天线间距大于一定值,并且天线间距越大,天线的相关性越低。因此,对于高频段的大规模阵列天线系统,由于天线口径受限,天线间距较小,难以满足LOS-MIMO的瑞利距离(Rayleigh distance)以保证MIMO信道间的不相关性,采用传统的技术,MIMO通信系统的通信质量较差。
发明内容
有鉴于此,本发明的目的在于提供一种无线通信方法及系统,其通过对收、发天线进行分区,分别将收/发天线单元分裂成M个/N个子阵,形成M个/N个空间分开的、相关性小的波束,从而形成一个传输维的类似MIMO结构,收发天线的发射模式通过搜索获得,保证了较高的通信质量。
第一方面,提供一种无线通信系统,包括:
发射端,包括具有至少两个天线单元的发射模组,发射模组根据服务质量(QoS)需求发射M个不同空间指向的窄波束,并以预设的切换规则切换发射模式,其中,所述M个窄波束的空间指向的集合构成一种发射模式;
接收端,包括具有至少两个天线单元的接收模组,接收模组根据所述QoS接收N个波束,发射端的M个窄波束与接收端的N个波束之间形成传输信道; 接收端计算不同发射模式下的传输信道质量,搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,如果遍历了所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端;其中,M、N均为大于或等于1的整数。
在第一方面的第一种可能的实现方式中,所述发射端包括发射控制单元,用于控制所述发射端发射的M个窄波束的空间指向;所述接收端包括接收控制单元,以控制接收N个波束,所述发射端与所述接收端之间形成传输信道。
在第一方面的第二种可能的实现方式中,所述发射端还包括第一切换规则预设单元,用于设置所述切换规则,所述第一切换规则预设单元以预设的切换周期切换所述发射模式,所述发射控制单元根据所述发射模式控制所述发射模组发出不同空间指向的M个窄波束。
在第一方面的第三种可能的实现方式中,所述接收端还包括处理单元,所述处理单元根据M个窄波束加载的已知序列及所述N个波束接收到的信号,计算所述传输信道的信道质量,其中,M个窄波束加载的已知序列相互正交。
在第一方面的第四种可能的实现方式中,所述处理单元包括第一计算单元及第二计算单元,所述第一计算单元根据所述已知序列及所述N个波束接收到的信号,计算与所述传输信道对应的信道矩阵的各个矩阵元,所述第二计算单元对所述信道矩阵进行SVD分解,获得所述信道矩阵的信道奇异值,并根据所述信道奇异值计算所述传输信道的信道容量,其中,所述信道质量包括所述信道奇异值及所述信道容量。
在第一方面的第五种可能的实现方式中,所述接收端还包括反馈单元,所述反馈单元包括判断单元、排序单元及通知单元,所述判断单元判断所述第二计算单元计算的信道质量是否满足所述QoS,若是,则所述通知单元通过所述接收控制单元向所述发射端反馈所述满足QoS的发射模式及该发射模式对应的传输信道质量;若否,则所述排序单元根据所述信道容量将当前发射模式与之前的发射模式进行排序;当经历所述第一切换规则预设单元内的所有发射模式后,若所述判断单元未搜索到满足所述QoS的发射模式,则所述通知单元 将所述排序单元获得的具有最优信道容量的发射模式及该发射模式下对应的传输信道质量通过所述接收控制单元反馈至所述发射端。
在第一方面的第六种可能的实现方式中,所述接收端还包括第二切换规则预设单元,所述第二切换规则预设单元以预设的周期切换所述接收端的接收模式,其中,所述第二切换规则预设单元的切换周期为所述第一切换规则预设单元的切换周期的预定倍数,所述预定倍数为所述第一切换规则预设单元具有的发射模式的个数,其中,N个窄波束的空间指向集合构成一种接收模式。
在第一方面的第七种可能的实现方式中,所述发射端的不同发射模式与所述接收端的不同接收模式形成不同的传输信道;
所述反馈单元还用于搜索满足所述QoS的传输信道,所述判断单元判断所述传输信道的信道质量是否满足所述QoS,若是,则所述通知单元将与该满足所述QoS的传输信道对应的接收模式、发射模式及信道质量发送至所述接收控制单元,所述接收控制单元将所述接收端的接收模式设置为所述通知单元发送的接收模式,并以此接收模式向所述发射端反馈发射模式及在该发射模式下的信道质量;
若否,则所述排序单元根据信道质量对所述传输信道进行排序;
当遍历所述第二切换规则预设单元内的所有接收模式后,所述判断单元未搜索到满足QoS的传输信道,所述通知单元根据排序的结果,将具有最优信道容量的传输信道的接收模式、发射模式及信道质量发送至所述接收控制单元,所述接收控制单元将所述接收端的接收模式设置为所述反馈单元发送的接收模式,并以该接收模式向所述发射端反馈所述发射模式及信道质量。
在第一方面的第八种可能的实现方式中,所述发射端还包括配置单元,所述配置单元包括判决单元及发射配置单元,所述判决单元设置一判决阈值,并统计所述接收端反馈的信道奇异值中大于所述判决阈值的个数,以获得所述传输信道的最大传输数据流数目,所述发射配置单元根据所述最大传输数据流数配置及所述QoS需求,为所述发射模组配置传输模式和资源分配方案。
第二方面,提供一种无线通信方法,其特征在于,包括:
根据服务质量需求,令发射端的发射模组发射M个不同空间指向的窄波束,接收端的接收模组接收N个波束,以形成一传输信道,其中,M、N为大 于或等于1的整数;
根据预设的切换规则切换发射模式,其中,M个窄波束的空间指向集合构成一种发射模式;
根据所述接收端的N个波束接收的信号,获得当前发射模式下的信道质量;及
搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,当遍历所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端;
在第二方面的第一种可能的实现方式中,所述根据预设的切换规则切换发射模式,包括:
根据所述M个窄波束加载的已知序列及所述接收端的N个宽波束接收的信号,获得当前发射模式下的信道质量。
在第二方面的第二种可能的实现方式中,所述根据所述M个窄波束加载的已知序列及所述接收端的N个宽波束接收的信号,获得当前发射模式下的信道质量,包括:
根据所述接收端的N个宽波束接收到的信号及所述已知序列,计算当前发射模式下的信道矩阵H;及
对所述信道矩阵H进行SVD分解,获得所述信道矩阵H的信道奇异值,并根据所述信道奇异值,计算所述传输信道的信道容量;
其中,所述信道质量包括信道奇异值及信道容量。
在第二方面的第三种可能的实现方式中,所述搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,当遍历所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端,包括:
当所述发射模式的信道质量满足所述QoS时,将满足所述QoS的发射模式及与所述发射模式对应的信道质量信息反馈至所述发射端,否则,根据所述信道质量对所述发射模式进行排序,并进入下一个发射模式搜索;及
当遍历所述切换规则内的所有发射模式后,未搜索到满足QoS的发射模式,通过一个宽波束将排序获得的具有最优信道容量的发射模式及对应的信道 质量反馈至所述发射端。
在第二方面的第四种可能的实现方式中,所述根据所述接收端的N个波束接收的信号,获得当前发射模式下的信道质量,还包括:
根据所述M个窄波束加载的已知序列及所述接收端的N个窄波束接收的信号,获得当前发射模式下的信道质量。
在第二方面的第五种可能的实现方式中,在根据所述M个窄波束加载的已知序列及所述接收端的N个窄波束接收的信号,获得当前发射模式下的信道质量之后,还包括:
根据预设的切换规则切换所述接收端的接收模式,计算不同的发射模式与不同的接收模式形成的信道矩阵的信道质量,其中,N个窄波束的空间指向集合构成一种接收模式;
所述搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,如果遍历了所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端,包括:
当所述信道矩阵的信道质量满足所述QoS时,将满足所述QoS的接收模式设置为所述接收端的接收模式,并以此接收模式向所述发射端反馈满足QoS的发射模式及信道质量,否则,根据所述信道质量对所述信道矩阵进行排序;及
当遍历所述切换规则内的所有接收模式后,未搜索到满足QoS的传输信道,则根据排序的结果获得具有最大信道质量的接收模式和发射模式组合,并将所述接收端的接收模式设置为具有最大信道容量的接收模式,并以此接收模式向所述发射端反馈具有最优信道质量的发射模式及信道质量。
在第二方面的第六种可能的实现方式中,在所述当所述接收端计算得到的信道质量满足所述服务质量时,向所述发射端反馈该满足服务质量的信道质量及发射模式之后,还包括:
将所述发射端的发射模式设置为所述接收端反馈的发射模式。
在第二方面的第七种可能的实现方式中,在将所述发射端的发射模式设置为所述接收端反馈的发射模式之后,还包括:
根据所述服务质量需求及所述接收端反馈的信道质量及发射模式,对所述 发射端的发射模组进行传输模式选择和资源分配。
在第二方面的第八种可能的实现方式中,所述根据所述服务质量需求及所述接收端反馈的信道质量及发射模式,对所述发射端的发射模组进行传输模式选择和资源分配包括:
获取所述传输信道能支持的最大传输数据流数目;及
根据所述最大传输数据流数和QoS需求,选择传输模式和资源分配方案。
本发明实施例提供的传输无线通信方法及系统,根据所述QoS需求使发射模组发射M个窄波束,所述接收端接收N个波束,以形成N×M的传输信道,并计算不同发射模式下的传输信道质量,以获知满足QoS需求的发射模式;如果找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端,如此可提高通信质量。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的无线通信系统的结构示意图。
图2是本发明第一实施例提供的无线通信系统的模块示意图。
图3是发射模组发射窄波束的示意图。
图4是图2所示的处理单元的模块示意图。
图5是图2所示的反馈单元的模块示意图。
图6是图2所示的配置单元的模块示意图。
图7(a)至图7(c)是不同的QoS时的传输模式和资源分配示意图。
图8是本发明第二实施例提供的无线通信系统的模块示意图。
图9是本发明第一实施例提供的无线通信方法的流程图。
图10是本发明第二实施例提供的无线通信方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1及图2,本发明第一实施例提供一种无线通信系统,所述无线通信系统包括发射端100及接收端200,且所述发射端100及所述接收端200可通过无线通信的方法进行数据的相互传输,其中,所述发射端100,包括具有至少两个天线单元的发射模组120,所述发射模组120根据服务质量(QoS)需求发射M个不同空间指向的窄波束(具有较窄覆盖范围的波束),并以预设的切换规则切换发射模式,其中,所述M个窄波束的空间指向的集合构成一种发射模式。
请一并参阅图1至图3,在本发明实施例中,所述发射端100可为基站(Base Station,BS)或用户设备(User Equipment,UE),并具有发射模组120,且所述发射模组120包括至少两个天线单元。所述发射端100包括发射控制单元110,所述发射控制单元110根据系统的QoS需求,控制所述发射模组120发射M个不同空间指向的窄波束。所述M个窄波束的空间指向的集合构成一种发射模式,如第一个窄波束的空间指向为α1,第二个窄波束的空间指向为α2,…第M个窄波束的空间指向为αM,则将本次发射模式记为{α1,α2…αM}。
在本发明实施例中,所述发射端100还包括第一切换规则预设单元130,所述第一切换规则预设单元130预设了所述发射端100的发射模式的切换规则,从而所述发射控制单元110根据所述第一切换规则预设单元130设置的切换规则切换所述发射端100的发射模式。具体为,所述发射控制单元110获取所述第一切换规则预设单元130提供的一个切换规则后,根据所述切换规则定义的发射模式,设置所述发射端100发射的M个窄波束的空间指向,如作为一种可能的切换规则,可进行如下定义:将整个空间分成M个区,所述窄波束的空间指向由θ和
Figure PCTCN2014088819-appb-000001
两个参数决定,其中θ为所述窄波束的水平角,
Figure PCTCN2014088819-appb-000002
为所述窄波束的俯仰角,则第一个窄波束分配的空间区域是[θ1min1max]和
Figure PCTCN2014088819-appb-000003
即所述第一个窄波束beam1在空间区域[θ1min1max]和
Figure PCTCN2014088819-appb-000004
之间扫描,同理,第k个窄波束beamk(2≤k≤M)分配的空间区域是[θkminkmax]和
Figure PCTCN2014088819-appb-000005
且beamk在空间区域[θkminkmax]和
Figure PCTCN2014088819-appb-000006
之间扫描,从而 所述窄波束的空间指向在这些空间区域内变化。
需要说明的是,在本发明的其他实施例中,还可对空间进行其他的分区设置,如空间指向的定义可用三维直角坐标表示或其他表示方法,或者也可不需要进行分区。此外,所述第一切换规则预设单元130定义的切换规则还可有其他的定义,如可按照预设的码本(codebook)顺序进行发射模式的切换,对于依据预设码本进行切换的模式,可以进行空间划分,每个波束按照各自的codebook切换;也可以不需要空间划分,M个窄波束整体按照某种规则切换,空间划分和波束切换是一起进行的,在此不做空间划分的限定。一般情况下,所述第一切换规则预设单元130每经过一预设的周期T1切换一次切换规则,即所述发射端100每经过所述周期T1切换一次发射模式,如最开始的发射模式为第一发射模式,经一个周期T1后则切换至第二发射模式,经两个周期T1后切换至第三发射模式,以此类推,经第t-1个周期T1后,切换至第t发射模式。
在本发明实施例中,所述接收端200可为BS或UE,所述接收端200具有接收模组220,且所述接收模组220包括至少两个天线单元。所述接收端200包括接收控制单元210,所述接收控制单元210根据所述QoS以令所述接收模组220接收N个波束,从而所述发射端100与所述接收端200之间形成一传输信道,其中,所述已知序列为包含所述发射端100和所述接收端200都已知的信息的序列,且不同窄波束加载的已知序列之间各不相同,较佳的,不同窄波束加载的已知序列相互正交,从而所述接收端200的N个波束可对所述已知序列进行区分。
请一并参阅图2至图4,在本发明实施例中,所述接收端200还包括处理单元230,用于处理所述N个宽波束接收到的来自所述发射端100的信号。具体为,所述处理单元230包括第一计算单元231及第二计算单元232,所述传输信道可用一信道矩阵H表示,所述信道矩阵H为一个N×M的矩阵,其矩阵元Hnm(1≤n≤N,1≤m≤M)表示第n个宽波束与第m个窄波束之间的信道衰落系数,所述信道衰落系数可通根据现有的信道估计算法进行估计,进而所述第一计算单元231计算获得所述信道矩阵H。所述第二计算单元232根据所述信道矩阵H计算所述传输信道的信道容量。如作为一种可能的实施方式, 所述第二计算单元232可对所述信道矩阵H进行SVD分解,获得所述信道矩阵H的信道奇异值,所述信道矩阵H的SVD分解为:
Figure PCTCN2014088819-appb-000007
其中,Q为M和N中的较小值,且所述信道奇异值满足关系λ1≥λ2≥…≥λQ≥0,假设所述λi(1≤i≤Q)中大于0的个数为r个,即所述信道矩阵H的秩为r,则通过上述的SVD分解,所述传输信道可被看成由r个独立的并行子信道组成,且每个子信道对应于一个信道矩阵H的信道奇异值λi(1≤i≤r),所述信道奇异值λi(1≤i≤r)用于表示对应的子信道的幅度增益,如λ1表示第一个子信道的幅度增益,λ2表示第二个子信道的幅度增益等,所述幅度增益越大,则表明该子信道越适合进行数据传输。所述第二计算单元232还根据所述信道奇异值,利用香农公式计算所述传输信道的信道容量,计算公式为:
Figure PCTCN2014088819-appb-000008
其中,I为所述传输信道的信道容量,SNR为信噪比,其由所述接收端200在进行信号放大的过程中产生。
需要说明的是,在本发明的其他实施例中,所述第二计算单元232对所述信道容量的计算方法还可为其他的算法,本发明对信道容量计算的方法不做具体的限定。
请一并参阅图2至图5,在本发明实施例中,所述接收端200还包括反馈单元240,所述反馈单元240包括判断单元241、排序单元242及通知单元243,所述判断单元241判断所述第二计算单元232计算得到的信道质量是否满足所述QoS,如当前发射端100的发射模式为第t发射模式,则所述接收端200计算获得第t信道质量,并将所述第t信道质量与所述QoS进行比较,以判断所 述第t信道质量是否满足所述QoS,当所述判断单元241判断所述第t信道质量满足所述QoS时,所述通知单元243向所述发射端100反馈该第t发射模式、第t信道质量的信息及相应的预编码矩阵等反馈信息,其中,所述预编码矩阵信息可以是根据所述信道质量从码本集中选定的码本序号,也可以是SVD分解得到的V矩阵的前K列组成的矩阵作为发端的预编码矩阵,其中:K为该所述传输信道的最大传输数据流数。当所述第一判断单元241判断所述第t发射模式的信道质量不满足所述QoS时,所述第一排序单元242根据所述信道质量将第t发射模式与之前的t-1个发射模式进行排序,如可根据所述信道容量的大小对所述发射模式进行升/降序排序等。然后,若当所述发射端100遍历所述第一切换规则预设单元130内的所有发射模式后,所述判断单元241仍未搜索到满足所述QoS的发射模式,则所述通知单元243根据所述排序单元242的排序结果,将具有最优信道质量的发射模式及对应的信道质量及预编码矩阵等反馈信息发送至所述发射端100。具体为,所述通知单元243将所述反馈信息发送至所述接收控制单元210,所述接收控制单元210通过预定的波束成型算法,形成一束宽波束,并将所述反馈信息加载到所述宽波束上,然后控制所述接收模组220向外发射所述宽波束。
需要说明的是,在本发明其他实施例中,所述接收端200发射的反馈信息也可以不包括所述预编码矩阵,所述发射端100可通过所述接收端200反馈的信道质量自动获取所述预编码矩阵的信息。例如,在长期演进(Long Term Evolution,LTE)协议里面,定义了多组预编码矩阵,所述发射端100可根据所述信道质量指示从所述LTE协议里面选择所需的预编码矩阵。
请一并参阅图6及图7,在本发明实施例中,所述发射端100还包括配置单元140,所述发射端100的M个窄波束接收所述接收端200通过一束宽波束发送的反馈信息后,所述发射控制单元110将所述发射端100的发射模式设置为所述接收端200反馈的发射模式,所述配置单元140对所述发射模组120进行传输模式选择和资源分配。具体为,所述配置单元140包括判决单元141及发射配置单元142,所述判决单元141设置一判决阈值λ0,当所述信道奇异值λi(1≤i≤r)大于或等于所述判决阈值λ0时,则表明与该奇异值对应的子信道适合进行数据传输,反之,则表明与该奇异值对应的子信道不适合进行数据传 输,所述判决单元141统计所述信道奇异值λi(1≤i≤r)大于或等于所述判决阈值λ0的数目,如当λi(1≤i≤r)中大于λ0的个数为K个,则说明所述传输信道的最大传输数据流数为K路。可以理解的是,在本发明的其他实施例中,当所述第二计算单元232采用其他的算法计算所述信道容量时,则所述判决单元141采用与所述算法对应的方式进行判决以获取适合数据传输的流数,本发明不做具体限定。
在本发明实施例中,所述发射配置单元142根据所述最大传输数据流数和所述QOS选择传输模式和资源分配方案,例如,当所述K=1时,即所述传输信道只可传输一路数据流,所述发射端100可以利用所有天线单元生成一个窄波束进行通信(此时只有一个输出的窄波束,即单输出的情况),即Beam forming的工作模式,如图7(a)所示。当K>1,对于通信质量要求较高的QoS需求,如图7(b)所示,可以用K路数据流同时传输相同的数据,即所述beam1、beam2、beam3(K=3的情况,所述K也可为其他数值)均传输相同的数据,然后通过所述预编码矩阵将发射功率分配到beam1、beam2、beam3上,即利用多个窄波束实现了传输分集增益的效果。当K>1,对于速率需求较大的QoS需求,如图7(c)所示,在保证通信质量的前提下,可以用各个数据流传输不同的数据,即所述beam1、beam2、beam3传输不同的数据,通过预编码矩阵将发射功率分配到beam1、beam2、beam3上,即利用多个窄波束实现了复用增益的效果。所述发射配置单元142将传输模式和资源分配方案发送至所述发射控制单元110,所述发射控制单元110根据所述传输模式和资源分配方案控制所述发射模组120发出相应的窄波束,并对各个窄波束进行功率分配,从而以该传输模式和资源分配方案与所述接收端200进行数据传输。
需要说明的是,根据上面的描述可知,所述用于传输发射端100的M个窄波束及接收端200的N个波束的传输信道,可为单输入单输出(M=N=1)、多输出单输入(M>1,N=1)、单输出多输入(M=1,N>1)或者多输入多输出(M>1,N>1)等情况,具体的信道模式由所述QoS需求及实际计算得到的信道质量等因素决定,本发明不做具体限定。
本发明实施例中,根据所述QoS需求使所述发射端100发射M个窄波束,所述接收端200接收N个宽波束,以形成一传输信道,通过所述第一切换规 则预设单元130预设的切换规则,切换所述发射端100的发射模式,并根据所述处理单元230计算获得不同发射模式下的传输信道的信道质量,从而搜索满足所述QoS的发射模式或具有最优信道质量的发射模式。所述配置单元140根据所述接收端200的反馈信息,根据实际需要,选择进行beam forming、传输分集或传输复用。本发明通过构造一个类传输信道结构,并通过搜索得到一组信道质量好的传输信道,相对传统的Beam forming系统,还可以获得分集增益或复用增益。
请参阅图8,图8是本发明第二实施例提供的无线通信系统的模块图,在本发明实施例中,所述无线通信系统包括上述第一实施例的各个单元和模组,所不同的是,所述接收端200通过这N个窄波束接收检测所述发射端100的M个窄波束。此时,所述传输信道的信道增益由所述发射端100的发射模式和所述接收端200的接收模式共同决定,其中,所述接收端200的N个窄波束的空间指向的集合构成一种接收模式。
在本发明实施例中,所述接收端200还包括第二切换规则预设单元250,所述第二切换规则预设单元250设置了所述接收端200的接收模式的切换规则,以切换所述接收端200的接收模式。所述第二切换规则预设单元250的切换周期为T2,且T2为T1的预定倍数,其中,所述预设倍数为所述第一切换规则预设单元130内包括的发射模式的个数,如假设所述发射端100的第一切换规则预设单元130的切换周期为T1,且所述第一切换规则预设单元130内包含了M1个切换规则(即M1个发射模式),则所述第二切换规则预设单元250的周期T2=T1*M1。即所述发射端100遍历一次第一切换规则预设单元130内的所有发射模式后,所述接收端200的第二切换规则预设单元250切换一次接收模式。假设所述接收端200的第二切换规则预设单元250内包括N1个切换规则(即N1个发射模式),则当所述接收端200遍历所有的接收模式后,一共生产M1×N1个传输信道,相应的,有M1×N1个信道矩阵,在本发明实施例中,可用H11表示第一发射模式与第一接收模式形成的信道矩阵,则Hij(1≤i≤M1,1≤j≤N1)表示第i发射模式与第j接收模式形成的信道矩阵。
在本发明实施例中,所述处理单元230的第一计算单元231分别计算各个信道矩阵Hij,所述第二计算单元232则根据所述第一计算单元231计算得到 的信道矩阵Hij,计算得到各个信道矩阵Hij的信道奇异值,进而计算各个信道矩阵Hij的信道容量。所述反馈单元240的判断单元241判断所述信道矩阵Hij的信道质量是否满足所述QoS,若满足,则所述通知单元将满足QoS的信道矩阵的信道质量、发射模式、接收模式等信息发送至所述接收控制单元210,所述接收设置单元210将所述接收端200的接收模式设置为所述通知单元241发送的接收模式(即满足所述QoS的接收模式),并以此接收模式将满足所述QoS的发射模式及信道质量的信息反馈至所述发射端100;若所述判断单元241判断所述信道矩阵不满足所述QoS,则所述排序单元242根据信道矩阵的信道容量对所述信道矩阵进行排序。当所述接收端200遍历所述第二切换规则预设单元250内的所有接收模式后,若未搜索到满足QoS的信道矩阵,则所述通知单元243将具有最优信道容量的信道矩阵及对应的发射模式、接收模式、信道质量等反馈信息传输至所述接收控制模块210,所述接收控制模块210根据所述通知单元243的信息,将所述接收端200的接收模式设置为所述通知单元243反馈的接收模块,并以此接收模式向所述发射端100反馈所述具有最大信道容量的传输信道的发射模式及信道质量。所述发射端100通过M个窄波束接收和联合检测所述接收端100发射的反馈信息后,将其发射模式设置为所述接收端200反馈的反射模式。
在本发明实施例中,所述发射端100与所述接收端200通过所述满足QoS或者具有最大信道容量的发射模式与接收模式进行数据的传输。如所述排序单元242排序得到的满足QoS或者具有最大信道容量的信道矩阵为H45,即当所述发射端100的发射模式为第四发射模式,而所述接收端200的接收模式为第五接收模式时,所述传输具有最大的信道容量,则将所述发射端100的反射模式设置为第四发射模式,将所述接收端200的接收模式设置为第五接收模式,并以此发射模式和接收模式进行数据的传输,从而所述传输信道可以获得尽可能大的增益,以满足QoS需求。
本发明实施例中,通过同时对所述发射端100的发射模式和接收端200的接收模式进行切换,从而可获得具有较大增益的传输信道,满足高QoS需求的系统。
请一并参阅图9,图9是本发明第一实施例提供的无线通信方法,其至少 包括如下步骤:
101,根据服务质量需求,令发射端的发射模组发射M个不同空间指向的窄波束,接收端的接收模组接收N个波束,以形成一传输信道,其中,M、N为大于或等于1的整数。
在本发明实施例中,所述无线通信系统包括发射端100及接收端200,其中,所述发射端100可为基站(Base Station,BS)或用户设备(User Equipment,UE),所述接收端200也可为BS或UE,所述发射端100具有发射模组,所述接收端200具有接收模组,所述发射模组及接收模组包括至少两个天线单元,所述天线单元可用以发射及接收宽波束或窄波束。所述发射模组及接收模组可为相控阵天线,所述相控阵天线具有移相器,所述移相器可控制所述天线单元发射的窄波束的空间指向,并通设置所述移相器的移相值,控制所述发射端发射出若干个不同空间指向的窄波束。
在本发明实施例中,当所述无线通信系统接收到所述QoS需求时,所述发射端100的发射模组根据所述QoS需求发射M个不同空间指向的窄波束所述接收端200根据所述QoS需求接收N个波束,其中,所述发射模组及接收模组包括至少两个天线单元,且M、N为大于1或等于1的整数。
102,根据预设的切换规则切换发射模式,其中,M个窄波束的空间指向集合构成一种发射模式。
在本发明实施例中,所述M个窄波束均加载已知序列,所述已知序列为包含所述发射端100和所述接收端200都已知的信息的序列,所述M个窄波束上均加载所述已知序列,且不同窄波束上加载的已知序列也各不相同,较佳地,不同窄波束加载的已知序列相互正交,从而所述接收端100可对所述M个窄波束进行区分。
在本发明实施例中,所述发射端100发射M个空间指向不同的窄波束(如图3中的beam1至beam4),且不同窄波束的空间指向不同,其中,所述M个窄波束的空间指向集合构成一种发射模式,如第一个窄波束的空间指向为α1,第二个窄波束的空间指向为α2,…第M个窄波束的空间指向为αM,则将本次发射模式记为{α1,α2…αM}。
在本发明实施例中,所述切换发射模式即改变所述窄波束的空间指向,其 中,任意两种不同的发射模式下,至少有一个窄波束的空间指向是不同的。所述窄波束的空间指向的变化规则可由所述切换规则给出,如作为一种可能的切换规则,可进行如下定义:假设将整个空间分成M个区,所述窄波束的空间指向由θ和
Figure PCTCN2014088819-appb-000009
两个参数决定,其中θ为所述窄波束的水平角,
Figure PCTCN2014088819-appb-000010
为所述窄波束的俯仰角,则第一个窄波束分配的空间区域是[θ1min1max]和
Figure PCTCN2014088819-appb-000011
即所述第一个窄波束beam1在空间区域[θ1min1max]和
Figure PCTCN2014088819-appb-000012
之间扫描,同理,第k个窄波束beamk(2≤k≤M)分配的空间区域是[θkminkmax]和
Figure PCTCN2014088819-appb-000013
且beamk在空间区域[θkminkmax]和
Figure PCTCN2014088819-appb-000014
之间扫描,从而所述窄波束的空间指向在这些空间区域内连续变化。
需要说明的是,在本发明的其他实施例中,还可对空间进行其他的分区设置,如空间指向的定义可用三维直角坐标表示或其他表示方法,或者也可不需要进行分区。此外,所述切换规则还可有其他的定义,如可按照预设的码本(codebook)顺序进行发射模式的切换,对于依据预设码本进行切换的模式,可以进行空间划分,每个波束按照各自的codebook切换;也可以不需要空间划分,M个窄波束整体按照某种规则切换,空间划分和波束切换是一起进行的,在此不做空间划分的限定。一般情况下,所述发射端100每经过一预设的周期T1切换一次发射模式,并可对所述发射模式进步标记,如最开始的发射模式为第一发射模式,经一个周期T1后则切换至第二发射模式,经两个周期T1后切换至第三发射模式,以此类推,经第t-1个周期T1后,切换至第t发射模式。
103,根据所述接收端的N个宽波束接收的信号,获得当前发射模式下的信道质量。
具体为,可包括如下步骤:
首先,根据所述接收端接收到的信号及所述已知序列,计算当前发射模式下的信道矩阵H。
在本发明实施例中,所述发射端100发射的M个窄波束在空间中按照其指定的空间指向传播,所述接收端200通过N个宽波束接收并联合检测所述M个窄波束的信号,从而形成一N×M的传输信道,所述传输信道的信道增益由所述发射端100和接收端200共同决定,且所述接收端200的增益为固定 增益,通过搜索发射端100的发射模式,可获得具有不同增益的传输信道。
在本发明实施例中,所述传输信道可用一信道矩阵H表示,所述信道矩阵H为一个N×M的矩阵,其矩阵元Hnm(1≤n≤N,1≤m≤M)表示第n个宽波束与第m个窄波束之间的信道衰落系数,所述信道衰落系数可根据现有的信道估计算法给出,进而获得所述信道矩阵H。
然后,对所述信道矩阵H进行SVD分解,获得所述信道矩阵H的信道奇异值,并根据所述信道奇异值,计算所述传输信道的信道容量。
在本发明实施例中,所述接收端200在生成所述信道矩阵H后,可对所述传输信道的信道质量进行计算。所述信道质量主要由信道奇异值和信道容量进行评价。作为一种可能的实施方式,所述信道奇异值可通过对所述信道矩阵H进行SVD分解获得,所述信道矩阵H的SVD分解为:
Figure PCTCN2014088819-appb-000015
其中,Q为M和N中的较小值,且所述信道奇异值λ1≥λ2≥…≥λQ≥0,假设所述λi(1≤i≤Q)中大于0的个数为r个,即所述信道矩阵H的秩为r,则通过上述的SVD分解,所述传输信道可被看成由r个独立的并行子信道组成,且每个子信道对应于一个信道矩阵H的信道奇异值λi(1≤i≤r),所述信道奇异值λi(1≤i≤r)用于表示对应的子信道的幅度增益,如λ1表示第一个子信道的幅度增益,λ2表示第二个子信道的幅度增益等,所述幅度增益越大,则表明该子信道越适合进行数据传输。所述传输信道的信道容量可由香农公式给出:
Figure PCTCN2014088819-appb-000016
其中,SNR为信噪比,其由所述接收端200在进行信号放大的过程中产生。
需要说明的是,在本发明的其他实施例中,所述信道容量的计算方法还可 为其他的算法,本发明不做具体的限定。
104,搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,当遍历所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端。
具体为,可包括如下步骤:
首先,当所述发射模式的信道质量满足所述QoS时,将满足所述QoS的发射模式及该发射模式下对应的信道质量信息反馈至所述发射端,否则,根据所述信道质量对所述发射模式进行排序,并进入下一个发射模式搜索。
在本发明实施例中,所述发射端100以周期T1切换发射模式,所述接收端200同样以周期T1计算与所述发射模式对应的信道质量,如当前发射端100的发射模式为第t发射模式,则所述接收端200计算获得第t信道质量。所述接收端200将计算生成的与第t发射模式对应的第t信道质量与所述QoS进行比较,以判断所述第t信道质量是否满足所述QoS,其中,所述QoS主要包括传输速率需求和误码率需求,当所述接收端200计算得到所述第t信道质量满足所述QoS时,所述接收端200通过一个宽波束向所述发射端100发送该第t发射模式、第t信道质量的信息及相应的预编码矩阵等反馈信息,其中,所述预编码矩阵信息可以是根据所述信道质量从码本集中选定的码本序号,也可以是SVD分解得到的V矩阵的前K列组成的矩阵作为发端的预编码矩阵,其中:K为该所述传输信道能支持传输的最大数据流数目。当所述接收端200判断当前发射模式的信道质量不满足所述QoS时,所述接收端200根据所述信道质量将第t发射模式与之前的t-1个发射模式进行排序,如可根据所述信道容量的大小对所述发射模式进行降序或升序排序。
然后,当遍历所述切换规则内的所有发射模式后,未搜索到满足QOS的发射模式,通过一个宽波束将具有最优信道容量的发射模式及对应的信道质量反馈至所述发射端。
在本发明实施例中,当所述发射端100遍历所述切换规则内的所有发射模式后,仍未搜索到满足所述QoS的发射模式,则所述接收端200根据排序的结果,将具有最大信道容量的发射模式、信道质量及预编码矩阵等反馈信息通 过一个宽波束发送至所述发射端100。
需要说明的是,在本发明其他实施例中,所述反馈信息也可以不包括所述预编码矩阵,所述发射端100可通过所述接收端反馈的信道质量自行选择所述预编码矩阵的信息。例如,在长期演进(Long Term Evolution,LTE)协议里面,定义了多组预编码矩阵,所述发射端100可根据所述信道质量从所述LTE协议里面选择所需的预编码矩阵。
105,将所述发射端的发射模式设置为所述接收端反馈的发射模式。
在本发明实施例中,所述接收端200产生一个宽波束,并在所述宽波束上加载所述反馈信息,所述发射端的M个窄波束接收并联合检测所述接收端200发射的反馈信息,并根据所述反馈信息选择调制与编码方式(Modulation and Coding Scheme,MCS),完成预编码操作,并将所述发射端100的发射模式设置为所述接收端200反馈的发射模式。其中,所述接收端200反馈的发射模式可能是满足QoS的发射模式,也可能是不满足QoS需求,但是为所有发射模式中具有最优信道容量的发射模式。
106,根据所述QoS需求及所述接收端反馈的信道质量及发射模式,对所述发射端的发射模组进行传输模式选择和资源分配。
在本发明实施例中,所述发射端100根据系统的QoS需求和所述接收端200的反馈信息,进行传输模式选择和资源分配可包括如下步骤:
首先,获取所述传输信道能支持的最大传输数据流数目;
具体为,在本发明实施例中,对所述信道矩阵H进行SVD分解后,获得r个不为零的奇异值λi(1≤i≤r),其中,若所述λi的值较小,则说明与该奇异值λi对应的子信道的幅值增益较小,则用该子信道进行数据传输时,所述数据可能会被噪声湮没。所述发射端100设置一判决阈值λ0,当所述信道奇异值λi(1≤i≤r)大于或等于所述判决阈值λ0时,则表明与该奇异值对应的子信道适合进行数据传输,反之,则不适合进行数据传输。如果λi(1≤i≤r)中大于λ0的个数为K个,则说明所述传输信道最多可同时传输K路数据流。
然后,根据所述最大传输数据流数和QOS需求,选择传输模式和资源分配方案;
具体为,在本发明实施例中,所述QoS需求主要包括速率需求和误码率 需求,当所述K=1时,即所述传输信道只可传输一路数据流,此时,所述发射端100可以利用所有天线单元生成一个窄波束进行通信,即Beam forming的工作模式,其中,所述窄波束的空间指向为所述反馈的发射模式中,第一个窄波束的空间指向,如图7(a)所示。当K>1,对于通信质量要求较高的QoS需求,如图7(b)所示,可以用各路数据流传输相同的数据,即所述beam1、beam2、beam3均传输相同的数据,然后通过所述预编码矩阵将发射功率分配到beam1、beam2、beam3上,即利用多个窄波束实现了分集增益的效果。当K>1,对于速率需求较大的QoS需求,如图7(c)所示,在保证通信质量的前提下,可以用各个数据流传输不同的数据,即所述beam1、beam2、beam3传输不同的数据,通过预编码矩阵将发射功率分配到beam1、beam2、beam3上,即利用多个窄波束实现了复用增益的效果。
需要说明的是,根据上面的描述可知,本发明实施例的传输信道,可为单输入单输出(M=N=1)、多输出单输入(M>1,N=1)、单输出多输入(M=1,N>1)或者MIMO(M>1,N>1)等情况,具体的信道模式由所述QoS需求及实际计算得到的信道质量等因素决定,本发明不做具体限定。
可以理解的是,在本发明的其他实施例中,当采用其他的算法计算所述信道容量时,则本发明采用与所述算法对应的方式进行判决以获取适合数据传输的流数,本发明不做限定。
本发明实施例中,根据所述QoS需求使所述发射端100发射M个窄波束,并使所述接收端200通过产生N个宽波束接收所述M个窄波束,以形成一传输信道,通过预设的切换规则,切换所述发射端100的发射模式,并根据所述接收端200处理所述发射端100发射的M个窄波束,获得与所述发射模式对应的信道质量的信息,通过搜索获得满足所述QoS的发射模式,并反馈至所述发射端100,从而所述发射端100将其发射模式设置为所述接收端200反馈发射模式,以根据实际需要,选择进行beam forming、传输分集或传输复用。本发明通过构造一个类传输结构,并通过搜索得到一组信道质量好的传输信道,相对传统的Beam forming系统,可以获得分集或复用增益。
请一并参阅图10,图10是本发明第二实施例提供的传输无线通信方法,其至少包括如下步骤:
201,根据服务质量需求,令发射端的发射模组发射M个不同空间指向的窄波束,接收端的接收模组接收N个波束,以形成一传输信道,其中,M、N为大于或等于1的整数。
在本发明实施例中,所述发射端100及所述接收端200均为BS,并可发射或接收窄波束。
202,根据预设的切换规则切换发射模式,其中,M个窄波束的空间指向集合构成一种发射模式。
203,根据所述接收端的N个窄波束接收的信号,获得当前发射模式下的信道质量。
在本发明实施例中,所述接收端通过N个窄波束接收所述发射端的M个窄波束,从而形成一传输信道。所述传输信道的信道增益由所述发射端100的发射模式和接收端200的接收模式共同决定,且不同的发射模式和不同的接收模式形成的传输信道的信道增益各不相同,其中,所述N个窄波束的一组空间指向集合构成一种接收模式。
204,根据预设的切换规则切换所述接收端的接收模式,计算不同的发射模式与不同的接收模式形成的信道矩阵的信道质量,其中,N个窄波束的空间指向集合构成一种接收模式。
在本发明的实施例中,由于所述传输信道的信道增益由所述发射端的发射模式和接收端的接收模式共同决定,因而需要同时切换所述发射端的发射模式接接收端的接收模式,以搜索到满足QoS或具有较大信道质量的传输信道。具体为,所述接收端200预设一切换规则,并根据所述切换规则切换其接收模式,所述接收端200的接收模式的切换周期为T2,且所述T2为周期T1的预设倍数,其中,所述预设倍数为所述切换规则的个数,如假设所述发射端100具有M1个切换规则(每个规则对应一种发射模式),则T2=T1*M1,所述发射端100与所述接收端200同时进行发射模式的切换,且所述发射端100遍历一次发射模式后,所述接收端200切换一次接收模式。假设所述接收端200具有N1个切换规则(即N1个发射模式),则当所述接收端200遍历所有的接收模式后,一共生产M1*N1个传输信道,相应的,有M1*N1个信道矩阵,在本发明实施例中,可用H11表示第一发射模式与第一接收模式形成的信道矩 阵,则Hij(1≤i≤M11≤j≤N1)表示第i发射模式与第j接收模式形成的信道矩阵。
205、当所述接收端计算得到的信道质量满足所述QoS时,向所述发射端反馈满足QoS的发射模式及该发射模式下对应的信道质量信息。
具体为,
首先,当所述信道矩阵的信道质量满足所述QoS时,将满足所述QoS的接收模式设置为所述接收端的接收模式,并以此接收模式向所述发射端反馈满足QoS的发射模式及信道质量,否则,根据所述信道质量对所述信道矩阵进行排序;
在本发明实施例中,所述接收端200通过计算各个信道矩阵Hij的信道质量,并将所述信道质量与所述QoS进行对比,判断所述信道质量是否满足所述QoS,若满足,则生成满足QoS的信道质量、对应的发射模式、接收模式信息,并将所述接收端200的接收模式设置为满足QoS的接收模式后,以该接收模式向所述发射端100反馈满足QoS的信道质量及对应的发射模式。若不满足,则该信道矩阵与之前获得的信道矩阵进行排序,如根据信道容量进行排序等。
然后,当遍历所述切换规则内的所有接收模式后,未搜索到满足QoS的信道矩阵,则根据排序的结果,将所述接收端的接收模式设置为具有最大信道容量的接收模式,并以此接收模式向所述发射端反馈具有最大信道容量的发射模式及信道质量。
在本发明实施例中,当所述接收端200遍历所有的切换规则,即遍历所有的接收模式后,仍为搜索到满足QoS的信道矩阵,则所述接收端200根据排序的结果,获取具有最大信道质量的信道矩阵对应的接收模式及发射模式,并将所述接收端200的接收模式设置为最大信道质量的信道矩阵的接收模式后,以该接收模式向所述发射端100反馈最大信道质量的信道矩阵的信道质量及对应的发射模式。
需要说明的是,在本发明实施例中,所述接收端200的发射模式的切换规则与所述发射端100的发射模式的切换规则可相同,也可不同,本发明不做限定。
206,将所述发射端的发射模式设置为所述接收端反馈的发射模式。
在本发明实施例中,所述发射端100的M个窄波束接收并联合检测所述接收端200的N个窄波束上的反馈信息(N个窄波束的空间指向由步骤205获得的满足QoS的接收模式或具有最大信道容量的接收模式定义),并根据所述反馈信息选择调制与编码方式(Modulation and Coding Scheme,MCS),完成预编码操作,并将所述发射端100的发射模式设置为所述接收端200反馈的发射模式。
207,根据所述服务质量需求及所述接收端反馈的信道质量及发射模式,对所述发射端的发射模组进行传输模式选择和资源分配。
本发明实施例中,通过同时对所述发射端100的发射模式及接收端200的接收模式进行切换,从而可获得具有较大增益的传输信道,满足高QoS需求的系统。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (18)

  1. 一种无线通信系统,其特征在于,包括:
    发射端,包括具有至少两个天线单元的发射模组,发射模组根据服务质量(QoS)需求发射M个不同空间指向的窄波束,并以预设的切换规则切换发射模式,其中,所述M个窄波束的空间指向的集合构成一种发射模式;
    接收端,包括具有至少两个天线单元的接收模组,接收模组根据所述QoS接收N个波束,接收端与发射端之间形成用于传输所述M个窄波束与所述N个波束的传输信道;接收端计算不同发射模式下该传输信道的信道质量,搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,如果遍历了所有的发射模式对应的信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端;其中,M、N均为大于或等于1的整数。
  2. 根据权利要求1所述的系统,其特征在于,所述发射端包括发射控制单元,用于控制所述发射端发射的M个窄波束的空间指向;所述接收端包括接收控制单元,以控制接收N个波束传输。
  3. 根据权利要求2所述的系统,其特征在于,所述发射端还包括第一切换规则预设单元,用于设置所述切换规则,所述切换规则包括预设的切换周期,所述第一切换规则预设单元以所述预设的切换周期切换所述发射模式,所述发射控制单元根据所述发射模式控制所述发射模组发出不同空间指向的M个窄波束。
  4. 根据权利要求3所述的系统,其特征在于,所述接收端还包括处理单元,所述处理单元根据M个窄波束加载的已知序列及所述N个波束接收到的信号,计算所述传输信道的信道质量,其中,M个窄波束加载的已知序列相互正交。
  5. 根据权利要求4所述的系统,其特征在于,所述处理单元包括第一计算单元及第二计算单元,当M.所述第一计算单元根据所述已知序列及所述N个波束接收到的信号,计算与所述传输信道对应的信道矩阵的各个矩阵元,所述第二计算单元对所述信道矩阵进行SVD分解,获得所述信道矩阵的信道奇 异值,并根据所述信道奇异值计算所述传输信道的信道容量,其中,所述信道质量包括所述信道奇异值及所述信道容量。
  6. 根据权利要求5所述的系统,其特征在于,所述接收端还包括反馈单元,所述反馈单元包括判断单元、排序单元及通知单元,所述判断单元判断所述第二计算单元计算的信道质量是否满足所述QoS,若是,则所述通知单元通过所述接收控制单元向所述发射端反馈所述满足QoS的发射模式及该发射模式对应的传输信道质量;若否,则所述排序单元根据所述信道容量将当前发射模式与之前的发射模式进行排序;当经历所述第一切换规则预设单元内的所有发射模式后,若所述判断单元未搜索到满足所述QoS的发射模式,则所述通知单元将所述排序单元获得的具有最优信道容量的发射模式及该发射模式下对应的传输信道质量通过所述接收控制单元反馈至所述发射端。
  7. 根据权利要求6所述的系统,其特征在于,所述接收端还包括第二切换规则预设单元,所述第二切换规则预设单元以预设的周期切换所述接收端的接收模式,其中,所述第二切换规则预设单元的切换周期为所述第一切换规则预设单元的切换周期的预定倍数,所述预定倍数为所述第一切换规则预设单元具有的发射模式的个数,其中,N个窄波束的空间指向集合构成一种接收模式。
  8. 根据权利要求7所述的系统,其特征在于,所述发射端的不同发射模式与所述接收端的不同接收模式形成不同的传输信道;
    所述反馈单元还用于搜索满足所述QoS的传输信道,所述判断单元判断所述传输信道的信道质量是否满足所述QoS,若是,则所述通知单元将与该满足所述QoS的传输信道对应的接收模式、发射模式及信道质量发送至所述接收控制单元,所述接收控制单元将所述接收端的接收模式设置为所述通知单元发送的接收模式,并以此接收模式向所述发射端反馈发射模式及在该发射模式下的信道质量;
    若否,则所述排序单元根据信道质量对所述传输信道进行排序;
    当遍历所述第二切换规则预设单元内的所有接收模式后,所述判断单元未搜索到满足QoS的传输信道,所述通知单元根据排序的结果,将具有最优信道容量的传输信道的接收模式、发射模式及信道质量发送至所述接收控制单元,所述接收控制单元将所述接收端的接收模式设置为所述反馈单元发送的接收 模式,并以该接收模式向所述发射端反馈所述发射模式及信道质量。
  9. 根据权利要求5至8任意一项所述的系统,其特征在于,所述发射端还包括配置单元,所述配置单元包括判决单元及发射配置单元,所述判决单元设置一判决阈值,并统计所述接收端反馈的信道奇异值中大于所述判决阈值的个数,以获得所述传输信道的最大传输数据流数目,所述发射配置单元根据所述最大传输数据流数配置及所述QoS需求,为所述发射模组配置传输模式和资源分配方案。
  10. 一种无线通信方法,其特征在于,包括:
    根据服务质量需求,令发射端的发射模组发射M个不同空间指向的窄波束,接收端的接收模组接收N个波束,以形成一传输信道,其中,M、N为大于或等于1的整数;
    根据预设的切换规则切换发射模式,其中,M个窄波束的空间指向集合构成一种发射模式;
    根据所述接收端的N个波束接收的信号,获得当前发射模式下的信道质量;及
    搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,当遍历所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端。
  11. 根据权利要求10所述的方法,其特征在于,所述根据预设的切换规则切换发射模式,包括:
    根据所述M个窄波束加载的已知序列及所述接收端的N个宽波束接收的信号,获得当前发射模式下的信道质量。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述M个窄波束加载的已知序列及所述接收端的N个宽波束接收的信号,获得当前发射模式下的信道质量,包括:
    根据所述接收端的N个宽波束接收到的信号及所述已知序列,计算当前发射模式下的信道矩阵H;及
    对所述信道矩阵H进行SVD分解,获得所述信道矩阵H的信道奇异值,并根据所述信道奇异值,计算所述传输信道的信道容量;
    其中,所述信道质量包括信道奇异值及信道容量。
  13. 根据权利要求12所述的方法,其特征在于,所述搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,当遍历所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端,包括:
    当所述发射模式的信道质量满足所述QoS时,将满足所述QoS的发射模式及与所述发射模式对应的信道质量信息反馈至所述发射端,否则,根据所述信道质量对所述发射模式进行排序,并进入下一个发射模式搜索;及
    当遍历所述切换规则内的所有发射模式后,未搜索到满足QoS的发射模式,通过一个宽波束将排序获得的具有最优信道容量的发射模式及对应的信道质量反馈至所述发射端。
  14. 根据权利要求10所述的方法,其特征在于,所述根据所述接收端的N个波束接收的信号,获得当前发射模式下的信道质量,还包括:
    根据所述M个窄波束加载的已知序列及所述接收端的N个窄波束接收的信号,获得当前发射模式下的信道质量。
  15. 根据权利要求14所述的方法,其特征在于,在根据所述M个窄波束加载的已知序列及所述接收端的N个窄波束接收的信号,获得当前发射模式下的信道质量之后,还包括:
    根据预设的切换规则切换所述接收端的接收模式,计算不同的发射模式与不同的接收模式形成的信道矩阵的信道质量,其中,N个窄波束的空间指向集合构成一种接收模式;
    所述搜寻满足所述QoS需求的发射模式并将该发射模式反馈至发射端,如果遍历了所有的发射模式对应的传输信道质量,找不到满足QOS需求的发射模式,则将信道质量最优的发射模式反馈至发射端,包括:
    当所述信道矩阵的信道质量满足所述QoS时,将满足所述QoS的接收模式设置为所述接收端的接收模式,并以此接收模式向所述发射端反馈满足QoS的发射模式及信道质量,否则,根据所述信道质量对所述信道矩阵进行排序;及
    当遍历所述切换规则内的所有接收模式后,未搜索到满足QoS的传输信 道,则根据排序的结果获得具有最大信道质量的接收模式和发射模式组合,并将所述接收端的接收模式设置为具有最大信道容量的接收模式,并以此接收模式向所述发射端反馈具有最优信道质量的发射模式及信道质量。
  16. 根据权利要求10至15所述的方法,其特征在于,在所述当所述接收端计算得到的信道质量满足所述服务质量时,向所述发射端反馈该满足服务质量的信道质量及发射模式之后,还包括:
    将所述发射端的发射模式设置为所述接收端反馈的发射模式。
  17. 根据权利要求16所述的方法,其特征在于,在将所述发射端的发射模式设置为所述接收端反馈的发射模式之后,还包括:
    根据所述服务质量需求及所述接收端反馈的信道质量及发射模式,对所述发射端的发射模组进行传输模式选择和资源分配。
  18. 根据权利要求17所述的无线通信方法,其特征在于,所述根据所述服务质量需求及所述接收端反馈的信道质量及发射模式,对所述发射端的发射模组进行传输模式选择和资源分配包括:
    获取所述传输信道能支持的最大传输数据流数目;及
    根据所述最大传输数据流数和QoS需求,选择传输模式和资源分配方案。
PCT/CN2014/088819 2014-10-17 2014-10-17 无线通信方法及系统 WO2016058179A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14904007.3A EP3182610B1 (en) 2014-10-17 2014-10-17 Wireless communication method and system
PCT/CN2014/088819 WO2016058179A1 (zh) 2014-10-17 2014-10-17 无线通信方法及系统
CN201480081619.8A CN106716857B (zh) 2014-10-17 2014-10-17 无线通信方法及系统
KR1020177009382A KR20170048583A (ko) 2014-10-17 2014-10-17 무선 통신 방법 및 시스템
JP2017519642A JP2017536025A (ja) 2014-10-17 2014-10-17 無線通信方法およびシステム
US15/469,028 US10313895B2 (en) 2014-10-17 2017-03-24 Wireless communications method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088819 WO2016058179A1 (zh) 2014-10-17 2014-10-17 无线通信方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/469,028 Continuation US10313895B2 (en) 2014-10-17 2017-03-24 Wireless communications method and system

Publications (1)

Publication Number Publication Date
WO2016058179A1 true WO2016058179A1 (zh) 2016-04-21

Family

ID=55745989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088819 WO2016058179A1 (zh) 2014-10-17 2014-10-17 无线通信方法及系统

Country Status (6)

Country Link
US (1) US10313895B2 (zh)
EP (1) EP3182610B1 (zh)
JP (1) JP2017536025A (zh)
KR (1) KR20170048583A (zh)
CN (1) CN106716857B (zh)
WO (1) WO2016058179A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076983A1 (zh) * 2016-10-27 2018-05-03 中国移动通信有限公司研究院 下行波束处理方法、装置、通信设备及计算机存储介质
JP2018207172A (ja) * 2017-05-30 2018-12-27 株式会社東芝 アンテナ配置決定装置、アンテナ配置決定方法および無線通信装置
JP2021052407A (ja) * 2020-12-03 2021-04-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
CN113115336A (zh) * 2021-04-09 2021-07-13 英华达(上海)科技有限公司 基于负载调谐器的无线通讯优化方法及优化系统
US11616612B2 (en) 2016-06-03 2023-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting data

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123060A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US10419138B2 (en) * 2017-12-22 2019-09-17 At&T Intellectual Property I, L.P. Radio-based channel sounding using phased array antennas
KR102112421B1 (ko) * 2018-12-12 2020-05-18 한국과학기술원 가시선 다중 입력 다중 출력 통신 시스템의 채널 추정 방법 및 그 장치
CN111698008B (zh) * 2019-03-15 2022-02-11 华为技术有限公司 生成波束的方法和装置
CN112752274B (zh) * 2019-10-29 2022-08-19 上海华为技术有限公司 波束切换方法以及波束切换装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127550A (zh) * 2006-08-16 2008-02-20 华为技术有限公司 一种确定发射天线的方法和系统
CN101166047A (zh) * 2006-10-17 2008-04-23 中国科学院上海微系统与信息技术研究所 利用信道几何均值分解的多天线通信系统的发送装置、接收装置、发送方法及接收方法
WO2010078193A2 (en) * 2008-12-31 2010-07-08 Intel Corporation Arrangements for beam refinement in a wireless network
CN102318220A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 用于多天线发射的终端的操作

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW595857U (en) * 2001-11-29 2004-06-21 Us 091219345
US8130855B2 (en) 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US9179319B2 (en) * 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
CN101064545B (zh) * 2006-04-30 2010-08-18 中兴通讯股份有限公司 一种基于等价信息量的传输模式切换方法
CA2660945C (en) 2006-08-17 2013-05-28 Interdigital Technology Corporation Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system
CN101662764B (zh) * 2008-08-29 2011-12-28 联想(北京)有限公司 发射侦听参考信号的方法和系统
JP5853764B2 (ja) 2012-02-28 2016-02-09 富士通株式会社 無線装置および無線通信システム
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
US9814037B2 (en) * 2013-06-28 2017-11-07 Intel Corporation Method for efficient channel estimation and beamforming in FDD system by exploiting uplink-downlink correspondence
KR102109918B1 (ko) * 2015-06-15 2020-05-12 삼성전자주식회사 무선 통신 시스템에서 안테나 어레이를 사용한 빔포밍 장치 및 방법
US10009073B2 (en) * 2016-03-15 2018-06-26 Mediatek Inc. System for acquiring channel knowledge and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127550A (zh) * 2006-08-16 2008-02-20 华为技术有限公司 一种确定发射天线的方法和系统
CN101166047A (zh) * 2006-10-17 2008-04-23 中国科学院上海微系统与信息技术研究所 利用信道几何均值分解的多天线通信系统的发送装置、接收装置、发送方法及接收方法
WO2010078193A2 (en) * 2008-12-31 2010-07-08 Intel Corporation Arrangements for beam refinement in a wireless network
CN102318220A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 用于多天线发射的终端的操作

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182610A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616612B2 (en) 2016-06-03 2023-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting data
WO2018076983A1 (zh) * 2016-10-27 2018-05-03 中国移动通信有限公司研究院 下行波束处理方法、装置、通信设备及计算机存储介质
JP2018207172A (ja) * 2017-05-30 2018-12-27 株式会社東芝 アンテナ配置決定装置、アンテナ配置決定方法および無線通信装置
JP2021052407A (ja) * 2020-12-03 2021-04-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
JP7182591B2 (ja) 2020-12-03 2022-12-02 オッポ広東移動通信有限公司 データ伝送方法及び装置
CN113115336A (zh) * 2021-04-09 2021-07-13 英华达(上海)科技有限公司 基于负载调谐器的无线通讯优化方法及优化系统
CN113115336B (zh) * 2021-04-09 2022-12-13 英华达(上海)科技有限公司 基于负载调谐器的无线通讯优化方法及优化系统

Also Published As

Publication number Publication date
CN106716857B (zh) 2020-04-03
KR20170048583A (ko) 2017-05-08
US20170195894A1 (en) 2017-07-06
JP2017536025A (ja) 2017-11-30
EP3182610A1 (en) 2017-06-21
EP3182610A4 (en) 2017-09-06
EP3182610B1 (en) 2019-09-11
US10313895B2 (en) 2019-06-04
CN106716857A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016058179A1 (zh) 无线通信方法及系统
EP3616433B1 (en) Method for beam management for wireless communication system with beamforming
CN103259576B (zh) 在移动蜂窝网络中分配预编码矢量的方法及装置
CN108024268B (zh) 一种传输配置方法、传输配置确定方法、基站和终端
KR101146060B1 (ko) Mimo 시스템들에서 피드백을 사용한 멀티-레졸루션 빔형성을 이용하는 통신 방법 및 장치
KR101460549B1 (ko) 기지국에서 안테나들을 선택하기 위한 방법 및 디바이스
US8145248B2 (en) Apparatus and method for uplink beamforming and Space-Division Multiple Access (SDMA) in Multiple Input Multiple Output (MIMO) wireless communication systems
CN108401264B (zh) 一种波束信息反馈方法及装置
CN108400803B (zh) 一种信道信息反馈及接收方法、装置
US10033444B2 (en) Systems and methods of beam training for hybrid beamforming
KR102100147B1 (ko) 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
US20180198511A1 (en) System and Method for Hierarchal Beamforming and Rank Adaptation for Hybrid Antenna Architecture
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
US20130172002A1 (en) Beamforming method and apparatus for acquiring transmission beam diversity in a wireless communication system
WO2016141796A1 (zh) 信道状态信息的测量和反馈方法及发送端和接收端
KR20170075768A (ko) 고주파 무선 네트워크를 위한 효율적인 빔 스캐닝
KR20140000174A (ko) 무선 통신 시스템에서 빔포밍을 이용한 통신 방법 및 장치
JP2018117274A (ja) 無線基地局、無線通信システム、無線通信方法、及び無線端末
WO2017181388A1 (zh) 一种波束追踪的方法、设备及系统
JP3866118B2 (ja) 空間分割多重アクセス装置、適応アレーアンテナ基地局、端末およびその制御方法
CN107888262B (zh) 通信信道的反馈方法、传输方法、信令传输方法和对应装置
KR20130141941A (ko) 다중셀 협력통신 시스템에서 협력적 신호 전송 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904007

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014904007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014904007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009382

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017519642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE