WO2016056048A1 - Water-quality evaluation method - Google Patents

Water-quality evaluation method Download PDF

Info

Publication number
WO2016056048A1
WO2016056048A1 PCT/JP2014/076684 JP2014076684W WO2016056048A1 WO 2016056048 A1 WO2016056048 A1 WO 2016056048A1 JP 2014076684 W JP2014076684 W JP 2014076684W WO 2016056048 A1 WO2016056048 A1 WO 2016056048A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filterability
filtration
treated
membrane
Prior art date
Application number
PCT/JP2014/076684
Other languages
French (fr)
Japanese (ja)
Inventor
龍原 潔
田畑 雅之
嘉晃 伊藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2014/076684 priority Critical patent/WO2016056048A1/en
Publication of WO2016056048A1 publication Critical patent/WO2016056048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a method for evaluating water quality when filtering water to be treated such as seawater.
  • ASTM D4189 evaluates the degree of pollution in seawater, which is the water to be treated, as a technique for evaluating the quality of seawater particulates or turbidity components supplied to seawater desalination plants that desalinate seawater with a reverse osmosis membrane device.
  • SDI values Silicon Density Index
  • FI values Fining Index
  • seawater is filtered as it is, so that there is a problem that it is also affected by fine particles or turbidity components coexisting in seawater.
  • This water-soluble polymer such as polysaccharides increases the viscosity when dissolved in seawater, thereby increasing the passage time through the filtration membrane and increasing SFF. Fine particles and turbidity components that coexist in seawater are trapped in the filtration membrane during the filtration treatment, and the filtration time changes due to clogging of the filtration membrane. As a result, the SFF value fluctuates.
  • the present invention can determine the SFF value based on the influence of only a water-soluble polymer such as a polysaccharide excluding the influence of fine particles or turbidity components when evaluating water to be treated such as seawater. It is an object to provide an evaluation method.
  • a first invention of the present invention for solving the above-mentioned problem is a water quality evaluation method for evaluating the quality of water to be treated, wherein the water to be treated is filtered using a first filtration membrane.
  • the fine water or the turbidity component contained in the to-be-treated water is collected to obtain filtered water, and a second filtration membrane different from the first filtration membrane is used to clarify water.
  • the filtered water is filtered through the second filtration membrane used in the clear water filterability measuring step and the clear water filterability measuring step of measuring the filterability of the clear water through the water.
  • the influence of only the water-soluble polymer, which excludes the influence of the fine particles or turbidity components, is measured. Can do.
  • 2nd invention WHEREIN When repeating the said filterability measurement process of the said clarified water and the filterability measurement process of the said filtrate water several times in 1st invention, the filterability of the clarified water measured at the last process, and measurement In the water quality evaluation method, the degree of contamination of the treated water is evaluated from the filterability of the filtered water.
  • the filterability of the clear water of the final step measured and the filtration of the final step measured
  • the filterability measurement step of the clarified water and the filterability measurement step of the filtrate water are performed a plurality of times, the pollution degree is obtained respectively, and the case where the difference in the evaluation of the pollution degree is a predetermined value or less.
  • 4th invention changes the said 2nd filtration membrane each time when repeating the filterability measurement process of the said clarified water and the filterability measurement process of the said filtrate water several times in 2nd or 3rd invention. It is in the water quality evaluation method characterized by
  • the second filtration membrane is changed each time to eliminate the influence of fine particles or turbidity components.
  • the influence of fine particles or turbidity components is evaluated by evaluating the degree of contamination of the water to be treated from the filterability of the clarified water in the final process and the filterability of the filtered water in the final process. It is possible to make an evaluation that eliminates as much as possible.
  • a fifth invention is the water quality evaluation method according to any one of the first to fourth inventions, wherein the fine particle removing step is performed a plurality of times.
  • the removal of fine particles or turbidity components is repeatedly performed, it is possible to improve the collection efficiency of the fine particles or turbidity components before evaluating the degree of contamination of the water to be treated.
  • fine particles or turbidity components are further collected by a first filtration membrane having the same opening as the second filtration membrane.
  • filtration when removing fine particles or turbidity components to be evaluated for subsequent contamination by removing relatively large particles from fine particles or turbidity components present in the water to be treated by removing relatively large particles from fine particles or turbidity components present in the water to be treated. Clogging of the membrane can be suppressed, the filtration time can be shortened, and rapid measurement becomes possible.
  • a seventh invention is the water quality evaluation method according to any one of the first to sixth inventions, wherein the treated water is treated water supplied to a membrane separation apparatus using a separation membrane. .
  • the present invention it is possible to accurately grasp the degree of contamination caused by the water-soluble polymer of the water to be treated supplied to the membrane separation device using the separation membrane.
  • a water-soluble polymer for example, a polysaccharide derived from the metabolism of microorganisms, etc.
  • a water-soluble polymer for example, a polysaccharide derived from the metabolism of microorganisms, etc.
  • FIG. 1 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the first embodiment.
  • FIG. 2 is a process diagram of the water quality evaluation method of Example 1.
  • FIG. 3 is an example of a test result showing that there is no change in the organic matter concentration before and after filtration using artificial seawater to which a polysaccharide is added in a simulated manner.
  • FIG. 4 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the second embodiment.
  • FIG. 5 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the third embodiment.
  • FIG. 6 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the fourth embodiment.
  • FIG. 7 is a process diagram of the water quality evaluation method of Example 4.
  • FIG. 8 is a process diagram of another water quality evaluation method of Example 4.
  • FIG. 9 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the fifth embodiment.
  • FIG. 10 is a process diagram of the water quality evaluation method of Example 5.
  • FIG. 11 is a schematic diagram of a filtration treatment system that treats water to be treated according to the sixth embodiment with a membrane separator.
  • FIG. 12 is a flow chart of evaluation for evaluating water quality of water to be treated.
  • FIG. 1 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the first embodiment.
  • the filtration apparatus shown in FIG. 1 implements a water quality evaluation method, and includes a filter 21 provided with filtration membranes (first filtration membrane 13A and second filtration membrane 13B), and a filtration tank 22 that receives filtrate. And is subjected to vacuum filtration using a decompression device (not shown) (the decompression device is similarly omitted in the following description of the filtration device).
  • the first filtration membrane 13A and the second filtration membrane 13B use, for example, a microfiltration membrane (MF membrane) that is a cellulose-based filter.
  • MF membrane microfiltration membrane
  • a membrane filter having a diameter of 47 mm and a pore diameter of 0.45 ⁇ m.
  • the amount of treated water and clarified water (for example, ion-exchanged water) used for filtration is, for example, 500 ml, passed through a filtration membrane, and the filtration time (T 0 , T 1 ) at that time is measured.
  • the pressure reduction condition of the filtration device at the time of water quality evaluation is a pressure reduction of ⁇ 67 kPa ( ⁇ 500 mmHg). Then, the time (seconds) required for 500 ml of water to be treated to permeate the MF membrane having a diameter of 47 mm (substantially filtration surface diameter of 35 mm) is measured and used as a filterability measurement time.
  • a separation membrane such as an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), and a reverse osmosis membrane (RO membrane) is used to perform water treatment with a membrane separation apparatus.
  • Raw water for example, seawater, mine drainage, cooling tower drainage, etc., which means water containing at least fine particles or turbidity components and water-soluble polymers.
  • the treated water may contain fine particles or turbidity components alone or may contain both.
  • the water-soluble polymer includes those derived from metabolism of microorganisms and the like, and examples thereof include neutral polysaccharides.
  • the neutral polysaccharide has a molecular weight of, for example, 10,000 or more, but may exceed 1 million, for example, or may exceed 10 million, for example.
  • a polymer component having a molecular weight of 10,000 or less may be contained.
  • the water quality evaluation method according to the present embodiment is a water quality evaluation method for water to be treated for evaluating the water quality of water 12 to be treated containing at least fine particles or a turbidity component 11 and a water-soluble polymer.
  • the water to be treated 12 is filtered using the first filtration membrane 13A, the fine particles or the turbidity component 11 contained in the water to be treated 12 is collected, and the fine particle removing step for obtaining the filtered water 14;
  • the clarified water 15 is passed through and the filterability of the clarified water 15 is measured ( clarified water filtration time: T 0) and filterability measuring step of fining water which, in the second filtration membrane 13B used in filterability measurement step of this clarified water, filtered water 14 and filtration, filtration of the filtered water 14 sex measurements (filtered water filtration time: T 1) filterability measuring step of filtered water to the Filtration of the measured clarified water 15 (clarified water filtration time: T 0), and the measured filtration of filtered water 14 (filtered water filtration time: T 1) from evaluating the degree of contamination of the treated water 12 ( T 1 / T 0 ).
  • FIG. 2 is a process diagram of the water quality evaluation method according to the present embodiment. As shown in FIG. 2, the water quality evaluation method includes a first step (S1) to a fourth step (S4).
  • First step (S1)> In the fine particle removal step of the first step (S1), the water to be treated 12 is introduced into the filter 21 and filtered using the first filtration membrane 13A installed in the filter 21. This is a step of collecting fine particles or turbidity component 11 contained therein to obtain filtered water 14. Here, the filtered water 14 after the completion of the first step is stored separately.
  • ⁇ Second step (S2)> The filterability measurement step of the clear water in the second step (S2) is performed by installing a new second filtration membrane 13B different from the first filtration membrane 13A used in the first step (S1) in the filter 21. Then, the clarified water 15 is passed through the filter 21 and the filterability of the clarified water 15 is measured. The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 0 ) during which the clear water 15 passes through the second filtration membrane 13B.
  • ⁇ Third step (S3)> The filterability measuring step of the filtered water in the third step (S3) is performed in the filter 21 in which the second filtration membrane 13B is installed in the state used in the filterability measuring step of the clarified water in the second step (S2).
  • the filtered water 14 obtained in the first step is passed and filtered, and the filterability of the filtered water 14 is measured.
  • the filtered water 14 is moved along the one-dot chain line.
  • the filtered water 14 stored separately is put into the filter 21 (the filtered water in the following examples). The same applies to the filterability measurement step.)
  • the filterability of the filtered water 14 is measured by measuring the filtered water filtration time (T 1 ) during which the filtered water 14 passes through the second filter membrane 13B.
  • the contamination degree evaluation step of the fourth step (S4) includes the measured filterability of the clear water 15 (clear water filtration time: T 0 ) and the measured filterability of the filtered water 14 (filtered water filtration time: T 1). ) To evaluate the degree of contamination of the treated water 12 (T 1 / T 0 ).
  • the degree of contamination is also referred to as SFF (Soluble Fouling Factor) representing the residual index of the water-soluble polymer contained in the treated water 12 (see Patent Document 1).
  • the first filtration membrane 13A and the second filtration membrane 13B which are different filtration membranes, are used by switching to the first filtration membrane 13A and the second filtration membrane 13B. Then, the water to be treated 12 is sequentially passed, and the degree of contamination is measured based on the filtration time (T 1 ) when the filtered water 14 passing through the second filtration membrane 13B passes.
  • the fine particle or turbidity component 11 in the water to be treated 12 is collected by the first filtration membrane 13A and filtered.
  • the water 14 is free of fine particles or turbidity components that affect filterability.
  • FIG. 3 is an example of a test result indicating that there is no change in organic matter concentration before and after filtration using artificial seawater to which polysaccharides are added in a simulated manner.
  • simulated water to be treated in this test example as shown in Table 1, artificial seawater containing sodium chloride as a main component and guar gum added at 1 mg / L as a polysaccharide were used. The temperature at that time was 25 ° C., and the pH was adjusted to 6.5.
  • an MF membrane a membrane filter having a diameter of 47 mm and a pore size of 0.45 ⁇ m
  • the reduced pressure condition was ⁇ 67 kPa ( ⁇ 500 mmHg).
  • the first filtration membrane 13A is collected by passing the filtrate water 14 using the second filtration membrane 13B different from the first filtration membrane 13A from which the fine particles or the turbidity component 11 are removed.
  • the influence of the fine particles or turbidity component 11 is eliminated, and the filterability of only the influence of polysaccharides I try to evaluate.
  • the influence of fine particles or turbidity component 11 contained in the water to be treated 12 can be eliminated, and the index of pollution degree (SFF value) due to the influence of only the water-soluble polymer (polysaccharide) can be measured.
  • SFF value index of pollution degree
  • the fine particles or the turbidity component 11 that are not collected by the first filtration membrane 13A have almost no influence on the filterability. Therefore, in the filtration in the first step (S1), the SFF is evaluated even if it is not collected. In many cases, there is no effect.
  • the first filtration membrane 13A and the second filtration membrane 13B are not exchanged, and the same filtration membrane is used.
  • a rough evaluation is possible.
  • FIG. 4 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the second embodiment.
  • the second step ( The operation of S2) is performed, and then the filtration time of the second filtration membrane 13B is measured in the third step (S3) to evaluate the contamination degree of the water 12 to be treated.
  • the filter Since the purpose of the filtration operation using the first filtration membrane 13A in the first step (S1) is to remove the fine particles or the turbidity component 11, the water to be treated is treated using the first filtration membrane 13A. Before the evaluation of the pollution level of 12, the filter is passed twice or more to improve the collection efficiency of the fine particles or the turbidity component 11.
  • the number of exchanges of the filtration membrane is the same as that in Example 1. Therefore, after eliminating the influence of the fine particles or the turbidity component 11 as much as possible, It is possible to measure efficiently in a short time.
  • FIG. 5 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the third embodiment.
  • the fine particle or turbidity component removal is carried out twice, “fine particle removal 1-1” and “fine particle removal 1-2”.
  • the first filtration membrane 13A 1 has a coarse mesh
  • the second “fine particle removal 1-2” the same particle as used in the second step is used. Fine particles or turbidity components are removed using the first filtration membrane 13A 2 having an opening (pore diameter: 0.45 ⁇ m).
  • the second step (S2) is performed in the same manner as in Example 1, and then the second step in the third step (S3).
  • the filtration time of the filter membrane 13B is measured, and the contamination degree of the water to be treated is evaluated.
  • the coarse opening (pore diameter) of the first filtration membrane 13A 1 is assumed to be coarser (larger pore diameter) than the second filtration membrane 13B used for evaluating the degree of contamination.
  • the pore size of the coarse filter membrane is larger, for example, 0.5 ⁇ m to 3 ⁇ m, preferably 0.6 ⁇ m to 2 ⁇ m, more preferably 0.7 ⁇ m to 1 ⁇ m. If the opening is too large, the trapped amount of fine particles or turbidity component 11 that can be captured decreases. Conversely, if the opening is too fine, pressure loss occurs and the filtration time becomes long.
  • a filtration membrane with a coarse opening a wire mesh, a mesh filter, etc. can be used, for example.
  • the optimum pore diameter of the filter membrane with a coarse opening varies depending on the particle size and particle size distribution of the coexisting fine particles or turbidity components, and the content in seawater. Therefore, a pore diameter of 5 ⁇ m to 10 ⁇ m or more may be appropriate as the pore diameter of the first filtration membrane 13A. Alternatively, a plurality of filtration membranes having different pore diameters may be used so that the membranes having a larger pore diameter are sequentially passed.
  • clogging of the filtration membrane can be suppressed, and the filtration time in the first step (S1) can be shortened, so that quick measurement is possible.
  • FIG. 6 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the fourth embodiment.
  • the filtration performance measurement process of the clarified water and the filtration performance measurement process of the filtered water are performed using different filtration membranes (second filtration membrane 13B and third filtration membrane 13C). Is repeated a plurality of times, the filterability (clear water filtration time: T 20 ) of the clarified water 15 measured in the final step (the second time (second time in this embodiment)), and the second filtered water measured The degree of contamination of the treated water 12 is evaluated (T 21 / T 20 ) from the filterability (filtered water filtration time: T 21 ) of 14B.
  • the second filtration membrane 13B and the third filtration membrane 13C are changed each time, and are changed several times (this embodiment Then, it is operated to perform filtration twice.
  • the filterability clarification water filtration time: T 20
  • the filterability filtered water filtration time: T 21
  • T 21 degree of contamination of the water to be treated 12
  • FIG. 7 is a process diagram of the water quality evaluation method according to the present embodiment. As shown in FIG. 7, the water quality evaluation method includes a first step (S11) to a seventh step (S17).
  • the water to be treated 12 is introduced into the filter 21 and filtered using the first filtration membrane 13A installed in the filter 21.
  • the first filtered water 14A after the end of the first step is stored separately.
  • ⁇ Second step (S12)> In the filterability measurement step of the first clarified water in the second step (S12), a new second filtration membrane 13B different from the first filtration membrane 13A used in the first step (S11) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured. The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 10 ) during which the clear water 15 passes through the second filtration membrane 13B.
  • the filterability measuring step of the first filtered water in the third step (S13) is the second filtration in the state used in the filterability measuring step (S12) of the first clarified water in the second step (S12).
  • the first filtered water 14A obtained in the first step is passed through the filter 21 provided with the membrane 13B for filtration, and the filterability of the first filtered water 14A is measured.
  • the filterability of the first filtered water 14A is measured by measuring the filtered water filtration time (T 11 ) during which the first filtered water 14A passes through the second filtered membrane 13B.
  • ⁇ Fifth step (S15)> In the second clarified water filterability measuring step of the fifth step (S15), another new third filter membrane 13C different from the second filter membrane 13B used in the fourth step (S14) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured. The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 20 ) during which the clear water 15 passes through the third filter membrane 13C.
  • ⁇ 6th process (S16)> In the filterability measuring step of the second filtered water in the sixth step (S16), the third filter membrane 13C that is used in the filterability measuring step of the second clarified water in the fifth step (S15) is used. In this step, the second filtered water 14B obtained in the third step (S13) is passed through the installed filter 21 for filtration, and the filterability of the second filtered water 14B is measured.
  • the filterability of the second filtered water 14B is measured by measuring the filtered water filtration time (T 21 ) for the second filtered water 14B to pass through the third filter membrane 13C.
  • the second evaluation value (T 21 / T 20 ) of the degree of contamination of the water to be treated 12 in the step (S17) is a predetermined value that is the same or very close, but has an influence of fine particles or turbidity components in filtration. In some cases, the influence of fine particles or turbidity components is eliminated by increasing the number of times.
  • the second filtration membrane 13B, the third filtration membrane 13C, and the subsequent filtration membranes are changed each time and filtration is performed a plurality of times to eliminate the influence of the fine particles or the turbidity component 11, and then the final process.
  • Filterability clear water filtration time: T 0 ⁇ n
  • filterability filterability of the 14th nth filtrate water
  • T 1 ⁇ n / T 0 ⁇ n To evaluate the degree of contamination of the water 12 to be treated (T 1 ⁇ n / T 0 ⁇ n ), it is possible to perform an evaluation that eliminates the influence of the fine particles or the turbidity component 11 as much as possible.
  • FIG. 8 is a process diagram of another water quality evaluation method of Example 4. Further, as shown in FIG. 8, the first evaluation value (T 11 / T 10 ) of the degree of contamination of the treated water 12 in the fourth step (S14) and the treated water 12 in the seventh step (S17). When the second evaluation value (T 21 / T 20 ) of the pollution degree is compared and it is determined that the difference is not more than the predetermined reference value (Yes), the influence of the fine particles or the turbidity component is eliminated. It is determined that the evaluation value is true, and the operation is terminated.
  • the filterability measuring step of the third filtered water in the ninth step is a filtration in which the fourth filtration membrane 13D is installed in the state used in the filterability measuring step of the third clarified water in the eighth step (S18).
  • the third filtered water 14C obtained in the sixth step (S16) is passed through the vessel 21 for filtration, and the filterability of the third filtered water 14C is measured.
  • the filterability of the third filtered water 14C is measured by measuring the filtered water filtration time (T 31 ) during which the third filtered water 14C passes through the fourth filter membrane 13D.
  • the third contamination degree evaluation step of the tenth step (S20) includes the filterability of the clear water 15 measured in the eighth step (S18) (clear water filtration time: T 30 ), and the measured third filtration. This is a step of evaluating the degree of contamination of the water 12 to be treated (T 31 / T 30 ) from the filterability of the water 14C (filtered water filtration time: T 31 ).
  • the clear water filterability measuring step and the filtered water filterability measuring step are repeated a plurality of times, and the evaluation values of the respective pollution degrees are respectively determined.
  • the previous evaluation value of the pollution degree obtained is compared with the evaluation value of the pollution degree obtained this time, and the case where the difference between the comparisons of the evaluation of the pollution degree becomes a predetermined standard is determined as the true evaluation of the pollution degree. be able to.
  • the predetermined value of the above difference is at least 0.1 seconds in consideration of measurement error and the like, and it is preferable to set a value larger than that.
  • the present invention is not limited to this, and the filter membranes are not necessarily changed every time, and the filtration membranes are not changed in the middle. The case where filtration is performed without change is also included.
  • FIG. 9 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the fifth embodiment.
  • FIG. 10 is a process diagram of the water quality evaluation method of Example 5. As shown in FIG. 9, the water quality evaluation method includes a first step (S21) to a ninth step (S29).
  • the initial clarified water filterability measurement step is performed by passing the clarified water 15 through the filter 21 provided with the first filter membrane 13A. This is a step of measuring filterability.
  • the filterability of the clear water 15 is measured by measuring the clear water filtration time (T 00 ) during which the clear water 15 passes through the first filtration membrane 13A.
  • the filterability measurement step of the initial filtered water in the second step (S22) is the first filter membrane 13A in the state used in the filterability measurement step (S21) of the initial clarified water in the first step (S21).
  • the water to be treated 12 containing fine particles or the turbidity component 11 is passed through the filter 21 in which the water is filtered to obtain the first filtered water 14A, and the initial filterability of the water to be treated 12 is improved. It is a process of measuring.
  • a fine particle removal step is performed in which the fine particles or turbidity component 11 in the water to be treated 12 is removed.
  • the filterability of the treated water 12 is measured by measuring the treated water filtration time (T 01 ) during which the treated water 12 passes through the first filtration membrane 13A.
  • the initial contamination degree evaluation step of the third step (S23) includes the measured filterability of the clarified water 15 (clarified water filtration time: T 00 ) and the measured filterability of the treated water 12 (treated water filtration). This is a step of evaluating the degree of contamination of the water 12 to be treated (T 01 / T 00 ) from time: T 01 ).
  • the filtration property measuring step of the first filtered water in the fifth step (S25) is a filtration in which the second filtration membrane 13B is used as it is in the filtering property measuring step of the clear water in the fourth step (S24).
  • the first filtered water 14A obtained in the second step (S22) is passed through the vessel 21 for filtration, and the filterability of the first filtered water 14A is measured.
  • the filterability of the first filtered water 14A is measured by measuring the filtered water filtration time (T 11 ) during which the first filtered water 14A passes through the second filtered membrane 13B.
  • the first evaluation value (T 11 / T 10 ) of the degree of contamination of the treated water 12 in (S26) is a predetermined value that is the same or very approximate, and when the difference is a predetermined value reference (Yes), The filtration step for removing fine particles or turbidity components is completed.
  • the filterability measuring step of the second filtered water in the eighth step (S28) uses the third filter membrane 13C as it is in the filterability measuring step of the second clarified water in the seventh step (S27).
  • the second filtered water 14B obtained in the fifth step (S25) is passed through the installed filter 21 for filtration, and the filterability of the second filtered water 14B is measured.
  • the filterability of the second filtered water 14B is measured by measuring the filtered water filtration time (T 21 ) for the second filtered water 14B to pass through the third filter membrane 13C.
  • the second contamination degree evaluation step of the ninth step (S29) includes the filterability (clear water filtration time: T 20 ) of the clarified water 15 measured in the seventh step (S27), and the measured second filtration. This is a step of evaluating the degree of contamination of the water 12 to be treated (T 21 / T 20 ) from the filterability of the water 14B (filtered water filtration time: T 21 ).
  • the initial value is obtained before performing the fine particle removal treatment of the water 12 to be treated containing the fine particles or the turbidity component 11, so that the evaluation frequency of the contamination degree is evaluated. And the initial value of the treated water 12 can be used as a reference for comparison.
  • FIG. 11 is a schematic diagram of a filtration treatment system that treats water to be treated according to the sixth embodiment with a membrane separator.
  • a desalination treatment system will be described by way of example of a desalination apparatus provided with a separation membrane for concentrating salt as a membrane separation apparatus.
  • the desalination treatment system 100 includes a treatment water line L 10 that supplies the treatment water 12 that is raw water (for example, seawater) and a treatment water supply line L 10 .
  • the flocculant 132 is supplied from the flocculant tank 131 via the chemical injection pump 134 by the flocculant supply line L 21 connected to the water line L 10 to be treated.
  • the filtration device 102 uses a carbon-based material such as anthracite as the upper filtration layer 102a, and uses a granular filtration material such as silica sand as the lower filtration layer 102b, and is laminated on the filtration device main body 102c.
  • the treated water 12 is introduced from the top 102d side and passed through the filtration layers 102a and 102b, and the suspended matter in the treated water 12 is captured.
  • any one of the water quality evaluation methods of Examples 1 to 4 described above is performed.
  • a coagulant supply line L 21 a coagulant 132 by infusion pump 134
  • coagulant tank 131 The flocculant 132 is introduced into the treated water supply line L 10 and supplied to the treated water 12 to promote the aggregation of the aggregates.
  • FIG. 12 is a flow chart of evaluation for evaluating water quality of water to be treated.
  • the water quality of the to-be-processed water 12 is evaluated using the water quality evaluation apparatus 125 (S31). Then, as a result of this evaluation, it is determined whether or not the concentration ratio of the organic matter in the treated water 12 exceeds a reference value (threshold value) (S32). If the result of determination in step S32 is that the reference value (threshold value) is exceeded (Yes), the controller 133 makes a determination, issues a command to the drug infusion pump 134, and causes the flocculant 132 to flocculant tank 131. Is added (or added) to the water 12 to be treated (S33). On the other hand, if the reference value is not exceeded (No), the operation is continued (S34).
  • the control device 131 injects the medicine.
  • a command is issued to the pump 134 to add (or add) the flocculant 132 to the water to be treated 12, and the amount of use when adding (or adding) the flocculant 132 can be reduced.
  • the water quality evaluation is repeated after a lapse of a predetermined time or as necessary.
  • Fine particles or turbidity components 12 Water to be treated 13A to 13C First to third filtration membranes 14A to 14C First to third filtrates 15 Clear water 21 Filter 22 Filter tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A water-quality evaluation method for water to be treated which evaluates the water quality of water 12 to be treated, the water-quality evaluation method having: a fine-particle removal step for obtaining filtered water 14 by filtering the water 12 to be treated by using a first filtration membrane 13A, and collecting fine particles or a turbid component 11 contained in the water 12 to be treated; a filterability measurement step for clarified water which measures the filterability of clarified water 15, by using a second filtration membrane 13B which differs from the first filtration membrane 13A and passing the clarified water 15 therethrough; a filterability measurement step for filtered water which measures the filterability of the filtered water 14, by filtering the filtered water 14 through the second filtration membrane 13B used in the clarified water 15 filterability measurement step; and a contamination-degree evaluation step for evaluating the degree of contamination of the water 12 to be filtered, on the basis of the measured clarified water filterability and the measured filtered water filterability.

Description

水質評価方法Water quality evaluation method
 本発明は、例えば海水などの被処理水を濾過する際の水質の評価方法に関するものである。 The present invention relates to a method for evaluating water quality when filtering water to be treated such as seawater.
 例えば、海水を逆浸透膜装置で淡水化処理する海水淡水化プラントに供給する海水の微粒子または濁度成分の品質を評価する手法として、被処理水である海水中の汚染度を評価するASTM D4189に規定されているSDI値(Silt Density Index)、JIS K 3802に規定されているFI値(Fouling Index)などがある。 For example, ASTM D4189 evaluates the degree of pollution in seawater, which is the water to be treated, as a technique for evaluating the quality of seawater particulates or turbidity components supplied to seawater desalination plants that desalinate seawater with a reverse osmosis membrane device. There are SDI values (Silt Density Index) specified in JIS, FI values (Fouling Index) specified in JIS K 3802, and the like.
 また、海水には微粒子または濁度成分以外に、水溶性高分子(例えば中性多糖類など)を含む場合の海水の品質を評価する手法として、被処理水中に含まれる水溶性高分子の残留指標を表すSFF(Soluble Fouling Factor)が提案されている(特許文献1参照)。 In addition, as a method for evaluating the quality of seawater when water contains a water-soluble polymer (for example, neutral polysaccharides) in addition to fine particles or turbidity components, the residual water-soluble polymer contained in the water to be treated SFF (Soluable Fouling Factor) representing an index has been proposed (see Patent Document 1).
特開2012-213676号公報JP 2012-213676 A
 しかしながら、多糖類など水溶性高分子の濃度の指標として用いられるSFFの測定では、海水をそのまま濾過処理するので、海水中に共存する微粒子または濁度成分の影響も受ける、という問題がある。 However, in the measurement of SFF used as an indicator of the concentration of water-soluble polymers such as polysaccharides, seawater is filtered as it is, so that there is a problem that it is also affected by fine particles or turbidity components coexisting in seawater.
 この多糖類など水溶性高分子は、海水に溶解したときに粘度が増加することで濾過膜の通過時間が長くなり、SFFを増加させる。海水中に共存する微粒子や濁度成分は、濾過処理の際に濾過膜に捕捉され濾過膜の目詰まりを起こすことで濾過時間が変化し、その結果SFF値が変動する、という問題がある。 This water-soluble polymer such as polysaccharides increases the viscosity when dissolved in seawater, thereby increasing the passage time through the filtration membrane and increasing SFF. Fine particles and turbidity components that coexist in seawater are trapped in the filtration membrane during the filtration treatment, and the filtration time changes due to clogging of the filtration membrane. As a result, the SFF value fluctuates.
 そこで、微粒子または濁度成分が海水中に共存する場合には、SFF値が変動するため、微粒子または濁度成分の影響を排除して、多糖類など水溶性高分子だけの影響によるSFF値を計測することができる水質評価方法の出現が切望されている。 Therefore, when fine particles or turbidity components coexist in seawater, the SFF value fluctuates. Therefore, the influence of fine particles or turbidity components is excluded, and the SFF value due to the influence of only a water-soluble polymer such as a polysaccharide is removed. The advent of water quality evaluation methods that can be measured is eagerly desired.
 本発明は、前記問題に鑑み、例えば海水等の被処理水を評価する際、微粒子または濁度成分の影響を排除した多糖類など水溶性高分子だけの影響によるSFF値を求めることができる水質の評価方法を提供することを課題とする。 In view of the above-mentioned problems, the present invention can determine the SFF value based on the influence of only a water-soluble polymer such as a polysaccharide excluding the influence of fine particles or turbidity components when evaluating water to be treated such as seawater. It is an object to provide an evaluation method.
 上述した課題を解決するための本発明の第1の発明は、被処理水の水質評価を行う被処理水の水質評価方法であって、前記被処理水を第1の濾過膜を用いて濾過処理を行い、前記被処理水中に含まれる微粒子または濁度成分を捕集し、濾過水を得る微粒子除去工程と、前記第1の濾過膜とは異なる第2の濾過膜を用いて、清澄水を通水して、該清澄水の濾過性を測定する清澄水の濾過性計測工程と、前記清澄水の濾過性計測工程で用いた前記第2の濾過膜に、前記濾過水を濾過処理し、該濾過水の濾過性を測定する濾過水の濾過性計測工程と、測定された清澄水の濾過性、及び測定された濾過水の濾過性から、前記被処理水の汚染度を評価する汚染度評価工程とを有することを特徴とする水質評価方法にある。 A first invention of the present invention for solving the above-mentioned problem is a water quality evaluation method for evaluating the quality of water to be treated, wherein the water to be treated is filtered using a first filtration membrane. The fine water or the turbidity component contained in the to-be-treated water is collected to obtain filtered water, and a second filtration membrane different from the first filtration membrane is used to clarify water. The filtered water is filtered through the second filtration membrane used in the clear water filterability measuring step and the clear water filterability measuring step of measuring the filterability of the clear water through the water. The contamination for evaluating the degree of contamination of the water to be treated from the filtration property measurement step of the filtration water for measuring the filtration property of the filtrate, the filtration property of the clarified water, and the filtration property of the filtrate. A water quality evaluation method characterized by comprising a degree evaluation step.
 本発明によれば、被処理水中に含まれる微粒子または濁度成分を予め除去した後に、微粒子または濁度成分の影響を排除した、水溶性高分子だけの影響による汚染度の指数を計測することができる。 According to the present invention, after removing fine particles or turbidity components contained in the water to be treated in advance, the influence of only the water-soluble polymer, which excludes the influence of the fine particles or turbidity components, is measured. Can do.
 第2の発明は、第1の発明において、前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す場合、最終工程で測定された清澄水の濾過性、及び測定された濾過水の濾過性から、前記被処理水の汚染度を評価することを特徴とする水質評価方法にある。 2nd invention WHEREIN: When repeating the said filterability measurement process of the said clarified water and the filterability measurement process of the said filtrate water several times in 1st invention, the filterability of the clarified water measured at the last process, and measurement In the water quality evaluation method, the degree of contamination of the treated water is evaluated from the filterability of the filtered water.
 本発明によれば、前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す場合、測定された最終工程の清澄水の濾過性、及び測定された最終工程の濾過水の濾過性から、被処理水の汚染度の評価を行うことで、微粒子または濁度成分の影響を極力排除した評価を行うことが可能となる。 According to the present invention, when the filterability measurement step of the clear water and the filterability measurement step of the filtrate water are repeated a plurality of times, the filterability of the clear water of the final step measured and the filtration of the final step measured By evaluating the degree of contamination of the water to be treated from the filterability of water, it is possible to perform an evaluation that eliminates the influence of fine particles or turbidity components as much as possible.
 第3の発明は、第1または2の発明において、前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す場合、各々の汚染度の評価値をそれぞれ求め、前回求めた汚染度の評価値と、今回求めた汚染度の評価値とを比較し、この比較した汚染度の評価の差分が所定値以下となる際を汚染度の評価とすることを特徴とする水質評価方法にある。 3rd invention WHEREIN: When repeating the filtration property measurement process of the said clear water and the filtration property measurement process of the said filtered water in multiple times in 1st or 2nd invention, each evaluation value of each pollution degree is calculated | required, respectively, Comparing the obtained evaluation value of the contamination degree with the evaluation value of the contamination degree obtained this time, and when the difference in evaluation of the compared contamination degree is equal to or less than a predetermined value, the contamination degree is evaluated. It is in the water quality evaluation method.
 本発明によれば、清澄水の濾過性計測工程と、濾過水の濾過性計測工程とを複数回行い、汚染度をそれぞれ求め、汚染度の評価の差分が所定値以下となる場合を汚染度の真の評価とすることができる。 According to the present invention, the filterability measurement step of the clarified water and the filterability measurement step of the filtrate water are performed a plurality of times, the pollution degree is obtained respectively, and the case where the difference in the evaluation of the pollution degree is a predetermined value or less The true evaluation of
 第4の発明は、第2または3の発明において、前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す際、前記第2の濾過膜をその都度変更することを特徴とする水質評価方法にある。 4th invention changes the said 2nd filtration membrane each time when repeating the filterability measurement process of the said clarified water and the filterability measurement process of the said filtrate water several times in 2nd or 3rd invention. It is in the water quality evaluation method characterized by
 本発明によれば、清澄水の濾過性計測工程と濾過水の濾過性計測工程とを複数回繰り返す際、前記第2の濾過膜をその都度変更し、微粒子または濁度成分の影響を排除した上で、測定された最終工程の清澄水の濾過性、及び測定された最終工程の濾過水の濾過性から、被処理水の汚染度の評価を行うことで、微粒子または濁度成分の影響を極力排除した評価を行うことが可能となる。 According to the present invention, when the filterability measurement step of clarified water and the filterability measurement step of filtrate water are repeated a plurality of times, the second filtration membrane is changed each time to eliminate the influence of fine particles or turbidity components. The influence of fine particles or turbidity components is evaluated by evaluating the degree of contamination of the water to be treated from the filterability of the clarified water in the final process and the filterability of the filtered water in the final process. It is possible to make an evaluation that eliminates as much as possible.
 第5の発明は、第1乃至4のいずれか一つの発明において、前記微粒子除去工程を、複数回行うことを特徴とする水質評価方法にある。 A fifth invention is the water quality evaluation method according to any one of the first to fourth inventions, wherein the fine particle removing step is performed a plurality of times.
 本発明によれば、微粒子または濁度成分の除去を繰り返し行うので、被処理水の汚染度の評価を行う前に微粒子または濁度成分の捕集効率を向上させることができる。 According to the present invention, since the removal of fine particles or turbidity components is repeatedly performed, it is possible to improve the collection efficiency of the fine particles or turbidity components before evaluating the degree of contamination of the water to be treated.
 第6の発明は、第1乃至5のいずれか一つの発明において、前記微粒子除去工程が、前記第2の濾過膜よりも目開きの粗い濾過膜で微粒子または濁度成分を捕集した後、前記第2の濾過膜と同じ目開きの第1の濾過膜でさらに微粒子または濁度成分を捕集することを特徴とする水質評価方法にある。 According to a sixth invention, in any one of the first to fifth inventions, after the fine particle removal step collects fine particles or turbidity components with a filtration membrane having a coarser opening than the second filtration membrane, In the water quality evaluation method, fine particles or turbidity components are further collected by a first filtration membrane having the same opening as the second filtration membrane.
 本発明によれば、被処理水中に存在する微粒子または濁度成分のうち、比較的大きなものを事前に除去することで、その後の汚染度を評価する微粒子または濁度成分を除去する際の濾過膜への目詰まりを抑制し、濾過時間を短縮することができ、迅速な測定が可能となる。 According to the present invention, filtration when removing fine particles or turbidity components to be evaluated for subsequent contamination by removing relatively large particles from fine particles or turbidity components present in the water to be treated. Clogging of the membrane can be suppressed, the filtration time can be shortened, and rapid measurement becomes possible.
 第7の発明は、第1乃至6のいずれか一つの発明において、前記被処理水が分離膜を用いた膜分離装置へ供給される被処理水であることを特徴とする水質評価方法にある。 A seventh invention is the water quality evaluation method according to any one of the first to sixth inventions, wherein the treated water is treated water supplied to a membrane separation apparatus using a separation membrane. .
 本発明によれば、分離膜を用いて膜分離装置へ供給する被処理水の水溶性高分子に起因する汚染度を的確に把握することができる。 According to the present invention, it is possible to accurately grasp the degree of contamination caused by the water-soluble polymer of the water to be treated supplied to the membrane separation device using the separation membrane.
 本発明によれば、被処理水中に含まれる微粒子または濁度成分を予め除去した後に、微粒子または濁度成分の影響を排除した、水溶性高分子(例えば微生物の代謝などに由来する多糖類)だけの影響による汚染度の指数を計測することができる。 According to the present invention, after removing fine particles or turbidity components contained in the water to be treated in advance, a water-soluble polymer (for example, a polysaccharide derived from the metabolism of microorganisms, etc.) in which the influence of the fine particles or turbidity components is eliminated. It is possible to measure the index of pollution degree due to only the influence.
図1は、実施例1に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。FIG. 1 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the first embodiment. 図2は、実施例1の水質評価方法の工程図である。FIG. 2 is a process diagram of the water quality evaluation method of Example 1. 図3は、模擬的に多糖類を添加した人工海水を用いて、濾過の前後において、有機物濃度の変化が無いことを示す試験結果の一例である。FIG. 3 is an example of a test result showing that there is no change in the organic matter concentration before and after filtration using artificial seawater to which a polysaccharide is added in a simulated manner. 図4は、実施例2に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。FIG. 4 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the second embodiment. 図5は、実施例3に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。FIG. 5 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the third embodiment. 図6は、実施例4に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。FIG. 6 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the fourth embodiment. 図7は、実施例4の水質評価方法の工程図である。FIG. 7 is a process diagram of the water quality evaluation method of Example 4. 図8は、実施例4の他の水質評価方法の工程図である。FIG. 8 is a process diagram of another water quality evaluation method of Example 4. 図9は、実施例5に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。FIG. 9 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the fifth embodiment. 図10は、実施例5の水質評価方法の工程図である。FIG. 10 is a process diagram of the water quality evaluation method of Example 5. 図11は、実施例6に係る被処理水を膜分離装置で水処理するろ過処理システムの概略図である。FIG. 11 is a schematic diagram of a filtration treatment system that treats water to be treated according to the sixth embodiment with a membrane separator. 図12は、被処理水を水質評価する評価のフロー図である。FIG. 12 is a flow chart of evaluation for evaluating water quality of water to be treated.
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
 図1は、実施例1に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。
 図1に示す濾過装置は、水質評価方法を実施するものであり、濾過膜(第1の濾過膜13A、第2の濾過膜13B)を設置した濾過器21と、濾過物を受ける濾過槽22とからなり、図示しない減圧装置を用いて減圧濾過するものである(以下の濾過装置の説明においても、同様に減圧装置は省略する)。
 第1の濾過膜13A及び第2の濾過膜13Bは、例えばセルロース系フィルタである精密濾過膜(MF膜)を用いており、例えば直径47mm、孔径0.45μmのメンブレンフィルタを使用するのが好ましい。
 濾過に用いる被処理水及び清澄水(例えばイオン交換水等)の使用量は、例えば500mlを用いて、濾過膜を通過させ、その際の濾過時間(T0、T1)を計測する。
 水質評価の際の濾過装置の減圧条件は、-67kPa(-500mmHg)の減圧下としている。そして、500mlの被処理水が、直径47mm(実質濾過面の直径35mm)のMF膜を透過するのに要する時間(秒)を計測し、濾過性の計測時間としている。
FIG. 1 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the first embodiment.
The filtration apparatus shown in FIG. 1 implements a water quality evaluation method, and includes a filter 21 provided with filtration membranes (first filtration membrane 13A and second filtration membrane 13B), and a filtration tank 22 that receives filtrate. And is subjected to vacuum filtration using a decompression device (not shown) (the decompression device is similarly omitted in the following description of the filtration device).
The first filtration membrane 13A and the second filtration membrane 13B use, for example, a microfiltration membrane (MF membrane) that is a cellulose-based filter. For example, it is preferable to use a membrane filter having a diameter of 47 mm and a pore diameter of 0.45 μm. .
The amount of treated water and clarified water (for example, ion-exchanged water) used for filtration is, for example, 500 ml, passed through a filtration membrane, and the filtration time (T 0 , T 1 ) at that time is measured.
The pressure reduction condition of the filtration device at the time of water quality evaluation is a pressure reduction of −67 kPa (−500 mmHg). Then, the time (seconds) required for 500 ml of water to be treated to permeate the MF membrane having a diameter of 47 mm (substantially filtration surface diameter of 35 mm) is measured and used as a filterability measurement time.
 本発明の被処理水としては、例えば限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、及び逆浸透膜(RO膜)などの分離膜を用いて膜分離装置で水処理を行う原水であり、例えば海水、鉱山排水、冷却塔排水などであり、微粒子または濁度成分や水溶性高分子を少なくとも含む水をいう。なお、この被処理水中には微粒子または濁度成分が単独で含まれている場合や、両方含まれている場合にもある。
 ここで、水溶性高分子とは、微生物などの代謝などに由来するものも含まれ、例えば中性多糖類などを挙げることができる。この中性多糖類は、分子量としては、例えば1万以上であるが、例えば100万を超えることや、例えば1000万を超えることもある。また、分子量1万以下の高分子成分が含まれる場合もある。
As the water to be treated of the present invention, for example, a separation membrane such as an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), and a reverse osmosis membrane (RO membrane) is used to perform water treatment with a membrane separation apparatus. Raw water, for example, seawater, mine drainage, cooling tower drainage, etc., which means water containing at least fine particles or turbidity components and water-soluble polymers. The treated water may contain fine particles or turbidity components alone or may contain both.
Here, the water-soluble polymer includes those derived from metabolism of microorganisms and the like, and examples thereof include neutral polysaccharides. The neutral polysaccharide has a molecular weight of, for example, 10,000 or more, but may exceed 1 million, for example, or may exceed 10 million, for example. In addition, a polymer component having a molecular weight of 10,000 or less may be contained.
 この濾過装置を用いて、本実施例に係る水質評価方法について、図1を用いて説明する。図1に示すように、本実施例に係る水質評価方法は、少なくとも微粒子または濁度成分11と水溶性高分子とを含む被処理水12の水質評価を行う被処理水の水質評価方法であって、被処理水12を第1の濾過膜13Aを用いて濾過処理を行い、被処理水12中に含まれる微粒子または濁度成分11を捕集し、濾過水14を得る微粒子除去工程と、この微粒子除去工程で用いた第1の濾過膜13Aとは異なる(別の新しい)第2の濾過膜13Bを用いて、清澄水15を通水して、該清澄水15の濾過性を測定(清澄水濾過時間:T0)する清澄水の濾過性計測工程と、この清澄水の濾過性計測工程で用いた第2の濾過膜13Bに、濾過水14を濾過処理し、濾過水14の濾過性を測定(濾過水濾過時間:T1)する濾過水の濾過性計測工程と、測定された清澄水15の濾過性(清澄水濾過時間:T0)、及び測定された濾過水14の濾過性(濾過水濾過時間:T1)から、被処理水12の汚染度を評価(T1/T0)するものである。なお、被処理水12中に微粒子および濁度成分が両方含まれている場合には、第1の濾過膜13A及び第2の濾過膜13Bでは両方を捕集している。 A water quality evaluation method according to this embodiment will be described with reference to FIG. As shown in FIG. 1, the water quality evaluation method according to the present embodiment is a water quality evaluation method for water to be treated for evaluating the water quality of water 12 to be treated containing at least fine particles or a turbidity component 11 and a water-soluble polymer. Then, the water to be treated 12 is filtered using the first filtration membrane 13A, the fine particles or the turbidity component 11 contained in the water to be treated 12 is collected, and the fine particle removing step for obtaining the filtered water 14; Using the second filtration membrane 13B different from the first filtration membrane 13A used in the fine particle removal step, the clarified water 15 is passed through and the filterability of the clarified water 15 is measured ( clarified water filtration time: T 0) and filterability measuring step of fining water which, in the second filtration membrane 13B used in filterability measurement step of this clarified water, filtered water 14 and filtration, filtration of the filtered water 14 sex measurements (filtered water filtration time: T 1) filterability measuring step of filtered water to the Filtration of the measured clarified water 15 (clarified water filtration time: T 0), and the measured filtration of filtered water 14 (filtered water filtration time: T 1) from evaluating the degree of contamination of the treated water 12 ( T 1 / T 0 ). In addition, when both the microparticles | fine-particles and a turbidity component are contained in the to-be-processed water 12, both the 1st filtration membrane 13A and the 2nd filtration membrane 13B are collecting.
 図2は、本実施例に係る水質評価方法の工程図である。
 図2に示すように、水質評価方法は、第1工程(S1)乃至第4工程(S4)からなる。
FIG. 2 is a process diagram of the water quality evaluation method according to the present embodiment.
As shown in FIG. 2, the water quality evaluation method includes a first step (S1) to a fourth step (S4).
<第1工程(S1)>
 第1工程(S1)の微粒子除去工程は、被処理水12を濾過器21内に導入し、該濾過器21に設置した第1の濾過膜13Aを用いて濾過処理を行い、被処理水12中に含まれる微粒子または濁度成分11を捕集し、濾過水14を得る工程である。ここで、この第1工程の終了後の濾過水14は別途保管しておく。
<First step (S1)>
In the fine particle removal step of the first step (S1), the water to be treated 12 is introduced into the filter 21 and filtered using the first filtration membrane 13A installed in the filter 21. This is a step of collecting fine particles or turbidity component 11 contained therein to obtain filtered water 14. Here, the filtered water 14 after the completion of the first step is stored separately.
<第2工程(S2)>
 第2工程(S2)の清澄水の濾過性計測工程は、第1工程(S1)で用いた第1の濾過膜13Aとは異なる別の新しい第2の濾過膜13Bを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第2の濾過膜13Bを通過する清澄水濾過時間(T0)を測定することにより行う。
<Second step (S2)>
The filterability measurement step of the clear water in the second step (S2) is performed by installing a new second filtration membrane 13B different from the first filtration membrane 13A used in the first step (S1) in the filter 21. Then, the clarified water 15 is passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 0 ) during which the clear water 15 passes through the second filtration membrane 13B.
<第3工程(S3)>
 第3工程(S3)の濾過水の濾過性計測工程は、第2工程(S2)の清澄水の濾過性計測工程で用いた状態のままの第2の濾過膜13Bを設置した濾過器21内に、第1工程で得た濾過水14を通水して濾過処理し、濾過水14の濾過性を測定する工程である。なお、図1中では、一点鎖線で濾過水14を移動しているが、実際の操作では、別途保管した濾過水14を濾過器21内に投入している(以下の実施例における濾過水の濾過性計測工程でも、同様である。)。
<Third step (S3)>
The filterability measuring step of the filtered water in the third step (S3) is performed in the filter 21 in which the second filtration membrane 13B is installed in the state used in the filterability measuring step of the clarified water in the second step (S2). In this step, the filtered water 14 obtained in the first step is passed and filtered, and the filterability of the filtered water 14 is measured. In FIG. 1, the filtered water 14 is moved along the one-dot chain line. However, in actual operation, the filtered water 14 stored separately is put into the filter 21 (the filtered water in the following examples). The same applies to the filterability measurement step.)
 濾過水14の濾過性の測定は、濾過水14が第2の濾過膜13Bを通過する濾過水濾過時間(T1)を測定することにより行う。 The filterability of the filtered water 14 is measured by measuring the filtered water filtration time (T 1 ) during which the filtered water 14 passes through the second filter membrane 13B.
<第4工程(S4)>
 第4工程(S4)の汚染度評価工程は、測定された清澄水15の濾過性(清澄水濾過時間:T0)、及び測定された濾過水14の濾過性(濾過水濾過時間:T1)から、被処理水12の汚染度を評価(T1/T0)する工程である。
 ここで、汚染度は、被処理水12中に含まれる水溶性高分子の残留指標を表すSFF(Soluble Fouling Factor)とも称される(特許文献1参照)。
<4th process (S4)>
The contamination degree evaluation step of the fourth step (S4) includes the measured filterability of the clear water 15 (clear water filtration time: T 0 ) and the measured filterability of the filtered water 14 (filtered water filtration time: T 1). ) To evaluate the degree of contamination of the treated water 12 (T 1 / T 0 ).
Here, the degree of contamination is also referred to as SFF (Soluble Fouling Factor) representing the residual index of the water-soluble polymer contained in the treated water 12 (see Patent Document 1).
 この汚染度の評価を計測する際に、第1の濾過膜13Aと第2の濾過膜13Bとに切替て、異なる濾過膜である第1の濾過膜13Aと第2の濾過膜13Bとを用いて被処理水12を順次通過させ、第2濾過膜13Bを通過する濾過水14の通過した際の濾過時間(T1)をもとに汚染度を計測するようにしている。 When measuring the evaluation of the contamination degree, the first filtration membrane 13A and the second filtration membrane 13B, which are different filtration membranes, are used by switching to the first filtration membrane 13A and the second filtration membrane 13B. Then, the water to be treated 12 is sequentially passed, and the degree of contamination is measured based on the filtration time (T 1 ) when the filtered water 14 passing through the second filtration membrane 13B passes.
 本実施例によれば、第1工程(S1)での微粒子除去工程では、被処理水12中の微粒子または濁度成分11を第1の濾過膜13Aにおいて捕集するようにして、濾過した濾過水14には濾過性に影響する微粒子または濁度成分は存在しないものとなる。 According to the present example, in the fine particle removal step in the first step (S1), the fine particle or turbidity component 11 in the water to be treated 12 is collected by the first filtration membrane 13A and filtered. The water 14 is free of fine particles or turbidity components that affect filterability.
 一方、被処理水12中の多糖類は、水溶性であるので、第1工程(S1)での濾過の通過前後で濃度が変化しないことを確認している(図3)。 On the other hand, since the polysaccharide in the water 12 to be treated is water-soluble, it has been confirmed that the concentration does not change before and after the filtration in the first step (S1) (FIG. 3).
 図3は、模擬的に多糖類を添加した人工海水を用いて、濾過の前後において、有機物濃度の変化が無いことを示す試験結果の一例である。ここで、本試験例の模擬被処理水としては、表1に示すように、塩化ナトリウムを主成分とした人工海水に、多糖類としてグアガムを1mg/L添加したものを用いた。その際の温度は25℃とし、pHは6.5に調整した。濾過膜としては、セルロース系フィルタであるMF膜(直径47mm、孔径0.45μmのメンブレンフィルタ)を用い、減圧条件は、-67kPa(-500mmHg)とした。 FIG. 3 is an example of a test result indicating that there is no change in organic matter concentration before and after filtration using artificial seawater to which polysaccharides are added in a simulated manner. Here, as the simulated water to be treated in this test example, as shown in Table 1, artificial seawater containing sodium chloride as a main component and guar gum added at 1 mg / L as a polysaccharide were used. The temperature at that time was 25 ° C., and the pH was adjusted to 6.5. As the filtration membrane, an MF membrane (a membrane filter having a diameter of 47 mm and a pore size of 0.45 μm), which is a cellulose filter, was used, and the reduced pressure condition was −67 kPa (−500 mmHg).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3に示すように、濾過の前後において、全有機炭素(Total Organic Carbon;TOC)の変化は定量下限値以下であり、有意な変化はなかった。 As shown in FIG. 3, the change in total organic carbon (TOC) before and after filtration was below the lower limit of quantification, and there was no significant change.
 したがって、微粒子または濁度成分11を除去した第1の濾過膜13Aとは異なる第2の濾過膜13Bを用いて、濾過水14を通過させることで、1回目は第1濾過膜13Aに捕集可能な微粒子または濁度成分11を捕集し、2回目で汚染度を評価する計測を行うようにすることで微粒子または濁度成分11の影響を排除し、多糖類の影響だけの濾過性の評価を行うようにしている。
 この結果、被処理水12中に含まれる微粒子または濁度成分11の影響を排除し、水溶性高分子(多糖類)だけの影響による汚染度の指数(SFF値)を計測することができることとなる。
Therefore, the first filtration membrane 13A is collected by passing the filtrate water 14 using the second filtration membrane 13B different from the first filtration membrane 13A from which the fine particles or the turbidity component 11 are removed. By collecting the possible fine particles or turbidity component 11 and measuring the pollution degree in the second time, the influence of the fine particles or turbidity component 11 is eliminated, and the filterability of only the influence of polysaccharides I try to evaluate.
As a result, the influence of fine particles or turbidity component 11 contained in the water to be treated 12 can be eliminated, and the index of pollution degree (SFF value) due to the influence of only the water-soluble polymer (polysaccharide) can be measured. Become.
 なお、第1の濾過膜13Aに捕集されない微粒子または濁度成分11は、濾過性にはほとんど影響しないので第1工程(S1)での濾過において、捕集されなくてもSFFの評価には影響が無い場合も多い。 The fine particles or the turbidity component 11 that are not collected by the first filtration membrane 13A have almost no influence on the filterability. Therefore, in the filtration in the first step (S1), the SFF is evaluated even if it is not collected. In many cases, there is no effect.
 この結果、本実施例によれば、例えばRO膜などによる膜分離装置へ供給する被処理水の水溶性高分子に起因する汚染度を的確に把握することができる。 As a result, according to the present embodiment, it is possible to accurately grasp the degree of contamination caused by the water-soluble polymer of the water to be treated supplied to the membrane separation device such as an RO membrane.
 本実施例において、被処理水12中の微粒子または濁度成分の濃度が低い場合などは、第1の濾過膜13Aと第2の濾過膜13Bとを交換せず、同じ濾過膜を使用しても、概略の評価を行うことは可能である。 In the present embodiment, when the concentration of fine particles or turbidity components in the water to be treated 12 is low, the first filtration membrane 13A and the second filtration membrane 13B are not exchanged, and the same filtration membrane is used. However, a rough evaluation is possible.
 図4は、実施例2に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。
 本実施例では、実施例1において、さらに第1工程(S1)で第1の濾過膜13Aを用いた濾過を2回以上繰り返して濾過操作した後に、実施例1と同様に、第2工程(S2)の操作を行い、その後第3工程(S3)で第2の濾過膜13Bの濾過時間を計測し、被処理水12の汚染度の評価を行うようにしている。
FIG. 4 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the second embodiment.
In this example, after the filtration using the first filtration membrane 13A in the first step (S1) is repeated twice or more in the first step (S1), the second step ( The operation of S2) is performed, and then the filtration time of the second filtration membrane 13B is measured in the third step (S3) to evaluate the contamination degree of the water 12 to be treated.
 第1工程(S1)での第1の濾過膜13Aを用いての濾過操作は、微粒子または濁度成分11の除去が目的であるため、この第1の濾過膜13Aを用いて、被処理水12の汚染度の評価を行う前に2回以上通過させて微粒子または濁度成分11の捕集効率を向上させるようにしている。 Since the purpose of the filtration operation using the first filtration membrane 13A in the first step (S1) is to remove the fine particles or the turbidity component 11, the water to be treated is treated using the first filtration membrane 13A. Before the evaluation of the pollution level of 12, the filter is passed twice or more to improve the collection efficiency of the fine particles or the turbidity component 11.
 本実施例では、第1工程での操作のみを繰り返すものであるので、濾過膜の交換回数は、実施例1と同様であるので、微粒子または濁度成分11の影響を極力排除した上で、短時間で効率よく計測することが可能である。 In this example, since only the operation in the first step is repeated, the number of exchanges of the filtration membrane is the same as that in Example 1. Therefore, after eliminating the influence of the fine particles or the turbidity component 11 as much as possible, It is possible to measure efficiently in a short time.
 図5は、実施例3に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。
 本実施例では、実施例1において、第1工程(S1)において、微粒子または濁度成分除去を「微粒子除去1-1」と「微粒子除去1-2」との2回実施するようにしている。
 1回目の「微粒子除去1-1」では、第1の濾過膜13A1の目開きが粗いものを用い、2回目の「微粒子除去1-2」では、第2工程で使用するものと同じ目開き(孔径0.45μm)の第1の濾過膜13A2を用いて微粒子または濁度成分の除去を行っている。第1工程(S1)での被処理水12の濾過を2回濾過操作した後に、実施例1と同様に、第2工程(S2)の操作を行い、その後第3工程(S3)で第2の濾過膜13Bの濾過時間を計測し、被処理水の汚染度の評価を行うようにしている。
FIG. 5 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the third embodiment.
In this example, in Example 1, in the first step (S1), the fine particle or turbidity component removal is carried out twice, “fine particle removal 1-1” and “fine particle removal 1-2”. .
In the first “fine particle removal 1-1”, the first filtration membrane 13A 1 has a coarse mesh, and in the second “fine particle removal 1-2”, the same particle as used in the second step is used. Fine particles or turbidity components are removed using the first filtration membrane 13A 2 having an opening (pore diameter: 0.45 μm). After filtering the treated water 12 in the first step (S1) twice, the second step (S2) is performed in the same manner as in Example 1, and then the second step in the third step (S3). The filtration time of the filter membrane 13B is measured, and the contamination degree of the water to be treated is evaluated.
 ここで、第1の濾過膜13A1の粗い目開き(孔径)としては、汚染度を評価するために使用する第2の濾過膜13Bよりも目開きが粗い(孔径が大きい)ものとしている。第2の濾過膜13Bとして孔径0.45μmのメンブレンフィルタで実施する場合は、目開きの粗い濾過膜の孔径はそれ以上、例えば0.5μm~3μm、望ましくは0.6μm~2μm、さらに望ましくは0.7μm~1μmとしている。なお、目開きがあまりにも大き過ぎると捕捉できる微粒子または濁度成分11の補足量が減少し、逆にあまりにも細か過ぎると圧損が立ち、濾過時間が長くなるので、上記範囲とするのが好ましい。なお、目開きが粗い濾過膜としては、例えば金網、メッシュフィルタなどを用いることができる。 Here, the coarse opening (pore diameter) of the first filtration membrane 13A 1 is assumed to be coarser (larger pore diameter) than the second filtration membrane 13B used for evaluating the degree of contamination. When the second filter membrane 13B is implemented with a membrane filter having a pore size of 0.45 μm, the pore size of the coarse filter membrane is larger, for example, 0.5 μm to 3 μm, preferably 0.6 μm to 2 μm, more preferably 0.7 μm to 1 μm. If the opening is too large, the trapped amount of fine particles or turbidity component 11 that can be captured decreases. Conversely, if the opening is too fine, pressure loss occurs and the filtration time becomes long. . In addition, as a filtration membrane with a coarse opening, a wire mesh, a mesh filter, etc. can be used, for example.
 しかし、目開きの粗い濾過膜の孔径は、共存する微粒子または濁度成分の粒径や粒径分布、海水中の含有量によっても、最適な値が変化する。よって、第1の濾過膜13Aの孔径として、5μmから10μmかそれ以上の孔径が適当な場合もある。また、孔径の異なる複数の濾過膜を用いて、孔径の大きなものから順次通過させるようにしてもよい。 However, the optimum pore diameter of the filter membrane with a coarse opening varies depending on the particle size and particle size distribution of the coexisting fine particles or turbidity components, and the content in seawater. Therefore, a pore diameter of 5 μm to 10 μm or more may be appropriate as the pore diameter of the first filtration membrane 13A. Alternatively, a plurality of filtration membranes having different pore diameters may be used so that the membranes having a larger pore diameter are sequentially passed.
 本実施例によれば、被処理水12中に存在する微粒子または濁度成分11のうち、比較的大きなものを事前に除去することで、第1工程(S1)の微粒子または濁度成分11除去の際の濾過膜への目詰まりを抑制し、第1工程(S1)での濾過時間を短縮することができるので、迅速な測定が可能となる。 According to this embodiment, by removing a relatively large particle or turbidity component 11 in the treated water 12 in advance, the removal of the particle or turbidity component 11 in the first step (S1). In this case, clogging of the filtration membrane can be suppressed, and the filtration time in the first step (S1) can be shortened, so that quick measurement is possible.
 図6は、実施例4に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。
 本実施例では、実施例1において、その都度異なる濾過膜(第2の濾過膜13B、第3の濾過膜13C)を用いて、清澄水の濾過性計測工程と濾過水の濾過性計測工程とを、複数回繰り返す場合、最終工程(n回目(本実施例では2回目))で測定された清澄水15の濾過性(清澄水濾過時間:T20)、及び測定された第2の濾過水14Bの濾過性(濾過水濾過時間:T21)から、被処理水12の汚染度を評価(T21/T20)するものである。
FIG. 6 is a schematic diagram of an evaluation process using a filtration device that performs the water quality evaluation method according to the fourth embodiment.
In this embodiment, in the first embodiment, the filtration performance measurement process of the clarified water and the filtration performance measurement process of the filtered water are performed using different filtration membranes (second filtration membrane 13B and third filtration membrane 13C). Is repeated a plurality of times, the filterability (clear water filtration time: T 20 ) of the clarified water 15 measured in the final step (the second time (second time in this embodiment)), and the second filtered water measured The degree of contamination of the treated water 12 is evaluated (T 21 / T 20 ) from the filterability (filtered water filtration time: T 21 ) of 14B.
 本実施例では、微粒子または濁度成分11が含有しており、濾過性の影響がある場合、第2の濾過膜13B、第3の濾過膜13Cとその都度変更し、複数回(本実施例では2回)濾過を行うように操作している。そして、複数回、微粒子または濁度成分11の影響を排除した上で、最終工程(本実施例では2回目)の第2の清澄水15の濾過性(清澄水濾過時間:T20)、及び測定された第2の濾過水14Bの濾過性(濾過水濾過時間:T21)から、被処理水12の汚染度の評価(T21/T20)を行うことで、微粒子または濁度成分11の影響を極力排除した評価を行うことが可能となる。 In this embodiment, when the fine particles or the turbidity component 11 is contained and there is an influence of filterability, the second filtration membrane 13B and the third filtration membrane 13C are changed each time, and are changed several times (this embodiment Then, it is operated to perform filtration twice. Then, after eliminating the influence of the fine particles or the turbidity component 11 a plurality of times, the filterability (clarification water filtration time: T 20 ) of the second clarified water 15 in the final step (second time in this example), and From the measured filterability (filtered water filtration time: T 21 ) of the second filtered water 14B, the degree of contamination of the water to be treated 12 is evaluated (T 21 / T 20 ), whereby fine particles or turbidity component 11 It is possible to make an evaluation that eliminates the effects of.
 図7は、本実施例に係る水質評価方法の工程図である。
 図7に示すように、水質評価方法は、第1工程(S11)乃至第7工程(S17)からなる。
FIG. 7 is a process diagram of the water quality evaluation method according to the present embodiment.
As shown in FIG. 7, the water quality evaluation method includes a first step (S11) to a seventh step (S17).
<第1工程(S11)>
 第1工程(S11)の微粒子除去工程は、被処理水12を濾過器21内に導入し、該濾過器21に設置した第1の濾過膜13Aを用いて濾過処理を行い、被処理水12中に含まれる微粒子または濁度成分11を捕集し、第1の濾過水14Aを得る工程である。ここで、この第1工程の終了後の第1の濾過水14Aは別途保管しておく。
<First step (S11)>
In the fine particle removal step of the first step (S11), the water to be treated 12 is introduced into the filter 21 and filtered using the first filtration membrane 13A installed in the filter 21. This is a step of collecting the fine particles or turbidity component 11 contained therein to obtain the first filtered water 14A. Here, the first filtered water 14A after the end of the first step is stored separately.
<第2工程(S12)>
 第2工程(S12)の第1の清澄水の濾過性計測工程は、第1工程(S11)で用いた第1の濾過膜13Aとは異なる別の新しい第2の濾過膜13Bを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第2の濾過膜13Bを通過する清澄水濾過時間(T10)を測定することにより行う。
<Second step (S12)>
In the filterability measurement step of the first clarified water in the second step (S12), a new second filtration membrane 13B different from the first filtration membrane 13A used in the first step (S11) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 10 ) during which the clear water 15 passes through the second filtration membrane 13B.
<第3工程(S13)>
 第3工程(S13)の第1の濾過水の濾過性計測工程は、第2工程(S12)の第1の清澄水の濾過性計測工程(S12)で用いた状態のままの第2の濾過膜13Bを設置した濾過器21内に、第1工程で得た第1の濾過水14Aを通水して濾過処理し、第1の濾過水14Aの濾過性を測定する工程である。
<Third step (S13)>
The filterability measuring step of the first filtered water in the third step (S13) is the second filtration in the state used in the filterability measuring step (S12) of the first clarified water in the second step (S12). In this step, the first filtered water 14A obtained in the first step is passed through the filter 21 provided with the membrane 13B for filtration, and the filterability of the first filtered water 14A is measured.
 第1の濾過水14Aの濾過性の測定は、第1の濾過水14Aが第2の濾過膜13Bを通過する濾過水濾過時間(T11)を測定することにより行う。 The filterability of the first filtered water 14A is measured by measuring the filtered water filtration time (T 11 ) during which the first filtered water 14A passes through the second filtered membrane 13B.
<第4工程(S14)>
 第4工程(S14)の第1の汚染度評価工程は、測定された清澄水15の濾過性(清澄水濾過時間:T10)、及び測定された第1の濾過水14Aの濾過性(濾過水濾過時間:T11)から、被処理水12の汚染度を評価(T11/T10)する工程である。
<4th process (S14)>
In the first contamination degree evaluation step of the fourth step (S14), the measured filterability of the clarified water 15 (clarified water filtration time: T 10 ) and the measured filterability of the first filtered water 14A (filtered) This is a step of evaluating the degree of contamination of the treated water 12 (T 11 / T 10 ) from the water filtration time: T 11 ).
<第5工程(S15)>
 第5工程(S15)の第2の清澄水の濾過性計測工程は、第4工程(S14)で用いた第2の濾過膜13Bとは異なる別の新しい第3の濾過膜13Cを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第3の濾過膜13Cを通過する清澄水濾過時間(T20)を測定することにより行う。
<Fifth step (S15)>
In the second clarified water filterability measuring step of the fifth step (S15), another new third filter membrane 13C different from the second filter membrane 13B used in the fourth step (S14) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 20 ) during which the clear water 15 passes through the third filter membrane 13C.
<第6工程(S16)>
 第6工程(S16)の第2の濾過水の濾過性計測工程は、第5工程(S15)の第2の清澄水の濾過性計測工程で用いた状態のままの第3の濾過膜13Cを設置した濾過器21内に、第3工程(S13)で得た第2の濾過水14Bを通水して濾過処理し、第2の濾過水14Bの濾過性を測定する工程である。
<6th process (S16)>
In the filterability measuring step of the second filtered water in the sixth step (S16), the third filter membrane 13C that is used in the filterability measuring step of the second clarified water in the fifth step (S15) is used. In this step, the second filtered water 14B obtained in the third step (S13) is passed through the installed filter 21 for filtration, and the filterability of the second filtered water 14B is measured.
 第2の濾過水14Bの濾過性の測定は、第2の濾過水14Bが第3の濾過膜13Cを通過する濾過水濾過時間(T21)を測定することにより行う。 The filterability of the second filtered water 14B is measured by measuring the filtered water filtration time (T 21 ) for the second filtered water 14B to pass through the third filter membrane 13C.
<第7工程(S17)>
 第7工程(S17)の第2の汚染度評価工程は、第5工程(S15)で測定された清澄水15の濾過性(清澄水濾過時間:T20)、及び測定された第2の濾過水14Bの濾過性(濾過水濾過時間:T21)から、被処理水12の汚染度を評価(T21/T20)する工程である。
<Seventh step (S17)>
In the second contamination degree evaluation step of the seventh step (S17), the filterability of the clear water 15 measured in the fifth step (S15) (clear water filtration time: T 20 ), and the measured second filtration This is a step of evaluating the degree of contamination of the water 12 to be treated (T 21 / T 20 ) from the filterability of the water 14B (filtered water filtration time: T 21 ).
 なお、被処理水中の微粒子または濁度成分の影響が無い場合には、第4工程(S14)の被処理水12の汚染度の第1の評価値(T11/T10)と、第7工程(S17)の被処理水12の汚染度の第2の評価値(T21/T20)とは、同じかきわめて近似する所定値となるが、濾過において微粒子または濁度成分の影響がある場合には、回数を増やすことで、微粒子または濁度成分の影響が排除されたものとなる。 Incidentally, if there is no influence of the fine particles or turbidity components of water to be treated, a first evaluation value of the degree of contamination of the fourth treated water 12 in step (S14) and (T 11 / T 10), 7 The second evaluation value (T 21 / T 20 ) of the degree of contamination of the water to be treated 12 in the step (S17) is a predetermined value that is the same or very close, but has an influence of fine particles or turbidity components in filtration. In some cases, the influence of fine particles or turbidity components is eliminated by increasing the number of times.
 よって、例えば第2の濾過膜13B、第3の濾過膜13C、それ以降の濾過膜をその都度変更して複数回濾過を行い、微粒子または濁度成分11の影響を排除した上で、最終工程(本実施例ではn回目)の清澄水15の濾過性(清澄水濾過時間:T0×n)、及び測定された第nの濾過水14nの濾過性(濾過水濾過時間:T1×n)から、被処理水12の汚染度の評価(T1×n/T0×n)を行うことで、微粒子または濁度成分11の影響を極力排除した評価を行うことが可能となる。 Therefore, for example, the second filtration membrane 13B, the third filtration membrane 13C, and the subsequent filtration membranes are changed each time and filtration is performed a plurality of times to eliminate the influence of the fine particles or the turbidity component 11, and then the final process. Filterability (clear water filtration time: T 0 × n ) of the clear water 15 (nth time in this example), and filterability (filtered water filtration time: T 1 × n ) of the 14th nth filtrate water ) To evaluate the degree of contamination of the water 12 to be treated (T 1 × n / T 0 × n ), it is possible to perform an evaluation that eliminates the influence of the fine particles or the turbidity component 11 as much as possible.
 図8は、実施例4の他の水質評価方法の工程図である。
 また、図8に示すように、第4工程(S14)の被処理水12の汚染度の第1の評価値(T11/T10)と、第7工程(S17)の被処理水12の汚染度の第2の評価値(T21/T20)とを比較して、その差が所定基準値以下であると判断する場合(Yes)には、微粒子または濁度成分の影響が排除された真の評価値であると判断して、操作を終了する。
FIG. 8 is a process diagram of another water quality evaluation method of Example 4.
Further, as shown in FIG. 8, the first evaluation value (T 11 / T 10 ) of the degree of contamination of the treated water 12 in the fourth step (S14) and the treated water 12 in the seventh step (S17). When the second evaluation value (T 21 / T 20 ) of the pollution degree is compared and it is determined that the difference is not more than the predetermined reference value (Yes), the influence of the fine particles or the turbidity component is eliminated. It is determined that the evaluation value is true, and the operation is terminated.
 これに対し、その差が所定基準値を超えると判断する場合(No)には、微粒子または濁度成分の影響がまだ残っていると判断して、操作を続行する。 On the other hand, when it is determined that the difference exceeds the predetermined reference value (No), it is determined that the influence of the fine particles or the turbidity component still remains and the operation is continued.
 具体的には、以下の工程をさらに実行する。 Specifically, the following steps are further executed.
<第8工程(S18)>
 第8工程(S18)の第3の清澄水の濾過性計測工程は、第7工程(S17)で用いた第3の濾過膜13Cとは異なる別の新しい第4の濾過膜13Dを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第4の濾過膜13Dを通過する清澄水濾過時間(T30)を測定することにより行う。
<Eighth step (S18)>
In the third clarified water filterability measuring step in the eighth step (S18), another new fourth filter membrane 13D different from the third filter membrane 13C used in the seventh step (S17) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 30 ) during which the clear water 15 passes through the fourth filtration membrane 13D.
<第9工程(S19)>
 第9工程の第3の濾過水の濾過性計測工程は、第8工程(S18)の第3の清澄水の濾過性計測工程で用いた状態のままの第4の濾過膜13Dを設置した濾過器21内に、第6工程(S16)で得た第3の濾過水14Cを通水して濾過処理し、第3の濾過水14Cの濾過性を測定する工程である。
<9th process (S19)>
The filterability measuring step of the third filtered water in the ninth step is a filtration in which the fourth filtration membrane 13D is installed in the state used in the filterability measuring step of the third clarified water in the eighth step (S18). In this step, the third filtered water 14C obtained in the sixth step (S16) is passed through the vessel 21 for filtration, and the filterability of the third filtered water 14C is measured.
 第3の濾過水14Cの濾過性の測定は、第3の濾過水14Cが第4の濾過膜13Dを通過する濾過水濾過時間(T31)を測定することにより行う。 The filterability of the third filtered water 14C is measured by measuring the filtered water filtration time (T 31 ) during which the third filtered water 14C passes through the fourth filter membrane 13D.
<第10工程(S20)>
 第10工程(S20)の第3の汚染度評価工程は、第8工程(S18)で測定された清澄水15の濾過性(清澄水濾過時間:T30)、及び測定された第3の濾過水14Cの濾過性(濾過水濾過時間:T31)から、被処理水12の汚染度を評価(T31/T30)する工程である。
<10th process (S20)>
The third contamination degree evaluation step of the tenth step (S20) includes the filterability of the clear water 15 measured in the eighth step (S18) (clear water filtration time: T 30 ), and the measured third filtration. This is a step of evaluating the degree of contamination of the water 12 to be treated (T 31 / T 30 ) from the filterability of the water 14C (filtered water filtration time: T 31 ).
 そして、図8に示すように、第7工程(S17)の汚染度の第2の評価値(T21/T20)と、第10工程(S20)の汚染度の第3の評価値(T31/T30)とを比較して、その差が所定基準値以下であると判断する場合(Yes)には、微粒子または濁度成分の影響が排除された真の評価値であると判断して、操作を終了する。 Then, as shown in FIG. 8, a second evaluation value of the degree of contamination of the seventh step (S17) and (T 21 / T 20), a third evaluation value of degree of contamination of the tenth step (S20) (T 31 / T 30 ) and if the difference is determined to be equal to or less than the predetermined reference value (Yes), it is determined that the true evaluation value is obtained by eliminating the influence of the fine particles or the turbidity component. To finish the operation.
 これに対し、その差が所定基準値を超えると判断する場合(No)には、微粒子または濁度成分の影響がまだ残っていると判断して、さらに、第8乃至第10工程と同様の濾過操作を続行する。 On the other hand, when it is determined that the difference exceeds the predetermined reference value (No), it is determined that the influence of the fine particles or the turbidity component still remains, and further, the same as in the eighth to tenth steps. Continue the filtration operation.
 このように、本実施例においては、異なる濾過膜を用いて、清澄水の濾過性計測工程と、濾過水の濾過性計測工程とを複数回繰り返して行い、各々の汚染度の評価値をそれぞれ求め、前回求めた汚染度の評価値と、今回求めた汚染度の評価値とを比較し、この比較した汚染度の評価の差分が所定基準となる場合を、汚染度の真の評価とすることができる。 In this way, in this example, using different filtration membranes, the clear water filterability measuring step and the filtered water filterability measuring step are repeated a plurality of times, and the evaluation values of the respective pollution degrees are respectively determined. The previous evaluation value of the pollution degree obtained is compared with the evaluation value of the pollution degree obtained this time, and the case where the difference between the comparisons of the evaluation of the pollution degree becomes a predetermined standard is determined as the true evaluation of the pollution degree. be able to.
 ここで、上記の差分の所定値としては、計測誤差などを考慮すると、最低でも0.1秒であり、それ以上の値を設定するのが好ましい。 Here, the predetermined value of the above difference is at least 0.1 seconds in consideration of measurement error and the like, and it is preferable to set a value larger than that.
 本実施例では、少なくとも二つ以上の異なる濾過膜を用いて、毎回その都度変更することとしているが、本発明はこれに限定されず、必ずしも毎回完全に変更することなく、途中で濾過膜を変更せずに、濾過を実施する場合も含まれる。 In the present embodiment, at least two different filtration membranes are used and changed each time, but the present invention is not limited to this, and the filter membranes are not necessarily changed every time, and the filtration membranes are not changed in the middle. The case where filtration is performed without change is also included.
 図9は、実施例5に係る水質評価方法を実施する濾過装置を用いた評価工程の概略図である。図10は、実施例5の水質評価方法の工程図である。
 図9に示すように、水質評価方法は、第1工程(S21)乃至第9工程(S29)からなる。
FIG. 9 is a schematic diagram of an evaluation process using a filtration apparatus that performs the water quality evaluation method according to the fifth embodiment. FIG. 10 is a process diagram of the water quality evaluation method of Example 5.
As shown in FIG. 9, the water quality evaluation method includes a first step (S21) to a ninth step (S29).
<第1工程(S21)>
 本実施例の第1工程(S21)の初期の清澄水の濾過性計測工程は、第1の濾過膜13Aを設置した濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第1の濾過膜13Aを通過する清澄水濾過時間(T00)を測定することにより行う。
<First step (S21)>
In the first step (S21) of the present embodiment, the initial clarified water filterability measurement step is performed by passing the clarified water 15 through the filter 21 provided with the first filter membrane 13A. This is a step of measuring filterability.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 00 ) during which the clear water 15 passes through the first filtration membrane 13A.
<第2工程(S22)>
 第2工程(S22)の初期の濾過水の濾過性計測工程は、第1工程(S21)の初期の清澄水の濾過性計測工程(S21)で用いた状態のままの第1の濾過膜13Aを設置した濾過器21内に、微粒子または濁度成分11を含む被処理水12を通水して濾過処理し、第1の濾過水14Aを得て、被処理水12の初期の濾過性を測定する工程である。
 本実施例では、この第2工程(S22)において、被処理水12中の微粒子または濁度成分11が除去される微粒子除去工程を実行している。
<Second step (S22)>
The filterability measurement step of the initial filtered water in the second step (S22) is the first filter membrane 13A in the state used in the filterability measurement step (S21) of the initial clarified water in the first step (S21). The water to be treated 12 containing fine particles or the turbidity component 11 is passed through the filter 21 in which the water is filtered to obtain the first filtered water 14A, and the initial filterability of the water to be treated 12 is improved. It is a process of measuring.
In the present embodiment, in the second step (S22), a fine particle removal step is performed in which the fine particles or turbidity component 11 in the water to be treated 12 is removed.
 被処理水12の濾過性の測定は、被処理水12が第1の濾過膜13Aを通過する被処理水濾過時間(T01)を測定することにより行う。 The filterability of the treated water 12 is measured by measuring the treated water filtration time (T 01 ) during which the treated water 12 passes through the first filtration membrane 13A.
<第3工程(S23)>
 第3工程(S23)の初期の汚染度評価工程は、測定された清澄水15の濾過性(清澄水濾過時間:T00)、及び測定された被処理水12の濾過性(被処理水濾過時間:T01)から、被処理水12の汚染度を評価(T01/T00)する工程である。
<Third step (S23)>
The initial contamination degree evaluation step of the third step (S23) includes the measured filterability of the clarified water 15 (clarified water filtration time: T 00 ) and the measured filterability of the treated water 12 (treated water filtration). This is a step of evaluating the degree of contamination of the water 12 to be treated (T 01 / T 00 ) from time: T 01 ).
<第4工程(S24)>
 第4工程(S24)の第1の清澄水の濾過性計測工程は、第3工程(S23)で用いた第1の濾過膜13Aとは異なる別の新しい第2の濾過膜13Bを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第2の濾過膜13Bを通過する清澄水濾過時間(T10)を測定することにより行う。
<4th process (S24)>
In the first clarified water filterability measuring step of the fourth step (S24), another new second filtration membrane 13B different from the first filtration membrane 13A used in the third step (S23) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 10 ) during which the clear water 15 passes through the second filtration membrane 13B.
<第5工程(S25)>
 第5工程(S25)の第1の濾過水の濾過性計測工程は、第4工程(S24)の清澄水の濾過性計測工程で用いた状態のままの第2の濾過膜13Bを設置した濾過器21内に、第2工程(S22)で得た第1の濾過水14Aを通水して濾過処理し、第1の濾過水14Aの濾過性を測定する工程である。
<Fifth step (S25)>
The filtration property measuring step of the first filtered water in the fifth step (S25) is a filtration in which the second filtration membrane 13B is used as it is in the filtering property measuring step of the clear water in the fourth step (S24). In this step, the first filtered water 14A obtained in the second step (S22) is passed through the vessel 21 for filtration, and the filterability of the first filtered water 14A is measured.
 第1の濾過水14Aの濾過性の測定は、第1の濾過水14Aが第2の濾過膜13Bを通過する濾過水濾過時間(T11)を測定することにより行う。 The filterability of the first filtered water 14A is measured by measuring the filtered water filtration time (T 11 ) during which the first filtered water 14A passes through the second filtered membrane 13B.
<第6工程(S26)>
 第6工程(S26)の第1の汚染度評価工程は、第4工程(S24)で測定された清澄水15の濾過性(清澄水濾過時間:T10)、及び測定された第1の濾過水14Aの濾過性(濾過水濾過時間:T11)から、被処理水12の汚染度を評価(T11/T10)する工程である。
<6th process (S26)>
The first degree of contamination evaluation process of the sixth step (S26), the fourth step (S24) filterability (clarified water filtration time: T 10) of the measured clarified water 15, and a first filtration is measured This is a step of evaluating (T 11 / T 10 ) the degree of contamination of the treated water 12 from the filterability of the water 14A (filtered water filtration time: T 11 ).
 なお、被処理水中の微粒子または濁度成分の影響が無い場合には、第3工程(S23)の被処理水12の汚染度の初期の評価値(T01/T00)と、第6工程(S26)の被処理水12の汚染度の第1の評価値(T11/T10)とは、同じかきわめて近似する所定値となり、その差が所定値基準の場合(Yes)には、微粒子または濁度成分除去の濾過工程を終了する。 When there is no influence of fine particles or turbidity components in the water to be treated, the initial evaluation value (T 01 / T 00 ) of the degree of contamination of the water to be treated 12 in the third step (S23) and the sixth step The first evaluation value (T 11 / T 10 ) of the degree of contamination of the treated water 12 in (S26) is a predetermined value that is the same or very approximate, and when the difference is a predetermined value reference (Yes), The filtration step for removing fine particles or turbidity components is completed.
 これに対し、その差が所定値を超えると判断する場合(No)には、微粒子または濁度成分11の影響がまだ残っていると判断して、操作を続行する。 On the other hand, when it is determined that the difference exceeds the predetermined value (No), it is determined that the influence of the fine particles or the turbidity component 11 still remains and the operation is continued.
 具体的には、以下の工程をさらに実行する。 Specifically, the following steps are further executed.
<第7工程(S27)>
 第7工程(S27)の第2の清澄水の濾過性計測工程は、第6工程(S26)で用いた第2の濾過膜13Bとは異なる別の新しい第3の濾過膜13Cを濾過器21に設置し、その後濾過器21内に清澄水15を通水して、該清澄水15の濾過性を測定する工程である。
 清澄水15の濾過性の測定は、清澄水15が第3の濾過膜13Cを通過する清澄水濾過時間(T20)を測定することにより行う。
<Seventh step (S27)>
In the second clarified water filterability measuring step in the seventh step (S27), another new third filter membrane 13C different from the second filter membrane 13B used in the sixth step (S26) is filtered by the filter 21. The clarified water 15 is then passed through the filter 21 and the filterability of the clarified water 15 is measured.
The filterability of the clear water 15 is measured by measuring the clear water filtration time (T 20 ) during which the clear water 15 passes through the third filter membrane 13C.
<第8工程(S28)>
 第8工程(S28)の第2の濾過水の濾過性計測工程は、第7工程(S27)の第2の清澄水の濾過性計測工程で用いた状態のままの第3の濾過膜13Cを設置した濾過器21内に、第5工程(S25)で得た第2の濾過水14Bを通水して濾過処理し、第2の濾過水14Bの濾過性を測定する工程である。
<Eighth step (S28)>
The filterability measuring step of the second filtered water in the eighth step (S28) uses the third filter membrane 13C as it is in the filterability measuring step of the second clarified water in the seventh step (S27). In this step, the second filtered water 14B obtained in the fifth step (S25) is passed through the installed filter 21 for filtration, and the filterability of the second filtered water 14B is measured.
 第2の濾過水14Bの濾過性の測定は、第2の濾過水14Bが第3の濾過膜13Cを通過する濾過水濾過時間(T21)を測定することにより行う。 The filterability of the second filtered water 14B is measured by measuring the filtered water filtration time (T 21 ) for the second filtered water 14B to pass through the third filter membrane 13C.
<第9工程(S29)>
 第9工程(S29)の第2の汚染度評価工程は、第7工程(S27)で測定された清澄水15の濾過性(清澄水濾過時間:T20)、及び測定された第2の濾過水14Bの濾過性(濾過水濾過時間:T21)から、被処理水12の汚染度を評価(T21/T20)する工程である。
<Ninth step (S29)>
The second contamination degree evaluation step of the ninth step (S29) includes the filterability (clear water filtration time: T 20 ) of the clarified water 15 measured in the seventh step (S27), and the measured second filtration. This is a step of evaluating the degree of contamination of the water 12 to be treated (T 21 / T 20 ) from the filterability of the water 14B (filtered water filtration time: T 21 ).
 そして、図10に示すように、第6工程(S26)の汚染度の第1の評価値(T11/T10)と、第9工程(S29)の汚染度の第2の評価値(T21/T20)とを比較して、その差が所定基準値以下であると判断する場合(Yes)には、微粒子または濁度成分の影響が排除された真の評価値であると判断して、操作を終了する。
 これに対し、その差が所定基準値を超えると判断する場合(No)には、微粒子または濁度成分の影響がまだ残っていると判断して、さらに、第7乃至第9工程と同様の濾過操作を続行する。
Then, as shown in FIG. 10, sixth first evaluation value of the degree of contamination step (S26) and (T 11 / T 10), a second evaluation value of the degree of contamination of the ninth step (S29) (T 21 / T 20 ), and if the difference is determined to be less than or equal to the predetermined reference value (Yes), it is determined that the true evaluation value has been eliminated from the influence of fine particles or turbidity components. To finish the operation.
On the other hand, when it is determined that the difference exceeds the predetermined reference value (No), it is determined that the influence of the fine particles or the turbidity component still remains, and further, the same as in the seventh to ninth steps. Continue the filtration operation.
 本実施例では、実施例3及び4と異なり、微粒子または濁度成分11を含む被処理水12の微粒子除去処理を行う前に、初期値を求めておくことで、汚染度の評価の評価回数を増やし、比較対象として、被処理水12の初期値を基準として行うことができる。 In this embodiment, unlike in Embodiments 3 and 4, the initial value is obtained before performing the fine particle removal treatment of the water 12 to be treated containing the fine particles or the turbidity component 11, so that the evaluation frequency of the contamination degree is evaluated. And the initial value of the treated water 12 can be used as a reference for comparison.
 この結果、微粒子または濁度成分11の影響が少ない被処理水12を処理する場合に、濾過膜を複数交換せずに、早い段階から汚染度の評価を行うことが可能となる。 As a result, when treating the water 12 to be treated which is less affected by the fine particles or the turbidity component 11, it is possible to evaluate the degree of contamination from an early stage without replacing a plurality of filtration membranes.
 図11は、実施例6に係る被処理水を膜分離装置で水処理するろ過処理システムの概略図である。以下、本実施例では、膜分離装置として塩分を濃縮する分離膜を備えた脱塩装置を例にした脱塩処理システムについて説明する。
 図11に示すように、本実施例に係る脱塩処理システム100は、原水(例えば海水等)である被処理水12を供給する被処理水ラインL10と、被処理水供給ラインL10に設けられ、被処理水12中の不純物を濾過する濾過装置102と、濾過装置102の後流側に設けられ、濾過された被処理水12を透過水121と塩分を濃縮した濃縮水122とに分離する分離膜123aを備えた塩分濃縮装置123と、濾過装置102の後流側に設けられ、被処理水12中の有機物の存在を監視する水質評価装置125と、水質評価装置125の監視の結果、被処理水12中の有機物が所定の基準値(閾値)以上か否かを判断し、基準値(閾値)を超える場合、被処理水12を供給する被処理水ラインL10に凝集剤タンク131より凝集剤132を添加(又は追加)する制御装置133とを備えている。なお、凝集剤132は、被処理水ラインL10に接続される凝集剤供給ラインL21により、薬剤注入ポンプ134を介して凝集剤タンク131から供給される。
FIG. 11 is a schematic diagram of a filtration treatment system that treats water to be treated according to the sixth embodiment with a membrane separator. Hereinafter, in this embodiment, a desalination treatment system will be described by way of example of a desalination apparatus provided with a separation membrane for concentrating salt as a membrane separation apparatus.
As shown in FIG. 11, the desalination treatment system 100 according to the present embodiment includes a treatment water line L 10 that supplies the treatment water 12 that is raw water (for example, seawater) and a treatment water supply line L 10 . A filtering device 102 for filtering impurities in the water 12 to be treated, and a filtered water 102 provided on the downstream side of the filtering device 102 into a permeated water 121 and a concentrated water 122 having a concentrated salt content. A salt concentration device 123 having a separation membrane 123a to be separated, a water quality evaluation device 125 that is provided on the downstream side of the filtration device 102 and monitors the presence of organic substances in the treated water 12, and result, the organic matter in the water to be treated 12 determines whether a predetermined reference value (threshold value) or more, if it exceeds the reference value (threshold), flocculant to the water to be treated line L 10 for supplying water to be treated 12 Add flocculant 132 from tank 131 (Or additional) and a controller 133 for. The flocculant 132 is supplied from the flocculant tank 131 via the chemical injection pump 134 by the flocculant supply line L 21 connected to the water line L 10 to be treated.
 ここで、濾過装置102の出口側の有機物監視装置125を設置する場合には、濾過装置102の濾過層102a、102bで無機系不純物を捕捉しているので、有機物系不純物の割合を把握することができる。 Here, when installing the organic matter monitoring device 125 on the outlet side of the filtration device 102, since the inorganic impurities are captured by the filtration layers 102a and 102b of the filtration device 102, the ratio of the organic matter impurities is grasped. Can do.
 濾過装置102は、上層側の濾過層102aとしては、アンスラサイト等のカーボン系材料を用い、下層の濾過層102bとしては、珪砂等の粒状濾過材を用いており、濾過装置本体102cに積層配置されており、頂部102d側から被処理水12中を導入し、濾過層102a、102bを通過させて、被処理水12中の懸濁物を捕捉している。 The filtration device 102 uses a carbon-based material such as anthracite as the upper filtration layer 102a, and uses a granular filtration material such as silica sand as the lower filtration layer 102b, and is laminated on the filtration device main body 102c. In addition, the treated water 12 is introduced from the top 102d side and passed through the filtration layers 102a and 102b, and the suspended matter in the treated water 12 is captured.
 水質評価装置125では、前述した実施例1乃至4の水質評価のいずれかの方法を実施する。そして、この水質評価の結果、制御装置133により所定の基準値を超えていると判断した際には、凝集剤132を薬剤注入ポンプ134により凝集剤供給ラインL21を介して、凝集剤タンク131から凝集剤132を被処理水供給ラインL10に導入し、被処理水12に供給することで凝集物の凝集促進を図るようにしている。 In the water quality evaluation apparatus 125, any one of the water quality evaluation methods of Examples 1 to 4 described above is performed. As a result of this water quality, when it is determined to exceed a predetermined reference value by the controller 133, via a coagulant supply line L 21 a coagulant 132 by infusion pump 134, coagulant tank 131 The flocculant 132 is introduced into the treated water supply line L 10 and supplied to the treated water 12 to promote the aggregation of the aggregates.
 図12は、被処理水を水質評価する評価のフロー図である。
 図12に示すように、水質評価装置125を用いて被処理水12の水質を評価する(S31)。そして、この評価の結果、被処理水12中の有機物の濃度割合が基準値(閾値)を超えるか否かを判断する(S32)。そして、このステップS32の判断の結果、基準値(閾値)を超える場合(Yes)には、制御装置133で判断して、薬剤注入ポンプ134に指令を出して、凝集剤132を凝集剤タンク131から被処理水12に添加(又は追加)する(S33)。これに対し、基準値を超えない場合(No)には、運転を継続する(S34)。
FIG. 12 is a flow chart of evaluation for evaluating water quality of water to be treated.
As shown in FIG. 12, the water quality of the to-be-processed water 12 is evaluated using the water quality evaluation apparatus 125 (S31). Then, as a result of this evaluation, it is determined whether or not the concentration ratio of the organic matter in the treated water 12 exceeds a reference value (threshold value) (S32). If the result of determination in step S32 is that the reference value (threshold value) is exceeded (Yes), the controller 133 makes a determination, issues a command to the drug infusion pump 134, and causes the flocculant 132 to flocculant tank 131. Is added (or added) to the water 12 to be treated (S33). On the other hand, if the reference value is not exceeded (No), the operation is continued (S34).
 これにより、本実施例によれば、水質評価装置125での計測の結果、被処理水12中の有機物が所定の基準値を超えていると判断した場合にのみ、制御装置131において、薬剤注入ポンプ134に指令を出して、凝集剤132を被処理水12に添加(又は追加)しており、凝集剤132を添加(又は追加)する際におけるその使用量の低減を図ることができる。
 その後、所定時間経過後又は必要に応じて、この水質評価を繰り返す。
Thereby, according to the present embodiment, only when it is determined that the organic matter in the water to be treated 12 exceeds the predetermined reference value as a result of the measurement by the water quality evaluation device 125, the control device 131 injects the medicine. A command is issued to the pump 134 to add (or add) the flocculant 132 to the water to be treated 12, and the amount of use when adding (or adding) the flocculant 132 can be reduced.
Thereafter, the water quality evaluation is repeated after a lapse of a predetermined time or as necessary.
 11 微粒子または濁度成分
 12 被処理水
 13A~13C 第1~第3の濾過膜
 14A~14C 第1~第3の濾過水
 15 清澄水
 21 濾過器
 22 濾過槽
11 Fine particles or turbidity components 12 Water to be treated 13A to 13C First to third filtration membranes 14A to 14C First to third filtrates 15 Clear water 21 Filter 22 Filter tank

Claims (7)

  1.  被処理水の水質評価を行う被処理水の水質評価方法であって、
     前記被処理水を第1の濾過膜を用いて濾過処理を行い、前記被処理水中に含まれる微粒子または濁度成分を捕集し、濾過水を得る微粒子除去工程と、
     前記第1の濾過膜とは異なる第2の濾過膜を用いて、清澄水を通水して、該清澄水の濾過性を測定する清澄水の濾過性計測工程と、
     前記清澄水の濾過性計測工程で用いた前記第2の濾過膜に、前記濾過水を濾過処理し、該濾過水の濾過性を測定する濾過水の濾過性計測工程と、
     測定された清澄水の濾過性、及び測定された濾過水の濾過性から、前記被処理水の汚染度を評価する汚染度評価工程とを有することを特徴とする水質評価方法。
    A method for evaluating the quality of treated water that evaluates the quality of treated water,
    A fine particle removal step of filtering the treated water using a first filtration membrane, collecting fine particles or turbidity components contained in the treated water, and obtaining filtered water;
    Using a second filtration membrane different from the first filtration membrane, passing clear water and measuring the filterability of the clear water to measure the filterability of the clear water;
    A filtration property measurement step of filtered water that performs filtration treatment on the second filtration membrane used in the filtration property measurement step of the clarified water and measures the filtration property of the filtrate water;
    A water quality evaluation method comprising: a contamination degree evaluation step for evaluating the degree of contamination of the treated water from the measured filterability of the clear water and the measured filterability of the filtrate water.
  2.  請求項1において、
     前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す場合、最終工程で測定された清澄水の濾過性、及び測定された濾過水の濾過性から、前記被処理水の汚染度を評価することを特徴とする水質評価方法。
    In claim 1,
    When the filterability measurement step of the clear water and the filterability measurement step of the filtrate water are repeated a plurality of times, from the filterability of the clear water measured in the final step and the filterability of the filtrate water measured, A water quality evaluation method characterized by evaluating the degree of water contamination.
  3.  請求項1または2において、
     前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す場合、各々の汚染度の評価値をそれぞれ求め、前回求めた汚染度の評価値と、今回求めた汚染度の評価値とを比較し、この比較した汚染度の評価の差分が所定値以下となる際を汚染度の評価とすることを特徴とする水質評価方法。
    In claim 1 or 2,
    When repeating the filterability measurement step of the clarified water and the filterability measurement step of the filtrate water multiple times, the evaluation value of each pollution degree is obtained, the evaluation value of the pollution degree obtained last time, and the pollution degree obtained this time A water quality evaluation method characterized in that when the difference in the evaluation of the degree of contamination is equal to or less than a predetermined value, the degree of contamination is evaluated.
  4.  請求項2または3において、
     前記清澄水の濾過性計測工程と前記濾過水の濾過性計測工程とを複数回繰り返す際、前記第2の濾過膜をその都度変更することを特徴とする水質評価方法。
    In claim 2 or 3,
    The water quality evaluation method characterized by changing said 2nd filtration membrane each time when repeating the filterability measurement process of the said clarified water, and the filterability measurement process of the said filtrate water several times.
  5.  請求項1乃至4のいずれか一つにおいて、
     前記微粒子除去工程を、複数回行うことを特徴とする水質評価方法。
    In any one of Claims 1 thru | or 4,
    A method for evaluating water quality, wherein the fine particle removal step is performed a plurality of times.
  6.  請求項1乃至5のいずれか一つにおいて、
     前記微粒子除去工程が、前記第2の濾過膜よりも目開きの粗い濾過膜で微粒子または濁度成分を捕集した後、前記第2の濾過膜と同じ目開きの第1の濾過膜でさらに微粒子または濁度成分を捕集することを特徴とする水質評価方法。
    In any one of Claims 1 thru | or 5,
    In the fine particle removal step, after collecting fine particles or turbidity components with a filtration membrane having a coarser opening than the second filtration membrane, the fine particle removal step is further performed with a first filtration membrane having the same opening as the second filtration membrane. A method for evaluating water quality, comprising collecting fine particles or turbidity components.
  7.  請求項1乃至6のいずれか一つにおいて、
     前記被処理水が分離膜を用いた膜分離装置へ供給される被処理水であることを特徴とする水質評価方法。
    In any one of Claims 1 thru | or 6,
    A water quality evaluation method, wherein the treated water is treated water supplied to a membrane separation apparatus using a separation membrane.
PCT/JP2014/076684 2014-10-06 2014-10-06 Water-quality evaluation method WO2016056048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076684 WO2016056048A1 (en) 2014-10-06 2014-10-06 Water-quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076684 WO2016056048A1 (en) 2014-10-06 2014-10-06 Water-quality evaluation method

Publications (1)

Publication Number Publication Date
WO2016056048A1 true WO2016056048A1 (en) 2016-04-14

Family

ID=55652712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076684 WO2016056048A1 (en) 2014-10-06 2014-10-06 Water-quality evaluation method

Country Status (1)

Country Link
WO (1) WO2016056048A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266457A (en) * 1988-09-01 1990-03-06 Toshiba Corp Instrument for measuring polysaccharides
JP2004503768A (en) * 2000-06-15 2004-02-05 ハーキュリーズ・インコーポレーテッド Biosensors and adhesion sensors for biofilms and other deposits
JP2012213676A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Water quality evaluation method and operation management method for water treatment apparatus
JP2014004504A (en) * 2012-06-22 2014-01-16 Kubota Corp Monitoring device of irreversible membrane fouling substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266457A (en) * 1988-09-01 1990-03-06 Toshiba Corp Instrument for measuring polysaccharides
JP2004503768A (en) * 2000-06-15 2004-02-05 ハーキュリーズ・インコーポレーテッド Biosensors and adhesion sensors for biofilms and other deposits
JP2012213676A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Water quality evaluation method and operation management method for water treatment apparatus
JP2014004504A (en) * 2012-06-22 2014-01-16 Kubota Corp Monitoring device of irreversible membrane fouling substance

Similar Documents

Publication Publication Date Title
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
US20120205307A1 (en) Fluid treatment apparatus and method
JP5587240B2 (en) Control device and control method for seawater desalination system
Gupta et al. Contributions of surface and pore deposition to (ir) reversible fouling during constant flux microfiltration of secondary municipal wastewater effluent
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
Lee et al. Analysis of local fouling in a pilot-scale submerged hollow-fiber membrane system for drinking water treatment by membrane autopsy
Badrnezhad et al. Ultrafiltration membrane process for produced water treatment: experimental and modeling
JP2012213676A (en) Water quality evaluation method and operation management method for water treatment apparatus
WO2017159303A1 (en) Method for treating waste water having high hardness
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
Jeong et al. Pre-treatment of SWRO pilot plant for desalination using submerged MF membrane process: Trouble shooting and optimization
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
WO2016056048A1 (en) Water-quality evaluation method
WO2016038726A1 (en) Water treatment apparatus and water treatment method
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
JP7033841B2 (en) Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
JP6616593B2 (en) Membrane cleaning method
KR101791307B1 (en) Apparatus for purifying water and method for purifying water using the same
Chang et al. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent
EP3056259A1 (en) Device for measuring membrane fouling index
US20140326666A1 (en) Apparatus and methods for removing contaminants from wastewater
Choi et al. Large-pore membrane filtration with coagulation as an MF/UF pretreatment process
JP2006130496A (en) Water treatment device and its operating method
KR20150012649A (en) Membrane Process Operating Method
JP7472070B2 (en) Method for predicting membrane clogging rate of filtration membrane for water purification treatment and membrane filtration treatment method for raw water for water purification treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP