WO2016056441A1 - W-ti sputtering target - Google Patents

W-ti sputtering target Download PDF

Info

Publication number
WO2016056441A1
WO2016056441A1 PCT/JP2015/077729 JP2015077729W WO2016056441A1 WO 2016056441 A1 WO2016056441 A1 WO 2016056441A1 JP 2015077729 W JP2015077729 W JP 2015077729W WO 2016056441 A1 WO2016056441 A1 WO 2016056441A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
concentration
mass
sputtering target
film
Prior art date
Application number
PCT/JP2015/077729
Other languages
French (fr)
Japanese (ja)
Inventor
野中 荘平
齋藤 淳
健志 大友
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020167031186A priority Critical patent/KR20160133571A/en
Priority to CN201580021546.8A priority patent/CN106460160B/en
Publication of WO2016056441A1 publication Critical patent/WO2016056441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a W—Ti sputtering target for forming a W—Ti film as a diffusion preventing layer for preventing diffusion of mutual elements between, for example, a bump used when mounting a semiconductor element and a base electrode.
  • a W—Ti sputtering target for forming a W—Ti film as a diffusion preventing layer for preventing diffusion of mutual elements between, for example, a bump used when mounting a semiconductor element and a base electrode.
  • Au bumps, solder bumps, and the like are formed on, for example, Al electrodes and Cu electrodes.
  • Al and Au diffuse to each other to form an intermetallic compound of Al and Au, resulting in increased electrical resistance or adhesion.
  • the performance would decrease.
  • Cu electrode and the solder bump are brought into direct contact
  • Cu and Sn in the solder diffuse to each other to form an intermetallic compound of Cu and Sn, and the electrical resistance increases. There was a risk that the adhesion would be reduced.
  • a W—Ti film is formed as a diffusion preventing layer for preventing mutual element diffusion between the base electrode and the bump.
  • the W—Ti sputtering targets described in Patent Documents 1 and 2 are each manufactured by a powder sintering method.
  • Patent Document 3 discloses that by using a W—Ti sputtering target to which a small amount of Fe is added, the formed W—Ti film can contain Fe and the etching rate can be improved. .
  • Japanese Patent No. 2606946 Japanese Patent Laid-Open No. 05-295531 Japanese Patent No. 4747368
  • the etching rate is improved.
  • the Fe concentration in the W—Ti film varies, As a result, the etching rate locally changes, and uniform etching may not be performed. Therefore, a W—Ti sputtering target that can form a W—Ti film with a small variation in Fe concentration and a uniform etching rate is desired.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a W—Ti sputtering target capable of forming a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
  • a W—Ti sputtering target includes Ti within a range of 5 mass% to 20 mass% and Fe within a range of 25 mass ppm to 100 mass ppm.
  • W—Ti sputtering target having a composition consisting of W and the balance of inevitable impurities, the Fe concentration being measured at a plurality of locations within the target surface, and the maximum value of the measured Fe concentration being Fe max , Fe
  • the minimum value of the concentration is Fe min , (Fe max ⁇ Fe min ) / (Fe max + Fe min ) ⁇ 0.25 It is characterized by satisfying the relational expression.
  • Fe is contained in the range of 25 ppm to 100 ppm by mass, so that the etching rate of the formed W-Ti film can be increased. Can be improved. Then, the Fe concentration is measured at a plurality of locations in the target surface, and the measured maximum value of Fe concentration (Fe max ) and the minimum value of Fe concentration (Fe min ) satisfy the above relational expression, Variations in the Fe concentration in the target plane are suppressed. Therefore, it is possible to form a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
  • the W-Ti sputtering target according to the present embodiment prevents diffusion between an Au bump formed on the liquid crystal driver IC and the Al pad portion (underlying electrode), for example, for bonding the liquid crystal driver IC to the COF tape. It is used when a W—Ti film is formed as a layer by sputtering.
  • the W—Ti sputtering target according to the present embodiment contains Ti in the range of 5 mass% to 20 mass%, Fe in the range of 25 mass ppm to 100 mass ppm, and the balance from W and inevitable impurities. It has the composition which becomes. Then, when the Fe concentration is measured at a plurality of locations in the target plane, the maximum value of the measured Fe concentration is Fe max , and the minimum value of the Fe concentration is Fe min , (Fe max ⁇ Fe min ) / (Fe max + Fe min ) ⁇ 0.25 And the relational expression is satisfied.
  • ⁇ Ti 5% by mass or more and 20% by mass or less>
  • the adhesion between the formed W—Ti film and the base electrode may be lowered.
  • the Ti content in the W—Ti sputtering target exceeds 20% by mass, the electrical resistance of the formed W—Ti film increases and the elements constituting the bump (in this embodiment, There is a possibility that mutual diffusion between Au) and an element constituting the base electrode (Al in this embodiment) cannot be sufficiently prevented by the formed W—Ti film.
  • the Ti content in the W—Ti sputtering target is regulated within the range of 5% by mass or more and 20% by mass or less. In addition, it is preferable to set it as 7 mass% or more, and, as for the minimum of content of Ti, it is more preferable to set it as 9 mass% or more. Further, the upper limit of the Ti content is preferably 15% by mass or less, and more preferably 13% by mass or less.
  • the Fe content in the W—Ti sputtering target is regulated within the range of 25 ppm to 100 ppm by mass.
  • the lower limit of the Fe content is preferably 30 mass ppm or more, and more preferably 35 mass ppm or more.
  • the upper limit of the Fe content is preferably 75 mass ppm or less, and more preferably 50 mass ppm or less.
  • (Fe max ⁇ Fe min ) / (Fe max + Fe min ) is preferably 0.2 or less, and more preferably 0.15 or less. Note that (Fe max -Fe min ) / (Fe max + Fe min ) is preferably as low as possible, but extremely reducing (Fe max -Fe min ) / (Fe max + Fe min ) causes an increase in cost. For this reason, (Fe max -Fe min ) / (Fe max + Fe min ) may be 0.005 or more.
  • the target surface of the W—Ti sputtering target when the target surface of the W—Ti sputtering target is circular, as shown in FIG. 2, it passes through the center (1) of the circle and the center of the circle and is orthogonal to each other.
  • the Fe concentration is measured at five points of the outer peripheral portions (2), (3), (4), and (5) on the two straight lines, and the above-mentioned maximum Fe concentration (Fe max ) and the minimum Fe concentration are measured.
  • the value (Fe min ) is obtained.
  • the outer peripheral portions (2), (3), (4), and (5) may be at a position of about 10 mm from the periphery of the target to the center side, for example. Further, when the target surface of the W—Ti sputtering target is rectangular, as shown in FIG.
  • the intersection (1) where the diagonal lines intersect and the corners (2), (3), ( 4) The Fe concentration is measured at five points (5), and the above-mentioned maximum value (Fe max ) of Fe concentration and the minimum value (Fe min ) of Fe concentration are obtained.
  • the corners (2), (3), (4), (5) may be at a position of about 10 mm from the apex to the intersection, for example.
  • the number of points where the Fe concentration is measured may be 5 or more and 20 or less. In that case, the measurement location may be a point about 10 mm from the intersection of the target center point and a straight line passing through the center and the outer periphery of the target to the center side.
  • the method for producing a W—Ti sputtering target according to the present embodiment includes a mixing and pulverizing step S01 for mixing and pulverizing the raw material powder mixed in a predetermined mixing amount, and heating the mixed and pulverized raw material powder. And a sintering step S02 for sintering and a processing step S03 for processing the obtained sintered body.
  • Ti powder, W powder and Fe powder are prepared as raw powders.
  • the W powder it is preferable to use a powder having a purity of 99.999% by mass or more and an average particle diameter of 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the Fe powder it is preferable to use a powder having a purity of 99.999% by mass or more and an average particle size of 75 ⁇ m or more and 150 ⁇ m or less.
  • ⁇ Mixing and grinding step S01> These raw material powders contain Ti within a range of 5 mass% to 20 mass%, Fe within a range of 25 mass ppm to 100 mass ppm, with the balance being composed of W and inevitable impurities. While weighing, this raw material powder is mixed and pulverized. In the present embodiment, the weighed raw material powders are mixed by a ball mill, and further mixed and pulverized by an attritor device using a cemented carbide ball. By this mixing and pulverizing step S01, the Fe powder is pulverized so that the average particle diameter is 10 ⁇ m or less.
  • ⁇ Sintering step S02> the raw material powder (mixed powder) mixed and pulverized as described above is sintered in a vacuum, an inert gas atmosphere, or a reducing atmosphere.
  • the Fe powder pulverized to an average particle size of 10 ⁇ m or less is uniformly diffused in W.
  • the sintering temperature in the sintering step is preferably set according to the melting point Tm of the W—Ti alloy to be manufactured.
  • this sintering step S02 atmospheric sintering, hot pressing, or hot isostatic pressing can be applied as a sintering method.
  • the raw material powder (mixed powder) was filled in the graphite mold, and sintering was performed by vacuum hot pressing with a pressure of 10 MPa to 60 MPa and a temperature of 1000 ° C. to 1500 ° C.
  • ⁇ Processing step S03> By subjecting the sintered body obtained in the sintering step S02 to cutting or grinding, it is processed into a sputtering target having a predetermined shape.
  • the W-Ti sputtering target according to the present embodiment is manufactured through the above processes.
  • This W—Ti sputtering target is used by bonding In to a backing plate made of Cu or SUS (stainless steel) or other metal (for example, Mo) using In as a solder.
  • Fe is contained in the range of 25 ppm to 100 ppm by mass, so that the formed W—Ti film is formed.
  • the etching rate can be improved.
  • the Fe concentration is measured at a plurality of locations in the target surface, and the maximum value (Fe max ) of the measured Fe concentration and the minimum value (Fe min ) of the Fe concentration are (Fe max ⁇ Fe min ) / (Fe max + Fe min ) ⁇ 0.25 Therefore, the variation in Fe concentration in the target plane is suppressed. Therefore, it is possible to form a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
  • the Ti powder, the W powder and the Fe powder are mixed and pulverized so that the particle size of the Fe powder before sintering is 10 ⁇ m or less.
  • the particle size of the Fe powder before sintering is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, but is not limited thereto.
  • the smaller the particle size of the Fe powder before sintering the better.
  • the particle size of the Fe powder before sintering may be 0.1 ⁇ m or more.
  • Fe having an average particle diameter of 75 ⁇ m or more and 150 ⁇ m or less.
  • the powder is mixed and pulverized with other raw material powders (Ti powder, W powder) to reduce the particle size to 10 ⁇ m or less, and since the ratio of Fe powder is sufficiently low, handling becomes easy.
  • the raw powder is mixed and pulverized using an attritor device, but the present invention is not limited to this, and the raw powder may be mixed and pulverized by other methods.
  • the method for mixing and pulverizing the raw material powder include a planetary ball mill and a vibrating ball mill.
  • inevitable impurities in the W—Ti sputtering target include Na, K, Ca, Ni, Cr, and Mn. These inevitable impurities are preferably 0.01% by mass or less in total, but are not limited thereto.
  • a purity of 99.999% by mass As a raw material powder, a purity of 99.999% by mass, a Ti powder having an average particle size of 15 ⁇ m, a purity of 99.999% by mass, a W powder having an average particle size of 1 ⁇ m, a purity of 99.999% by mass, Fe powder having an average particle size of 100 ⁇ m was prepared, and Ti powder, Fe powder, and W powder were weighed so as to have the composition shown in Table 1.
  • the weighed Ti powder, Fe powder, and W powder were put into an attritor apparatus (Nippon Coke Industries, Ltd. MA1D) together with a cemented carbide ball having a diameter of about 5 mm, and the rotational speed was 300 ppm.
  • the mixed pulverization was performed for 1 hour in an Ar atmosphere under the conditions.
  • an inner paste with W foil was applied in the inside of the mixing container of this attritor.
  • the input weight of the cemented carbide ball was about 10 times the input weight of the W powder and the Fe powder.
  • the mixed and pulverized W powder, Fe powder, and Ti powder were mixed by a rolling ball mill apparatus to obtain a mixed powder.
  • the mixed powder before sintering was observed with an EPMA apparatus, Fe particles were identified by a surface analysis image of characteristic X-rays, and the particle diameter was confirmed.
  • the particle diameter is shown in Table 1. All detected Fe particles had a particle size of less than 10 ⁇ m.
  • the obtained mixed powder is filled in a graphite mold and subjected to vacuum hot pressing under conditions of pressure: 15 MPa, temperature: 1200 ° C. for 3 hours to produce a hot press sintered body, and the obtained hot press sintering is performed.
  • the body was machined to produce a W—Ti sputtering target of the present invention having a diameter of 152.4 mm and a thickness of 6 mm.
  • a purity of 99.999% by mass As a raw material powder, a purity of 99.999% by mass, a Ti powder having an average particle size of 15 ⁇ m, a purity of 99.999% by mass, a W powder having an average particle size of 1 ⁇ m, a purity of 99.999% by mass, Fe powder having an average particle size of 100 ⁇ m was prepared, and Ti powder, Fe powder, and W powder were weighed so as to have the composition shown in Table 1. The weighed Ti powder, Fe powder and W powder were mixed by a rolling ball mill device to obtain a mixed powder. That is, in the comparative example, the raw material powder was not pulverized.
  • the mixed powder before sintering was observed with an EPMA apparatus, Fe particles were identified by a surface analysis image of characteristic X-rays, and the particle diameter was confirmed.
  • the particle diameter is shown in Table 1.
  • the detected Fe particles generally had a particle diameter having a maximum value shown in Table 1.
  • the obtained mixed powder was filled in a graphite mold and subjected to vacuum hot pressing under the conditions of pressure: 15 MPa, temperature: 1200 ° C. and 3 hours to prepare a hot press sintered body.
  • the obtained hot press sintered body was machined to produce a comparative W—Ti sputtering target having a diameter of 152.4 mm and a thickness of 6 mm.
  • Substrate 100 mm diameter Si substrate ultimate vacuum: ⁇ 5 ⁇ 10 ⁇ 5 Pa Distance between substrate and target: 70mm Power: DC 600W Gas pressure: Ar 1.0Pa No substrate heating Thickness: 300nm
  • Comparative Example 1-6 As shown in Table 2, it was confirmed that the variation of the Fe concentration in the target surface was large. It is presumed that the variation in the Fe concentration in the target plane increased because sintering was performed using Fe particles having a large particle size without pulverizing the raw material powder. In particular, in Comparative Examples 2 and 5 having a low Fe concentration, the Fe concentration locally decreased, and the maximum difference in Fe concentration also increased.
  • the W—Ti sputtering target of the present invention it is possible to form a W—Ti film having a small variation in Fe concentration and a uniform etching rate.
  • the W—Ti sputtering target of the present invention forms, for example, a W—Ti film as a diffusion preventing layer for preventing diffusion of mutual elements between a bump and a base electrode used when mounting a semiconductor element. It is suitable for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

 This W-Ti sputtering target has a composition containing Ti in a range of 5% by mass to 20% by mass and Fe in a range of 25 ppm by mass to 100 ppm by mass, the remainder comprising W and unavoidable impurities, and satisfies the relational expression (Femax – Femin)/(Femax + Femin) ≤ 0.25, where Femax is the maximum value of the Fe concentration and Femin is the minimum value of the Fe concentration when the Fe concentration is measured in a plurality of locations in the plane of the target.

Description

W-TiスパッタリングターゲットW-Ti sputtering target
 本発明は、例えば半導体素子を実装する際に用いられるバンプと下地電極との間に、相互の元素の拡散を防止する拡散防止層としてW-Ti膜を成膜するためのW-Tiスパッタリングターゲットに関する。
 本願は、2014年10月8日に、日本に出願された特願2014-207343号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a W—Ti sputtering target for forming a W—Ti film as a diffusion preventing layer for preventing diffusion of mutual elements between, for example, a bump used when mounting a semiconductor element and a base electrode. About.
This application claims priority based on Japanese Patent Application No. 2014-207343 filed in Japan on October 8, 2014, the contents of which are incorporated herein by reference.
 従来、半導体チップを基板に実装する際には、例えばAl電極やCu電極の上にAuバンプやはんだバンプ等を形成している。
 ここで、例えばAl電極とAuバンプとが直接接触させられた場合には、AlとAuとが相互に拡散してAlとAuの金属間化合物が形成されてしまい、電気抵抗が上昇したり密着性が低下したりするおそれがあった。また、例えばCu電極とはんだバンプとが直接接触させられた場合には、Cuとはんだ中のSnとが相互に拡散してCuとSnの金属間化合物が形成されてしまい、電気抵抗が上昇したり密着性が低下したりするおそれがあった。
Conventionally, when a semiconductor chip is mounted on a substrate, Au bumps, solder bumps, and the like are formed on, for example, Al electrodes and Cu electrodes.
Here, for example, when an Al electrode and an Au bump are brought into direct contact, Al and Au diffuse to each other to form an intermetallic compound of Al and Au, resulting in increased electrical resistance or adhesion. There was a risk that the performance would decrease. For example, when the Cu electrode and the solder bump are brought into direct contact, Cu and Sn in the solder diffuse to each other to form an intermetallic compound of Cu and Sn, and the electrical resistance increases. There was a risk that the adhesion would be reduced.
 そこで、例えば特許文献1,2に開示されたW-Tiスパッタリングターゲットを用いて、下地電極とバンプとの間に相互の元素の拡散を防止する拡散防止層として、W-Ti膜を形成している。
 なお、特許文献1,2に記載されたW-Tiスパッタリングターゲットは、それぞれ粉末焼結法によって製造されている。
Therefore, for example, using a W—Ti sputtering target disclosed in Patent Documents 1 and 2, a W—Ti film is formed as a diffusion preventing layer for preventing mutual element diffusion between the base electrode and the bump. Yes.
Note that the W—Ti sputtering targets described in Patent Documents 1 and 2 are each manufactured by a powder sintering method.
 ここで、下地電極及びバンプの間に拡散防止層としてW-Ti膜を成膜する際には、下地電極の全面にW-Ti膜を成膜した上でバンプを形成し、バンプが形成されていない領域のW-Ti膜をエッチングで除去していた。しかし、このW-Ti膜は、エッチングレートが非常に遅いため、生産効率が悪いといった問題があった。
 そこで、特許文献3においては、Feを微量添加したW-Tiスパッタリングターゲットを用いることにより、成膜されたW-Ti膜にFeを含有させ、エッチングレートを改善可能であることが開示されている。
Here, when forming a W—Ti film as a diffusion preventing layer between the base electrode and the bump, the bump is formed after forming the W—Ti film on the entire surface of the base electrode. The W—Ti film in the unexposed area was removed by etching. However, this W—Ti film has a problem that the production efficiency is poor because the etching rate is very slow.
Therefore, Patent Document 3 discloses that by using a W—Ti sputtering target to which a small amount of Fe is added, the formed W—Ti film can contain Fe and the etching rate can be improved. .
特許第2606946号公報Japanese Patent No. 2606946 特開平05-295531号公報Japanese Patent Laid-Open No. 05-295531 特許第4747368号公報Japanese Patent No. 4747368
 ところで、上述のように、W-Ti膜にFeを微量添加することにより、そのエッチングレートが改善されるが、W-Ti膜においてFe濃度にばらつきが生じた場合には、W-Ti膜内でエッチングレートが局所的に変化してしまい、均一なエッチングを行うことができなくなるおそれがあった。
 このため、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することができるW-Tiスパッタリングターゲットが望まれている。
By the way, as described above, by adding a small amount of Fe to the W—Ti film, the etching rate is improved. However, if the Fe concentration in the W—Ti film varies, As a result, the etching rate locally changes, and uniform etching may not be performed.
Therefore, a W—Ti sputtering target that can form a W—Ti film with a small variation in Fe concentration and a uniform etching rate is desired.
 この発明は、前述した事情に鑑みてなされたものであって、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することができるW-Tiスパッタリングターゲットを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a W—Ti sputtering target capable of forming a W—Ti film with a small variation in Fe concentration and a uniform etching rate. And
 上記の課題を解決するために、本発明の一態様であるW-Tiスパッタリングターゲットは、Tiを5質量%以上20質量%以下の範囲内、Feを25質量ppm以上100質量ppm以下の範囲内で含有し、残部がW及び不可避不純物からなる組成を有するW-Tiスパッタリングターゲットであって、ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値をFemax、Fe濃度の最小値をFeminとした場合において、
 (Femax-Femin)/(Femax+Femin)≦0.25
との関係式を満足することを特徴としている。
In order to solve the above problems, a W—Ti sputtering target according to one embodiment of the present invention includes Ti within a range of 5 mass% to 20 mass% and Fe within a range of 25 mass ppm to 100 mass ppm. W—Ti sputtering target having a composition consisting of W and the balance of inevitable impurities, the Fe concentration being measured at a plurality of locations within the target surface, and the maximum value of the measured Fe concentration being Fe max , Fe In the case where the minimum value of the concentration is Fe min ,
(Fe max −Fe min ) / (Fe max + Fe min ) ≦ 0.25
It is characterized by satisfying the relational expression.
 このような構成とされた本発明のW-Tiスパッタリングターゲットにおいては、Feを25質量ppm以上100質量ppm以下の範囲内で含有しているので、成膜されたW-Ti膜のエッチングレートを改善することができる。
 そして、ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値(Femax)とFe濃度の最小値(Femin)とが上述の関係式を満足しているので、ターゲット面内でのFe濃度のばらつきが抑えられている。このため、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することが可能となる。
In the W-Ti sputtering target of the present invention configured as described above, Fe is contained in the range of 25 ppm to 100 ppm by mass, so that the etching rate of the formed W-Ti film can be increased. Can be improved.
Then, the Fe concentration is measured at a plurality of locations in the target surface, and the measured maximum value of Fe concentration (Fe max ) and the minimum value of Fe concentration (Fe min ) satisfy the above relational expression, Variations in the Fe concentration in the target plane are suppressed. Therefore, it is possible to form a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
 以上のように、本発明によれば、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することができるW-Tiスパッタリングターゲットを提供することが可能となる。 As described above, according to the present invention, it is possible to provide a W—Ti sputtering target capable of forming a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
本発明の一実施形態に係るW-Tiスパッタリングターゲットの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the W-Ti sputtering target which concerns on one Embodiment of this invention. ターゲット面が円形をなすW-Tiスパッタリングターゲットのターゲット面におけるFe濃度の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of Fe density | concentration in the target surface of the W-Ti sputtering target which makes a target surface circular. ターゲット面が矩形をなすW-Tiスパッタリングターゲットのターゲット面におけるFe濃度の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of Fe density | concentration in the target surface of the W-Ti sputtering target whose target surface forms a rectangle. 実施例において、基板上に成膜されたW-Ti膜のエッチングレートを測定した箇所を説明する説明図である。In an Example, it is explanatory drawing explaining the location which measured the etching rate of the W-Ti film | membrane formed into a film on the board | substrate.
 以下に、本発明の実施形態であるW-Tiスパッタリングターゲットについて添付した図面を参照して説明する。
 本実施形態に係るW-Tiスパッタリングターゲットは、例えば液晶ドライバーICをCOFテープに接合するために、液晶ドライバーIC上に形成されたAuバンプとAlパッド部(下地電極)との間に、拡散防止層としてW-Ti膜をスパッタリングによって成膜する際に用いられる。
Hereinafter, a W—Ti sputtering target according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The W-Ti sputtering target according to the present embodiment prevents diffusion between an Au bump formed on the liquid crystal driver IC and the Al pad portion (underlying electrode), for example, for bonding the liquid crystal driver IC to the COF tape. It is used when a W—Ti film is formed as a layer by sputtering.
 本実施形態に係るW-Tiスパッタリングターゲットは、Tiを5質量%以上20質量%以下の範囲内、Feを25質量ppm以上100質量ppm以下の範囲内で含有し、残部がW及び不可避不純物からなる組成を有する。
 そして、ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値をFemax、Fe濃度の最小値をFeminとした場合において、
 (Femax-Femin)/(Femax+Femin)≦0.25
との関係式を満足している。
The W—Ti sputtering target according to the present embodiment contains Ti in the range of 5 mass% to 20 mass%, Fe in the range of 25 mass ppm to 100 mass ppm, and the balance from W and inevitable impurities. It has the composition which becomes.
Then, when the Fe concentration is measured at a plurality of locations in the target plane, the maximum value of the measured Fe concentration is Fe max , and the minimum value of the Fe concentration is Fe min ,
(Fe max −Fe min ) / (Fe max + Fe min ) ≦ 0.25
And the relational expression is satisfied.
 以下に、上述のように成分組成を規定した理由について説明する。 Hereinafter, the reason why the component composition is specified as described above will be described.
<Ti:5質量%以上20質量%以下>
 W-TiスパッタリングターゲットにおけるTi含有量が5質量%未満とされた場合には、成膜されたW-Ti膜と下地電極との密着性が低下するおそれがある。一方、W-TiスパッタリングターゲットにおけるTi含有量が20質量%を超えた場合には、成膜されたW-Ti膜の電気抵抗が上昇してしまうとともに、バンプを構成する元素(本実施形態ではAu)と下地電極を構成する元素(本実施形態ではAl)との相互の拡散を成膜されたW-Ti膜によって十分に防止できなくなるおそれがある。
 そこで、本実施形態においては、W-TiスパッタリングターゲットにおけるTiの含有量を5質量%以上20質量%以下の範囲内に規定している。
なお、Tiの含有量の下限は、7質量%以上とすることが好ましく、9質量%以上とすることがさらに好ましい。また、Tiの含有量の上限は、15質量%以下とすることが好ましく、13質量%以下とすることがさらに好ましい。
<Ti: 5% by mass or more and 20% by mass or less>
When the Ti content in the W—Ti sputtering target is less than 5 mass%, the adhesion between the formed W—Ti film and the base electrode may be lowered. On the other hand, when the Ti content in the W—Ti sputtering target exceeds 20% by mass, the electrical resistance of the formed W—Ti film increases and the elements constituting the bump (in this embodiment, There is a possibility that mutual diffusion between Au) and an element constituting the base electrode (Al in this embodiment) cannot be sufficiently prevented by the formed W—Ti film.
Therefore, in the present embodiment, the Ti content in the W—Ti sputtering target is regulated within the range of 5% by mass or more and 20% by mass or less.
In addition, it is preferable to set it as 7 mass% or more, and, as for the minimum of content of Ti, it is more preferable to set it as 9 mass% or more. Further, the upper limit of the Ti content is preferably 15% by mass or less, and more preferably 13% by mass or less.
<Fe:25質量ppm以上100質量ppm以下>
 W-TiスパッタリングターゲットにおけるFeの含有量が25質量ppm未満とされた場合には、成膜されたW-Ti膜のエッチングレートを十分に改善することができないおそれがある。一方、W-TiスパッタリングターゲットにおけるFeの含有量が100質量ppmを超えた場合には、バンプを構成する元素(本実施形態ではAu)と下地電極を構成する元素(本実施形態ではAl)との相互の拡散を成膜されたW-Ti膜によって十分に防止できなくなるおそれがある。
 そこで、本実施形態においては、W-TiスパッタリングターゲットにおけるFeの含有量を25質量ppm以上100質量ppm以下の範囲内に規定している。
 なお、Feの含有量の下限は、30質量ppm以上とすることが好ましく、35質量ppm以上とすることがさらに好ましい。また、Feの含有量の上限は、75質量ppm以下とすることが好ましく、50質量ppm以下とすることがさらに好ましい。
<Fe: 25 mass ppm or more and 100 mass ppm or less>
When the Fe content in the W—Ti sputtering target is less than 25 ppm by mass, the etching rate of the formed W—Ti film may not be sufficiently improved. On the other hand, when the Fe content in the W—Ti sputtering target exceeds 100 ppm by mass, the element constituting the bump (Au in this embodiment) and the element constituting the base electrode (Al in this embodiment) There is a possibility that the mutual diffusion of the film cannot be sufficiently prevented by the formed W—Ti film.
Therefore, in the present embodiment, the Fe content in the W—Ti sputtering target is regulated within the range of 25 ppm to 100 ppm by mass.
The lower limit of the Fe content is preferably 30 mass ppm or more, and more preferably 35 mass ppm or more. Further, the upper limit of the Fe content is preferably 75 mass ppm or less, and more preferably 50 mass ppm or less.
<(Femax-Femin)/(Femax+Femin)≦0.25>
 本実施形態におけるW-Tiスパッタリングターゲットを用いてW-Ti膜を成膜する場合には、W-Tiスパッタリングターゲットのターゲット面の全体からそれぞれ原子がはじき飛ばされて成膜される。
 ここで、ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値(Femax)とFe濃度の最小値(Femin)とが上述の関係式を満足する場合には、ターゲット面内においてFe濃度のばらつきが小さくなる。よって、このW-Tiスパッタリングターゲットを用いて成膜したW-Ti膜においても、Fe濃度のばらつきが小さくなり、エッチングレートが均一となる。
 なお、(Femax-Femin)/(Femax+Femin)は、0.2以下とすることが好ましく、0.15以下とすることがさらに好ましい。なお(Femax-Femin)/(Femax+Femin)は低いほど好ましいが、(Femax-Femin)/(Femax+Femin)を極度に低下させることはコストの増加を招く。このため、(Femax-Femin)/(Femax+Femin)は0.005以上であってもよい。
<(Fe max −Fe min ) / (Fe max + Fe min ) ≦ 0.25>
When a W—Ti film is formed using the W—Ti sputtering target in this embodiment, atoms are repelled from the entire target surface of the W—Ti sputtering target.
Here, when the Fe concentration is measured at a plurality of locations in the target surface, and the measured maximum value of Fe concentration (Fe max ) and the minimum value of Fe concentration (Fe min ) satisfy the above relational expression, In the target surface, the variation in Fe concentration is reduced. Therefore, even in a W—Ti film formed using this W—Ti sputtering target, the variation in Fe concentration becomes small and the etching rate becomes uniform.
Note that (Fe max −Fe min ) / (Fe max + Fe min ) is preferably 0.2 or less, and more preferably 0.15 or less. Note that (Fe max -Fe min ) / (Fe max + Fe min ) is preferably as low as possible, but extremely reducing (Fe max -Fe min ) / (Fe max + Fe min ) causes an increase in cost. For this reason, (Fe max -Fe min ) / (Fe max + Fe min ) may be 0.005 or more.
 ここで、本実施形態においては、W-Tiスパッタリングターゲットのターゲット面が円形をなす場合には、図2に示すように、円の中心(1)、及び、円の中心を通過するとともに互いに直交する2本の直線上の外周部分(2)、(3)、(4)、(5)の5点でFe濃度を測定し、上述のFe濃度の最大値(Femax)とFe濃度の最小値(Femin)を求めている。外周部分(2)、(3)、(4)、(5)は、例えばターゲットの周縁から中心側に約10mmの位置であってもよい。
 また、W-Tiスパッタリングターゲットのターゲット面が矩形をなす場合には、図3に示すように、対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5点でFe濃度を測定し、上述のFe濃度の最大値(Femax)とFe濃度の最小値(Femin)を求めている。角部(2)、(3)、(4)、(5)は、例えば頂点から交点側に約10mmの位置であってもよい。
 Fe濃度の測定箇所の数は、5点以上20点以下であってもよい。その場合、測定箇所は、ターゲット中心点と、その中心を通る直線とターゲット外周縁との交点から中心側に約10mmの点であってもよい。
Here, in the present embodiment, when the target surface of the W—Ti sputtering target is circular, as shown in FIG. 2, it passes through the center (1) of the circle and the center of the circle and is orthogonal to each other. The Fe concentration is measured at five points of the outer peripheral portions (2), (3), (4), and (5) on the two straight lines, and the above-mentioned maximum Fe concentration (Fe max ) and the minimum Fe concentration are measured. The value (Fe min ) is obtained. The outer peripheral portions (2), (3), (4), and (5) may be at a position of about 10 mm from the periphery of the target to the center side, for example.
Further, when the target surface of the W—Ti sputtering target is rectangular, as shown in FIG. 3, the intersection (1) where the diagonal lines intersect and the corners (2), (3), ( 4) The Fe concentration is measured at five points (5), and the above-mentioned maximum value (Fe max ) of Fe concentration and the minimum value (Fe min ) of Fe concentration are obtained. The corners (2), (3), (4), (5) may be at a position of about 10 mm from the apex to the intersection, for example.
The number of points where the Fe concentration is measured may be 5 or more and 20 or less. In that case, the measurement location may be a point about 10 mm from the intersection of the target center point and a straight line passing through the center and the outer periphery of the target to the center side.
 次に、本実施形態に係るW-Tiスパッタリングターゲットを製造する一実施形態について、図1のフロー図を参照して説明する。
 本実施形態に係るW-Tiスパッタリングターゲットの製造方法は、図1に示すように、所定の配合量で配合された原料粉を混合粉砕する混合粉砕工程S01と、混合粉砕された原料粉を加熱して焼結させる焼結工程S02と、得られた焼結体を加工する加工工程S03と、を備えている。
Next, an embodiment for producing a W—Ti sputtering target according to this embodiment will be described with reference to the flowchart of FIG.
As shown in FIG. 1, the method for producing a W—Ti sputtering target according to the present embodiment includes a mixing and pulverizing step S01 for mixing and pulverizing the raw material powder mixed in a predetermined mixing amount, and heating the mixed and pulverized raw material powder. And a sintering step S02 for sintering and a processing step S03 for processing the obtained sintered body.
 まず、原料粉として、Ti粉末、W粉末及びFe粉末を準備する。ここで、Ti粉末としては、純度が99.999質量%以上、平均粒径が1μm以上40μm以下とされたものを用いることが好ましい。また、W粉末としては、純度が99.999質量%以上、平均粒径が0.5μm以上20μm以下とされたものを用いることが好ましい。さらに、Fe粉末としては、純度が99.999質量%以上、平均粒径が75μm以上150μm以下とされたものを用いることが好ましい。 First, Ti powder, W powder and Fe powder are prepared as raw powders. Here, it is preferable to use a Ti powder having a purity of 99.999 mass% or more and an average particle diameter of 1 μm or more and 40 μm or less. Further, as the W powder, it is preferable to use a powder having a purity of 99.999% by mass or more and an average particle diameter of 0.5 μm or more and 20 μm or less. Further, as the Fe powder, it is preferable to use a powder having a purity of 99.999% by mass or more and an average particle size of 75 μm or more and 150 μm or less.
<混合粉砕工程S01>
 これらの原料粉を、Tiを5質量%以上20質量%以下の範囲内、Feを25質量ppm以上100質量ppm以下の範囲内で含有し、残部がW及び不可避不純物からなる組成となるように秤量するとともに、この原料粉を混合粉砕する。本実施形態においては、秤量された原料粉をボールミルによって混合し、さらに超硬合金製のボールを用いて、アトライタ装置によって混合粉砕する。
 この混合粉砕工程S01により、Fe粉末は、平均粒径が10μm以下になるように粉砕される。
<Mixing and grinding step S01>
These raw material powders contain Ti within a range of 5 mass% to 20 mass%, Fe within a range of 25 mass ppm to 100 mass ppm, with the balance being composed of W and inevitable impurities. While weighing, this raw material powder is mixed and pulverized. In the present embodiment, the weighed raw material powders are mixed by a ball mill, and further mixed and pulverized by an attritor device using a cemented carbide ball.
By this mixing and pulverizing step S01, the Fe powder is pulverized so that the average particle diameter is 10 μm or less.
<焼結工程S02>
 次に、上述のようにして混合粉砕された原料粉(混合粉)を、真空又は不活性ガス雰囲気中又は還元雰囲気中で焼結を行う。この焼結工程S02において、平均粒径が10μm以下にまで粉砕されたFe粉末は、W中に均一に拡散される。
 ここで、焼結工程における焼結温度は、製造するW-Ti合金の融点Tmに応じて設定することが好ましい。
<Sintering step S02>
Next, the raw material powder (mixed powder) mixed and pulverized as described above is sintered in a vacuum, an inert gas atmosphere, or a reducing atmosphere. In this sintering step S02, the Fe powder pulverized to an average particle size of 10 μm or less is uniformly diffused in W.
Here, the sintering temperature in the sintering step is preferably set according to the melting point Tm of the W—Ti alloy to be manufactured.
 この焼結工程S02において、焼結方法として、常圧焼結、ホットプレス、熱間静水圧プレスを適用することが可能である。
 本実施形態では、グラファイト製モールドに原料粉(混合粉)を充填し、圧力を10MPa以上60MPa以下、温度を1000℃以上1500℃、とした真空ホットプレスによって焼結を行った。
In this sintering step S02, atmospheric sintering, hot pressing, or hot isostatic pressing can be applied as a sintering method.
In this embodiment, the raw material powder (mixed powder) was filled in the graphite mold, and sintering was performed by vacuum hot pressing with a pressure of 10 MPa to 60 MPa and a temperature of 1000 ° C. to 1500 ° C.
<加工工程S03>
 焼結工程S02で得られた焼結体に対して切削加工又は研削加工を施すことにより、所定形状のスパッタリングターゲットに加工する。
<Processing step S03>
By subjecting the sintered body obtained in the sintering step S02 to cutting or grinding, it is processed into a sputtering target having a predetermined shape.
 以上のような工程により、本実施形態であるW-Tiスパッタリングターゲットが製造される。このW-Tiスパッタリングターゲットは、Inをはんだとして、Cu又はSUS(ステンレス)又はその他の金属(例えばMo)からなるバッキングプレートにボンディングして使用される。 The W-Ti sputtering target according to the present embodiment is manufactured through the above processes. This W—Ti sputtering target is used by bonding In to a backing plate made of Cu or SUS (stainless steel) or other metal (for example, Mo) using In as a solder.
 以上のような構成とされた本実施形態であるW-Tiスパッタリングターゲットによれば、Feを25質量ppm以上100質量ppm以下の範囲内で含有しているので、成膜されたW-Ti膜のエッチングレートを改善することができる。
 そして、ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値(Femax)とFe濃度の最小値(Femin)とが、
 (Femax-Femin)/(Femax+Femin)≦0.25
の関係式を満足しているので、ターゲット面内でのFe濃度のばらつきが抑えられている。よって、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することが可能となる。
According to the W—Ti sputtering target of the present embodiment configured as described above, Fe is contained in the range of 25 ppm to 100 ppm by mass, so that the formed W—Ti film is formed. The etching rate can be improved.
Then, the Fe concentration is measured at a plurality of locations in the target surface, and the maximum value (Fe max ) of the measured Fe concentration and the minimum value (Fe min ) of the Fe concentration are
(Fe max −Fe min ) / (Fe max + Fe min ) ≦ 0.25
Therefore, the variation in Fe concentration in the target plane is suppressed. Therefore, it is possible to form a W—Ti film with a small variation in Fe concentration and a uniform etching rate.
 また、本実施形態では、Ti粉末、W粉末及びFe粉末を混合粉砕することにより、焼結前のFe粉末の粒径が10μm以下とされているので、焼結時において、Fe粒子を母相となるW中に均一に拡散させることができ、焼結体全体にFeを均一に分布させることが可能となる。焼結前のFe粉末の粒径は、5μm以下が好ましく、2μm以下がさらに好ましいが、これに限定されることはない。また、焼結前のFe粉末の粒径は小さいほど好ましいが、焼結前のFe粉末の粒径を極度に低下させることはコストの増加を招く。このため、焼結前のFe粉末の粒径は0.1μm以上であってもよい。
 なお、50μm以下の粒子を全体の50%以上含む微細なFe粉末を直接使用した場合には危険物として取り扱う必要があるが、本実施形態では、平均粒径が75μm以上150μm以下とされたFe粉末を、他の原料粉(Ti粉末、W粉末)とともに混合粉砕することで粒径を10μm以下としており、さらにFe粉末の比率が十分に低いことから、取り扱いが容易となる。
In this embodiment, the Ti powder, the W powder and the Fe powder are mixed and pulverized so that the particle size of the Fe powder before sintering is 10 μm or less. Thus, it is possible to diffuse uniformly in W, and to uniformly distribute Fe throughout the sintered body. The particle size of the Fe powder before sintering is preferably 5 μm or less, more preferably 2 μm or less, but is not limited thereto. In addition, the smaller the particle size of the Fe powder before sintering, the better. However, extremely reducing the particle size of the Fe powder before sintering causes an increase in cost. For this reason, the particle size of the Fe powder before sintering may be 0.1 μm or more.
In addition, when fine Fe powder containing 50% or more of particles of 50 μm or less is directly used, it is necessary to handle it as a dangerous substance, but in this embodiment, Fe having an average particle diameter of 75 μm or more and 150 μm or less. The powder is mixed and pulverized with other raw material powders (Ti powder, W powder) to reduce the particle size to 10 μm or less, and since the ratio of Fe powder is sufficiently low, handling becomes easy.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、アトライタ装置を用いて原料粉を混合粉砕するものとして説明したが、これに限定されることはなく、他の方法によって原料粉を混合粉砕してもよい。
 なお、原料粉を混合粉砕する方法としては、遊星ボールミル、振動ボールミル等が挙げられる。
 W-Tiスパッタリングターゲットにおける不可避不純物としては、Na、K、Ca、Ni、Cr、Mn等が挙げられる。これらの不可避不純物は、合計で0.01質量%以下であることが好ましいが、これに限定されることはない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the raw powder is mixed and pulverized using an attritor device, but the present invention is not limited to this, and the raw powder may be mixed and pulverized by other methods.
Examples of the method for mixing and pulverizing the raw material powder include a planetary ball mill and a vibrating ball mill.
Examples of inevitable impurities in the W—Ti sputtering target include Na, K, Ca, Ni, Cr, and Mn. These inevitable impurities are preferably 0.01% by mass or less in total, but are not limited thereto.
 以下に、本発明に係るW-Tiスパッタリングターゲットの作用効果について評価した評価試験の結果について説明する。 Hereinafter, the results of an evaluation test for evaluating the function and effect of the W—Ti sputtering target according to the present invention will be described.
<本発明例>
 原料粉末として、純度が99.999質量%、平均粒径が15μmとされたTi粉末、純度が99.999質量%、平均粒径が1μmとされたW粉末、純度が99.999質量%、平均粒径が100μmとされたFe粉末を用意し、表1に示す組成となるように、Ti粉末、Fe粉末及びW粉末を秤量した。
<Invention Example>
As a raw material powder, a purity of 99.999% by mass, a Ti powder having an average particle size of 15 μm, a purity of 99.999% by mass, a W powder having an average particle size of 1 μm, a purity of 99.999% by mass, Fe powder having an average particle size of 100 μm was prepared, and Ti powder, Fe powder, and W powder were weighed so as to have the composition shown in Table 1.
 秤量されたTi粉末、Fe粉末及びW粉末のうち、W粉末とFe粉末をアトライタ装置(日本コークス工業株式会社MA1D)に、直径約5mmの超硬合金製ボールととともに投入し、回転数300ppmの条件にてAr雰囲気下で1時間の混合粉砕を実施した。なお、このアトライタの混合容器の内側には、粉砕混合時の容器からの不純物の混入を防止するため、W箔による内貼りを施した。ここで、超硬合金製ボールの投入重量は、W粉末とFe粉末の投入重量の約10倍とした。 Of the weighed Ti powder, Fe powder, and W powder, W powder and Fe powder were put into an attritor apparatus (Nippon Coke Industries, Ltd. MA1D) together with a cemented carbide ball having a diameter of about 5 mm, and the rotational speed was 300 ppm. The mixed pulverization was performed for 1 hour in an Ar atmosphere under the conditions. In addition, in the inside of the mixing container of this attritor, in order to prevent mixing of impurities from the container at the time of pulverization and mixing, an inner paste with W foil was applied. Here, the input weight of the cemented carbide ball was about 10 times the input weight of the W powder and the Fe powder.
 混合粉砕されたW粉末及びFe粉末、並びに、Ti粉末を、転動ボールミル装置によって混合し、混合粉末を得た。ここで、焼結前の混合粉末をEPMA装置にて観察し、特性X線の面分析像によりFe粒子を特定し、その粒子径を確認した。その粒子径を表1に示す。検出されたFe粒子は全て10μm未満の粒子径を有していた。 The mixed and pulverized W powder, Fe powder, and Ti powder were mixed by a rolling ball mill apparatus to obtain a mixed powder. Here, the mixed powder before sintering was observed with an EPMA apparatus, Fe particles were identified by a surface analysis image of characteristic X-rays, and the particle diameter was confirmed. The particle diameter is shown in Table 1. All detected Fe particles had a particle size of less than 10 μm.
 得られた混合粉末をグラファイト製モールドに充填し、圧力:15MPa、温度:1200℃、3時間保持の条件で真空ホットプレスすることによりホットプレス焼結体を作製し、得られたホットプレス焼結体を機械加工して直径:152.4mm、厚さ:6mmを有する本発明例のW-Tiスパッタリングターゲットを作製した。 The obtained mixed powder is filled in a graphite mold and subjected to vacuum hot pressing under conditions of pressure: 15 MPa, temperature: 1200 ° C. for 3 hours to produce a hot press sintered body, and the obtained hot press sintering is performed. The body was machined to produce a W—Ti sputtering target of the present invention having a diameter of 152.4 mm and a thickness of 6 mm.
<比較例>
 原料粉末として、純度が99.999質量%、平均粒径が15μmとされたTi粉末、純度が99.999質量%、平均粒径が1μmとされたW粉末、純度が99.999質量%、平均粒径が100μmとされたFe粉末を用意し、表1に示す組成となるように、Ti粉末、Fe粉末及びW粉末を秤量した。
 秤量されたTi粉末、Fe粉末及びW粉末を転動ボールミル装置によって混合し、混合粉末を得た。すなわち、比較例では、原料粉の粉砕を実施しなかった。ここで、焼結前の混合粉末をEPMA装置にて観察し、特性X線の面分析像によりFe粒子を特定し、その粒子径を確認した。その粒子径を表1に示す。検出されたFe粒子は概ね表1に示す値を最大値とする粒子径を有していた。
<Comparative example>
As a raw material powder, a purity of 99.999% by mass, a Ti powder having an average particle size of 15 μm, a purity of 99.999% by mass, a W powder having an average particle size of 1 μm, a purity of 99.999% by mass, Fe powder having an average particle size of 100 μm was prepared, and Ti powder, Fe powder, and W powder were weighed so as to have the composition shown in Table 1.
The weighed Ti powder, Fe powder and W powder were mixed by a rolling ball mill device to obtain a mixed powder. That is, in the comparative example, the raw material powder was not pulverized. Here, the mixed powder before sintering was observed with an EPMA apparatus, Fe particles were identified by a surface analysis image of characteristic X-rays, and the particle diameter was confirmed. The particle diameter is shown in Table 1. The detected Fe particles generally had a particle diameter having a maximum value shown in Table 1.
 得られた混合粉末をグラファイト製モールドに充填し、圧力:15MPa、温度:1200℃、3時間保持の条件で真空ホットプレスすることによりホットプレス焼結体を作製した。得られたホットプレス焼結体を機械加工して直径:152.4mm、厚さ:6mmを有する比較例のW-Tiスパッタリングターゲットを作製した。 The obtained mixed powder was filled in a graphite mold and subjected to vacuum hot pressing under the conditions of pressure: 15 MPa, temperature: 1200 ° C. and 3 hours to prepare a hot press sintered body. The obtained hot press sintered body was machined to produce a comparative W—Ti sputtering target having a diameter of 152.4 mm and a thickness of 6 mm.
<ターゲット面内のFe濃度>
 得られたW-Tiスパッタリングターゲットのターゲット面が円形(丸型ターゲット)である場合には、図2に示すように、円の中心(1)と、中心を通過するとともに互いに直交する2本の直線上の外周から約10mmの位置(2)、(3)、(4)、(5)の5点から、超硬合金製のドリルを用いて組成分析用の試料を採取した。
 また、得られたW-Tiスパッタリングターゲットのターゲット面が矩形(角型ターゲット)である場合には、図3に示すように、対角線が交差する交点(1)と、各対角線上の角部から約10mmの位置(2)、(3)、(4)、(5)の5点から、超硬合金製のドリルを用いて組成分析用の試料を採取した。
 これらの試料のFe濃度をICP発光分光分析法により分析した。測定結果を表2に示す。
<Fe concentration in the target surface>
When the target surface of the obtained W—Ti sputtering target is circular (round target), as shown in FIG. 2, the center (1) of the circle and the two passing through the center and orthogonal to each other Samples for composition analysis were collected from 5 points of positions (2), (3), (4), and (5) about 10 mm from the outer periphery on a straight line using a drill made of cemented carbide.
In addition, when the target surface of the obtained W—Ti sputtering target is a rectangle (square target), as shown in FIG. 3, from the intersection (1) where the diagonal lines intersect and the corners on each diagonal line Samples for composition analysis were collected from 5 points of positions (2), (3), (4), and (5) of about 10 mm using a drill made of cemented carbide.
The Fe concentration of these samples was analyzed by ICP emission spectroscopy. The measurement results are shown in Table 2.
<W-Ti膜の成膜>
 次に、上述の本発明例及び比較例のW-Tiスパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをスパッタ装置(株式会社アルバック製SIH-450H)に装着し、以下の条件にてスパッタリング成膜を実施した。
<Deposition of W-Ti film>
Next, the W-Ti sputtering targets of the above-described inventive examples and comparative examples are soldered to a backing plate made of oxygen-free copper, and this is mounted on a sputtering apparatus (SIH-450H manufactured by ULVAC, Inc.). Then, sputtering film formation was performed.
基板:直径100mmのSi基板
到達真空度:<5×10-5Pa
基板とターゲットの距離:70mm
電力:直流600W
ガス圧力: Ar 1.0Pa
基板加熱 なし
膜厚:300nm
Substrate: 100 mm diameter Si substrate ultimate vacuum: <5 × 10 −5 Pa
Distance between substrate and target: 70mm
Power: DC 600W
Gas pressure: Ar 1.0Pa
No substrate heating Thickness: 300nm
<W-Ti膜のエッチングレート評価>
 このようにして得られた直径100mmのSi基板のうち図4に示す3箇所の位置から、20mm角の試料を切り出した。さらにこの試料を、10mm×20mmの二つの部分に切断し、切断した片方の試料をウォーターバスにより液温30℃に設定された31vol%過酸化水素水に5分間浸漬した。過酸化水素から取り出した後、純水で十分すすぎ、さらに付着した純水の液滴を、乾燥空気を吹き付けて飛ばし、試料を乾燥させた。
<Evaluation of etching rate of W-Ti film>
A 20 mm square sample was cut out from three positions shown in FIG. 4 in the Si substrate having a diameter of 100 mm obtained in this manner. Further, this sample was cut into two parts of 10 mm × 20 mm, and one of the cut samples was immersed in a 31 vol% hydrogen peroxide solution set at a liquid temperature of 30 ° C. for 5 minutes by a water bath. After removing from the hydrogen peroxide, the sample was sufficiently rinsed with pure water, and the adhered pure water droplets were blown off with dry air to dry the sample.
 この試料の過酸化水素水に浸漬していない側と、浸漬した側の両方について断面をフィールドエミッション式の走査電子顕微鏡(FE-SEM:株式会社日立ハイテクノロジーズ製SU-70)にて観察し、W-Ti膜の膜厚を測定した。過酸化水素に浸漬した側としていない側の膜厚差を求め、この膜厚差を浸漬時間(5分)で割り、直径100mmの基板の各位置におけるエッチングレートを算出した。この結果を表3に示す。 The cross section of both the side not immersed in the hydrogen peroxide solution and the immersed side of this sample was observed with a field emission type scanning electron microscope (FE-SEM: SU-70 manufactured by Hitachi High-Technologies Corporation). The film thickness of the W—Ti film was measured. The difference in film thickness on the side not immersed in hydrogen peroxide was determined, and the difference in film thickness was divided by the immersion time (5 minutes) to calculate the etching rate at each position of the substrate having a diameter of 100 mm. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例1-6においては、表2に示すように、ターゲット面内におけるFe濃度のばらつきが大きくなっていることが確認された。ターゲット面内におけるFe濃度のばらつきが大きくなったのは、原料粉の粉砕を行わずに、粒径の大きなFe粒子を用いて焼結を行ったためと推測される。
 特に、Fe濃度の低い比較例2、5では、Fe濃度が局所的に少なくなっており、Fe濃度の最大差も大きくなっていた。
In Comparative Example 1-6, as shown in Table 2, it was confirmed that the variation of the Fe concentration in the target surface was large. It is presumed that the variation in the Fe concentration in the target plane increased because sintering was performed using Fe particles having a large particle size without pulverizing the raw material powder.
In particular, in Comparative Examples 2 and 5 having a low Fe concentration, the Fe concentration locally decreased, and the maximum difference in Fe concentration also increased.
 この比較例1-6のW-Tiスパッタリングターゲットを用いて成膜された比較例11-16のW-Ti膜においては、エッチングレートが不均一であることが確認された。
 また、Fe濃度の低い比較例2、5のW-Tiスパッタリングターゲットを用いて成膜された比較例12、15のW-Ti膜においては、局所的にエッチングレートが非常に遅くなっていることが確認された。
It was confirmed that the etching rate was nonuniform in the W—Ti film of Comparative Example 11-16 formed using the W—Ti sputtering target of Comparative Example 1-6.
In addition, in the W—Ti films of Comparative Examples 12 and 15 formed using the W—Ti sputtering targets of Comparative Examples 2 and 5 having a low Fe concentration, the etching rate is extremely slow locally. Was confirmed.
 これに対して、本発明例1-6においては、ターゲット面内におけるFe濃度のばらつきが小さくなっていることが確認された。ターゲット面内におけるFe濃度のばらつきが小さくなったのは、原料粉の混合粉砕を行うことで、粒径の小さなFe粒子を用いて焼結を行ったためと推測される。
 また、Fe濃度の低い本発明例2、5やFe濃度の高い本発明例3、6においても、Fe濃度のばらつきが小さく安定していた。
On the other hand, in Inventive Example 1-6, it was confirmed that the variation in Fe concentration in the target plane was small. The reason why the variation in the Fe concentration in the target surface is small is presumed that the raw powder was mixed and pulverized to sinter using Fe particles having a small particle size.
Further, in Invention Examples 2 and 5 having a low Fe concentration and Invention Examples 3 and 6 having a high Fe concentration, the variation in Fe concentration was small and stable.
 この本発明例1-6のW-Tiスパッタリングターゲットを用いて成膜された本発明例11-16のW-Ti膜においては、エッチングレートが均一であることが確認された。
 特に、Fe濃度の低い本発明例2、5のW-Tiスパッタリングターゲットを用いて成膜された本発明例12、15のW-Ti膜においても、W-Ti膜に確実にFeが添加されており、エッチングレートが安定していた。
 また、Fe濃度が高い本発明例3、6のW-Tiスパッタリングターゲットを用いて成膜された本発明例13、16のW-Ti膜においても、エッチングレートのばらつきが十分に抑えられていた。
In the W—Ti film of Invention Example 11-16 formed using the W—Ti sputtering target of Invention Example 1-6, it was confirmed that the etching rate was uniform.
In particular, even in the W—Ti films of Invention Examples 12 and 15 formed using the W—Ti sputtering targets of Invention Examples 2 and 5 having a low Fe concentration, Fe was reliably added to the W—Ti film. The etching rate was stable.
In addition, in the W—Ti films of Invention Examples 13 and 16 formed using the W—Ti sputtering target of Invention Examples 3 and 6 having a high Fe concentration, the variation in etching rate was sufficiently suppressed. .
 以上の確認実験の結果から、本発明例によれば、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することができることが確認された。 From the results of the above confirmation experiment, it was confirmed that according to the example of the present invention, it is possible to form a W—Ti film having a small variation in Fe concentration and a uniform etching rate.
 本発明のW-Tiスパッタリングターゲットによれば、Fe濃度のばらつきが小さくエッチングレートが均一なW-Ti膜を成膜することが可能である。本発明のW-Tiスパッタリングターゲットは、例えば半導体素子を実装する際に用いられるバンプと下地電極との間に、相互の元素の拡散を防止する拡散防止層としてのW-Ti膜を成膜するのに好適である。 According to the W—Ti sputtering target of the present invention, it is possible to form a W—Ti film having a small variation in Fe concentration and a uniform etching rate. The W—Ti sputtering target of the present invention forms, for example, a W—Ti film as a diffusion preventing layer for preventing diffusion of mutual elements between a bump and a base electrode used when mounting a semiconductor element. It is suitable for.

Claims (1)

  1.  Tiを5質量%以上20質量%以下の範囲内、Feを25質量ppm以上100質量ppm以下の範囲内で含有し、残部がW及び不可避不純物からなる組成を有するW-Tiスパッタリングターゲットであって、
     ターゲット面内において複数個所でFe濃度を測定し、測定されたFe濃度の最大値をFemax、Fe濃度の最小値をFeminとした場合において、
     (Femax-Femin)/(Femax+Femin)≦0.25
    との関係式を満足するW-Tiスパッタリングターゲット。
    A W—Ti sputtering target containing Ti in a range of 5 mass% to 20 mass%, Fe in a range of 25 mass ppm to 100 mass ppm, with the balance being composed of W and inevitable impurities. ,
    When the Fe concentration is measured at a plurality of locations in the target plane, the maximum value of the measured Fe concentration is Fe max , and the minimum value of the Fe concentration is Fe min ,
    (Fe max −Fe min ) / (Fe max + Fe min ) ≦ 0.25
    W-Ti sputtering target satisfying the relational expression
PCT/JP2015/077729 2014-10-08 2015-09-30 W-ti sputtering target WO2016056441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167031186A KR20160133571A (en) 2014-10-08 2015-09-30 W-ti sputtering target
CN201580021546.8A CN106460160B (en) 2014-10-08 2015-09-30 W-Ti sputtering targets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014207343A JP5999161B2 (en) 2014-10-08 2014-10-08 W-Ti sputtering target
JP2014-207343 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056441A1 true WO2016056441A1 (en) 2016-04-14

Family

ID=55653056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077729 WO2016056441A1 (en) 2014-10-08 2015-09-30 W-ti sputtering target

Country Status (5)

Country Link
JP (1) JP5999161B2 (en)
KR (1) KR20160133571A (en)
CN (1) CN106460160B (en)
TW (1) TWI572722B (en)
WO (1) WO2016056441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095595A1 (en) * 2018-11-06 2020-05-14 三菱マテリアル株式会社 W-Ti SPUTTERING TARGET

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155061A (en) * 2018-11-07 2020-05-15 宁波江丰电子材料股份有限公司 Preparation method of WTi alloy target
CN112111713B (en) * 2020-09-11 2022-09-30 宁波江丰电子材料股份有限公司 Preparation method of WTi alloy sputtering target material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264640A (en) * 1990-03-13 1991-11-25 Hitachi Metals Ltd Ti-w target material and production thereof
JPH05295531A (en) * 1992-04-21 1993-11-09 Toshiba Corp Ti-w based sputtering target and its production
JP2008218693A (en) * 2007-03-05 2008-09-18 Mitsubishi Materials Corp W-Ti DIFFUSION-PREVENTING FILM HAVING HIGH ETCHING RATE, AND W-Ti TARGET FOR SPUTTERING FOR FORMING THE SAME
WO2013175884A1 (en) * 2012-05-22 2013-11-28 Jx日鉱日石金属株式会社 Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
WO2014148588A1 (en) * 2013-03-22 2014-09-25 Jx日鉱日石金属株式会社 Tungsten-sintered-body sputtering target and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156591B2 (en) * 2008-11-17 2013-03-06 出光興産株式会社 Organic electroluminescence device
JP2011058078A (en) * 2009-09-14 2011-03-24 Toshiba Corp SPUTTERING TARGET, Ta-W ALLOY FILM USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264640A (en) * 1990-03-13 1991-11-25 Hitachi Metals Ltd Ti-w target material and production thereof
JPH05295531A (en) * 1992-04-21 1993-11-09 Toshiba Corp Ti-w based sputtering target and its production
JP2008218693A (en) * 2007-03-05 2008-09-18 Mitsubishi Materials Corp W-Ti DIFFUSION-PREVENTING FILM HAVING HIGH ETCHING RATE, AND W-Ti TARGET FOR SPUTTERING FOR FORMING THE SAME
WO2013175884A1 (en) * 2012-05-22 2013-11-28 Jx日鉱日石金属株式会社 Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
WO2014148588A1 (en) * 2013-03-22 2014-09-25 Jx日鉱日石金属株式会社 Tungsten-sintered-body sputtering target and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095595A1 (en) * 2018-11-06 2020-05-14 三菱マテリアル株式会社 W-Ti SPUTTERING TARGET

Also Published As

Publication number Publication date
JP5999161B2 (en) 2016-09-28
JP2016074962A (en) 2016-05-12
TW201619405A (en) 2016-06-01
TWI572722B (en) 2017-03-01
KR20160133571A (en) 2016-11-22
CN106460160A (en) 2017-02-22
CN106460160B (en) 2018-08-17

Similar Documents

Publication Publication Date Title
JP6869237B2 (en) Sputtering target and its manufacturing method
Gain et al. Microstructure, elastic modulus and shear strength of alumina (Al 2 O 3) nanoparticles-doped tin–silver–copper (Sn–Ag–Cu) solders on copper (Cu) and gold/nickel (Au/Ni)-plated Cu substrates
WO2016056441A1 (en) W-ti sputtering target
JP2017502166A (en) Sputtering target and manufacturing method thereof
JP6037211B2 (en) Manufacturing method of MoTi target material
KR20190095414A (en) Tungsten Silicide Target and Manufacturing Method Thereof
JP5973041B2 (en) Cu-Ga sputtering target and method for producing Cu-Ga sputtering target
JP6376438B2 (en) Cu-Mn alloy sputtering target material and method for producing the same
Yang et al. Effects of Y 2 O 3 nanoparticles on growth behaviors of Cu 6 Sn 5 grains in soldering reaction
JP2017025348A (en) Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET
KR20210049815A (en) Sputtering target and method of manufacturing sputtering target
KR20200135436A (en) Tungsten silicide target, manufacturing method thereof, and manufacturing method of tungsten silicide film
JP6743867B2 (en) W-Ti sputtering target
EP3279366B1 (en) Cu-ga alloy sputtering target and method of manufacturing cu-ga alloy sputtering target
TWI674325B (en) MoNb target
JP2011084754A (en) Method for manufacturing sputtering target
JP6007840B2 (en) Cu-Ga sputtering target and manufacturing method thereof
JP6149999B1 (en) Sputtering target
JP2023115635A (en) Member for plasma treatment devices, and sputtering target, and sputtering target assembly
JP2022028300A (en) Sputtering target
WO2017104802A1 (en) Sputtering target
JP2023064278A (en) CrSi sputtering target
JP2012211357A (en) Palladium alloy sputtering target, and method for production thereof
JPH05156384A (en) Manufacture of titanium-tungsten target material
KR20170046723A (en) Tungsten sputtering target and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167031186

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849322

Country of ref document: EP

Kind code of ref document: A1