WO2017181388A1 - 一种波束追踪的方法、设备及系统 - Google Patents

一种波束追踪的方法、设备及系统 Download PDF

Info

Publication number
WO2017181388A1
WO2017181388A1 PCT/CN2016/079891 CN2016079891W WO2017181388A1 WO 2017181388 A1 WO2017181388 A1 WO 2017181388A1 CN 2016079891 W CN2016079891 W CN 2016079891W WO 2017181388 A1 WO2017181388 A1 WO 2017181388A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
sta
mimo
mimo link
backup
Prior art date
Application number
PCT/CN2016/079891
Other languages
English (en)
French (fr)
Inventor
李德建
刘劲楠
张永平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680078603.0A priority Critical patent/CN108476422B/zh
Priority to PCT/CN2016/079891 priority patent/WO2017181388A1/zh
Publication of WO2017181388A1 publication Critical patent/WO2017181388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a beam tracking method, device and system.
  • the 60 GHz band wireless communication technology belongs to the millimeter wave communication technology.
  • MIMO Multiple-Input Multiple-Output
  • an antenna array capable of generating multiple co-polarized beams or an antenna array capable of generating dual-polarized beams may be used.
  • multiple antenna arrays are employed to generate multiple analog domain beams.
  • the MIMO link may be established by beamforming training between the transmitting and receiving antenna arrays, wherein the MIMO link includes multiple beam links, that is, one between each transmitting antenna array and each receiving array A beam link, a plurality of beam links between all transmit antenna arrays and all receive antenna arrays constitutes a MIMO link.
  • STA1 is a transmitting end
  • STA2 is a receiving end
  • a MIMO link between STA1 and STA2 includes two beam links (beam link 1 and beam link 2), wherein beam link 2 is After occlusion, the prior art adjusts the occluded beam link 2 to an unoccluded beam link, and adopts a stepwise adjustment of the transmit beam of STA1 and the receive beam of STA2, that is, the first step is to maintain STA1.
  • AWV is unchanged, that is, STA1 in beam link 2 is maintained.
  • the training sequence is sent in the direction of the transmit beam, so that STA2 adjusts the direction of the receive beam in STA2 in the range of the adjacent beam of the current receive beam according to the received transmit training sequence.
  • the second step keeps the AWV of STA2 unchanged, that is, keeps the beam.
  • the direction of the receive beam of STA2 in link 2 is unchanged, and the direction of the transmit beam in STA1 is adjusted within the range of the adjacent beam of the current transmit beam of STA1.
  • the beam tracking for adjusting the transmit beam or the receive beam respectively adjusts the AWV in the adjacent beam range of the current transmit/receive beam to re-establish a new beam link, and only supports the current beam chain.
  • the path is optimized within a small azimuth range adjacent to each other. If the transmitting end and the receiving end use a large-scale antenna array consisting of a larger number of antenna elements, the beam is narrower and needs to satisfy the transmitting beam in the beam tracking process.
  • the alignment with the receiving beam causes a small adjustment range of the transmitting/receiving beam, which tends to cause the beam tracking to be very slow and cannot establish a new beam link for the data transmission in time, thereby causing the link quality to be degraded or even interrupted.
  • the embodiment of the invention provides a method, a device and a system for beam tracking, which are used to solve the problem that the beam tracking in the prior art is very slow and cannot establish a new beam link in time for data transmission.
  • a method of beam tracking comprising:
  • the first STA sends a MIMO link measurement request to the second STA, where the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; then, the first STA is in each backup that needs to be measured
  • the training sequence sent by the second STA is respectively received on the MIMO link to obtain the link quality of each backup MIMO link that needs to be measured; and the first STA selects a backup MIMO chain according to the link quality of each backup MIMO link.
  • the MIMO link switching indication information is sent to the second STA through the current MIMO link, and is switched to the beam combination corresponding to the target MIMO link, and the MIMO link switching indication information carries the target.
  • the information of the MIMO link is used to indicate that the second STA switches to a beam combination corresponding to the target MIMO link.
  • the first STA can obtain the link quality of each backup MIMO link that needs to be measured by parsing the training sequence sent by the second STA, select a target MIMO link based on the link quality, and then send the MIMO link to the second STA.
  • the switching indication information is switched to the beam combination corresponding to the target MIMO link, so that the current MIMO link is directly switched to the target MIMO link, which not only ensures communication quality, but also avoids direct direct MIMO link switching.
  • the training sequence sent by the second STA is received on the current MIMO link, and the link of the current MIMO link is obtained.
  • the MIMO link handover indication information is transmitted to the second STA through the current MIMO link.
  • the first STA sends the MIMO link handover indication information to the second STA after determining that the link quality of the target MIMO link is better than the link quality of the current MIMO link, thereby ensuring the target MIMO link after the handover.
  • the link quality is better than the link quality of the current MIMO link, improving the quality of communication.
  • the first STA continues to maintain the beam combination corresponding to the current MIMO link when the link quality of the current MIMO link is better than the link quality of the selected target MIMO link. And transmitting, by the current MIMO link, MIMO link hold indication information to the second STA, to indicate that the second STA continues to remain on the beam combination corresponding to the current MIMO link.
  • the first STA After determining that the link quality of the current MIMO link is better than the link quality of the target MIMO link, the first STA sends the MIMO link hold indication information to the second STA, and continues to communicate on the current MIMO link, thereby The data of the communication can be transmitted on a MIMO link with a high link quality.
  • the first STA after transmitting the MIMO link switching indication information to the second STA, receives the acknowledgement information for the MIMO link switching indication information sent by the second STA, and switches to the The beam combination corresponding to the target MIMO link.
  • the first STA can receive the acknowledgment information for the MIMO link handover indication information sent by the second STA, so that the first STA can determine that the second STA receives the MIMO link handover indication information, ensuring that the second STA can switch to the MIMO chain.
  • the first STA is prevented from switching to the target MIMO link, and the second STA does not receive the MIMO link handover indication information, but the MIMO link is not switched, resulting in MIMO.
  • the interruption of the link is performed by the second STA, so that the first STA can determine that the second STA receives the MIMO link handover indication information, ensuring that the second STA can switch to the MIMO chain.
  • the first STA selects a backup MIMO link with the highest link quality as the target MIMO link.
  • the backup MIMO link with the highest link quality selected by the first STA serves as the target MIMO link, the communication quality between the first STA and the second STA is improved.
  • each MIMO link includes at least one beam link
  • the first STA detects that the quality of the at least one beam link in the current MIMO link decreases; or, first After detecting that the current MIMO link quality is degraded, the STA sends the MIMO link measurement request to the second STA.
  • Transmitting the current MIMO link to a higher link quality by transmitting a MIMO link measurement request to the second STA after the quality of the at least one beam link in the current MIMO link is degraded or the quality of the current MIMO link is degraded
  • the target MIMO link not only the link quality of the MIMO link for communication but also the direct switching of the overall MIMO link can be quickly performed.
  • the MIMO link measurement request is MIMO link tracking request information, where the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured;
  • the STA receives the training sequence sent by the second STA on the N backup MIMO links that need to be measured.
  • the first STA can be configured to measure all backup MIMO links between the first STA and the second STA, thereby improving measurement backup. Measurement efficiency of MIMO links.
  • the MIMO link measurement request includes: a number of each backup MIMO link that needs to be measured, and/or a measurement order of each backup MIMO link;
  • the first STA receives the training sequence sent by the second STA on the backup MIMO link corresponding to the number of each backup MIMO link that needs to be measured, according to the order of each backup MIMO link that needs to be measured.
  • the accuracy of the measurement of the backup MIMO link can be improved by being able to carry the number of backup MIMO links to be measured and/or the measurement order of each backup MIMO link in the MIMO link measurement request.
  • the MIMO link measurement request further includes: a total length value of the training sequence of the backup MIMO link that needs to be measured; the training sequence includes: an AGC subfield and a TRN subfield; the first STA A total number of target AGC subfields and TRN subfields are respectively received on each backup MIMO link that needs to be measured, where the target number is a total length value of the training sequence of the backup MIMO link measured according to needs. And the number of backup MIMO links that need to be measured.
  • the MIMO link measurement request includes: a length value of a training sequence of each backup MIMO link that needs to be measured; the training sequence includes: an AGC subfield and a TRN subfield; and the first STA Receiving an AGC subfield and a TRN subfield respectively on each backup MIMO link that needs to be measured, wherein the total number of AGC subfields and TRN subfields received on each backup MIMO link that needs to be measured is as needed
  • the length value of the training sequence of the measured MIMO link is determined.
  • the first STA determines, in each backup MIMO link that needs to be measured, a backup MIMO link that actually needs to be measured, where the backup MIMO link that actually needs to be measured is the second STA. Sending a backup MIMO link for the response of the MIMO link measurement request; then, the first STA respectively receives the second STA according to the MIMO link measurement request on each backup MIMO link that actually needs to be measured The training sequence sent.
  • the first STA can determine the backup MIMO link that actually needs to be measured in each backup MIMO link that needs to be measured, the accuracy of the backup MIMO link measurement is improved while the efficiency of the backup MIMO link measurement is improved.
  • the first STA receives the BRP packet sent by the second STA, where the at least one field and/or element in the BRP packet includes a response to the MIMO link measurement request:
  • Beam optimization element of BRP packet EDMG beam optimization element, PHY Header field, PHY EDMG-Header field.
  • the first STA carries the MIMO link measurement request and/or the MIMO link handover indication information in the at least one field and/or element of the BRP packet to be sent to the second STA.
  • Beam optimization element of BRP packet EDMG beam optimization element, PHY Header field, PHY E-Header field.
  • the first STA selects the target MIMO link, determining a modulation and coding policy MCS corresponding to the target MIMO link, and/or determining channel state information corresponding to the target MIMO link.
  • the MIMO link switching indication information sent by the first STA to the second STA further carries MCS and/or channel state information.
  • the first STA selects the target MIMO link, it is also required to determine an MCS corresponding to the target MIMO link, and/or channel state information corresponding to the target MIMO link, and send the information to the second STA, thereby causing the second STA to
  • the data can be transmitted to the first STA according to the MCS corresponding to the target MIMO link and/or the channel state information corresponding to the target MIMO link, thereby ensuring the accuracy of data transmission.
  • the first STA selects, by using beamforming training in the SLS phase and/or the BRP phase, multiple MIMO links whose link quality with the second STA exceeds a set threshold; And transmitting, to the second STA, the information of the selected MIMO link and the ranking result of sorting the information of the selected MIMO link based on the selected link quality of each MIMO link; wherein, the current MIMO link is The MIMO link with the highest link quality in the selected MIMO link, The backup MIMO link is a MIMO link in the selected MIMO link other than the current MIMO link. Then, the first STA transmits a MIMO link measurement request to the second STA.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the receive beam included in the backup MIMO link that needs to be measured.
  • a method of beam tracking including:
  • the second STA receives the MIMO link measurement request sent by the first STA, where the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; then, the second STA needs to measure at each
  • the MIMO link switching request indication information sent by the first STA is received by the second STA by using the current MIMO link, and the MIMO link switching indication information is used to indicate the second STA switching.
  • the target MIMO link is a MIMO link selected by the first STA according to the link quality of each backup MIMO link, and the link quality of each backup MIMO link is the first STA. Obtained according to the training sequence received on each backup MIMO link; finally, the second STA switches to the beam combination corresponding to the target MIMO link.
  • the training sequence can be sent to the first STA on each backup MIMO link that needs to be measured, so that the first STA can parse the second STA.
  • Sending the training sequence obtaining the link quality of each backup MIMO link that needs to be measured, and selecting the target MIMO link based on the link quality, and then transmitting the MIMO link switching indication information to the second STA, thereby enabling the second STA to Switching to the beam combination corresponding to the target MIMO link, thus directly switching the current MIMO link directly to the target MIMO link, not only ensuring communication quality, but also avoiding the prior art by direct direct overall MIMO link switching The problem of link interruption due to slow beam tracking due to beam tracking in a small angular range.
  • the second STA after receiving the MIMO link measurement request sent by the first STA, the second STA sends a training sequence to the first STA on the current MIMO link, and then receives the first STA. MIMO link switching request indication information.
  • the second STA can send the training sequence to the first STA on the current MIMO link, so that the first STA can parse the training sequence received through the current MIMO link, the link quality of the current MIMO link is obtained, and thus the first After the STA determines that the link quality of the target MIMO link is better than the link quality of the current MIMO link, the first STA sends the MIMO link handover indication information to the second STA, thereby ensuring the chain of the target MIMO link after the handover.
  • the road quality is better than the link quality of the current MIMO link, improving the quality of communication.
  • the second STA receives, by using the current MIMO link, the MIMO link that is sent by the first STA when the link quality of the current MIMO link is higher than the link quality of the target MIMO link. Indicating information; then, the second STA continues to remain on the beam combination corresponding to the current MIMO link.
  • the first STA transmits the MIMO link hold indication information to the second STA after determining that the link quality of the current MIMO link is better than the link quality of the target MIMO link, so that the second STA can continue to remain in the current MIMO chain. Communication takes place on the road so that the communicated data can be transmitted over a MIMO link with a high link quality.
  • the second STA after receiving the MIMO link handover request indication information sent by the first STA, the second STA sends the acknowledgement information for the MIMO link handover indication information to the first STA.
  • the second STA can send the acknowledgement information for the MIMO link handover indication information to the first STA, enabling the first STA to determine that the second STA receives the MIMO link handover indication information, ensuring that the second STA can switch to the MIMO link On the MIMO link indicated by the handover indication information, after the first STA fails to receive the MIMO link handover indication information, the second STA does not perform the MIMO link handover after the handover to the target MIMO link, resulting in the MIMO chain. The interruption of the road.
  • the target MIMO link is a backup MIMO link with the highest link quality.
  • the target MIMO link is the backup MIMO link with the highest link quality, the communication quality between the first STA and the second STA is improved.
  • the MIMO link measurement request is MIMO link tracking.
  • Request information the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured; the second STA selects N backup MIMO links to be measured, and selects N backup MIMO links to be measured.
  • the training sequence is sent to the first STA respectively.
  • the second STA can be configured to separately send the training sequence on all the backup MIMO links between the first STA and the second STA, and thus Improve the measurement efficiency of measuring backup MIMO links.
  • the MIMO link measurement request includes: a number of each backup MIMO link that needs to be measured, and/or a measurement order of each backup MIMO link; and the second STA needs to measure
  • a training sequence is sent to the first STA respectively on the backup MIMO link corresponding to the number of each backup MIMO link; or the second STA is sequentially in each backup MIMO chain according to the order of each backup MIMO link to be measured.
  • a STA sends a training sequence.
  • the accuracy of the measurement of the backup MIMO link can be improved by being able to carry the number of backup MIMO links to be measured and/or the measurement order of each backup MIMO link in the MIMO link measurement request.
  • the MIMO link measurement request further includes: a total length value of the training sequence of the backup MIMO link that needs to be measured; the training sequence includes: an AGC subfield and a TRN subfield; and the second STA Sending, on each backup MIMO link that needs to be measured, a total number of target AGC subfields and TRN subfields to the first STA, where the target number is a training sequence of the backup MIMO link according to need to be measured.
  • the total length value is determined by the number of backup MIMO links that need to be measured.
  • the MIMO link measurement request includes: a length value of a training sequence of each backup MIMO link that needs to be measured; the training sequence includes: an AGC subfield and a TRN subfield; and the second STA An AGC subfield and a TRN subfield are respectively sent to the first STA on each backup MIMO link that needs to be measured, wherein each backup MIMO link that needs to be measured
  • the total number of AGC subfields and TRN subfields transmitted on the second STA is determined by the second STA according to the length value of the training sequence of each MIMO link that needs to be measured.
  • the second STA determines, in each backup MIMO link that needs to be measured, a backup MIMO link that actually needs to be measured; and the second STA determines the determined backup MIMO that actually needs to be measured.
  • a response to the MIMO link measurement request is sent to the first STA on the link, and then the second STA sends a training sequence to the first STA on each backup MIMO link.
  • the second STA can send the determined backup MIMO link that actually needs to be measured to the first STA, so that the first STA can determine the backup MIMO link that actually needs to be measured in each backup MIMO link that needs to be measured, so The accuracy of the backup MIMO link measurement is also improved, and the efficiency of the backup MIMO link measurement is improved.
  • the second STA sends a BRP packet to the first STA, where the at least one field and/or element in the BRP packet includes a response to the MIMO link measurement request: BRP Packet beam optimization element, EDMG beam optimization element, PHY Header field, PHY EDMG-Header field.
  • the MIMO link measurement request and/or the MIMO link handover indication information received by the second STA and the acknowledgement information for transmitting the MIMO link handover indication information are carried in the beam optimization protocol BRP packet.
  • the MIMO link switching indication information further carries MCS and/or channel state information of the target MIMO link; after the second STA switches to the beam combination corresponding to the target MIMO link, The second STA transmits data to the first STA based on the channel state information of the MCS and/or the target MIMO link on the beam combination corresponding to the target MIMO link.
  • the first STA Since the first STA carries the MCS corresponding to the target MIMO link and/or the channel state information corresponding to the target MIMO link in the MIMO link switching indication information, the first STA is sent to the second STA, thereby enabling the second STA to enable the second STA to Transmitting data to the first STA according to the MCS corresponding to the target MIMO link and/or the channel state information corresponding to the target MIMO link, ensuring data transmission The accuracy.
  • the second STA receives the information of the multiple MIMO links sent by the first STA and the ranking result of the multiple MIMO links; where the information of the multiple MIMO links is the first The information of the plurality of MIMO links whose link quality exceeds the set threshold between the STA and the second STA, and the ranking result of the multiple MIMO links is a sort result obtained by sorting the plurality of MIMO links based on the link quality; Then, the second STA determines, according to the information of the multiple MIMO links and the ranking result of the multiple MIMO links, that the current MIMO link is the MIMO link with the highest link quality among the multiple MIMO links, and the backup MIMO link A MIMO link other than the current MIMO link among multiple MIMO links. Then, the second STA receives the MIMO link measurement request sent by the first STA.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the transmit beam included in the backup MIMO link that needs to be measured.
  • a method of beam tracking including:
  • the first STA After confirming that the quality of the at least one beam link in the current MIMO link is detected, the first STA sends beam tracking indication information to the second STA, where the beam tracking indication information includes at least one beam link with reduced quality Corresponding antenna number ID, used to instruct the second STA to perform beam tracing on the antenna indicated by the antenna ID, and each beam link whose quality is degraded is not interfered by other beam links in the current MIMO link, respectively.
  • Beam link Beam link.
  • the beam tracking indication information sent by the first STA to the second STA includes at least one antenna ID corresponding to the beam link with the reduced quality, and is used to instruct the second STA to perform beam tracking on the antenna indicated by the antenna ID. So that the second STA can quickly find the antenna for beam tracking and perform beam tracking.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA, so that the second STA is configured according to the restricted sector ID. Avoid beam tracking on the sector corresponding to the restricted sector ID.
  • the beam tracking indication information can also indicate a restricted sector ID in the second STA, thereby The second STA avoids beam tracking on the restricted sector ID, causing interference to other beam links in the current MIMO link.
  • the restricted sector ID is determined by: the first STA determining, by beamforming training, a sector ID corresponding to the second STA The sector interferes with at least one beam link of the current MIMO link, and the sector ID is marked as a restricted sector ID.
  • a method of beam tracking including:
  • the second STA receives the beam tracking indication information from the first STA, where the beam tracking indication information includes an antenna number ID corresponding to the at least one quality-reduced beam link, and is used to indicate the antenna indicated by the second STA to the antenna ID. Beam tracking is performed, each beam link of the quality degradation being a beam link that is not interfered by other beam links in the current multiple input multiple output MIMO link;
  • the second STA performs beam tracking on the antenna indicated by the antenna ID.
  • the beam tracking indication information sent by the first STA that is received by the second STA includes at least one antenna ID corresponding to the beam link with the lower quality, and the second STA is instructed to perform beam tracking on the antenna indicated by the antenna ID.
  • the second STA can quickly find the antenna for beam tracking and perform beam tracking.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA; the second STA corresponds to the restricted sector ID. Other sectors than the sector perform beam tracking on the antenna indicated by the antenna ID.
  • the beam tracking indication information can also indicate the restricted sector ID in the second STA, so that the second STA avoids beam tracking on the restricted sector ID, causing interference to other beam links in the current MIMO link .
  • the restricted sector ID is corresponding to a sector of the second STA that interferes with at least one beam link of the current MIMO link.
  • Sector ID is a sector of the second STA that interferes with at least one beam link of the current MIMO link.
  • the fifth aspect provides a device for beam tracking, including: a sending module, a receiving module, and a processing module, where the sending module is configured to send a multiple input multiple MIMO link measurement to the second STA. Determining that the MIMO link measurement request is for requesting the second STA to send a training sequence for MIMO link measurement; and the receiving module is configured to separately receive the second STA on each backup MIMO link that needs to be measured Sending a training sequence; the processing module is configured to obtain, according to the received training column, a link quality of each backup MIMO link that needs to be measured; and select a backup MIMO according to a link quality of each backup MIMO link a link is used as a target MIMO link; the sending module is further configured to send, by using a current MIMO link, MIMO link handover indication information, where the MIMO link handover indication information carries the target MIMO link The information is used to indicate that the second STA switches to a beam combination corresponding to the target MIMO link; and the processing module is further configured to switch to
  • the receiving module is further configured to: after the sending module sends a MIMO link measurement request to the second STA by using the current MIMO link, on the current MIMO link.
  • the processing module is specifically configured to: select a backup MIMO link with the highest link quality as the target MIMO link.
  • the processing module is further configured to: before the sending module sends the MIMO link measurement request to the second STA by using a current MIMO link, detecting the current Detecting a decrease in quality of at least one beam link in the MIMO link; or detecting that the current MIMO link quality is degraded before the transmitting module transmits the MIMO link measurement request to the second STA through the current MIMO link .
  • the MIMO link measurement request is MIMO link tracking request information
  • the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured
  • the receiving module is specifically configured to: respectively receive, on the N backup MIMO links that need to be measured, a training sequence sent by the second STA.
  • the MIMO link measurement request includes: The number of each backup MIMO link, and/or the measurement order of each backup MIMO link;
  • the receiving module is specifically configured to: respectively receive a training sequence sent by the second STA on each backup MIMO link corresponding to the number of each backup MIMO link; or, according to the sequence of each backup MIMO link that needs to be measured Receiving, in sequence, the training sequence sent by the second STA on each backup MIMO link; or, in sequence, for each backup MIMO link that needs to be measured, in turn, corresponding to the number of each backup MIMO link that needs to be measured The training sequence sent by the second STA is received on the backup MIMO link.
  • the MIMO link measurement request further includes: a total length value of a training sequence of the backup MIMO link that needs to be measured; the training sequence includes: an automatic gain control AGC field and training a sequence TRN field; the receiving module is configured to receive, on each backup MIMO link that needs to be measured, a total number of target AGC subfields and TRN subfields, where the target number is based on The total length value of the training sequence of the backup MIMO link that needs to be measured and the number of backup MIMO links that need to be measured are determined.
  • the sending module is specifically configured to carry the MIMO link measurement request and/or the MIMO link switching indication information in at least one of the following fields of the BRP packet and/or Or element sent to the second STA: a beam optimization element of the BRP packet, an EDMG beam optimization element, a physical PHY header Header field, an enhanced PHY header E-Header field.
  • the processing module is further configured to: after selecting the target MIMO link, determine a modulation and coding policy MCS corresponding to the target MIMO link, and/or determine and The channel state information corresponding to the target MIMO link, wherein the MIMO link switching indication information sent by the sending module to the second STA further carries the MCS and/or the channel state information.
  • the processing module is further configured to: before the sending module sends the MIMO link measurement request to the second STA, by using a sector-level scanning SLS phase and/or Or beamforming training of the beam optimization protocol BRP phase, selecting a plurality of MIMO links with a link quality between the second STA exceeding a set threshold; the transmitting module, and a MIMO link for selecting the MIMO link Information, and sorting selected MIMO links based on link quality Sorting the result, and sending the result to the second STA; wherein the current MIMO link is the MIMO link with the highest link quality in the selected MIMO link, and the backup MIMO link is the selected MIMO link except the current MIMO chain A MIMO link outside the road.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the receive beam included in the backup MIMO link that needs to be measured.
  • the sixth aspect provides a device for beam tracking, including: a receiving module, a sending module, and a processing module, where the receiving module is configured to receive a multiple input multiple output MIMO link measurement request sent by the first STA, where the MIMO The link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; the sending module is configured to separately send a training sequence to the first STA on each backup MIMO link that needs to be measured; The receiving module is further configured to receive the MIMO link handover request indication information sent by the first STA by using a current MIMO link, where the MIMO link handover indication information is used to indicate that the second STA switches to a target MIMO link.
  • the target MIMO link is a MIMO link selected by the first STA according to a link quality of each backup MIMO link, and a link quality of each backup MIMO link is the A STA is respectively obtained according to a training sequence received on each backup MIMO link; and a processing module is configured to switch to a beam combination corresponding to the target MIMO link.
  • the sending module is further configured to: after receiving the MIMO link measurement request sent by the first STA by using a current MIMO link, for the current MIMO link, Sending a training sequence to the first STA on the current MIMO link.
  • the target MIMO link is a backup MIMO link with the highest link quality.
  • the MIMO link measurement request is MIMO link tracking request information, and the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured;
  • the processing module is further configured to select N backup MIMO links that need to be measured;
  • the sending module is specifically configured to send a training sequence to the first STA respectively on the N backup MIMO links that need to be measured.
  • the MIMO link measurement request includes: a number of each backup MIMO link that needs to be measured, and/or a measurement order of each backup MIMO link; the sending module Specifically, sending, on the backup MIMO link corresponding to the number of each backup MIMO link that needs to be measured, a training sequence to the first STA; or, in order of each backup MIMO link that needs to be measured. And sequentially transmitting a training sequence to the first STA on each backup MIMO link; or, in turn, in accordance with the order of each backup MIMO link that needs to be measured, in turn, a backup corresponding to the number of each backup MIMO link that needs to be measured A training sequence is sent to the first STA over the MIMO link.
  • the MIMO link measurement request further includes: a total length value of a training sequence of the backup MIMO link that needs to be measured; the training sequence includes: an automatic gain control AGC subfield and a training sequence TRN subfield; the sending module is specifically configured to send, to each of the first STAs, a total number of target AGC subfields and TRN subfields on each backup MIMO link that needs to be measured, where The number of targets is determined according to the total length value of the training sequence of the backup MIMO link that needs to be measured and the number of backup MIMO links that need to be measured.
  • the MIMO link measurement request and/or the MIMO link handover indication information received by the receiving module is carried in at least one of the following fields of the beam optimization protocol BRP packet and / or element: beam optimization element of the BRP packet, EDMG beam optimization element, physical PHY header Header field, enhanced PHY header E-Header field.
  • the MIMO link switching indication information further carries the MCS and/or channel state information of the target MIMO link; the sending module is specifically configured to be in the processing module. After the module switches to the beam combination corresponding to the target MIMO link, on the beam combination corresponding to the target MIMO link, based on the channel state information of the MCS and/or the target MIMO link to the first STA send data.
  • the receiving module is configured to receive multiple MIMO links sent by the first STA before receiving the MIMO link measurement request sent by the first STA.
  • Information and a ranking result of the plurality of MIMO links wherein the plurality of The information of the MIMO link is information of multiple MIMO links whose link quality exceeds a set threshold between the device and the second STA, and the information of the multiple MIMO links is ranked based on the link quality.
  • the processing module is further configured to determine a current MIMO chain according to information of the multiple MIMO links and a ranking result of the multiple MIMO links
  • the path is the MIMO link with the highest link quality among the plurality of MIMO links
  • the backup MIMO link is a MIMO link among the plurality of MIMO links except the current MIMO link.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the transmit beam included in the backup MIMO link that needs to be measured.
  • a system for beam tracking including the device according to any one of the fifth aspects of the embodiments of the present invention, and the device according to any of the sixth aspects of the embodiments of the present invention.
  • the eighth aspect provides a device for beam tracking, including: a processing module and a transceiver module, wherein the processing module is configured to confirm that the quality of at least one beam link in the current multiple input multiple output MIMO link is detected, Each of the beam links of the reduced quality is a beam link that is not interfered by other beam links in the current MIMO link, and the transceiver module is configured to send beam tracking indication information to the second STA, where the beam tracking is performed.
  • the indication information includes an antenna number ID corresponding to the at least one reduced quality beam link, and is used to instruct the second STA to perform beam tracking on the antenna indicated by the antenna ID.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA, so that the second STA is configured according to the restricted sector ID. Avoid beam tracking on the sector corresponding to the restricted sector ID.
  • the restricted sector ID is determined by:
  • the processing module by using beamforming training, determining that a sector corresponding to one sector ID of the second STA interferes with at least one beam link of the current MIMO link, and marking the sector ID Is the restricted sector ID.
  • a beam tracking device including:
  • a transceiver module configured to receive beam tracking indication information from the first STA, where the beam tracking indication information includes an antenna number ID corresponding to the at least one quality-reduced beam link, and is used to indicate that the second STA indicates the antenna ID
  • the antenna is beam-tracked, and each of the beam links whose quality is degraded is a beam link that is not interfered by other beam links in the current multiple-input multiple-output MIMO link;
  • a processing module is configured to use the antenna The antenna indicated by the ID performs beam tracking.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA; the processing module is specifically configured to be in the restricted fan The other sectors than the sector corresponding to the area ID perform beam tracking on the antenna indicated by the antenna ID.
  • the restricted sector ID is corresponding to a sector of the second STA that interferes with at least one beam link of the current MIMO link.
  • Sector ID is a sector of the second STA that interferes with at least one beam link of the current MIMO link.
  • a tenth aspect a system for beam tracking, comprising the device according to any one of the eighth aspects of the embodiments of the present invention, and the device according to any of the ninth aspects of the embodiments of the present invention.
  • FIG. 1 is a schematic diagram of occlusion of a beam link in the prior art
  • FIG. 2 is a network architecture diagram of a wireless local area network system applied to MU-MIMO technology according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for beam tracking according to an embodiment of the present invention.
  • FIG. 4a and FIG. 4b are respectively schematic diagrams of a scenario of performing beam link tracking under different trigger conditions according to the present invention.
  • 5a and 5b are respectively schematic diagrams showing the format of an EDMG beam optimization element according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a beam link tracking scenario according to an embodiment of the present invention.
  • FIG. 7a to 7d are respectively schematic diagrams showing a format of a BRP packet according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a format of a BRP packet according to an embodiment of the present invention.
  • 9a and 9b are respectively schematic diagrams showing the format of a MIMO link feedback element according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a process of beam tracking according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a process of beam tracking according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for beam tracking according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an apparatus for beam tracking according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of hardware of a device for beam tracking according to an embodiment of the present invention.
  • 15 is a schematic diagram of an apparatus for beam tracking according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of hardware of a device for beam tracking according to an embodiment of the present invention.
  • 17 is a schematic diagram of a system for beam tracking according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an apparatus for beam tracking according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of hardware of a device for beam tracking according to an embodiment of the present invention.
  • 20 is a schematic diagram of an apparatus for beam tracking according to an embodiment of the present invention.
  • 21 is a schematic structural diagram of hardware of a device for beam tracking according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a system for beam tracking according to an embodiment of the present invention.
  • the second STA is a STA that responds to beam tracking, where the STA that initiates beam tracking may be used for receiving data.
  • the STA may also be the STA that sends the data.
  • the STA that initiates the beam tracking is the STA that receives the data
  • the STA that responds to the beam tracking is the STA that sends the data. Otherwise, when the STA that initiates the beam tracking is the STA that sends the data.
  • the STA that responds to the beam tracking is the STA that receives the data.
  • the STA of the embodiment of the present invention may be an AP (Access Point, a wireless access point), a PCP (Personal Basic Service Set Control Point), or a non-AP non-PCP STA. Since the embodiment of the present invention relates to point-to-point communication, there is no need to deliberately distinguish The roles of the two parties, for example, do not need to distinguish between APs and non-AP STAs.
  • the embodiment of the present invention can be applied to a wireless local area network system using SU-MIMO (Single User Multiple Input Multiple Output) technology and multi-user multiple input multiple output (MU-MIMO).
  • SU-MIMO Single User Multiple Input Multiple Output
  • MU-MIMO multi-user multiple input multiple output
  • the configuration of some SU-MIMOs can be as shown in Table 1.
  • one phased array antenna can generate one or more beams, and the number of beams generated by each antenna is equal to the number of RF chains of the antenna, that is, one RF chain corresponds to one beam.
  • the first STA and the second STA pass the SLS (Sector-Level Sweep) phase and/or the BRP (Beam Refinement Protocol) phase.
  • SLS Vector-Level Sweep
  • BRP Beam Refinement Protocol
  • multiple MIMO links can be formed between multiple transmit antennas and multiple receive antennas by any combination of multiple transmit beams and multiple receive beams.
  • the first STA according to the link quality of the multiple MIMO links, is sorted in order from high to low, and then EDMG (Enhanced Directional Multi-Gigabit, enhanced directional multi-gigabit) beam optimization element or The MIMO link feedback element shown in FIG. 9a and FIG.
  • the MIMO link with the highest path quality is used as the current MIMO link, and other MIMO links with sub-optimal link quality are used as the backup MIMO link.
  • the MIMO link feedback element shown in FIG. 9a as an example, if the beam combination 1 field in the MIMO link feedback element corresponds to the MIMO link with the highest link quality, the beam combination 2 to the beam combination n represents the backup transmission beam combination.
  • the first STA may update the information of the highest quality MIMO link and the backup MIMO link and the ranking result of each of the above MIMO links by resending a new EDMG beam optimization element or a MIMO link feedback element to the second STA.
  • the first STA After the first STA switches to a backup MIMO link with the second STA, the first STA sends a new EDMG beam optimization element or a MIMO link feedback element to update the highest quality MIMO link and the backup MIMO chain. Road information and sorting results.
  • the second STA and the first STA should store the latest quality MIMO link and backup MIMO link information and the ranking results of the above MIMO links, thereby agreeing on the number of backup MIMO links and sorting by MIMO link quality. result.
  • the second STA is an STA for transmitting data (referred to as a transmitting STA for short)
  • a combination of transmitting beams of all transmitting antennas corresponds to one MIMO link
  • the first STA is used
  • For a STA that receives data referred to as a receiving STA for short
  • a combination of receiving beams of all receiving antennas corresponds to one MIMO link.
  • the switching of a transmitting STA or a receiving STA on different MIMO links respectively refers to switching of the overall transmitting beam combination or switching of the overall receiving beam combination, wherein the embodiment of the beam combination may also be a sector combination.
  • AWV Application Vector
  • FIG. 2 a schematic diagram of an application scenario using the MU-MIMO technology, where each sector in the second STA corresponds to a first STA (STA1, STA2), where the second STA is an STA that transmits data, and the first STA (STA1 and STA2) is an STA that receives data.
  • a method for beam tracking according to an embodiment of the present invention includes:
  • Step 300 The first STA sends a MIMO link measurement request to the second STA, where the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement.
  • the first STA transmits a MIMO link measurement request to the second STA over the current MIMO link.
  • the current MIMO link includes beam link 1 and beam link 2, and STA1 switches the current MIMO link to backup MIMO due to the deterioration of the quality of the entire MIMO link due to occlusion of beam link 2.
  • the current MIMO link includes beam link 1 and beam link 2. Since both beam link 1 and beam link 2 are occluded, the current MIMO link is also switched to the backup MIMO chain. On the road.
  • the first STA may measure the link quality of the MIMO link by using a MIMO channel capacity, a MIMO channel response in a time domain or a frequency domain, a signal energy, a signal to noise ratio, or a signal to interference and noise ratio.
  • Step 301 The second STA receives the MIMO link measurement request sent by the first STA.
  • the second STA receives the MIMO link measurement request sent by the first STA on the current MIMO link.
  • Step 302 The second STA sends a training sequence to the first STA on each backup MIMO link that needs to be measured.
  • an optional second STA sends the training sequence in a manner that the second STA sends the first STA by using multiple transmit antennas by using different polarized antennas and/or orthogonal training sequences.
  • a training sequence corresponding to the backup MIMO link in such a manner that the training sequence corresponding to the backup MIMO link is simultaneously transmitted to the first STA through the plurality of transmitting antennas.
  • the second STA determines, in each backup MIMO link that needs to be measured, a backup MIMO link that actually needs to be measured, and the second STA determines the determined
  • Each of the information of the backup MIMO link that actually needs to be measured transmits a response to the MIMO link measurement request to the first STA through the EDMG beam optimization element.
  • the second STA then sends a training sequence to the first STA on each backup MIMO link that actually needs to be measured.
  • the backup MIMO link requesting measurement in the MIMO link measurement request is the backup MIMO link 1, the backup MIMO link 2, and the backup MIMO link 3, but the actual determined by the second STA
  • the backup MIMO link to be measured is the backup MIMO link 1 and the backup MIMO link 3, and the second STA will back up the information of the MIMO link 1 and the backup MIMO link 3 through the EDMG beam optimization element on the current MIMO link.
  • Sending a response to the MIMO link measurement request to the first STA after receiving the response to the MIMO link measurement request, the first STA corresponding to the receive beam corresponding to the backup MIMO link 1 and the backup MIMO link 3
  • the training sequence sent by the second STA is respectively received on the receiving beam.
  • Step 303 The first STA receives the training sequence sent by the second STA on each backup MIMO link that needs to be measured, to obtain the link quality of each backup MIMO link that needs to be measured.
  • the first STA obtains the link quality of each backup MIMO link that needs to be measured by measuring the training sequence received on each backup MIMO link that needs to be measured.
  • Step 304 The first STA selects a backup MIMO link as the target MIMO link according to the link quality of each backup MIMO link.
  • the first STA selects a backup MIMO link with the highest link quality as the target MIMO link.
  • Step 305 The first STA sends the MIMO link handover indication information to the second STA through the current MIMO link, and switches to the beam combination corresponding to the target MIMO link, where the MIMO link handover indication information carries the information of the target MIMO link. And used to instruct the second STA to switch to a beam combination corresponding to the target MIMO link.
  • the first STA sends the MIMO link switching indication information to the second STA by using the current MIMO link, and before transmitting the next physical layer convergence step data unit (Physical Layer Convergence Procedure (PLCP) Protocol Data Units, PPDU) Switching to the beam combination corresponding to the target MIMO link,
  • PLCP Physical Layer Convergence Procedure
  • PPDU Protocol Data Units
  • the first STA switches to the beam combination corresponding to the target MIMO link.
  • Step 306 The second STA receives the MIMO link switching indication information sent by the first STA by using the current MIMO link.
  • Step 307 The second STA switches to a beam combination corresponding to the target MIMO link.
  • the second STA switches to the beam combination corresponding to the target MIMO link before the next PPDU starts.
  • the MIMO link in the embodiment of the present invention includes at least one beam link, wherein any one of the beam links is a transmission link formed by a beam/sector combination of one transmission beam and one reception beam, and one MIMO chain
  • the path can be represented by a set of ⁇ receiving antenna ID, receiving sector ID, transmitting antenna ID, transmitting sector ID ⁇ .
  • a backup MIMO link 1 and a backup MIMO link 2 are included between the first STA and the second STA, wherein the backup MIMO link 1 includes a beam link 1 and a beam link 2, and the receive antenna ID of the beam link 1 is
  • the receiving antenna 1, the transmitting antenna ID is the transmitting antenna 1, the receiving sector ID is the receiving sector 1, and the transmitting sector ID is the transmitting sector 1, and the beam link 1 can be represented as ⁇ receiving antenna 1, receiving sector 1,
  • the receiving antenna ID of the beam link 2 is the receiving antenna 1
  • the transmitting antenna ID is the transmitting antenna 1
  • the receiving sector ID is the receiving sector 2
  • the transmitting sector ID is the transmitting Sector 2
  • beam link 2 can be represented as a combination of ⁇ receiving antenna 1, receiving sector 2, transmitting antenna 1, transmitting sector 2 ⁇ .
  • a MIMO link For a MIMO link, it can be expressed as a set form of transmit beam/sector combination and receive beam/sector combination.
  • a 2x2 MIMO link is represented as ⁇ receiving antenna 1, receiving sector 1, receiving antenna. 2.
  • the MIMO link corresponds to ⁇ receiving antenna 1, receiving sector 1, receiving antenna 2, receiving sector 2 ⁇ and ⁇ transmitting antenna 1, transmitting sector, respectively. 1.
  • the same antenna may adopt a dual-polarization implementation, that is, the same antenna may adopt two RF chains (Radio Frequency Chain), and the antenna ID should be adjusted to the RF chain ID.
  • the antenna ID may be represented as an RF chain ID, and the antenna may also be represented as an RF chain.
  • an antenna array corresponding to the same radio frequency chain ID is simply referred to as an antenna.
  • the link quality to ensure handover to the target MIMO link is better than the current
  • the link quality of the MIMO link the first STA sends a MIMO link measurement request to the second STA, and after the second STA receives the MIMO link measurement request, the second STA sends the training sequence to the first STA on the current MIMO link.
  • the first STA obtains the link quality of the current MIMO link, and confirms, at the first STA, that the selected link quality of the target MIMO link is better than that of the current MIMO link.
  • the MIMO link switching indication information is sent to the second STA through the current MIMO link.
  • the first STA continues to maintain the beam combination corresponding to the current MIMO link and passes the current MIMO link.
  • the MIMO link hold indication information is transmitted to the second STA, where the MIMO link hold indication information is used to indicate that the second STA continues to remain on the beam combination corresponding to the current MIMO link. After receiving the MIMO link hold indication information, the second STA continues to remain on the current MIMO link.
  • the second STA sends the MIMO link handover indication information to the first STA. After confirming the information, the first STA then switches to the beam combination corresponding to the target MIMO link after receiving the acknowledgment information of the MIMO link switching indication information.
  • the first STA determines that the second STA receives the MIMO link hold indication information sent by the first STA, and sends the MIMO link to the first STA.
  • the acknowledgment information of the indication information is maintained, thereby ensuring that the first STA and the second STA communicate on the same MIMO link.
  • the measurement request of the MIMO link the response to the MIMO link measurement request, the handover indication information of the MIMO link, and the acknowledgement information of the handover indication information for the MIMO link may be carried in the BRP packet.
  • Beam optimization element of BRP packet EDMG beam optimization element, PHY Header field, PHY EDMG-Header field.
  • FIG. 5a it is a schematic diagram of a format of an EDMG beam optimization element when carrying a MIMO link measurement request through an EDMG beam optimization element.
  • Figure 5b shows the EDMG wave A format diagram of the EDMG beam optimization element when the bundle optimization element carries a MIMO link measurement request, a response to the MIMO link measurement request, handover indication information for the MIMO link, and acknowledgment information for handover indication information for the MIMO link.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a receive beam and a beam adjacent to the transmit beam included in the backup MIMO link to be measured, due to beam occlusion When it occurs, it may be accompanied by the rotation of the device antenna. Therefore, in the tracking process of the MIMO link, the adjacent beams of the transmitting and receiving beams corresponding to the backup MIMO link and the backup MIMO link are simultaneously measured, and only one training can be performed. In the MIMO link formed by backing up the MIMO link or the adjacent beam of the corresponding MIMO link corresponding beam, a MIMO link with higher quality is selected.
  • the backup MIMO link includes a transmit beam 1, a transmit beam 3, a receive beam 2, and a receive beam 4, wherein the beam adjacent to the transmit beam 1 includes a transmit beam 5, a transmit beam 6, a transmit beam 7, and a transmit beam.
  • the beams adjacent to the backup MIMO link receive beam, and/or the transmit beam are indicated by dashed lines, wherein these are combined with the receive beams and/or transmit beams adjacent to the backup MIMO link.
  • the MIMO link may also be a backup MIMO link that needs to be measured in the embodiment of the present invention. It can be seen from FIG.
  • the range of the first STA for the backup MIMO measurement is expanded, and the pass is improved once. Training can yield the possibility of a backup MIMO link that is better than the link quality of the current MIMO link.
  • two backup MIMO links (backup MIMO link 1 and backup MIMO link 2) are included between the first STA and the second STA.
  • the first STA may perform measurement on both backup MIMO links, and may also measure one of them.
  • the backup MIMO link request sent by the first STA to the second STA needs to include information of the backup MIMO link that needs to be measured (such as the number of the backup MIMO link that needs to be measured and/or the number of backup MIMO links that need to be measured)
  • the backup MIMO link request sent by the first STA to the second STA needs to include the measurement that needs to be measured.
  • Information for backing up MIMO links (such as the number of backup MIMO links that need to be measured).
  • the MIMO link measurement request sent by the first STA to the second STA is MIMO link tracking request information
  • the MIMO link tracking request information is used to request the second STA to send the MIMO link measurement.
  • the number N of backup MIMO links that need to be measured is indicated.
  • the second STA After receiving the MIMO link tracking request information, the second STA determines the number N of backup MIMO links that need to be measured, and then selects N backup MIMO links to be measured, on the N backup MIMO links that need to be measured. A training sequence is sent to the first STA, respectively.
  • the second STA may select N backup MIMO links from multiple backup MIMO links between the first STA and the second STA according to a preset rule for backing up the MIMO link, where N As a positive integer, an optional method is that the preset rule for selecting the backup MIMO link may be a sorting result of sorting the backup MIMO link according to the link quality, and the chain of the backup MIMO link is sorted according to the sort result. N backup MIMO links are selected in order of low to high road quality.
  • the MIMO link measurement request includes: a number of the backup MIMO link that needs to be measured, and after receiving the MIMO link measurement request, the second STA needs to measure each backup MIMO link. On the backup MIMO link corresponding to the number, a training sequence is sent to the first STA respectively.
  • the first STA and the second STA previously include a backup MIMO link 1, a backup MIMO link 2, a backup MIMO link 3, and a backup MIMO link 4, wherein the backup MIMO link 1 is numbered 1, and the backup MIMO link The number of 2 is 2, the number of backup MIMO link 3 is 3, and the number of backup MIMO link 4 is 4.
  • the MIMO link measurement request includes the device to be measured
  • the second STA sends a training sequence on the backup MIMO link 1 and the backup MIMO link 3 after receiving the MIMO link measurement request.
  • the second STA is The training sequence is transmitted on the transmit beam corresponding to the backup MIMO link 1 and the transmit beam corresponding to the backup MIMO link 3.
  • the receiving STA receives on the receive beam corresponding to the backup MIMO link 1 and the receive beam corresponding to the backup MIMO link 3. Training sequence.
  • the MIMO link measurement request may include: a measurement order of each backup MIMO link, and the second STA performs measurement according to each MIMO link after receiving the MIMO link measurement request.
  • a training sequence is transmitted to the first STA in turn on each MIMO link, and the first STA sequentially receives the training sequence on each MIMO link according to the measurement order of each MIMO link.
  • the MIMO link measurement request includes: a number of the backup MIMO link to be measured and a measurement order of each backup MIMO link.
  • the second STA sequentially goes to the first backup MIMO link corresponding to the number of each backup MIMO link that needs to be measured according to the measurement order of each MIMO link.
  • the STA sends a training sequence, and the first STA receives the training sequence from the second STA on the backup MIMO link corresponding to the number of each backup MIMO link that needs to be measured according to the measurement order of each MIMO link.
  • the transmitted training sequence is determined by the number of backup MIMO links that need to be measured and/or the order of the backup MIMO links that need to be measured.
  • the training sequence includes an AGC subfield and a TRN subfield
  • the MIMO link measurement request further includes a total length value of the training sequence of the backup MIMO link that needs to be measured; after receiving the MIMO measurement request, the second STA is in the The target number of AGC subfields and TRN subfields are respectively sent on each backup MIMO link that needs to be measured, where the target number is the total length value of the training sequence of the backup MIMO link and the backup to be measured according to the need to measure.
  • the number of MIMO links is determined.
  • An optional method for determining the number of targets in the embodiment of the present invention is: if the total length value of the training sequence of the backup MIMO link that needs to be measured indicates the number of TRN fields, the device to be measured
  • the number of MIMO links is the average value of the training sequence of the backup MIMO link to be measured, multiplied by C, and divided by the average of the number of each backup MIMO link to be measured, where C Is the number of TRN subfields included in each TRN field; or the total length value of the training sequence of the backup MIMO link to be measured and the number of each backup MIMO link to be measured are substituted into other preset algorithms.
  • the length of the training sequence used to measure each backup MIMO link may be different.
  • An optional way to send the training sequence is: the MIMO link measurement request includes: training for each backup MIMO link that needs to be measured.
  • the length value of the sequence after receiving the MIMO link measurement request, the second STA separately sends an AGC subfield and a TRN subfield on each backup MIMO link that needs to be measured, on each backup MIMO link that needs to be measured.
  • the total number of received AGC subfields and TRN subfields is determined according to the length value of the training sequence of the MIMO link that needs to be measured, and the first STA receives the corresponding number on each backup MIMO link that needs to be measured.
  • AGC subfield and TRN subfield are examples of the number of the training sequence of the MIMO link that needs to be measured.
  • the training sequence is the training sequence 1 corresponding to the backup MIMO link 1, wherein the length of the training sequence 1 is the backup MIMO indicated by the backup MIMO link measurement request.
  • the first STA needs to receive the training sequence 1 by the backup MIMO link 1 and analyze the training sequence 1 to obtain the link quality of the backup MIMO link 1.
  • training sequence is composed of an AGC field (consisting of multiple AGC subfields) and a TRN field (consisting of multiple TRN subfields) of the MIMO link for backup in the BRP packet
  • training The sequence also includes a CE field for training of a backup MIMO link, specifically including several AGC subfields and TRN subfields indicated by the length value of the backup MIMO link to be measured.
  • the training sequence includes at least N training AGC subfields and N training TRN subfields.
  • the length value of the training sequence should be carried by a header field or an enhanced header field (E-Header).
  • the training sequence length value required to measure a backup MIMO link is related to at least one of the following parameters or configurations: an implementation of the MIMO configuration (as shown in Table 1), multiple antenna beamforming training
  • the sequence orthogonalization method used for example, the training sequence transmitted by different antennas adopts frequency division, code division or space division
  • the capability of the transmitter/receiver for example, having multiple detectors capable of simultaneously simultaneously on multiple channels
  • the measurement is performed on the number of beam directions measured by the adjacent beam of the transmission/reception beam corresponding to the backup MIMO link. The more the number of beam directions measured by the adjacent beams of the transmit/receive beams corresponding to the backup MIMO link, the longer the required training sequence is.
  • the orthogonal dual-polarization mode is adopted, so the AGC subfield and TRN required for the measurement of one backup MIMO link by both the receiving and transmitting parties are adopted.
  • the number of subfields is 1, and the number of AGC subfields and TRN subfields required for single-beam measurement by a single antenna is the same as that of the transceiver.
  • the receiving and transmitting parties use the MIMO configuration numbered 3 in Table 1
  • the transmitting STA orthogonalizes the TRN subfields transmitted by different antennas by using orthogonal masks for the two transmitting antennas respectively.
  • the STA and the receiving STA complete the measurement of a backup MIMO link and may need to transmit or receive at least 1 AGC subfield and 2 TRN subfields.
  • the length value of the training sequence is related to the measured multipath number target, and the more the number of multipaths, the more The more TRN subfields you need. In order to measure the backup MIMO link, accurate channel state information can be obtained.
  • the number of TRN subfields in the training sequence of the backup MIMO link is set to a variable value
  • the beam tracking initiator according to the receiving and transmitting MIMO configuration of the backup MIMO link of both parties, and/or beamforming training mode of multiple antennas, and/or number of beam directions measured by adjacent beams of the transmitting/receiving beams corresponding to the backup MIMO link, determining the number of beam directions The number of required AGC subfields and TRN subfields.
  • the training sequence of the backup link may be arranged after the training for the beam link, for example, as shown in FIG. 7a.
  • the BRP package includes TRN-Unit1 and TRN-Unit2, wherein TRN-Unit1 includes CE, TRN1, TRN2, TRN3, and TRN4, and TRN-Unit2 includes CE, TRN5, TRN6, TRN7, and TRN8, where CE indicates CE.
  • TRN table A TRN subfield is shown
  • TRN5 is a training sequence for measuring backup MIMO link 1
  • TRN6 is a training sequence for measuring backup MIMO link 2, which differs from FIG. 7a in FIG.
  • TRN5 For the training sequence for measuring the backup MIMO link 1, TRN7, TRN8 are training sequences for measuring the backup MIMO link 2; in addition, the tracking of the MIMO link can also be performed separately to require measurement of the backup MIMO link 1.
  • the AGC field AGC1 field and AGC2 field
  • the TRN subfield included in the BRP packet are only used for the link quality of the backup MIMO link.
  • Measurement specifically, using AGC1, TRN1, and TRN2 to measure the backup MIMO link 1, using AGC2, TRN3, and TRN4 to measure the backup MIMO link 2, using the CE to measure the current MIMO link, where the AGC1 field and the AGC2 field may contain one Or multiple AGC subfields, each AGC subfield corresponding to the AWV of the TRN subfield in the TRN field.
  • measuring one backup MIMO link may use L AGC subfields and TRN subfields, where L ⁇ 1.
  • FIG. 7c is a case where the BRP packet is used to measure a backup MIMO link including two AGC subfields and two TRN subfields, where the AGC1 field includes two AGC subfields, where Two AGC subfields and two TRN subfields are used to measure one backup MIMO link.
  • the redundant training sequence can be used to back up the MIMO link corresponding to the adjacent beam of the MIMO link forming beam (transmit beam and/or receive beam).
  • Training For example, as shown in Figure 7d, when a pair of communicating STAs use two TRN-Units for the measurement of one backup MIMO link, in addition to the measurements used to back up the MIMO link, an additional training sequence is used for the above backup. Measurement of the adjacent beams of the constituent beams (transmit beams and/or receive beams) of the link.
  • the backup MIMO link measurement request further includes: location information of each training sequence corresponding to the backup MIMO link that needs to be measured in the beam optimization protocol BRP packet.
  • each training sequence corresponding to the backup MIMO link that needs to be measured is located in the BRP packet.
  • the tail of the BRP packet that is, the tail of the AGC field and the TRN field in the BRP packet.
  • FIG. 8 An optional BRP packet format is shown in Figure 8. Taking FIG. 8 as an example, it is assumed that the first STA and the second STA are communicating using the 2x2 SU-MIMO configuration, and the MIMO link measurement request carried by the DMG beam optimization element or the enhanced DMG Beam Refinement element is used. After the corresponding negotiation of the MIMO link measurement request, the second STA attaches an AGC field and a TRN field for measuring the backup MIMO link at the end of the BRP.
  • the AGC1 subfield sent by the second STA is used to measure the automatic gain control of the backup MIMO link 1, and the TRN subfields of TRN1 and TRN2 are used to back up the tracking measurement of the MIMO link 1; similarly, for AGC2, TRN3 and TRN4 Tracking measurements for backup MIMO link 2.
  • the training sequence for measuring the backup MIMO link is located at the end of the BRP packet, that is, the position of the training sequence used to measure the backup MIMO link in the BRP packet is after the training sequence for beam link tracking
  • the receiving STA is the initiator of the beam tracking
  • the process of beam tracking is as shown in FIG. 10, the beam tracking request field is set to 1, the packet type field is set to TRN-R, and the training length field is set to a value greater than 0.
  • the MIMO link tracking request field is set to 1, the MIMO link sequence length field is set to a value greater than 0, and a beam tracking request and a MIMO link tracking request are sent to the transmitting STA, and the transmitting STA attaches the data packet to the data carrier.
  • the TRN-R for beam tracking and the TRN for measuring the current MIMO link and the backup MIMO link are sent to the receiving STA.
  • the transmitting STA is the initiator of the beam tracking
  • the schematic diagram of the beam tracking process is shown in FIG. Specifically, the transmitting STA sets the beam tracking request field to 1, the packet type field is set to TRN-R, the training length field is set to a value greater than 0, the MIMO link tracking request field is set to 1, and the MIMO link sequence length field is set.
  • a value greater than 0, and a beam tracking request, MIMO is sent to the receiving STA by appending a TRN field for beam tracking and a TRN field for measuring the current MIMO link and the backup MIMO link after the data carrying data packet Link tracking request and TRN, and send to the receiving STA, and the receiving STA sends the STA Feedback with the response of the BRP frame.
  • the BRP header (Header) field is The Packet Type subfield, whether set to BRP-TX or BRP-RX, does not accurately indicate the type of BRP packet used to track at least one backup MIMO link, so the initiator and responder of the beam tracking target When at least one backup MIMO link initiates beam tracking, the meaning of the Packet Type subfield can be ignored.
  • the receiver of the BRP packet should feed back to the sender the link quality for the backup MIMO link, the link quality of the backup MIMO link including the proposed handover.
  • the channel state information may be represented by a digital domain beamforming feedback matrix of the measured backup MIMO link or a digital domain beamforming feedback matrix of the compressed representation.
  • the information carrying the target MIMO link in the MIMO link switching indication information may be the number of the target MIMO link.
  • the number of the target backup MIMO link may be a sequence number in multiple MIMO links sorted by link quality pre-agreed by the second STA and the first STA, and the pre-agreed link quality ranking result is shown in FIG. 9a.
  • the indicated MIMO link feedback element indication may be the number of the target MIMO link.
  • the number of the target backup MIMO link of the handover may be indicated by a backup MIMO link handover indication field within the EDMG beam optimization element, and when the backup MIMO link handover indication field is set to 0, indicating that the second STA does not perform the MIMO chain
  • the handover when set to 2, indicates that the requesting second STA should switch to transmitting data on the second MIMO link corresponding to the beam combination 2 field in the MIMO link feedback element before the next PPDU start time. If the first STA needs to update the quality order of the MIMO link by beamforming training, a new MIMO link feedback element may be sent to the second STA for updating.
  • the link quality of the backup MIMO link may be an indicator for measuring the communication quality of the backup MIMO link, such as throughput or capacity, to measure the communication quality of the backup MIMO link, and the throughput is taken as an example.
  • the indicator of the communication quality of the backup MIMO link is other parameters, The indicator for measuring the communication quality of the backup MIMO link is similar to the throughput, and will not be described here.
  • the throughput of the backup MIMO link is greater than the throughput of the MIMO link currently used for data transmission, then it will be determined to switch the MIMO link currently used for data transmission to the backup MIMO link if the two backup backup MIMOs are measured
  • the throughput of the link is greater than the throughput of the MIMO link currently used for data transmission, and the first STA can switch the MIMO link currently used for data transmission to any of the two backup MIMO links.
  • the first STA switches the MIMO link currently used for data transmission to the backup MIMO link with the highest throughput in the two backup MIMO links.
  • the first STA sends the backup MIMO link switching indication information to the second STA, where the backup MIMO link switching indication information may specifically be the link number of the backup MIMO link that needs to be switched, due to the backup MIMO chain.
  • the path includes at least one beam link, and the beam link corresponds to a beam combination, wherein, as shown in FIG. 9a, the format of the MIMO link feedback element, and for the second STA, the backup MIMO link to be switched to specifically corresponds to ⁇ Transmitting antenna ID, transmitting sector ID ⁇ , as shown in FIG.
  • a second STA of two transmitting antennas whose backup MIMO link can be expressed as ⁇ (antenna 1, antenna 1 transmission sector ID), ( Transmitting antenna 2, transmitting sector ID of antenna 2) ⁇ .
  • the switching of the MIMO link needs to be completed simultaneously by the second STA and the first STA, that is, the second STA and the first STA need to switch all the transmitting antennas or all receiving antennas that are participating in the MIMO communication to the transmitting beam corresponding to the backup MIMO link. Or receive beam (adjust antenna weight vector).
  • the second STA and the first STA when the second STA and the first STA operate in the MIMO state, the second STA and the first STA are required to be synchronously switched in the measurement phase and the handover phase of the beam tracking process.
  • the transmit beam or the receive beam corresponding to the backup MIMO link that is, the transmitting and receiving parties complete the overall measurement and switching of the transmit beam and the receive beam simultaneously, which is different from the prior art step-by-step tracking method for the transmit beam or the receive beam, respectively.
  • the transmission beam of the second STA can only be trained, or only the receiving beam of the first STA can be trained;
  • the BRP packet sent by the present invention ignores its type, and the second STA and the first STA can pass the same training sequence.
  • the train simultaneously trains the transmit and receive beams of the backup MIMO link, thereby reducing the training time and reducing the probability of MIMO link interruption caused by occlusion by reducing the original multi-step training to one-step training.
  • the method for triggering beam tracking in the embodiment of the present invention is: the receiving STA detects that at least one beam link quality in the MIMO link currently used for data transmission is degraded; or the receiving STA detects the current data. The quality of the transmitted MIMO link is degraded.
  • the received signal can be expressed as
  • Y 1 and Y 2 represent reception signals of the receiving antenna 1 and the receiving antenna 2, respectively, and S 1 and S 2 represent transmission signals of the transmitting antenna 1 and the transmitting antenna 2, respectively, and Z 1 and Z 2 represent the receiving antenna 1 and reception, respectively.
  • the noise of antenna 2 the effective channel (the channel from the baseband module of the transmitter to the baseband module of the receiver) matrix H eff is expressed as If H eff only shows the higher received signal energy on the main diagonal or the diagonal, and the square of the corresponding sub diagonal or main diagonal value approaches 0 (no received energy).
  • the two beam links that make up the MIMO link are said to be independent and independent of each other. For example, if H eff has the form of the following formula, it is shown that the two beam links are independent and do not interfere with each other.
  • H eff is an orthogonal channel matrix, that is, the column of He eff is orthogonal to the column, it is proved that the signals transmitted by different transmitting antennas are orthogonal at different receiving antennas, that is, The beam links are independent of each other and have no interference with each other.
  • the first STA can only determine whether to perform tracking or switching of the MIMO link according to the quality of the single beam link when the beam links are independent of each other; otherwise, the first STA needs to judge according to the quality of the MIMO link. Whether to track or switch MIMO links.
  • the quality judgment criterion of the MIMO link may be the capacity of the MIMO link or the average signal to noise ratio SNR of the plurality of receiving antennas of the first STA, and the quality judgment of the beam link may be SNR or Signal to Interference and Noise Ratio (SINR).
  • the capacity of the MIMO link can be calculated according to the H eff and MIMO channel capacity calculation criteria obtained by the channel estimation.
  • the beam tracking of the MIMO link can be divided into two types: overall tracking of the MIMO link, or tracking of the partial beam link constituting the MIMO link.
  • Beam tracking of a MIMO link includes at least one of the above two modes.
  • an optional implementation manner is: the first STA passes the beamforming training in the SLS phase and/or the BRP phase, and selects and a plurality of MIMO links whose link quality exceeds a set threshold between the second STAs; information of the selected MIMO link, and information of the selected MIMO link based on the selected link quality of each MIMO link Sorting the sorted result, and sending the result to the second STA; wherein the current MIMO link is the MIMO link with the highest link quality in the selected MIMO link, and the backup MIMO link is the selected MIMO link except the current MIMO link A MIMO link outside. Then, the first STA transmits a MIMO link measurement request to the second STA.
  • STA1 determines three MIMO links with STA2 through beamforming training, MIMO link 1, MIMO link 2, and MIMO link 3, where the quality of the MIMO link is high to low.
  • the order is MIMO link 1, MIMO link 2, MIMO link 3, then MIMO link 1 is used as the MIMO link currently used for data transmission, MIMO link 2, MIMO link 3 is used as the backup MIMO link,
  • MIMO link 1 is used as the MIMO link currently used for data transmission
  • MIMO link 2 MIMO link 3 is used as the backup MIMO link
  • the first STA1 detects the quality degradation of the MIMO link 1 or the quality of at least one beam link in the MIMO link 1, the MIMO link 2 and the MIMO link 3, or the MIMO link 2, or the MIMO link 3 Make measurements.
  • the MIMO link 2 and the MIMO link 3 may be sequentially measured in the order of the MIMO link 2 and the MIMO link 3.
  • the STA2 sends the foregoing to the STA2 through the backup MIMO link that needs to be measured in the order of the quality of the backup MIMO link that needs to be measured, which is indicated by the quality indication information, from high to low. Training sequence.
  • the MIMO link currently used for data transmission when the quality of the MIMO link currently used for data transmission decreases, or if multiple beam links constituting the MIMO link are approximately independent of each other (for example, spatially between multiple beam links) If the quality of at least one of the plurality of beam links that are independent of each other is deteriorated, the MIMO link currently used for data transmission can be switched to a higher quality backup MIMO link. The possibility of link interruption caused by the slow beam tracking and the inability to establish a new beam link in time is reduced.
  • the first STA will MIMO chain
  • the attribute parameters of the latest MIMO link measured during the path tracking process (such as MCS, channel state information, information of the beamforming feedback matrix corresponding to the backup MIMO link to be switched to, etc.) are sent to the second STA.
  • MCS includes the number of spatial streams.
  • the target backup is determined.
  • the MCS corresponding to the MIMO link and the channel state information corresponding to the target backup MIMO link carry the MCS corresponding to the target backup MIMO link and/or the channel state information corresponding to the target backup MIMO link in the MIMO link switching indication.
  • the information is sent to the second STA.
  • the MCS includes the number of spatial streams.
  • the MIMO link is a MIMO link currently used for data transmission, if multiple beam links constituting the MIMO link are approximately independent of each other, and
  • the indicator information of the beam tracking is sent to the second STA, where the beam tracking indication information includes an antenna number ID corresponding to the at least one beam link with a reduced quality, and is used for Instructing the second STA to perform beam tracing on the antenna indicated by the antenna ID, and each beam link whose quality is degraded is a beam link that is not interfered by other beam links in the current MIMO link, respectively;
  • the second STA receives the indication information of the beam tracking sent by the first STA, and indicates the antenna ID.
  • the antenna performs beam tracking.
  • the first STA may The two STAs transmit a restricted sector ID (Sector ID) to prevent the second STA from transmitting the training sequence on the restricted Sector ID during beam tracking, causing interference to other beam links in the MIMO link.
  • a restricted sector ID Service ID
  • the second STA has 2 transmit antennas, and each of the first STAs (STA1 or STA2) has only one receive antenna, that is, between the second STA and each of the receiving STAs. Only one spatial stream can be used for communication.
  • the link quality perceived by each STA is the quality of the beam link composed of a single beam. If a first STA (e.g., STA1) perceives a decrease in beam link quality, a backup MIMO link measurement request may be sent to the second STA to initiate beam tracking.
  • the second STA After receiving the beam tracking request information sent by STA1, the second STA should avoid the tracking of the sector ID with STA1 according to the restricted sector ID sent by other first STAs (STA2 in FIG. 2) received in advance.
  • a beamforming training sequence is transmitted on the restricted sector ID corresponding to the MIMO link.
  • the first STA is the initiator STA of the beam tracking
  • the second STA is the responder STA of the beam tracking.
  • the second STA can also serve as the initiator STA, and correspondingly the first STA. It can also be used as a responder STA, and the above two cases apply to the method of the present embodiment.
  • the main difference between the second STA as the initiator and the second STA as the initiator is that when the second STA can send the MIMO link tracking request through a BRP packet, the CE field and the AGC are included in the same BRP packet.
  • the field and TRN fields, ie the MIMO link tracking request and the training sequence for beam tracking, are transmitted in the same BRP packet.
  • a method for beam tracking according to an embodiment of the present invention includes:
  • Step 1200 After confirming that the quality of at least one beam link in the current MIMO link is detected, the first STA sends beam tracking indication information to the second STA, where the beam tracking indication information includes at least one beam chain with degraded quality
  • the antenna ID corresponding to the path is used to instruct the second STA to perform beam tracking on the antenna indicated by the antenna ID, and each beam link of the quality degradation is Beam links that are not interfered with by other beam links in the current MIMO link.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA, so that the second STA avoids the sector corresponding to the restricted sector ID according to the restricted sector ID. Perform beam tracking.
  • the restricted sector ID is determined by the first STA determining, by beamforming training, at least one beam link of a sector corresponding to one sector ID of the second STA to the current MIMO link. If interference occurs, the sector ID is marked as a restricted sector ID.
  • each of the beam links whose quality is degraded is a beam link that is not interfered by other beam links in the current MIMO link, that is, each beam link whose quality is degraded is a mutually independent beam link, where If the beams are spatially orthogonal, the multiple beam links are independent.
  • the received signal can be expressed as
  • Y 1 and Y 2 represent reception signals of the receiving antenna 1 and the receiving antenna 2, respectively, and S 1 and S 2 represent transmission signals of the transmitting antenna 1 and the transmitting antenna 2, respectively, and Z 1 and Z 2 represent the receiving antenna 1 and reception, respectively.
  • the noise of antenna 2 the effective channel (the channel from the baseband module of the transmitter to the baseband module of the receiver) matrix H eff is expressed as If H eff only shows the higher received signal energy on the main diagonal or the diagonal, and the square of the corresponding sub diagonal or main diagonal value approaches 0 (no received energy).
  • the two beam links that make up the MIMO link are said to be independent and independent of each other. For example, if H eff has the form of the following formula, it is shown that the two beam links are independent and do not interfere with each other.
  • H eff is an orthogonal channel matrix, that is, the column of He eff is orthogonal to the column, it is proved that the signals transmitted by different transmitting antennas are orthogonal at different receiving antennas, that is, The beam links are independent of each other and have no interference with each other.
  • the first STA can only determine whether to perform tracking or switching of the MIMO link according to the quality of the single beam link when the beam links are independent of each other.
  • the quality judgment of the beam link may be SNR or Signal to Interference and Noise Ratio (SINR).
  • SINR Signal to Interference and Noise Ratio
  • the capacity of the MIMO link can be calculated according to the H eff and MIMO channel capacity calculation criteria obtained by the channel estimation.
  • Step 1201 The second STA receives beam tracking indication information from the first STA.
  • Step 1202 The second STA performs beam tracking on the antenna indicated by the antenna ID.
  • the second STA is in a sector other than the sector corresponding to the restricted sector ID.
  • the antenna indicated by the antenna ID performs beam tracking.
  • the first STA is the STA that initiates the beam tracking
  • the second STA is the STA that responds to the beam tracking.
  • the STA that initiates the beam tracking is the STA that receives the data
  • the STA that responds to the beam tracking is the STA that sends the data.
  • the STA that responds to the beam tracking is the STA that receives the data.
  • the beam tracking indication information sent by the first STA that is received by the second STA includes at least one antenna ID corresponding to the beam link with the reduced quality, and the second STA is instructed to perform independent beam tracking on the antenna indicated by the antenna ID. Therefore, in the case that the second STA has multiple transmit beams, beam tracking can be performed quickly and accurately for the transmit antennas that cause the link quality to be reduced, and the quality degradation of the MIMO link caused by the occlusion is reduced.
  • the method for performing beam tracking on a part of independent beam links in a MIMO link in the embodiment of the present invention can better perform only slight occlusion in the beam, and the suboptimal backup MIMO link has poor quality (not suitable for switching to When the MIMO link is backed up, beam tracking is performed accurately for the slightly occluded transmit beam to improve the link quality for the deteriorated beam link, thereby improving the overall quality of the current MIMO link.
  • the device and the system for the beam tracking are also provided in the embodiment of the present invention.
  • the device and the system corresponding to the beam tracking are the method of the beam tracking in the embodiment of the present invention.
  • the implementation of the method refer to the implementation of the method, and the repeated description will not be repeated.
  • the device for beam tracking includes a sending module 1300 and receiving The module 1310 and the processing module 1320, where the sending module 1300 is configured to send a MIMO link measurement request to the second STA, where the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; and the receiving module 1310
  • the training sequence sent by the second STA is respectively received on each backup MIMO link that needs to be measured
  • the processing module 1320 is configured to obtain, according to the received training column, the link quality of each backup MIMO link that needs to be measured; And selecting, according to the link quality of each backup MIMO link, a backup MIMO link as the target MIMO link
  • the sending module 1300 is further configured to send the MIMO link handover indication information to the second STA by using the current MIMO link, the MIMO chain
  • the information about the target MIMO link is carried in the path switching indication information, and is used to indicate that the second STA switches to the beam combination corresponding to the target MIMO
  • the receiving module 1310 is further configured to: after the sending module sends the MIMO link measurement request to the second STA by using the current MIMO link, receive the training sequence sent by the second STA on the current MIMO link; the processing module 1320 further uses The link quality of the current MIMO link is obtained according to the training sequence received by the receiving module through the current MIMO link; and the link quality of the selected target MIMO link is confirmed to be better than the link quality of the current MIMO link.
  • the processing module 1320 is specifically configured to: select a backup MIMO link with the highest link quality as the target MIMO link.
  • the processing module 1320 is further configured to: before the sending module 1300 sends the MIMO link measurement request to the second STA by using the current MIMO link, detecting that the quality of the at least one beam link in the current MIMO link is degraded; or Before the sending module 1300 sends a MIMO link measurement request to the second STA through the current MIMO link, the current MIMO link quality degradation is detected.
  • the MIMO link measurement request is MIMO link tracking request information, and the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured; the receiving module 1310 is specifically configured to: On the backup MIMO link, the training sequence sent by the second STA is respectively received.
  • the MIMO link measurement request includes: a number of each backup MIMO link that needs to be measured, and/or a measurement order of each backup MIMO link;
  • the receiving module 1310 is specifically configured to respectively receive a training sequence sent by the second STA on each backup MIMO link corresponding to the number of each backup MIMO link; or, according to the sequence of each backup MIMO link that needs to be measured, Receiving, on each backup MIMO link, a training sequence sent by the second STA; or, in sequence, for each backup MIMO link to be measured, sequentially on the backup MIMO link corresponding to the number of each backup MIMO link to be measured Receiving a training sequence sent by the second STA.
  • the MIMO link measurement request further includes a total length value of the training sequence of the backup MIMO link that needs to be measured; the training sequence includes: an automatic gain control AGC field and a training sequence TRN field; and the receiving module 1310 is specifically configured to use
  • the total number of destinations is the AGC subfield and the TRN subfield, respectively, on the backup MIMO link that needs to be measured.
  • the target number is the total length of the training sequence of the backup MIMO link measured according to the need and needs to be measured.
  • the number of backup MIMO links is determined.
  • the sending module 1300 is specifically configured to: carry the MIMO link measurement request and/or the MIMO link switching indication information in the at least one field and/or element of the BRP packet to send to the second STA: the beam of the BRP packet.
  • Optimization element EDMG beam optimization element, physical PHY header Header field, enhanced PHY header E-Header field.
  • the processing module 1320 is further configured to: after selecting the target MIMO link, determine a modulation and coding policy MCS corresponding to the target MIMO link, and/or determine channel state information corresponding to the target MIMO link;
  • the MIMO link switching indication information sent by the module to the second STA further carries MCS and/or channel state information.
  • the processing module 1320 is further configured to perform beamforming training through the sector level scanning SLS phase and/or the beam optimization protocol BRP phase before the sending module 1300 sends the MIMO link measurement request to the second STA, selecting and a plurality of MIMO links whose link quality exceeds a set threshold between the two STAs; a transmitting module, and information for sorting the selected MIMO links and sorting the selected MIMO links based on the link quality, Sending to the second STA; wherein the current MIMO link is the MIMO link with the highest link quality among the selected MIMO links, and the backup MIMO link is the MIMO link of the selected MIMO link except the current MIMO link .
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the receive beam included in the backup MIMO link that needs to be measured.
  • the sending module 1300 may be implemented by a transmitter
  • the receiving module 1310 may be implemented by a receiver
  • the processing module 1320 may be implemented by a processor, where the sending module 1300 and the receiving module 1310 may be integrated into one entity.
  • beam tracking device 1400 can include processor 1410, transmitter 1420, receiver 1430, and memory 1440.
  • the memory 1440 can be used for the program/code pre-installed by the device 1400 for beam tracking, and can also store code for the execution of the processor 1410 and the like.
  • a bus system 1450 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the processor 1410 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing related operations.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device 1400 for beam tracking shown in FIG. 14 only shows the processor 1410, the transmitter 1420, the receiver 1430, and the memory 1440, those skilled in the art will appreciate that the beam will be understood in a particular implementation.
  • the tracked device also contains other devices necessary to function properly.
  • the device may also include hardware devices that implement other additional functions, depending on the particular needs.
  • the beam tracking device may also only include the devices or modules necessary to implement the embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • a device for beam tracking includes a receiving module 1500, a sending module 1510, and a processing module 1520.
  • the receiving module 1500 is configured to receive multiple input and multiple output MIMOs sent by the first STA. a link measurement request, the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; and the sending module 1510 is configured to separately send the training to the first STA on each backup MIMO link that needs to be measured.
  • the receiving module 1500 is further configured to receive the MIMO link handover request indication information sent by the first STA by using the current MIMO link, where the MIMO link handover indication information is used to indicate that the second STA switches to a beam combination corresponding to the target MIMO link.
  • the target MIMO link is a MIMO link selected by the first STA according to the link quality of each backup MIMO link, and the link quality of each backup MIMO link is the first STA according to each backup MIMO link respectively.
  • the received training sequence is obtained; the processing module 1520 is configured to switch to a beam combination corresponding to the target MIMO link.
  • the sending module 1510 is further configured to: after receiving the MIMO link measurement request sent by the first STA by using the current MIMO link, send a training sequence to the first STA on the current MIMO link for the current MIMO link.
  • the target MIMO link is a backup MIMO link with the highest link quality.
  • the MIMO link measurement request is MIMO link tracking request information
  • the MIMO link tracking request information is used to indicate the number N of backup MIMO links that need to be measured
  • the processing module 1520 is further configured to select the N to be measured.
  • the backup module 1510 is configured to send a training sequence to the first STA respectively on the N backup MIMO links that need to be measured.
  • the MIMO link measurement request includes: a number of each backup MIMO link that needs to be measured, and/or a measurement order of each backup MIMO link; and a sending module 1510, specifically: used in each of the required measurements Sending a training sequence to the first STA on the backup MIMO link corresponding to the number of the backup MIMO link; or sequentially to the first STA on each backup MIMO link according to the order of each backup MIMO link to be measured Sending a training sequence; or, in accordance with the order of each backup MIMO link to be measured, sequentially transmitting a training sequence to the first STA on the backup MIMO link corresponding to the number of each backup MIMO link that needs to be measured.
  • the MIMO link measurement request further includes: a training of the backup MIMO link that needs to be measured.
  • the training sequence includes: an automatic gain control AGC subfield and a training sequence TRN subfield;
  • the sending module 1510 is specifically configured to send the total number to the first STA respectively on each backup MIMO link that needs to be measured.
  • the target number of AGC subfields and TRN subfields, wherein the number of targets is determined according to the total length value of the training sequence of the backup MIMO link to be measured and the number of backup MIMO links to be measured.
  • the MIMO link measurement request and/or the MIMO link handover indication information received by the receiving module 1500 is carried in at least one of the following fields and/or elements of the beam optimization protocol BRP packet: a beam optimization element of the BRP packet, EDMG Beam optimization element, physical PHY header Header field, enhanced PHY header E-Header field.
  • the MIMO link switching indication information further carries MCS and/or channel state information of the target MIMO link;
  • the sending module 1510 is specifically configured to: after the processing module module switches to the beam combination corresponding to the target MIMO link, On the beam combination corresponding to the target MIMO link, data is transmitted to the first STA based on the channel state information of the MCS and/or the target MIMO link.
  • the receiving module 1500 is specifically configured to: before receiving the MIMO link measurement request sent by the first STA, receive information about multiple MIMO links sent by the first STA, and sequence results of multiple MIMO links;
  • the information of the MIMO links is information of multiple MIMO links whose link quality between the device and the second STA exceeds a set threshold, and the information of the multiple MIMO links is sorted based on link quality, for multiple MIMO a sorting result obtained by sorting the links;
  • the processing module is further configured to determine, according to the information of the multiple MIMO links and the sorting result of the multiple MIMO links, that the current MIMO link is the highest link quality among the multiple MIMO links
  • a MIMO link, a backup MIMO link is a MIMO link in a plurality of MIMO links other than the current MIMO link.
  • the backup MIMO link that needs to be measured further includes: a MIMO link corresponding to a beam adjacent to the transmit beam included in the backup MIMO link that needs to be measured.
  • the sending module 1510 may be implemented by a transmitter
  • the receiving module 1500 may be implemented by a receiver
  • the processing module 1520 may be implemented by a processor, where the sending module 1510 and the receiving module 1500 may be integrated into one entity.
  • beam tracking device 1600 can include processor 1610, transmitter 1620, receiver 1630, and memory 1640.
  • the memory 1640 can be used for the program/code pre-installed by the device 1600 for beam tracking, and can also store code for the execution of the processor 1610 and the like.
  • the various components of the beam-tracking device 1600 are coupled together by a bus system 1650, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the processor 1610 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing related operations.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device 1600 for beam tracking shown in FIG. 16 only shows the processor 1610, the transmitter 1620, the receiver 1630, and the memory 1640, those skilled in the art will appreciate that the beam will be understood in the specific implementation process.
  • the tracked device also contains other devices necessary to function properly.
  • the device may also include hardware devices that implement other additional functions, depending on the particular needs.
  • the beam-tracking device may also only include the devices or modules necessary to implement the embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • a system for beam tracking includes a first device 1700, such as any one of the embodiments shown in FIG. 13, and a second device 1710, such as any of the embodiments shown in FIG. .
  • the device for beam tracking includes: a processing module 1800 and a transceiver module 1810, wherein the processing module 1800 is configured to confirm that at least one beam link in the current multiple-input multiple-output MIMO link is detected. The quality of the beam is reduced, and the quality of each beam link is not a beam link that is interfered by other beam links in the current MIMO link; the transceiver module 1810 is configured to send beam tracking indication information to the second STA, where the beam tracking indication information includes an antenna number ID corresponding to the at least one quality-reduced beam link. And used to instruct the second STA to perform beam tracing on the antenna indicated by the antenna ID.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA, so that the second STA avoids the sector corresponding to the restricted sector ID according to the restricted sector ID. Perform beam tracking.
  • the restricted sector ID is determined by:
  • the processing module 1800 determines, by using beamforming training, that a sector corresponding to one sector ID of the second STA interferes with at least one beam link of the current MIMO link, and marks the sector ID as a restricted sector ID. .
  • the transceiver module 1810 may be implemented by a transceiver, and the processing module 1800 may be implemented by a processor.
  • the beam tracking device 1900 may include a processor 1910, a transceiver 1920, and a memory 1930.
  • the memory 1930 can be used for the program/code pre-installed by the device 1900 for beam tracking, and can also store code and the like for execution of the processor 1910.
  • a bus system 1940 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the processor 1910 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing related operations.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device 1900 for beam tracking shown in FIG. 19 only shows the processor 1910, the transceiver 1920, and the memory 1930, in a specific implementation process, those skilled in the art will appreciate that the beam tracking device also Contains other devices necessary to achieve proper operation. At the same time, according to specific needs, those skilled in the art should understand that the device may also include other additional work. Able hardware devices. Moreover, those skilled in the art will appreciate that the beam tracking device may also only include the devices or modules necessary to implement the embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the device for beam tracking according to an embodiment of the present invention includes:
  • the transceiver module 2000 is configured to receive beam tracking indication information from the first STA, where the beam tracking indication information includes an antenna number ID corresponding to the at least one quality-reduced beam link, and is used to instruct the second STA to perform beam tracking on the antenna indicated by the antenna ID.
  • Each of the beam links whose quality is degraded is a beam link that is not interfered by other beam links in the current multiple input and multiple MIMO links; and the processing module 2010 is configured to perform beam tracking on the antenna indicated by the antenna ID.
  • the beam tracking indication information is further used to indicate a restricted sector ID in the second STA; the processing module 2010 is specifically configured to use the sector other than the sector corresponding to the restricted sector ID, the antenna The antenna indicated by the ID performs beam tracking.
  • the restricted sector ID is a sector ID corresponding to a sector of the second STA that interferes with at least one beam link of the current MIMO link.
  • the transceiver module 2000 can be implemented by a transceiver
  • the processing module 2010 can be implemented by a processor.
  • the device 2100 for beam tracking can include a processor 2110, a transceiver 2120, and a memory 2130.
  • the memory 2130 can be used for the program/code pre-installed by the device 2100 for beam tracking, and can also store code for the execution of the processor 2110 and the like.
  • the various components of the beam tracking device 2100 are coupled together by a bus system 2140, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the processor 2110 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing related operations.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device 2100 for beam tracking shown in FIG. 21 only shows the processor 2110, the transceiver 2120, and the memory 2130, in a specific implementation process, those skilled in the art should understand that the beam tracking device also Contains other devices necessary to achieve proper operation. At the same time, those skilled in the art will appreciate that the device may also include hardware devices that implement other additional functions, depending on the particular needs. Moreover, those skilled in the art will appreciate that the beam tracking device may also only include the devices or modules necessary to implement the embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • a system for beam tracking includes a first device 2200, such as any one of the embodiments shown in FIG. 18, and a second device 2210, such as any of the embodiments shown in FIG.
  • the first STA sends a MIMO link measurement request to the second STA, where the MIMO link measurement request is used to request the second STA to send a training sequence for MIMO link measurement; then, the first STA Receiving, respectively, a training sequence sent by the second STA on each backup MIMO link that needs to be measured, to obtain a link quality of each backup MIMO link that needs to be measured; and the first STA is further configured according to the link of each backup MIMO link.
  • the first STA transmits MIMO link handover indication information to the second STA through the current MIMO link, and switches to the beam combination corresponding to the target MIMO link, the MIMO chain
  • the road switching indication information carries the information of the target MIMO link, and is used to indicate that the second STA switches to the target MIMO chain.
  • the first STA can obtain the link quality of each backup MIMO link that needs to be measured by parsing the training sequence sent by the second STA, and select the target MIMO link based on the link quality, and then go to the second.
  • the STA sends the MIMO link switching indication information to switch to the beam combination corresponding to the target MIMO link. Therefore, the entire MIMO link is directly switched to the target MIMO link, which not only ensures the communication quality, but also quickly and directly
  • the MIMO link switching avoids the problem of link interruption caused by slow beam tracking caused by beam tracking in a small angle range in the prior art.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation in the flowchart The steps of a process or a plurality of processes and/or block diagrams of a function specified in a block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种波束追踪的方法、设备及系统,涉及无线通信技术领域,用于解决现有技术中波束追踪非常缓慢的问题,其中,该方法包括:第一STA向第二STA发送MIMO链路测量请求;分别接收第二STA发送的训练序列,得到每个备份MIMO链路的链路质量;再根据基于链路质量,选择一个备份MIMO链路作为目标MIMO链路;通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,并切换到目标MIMO链路对应的波束组合。这种技术方案中不但保证了通信质量,而且实现了快速的切换。

Description

一种波束追踪的方法、设备及系统 技术领域
本发明涉及无线通信技术领域,特别涉及一种波束追踪的方法、设备及系统。
背景技术
在无线通信频谱资源越来越紧张以及数据传输速率越来越高的必然趋势下,60GHz频段由于拥有巨大的频谱资源越来越受到关注,而60GHz频段的无线通信技术成为无线通信技术中最具潜力的技术之一。60GHz频段无线通信技术(简称为60GHz技术)属于毫米波通信技术。当60GHz技术采用MIMO(Multiple-Input Multiple-Output,多入多出)技术时,可以采用能够产生多个同极化波束的天线阵列(Antenna Array),或者采用能够产生双极化波束的天线阵列,或者采用多个天线阵列以产生多个模拟域波束。因此,收发天线阵列之间可以存在通过波束赋形训练而建立的MIMO链路,其中MIMO链路中包括多个波束链路,即每个发送天线阵列与每个接收阵列之间都形成了一个波束链路,所有发送天线阵列与所有接收天线阵列之间的多个波束链路构成了一个MIMO链路。
然而,由于60GHz频段电磁波波长短,绕射能力差,因此目前的60GHz技术采用定向通信面临的一个突出的问题,就是如何对抗人体或物体等对波束链路的遮挡。现有技术中,当发送端和接收端之间的波束链路被遮挡后,通过改变接收端或发送端其中一端的AWV(Antenna Weight Vector,天线权重矢量)来改善被遮挡波束链路的质量,如图1所示,STA1为发送端,STA2为接收端,STA1与STA2之间的MIMO链路包括两个波束链路(波束链路1和波束链路2),其中波束链路2被遮挡后,现有技术为了将被遮挡的波束链路2调整至一个未被遮挡的波束链路,采用了分步调整STA1的发送波束和STA2接收波束的方式,即第一步通过保持STA1的AWV不变,即保持波束链路2中STA1 发送波束的方向不变而发送训练序列,使STA2根据接收的发送训练序列,在当前接收波束的邻近波束范围内调整STA2中接收波束的方向;第二步保持STA2的AWV不变,即保持波束链路2中STA2的接收波束的方向不变,在STA1当前发送波束的临近波束范围内调整STA1中发送波束的方向。
现有技术中这种针对发送波束或者接收波束分别进行调整的波束追踪,在当前发送/接收波束的临近波束范围内调整改变AWV以重新建立新的波束链路的技术方案,仅支持当前波束链路在相邻的小方位角范围内进行优化,如果发送端和接收端采用由较多数量的天线阵元组成的大规模天线阵列,则由于波束较窄而且需要在波束追踪过程中满足发送波束和接收波束的对齐,造成发送/接收波束的调整范围较小,容易导致波束追踪非常缓慢而不能为数据传输及时建立新的波束链路,从而造成链路质量下降甚至中断。
发明内容
本发明实施例提供了一种波束追踪的方法、设备及系统,用以解决现有技术中存在的波束追踪非常缓慢而不能为数据传输及时建立新的波束链路的问题。
第一方面,提供了一种波束追踪的方法,包括:
第一STA向第二STA发送MIMO链路测量请求,其中,MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列;然后,第一STA在每个需要测量的备份MIMO链路上分别接收第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量;第一STA再根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;最后,第一STA通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,并切换到目标MIMO链路对应的波束组合,MIMO链路切换指示信息中携带目标MIMO链路的信息,用于指示第二STA切换到目标MIMO链路对应的波束组合。
由于第一STA能够通过解析第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量,并基于链路质量选择目标MIMO链路,然后向第二STA发送MIMO链路切换指示信息,切换到目标MIMO链路对应的波束组合上,因此实现了将当前MIMO链路直接整体切换到目标MIMO链路上,不但保证了通信质量,而且快速的直接整体MIMO链路切换避免了现有技术中由于在很小角度范围内的波束追踪而导致的波束追踪缓慢而造成链路中断的问题。
在第一方面的基础上,可选的,第一STA向第二STA发送MIMO链路测量请求后,在当前MIMO链路上接收第二STA发送的训练序列,得到当前MIMO链路的链路质量,并在确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量后,通过当前MIMO链路向所述第二STA发送MIMO链路切换指示信息。
由于在确定目标MIMO链路的链路质量优于当前MIMO链路的链路质量后,第一STA才向第二STA发送MIMO链路切换指示信息,从而保证了切换后的目标MIMO链路的链路质量优于当前MIMO链路的链路质量,提高通信的质量。
在第一方面的基础上,可选的,第一STA在当前MIMO链路的链路质量优于选择的目标MIMO链路的链路质量时,继续保持在当前MIMO链路对应的波束组合上,并通过当前MIMO链路向第二STA发送MIMO链路保持指示信息,用于指示第二STA继续保持在当前MIMO链路对应的波束组合上。
由于在确定当前MIMO链路的链路质量优于目标MIMO链路的链路质量后,第一STA向第二STA发送MIMO链路保持指示信息,继续保持在当前MIMO链路上进行通信,从而使得通信的数据能够在链路质量较高的MIMO链路上进行传输。
在第一方面的基础上,可选的,第一STA在向第二STA发送MIMO链路切换指示信息后,接收第二STA发送的针对MIMO链路切换指示信息的确认信息,切换到所述目标MIMO链路对应的波束组合上。
由于第一STA能够接收第二STA发送的针对MIMO链路切换指示信息的确认信息,使得第一STA能够确定第二STA接收到MIMO链路切换指示信息,保证了第二STA能够切换到MIMO链路切换指示信息指示的MIMO链路上,避免了第一STA在切换到目标MIMO链路后,由于第二STA未接收到MIMO链路切换指示信息,而未进行MIMO链路的切换,导致MIMO链路的中断。
在第一方面的基础上,可选的,第一STA选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
由于第一STA选择的具有最高链路质量的备份MIMO链路作为目标MIMO链路,提高了第一STA与第二STA之间的通信质量。
在第一方面的基础上,可选的,每个MIMO链路分别包括至少一个波束链路,第一STA检测到当前MIMO链路中的至少一个波束链路的质量下降后;或者,第一STA检测到当前MIMO链路质量下降后,向第二STA发送所述MIMO链路测量请求。
由于在当前MIMO链路中的至少一个波束链路质量下降或当前MIMO链路的质量下降后,向第二STA发送MIMO链路测量请求,通过将当前MIMO链路切换到链路质量较高的目标MIMO链路上,不但提高了用于进行通信的MIMO链路的链路质量,而且能够快速的直接进行整体MIMO链路的切换。
在第一方面的基础上,可选的,MIMO链路测量请求为MIMO链路追踪请求信息,其中,MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;第一STA在需要测量的N个备份MIMO链路上,分别接收第二STA发送的训练序列。
由于MIMO链路追踪请求信息能够指示需要测量的备份MIMO链路的个数,能够使得第一STA无需对第一STA与第二STA之间所有的备份MIMO链路进行测量,进而可以提高测量备份MIMO链路的测量效率。
在第一方面的基础上,可选的,MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
第一STA分别接收第二STA在每个备份MIMO链路的编号对应的各个备份MIMO链路上发送的训练序列;或
第一STA按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上接收第二STA发送的训练序列;或
第一STA按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上接收第二STA发送的训练序列。
由于能够通过在MIMO链路测量请求中携带需要测量的备份MIMO链路的编号和/或每个备份MIMO链路的测量顺序,从而提高了对备份MIMO链路测量的准确性。
在第一方面的基础上,可选的,MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;训练序列包括:AGC子字段和TRN子字段;第一STA在每个需要测量的备份MIMO链路上分别接收总个数为目标个数的AGC子字段和TRN子字段,其中,目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
在第一方面的基础上,可选的,MIMO链路测量请求包括:每个需要测量的备份MIMO链路的训练序列的长度值;训练序列包括:AGC子字段和TRN子字段;第一STA在每个需要测量的备份MIMO链路上分别接收AGC子字段和TRN子字段,其中,在每个需要测量的备份MIMO链路上接收的AGC子字段和TRN子字段的总个数为根据需要测量的MIMO链路的训练序列的长度值确定的。
在第一方面的基础上,可选的,第一STA在每个需要测量的备份MIMO链路中确定实际需要测量的备份MIMO链路,其中,实际需要测量的备份MIMO链路为第二STA发送了针对所述MIMO链路测量请求的响应的备份MIMO链路;然后,第一STA在每个实际需要测量的备份MIMO链路上分别接收所述第二STA根据所述MIMO链路测量请求发送的训练序列。
由于第一STA能够在每个需要测量的备份MIMO链路中确定实际需要测量的备份MIMO链路,因此在提高了备份MIMO链路测量的准确性同时,提高了备份MIMO链路测量的效率。
在第一方面的基础上,可选的,第一STA接收第二STA发送的BRP包,其中,BRP包中的下述至少一个字段和/或元素中包含针对MIMO链路测量请求的响应:
BRP包的波束优化元素、EDMG波束优化元素、PHY Header字段、PHY EDMG-Header字段。
在第一方面的基础上,可选的,第一STA将MIMO链路测量请求和/或MIMO链路切换指示信息携带在BRP包的下述至少一个字段和/或元素中发送给第二STA:
BRP包的波束优化元素、EDMG波束优化元素、PHY Header字段、PHY E-Header字段。
在第一方面的基础上,可选的,第一STA选择目标MIMO链路之后,确定与目标MIMO链路对应的调制与编码策略MCS、和/或确定与目标MIMO链路对应的信道状态信息;其中,第一STA向第二STA发送的MIMO链路切换指示信息中还携带MCS和/或信道状态信息。
由于第一STA在选择目标MIMO链路之后,还需要确定与目标MIMO链路对应的MCS、和/或与目标MIMO链路对应的信道状态信息,并发送给第二STA,从而使得第二STA能够根据与目标MIMO链路对应的MCS、和/或与目标MIMO链路对应的信道状态信息向第一STA发送数据,保证了数据传输的准确性。
在第一方面的基础上,可选的,第一STA通过SLS阶段和/或BRP阶段的波束赋形训练,选择与第二STA之间链路质量超过设定阈值的多个MIMO链路;再将选择的MIMO链路的信息、以及基于选择的每个MIMO链路的链路质量对选择的MIMO链路的信息进行排序的排序结果,发送给第二STA;其中,当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路, 备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。然后,第一STA向第二STA发送MIMO链路测量请求。
在第一方面的基础上,可选的,需要测量的备份MIMO链路还包括:与需要测量的备份MIMO链路包括的接收波束邻近的波束所对应的MIMO链路。
第二方面,提供了一种波束追踪的方法,包括:
第二STA接收到第一STA发送的MIMO链路测量请求,其中,MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列;然后,第二STA在每个需要测量的备份MIMO链路上分别向第一STA发送训练序列;第二STA通过当前MIMO链路接收第一STA发送的MIMO链路切换请求指示信息,MIMO链路切换指示信息用于指示第二STA切换到目标MIMO链路对应的波束组合,目标MIMO链路为第一STA根据每个备份MIMO链路的链路质量选择的一个MIMO链路,每个备份MIMO链路的链路质量为第一STA分别根据在每个备份MIMO链路上接收到的训练序列得到;最后,第二STA切换到目标MIMO链路对应的波束组合上。
由于第二STA在接收到第一STA发送的MIMO链路测量请求后,能够在每个需要测量的备份MIMO链路上分别向第一STA发送训练序列,使得第一STA能够通过解析第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量,并基于链路质量选择目标MIMO链路,然后向第二STA发送MIMO链路切换指示信息,从而使得第二STA能够切换到目标MIMO链路对应的波束组合上,因此实现了将当前MIMO链路直接整体切换到目标MIMO链路上,不但保证了通信质量,而且快速的直接整体MIMO链路切换避免了现有技术中由于在很小角度范围内的波束追踪而导致的波束追踪缓慢而造成链路中断的问题。
在第二方面的基础上,可选的,第二STA接收第一STA发送的MIMO链路测量请求后,在当前MIMO链路上向第一STA发送训练序列,然后,接收第一STA发送的MIMO链路切换请求指示信息。
由于第二STA能够在当前MIMO链路上向第一STA发送训练序列,从而使得第一STA能够解析通过当前MIMO链路接收的训练序列,得到当前MIMO链路的链路质量,进而在第一STA确定目标MIMO链路的链路质量优于当前MIMO链路的链路质量后,第一STA才向第二STA发送MIMO链路切换指示信息,从而保证了切换后的目标MIMO链路的链路质量优于当前MIMO链路的链路质量,提高通信的质量。
在第二方面的基础上,可选的,第二STA通过当前MIMO链路接收第一STA在当前MIMO链路的链路质量高于目标MIMO链路的链路质量时发送的MIMO链路保持指示信息;然后,第二STA继续保持在所述当前MIMO链路对应的波束组合上。
由于在确定当前MIMO链路的链路质量优于目标MIMO链路的链路质量后,第一STA向第二STA发送MIMO链路保持指示信息,从而使得第二STA能够继续保持在当前MIMO链路上进行通信,从而使得通信的数据能够在链路质量较高的MIMO链路上进行传输。
在第二方面的基础上,可选的,第二STA在接收第一STA发送的MIMO链路切换请求指示信息之后,向第一STA发送针对MIMO链路切换指示信息的确认信息。
由于第二STA能够向第一STA发送针对MIMO链路切换指示信息的确认信息,使得第一STA能够确定第二STA接收到MIMO链路切换指示信息,保证了第二STA能够切换到MIMO链路切换指示信息指示的MIMO链路上,避免了第一STA在切换到目标MIMO链路后,由于第二STA未接收到MIMO链路切换指示信息,而未进行MIMO链路的切换,导致MIMO链路的中断。
在第二方面的基础上,可选的,所述目标MIMO链路为具有最高链路质量的备份MIMO链路。
由于目标MIMO链路为具有最高链路质量的备份MIMO链路,从而提高了第一STA与第二STA之间的通信质量。
在第二方面的基础上,可选的,MIMO链路测量请求为MIMO链路追踪 请求信息,MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;第二STA选择需要测量的N个备份MIMO链路,在选择需要测量的的N个备份MIMO链路上分别向第一STA发送训练序列。
由于MIMO链路追踪请求信息能够指示需要测量的备份MIMO链路的个数,能够使得第二STA无需在第一STA与第二STA之间所有的备份MIMO链路上分别发送训练序列,进而可以提高测量备份MIMO链路的测量效率。
在第二方面的基础上,可选的,MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;第二STA在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向第一STA发送训练序列;或,第二STA按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上向第一STA发送训练序列;或,第二STA按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上向第一STA发送训练序列。
由于能够通过在MIMO链路测量请求中携带需要测量的备份MIMO链路的编号和/或每个备份MIMO链路的测量顺序,从而提高了对备份MIMO链路测量的准确性。
在第二方面的基础上,可选的,MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;训练序列包括:AGC子字段和TRN子字段;第二STA在每个需要测量的备份MIMO链路上分别向第一STA发送总个数为目标个数的AGC子字段和TRN子字段,其中,目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
在第二方面的基础上,可选的,MIMO链路测量请求包括:每个需要测量的备份MIMO链路的训练序列的长度值;训练序列包括:AGC子字段和TRN子字段;第二STA在每个需要测量的备份MIMO链路上分别向第一STA发送AGC子字段和TRN子字段,其中,在每个需要测量的备份MIMO链路 上发送的AGC子字段和TRN子字段的总个数为第二STA根据每个需要测量的MIMO链路的训练序列的长度值确定的。
在第二方面的基础上,可选的,第二STA在每个需要测量的备份MIMO链路中确定实际需要测量的备份MIMO链路;第二STA在确定出的各个实际需要测量的备份MIMO链路上分别向所述第一STA发送针对MIMO链路测量请求的响应,然后,第二STA在每个备份MIMO链路上分别向第一STA发送训练序列。
由于第二STA能够向第一STA发送确定的实际需要测量的备份MIMO链路,使得第一STA能够在每个需要测量的备份MIMO链路中确定实际需要测量的备份MIMO链路,因此在提高了备份MIMO链路测量的准确性同时,提高了备份MIMO链路测量的效率。
在第二方面的基础上,可选的,第二STA向第一STA发送BRP包,其中,BRP包中的下述至少一个字段和/或元素中包含针对MIMO链路测量请求的响应:BRP包的波束优化元素、EDMG波束优化元素、PHY Header字段、PHY EDMG-Header字段。
在第二方面的基础上,可选的,第二STA接收的MIMO链路测量请求和/或MIMO链路切换指示信息以及发送MIMO链路切换指示信息的确认信息携带在波束优化协议BRP包的下述至少一个字段和/或元素中:BRP包的波束优化元素、EDMG波束优化元素、PHY Header字段、PHY E-Header字段。
在第二方面的基础上,可选的,MIMO链路切换指示信息中还携带目标MIMO链路的MCS和/或信道状态信息;第二STA切换到目标MIMO链路对应的波束组合上之后,第二STA在目标MIMO链路对应的波束组合上,基于MCS和/或目标MIMO链路的信道状态信息向第一STA发送数据。
由于第一STA在将与目标MIMO链路对应的MCS、和/或与目标MIMO链路对应的信道状态信息携带在MIMO链路切换指示信息中,发送给第二STA,从而使得第二STA能够根据与目标MIMO链路对应的MCS、和/或与目标MIMO链路对应的信道状态信息向第一STA发送数据,保证了数据传输 的准确性。
在第二方面的基础上,可选的,第二STA接收第一STA发送的多个MIMO链路的信息以及多个MIMO链路的排序结果;其中,多个MIMO链路的信息为第一STA与第二STA之间链路质量超过设定阈值的多个MIMO链路的信息,多个MIMO链路的排序结果为基于链路质量,对多个MIMO链路进行排序得到的排序结果;然后,第二STA根据多个MIMO链路的信息以及所述多个MIMO链路的排序结果,确定当前MIMO链路为多个MIMO链路中链路质量最高的MIMO链路,备份MIMO链路为多个MIMO链路中除当前MIMO链路之外的MIMO链路。然后,第二STA接收第一STA发送的MIMO链路测量请求。
在第二方面的基础上,可选的,需要测量的备份MIMO链路还包括:与需要测量的备份MIMO链路包括的发送波束邻近的波束所对应的MIMO链路。
第三方面,提供了一种波束追踪的方法,包括:
第一STA在确认检测到当前MIMO链路中的至少一个波束链路的质量下降后,向所述第二STA发送波束追踪指示信息,其中,波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对由所述天线ID指示的天线进行波束追踪,质量下降的每个波束链路分别为不受当前MIMO链路中其他波束链路干扰的波束链路。
本发明实施例中,由于第一STA向第二STA发送的波束追踪指示信息中包括至少一个质量下降的波束链路对应的天线ID,用于指示第二STA对天线ID指示的天线进行波束追踪,从而使得第二STA能够快速找到进行波束追踪的天线,进行波束追踪。
在第三方面的基础上,可选的,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID,以使第二STA根据所述受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
由于波束追踪指示信息还能够指示第二STA中受限制的扇区ID,从而使 得第二STA避免在受限制的扇区ID上进行波束追踪,导致当前MIMO链路中的其他波束链路受到干扰。
在第三方面的基础上,可选的,所述受限制的扇区ID由下述方式确定:所述第一STA通过波束赋形训练,确定所述第二STA的一个扇区ID对应的扇区对所述当前MIMO链路的至少一个波束链路产生干扰,则将所述扇区ID标记为受限制的扇区ID。
第四方面,提供了一种波束追踪的方法,包括:
第二STA从第一STA接收波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对所述天线ID指示的天线进行波束追踪,所述质量下降的每个波束链路分别为不受所述当前多入多出MIMO链路中其他波束链路干扰的波束链路;
所述第二STA对所述天线ID指示的天线进行波束追踪。
本发明实施例中,由于第二STA接收的第一STA发送的波束追踪指示信息中包括至少一个质量下降的波束链路对应的天线ID,指示第二STA对天线ID指示的天线进行波束追踪,从而使得第二STA能够快速找到进行波束追踪的天线,进行波束追踪。
在第四方面的基础上,可选的,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID;第二STA在所述受限制的扇区ID对应的扇区之外的其他扇区,对所述天线ID指示的天线进行波束追踪。
由于波束追踪指示信息还能够指示第二STA中受限制的扇区ID,从而使得第二STA避免在受限制的扇区ID上进行波束追踪,导致当前MIMO链路中的其他波束链路受到干扰。
在第四方面的基础上,可选的,所述受限制的扇区ID为所述第二STA的扇区中对所述当前MIMO链路的至少一个波束链路产生干扰的扇区对应的扇区ID。
第五方面,提供了一种波束追踪的设备,包括:发送模块、接收模块和处理模块,其中,发送模块用于向第二STA发送多入多出MIMO链路测量请 求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练序列;接收模块用于在每个需要测量的备份MIMO链路上分别接收所述第二STA发送的训练序列;处理模块用于根据所述接收到的训练列,得到每个需要测量的备份MIMO链路的链路质量;并根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;所述发送模块还用于通过当前MIMO链路向所述第二STA发送MIMO链路切换指示信息,所述MIMO链路切换指示信息中携带所述目标MIMO链路的信息,用于指示所述第二STA切换到所述目标MIMO链路对应的波束组合;所述处理模块,还用于切换到所述目标MIMO链路对应的波束组合。
在第五方面的基础上,可选的,所述接收模块,还用于在所述发送模块通过当前MIMO链路向第二STA发送MIMO链路测量请求后,在所述当前MIMO链路上接收所述第二STA发送的训练序列;所述处理模块还用于根据所述接收模块通过所述当前MIMO链路接收到的训练序列,得到当前MIMO链路的链路质量;并确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量。
在第五方面的基础上,可选的,所述处理模块,具体用于:选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
在第五方面的基础上,可选的,所述处理模块,还用于:在所述发送模块通过当前MIMO链路向所述第二STA发送所述MIMO链路测量请求之前,检测到当前MIMO链路中的至少一个波束链路的质量下降;或者,在所述发送模块通过当前MIMO链路向所述第二STA发送所述MIMO链路测量请求之前,检测到当前MIMO链路质量下降。
在第五方面的基础上,可选的,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;所述接收模块,具体用于:在需要测量的N个备份MIMO链路上,分别接收所述第二STA发送的训练序列。
在第五方面的基础上,可选的,所述MIMO链路测量请求包括:需要测 量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
所述接收模块,具体用于:分别接收第二STA在每个备份MIMO链路的编号对应的各个备份MIMO链路上发送的训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上接收所述第二STA发送的训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上接收所述第二STA发送的训练序列。
在第五方面的基础上,可选的,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;所述训练序列包括:自动增益控制AGC字段和训练序列TRN字段;所述接收模块,具体用于在每个需要测量的备份MIMO链路上分别接收总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
在第五方面的基础上,可选的,所述发送模块具体用于将所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在BRP包的下述至少一个字段和/或元素中发送给所述第二STA:所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
在第五方面的基础上,可选的,所述处理模块还用于在选择目标MIMO链路之后,确定与所述目标MIMO链路对应的调制与编码策略MCS、和/或确定与所述目标MIMO链路对应的信道状态信息;其中,所述发送模块向所述第二STA发送的所述MIMO链路切换指示信息中还携带所述MCS和/或所述信道状态信息。
在第五方面的基础上,可选的,所述处理模块,还用于在所述发送模块向所述第二STA发送所述MIMO链路测量请求之前,通过扇区级扫描SLS阶段和/或波束优化协议BRP阶段的波束赋形训练,选择与所述第二STA之间链路质量超过设定阈值的多个MIMO链路;所述发送模块,还有用于将选择的MIMO链路的信息、以及基于链路质量对选择的MIMO链路进行排序的 排序结果,发送给第二STA;其中,所述当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。
在第五方面的基础上,可选的,需要测量的备份MIMO链路还包括:与所述需要测量的备份MIMO链路包括的接收波束邻近的波束所对应的MIMO链路。
第六方面,提供了一种波束追踪的设备,包括:接收模块、发送模块和处理模块;其中,接收模块用于接收到第一STA发送的多入多出MIMO链路测量请求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练序列;发送模块用于在每个需要测量的备份MIMO链路上分别向所述第一STA发送训练序列;所述接收模块还用于通过当前MIMO链路接收所述第一STA发送的MIMO链路切换请求指示信息,所述MIMO链路切换指示信息用于指示所述第二STA切换到目标MIMO链路对应的波束组合,所述目标MIMO链路为所述第一STA根据每个备份MIMO链路的链路质量选择的一个MIMO链路,所述每个备份MIMO链路的链路质量为所述第一STA分别根据在每个备份MIMO链路上接收到的训练序列得到;处理模块,用于切换到所述目标MIMO链路对应的波束组合上。
在第六方面的基础上,可选的,所述发送模块还用于在通过当前MIMO链路接收所述第一STA发送的MIMO链路测量请求后,针对所述当前MIMO链路,在所述当前MIMO链路上向所述第一STA发送训练序列。
在第六方面的基础上,可选的,所述目标MIMO链路为具有最高链路质量的备份MIMO链路。
在第六方面的基础上,可选的,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;所述处理模块,还用于选择需要测量的N个备份MIMO链路;所述发送模块,具体用于在选择需要测量的的N个备份MIMO链路上分别向所述第一STA发送训练序列。
在第六方面的基础上,可选的,所述MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;所述发送模块,具体用于:在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向所述第一STA发送训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上向所述第一STA发送训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上向所述第一STA发送训练序列。
在第六方面的基础上,可选的,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;所述训练序列包括:自动增益控制AGC子字段和训练序列TRN子字段;所述发送模块具体用于在每个需要测量的备份MIMO链路上分别向所述第一STA发送总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
在第六方面的基础上,可选的,所述接收模块接收的所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在波束优化协议BRP包的下述至少一个字段和/或元素中:所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
在第六方面的基础上,可选的,所述MIMO链路切换指示信息中还携带目标MIMO链路的所述MCS和/或信道状态信息;所述发送模块具体用于在所述处理模块模块切换到所述目标MIMO链路对应的波束组合上之后,在所述目标MIMO链路对应的波束组合上,基于所述MCS和/或目标MIMO链路的信道状态信息向所述第一STA发送数据。
在第六方面的基础上,可选的,所述接收模块具体用于在接收所述第一STA发送的所述MIMO链路测量请求之前,接收所述第一STA发送的多个MIMO链路的信息以及所述多个MIMO链路的排序结果;其中,所述多个 MIMO链路的信息为所述设备与所述第二STA之间链路质量超过设定阈值的多个MIMO链路的信息,所述多个MIMO链路的信息的排序结果为基于链路质量,对所述多个MIMO链路进行排序得到的排序结果;所述处理模块,还用于根据所述多个MIMO链路的信息以及所述多个MIMO链路的排序结果,确定当前MIMO链路为多个MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为多个MIMO链路中除当前MIMO链路之外的MIMO链路。
在第六方面的基础上,可选的,需要测量的备份MIMO链路还包括:与所述需要测量的备份MIMO链路包括的发送波束邻近的波束所对应的MIMO链路。
第七方面,提供了一种波束追踪的系统,包括本发明实施例第五方面提供的任一所述的设备,和本发明实施例第六方面提供的任一所述的设备。
第八方面,提供了一种波束追踪的设备,包括:处理模块和收发模块,其中,处理模块用于确认检测到当前多入多出MIMO链路中的至少一个波束链路的质量下降,所述质量下降的每个波束链路分别为不受所述当前MIMO链路中其他波束链路干扰的波束链路;收发模块用于向所述第二STA发送波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对由所述天线ID指示的天线进行波束追踪。
在第八方面的基础上,可选的,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID,以使第二STA根据所述受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
在第八方面的基础上,可选的,所述受限制的扇区ID由下述方式确定:
所述处理模块,通过波束赋形训练,确定所述第二STA的一个扇区ID对应的扇区对所述当前MIMO链路的至少一个波束链路产生干扰,则将所述扇区ID标记为受限制的扇区ID。
第九方面,提供了一种波束追踪的设备,包括:
收发模块,用于从第一STA接收波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对所述天线ID指示的天线进行波束追踪,所述质量下降的每个波束链路分别为不受所述当前多入多出MIMO链路中其他波束链路干扰的波束链路;处理模块,用于对所述天线ID指示的天线进行波束追踪。
在第九方面的基础上,可选的,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID;所述处理模块具体用于在所述受限制的扇区ID对应的扇区之外的其他扇区,对所述天线ID指示的天线进行波束追踪。
在第九方面的基础上,可选的,所述受限制的扇区ID为所述第二STA的扇区中对所述当前MIMO链路的至少一个波束链路产生干扰的扇区对应的扇区ID。
第十方面,提供了一种波束追踪的系统,包括本发明实施例第八方面提供的任一所述的设备,和本发明实施例第九方面提供的任一所述的设备。
附图说明
图1为现有技术中波束链路发生遮挡的示意图;
图2为本发明实施例应用于MU-MIMO技术的无线局域网系统时的网络架构图;
图3为本发明实施例波束追踪的方法的流程示意图;
图4a和图4b分别为本发明实施不同触发条件下波束链路追踪的场景示意图;
图5a和图5b分别为本发明实施例EDMG波束优化元素的格式示意图;
图6为本发明实施例波束链路追踪场景示意图;
图7a~图7d分别为本发明实施例BRP包格式示意图;
图8为本发明实施例BRP包格式示意图;
图9a和图9b分别为本发明实施例MIMO链路反馈元素的格式的示意图;
图10为本发明实施例波束追踪的过程的示意图;
图11为本发明实施例波束追踪的过程的示意图;
图12为本发明实施例波束追踪的方法的流程示意图;
图13为本发明实施例波束追踪的设备的示意图;
图14为本发明实施例波束追踪的设备的硬件结构示意图;
图15为本发明实施例波束追踪的设备的示意图;
图16为本发明实施例波束追踪的设备的硬件结构示意图;
图17为本发明实施例波束追踪的系统的示意图;
图18为本发明实施例波束追踪的设备的示意图;
图19为本发明实施例波束追踪的设备的硬件结构示意图;
图20为本发明实施例波束追踪的设备的示意图;
图21为本发明实施例波束追踪的设备的硬件结构示意图;
图22为本发明实施例波束追踪的系统的示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面结合说明书附图对本发明实施例作进一步详细描述。
应理解,本发明实施例的第一STA(station,站点)为用于发起波束追踪的STA时,第二STA为响应波束追踪的STA,其中,发起波束追踪的STA可以为用于接收数据的STA,也可以为发送数据的STA,当发起波束追踪的STA为用于接收数据的STA时,响应波束追踪的STA为发送数据的STA,反之,当发起波束追踪的STA为发送数据的STA时,响应波束追踪的STA为接收数据的STA。
应理解,本发明实施例的STA可以为AP(Access Point,无线接入点)、PCP(Personal basic service set Control Point,个人基本服务集控制点),还可以为非AP非PCP的STA。由于本发明实施例涉及点到点的通信,因此无需刻意区分 通信双方的角色,例如无需区分AP和非AP的STA。
应理解,本发明实施例可以应用于采用SU-MIMO(Single User Multiple Input Multiple Output,单用户多输入多出)技术的无线局域网系统以及采用MU-MIMO(Multi-User Multiple Input Multiple Output,多用户多入多出)技术的无线局域网系统。
例如,对于采用SU-MIMO技术的无线局域网系统中,根据相控阵天线的数量、天线的射频链数量和极化类型,部分SU-MIMO的配置可以如表1所示。
表1
Figure PCTCN2016079891-appb-000001
在表1中,一个相控阵天线可以产生一个或多个波束,且每个天线产生波束的数量等于该天线的射频链的数量,即一个射频链对应一个波束。
采用表1所示的部分SU-MIMO配置后,第一STA和第二STA之间通过SLS(Sector-Level Sweep,扇区级扫描)阶段和/或BRP(Beam Refinement Protocol,波束优化协议)阶段的波束赋形训练后,在多个发送天线和多个接收天线之间,通过多个发送波束和多个接收波束的任意组合,可以形成多个MIMO链路。其中,第一STA根据所述多个MIMO链路的链路质量,按从高到底的顺序进行排序后,通过EDMG(Enhanced Directional Multi-Gigabit,增强的定向多千兆位)波束优化元素或者如图9a和图9b所示的MIMO链路反馈元素,将多个高质量MIMO链路的排序结果发送给第二STA,并约定将链 路质量最高的MIMO链路作为当前的MIMO链路,链路质量次优的其它MIMO链路作为备份MIMO链路。以图9a所示MIMO链路反馈元素为例,若MIMO链路反馈元素中的波束组合1字段对应链路质量最高的MIMO链路,则波束组合2至波束组合n表示备份的发送波束组合。第一STA可以通过向第二STA重新发送一个新的EDMG波束优化元素或者MIMO链路反馈元素,更新质量最高MIMO链路和备份MIMO链路的信息和上述各个MIMO链路的排序结果。例如,第一STA在与第二STA切换至一个备份MIMO链路后,通过向第二STA发送一个新的EDMG波束优化元素或者MIMO链路反馈元素,以更新质量最高MIMO链路和备份MIMO链路的信息和排序结果。第二STA和第一STA应存储最新的质量最高MIMO链路和备份MIMO链路的信息及上述各个MIMO链路的排序结果,从而约定备份MIMO链路的个数和按MIMO链路质量排序的结果。
应注意的是,当第二STA为用于发送数据的STA(简称发送STA)时,对于一个发送STA,所有发送天线的发送波束的组合,对应一个MIMO链路;而当第一STA为用于接收数据的STA(简称接收STA)时,对于一个接收STA,所有接收天线的接收波束的组合,对应一个MIMO链路。一个发送STA或接收STA在不同的MIMO链路上的切换,分别指的是整体发送波束组合的切换或者整体接收波束组合的切换,其中,波束组合的体现形式也可为扇区(sector)组合或者AWV(Antenna Weight Vector,天线权重矢量)组合。
对于本发明实施例在应用于MU-MIMO技术的无线局域网系统中时,如图2所示,一种采用MU-MIMO技术的应用场景示意图,第二STA中的每个扇区对应一个第一STA(STA1、STA2),其中第二STA为发送数据的STA,第一STA(STA1和STA2)为接收数据的STA。
如图3所示,本发明实施例波束追踪的方法,包括:
步骤300,第一STA向第二STA发送MIMO链路测量请求,该MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列。
通常情况下,第一STA通过当前MIMO链路向第二STA发送MIMO链路测量请求。
如图4a所示,当前MIMO链路包括波束链路1和波束链路2,由于波束链路2因发生遮挡而造成整个MIMO链路的质量恶化,因此STA1将当前MIMO链路切换到备份MIMO链路上。或者,如图4b所示,当前MIMO链路包括波束链路1和波束链路2,由于波束链路1和波束链路2都发生遮挡,因此,也将当前MIMO链路切换到备份MIMO链路上。
其中,在本发明实施例中,第一STA可以通过MIMO信道容量、时域或频域的MIMO信道响应、信号能量、信噪比或信干噪比等来衡量MIMO链路的链路质量。
步骤301,第二STA接收第一STA发送的MIMO链路测量请求。
需要说明的是,第二STA在当前MIMO链路上接收第一STA发送的MIMO链路测量请求。
步骤302,第二STA在每个需要测量的备份MIMO链路上分别向第一STA发送训练序列。
需要说明的是,一种可选的第二STA发送训练序列的方式为:第二STA采用不同极化天线的方式和/或正交训练序列的方式,通过多个发送天线向第一STA发送与备份MIMO链路对应的训练序列,这种方式可以使得通过多个发送天线同时向第一STA发送与备份MIMO链路对应的训练序列。
可选的,第二STA在接收到第一STA发送的MIMO链路测量请求后,在每个需要测量的备份MIMO链路中确定实际需要测量的备份MIMO链路,第二STA将确定出的各个实际需要测量的备份MIMO链路的信息,通过EDMG波束优化元素向第一STA发送针对MIMO链路测量请求的响应。然后,第二STA在每个实际需要测量的备份MIMO链路上向第一STA发送训练序列。
例如,MIMO链路测量请求中请求测量的备份MIMO链路为备份MIMO链路1、备份MIMO链路2和备份MIMO链路3,但是第二STA确定的实际 需要测量的备份MIMO链路为备份MIMO链路1和备份MIMO链路3,则第二STA将备份MIMO链路1和备份MIMO链路3的信息,通过EDMG波束优化元素,在当前MIMO链路上向第一STA发送针对MIMO链路测量请求的响应,第一STA在接收到针对MIMO链路测量请求的响应后,则在备份MIMO链路1对应的接收波束和备份MIMO链路3对应的接收波束上分别接收第二STA发送的训练序列。
步骤303,第一STA在每个需要测量的备份MIMO链路上分别接收第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量。
具体的,第一STA通过测量在每个需要测量的备份MIMO链路上接收的训练序列,得到每个需要测量的备份MIMO链路的链路质量。
步骤304,第一STA根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路。
较佳地,第一STA选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
步骤305,第一STA通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,并切换到目标MIMO链路对应的波束组合,MIMO链路切换指示信息中携带目标MIMO链路的信息,用于指示第二STA切换到目标MIMO链路对应的波束组合。
具体的,第一STA通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,并在发送下一个物理层聚合步骤协议数据单元(Physical Layer Convergence Procedure(PLCP)Protocol Data Units,PPDU)之前,切换到目标MIMO链路对应的波束组合,
可选地,第一STA在发送MIMO链路切换指示信息之后,且收到第二STA发送的MIMO链路切换确认信息之后,再在下一个PPDU开始之前,切换到目标MIMO链路对应的波束组合。
步骤306,第二STA通过当前MIMO链路接收第一STA发送的MIMO链路切换指示信息。
步骤307,第二STA切换到目标MIMO链路对应的波束组合上。
可选地,第二STA在接收MIMO链路切换指示信息之后,且发送第二STA发送的MIMO链路切换确认信息之后,再在下一个PPDU开始之前,切换到目标MIMO链路对应的波束组合。
本发明实施例中的MIMO链路包括至少一个波束链路,其中任一一个波束链路是由一个发送波束和一个接收波束构成的波束/扇区组合形成的传输链路,而一个MIMO链路可以通过{接收天线ID、接收扇区ID、发送天线ID、发送扇区ID}的集合来表示。例如,第一STA和第二STA之间包括备份MIMO链路1和备份MIMO链路2,其中备份MIMO链路1包括波束链路1和波束链路2,波束链路1的接收天线ID为接收天线1、发送天线ID为发送天线1,接收扇区ID为接收扇区1,发送扇区ID为发送扇区1,则波束链路1可表示为{接收天线1、接收扇区1、发送天线1、发送扇区1}的组合方式;波束链路2的接收天线ID为接收天线1、发送天线ID为发送天线1,接收扇区ID为接收扇区2,发送扇区ID为发送扇区2,波束链路2可表示为{接收天线1、接收扇区2、发送天线1、发送扇区2}的组合方式。
而对于一个MIMO链路,则可以表示为发送波束/扇区组合与接收波束/扇区组合的集合形式,例如,一个2x2的MIMO链路表示为{接收天线1、接收扇区1、接收天线2、接收扇区2、发送天线1、发送扇区1、发送天线2、发送扇区2}的形式。对于所述MIMO链路的第一STA和第二STA,所述MIMO链路分别对应{接收天线1、接收扇区1、接收天线2、接收扇区2}和{发送天线1、发送扇区1、发送天线2、发送扇区2}。
由于同一个天线可能采用双极化的实现方式,即同一个天线可能采用了对应双极化的两个射频链(RF chain,Radio Frequency chain),此时应将天线ID调整为射频链ID。本实施例中,天线ID可表示为射频链ID,天线也可以表示为射频链。在本发明中,如果一个STA的发送或接收天线采用了天线阵列,则将对应同一个射频链ID的一个天线阵列简称为一个天线。
在本发明实施例中,为保证切换到目标MIMO链路的链路质量优于当前 MIMO链路的链路质量,第一STA向第二STA发送MIMO链路测量请求,第二STA接收到MIMO链路测量请求后,第二STA在当前MIMO链路上向第一STA发送训练序列,第一STA在接收第二STA发送的训练序列后,得到当前MIMO链路的链路质量,并在第一STA确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量后,通过当前MIMO链路向第二STA发送MIMO链路切换指示信息。
可选的,当第一STA在当前MIMO链路的链路质量优于选择的目标MIMO链路的链路质量时,继续保持在当前MIMO链路对应的波束组合上,并通过当前MIMO链路向第二STA发送MIMO链路保持指示信息,其中MIMO链路保持指示信息用于指示第二STA继续保持在当前MIMO链路对应的波束组合上。第二STA在接收到MIMO链路保持指示信息后,继续保持在当前MIMO链路上。
其中,为保证第二STA能够与第一STA同步切换到目标MIMO链路上,可选的,第二STA在接收到MIMO链路切换指示信息后,向第一STA发送MIMO链路切换指示信息的确认信息,然后,第一STA在接收到MIMO链路切换指示信息的确认信息后,再切换到目标MIMO链路对应的波束组合上。
需要说明的是,当第二STA接收到MIMO链路保持指示信息后,为使得第一STA确定第二STA接收到第一STA发送的MIMO链路保持指示信息,向第一STA发送MIMO链路保持指示信息的确认信息,从而保证第一STA和第二STA在同一MIMO链路上进行通信。
在本发明实施例中,MIMO链路的测量请求、针对所述MIMO链路测量请求的响应、MIMO链路的切换指示信息、针对MIMO链路的切换指示信息的确认信息可以通过携带在BRP包中下述的至少一个字段和/或元素中:
BRP包的波束优化元素、EDMG波束优化元素、PHY Header字段、PHY EDMG-Header字段。
具体的,如图5a所示,为通过EDMG波束优化元素携带MIMO链路测量请求时EDMG波束优化元素的格式示意图。如图5b所示为通过EDMG波 束优化元素携带MIMO链路测量请求、针对所述MIMO链路测量请求的响应、MIMO链路的切换指示信息以及针对MIMO链路的切换指示信息的确认信息时EDMG波束优化元素的格式示意图。
应理解,在本发明实施例中,需要测量的备份MIMO链路还包括:与需要测量的备份MIMO链路包括的接收波束和发送波束邻近的波束所对应的MIMO链路,这是由于波束遮挡发生时可能伴随设备天线的旋转,因此在MIMO链路的追踪过程中,同时在备份MIMO链路和备份MIMO链路对应的发送、接收波束的邻近波束同时进行测量,可以仅通过一次训练,在备份MIMO链路或者备份MIMO链路对应波束的邻近波束所构成的MIMO链路中,选择出具有更高质量的MIMO链路。
如图6所示,备份MIMO链路包括发送波束1、发送波束3、接收波束2和接收波束4,其中与发送波束1临近的波束包括发送波束5、发送波束6、发送波束7和发送波束8,在图6中,与备份MIMO链路接收波束、和/或发送波束临近的波束用虚线表示,其中,由这些与备份MIMO链路的接收波束和/或发送波束邻近的波束组合成的MIMO链路也可以为本发明实施例中需要测量的备份MIMO链路。通过图6可以看出,不仅针对备份MIMO链路进行测量,还围绕备份MIMO链路的构成波束(发送波束或接收波束)进行角度旋转,以测量周围的部分波束,这样可在一次测量中尝试测量到波束增益更高的波束链路。
通过在本发明实施例中对备份MIMO链路的由接收波束和/或发送波束邻近的波束所对应的MIMO链路进行测量,使得第一STA对备份MIMO测量的范围扩大了,提高了通过一次训练即可得到优于当前MIMO链路的链路质量的备份MIMO链路的可能性。
为使得第一STA能够对需要测量的备份MIMO链路进行准确的测量,以第一STA和第二STA之间包括2个备份MIMO链路(备份MIMO链路1、备份MIMO链路2)为例,第一STA可以对两个备份MIMO链路都进行测量,也可以对其中一个进行测量,若其中一个进行链路质量的测量,则较佳地, 第一STA向第二STA发送的备份MIMO链路请求中需要包括需要测量的备份MIMO链路的信息(如需要测量的备份MIMO链路的编号和/或需要测量的备份MIMO链路的个数),若对备份MIMO链路1进行测量,为使得第二STA确定需要测量的备份MIMO链路,较佳地,第一STA向第二STA发送的备份MIMO链路请求中需要包括需要测量的备份MIMO链路的信息(如需要测量的备份MIMO链路的编号)。
具体的,在本发明实施例中,第一STA向第二STA发送的MIMO链路测量请求为MIMO链路追踪请求信息,MIMO链路追踪请求信息在用于请求第二STA发送MIMO链路测量的训练序列的同时,指示需要测量的备份MIMO链路的个数N。
第二STA在接收到MIMO链路追踪请求信息后,确定需要测量的备份MIMO链路的个数N,然后选择需要测量的N个备份MIMO链路,在需要测量的N个备份MIMO链路上分别向第一STA发送训练序列。
需要说明的是,第二STA可以按照预先设置的选择备份MIMO链路的规则,从第一STA与第二STA之间的多个备份MIMO链路中,选择N个备份MIMO链路,其中N为正整数,一种可选的方式为,预先设置的选择备份MIMO链路的规则可以为按照基于链路质量对备份MIMO链路进行排序的排序结果,按照排序结果中备份MIMO链路的链路质量从低到高的顺序,选择N个备份MIMO链路。
此外,在本发明实施例中,MIMO链路测量请求包括:需要测量的备份MIMO链路的编号,第二STA在接收到MIMO链路测量请求后,在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向第一STA发送训练序列。
例如:第一STA与第二STA之前包括备份MIMO链路1、备份MIMO链路2、备份MIMO链路3以及备份MIMO链路4,其中备份MIMO链路1的编号为1,备份MIMO链路2的编号为2,备份MIMO链路3的编号为3,备份MIMO链路4的编号为4,若MIMO链路测量请求中包括需要测量的备 份MIMO链路的编号为1和3,则第二STA在接收到MIMO链路测量请求后,在备份MIMO链路1和备份MIMO链路3上分别发送训练序列,具体的,第二STA在备份MIMO链路1对应的发送波束上和备份MIMO链路3对应的发送波束上发送训练序列,接收STA在备份MIMO链路1对应的接收波束上和备份MIMO链路3对应的接收波束上接收训练序列。
在本发明实施例中,可选的,MIMO链路测量请求可以包括:每个备份MIMO链路的测量顺序,第二STA在接收到MIMO链路测量请求后,按照每个MIMO链路的测量顺序,依次在每个MIMO链路上向第一STA发送训练序列,第一STA按照每个MIMO链路的测量顺序,依次在每个MIMO链路上向接收训练序列。
在本发明实施例中,可选的,MIMO链路测量请求包括:需要测量的备份MIMO链路的编号和每个备份MIMO链路的测量顺序。具体的,第二STA在接收到MIMO链路测量请求后,按照每个MIMO链路的测量顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,向第一STA发送训练序列,第一STA按照每个MIMO链路的测量顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,从第二STA接收训练序列。
通过需要测量的备份MIMO链路的个数和/或需要测量的备份MIMO链路的顺序确定发送的训练序列。
可选的,训练序列包括AGC子字段和TRN子字段,MIMO链路测量请求中还包括需要测量的备份MIMO链路的训练序列的总长度值;第二STA在接收到MIMO测量请求后,在每个需要测量的备份MIMO链路上分别发送目标个数的AGC子字段和TRN子字段,其中,目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
本发明实施例中一种可选的目标个数的确定方法为:如果需要测量的备份MIMO链路的训练序列的总长度值指示TRN字段的个数,则需要测量的备 份MIMO链路的个数为:需要测量的备份MIMO链路的训练序列的总长度值乘以C后,再除以需要测量的每个备份MIMO链路的个数得到的平均值,其中C是每个TRN字段包含的TRN子字段的个数;或者是将需要测量的备份MIMO链路的训练序列的总长度值和需要测量的每个备份MIMO链路的个数代入预先设置的其他算法中得到的目标个数。
此外,用于测量每个备份MIMO链路的训练序列的长度值可能不同,一种可选的发送训练序列的方式为:MIMO链路测量请求包括:每个需要测量的备份MIMO链路的训练序列的长度值,第二STA在接收到MIMO链路测量请求后,在每个需要测量的备份MIMO链路上分别发送AGC子字段和TRN子字段,在每个需要测量的备份MIMO链路上接收的AGC子字段和TRN子字段的总个数为根据需要测量的MIMO链路的训练序列的长度值确定的,第一STA在每个需要测量的备份MIMO链路上分别接收相应个数的AGC子字段和TRN子字段。
例如,当需要测量的备份MIMO链路为备份MIMO链路1时,训练序列为与备份MIMO链路1对应训练序列1,其中训练序列1的长度值为备份MIMO链路测量请求指示的备份MIMO链路1的长度值,则第一STA需要通过该需要测量得备份MIMO链路1接收训练序列1,并解析训练序列1来得到备份MIMO链路1的链路质量。
需要说明的是,由于训练序列由BRP包中用于备份的MIMO链路测量的AGC字段(由多个AGC子字段构成)和TRN字段(由多个TRN子字段构成),可选的,训练序列中还包括CE字段,针对一个备份MIMO链路的训练,具体的包括几个AGC子字段和TRN子字段由与需要测量的备份MIMO链路的长度值指示。当所述训练序列的长度值为Ntraining时,训练序列至少包含Ntraining个AGC子字段和Ntraining个TRN子字段。所述训练序列的长度值应当由头(Header)字段或者增强的头字段(E-Header)携带。
测量一个备份MIMO链路所需的训练序列长度值与如下至少一个参量或配置有关:MIMO配置的实现形式(例如表1所示)、多个天线波束赋形训练 所采用的序列正交化方式(例如不同天线发送的训练序列采用频分、码分或空分等方式)、发射机/接收机的能力(例如具有多个检测器,能同时在多个信道上进行测量)、在备份MIMO链路对应的发送/接收波束的邻近波束进行测量的波束方向个数。其中,在备份MIMO链路对应的发送/接收波束的邻近波束进行测量的波束方向个数越多,需要的训练序列越长。
例如,当收、发双方采用表1中编号为2的MIMO配置时,由于采用正交的双极化方式,因此收、发双方针对一个备份MIMO链路的测量所需的AGC子字段和TRN子字段个数都为1,与收发双方都采用单天线完成单波束测量所需的AGC子字段和TRN子字段个数相同;当收、发双方采用表1中编号为3的MIMO配置时,为了使发送STA的2个发送天线能够同时发送TRN子字段而不产生相互干扰,如果发送STA在2个发送天线分别采用正交掩码而使不同天线发送的TRN子字段正交化时,发送STA和接收STA完成测量一个备份MIMO链路可能需要发送或接收至少1个AGC子字段和2个TRN子字段。
一方面,由于测量MIMO链路比测量单波束链路需要更多的TRN子字段,另一方面,训练序列的长度值大小与测量的多径个数目标有关,多径个数越多,则所需的TRN子字段越多。为了测量备份MIMO链路时,能够得到准确的信道状态信息,可选的,将备份MIMO链路的训练序列中TRN子字段的个数设置为可变值,由波束追踪发起方根据收、发双方的备份MIMO链路的MIMO配置、和/或多个天线的波束赋形训练方式、和/或在备份MIMO链路对应的发送/接收波束的邻近波束进行测量的波束方向个数,确定所需的AGC子字段和TRN子字段个数。
为了使得MIMO链路的追踪可以与面向波束链路的波束追踪能够同时进行,本发明实施例中可以将备份链路的训练序列排列在面向波束链路的训练之后,例如,如图7a所示,BRP包中包括TRN-Unit1和TRN-Unit2,其中,TRN-Unit1中包括CE、TRN1、TRN2、TRN3和TRN4,TRN-Unit2中包括CE、TRN5、TRN6、TRN7和TRN8,其中,CE表示CE字段,每个TRN表 示一个TRN子字段,TRN5为用于测量备份MIMO链路1的训练序列,TRN6为用于测量备份MIMO链路2的训练序列,在图7b中与图7a的不同之处在于,TRN5、TRN6为用于测量备份MIMO链路1的训练序列,TRN7、TRN8为用于测量备份MIMO链路2的训练序列;此外,MIMO链路的追踪也可以单独进行,以需要测量备份MIMO链路1、备份MIMO链路2和当前MIMO链路为例,如图7c所示,BRP包中包括的AGC字段(AGC1字段和AGC2字段)和TRN子字段,仅用于对备份MIMO链路的链路质量的测量,具体的,使用AGC1、TRN1和TRN2测量备份MIMO链路1,使用AGC2、TRN3和TRN4测量备份MIMO链路2,使用CE测量当前MIMO链路,其中,AGC1字段和AGC2字段可以包含一个或多个AGC子字段,每个AGC子字段与TRN字段中的TRN子字段的AWV一一对应。
MIMO链路追踪过程中,测量一个备份MIMO链路可以使用L个AGC子字段和TRN子字段,其中L≥1。例如,图7c为L=2时BRP包中用于测量一个备份MIMO链路中包括2个AGC子字段与2个TRN子字段时的情况,其中,AGC1字段中包括2个AGC子字段,其中2个AGC子字段和2个TRN子字段用于测量一个备份MIMO链路。然而,为了在备份MIMO链路对应的发送/接收波束的邻近波束上进行多个波束方向的测量,一对正在通信的STA也可以使用一个或多个TRN-Unit(每个TRN-Unit包含4个TRN子字段)用于一个备份MIMO链路的测量,此时L=4,8,12,16…。
当一个备份MIMO链路的训练序列长度超过实际所需的训练序列长度时,多余的训练序列可以用于备份MIMO链路构成波束(发送波束和/或接收波束)的邻近波束对应的MIMO链路的训练。例如,如图7d所示,当一对正在通信的STA使用2个TRN-Unit用于一个备份MIMO链路的测量,除了用于备份MIMO链路的测量,多出的训练序列用于上述备份链路的构成波束(发送波束和/或接收波束)的邻近波束的测量。
可选的,备份MIMO链路测量请求还包括,每个与需要测量的备份MIMO链路对应的训练序列在波束优化协议BRP包中位置信息。
例如,若需要测量的备份MIMO链路为两个,分别为备份MIMO链路1和备份MIMO链路2,假设每个与需要测量的备份MIMO链路对应的训练序列在BRP包中位置信息位于BRP包的尾部,即排在BRP包中AGC字段和TRN字段的尾部。
一种可选的BRP包的格式如图8所示。以图8为例,假设第一STA和第二STA正在使用2x2SU-MIMO配置进行通信,经过使用DMG波束优化元素或者增强的DMG波束优化元素(EDMG Beam Refinement element)携带的MIMO链路测量请求与针对MIMO链路测量请求的相应协商后,第二STA在BRP的包尾附加用于测量备份MIMO链路的AGC字段和TRN字段。第二STA发出的AGC1子字段用于测量备份MIMO链路1的自动增益控制,而TRN1和TRN2两个TRN子字段用于备份MIMO链路1的追踪测量;类似的,AGC2、TRN3和TRN4用于备份MIMO链路2的追踪测量。
其中,当用于测量备份MIMO链路的训练序列位于位于BRP包的尾部时,即用于测量备份MIMO链路的训练序列在BRP包中的位置在用于波束链路追踪的训练序列之后,当接收STA为波束追踪的发起者时,其波束追踪的过程示意图如图10所示,将波束追踪请求字段设置为1,包类型字段设置为TRN-R,训练长度字段设置为大于0的值,MIMO链路追踪请求字段设置为1,MIMO链路序列长度字段设置为大于0的值,向发送STA发送波束追踪请求和MIMO链路追踪请求,发送STA通过在携带数据的数据包后面附加用于进行波束追踪的TRN-R和用于测量当前MIMO链路和备份MIMO链路的TRN,并发送给接收STA。当发送STA为波束追踪的发起者时,其波束追踪的过程示意图如图11所示。具体的,发送STA将波束追踪请求字段设置为1,包类型字段设置为TRN-R,训练长度字段设置为大于0的值,MIMO链路追踪请求字段设置为1,MIMO链路序列长度字段设置为大于0的值,以及通过在携带数据的数据包后面附加用于进行波束追踪的TRN字段和用于测量当前MIMO链路和备份MIMO链路的TRN字段,向接收STA发送波束追踪请求、MIMO链路追踪请求以及TRN,并发送给接收STA,接收STA向发送STA 反馈带BRP帧的响应。
由于MIMO链路的追踪需要发送方和接收方同步对发送波束和接收波束同时进行训练,相当于将BRP-TX和BRP-RX两种类型的BRP包合并,因此BRP包头部(Header)字段的包类型(Packet Type)子字段无论设置为BRP-TX还是设置为BRP-RX,都不能准确指示用于追踪至少一个备份MIMO链路的BRP包的类型,因此波束追踪的发起方和响应方针对至少一个备份MIMO链路发起波束追踪时,可以忽略Packet Type子字段的含义。无论BRP包的Packet Type子字段设置为任何值,BRP包的接收方都应向发送方反馈针对所述备份MIMO链路的链路质量,所述备份MIMO链路的链路质量包含建议切换的目标备份MIMO链路编号,或者包含具体的备份MIMO链路的质量信息或者信道状态信息,所述备份MIMO链路的质量信息可以用MIMO链路的信噪比或者信干噪比表示,所述信道状态信息可以用测量得到的备份MIMO链路的数字域波束赋形反馈矩阵或者压缩表示的数字域波束赋形反馈矩阵表示。
需要说明的是,MIMO链路切换指示信息中携带目标MIMO链路的信息可以为目标MIMO链路的编号。其中,目标备份MIMO链路的编号可以是第二STA和第一STA预先约定的按链路质量排序的多个MIMO链路中的顺序号,预先约定的按链路质量排序结果由图9a所示的MIMO链路反馈元素指示。例如,切换的目标备份MIMO链路的编号可以由EDMG波束优化元素内的备份MIMO链路切换指示字段指示,所述备份MIMO链路切换指示字段设置为0时,指示第二STA不进行MIMO链路切换,当设置为2时,表示请求第二STA在下一个PPDU开始时刻之前,应切换到由MIMO链路反馈元素中波束组合2字段对应的第2个MIMO链路上发送数据。如果第一STA通过波束赋形训练,需要更新MIMO链路的质量排序,则可以向第二STA发送一个新的MIMO链路反馈元素进行更新。
具体的,备份MIMO链路的链路质量可以为衡量备份MIMO链路的通信质量的指标如吞吐量或容量,以衡量备份MIMO链路的通信质量的指标为吞吐量为例进行说明,当衡量备份MIMO链路的通信质量的指标为其他参数时, 与衡量备份MIMO链路的通信质量的指标为吞吐量时类似,在此不再赘述。
若备份MIMO链路的吞吐量大于当前用于数据传输的MIMO链路的吞吐量,则将确定将当前用于数据传输的MIMO链路切换到备份MIMO链路,若测量的两个备份备份MIMO链路的吞吐量都大于当前用于数据传输的MIMO链路的吞吐量,则第一STA可以将当前用于数据传输的MIMO链路切换为两个备份MIMO链路中的任一备份MIMO链路,较佳的,第一STA将当前用于数据传输的MIMO链路切换为两个备份MIMO链路中吞吐量最大的备份MIMO链路。
需要说明的是,第一STA向第二STA发送备份MIMO链路切换指示信息,该备份MIMO链路切换指示信息具体的可以为需要切换到的备份MIMO链路的链路编号,由于备份MIMO链路包括至少一个波束链路,波束链路对应波束组合,其中,如图9a所示为MIMO链路反馈元素的格式,而对于第二STA,所述需要切换到的备份MIMO链路具体对应{发送天线ID、发送扇区ID},如图9b所示,例如一个2个发射天线的第二STA,其备份MIMO链路可以表示为{(天线1、天线1的发送扇区ID),(发送天线2、天线2的发送扇区ID)}。MIMO链路的切换需要第二STA和第一STA同时完成,即第二STA和第一STA需要将正在参与MIMO通信的所有发送天线或所有接收天线,同时切换至备份MIMO链路对应的发送波束或接收波束(调整天线权重矢量)。
从本发明实施例的波束追踪的方法可以看出,当第二STA和第一STA工作在MIMO状态下时,在波束追踪过程的测量阶段和切换阶段,要求第二STA和第一STA同步切换至备份MIMO链路对应的发送波束或接收波束,即收发双方同步完成发送波束和接收波束的整体测量与切换,这与现有技术的分别针对发送波束或接收波束的分步追踪方法不同。例如,现有技术在波束追踪时发送的BRP包类型为BRP-TX或者BRP-RX时,分别只能针对第二STA的发送波束进行训练,或者只能针对第一STA的接收波束进行训练;而本发明发送的BRP包忽略其类型,可以使第二STA和第一STA通过同一个训练序 列同时训练构成备份MIMO链路的发送波束和接收波束,从而通过将原来的多步训练缩减为一步训练,大幅减少了训练时间,降低了由遮挡引起的MIMO链路的中断概率。
此外,本发明实施例中可选的触发波束追踪的方法为:接收STA检测到当前用于数据传输的MIMO链路中的至少一个波束链路质量下降;或者,接收STA检测到当前用于数据传输的MIMO链路的质量下降。
其中,多个波束之间如果空间上正交,则多个波束链路之间独立。例如,对于一个2x2SU-MIMO,在模拟域波束赋形训练后,接收信号可以表示为
Figure PCTCN2016079891-appb-000002
其中,Y1和Y2分别表示接收天线1和接收天线2的接收信号,S1和S2分别表示发送天线1和发送天线2的发送信号,Z1和Z2分别表示接收天线1和接收天线2的噪声,有效信道(从发射机的基带模块到接收机的基带模块之间的信道)矩阵Heff表示为
Figure PCTCN2016079891-appb-000003
如果Heff仅主对角线或副对角线显示有较高的接收信号能量,而同时对应的副对角线或主对角线的值的模值平方趋近于0(无接收能量),则称构成MIMO链路的两个波束链路独立且相互间无干扰。例如如果Heff具有下式的形式,则显示两个波束链路独立且相互间无干扰。
Figure PCTCN2016079891-appb-000004
Figure PCTCN2016079891-appb-000005
如果Heff是一个正交的信道矩阵,即Heff的列与列之间是正交的,则证明不同的发送天线发出的信号,在不同的接收天线处的信道响应是正交的,即波束链路之间独立且相互间无干扰。
需要注意,第一STA只能在波束链路相互间独立时,才能依据单个波束链路的质量判断是否要进行MIMO链路的追踪或切换;否则,第一STA需要依据MIMO链路的质量判断是否要进行MIMO链路的追踪或切换。MIMO链 路的质量判断准则可以是MIMO链路的容量或第一STA多个接收天线的平均信噪比SNR,而波束链路的质量判断可以是SNR或信干噪比(SINR)。其中,MIMO链路的容量可以依据信道估计得到的Heff和MIMO信道容量计算准则计算得到。
从以上分析可以看出,当MIMO链路质量恶化时,所述MIMO链路的波束追踪可以分为两种:MIMO链路的整体追踪,或者构成MIMO链路的部分波束链路的追踪。MIMO链路的波束追踪包含上述两种方式的至少一种。为使得第二STA能够通过需要测量的备份MIMO链路向第一STA发送训练序列,一种可选的实现方式为:第一STA通过SLS阶段和/或BRP阶段的波束赋形训练,选择与第二STA之间链路质量超过设定阈值的多个MIMO链路;再将选择的MIMO链路的信息、以及基于选择的每个MIMO链路的链路质量对选择的MIMO链路的信息进行排序的排序结果,发送给第二STA;其中,当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路,备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。然后,第一STA向第二STA发送MIMO链路测量请求。
例如,STA1通过波束赋形训练,确定了3个与STA2之间的MIMO链路,MIMO链路1、MIMO链路2、MIMO链路3,其中,按MIMO链路的质量从高到低的顺序为MIMO链路1、MIMO链路2、MIMO链路3,则将MIMO链路1作为当前用于数据传输的MIMO链路,MIMO链路2、MIMO链路3作为备份MIMO链路,在第一STA1检测到MIMO链路1的质量下降或MIMO链路1中至少一个波束链路的质量下降后,对MIMO链路2和MIMO链路3、或MIMO链路2、或MIMO链路3进行测量。
其中,若需要对MIMO链路2和MIMO链路3进行测量,可以按照MIMO链路2、MIMO链路3的顺序,依次对MIMO链路2和MIMO链路3进行测量。
即STA2按照所述质量指示信息指示的需要测量的备份MIMO链路的质量从高到低的顺序,依次通过需要测量的备份MIMO链路向STA2发送所述 训练序列。
本发明实施例中,在当前用于数据传输的MIMO链路质量下降时,或者如果构成MIMO链路的多个波束链路相互间近似成独立关系(例如多个波束链路之间空间上正交,相互间不产生干扰),且相互独立的多个波束链路中至少一个波束链路质量恶化时,可以将当前用于数据传输的MIMO链路切换为质量较高的备份MIMO链路,降低了现有技术中因波束追踪缓慢而不能及时建立新的波束链路而导致链路中断的可能性。
为使得第二STA能够及时采用合适的MCS、和/或信道状态信息、和/或更新的MIMO链路数字域预编码而提高切换后的备份MIMO链路的传输速率,第一STA将MIMO链路追踪过程中测量到的最新的MIMO链路的属性参数(如MCS、信道状态信息、与所述需要切换到的备份MIMO链路对应的波束赋形反馈矩阵的信息等)发送给第二STA,其中,MCS包括空间流的个数。
由于在MIMO链路切换的过程中,可能会伴随与备份MIMO链路对应的MCS、信道状态信息的变化,因此,在第一STA在确定需要切换到目标备份MIMO链路之后,确定与目标备份MIMO链路对应的MCS、与目标备份MIMO链路对应的信道状态信息,将与目标备份MIMO链路对应的MCS和/或与目标备份MIMO链路对应的信道状态信息携带在MIMO链路切换指示信息中发送给第二STA。其中,该MCS包括空间流的个数。
当第一STA若通过波束赋形训练确定一个MIMO链路,该MIMO链路为当前用于数据传输的MIMO链路,如果构成MIMO链路的多个波束链路相互间近似成独立关系,且相互独立的多个波束链路中至少一个波束链路质量恶化时,向第二STA发送波束追踪的指示信息,波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示第二STA对由天线ID指示的天线进行波束追踪,质量下降的每个波束链路分别为不受当前MIMO链路中其他波束链路干扰的波束链路;
第二STA接收第一STA发送的波束追踪的指示信息,对天线ID指示的 天线进行波束追踪。
对于一个MIMO链路,由于部分波束链路AWV的调整可能对其它未进行AWV调整的波束链路、或者其它正在通信的STA之间的波束链路造成较强干扰,因此第一STA可以向第二STA发送受限制的扇区ID(Sector ID),以使第二STA在波束追踪时避免在受限制的Sector ID上发送训练序列,对MIMO链路中的其他波束链路造成干扰。
假设一个MU-MIMO系统,如图2所示,第二STA具有2个发送天线,而每个第一STA(STA1或STA2)都只有一个接收天线,即第二STA和每个接收STA之间只能采用一个空间流的方式进行通信,此时每个STA感知的链路质量是由单个波束构成的波束链路的质量。如果一个第一STA(例如STA1)感知到波束链路质量下降,则可以向第二STA发送备份MIMO链路测量请求以发起波束追踪。第二STA收到一个STA1发送的波束追踪请求信息后,应根据预先接收的其它第一STA(图2中的STA2)发送的受限制的扇区ID,在与STA1进行波束追踪时,避免在MIMO链路对应的受限制扇区ID上发送波束赋形训练序列。
需要特别指出的是,本实施例是以第一STA作为波束追踪的发起者STA,第二STA作为波束追踪的响应者STA,但是,第二STA也可以作为发起者STA,相应地第一STA也可以作为响应者STA,上述两种情况都适用本实施例的方法。相比第一STA作为发起者,第二STA作为发起者的主要区别在于:当第二STA可以通过一个BRP包发送MIMO链路追踪请求时,在同一个所述BRP包内包含CE字段、AGC字段和TRN字段,即MIMO链路追踪请求与用于波束追踪的训练序列在同一个BRP包内发送。
如图12所示,本发明实施例波束追踪的方法,包括:
步骤1200,第一STA在确认检测到当前MIMO链路中的至少一个波束链路的质量下降后,向第二STA发送波束追踪指示信息,其中,波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示第二STA对由天线ID指示的天线进行波束追踪,质量下降的每个波束链路分别为 不受当前MIMO链路中其他波束链路干扰的波束链路。
可选的,波束追踪指示信息还用于指示在第二STA中受限制的扇区ID,以使第二STA根据受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
需要说明的是,受限制的扇区ID由下述方式确定:第一STA通过波束赋形训练,确定第二STA的一个扇区ID对应的扇区对当前MIMO链路的至少一个波束链路产生干扰,则将扇区ID标记为受限制的扇区ID。
具体的,质量下降的每个波束链路分别为不受当前MIMO链路中其他波束链路干扰的波束链路,即质量下降的每个波束链路为相互独立的波束链路,其中,多个波束之间如果空间上正交,则多个波束链路之间独立。例如,对于一个2x2SU-MIMO,在模拟域波束赋形训练后,接收信号可以表示为
Figure PCTCN2016079891-appb-000006
其中,Y1和Y2分别表示接收天线1和接收天线2的接收信号,S1和S2分别表示发送天线1和发送天线2的发送信号,Z1和Z2分别表示接收天线1和接收天线2的噪声,有效信道(从发射机的基带模块到接收机的基带模块之间的信道)矩阵Heff表示为
Figure PCTCN2016079891-appb-000007
如果Heff仅主对角线或副对角线显示有较高的接收信号能量,而同时对应的副对角线或主对角线的值的模值平方趋近于0(无接收能量),则称构成MIMO链路的两个波束链路独立且相互间无干扰。例如如果Heff具有下式的形式,则显示两个波束链路独立且相互间无干扰。
Figure PCTCN2016079891-appb-000008
Figure PCTCN2016079891-appb-000009
如果Heff是一个正交的信道矩阵,即Heff的列与列之间是正交的,则证明不同的发送天线发出的信号,在不同的接收天线处的信道响应是正交的,即波束链路之间独立且相互间无干扰。
需要注意,第一STA只能在波束链路相互间独立时,才能依据单个波束链路的质量判断是否要进行MIMO链路的追踪或切换。
波束链路的质量判断可以是SNR或信干噪比(SINR)。其中,MIMO链路的容量可以依据信道估计得到的Heff和MIMO信道容量计算准则计算得到。
步骤1201,第二STA从第一STA接收波束追踪指示信息。
步骤1202,第二STA对天线ID指示的天线进行波束追踪。
具体的,当波束追踪指示信息还用于指示在第二STA中受限制的扇区ID时,第二STA在所述受限制的扇区ID对应的扇区之外的其他扇区,对所述天线ID指示的天线进行波束追踪。
其中,第一STA为发起波束追踪的STA,第二STA为响应波束追踪的STA,其中,当发起波束追踪的STA为用于接收数据的STA时,响应波束追踪的STA为发送数据的STA;反之,当发起波束追踪的STA为用于发送数据的STA时,响应波束追踪的STA为接收数据的STA。
在本发明实施例中由于第二STA接收的第一STA发送的波束追踪指示信息中包括至少一个质量下降的波束链路对应的天线ID,指示第二STA对天线ID指示的天线进行独立波束追踪,从而使得第二STA在具有多个发送波束的情况下,能够快速、准确针对造成链路质量下降低的发送天线进行波束追踪,降低由遮挡造成的MIMO链路的质量恶化。本发明实施例中针对MIMO链路中的部分独立的波束链路进行波束追踪的方法,可以更好地在波束仅发生轻微遮挡、以及次优的备份MIMO链路质量较差(不适合切换到备份MIMO链路)时,准确针对被轻微遮挡的发送波束进行波束追踪,以针对质量恶化的波束链路改善链路质量,进而改善当前MIMO链路的整体质量。
基于同一发明构思,本发明实施例中还提供了一种波束追踪的设备、系统,由于波束追踪的设备、系统对应的方法为本发明实施例波束追踪的方法,因此本发明实施例设备、系统的实施可以参见该方法的实施,重复之处不再赘述。
如图13所示,本发明实施例波束追踪的设备,包括发送模块1300、接收 模块1310和处理模块1320,其中,发送模块1300用于向第二STA发送MIMO链路测量请求,MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列;接收模块1310用于在每个需要测量的备份MIMO链路上分别接收第二STA发送的训练序列;处理模块1320用于根据接收到的训练列,得到每个需要测量的备份MIMO链路的链路质量;并根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;发送模块1300还用于通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,MIMO链路切换指示信息中携带目标MIMO链路的信息,用于指示第二STA切换到目标MIMO链路对应的波束组合;处理模块1320,还用于切换到目标MIMO链路对应的波束组合。
可选的,接收模块1310还用于在发送模块通过当前MIMO链路向第二STA发送MIMO链路测量请求后,在当前MIMO链路上接收第二STA发送的训练序列;处理模块1320还用于根据接收模块通过当前MIMO链路接收到的训练序列,得到当前MIMO链路的链路质量;并确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量。
可选的,处理模块1320具体用于:选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
可选的,处理模块1320还用于:在发送模块1300通过当前MIMO链路向第二STA发送MIMO链路测量请求之前,检测到当前MIMO链路中的至少一个波束链路的质量下降;或者,在发送模块1300通过当前MIMO链路向第二STA发送MIMO链路测量请求之前,检测到当前MIMO链路质量下降。
可选的,MIMO链路测量请求为MIMO链路追踪请求信息,MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;接收模块1310具体用于:在需要测量的N个备份MIMO链路上,分别接收第二STA发送的训练序列。
可选的,MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
接收模块1310具体用于分别接收第二STA在每个备份MIMO链路的编号对应的各个备份MIMO链路上发送的训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上接收第二STA发送的训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上接收第二STA发送的训练序列。
可选的,MIMO链路测量请求还包括需要测量的备份MIMO链路的训练序列的总长度值;训练序列包括:自动增益控制AGC字段和训练序列TRN字段;接收模块1310具体用于在每个需要测量的备份MIMO链路上分别接收总个数为目标个数的AGC子字段和TRN子字段,其中,目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
可选的,发送模块1300具体用于将MIMO链路测量请求和/或MIMO链路切换指示信息携带在BRP包的下述至少一个字段和/或元素中发送给第二STA:BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
可选的,处理模块1320还用于在选择目标MIMO链路之后,确定与目标MIMO链路对应的调制与编码策略MCS、和/或确定与目标MIMO链路对应的信道状态信息;其中,发送模块向第二STA发送的MIMO链路切换指示信息中还携带MCS和/或信道状态信息。
可选的,处理模块1320还用于在发送模块1300向第二STA发送MIMO链路测量请求之前,通过扇区级扫描SLS阶段和/或波束优化协议BRP阶段的波束赋形训练,选择与第二STA之间链路质量超过设定阈值的多个MIMO链路;发送模块,还有用于将选择的MIMO链路的信息、以及基于链路质量对选择的MIMO链路进行排序的排序结果,发送给第二STA;其中,当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路,备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。
可选的,需要测量的备份MIMO链路还包括:与需要测量的备份MIMO链路包括的接收波束邻近的波束所对应的MIMO链路。
应注意,本发明实施例中,发送模块1300可以由发射器实现,接收模块1310可以由接收器实现,处理模块1320可以由处理器实现,其中,发送模块1300和接收模块1310可以集成在一个实体设备中。如图14所示,波束追踪的设备1400可以包括处理器1410、发射器1420、接收器1430和存储器1440。其中,存储器1440可以用于波束追踪的设备1400出厂时预装的程序/代码,也可以存储用于处理器1410执行时的代码等。
波束追踪的设备1400中的各个组件通过总线系统1450耦合在一起,其中总线系统1450除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,处理器1410可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本发明实施例所提供的技术方案。
应注意,尽管图14所示的波束追踪的设备1400仅仅示出了处理器1410、发射器1420、接收器1430和存储器1440,但是在具体实现过程中,本领域的技术人员应当明白,该波束追踪的设备还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该设备还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该波束追踪的设备也可仅仅包含实现本发明实施例所必须的器件或模块,而不必包含图14中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(ROM:Read-Only Memory)或随机存储记忆体(RAM:Random Access Memory)等。
如图15所示,本发明实施例一种波束追踪的设备,包括:接收模块1500、发送模块1510和处理模块1520;其中,接收模块1500用于接收到第一STA发送的多入多出MIMO链路测量请求,MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列;发送模块1510用于在每个需要测量的备份MIMO链路上分别向第一STA发送训练序列;接收模块1500还用于通过当前MIMO链路接收第一STA发送的MIMO链路切换请求指示信息,MIMO链路切换指示信息用于指示第二STA切换到目标MIMO链路对应的波束组合,目标MIMO链路为第一STA根据每个备份MIMO链路的链路质量选择的一个MIMO链路,每个备份MIMO链路的链路质量为第一STA分别根据在每个备份MIMO链路上接收到的训练序列得到;处理模块1520,用于切换到目标MIMO链路对应的波束组合上。
可选的,发送模块1510还用于在通过当前MIMO链路接收第一STA发送的MIMO链路测量请求后,针对当前MIMO链路,在当前MIMO链路上向第一STA发送训练序列。
可选的,目标MIMO链路为具有最高链路质量的备份MIMO链路。
可选的,MIMO链路测量请求为MIMO链路追踪请求信息,MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;处理模块1520,还用于选择需要测量的N个备份MIMO链路;发送模块1510,具体用于在选择需要测量的的N个备份MIMO链路上分别向第一STA发送训练序列。
可选的,MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;发送模块1510,具体用于:在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向第一STA发送训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上向第一STA发送训练序列;或,按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上向第一STA发送训练序列。
可选的,MIMO链路测量请求还包括:需要测量的备份MIMO链路的训 练序列的总长度值;训练序列包括:自动增益控制AGC子字段和训练序列TRN子字段;发送模块1510具体用于在每个需要测量的备份MIMO链路上分别向第一STA发送总个数为目标个数的AGC子字段和TRN子字段,其中,目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
可选的,接收模块1500接收的MIMO链路测量请求和/或MIMO链路切换指示信息携带在波束优化协议BRP包的下述至少一个字段和/或元素中:BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
可选的,MIMO链路切换指示信息中还携带目标MIMO链路的MCS和/或信道状态信息;发送模块1510具体用于在处理模块模块切换到目标MIMO链路对应的波束组合上之后,在目标MIMO链路对应的波束组合上,基于MCS和/或目标MIMO链路的信道状态信息向第一STA发送数据。
可选的,接收模块1500具体用于在接收第一STA发送的MIMO链路测量请求之前,接收第一STA发送的多个MIMO链路的信息以及多个MIMO链路的排序结果;其中,多个MIMO链路的信息为设备与第二STA之间链路质量超过设定阈值的多个MIMO链路的信息,多个MIMO链路的信息的排序结果为基于链路质量,对多个MIMO链路进行排序得到的排序结果;处理模块,还用于根据多个MIMO链路的信息以及多个MIMO链路的排序结果,确定当前MIMO链路为多个MIMO链路中链路质量最高的MIMO链路,备份MIMO链路为多个MIMO链路中除当前MIMO链路之外的MIMO链路。
可选的,需要测量的备份MIMO链路还包括:与需要测量的备份MIMO链路包括的发送波束邻近的波束所对应的MIMO链路。
应注意,本发明实施例中,发送模块1510可以由发射器实现,接收模块1500可以由接收器实现,处理模块1520可以由处理器实现,其中,发送模块1510和接收模块1500可以集成在一个实体设备中。如图16所示,波束追踪的设备1600可以包括处理器1610、发射器1620、接收器1630和存储器1640。 其中,存储器1640可以用于波束追踪的设备1600出厂时预装的程序/代码,也可以存储用于处理器1610执行时的代码等。
波束追踪的设备1600中的各个组件通过总线系统1650耦合在一起,其中总线系统1650除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,处理器1610可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本发明实施例所提供的技术方案。
应注意,尽管图16所示的波束追踪的设备1600仅仅示出了处理器1610、发射器1620、接收器1630和存储器1640,但是在具体实现过程中,本领域的技术人员应当明白,该波束追踪的设备还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该设备还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该波束追踪的设备也可仅仅包含实现本发明实施例所必须的器件或模块,而不必包含图16中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(ROM:Read-Only Memory)或随机存储记忆体(RAM:Random Access Memory)等。
如图17所示,本发明实施例波束追踪的系统,包括本发明实施例如图13所示的任一的第一设备1700,和本发明实施例如图15所示的任一的第二设备1710。
如图18所示,本发明实施例波束追踪的设备,包括:处理模块1800和收发模块1810,其中,处理模块1800用于确认检测到当前多入多出MIMO链路中的至少一个波束链路的质量下降,质量下降的每个波束链路分别为不 受当前MIMO链路中其他波束链路干扰的波束链路;收发模块1810用于向第二STA发送波束追踪指示信息,波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示第二STA对由天线ID指示的天线进行波束追踪。
可选的,波束追踪指示信息还用于指示在第二STA中受限制的扇区ID,以使第二STA根据受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
可选的,受限制的扇区ID由下述方式确定:
处理模块1800,通过波束赋形训练,确定第二STA的一个扇区ID对应的扇区对当前MIMO链路的至少一个波束链路产生干扰,则将扇区ID标记为受限制的扇区ID。
应注意,本发明实施例中,收发模块1810可以由收发器实现,处理模块1800可以由处理器实现,如图19所示,波束追踪的设备1900可以包括处理器1910、收发器1920和存储器1930。其中,存储器1930可以用于波束追踪的设备1900出厂时预装的程序/代码,也可以存储用于处理器1910执行时的代码等。
波束追踪的设备1900中的各个组件通过总线系统1940耦合在一起,其中总线系统1940除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,处理器1910可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本发明实施例所提供的技术方案。
应注意,尽管图19所示的波束追踪的设备1900仅仅示出了处理器1910、收发器1920和存储器1930,但是在具体实现过程中,本领域的技术人员应当明白,该波束追踪的设备还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该设备还可包含实现其他附加功 能的硬件器件。此外,本领域的技术人员应当明白,该波束追踪的设备也可仅仅包含实现本发明实施例所必须的器件或模块,而不必包含图19中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(ROM:Read-Only Memory)或随机存储记忆体(RAM:Random Access Memory)等。
如图20所示,本发明实施例波束追踪的设备,包括:
收发模块2000,用于从第一STA接收波束追踪指示信息,波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示第二STA对天线ID指示的天线进行波束追踪,质量下降的每个波束链路分别为不受当前多入多出MIMO链路中其他波束链路干扰的波束链路;处理模块2010,用于对天线ID指示的天线进行波束追踪。
可选的,波束追踪指示信息还用于指示在第二STA中受限制的扇区ID;处理模块2010具体用于在受限制的扇区ID对应的扇区之外的其他扇区,对天线ID指示的天线进行波束追踪。
可选的,受限制的扇区ID为第二STA的扇区中对当前MIMO链路的至少一个波束链路产生干扰的扇区对应的扇区ID。
应注意,本发明实施例中,收发模块2000可以由收发器实现,处理模块2010可以由处理器实现,如图21所示,波束追踪的设备2100可以包括处理器2110、收发器2120和存储器2130。其中,存储器2130可以用于波束追踪的设备2100出厂时预装的程序/代码,也可以存储用于处理器2110执行时的代码等。
波束追踪的设备2100中的各个组件通过总线系统2140耦合在一起,其中总线系统2140除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,处理器2110可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本发明实施例所提供的技术方案。
应注意,尽管图21所示的波束追踪的设备2100仅仅示出了处理器2110、收发器2120和存储器2130,但是在具体实现过程中,本领域的技术人员应当明白,该波束追踪的设备还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该设备还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该波束追踪的设备也可仅仅包含实现本发明实施例所必须的器件或模块,而不必包含图21中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(ROM:Read-Only Memory)或随机存储记忆体(RAM:Random Access Memory)等。
如图22所示,本发明实施例波束追踪的系统,包括本发明实施例如图18所示任一的第一设备2200,和本发明实施例如图20所示任一的第二设备2210。
从上述内容可以看出:第一STA向第二STA发送MIMO链路测量请求,其中,MIMO链路测量请求用于请求第二STA发送用于MIMO链路测量的训练序列;然后,第一STA在每个需要测量的备份MIMO链路上分别接收第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量;第一STA再根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;最后,第一STA通过当前MIMO链路向第二STA发送MIMO链路切换指示信息,并切换到目标MIMO链路对应的波束组合,MIMO链路切换指示信息中携带目标MIMO链路的信息,用于指示第二STA切换到目标MIMO链 路对应的波束组合。这种技术方案中由于第一STA能够通过解析第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量,并基于链路质量选择目标MIMO链路,然后向第二STA发送MIMO链路切换指示信息,切换到目标MIMO链路对应的波束组合上,因此实现了将当前MIMO链路直接整体切换到目标MIMO链路上,不但保证了通信质量,而且快速的直接整体MIMO链路切换避免了现有技术中由于在很小角度范围内的波束追踪而导致的波束追踪缓慢而造成链路中断的问题。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (56)

  1. 一种波束追踪的方法,其特征在于,包括:
    第一站点STA向第二STA发送多入多出MIMO链路测量请求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练序列;
    所述第一STA在每个需要测量的备份MIMO链路上分别接收所述第二STA发送的训练序列,得到每个需要测量的备份MIMO链路的链路质量;
    所述第一STA根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;
    所述第一STA通过当前MIMO链路向所述第二STA发送MIMO链路切换指示信息,并切换到所述目标MIMO链路对应的波束组合,所述MIMO链路切换指示信息中携带所述目标MIMO链路的信息,用于指示所述第二STA切换到所述目标MIMO链路对应的波束组合。
  2. 如权利要求1所述的方法,其特征在于,所述第一STA通过当前MIMO链路向第二STA发送MIMO链路测量请求后,通过当前MIMO链路向所述第二STA发送MIMO链路切换指示信息前,还包括:
    所述第一STA在所述当前MIMO链路上接收所述第二STA发送的训练序列,得到当前MIMO链路的链路质量;
    所述第一STA确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一STA选择一个备份MIMO链路作为目标MIMO链路,包括:
    所述第一STA选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
  4. 如权利要求1至3任一所述的方法,其特征在于,每个MIMO链路分别包括至少一个波束链路,所述第一STA通过当前MIMO链路向所述第二 STA发送所述MIMO链路测量请求之前,还包括:
    所述第一STA检测到当前MIMO链路中的至少一个波束链路的质量下降;或者
    所述第一STA检测到当前MIMO链路质量下降。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;
    所述第一STA在每个需要测量的备份MIMO链路上分别接收所述第二STA发送的训练序列,包括:
    所述第一STA在需要测量的N个备份MIMO链路上,分别接收所述第二STA发送的训练序列。
  6. 如权利要求1至5任一所述的方法,其特征在于,所述MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
    所述第一STA在每个备份MIMO链路上分别接收所述第二STA发送的训练序列,包括:
    所述第一STA分别接收第二STA在每个备份MIMO链路的编号对应的各个备份MIMO链路上发送的训练序列;或
    所述第一STA按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上接收所述第二STA发送的训练序列;或
    所述第一STA按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上接收所述第二STA发送的训练序列。
  7. 如权利要求5或6所述的方法,其特征在于,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;
    所述训练序列包括:自动增益控制AGC字段和训练序列TRN字段;
    所述第一STA在每个需要测量的备份MIMO链路上分别接收所述第二 STA发送的训练序列,包括:
    所述第一STA在每个需要测量的备份MIMO链路上分别接收总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
  8. 如权利要求1至7任一所述的方法,其特征在于,所述第一STA将所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在BRP包的下述至少一个字段和/或元素中发送给所述第二STA:
    所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
  9. 如权利要求1至8任一所述的方法,其特征在于,所述第一STA选择目标MIMO链路之后,还包括:
    所述第一STA确定与所述目标MIMO链路对应的调制与编码策略MCS、和/或确定与所述目标MIMO链路对应的信道状态信息;
    其中,所述第一STA向所述第二STA发送的所述MIMO链路切换指示信息中还携带所述MCS和/或所述信道状态信息。
  10. 如权利要求1至9任一所述的方法,其特征在于,所述第一STA向所述第二STA发送所述MIMO链路测量请求之前,还包括:
    所述第一STA通过扇区级扫描SLS阶段和/或波束优化协议BRP阶段的波束赋形训练,选择与所述第二STA之间链路质量超过设定阈值的多个MIMO链路;
    所述第一STA将选择的MIMO链路的信息、以及基于链路质量对选择的MIMO链路进行排序的排序结果,发送给第二STA;
    其中,所述当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。
  11. 如权利要求1至10任一所述的方法,其特征在于,需要测量的备份 MIMO链路还包括:与所述需要测量的备份MIMO链路包括的接收波束邻近的波束所对应的MIMO链路。
  12. 一种波束追踪的方法,其特征在于,包括:
    第二站点STA接收到第一STA发送的多入多出MIMO链路测量请求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练序列;
    所述第二STA在每个需要测量的备份MIMO链路上分别向所述第一STA发送训练序列;
    所述第二STA通过当前MIMO链路接收所述第一STA发送的MIMO链路切换请求指示信息,所述MIMO链路切换指示信息用于指示所述第二STA切换到目标MIMO链路对应的波束组合,所述目标MIMO链路为所述第一STA根据每个备份MIMO链路的链路质量选择的一个MIMO链路,所述每个备份MIMO链路的链路质量为所述第一STA分别根据在每个备份MIMO链路上接收到的训练序列得到;
    所述第二STA切换到所述目标MIMO链路对应的波束组合上。
  13. 如权利要求12所述的方法,其特征在于,所述第二STA通过当前MIMO链路接收所述第一STA发送的MIMO链路测量请求后,接收所述第一STA发送的MIMO链路切换请求指示信息之前,还包括:
    所述第二STA针对所述当前MIMO链路,在所述当前MIMO链路上向所述第一STA发送训练序列。
  14. 如权利要求12或13所述的方法,其特征在于,所述目标MIMO链路为具有最高链路质量的备份MIMO链路。
  15. 如权利要求12至14任一所述的方法,其特征在于,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;
    所述第二STA在每个备份MIMO链路上分别向所述第一STA发送训练序列,包括:
    所述第二STA选择需要测量的N个备份MIMO链路,在选择需要测量的的N个备份MIMO链路上分别向所述第一STA发送训练序列。
  16. 如权利要求12至15任一所述的方法,其特征在于,所述MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
    所述第二STA在每个备份MIMO链路上分别向所述第一STA发送训练序列,包括:
    所述第二STA在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向所述第一STA发送训练序列;或
    所述第二STA按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上向所述第一STA发送训练序列;或
    所述第二STA按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上向所述第一STA发送训练序列。
  17. 如权利要求14或15所述的方法,其特征在于,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;
    所述训练序列包括:自动增益控制AGC子字段和训练序列TRN子字段;
    所述第二STA在每个备份MIMO链路上分别向所述第一STA发送训练序列,包括:
    所述第二STA在每个需要测量的备份MIMO链路上分别向所述第一STA发送总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
  18. 如权利要求12至17任一所述的方法,其特征在于,所述第二STA接收的所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在波束优化协议BRP包的下述至少一个字段和/或元素中:
    所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部 Header字段、增强的PHY头部E-Header字段。
  19. 如权利要求12至18任一所述的方法,其特征在于,所述MIMO链路切换指示信息中还携带目标MIMO链路的所述MCS和/或信道状态信息;
    所述第二STA切换到所述目标MIMO链路对应的波束组合上之后,还包括:
    所述第二STA在所述目标MIMO链路对应的波束组合上,基于所述MCS和/或目标MIMO链路的信道状态信息向所述第一STA发送数据。
  20. 如权利要求12至19任一所述的方法,其特征在于,所述第二STA接收所述第一STA发送的所述MIMO链路测量请求之前,还包括:
    所述第二STA接收所述第一STA发送的多个MIMO链路的信息以及所述多个MIMO链路的排序结果;
    其中,所述多个MIMO链路的信息为所述第一STA与所述第二STA之间链路质量超过设定阈值的多个MIMO链路的信息,所述多个MIMO链路的信息的排序结果为基于链路质量,对所述多个MIMO链路进行排序得到的排序结果;
    所述第二STA根据所述多个MIMO链路的信息以及所述多个MIMO链路的排序结果,确定当前MIMO链路为多个MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为多个MIMO链路中除当前MIMO链路之外的MIMO链路。
  21. 如权利要求12至20任一所述的方法,其特征在于,需要测量的备份MIMO链路还包括:与所述需要测量的备份MIMO链路包括的发送波束邻近的波束所对应的MIMO链路。
  22. 一种波束追踪的方法,其特征在于,包括:
    第一STA确认检测到当前多入多出MIMO链路中的至少一个波束链路的质量下降,所述质量下降的每个波束链路分别为不受所述当前MIMO链路中其他波束链路干扰的波束链路;
    所述第一STA向所述第二STA发送波束追踪指示信息,所述波束追踪指 示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对由所述天线ID指示的天线进行波束追踪。
  23. 如权利要求22所述的方法,其特征在于,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID,以使第二STA根据所述受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
  24. 如权利要求23所述的方法,其特征在于,所述受限制的扇区ID由下述方式确定:
    所述第一STA通过波束赋形训练,确定所述第二STA的一个扇区ID对应的扇区对所述当前MIMO链路的至少一个波束链路产生干扰,则将所述扇区ID标记为受限制的扇区ID。
  25. 一种波束追踪的方法,其特征在于,包括:
    第二站点STA从第一STA接收波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对所述天线ID指示的天线进行波束追踪,所述质量下降的每个波束链路分别为不受所述当前多入多出MIMO链路中其他波束链路干扰的波束链路;
    所述第二STA对所述天线ID指示的天线进行波束追踪。
  26. 如权利要求25所述的方法,其特征在于,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID;
    所述第二STA对由所述天线ID指示的天线进行波束追踪,包括:
    所述第二STA在所述受限制的扇区ID对应的扇区之外的其他扇区,对所述天线ID指示的天线进行波束追踪。
  27. 如权利要求26所述的方法,其特征在于,所述受限制的扇区ID为所述第二STA的扇区中对所述当前MIMO链路的至少一个波束链路产生干扰的扇区对应的扇区ID。
  28. 一种波束追踪的设备,其特征在于,包括:
    发送模块,用于向第二STA发送多入多出MIMO链路测量请求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练 序列;
    接收模块,用于在每个需要测量的备份MIMO链路上分别接收所述第二STA发送的训练序列;
    处理模块,用于根据所述接收到的训练列,得到每个需要测量的备份MIMO链路的链路质量;并根据每个备份MIMO链路的链路质量,选择一个备份MIMO链路作为目标MIMO链路;
    所述发送模块,还用于通过当前MIMO链路向所述第二STA发送MIMO链路切换指示信息,所述MIMO链路切换指示信息中携带所述目标MIMO链路的信息,用于指示所述第二STA切换到所述目标MIMO链路对应的波束组合;
    所述处理模块,还用于切换到所述目标MIMO链路对应的波束组合。
  29. 如权利要求28所述的设备,其特征在于,所述接收模块,还用于:
    在所述发送模块通过当前MIMO链路向第二STA发送MIMO链路测量请求后,在所述当前MIMO链路上接收所述第二STA发送的训练序列;
    所述处理模块,还用于根据所述接收模块通过所述当前MIMO链路接收到的训练序列,得到当前MIMO链路的链路质量;并确认选择的目标MIMO链路的链路质量优于当前MIMO链路的链路质量。
  30. 如权利要求28或29所述的设备,其特征在于,所述处理模块,具体用于:
    选择一个具有最高链路质量的备份MIMO链路作为目标MIMO链路。
  31. 如权利要求28至30任一所述的设备,其特征在于,所述处理模块,还用于:
    在所述发送模块通过当前MIMO链路向所述第二STA发送所述MIMO链路测量请求之前,检测到当前MIMO链路中的至少一个波束链路的质量下降;或者,
    在所述发送模块通过当前MIMO链路向所述第二STA发送所述MIMO链路测量请求之前,检测到当前MIMO链路质量下降。
  32. 如权利要求28至31任一所述的设备,其特征在于,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;
    所述接收模块,具体用于:
    在需要测量的N个备份MIMO链路上,分别接收所述第二STA发送的训练序列。
  33. 如权利要求28至32任一所述的设备,其特征在于,所述MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
    所述接收模块,具体用于:
    分别接收第二STA在每个备份MIMO链路的编号对应的各个备份MIMO链路上发送的训练序列;或
    按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上接收所述第二STA发送的训练序列;或
    按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上接收所述第二STA发送的训练序列。
  34. 如权利要求32或33所述的设备,其特征在于,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;
    所述训练序列包括:自动增益控制AGC字段和训练序列TRN字段;
    所述接收模块,具体用于:
    在每个需要测量的备份MIMO链路上分别接收总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
  35. 如权利要求28至34任一所述的设备,其特征在于,所述发送模块,具体用于:
    将所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在 BRP包的下述至少一个字段和/或元素中发送给所述第二STA:
    所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
  36. 如权利要求28至35任一所述的设备,其特征在于,所述处理模块,还用于:
    在选择目标MIMO链路之后,确定与所述目标MIMO链路对应的调制与编码策略MCS、和/或确定与所述目标MIMO链路对应的信道状态信息;
    其中,所述发送模块向所述第二STA发送的所述MIMO链路切换指示信息中还携带所述MCS和/或所述信道状态信息。
  37. 如权利要求28至36任一所述的设备,其特征在于,所述处理模块,还用于:
    在所述发送模块向所述第二STA发送所述MIMO链路测量请求之前,通过扇区级扫描SLS阶段和/或波束优化协议BRP阶段的波束赋形训练,选择与所述第二STA之间链路质量超过设定阈值的多个MIMO链路;
    所述发送模块,还有用于:
    将选择的MIMO链路的信息、以及基于链路质量对选择的MIMO链路进行排序的排序结果,发送给第二STA;
    其中,所述当前MIMO链路为选择的MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为选择的MIMO链路中除当前MIMO链路之外的MIMO链路。
  38. 如权利要求28至37任一所述的设备,其特征在于,需要测量的备份MIMO链路还包括:与所述需要测量的备份MIMO链路包括的接收波束邻近的波束所对应的MIMO链路。
  39. 一种波束追踪的设备,其特征在于,包括:
    接收模块,用于接收到第一STA发送的多入多出MIMO链路测量请求,所述MIMO链路测量请求用于请求所述第二STA发送用于MIMO链路测量的训练序列;
    发送模块,用于在每个需要测量的备份MIMO链路上分别向所述第一STA发送训练序列;
    所述接收模块,还用于通过当前MIMO链路接收所述第一STA发送的MIMO链路切换请求指示信息,所述MIMO链路切换指示信息用于指示所述第二STA切换到目标MIMO链路对应的波束组合,所述目标MIMO链路为所述第一STA根据每个备份MIMO链路的链路质量选择的一个MIMO链路,所述每个备份MIMO链路的链路质量为所述第一STA分别根据在每个备份MIMO链路上接收到的训练序列得到;
    处理模块,用于切换到所述目标MIMO链路对应的波束组合上。
  40. 如权利要求39所述的设备,其特征在于,所述发送模块,还用于:
    在通过当前MIMO链路接收所述第一STA发送的MIMO链路测量请求后,针对所述当前MIMO链路,在所述当前MIMO链路上向所述第一STA发送训练序列。
  41. 如权利要求39或40所述的设备,其特征在于,所述目标MIMO链路为具有最高链路质量的备份MIMO链路。
  42. 如权利要求39至41任一所述的设备,其特征在于,所述MIMO链路测量请求为MIMO链路追踪请求信息,所述MIMO链路追踪请求信息用于指示需要测量的备份MIMO链路的个数N;
    所述处理模块,还用于:
    选择需要测量的N个备份MIMO链路;
    所述发送模块,具体用于:
    在选择需要测量的的N个备份MIMO链路上分别向所述第一STA发送训练序列。
  43. 如权利要求39至42任一所述的设备,其特征在于,所述MIMO链路测量请求包括:需要测量的每个备份MIMO链路的编号,和/或每个备份MIMO链路的测量顺序;
    所述发送模块,具体用于:
    在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上,分别向所述第一STA发送训练序列;或
    按照需要测量的每个备份MIMO链路的顺序,依次在各个备份MIMO链路上向所述第一STA发送训练序列;或
    按照需要测量的每个备份MIMO链路的顺序,依次在需要测量的每个备份MIMO链路的编号对应的备份MIMO链路上向所述第一STA发送训练序列。
  44. 如权利要求42或43所述的设备,其特征在于,所述MIMO链路测量请求还包括:需要测量的备份MIMO链路的训练序列的总长度值;
    所述训练序列包括:自动增益控制AGC子字段和训练序列TRN子字段;
    所述发送模块,具体用于:
    在每个需要测量的备份MIMO链路上分别向所述第一STA发送总个数为目标个数的AGC子字段和TRN子字段,其中,所述目标个数是根据需要测量的备份MIMO链路的训练序列的总长度值和需要测量的备份MIMO链路的个数确定的。
  45. 如权利要求39至44任一所述的设备,其特征在于,所述接收模块接收的所述MIMO链路测量请求和/或所述MIMO链路切换指示信息携带在波束优化协议BRP包的下述至少一个字段和/或元素中:
    所述BRP包的波束优化元素、EDMG波束优化元素、物理PHY头部Header字段、增强的PHY头部E-Header字段。
  46. 如权利要求39至45任一所述的设备,其特征在于,所述MIMO链路切换指示信息中还携带目标MIMO链路的所述MCS和/或信道状态信息;
    所述发送模块,具体用于:
    在所述处理模块模块切换到所述目标MIMO链路对应的波束组合上之后,在所述目标MIMO链路对应的波束组合上,基于所述MCS和/或目标MIMO链路的信道状态信息向所述第一STA发送数据。
  47. 如权利要求39至46任一所述的设备,其特征在于,所述接收模块, 具体用于:
    在接收所述第一STA发送的所述MIMO链路测量请求之前,接收所述第一STA发送的多个MIMO链路的信息以及所述多个MIMO链路的排序结果;
    其中,所述多个MIMO链路的信息为所述设备与所述第二STA之间链路质量超过设定阈值的多个MIMO链路的信息,所述多个MIMO链路的信息的排序结果为基于链路质量,对所述多个MIMO链路进行排序得到的排序结果;
    所述处理模块,还用于:
    根据所述多个MIMO链路的信息以及所述多个MIMO链路的排序结果,确定当前MIMO链路为多个MIMO链路中链路质量最高的MIMO链路,所述备份MIMO链路为多个MIMO链路中除当前MIMO链路之外的MIMO链路。
  48. 如权利要求39至47任一所述的设备,其特征在于,需要测量的备份MIMO链路还包括:与所述需要测量的备份MIMO链路包括的发送波束邻近的波束所对应的MIMO链路。
  49. 一种波束追踪的系统,其特征在于,包括如权利要求28至权利要求38任一所述的设备,和如权利要求39至48任一所述的设备。
  50. 一种波束追踪的设备,其特征在于,包括:
    处理模块,用于确认检测到当前多入多出MIMO链路中的至少一个波束链路的质量下降,所述质量下降的每个波束链路分别为不受所述当前MIMO链路中其他波束链路干扰的波束链路;
    收发模块,用于向所述第二STA发送波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对由所述天线ID指示的天线进行波束追踪。
  51. 如权利要求50所述的设备,其特征在于,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID,以使第二STA根据所述受限制的扇区ID,避免在受限制的扇区ID对应的扇区上进行波束追踪。
  52. 如权利要求51所述的设备,其特征在于,所述受限制的扇区ID由 下述方式确定:
    所述处理模块,通过波束赋形训练,确定所述第二STA的一个扇区ID对应的扇区对所述当前MIMO链路的至少一个波束链路产生干扰,则将所述扇区ID标记为受限制的扇区ID。
  53. 一种波束追踪的设备,其特征在于,包括:
    收发模块,用于从第一STA接收波束追踪指示信息,所述波束追踪指示信息包括至少一个质量下降的波束链路对应的天线编号ID,用于指示所述第二STA对所述天线ID指示的天线进行波束追踪,所述质量下降的每个波束链路分别为不受所述当前多入多出MIMO链路中其他波束链路干扰的波束链路;
    处理模块,用于对所述天线ID指示的天线进行波束追踪。
  54. 如权利要求53所述的设备,其特征在于,所述波束追踪指示信息还用于指示在所述第二STA中受限制的扇区ID;
    所述处理模块,具体用于:
    在所述受限制的扇区ID对应的扇区之外的其他扇区,对所述天线ID指示的天线进行波束追踪。
  55. 如权利要54所述的设备,其特征在于,所述受限制的扇区ID为所述第二STA的扇区中对所述当前MIMO链路的至少一个波束链路产生干扰的扇区对应的扇区ID。
  56. 一种波束追踪的系统,其特征在于,包括如权利要求50至权利要求52任一所述的设备,和如权利要求53至55任一所述的设备。
PCT/CN2016/079891 2016-04-21 2016-04-21 一种波束追踪的方法、设备及系统 WO2017181388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680078603.0A CN108476422B (zh) 2016-04-21 2016-04-21 一种波束追踪的方法、设备及系统
PCT/CN2016/079891 WO2017181388A1 (zh) 2016-04-21 2016-04-21 一种波束追踪的方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079891 WO2017181388A1 (zh) 2016-04-21 2016-04-21 一种波束追踪的方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2017181388A1 true WO2017181388A1 (zh) 2017-10-26

Family

ID=60115519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079891 WO2017181388A1 (zh) 2016-04-21 2016-04-21 一种波束追踪的方法、设备及系统

Country Status (2)

Country Link
CN (1) CN108476422B (zh)
WO (1) WO2017181388A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653493B (zh) * 2019-10-11 2022-04-08 中国移动通信集团陕西有限公司 天线权值优化方法、装置、计算设备及存储介质
CN111123383B (zh) * 2019-12-25 2021-12-28 中国科学院上海微系统与信息技术研究所 一种稀疏阵列信号处理方法、装置、电路和成像系统
CN113395703B (zh) * 2021-06-01 2022-11-11 中国电子科技集团公司第五十四研究所 一种基于mimo技术的高频段异构网络共存传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法
US20150382268A1 (en) * 2014-06-30 2015-12-31 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424280B1 (ko) * 2008-01-23 2014-07-31 엘지전자 주식회사 다중 입출력 시스템에서, 신호를 송신하는 방법
CN102468879B (zh) * 2010-10-29 2015-08-05 日电(中国)有限公司 用于无线通信系统的波束形成训练方法、设备和系统
CN104993853B (zh) * 2015-05-08 2018-06-26 西安交通大学 基于大规模mimo系统的天线选择方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
US20150382268A1 (en) * 2014-06-30 2015-12-31 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法

Also Published As

Publication number Publication date
CN108476422B (zh) 2021-02-12
CN108476422A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
US10148331B2 (en) Method and apparatus for tracking beam in wireless communication system
JP7313251B2 (ja) ビーム形成方法およびビームを使用するための方法
US20230336231A1 (en) Systems and methods for single user hybrid mimo for mmwave wireless networks
US9344165B2 (en) Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
EP3068058B1 (en) Beam training method and device in communication system
US7916081B2 (en) Beamforming in MIMO systems
JP5548316B2 (ja) 無線lanシステムにおけるリンク適応方法及び装置
CN100574146C (zh) 在多波束天线系统中使用波束形成和闭环发射分集
CN108024268B (zh) 一种传输配置方法、传输配置确定方法、基站和终端
JP6255281B2 (ja) 無線通信装置及び指向性制御方法
CN109644413B (zh) 用于减少来自邻无线设备的干扰的系统和方法
US20060264184A1 (en) Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
WO2018171762A1 (zh) 波束恢复的处理和波束恢复的方法,设备、系统及介质
JP2019527514A (ja) mmW WLANシステムにおけるMIMOモードの適応
US9055449B2 (en) Explicit and implicit hybrid beamforming channel sounding
JP2015530018A (ja) 無線通信システムにおけるビームフォーミングを用いた通信方法及び装置
CN101124734A (zh) 选择多输入多输出天线波束组合的方法及装置
US8615049B2 (en) Method and apparatus for controlling co-channel interference in a wireless communication system
WO2018059005A1 (zh) 一种大规模天线波束传输方法及基站、终端
US20160156425A1 (en) Wireless communication system, control apparatus, optimization method, wireless communication apparatus and program
WO2017181388A1 (zh) 一种波束追踪的方法、设备及系统
WO2018143995A1 (en) Codebook selection among codebooks with different spatial granularity for wireless networks
CN113711500A (zh) 通信装置和方法
JP6319768B2 (ja) 無線通信方法および無線通信装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898975

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898975

Country of ref document: EP

Kind code of ref document: A1