WO2016055836A1 - Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose - Google Patents

Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose Download PDF

Info

Publication number
WO2016055836A1
WO2016055836A1 PCT/IB2014/065188 IB2014065188W WO2016055836A1 WO 2016055836 A1 WO2016055836 A1 WO 2016055836A1 IB 2014065188 W IB2014065188 W IB 2014065188W WO 2016055836 A1 WO2016055836 A1 WO 2016055836A1
Authority
WO
WIPO (PCT)
Prior art keywords
kddr
represented
protein
seq
recombinant protein
Prior art date
Application number
PCT/IB2014/065188
Other languages
English (en)
French (fr)
Inventor
Ricardo Toshio FUJIWARA
Daniella Castanheira BARTHOLOMEU
Lilian Lacerda BUENO
Lucas De Carvalho Dhom LEMOS
João Luis Reis CUNHA
Tiago António De Oliveira MENDES
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Fundação De Amparo À Pesquisa Do Estado De Minas Gerais- Fapemig
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais - Ufmg, Fundação De Amparo À Pesquisa Do Estado De Minas Gerais- Fapemig filed Critical Universidade Federal De Minas Gerais - Ufmg
Priority to PCT/IB2014/065188 priority Critical patent/WO2016055836A1/pt
Publication of WO2016055836A1 publication Critical patent/WO2016055836A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/002Protozoa antigens
    • A61K39/008Leishmania antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present technology describes a novel process of heterologous expression of the repetitive portion of kinesin, using specific primers, which allowed the construction of a recombinant antigen with 7.5 K39 repeat motifs associated with a degenerate repeat motif called Kinesin Degenerated KDDR. Derived Repeat). Furthermore, the technology describes the use of this antigen (K39-KDDR) in the diagnosis of leishmaniasis and as a vaccine and a diagnostic kit containing the same antigen.
  • rK39-KDDR we identified a potential for rK39-KDDR to be used as a vaccine from data obtained from bioinformatics analyzes, such as prediction of B and T lymphocyte epitopes (CD4 + and CD8 + T lymphocytes), which indicated the presence of many B and T cell epitopes along the kinesin protein and especially in the regions corresponding to rK39-KDDR.
  • KR201 10017610 describes a fusion peptide containing K39-derived peptides from Leishmania sp., comprising 195-360 amino acids with repeating units of sequence 31-35.
  • KDDR last repeating sequence
  • FIG. 1 Schematic drawing of chromosome 14 of L infantum.
  • Chromosome 14 contains the gene that encodes the Kinesin protein (LiKin), a flagellum-related protein that is expressed in both amastigote and promastigote forms.
  • KiKin Kinesin protein
  • Figure 2 1% agarose gel from L. infantum genomic DNA PCR product. Stronger bands containing expected size (1080pd) amplicons are excised for pGEM®-T cloning vector cloning.
  • FIG. 1 SDS-Polyacrylamide Gel (SDS-PAGE) for separation of IPTG-stimulated and unstimulated bacteria samples and solubility test.
  • Channel 1 corresponds to the sample of uninduced bacteria
  • 2 bacterium sample with three hours induction with 1 mM IPTG
  • 3 sample of unprocessed bacteria (E. coli); 4: soluble fraction of solubility test and 5: insoluble fraction of solubility test.
  • FIG. 4 SDS polyacrylamide gel (SDS-PAGE) for confirmation of purification by K39-KDDR protein affinity chromatography.
  • the strong bands at the height of 40KDa correspond to the K39-KDDR.
  • Figure 5 Elution curve after affinity chromatography purification of K39-KDDR protein. The absorbance peak occurred between fractions 9 and 16, indicating the presence of K39-KDDR protein in the respective fractions.
  • Figure 6. Comparative graph of K39-KDDR and rK39 enzyme-linked immunosorbent assays (ELISAs) using proven negative and positive CVV canine sera. CUTOFFs were calculated by summing the mean absorbances plus two standard deviations. The plus sign (+) indicates no Q of 41 dogs proven positive for CVL and the negative sign (-) indicates no 39 dogs positive for CVL.
  • ELISAs enzyme-linked immunosorbent assays
  • Figure 7 Prediction of linear B-cell epitopes (BepiPred), MHCI, MHCII and LiKin protein degree of disorder (lUPred).
  • the above ruler represents the LiKin protein to its full extent.
  • the first rectangle below the ruler indicates the region where the K39-KDDR is on the LiKin protein.
  • the other rectangles below indicate the position of the predicted epitopes along the sequence.
  • This technology describes a new process for the heterologous expression of repetitive portion of kinesina through the primers represented by SEQ ID NO: Q 1 sequences (GCTAGCCGTGAAAGCGCCTGC) and SEQ ID NO : Q 2 (CTCG AGTCAGGCCTCCAGCTG A), which are capable annular inside Kinesina repetitive region of L. infantum.
  • SEQ ID NO: Q 1 sequences GCTAGCCGTGAAAGCGCCTGC
  • Q 2 CCG AGTCAGGCCTCCAGCTG A
  • KDDR Kinesin Degenerated Derived Repeat
  • Example 1- Obtaining L. infantum genomic DNA Genomic DNA extraction was performed using the GFXTM Genomic Blood DNA Purification Kit (GE Healthcare) following the manufacturer's protocol.
  • Genomic DNA was separated from the initial mixture by its affinity to a silica column.
  • the column with the ligated DNA was washed 3 times with wash buffer.
  • Extracted DNA was eluted from the silica column with autoclaved milliQ water, quantified on the NanoDrop® Spectrophotometer ND-1000 spectrophotometer.
  • the K39-KDDR DNA sequence has unique characteristics relative to K39. It has 7.5 repetitive motifs of 39 amino acids (Table 1.
  • Degenerated Derived Repeat whose amino acid sequence is highlighted in gray in Table 1, is associated with K39 motifs.
  • K39-KDDR has an extra K39 motif and contains the KDDR motif may be related to its better efficiency in ELISA tests than rK39.
  • K39-KDDR has a total of 1,080 predicted base pairs and 360 amino acids. Its predicted total molecular weight is 40 KDa and its isoelectric point (PI) is 4.67.
  • Example 2- Design of Primers Flanking the Repetitive LiKin Region for Amplification of Amplicons Used in Heterologous Expression
  • specific primers for the LiKin repetitive region were designed and tested by PCR amplification.
  • bioinformatics tools (Larkin MA, Blackshields G, et al. Bioinformatics. 2007 Nov 1; 23 (21): 2947-8), a degenerate T nucleotide was found.
  • our reverse primer can be designed to ring over the degenerate T nucleotide ( Figure 1). At the 5 ' end of each primer X restriction sites were added to facilitate transfer of amplicons from the cloning vector pGEM ® -T (Promega) and pET28a-TEV expression.
  • ae aeg aggg ea get g ag a and agcttcgtg eeg aggag geg g gg g g
  • LEQQLR (D / E) IF (E / A) RAAELASQLE (A / S) T (Y / A) AAK (M / S) SAEQDRE (N / S) TRA (T / A); single underscore is the 39 amino acid repetitive motifs of K39 and double underscore corresponds to the His-tag tail; the sequence of capital letters highlighted in gray corresponds to the degenerate motif KDDR; bold capital letters within the KDDR motif correspond to degenerate amino acids.
  • PCR amplifications were performed using as template 150ng of L. infantum promastigote genomic DNA (BH 46), with 1 x Green GoTaq®Reaction Buffer (Promega) buffer; 200 ⁇ dNTP; 10ng of each forward and reverse primer; and 1, 25U of Tap DNA Polymerase (Phoneutria Biotecnologia e Servidales Ltda), in a final reaction volume of 30 ⁇ _.
  • the amplicons (1080 bp) obtained in the PCRs were subjected to 1% agarose gel separation at 120v in 1X TAE buffer (4.8g / l Tris-base pH 8.0; 1,14ml glacial acetic acid; 2ml EDTA 0, 5M) containing ethidium bromide (0,3 ⁇ / ⁇ ). Standard 1 kb was used.
  • the expected size bands were excised using a scalpel blade.
  • the obtained agarose block was submitted to the QIAquick® Gel Extraction Kit (Qiagen) protocol to obtain the purified DNA.
  • Example 3- Binding of the purified amplicons to the pGEM®-T cloning vector The purified amplicons were cloned into the pGEM @ -T vector (Promega) by incubating for 16 hours at 4 ° C with the T4 ligase enzyme following the instructions. of manufacturer (T4 DNA Ligase - Promega). Due to the presence of ampicillin resistance gene in the vector, this antibiotic was used to select positive transformants.
  • this insert-containing vector was transformed into E. coli bacteria into the XL1 - Blue (Phoneutria) strain.
  • E. coli bacteria into the XL1 - Blue (Phoneutria) strain.
  • About 20 ⁇ l of the ligation systems were incubated for 5 minutes on ice with 50 ⁇ l of Escherichia coli bacteria from the XL1-Blue (Phoneutria) or BL-21 Star strains. After this period, the samples were transferred to 0.1 cm MicroPulserCuvettes (Bio-Rad) and pulsed (2.50kV) on a MicroPulser (Bio-Rad) electroporator.
  • the positive clones obtained were inoculated into 3-4 mL of 2xYT medium containing the specific antibiotic for each vector and cultured for 12-16 hours at 37 ° C while shaking at 180 rpm. Plasmid extraction was performed using the QIAprep®Spin Miniprep Kit (Qiagen).
  • the sequencing of positive clones was performed by Macrogen (Seoul, South Korea) on an ABI Prism®3730xl DNA Analyzer automated sequencer (AppliedBiosystems) using the M13 forward and reverse primers for the pGEM @ -T vector.
  • the sequences obtained were processed by the PhredPhrapConsed package (Ewing B, Green P. Genome Research 8: 186-194, 1998; Gordon, David, AD Baxevanis. In Current Protocols in Bioinformatics. 2004, 11.2.1-1.1.243) for contigs formation, removal of low quality sequences and vector sequences. After processing, the sequences were subjected to homology search using the Basic Local Alignment Search Tool (Altschul SF) Gish W, J Mol Biol.
  • NCBI National Center for Biotechnology Information
  • Example 5- Digestion of restriction enzyme expression and cloning vectors
  • the pGEM plasmids containing the inserts as well as the pET28a-TEV expression vector were subjected to double digestion for 16 hours at 37 ° C with the specific restriction enzymes. for each amplicon. After digestion, the samples were submitted to electrophoresis and agarose gel purification as previously described.
  • Example 6- Binding to pET28a-TEV expression vector
  • the pET28a-TEV expression vector produced at the Center for Molecular and Structural Biology (CeBiME, Campinas / SP), has the kanamycin resistance gene for positive selection of transformants.
  • Isolated BL-21 Star colonies containing the pET28a-TEV plasmid having one of the genes encoding the hypothetical proteins of interest as an insert were inoculated into 3 or 20mL of 2xYT liquid medium containing Kanamycin (50 pg / ml) and incubated for 14-16 hours with shaking at 180 rpm. After this period, the inocula were diluted 1: 20 in 10 or 400 ml of 2xYT / kanamycin medium (50 pg / ml) and incubated at 37 ° C at 180 rpm until OD 600 (Optical Density) of 0.6 to 0.8.
  • Protein extract from the supernatant fraction of the solubility test was applied to a 1 mL HisTrap HP column (GE Healthcare Life Sciences).
  • the column was first washed with 5 column volumes with buffer A (20mM sodium phosphate; 500mM NaCl; 30mM imidazole). Elution was performed by the addition of buffer B (20mM sodium phosphate; 500mM NaCl; 500mM imidazole). Imidazole at a concentration of 500mM competes with the histidine tail for nickel binding in the column, releasing the recombinant protein from the column and allowing it to be obtained in the eluted fraction. All fractions obtained that comprise the full extent of the absorbance peak observed during elution were analyzed by SDS polyacrylamide gel electrophoresis.
  • Figure 5 shows that the increase in absorbance during the elution of the protein bound to the His-trap column begins to increase in fraction 9 until it reaches its peak in fraction 11 and later in fraction 13, remaining constant until the end of the elution.
  • the presence of strong bands at 40 KDa (Figure 4) after aliquoting these fractions on SDS polyacrylamide gel (SDS-PAGE) corroborated the results found on the elution curve.
  • ELISA assays were performed using purified K39-KDDR protein and rK39 protein.
  • ELISA plates (96 Wels) were coated for 12-16 hours at 4 Q C with 50 ng antigen diluted in carbonate buffer 00uL 1. After sensitization, the plate was blocked with 150uL PBS-Casein for 2 hours at room temperature. After blocking all solution from the wells was removed. Then 100uL of the sera diluted 1: 100 in 0.05% PBS-Tween20 were added to the wells and incubated for 12-16 hours at 4 Q C.
  • the plates were washed 5 times with wash buffer (PBS-0.05% Tween20) and 100ul anti-canine IgG antibody diluted 1: 2500 in PBS-0.05% Tween20 was added in all wells. After incubation at 37 Q C for 1 hour 30 minutes, the plates were again washed 5 times with washing solution and 100ul of developing solution containing 0.1 M citric acid, 0.2 M Na2PO4, 0.05 OPD % and 0.1% H2O2 were added. The plates were incubated at 37 Q C under light for 10 minutes with the developing solution, when the reaction was stopped by adding 50 ul H2SO4. The resulting absorbance was read on an ELISA reader at 492 nm.
  • wash buffer PBS-0.05% Tween20
  • 100ul anti-canine IgG antibody diluted 1: 2500 in PBS-0.05% Tween20 was added in all wells. After incubation at 37 Q C for 1 hour 30 minutes, the plates were again washed 5 times with washing solution and 100ul of developing solution
  • K39-KDDR has a response very similar to the rK39 response, however rK39 has a higher number of false negatives (points below CUOFF rK39 in known positive sera).
  • Preliminary ELISA results of the two proteins presented in Table 1 corroborate the data shown in the graph.
  • K39-KDDR has a higher sensitivity than rK39 (78% for K39-KDDR - 51% for rK39). While its specificities remained high and extremely similar (95% for K39-KDDR - 97% for rK39).
  • the BepiPred 1.0 program (Larsen JE, Lund O. Res. 2006 Apr 24; 2: 2) was used and the netCTL 1 programs were used for CD4 + and T-CD8 cells. 2 (Larsen MV, Lundegaard C. BMC Bioinformatics. 2007 Oct 31; 8: 424.) And netMHCII 2.2 (Nielsen M, Lund O. BMC Bioinformatics. 2009 Sep 18; 10: 296.), respectively. To determine the degree of disorder of the K39-KDDR region, the lUPred program (Dosztányi Z, Csizmok V. Bioinformatics. 2005 Aug 15; 21 (16): 3433-4) was used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A presente tecnologia descreve um novo processo de expressão heteróloga da porção repetitiva da kinesina, com o uso de primers específicos, os quais permitiram a construção de um antígeno recombinante com 7.5 motivos repetitivos da K39 associados a um motivo repetitivo degenerado chamado de KDDR (Kinesin Degenerated Derived Repeat). Ainda, a tecnologia descreve o uso desse antígeno (K39-KDDR) no diagnóstico de leishmaniose e como vacina e um Kit diagnóstico contendo o mesmo antígeno.

Description

PROCESSO DE PRODUÇÃO E USO DA PROTEÍNA rK39-KDDR E KIT PARA DIAGNÓSTICO DE LEISHMANIOSE
A presente tecnologia descreve um novo processo de expressão heteróloga da porção repetitiva da kinesina, com o uso de primers específicos, os quais permitiram a construção de um antígeno recombinante com 7.5 motivos repetitivos da K39 associados a um motivo repetitivo degenerado chamado de KDDR (Kinesin Degenerated Derived Repeat). Ainda, a tecnologia descreve o uso desse antígeno (K39-KDDR) no diagnóstico de leishmaniose e como vacina e um kit diagnóstico contendo o mesmo antígeno.
Atualmente, a leishmaniose é uma das principais doenças parasitárias reconhecida pela Organização Mundial de Saúde e que afeta anualmente aproximadamente 2 milhões de pessoas no mundo. Testes de diagnóstico confiáveis, capazes de detectar indivíduos infectados por Leishmania infantum são cruciais para o controle da transmissão da leishmaniose visceral (LV). A leishmaniose visceral requer um teste de alta especificidade para se iniciar o processo de tratamento com quimioterápicos (Chappuis F, Sundar S, et al. Nat Rev Microbiol. 2007 Nov;5(1 1 ):873-82.), uma vez que o tratamento é extremamente nocivo. Além disso, esse teste diagnóstico precisa ter alta sensibilidade, devido a grande proporção de indivíduos residentes em áreas endémicas que possuem a doença na forma assintomática. Por apresentarem baixas titulações de anticorpos, se passam muitas vezes por falsos negativos em testes sorológicos (Faria AR, Costa MM, et al. PLoS Negl Trop Dis. 201 1 Sep; 5(9):e1310). Em 1993 Burns JM Jr, Shreffler WG, et al. Proc Natl Acad Sei U S A. 1993 Jan 15;90(2):775-9 (US005719263) caracterizaram um antígeno relacionado à molécula de kinesina de L. infantum que possuía uma série de repetições de 39 aminoácidos denominado rK39. Atualmente esse antígeno recombinante é um dos que apresenta excelente sensibilidade (93-100%) e especificidades (97-98%) em testes de ELISA realizados em vários países endémicos para a LV (Braz RF, Nascimento ET, et al. Am J Trop Med Hyg. 2002 Oct;67(4):344-8; Badaró R, Benson D, et al. J Infect Dis. 1996 Mar;173(3):758-61 ; Qu JQ, Zhong L, et al. Trans R Soe Trop Med Hyg. 1994 Sep-Oct;88(5):543-5; Singh S, Gilman-Sachs A, et al. J Parasitol. 1995 Dec;81 (6):1000-3; Kurkjian KM, Vaz LE, Haque R, et al. Clin Diagn Lab Immunol. 2005 Dec;12(12):1410-5; Costa MM, Penido M, et al. PLoS Negl Trop Dis. 2012;6(5):e1622). Entretanto, esse antígeno tem sido menos eficiente em algumas regiões, como por exemplo, no leste da África. De algum modo, pacientes residentes em áreas endémicas do Sudão apresentam baixos títulos de anticorpos contra a rK39 quando comparados com pacientes indianos (Chappuis F, Sundar S, et al. Nat Rev Microbiol. 2007 Nov;5(1 1 ):873-82). Diante disso, neste trabalho propomos uma nova técnica de expressão heteróloga da porção repetitiva da kinesina, visando, sobretudo a construção de um antígeno recombinante que possua 7.5 motivos repetitivos da K39 associados a um motivo degenerado que chamamos de KDDR (Kinesin Degenerated Derived Repeat). Com o uso de primers específicos contendo em suas extremidades sítios de restrição para facilitação da transferência de amplicons em vetores de clonagem e expressão, foi possível produzir um antígeno recombinante que se mostrou, a partir de dados preliminares de ELISA, ser ainda mais eficaz que a atual rK39, possivelmente devido à presença da KDDR. Além disso, identificamos um potencial da rK39-KDDR ser utilizada como vacina a partir de dados obtidos de análises de bioinformática, como a predição de epítopos de linfócitos B e T (linfócitos T CD4+ e T CD8+), que indicaram a presença de muitos epítopos de células B e T ao longo da proteína Kinesina e principalmente nas regiões que correspondem à rK39- KDDR.
Além dos artigos científicos acima citados, existem no estado da técnica diversos documentos de patente que descrevem o uso do antígeno K39, bem como suas repetições ou associações a outros peptídeos, no diagnóstico da leishmaniose e como vacina. Como exemplo, o documento US005719263 descreve a descoberta de um antígenos de 230 Kd (K39) em Leishmania chagasi e Leishmania donovani, e um polipeptídeo compreendendo uma pluralidade de K39 e composições vacinais contendo esse peptídeo. O documento US2010008924 descreve uma proteína de fusão contendo os antígenos K26, K39 e K9 para ser usada no diagnóstico de leishmaniose visceral. O documento KR201 10017610 descreve um peptídeo de fusão contendo peptídeos derivados de K39, de Leishmania sp., compreendendo 195-360 aminoácidos com unidades repetitivas da sequência 31 -35. No entanto, nenhum dos documentos encontrados compromete a presente invenção, uma vez que, apesar dela apresentar um antígeno que compreende sequências repetitivas de K39, a última sequência repetitiva (KDDR) desse antígeno apresentou diferenciação de aminoácidos da K39 já descrita. Sendo essa diferenciação vantajosa já que o antígeno aqui descrito apresentou melhores resultados no diagnóstico de Leishmaniose, quando comparado com a K39 já descrita. BREVE DESCRIÇÃO DAS FIGURAS
Figura 1. Desenho esquemático do cromossomo 14 de L infantum. O cromossomo 14 contém o gene que codifica a proteína Kinesina (LiKin), uma proteína relacionada à movimentação do flagelo que é expressa tanto nas formas amastigotas quanto nas formas promastigotas.
Figura 2. Gel de agarose a 1% do produto da PCR do DNA genômico de L. infantum. Bandas mais fortes contendo amplicons de tamanho esperado (1080pd) são excisados para clonagem em vetor de clonagem pGEM®-T.
Figura 3. Gel de poliacrilamida-SDS (SDS-PAGE) para a separação das amostras de bactérias estimuladas com IPTG e não estimuladas e teste de solubilidade. A canaleta 1 :corresponde à amostra de bactérias não induzidas; 2: amostra de bactérias com três horas de indução com IPTG a 1 mM; 3: amostra de bactérias não transformadas (E. coli); 4: fração solúvel do teste de solubilidade e 5: fração insolúvel do teste de solubilidade.
Figura 4. Gel de poliacrilamida-SDS (SDS-PAGE) para a confirmação da purificação por cromatografia de afinidade da proteína K39-KDDR. As bandas fortes na altura dos 40KDa correspondem à K39-KDDR.
Figura 5. Curva de eluição após purificação por cromatografia de afinidade da proteína K39-KDDR. O pico de absorbância ocorreu entre as frações 9 e 16, indicando a presença da proteína K39-KDDR nas respectivas frações. Figura 6. Gráfico comparativo dos ensaios imunoenzimáticos (ELISAs) da K39-KDDR e rK39 utilizando soros caninos comprovadamente negativos e positivos para a LVC. Os CUTOFFs foram calculados pela soma da média das absorbâncias mais dois desvios-padrão. O sinal positivo (+) indica um nQ de 41 cães comprovadamente positivos para a LVC e o sinal negativo (-) indica um n° de 39 cães comprovadamente negativos para a LVC.
Figura 7. Predição de epítopos lineares de células B (BepiPred), MHCI, MHCII e grau de desordem (lUPred) da proteína LiKin. A régua acima representa a proteína LiKin em toda sua extensão. O primeiro retângulo abaixo da régua indica a região onde se situa a K39-KDDR na proteína LiKin. Os demais retângulos abaixo indicam a posição dos epítopos preditos ao longo da sequência.
DESCRIÇÃO DETALHADA DA INVENÇÃO
A presente tecnologia descreve um novo processo de expressão heteróloga da porção repetitiva da kinesina através dos primers, representados pelas sequências SEQ ID NQ1 (GCTAGCCGTGAAAGCGCCTGC) e SEQ ID NQ2 (CTCG AGTCAGGCCTCCAGCTG A) , os quais são capazes de anelar dentro da região repetitiva da Kinesina de L. infantum. Esses primers permitiram produzir um antígeno recombinante contendo 7,5 motivos repetitivos de K39 associados a um motivo degenerado chamado de KDDR (Kinesin Degenerated Derived Repeat) onde um único motivo de K39 compreende a sequência de aminoácidos de uma letra
LEQQLR(D/E)SE(E/A)RAAELASQLE(A/S)T(A/T)AAK(M/S)SAEQDRE(N/S)TRA (T/A). Ainda, a tecnologia descreve o uso desse antígeno (K39-KDDR) representado por SEQ ID NQ3, no diagnóstico de leishmaniose, como vacina e na composição de um Kit diagnóstico de leishmaniose.
Para melhor compreensão da tecnologia seguem os exemplos, não limitantes:
Exemplo 1- Obtenção de DNA genômico de L. infantum Para extração de DNA genômico foi utilizado o kit GFXTM Genomic Blood DNA Purification (GE Healthcare) seguindo o protocolo do fabricante.
Foram utilizados em cada extração 108 promastigotas de L. infantum cepa BH46 cultivadas em meio LIT. As formas promastigotas foram submetidas à centrifugação a 3.000 rpm (Eppendorf centrifuge 5804 R) a 4°C por 10 minutos. Após essa centrifugação, o sobrenadante foi descartado e o sedimento lavado duas vezes com 10 mL de PBS com centrifugação a 3.000 rpm (Eppendorf centrifuge 5804 R) a 4°C por 10 minutos em cada lavagem. A 300 uL de cada amostra foi adicionado 20 uL de proteinase K e 400 uL do tampão de lise, seguido de vortexação por 15 segundos e incubação por 10 minutos em temperatura ambiente. DNA genômico foi separado da mistura inicial por sua afinidade a uma coluna de sílica. A coluna com o DNA ligado foi lavada 3 vezes com tampão de lavagem. O DNA extraído foi eluído da coluna de sílica com água milliQ autoclavada, quantificado no espectrofotômetro NanoDrop® Spectrophotometer ND-1000.
A sequência de DNA da K39-KDDR apresenta características singulares em relação a K39. Possui 7,5 motivos repetitivos de 39 aminoácidos (Tabela 1 .
- sublinhado simples em preto), em quanto que a rK39 possui apenas 6.5 como descrito por Burns JM Jr, Shreffler WG, et al. Proc Natl Acad Sei U S A. 1993 Jan 15;90(2):775-9.
Além disso, um motivo repetitivo degenerado chamado KDDR (Kinesin
Degenerated Derived Repeat), cuja sequência de aminoácidos está destacada em cinza na tabela 1 , apresenta-se associado aos motivos de K39.
Provavelmente, o fato da K39-KDDR apresentar um motivo de K39 a mais e conter o motivo KDDR pode estar relacionado à sua melhor eficiência nos testes de ELISA em relação a rK39. A K39-KDDR possui um total de 1 080 pares de bases preditos e 360 aminoácidos. Seu peso molecular total predito é de 40 KDa e seu ponto isoelétrico (PI) de 4,67.
Exemplo 2- Desenho de primers que flanqueiam a região repetitiva da LiKin para a amplificação de amplicons utilizados na expressão heteróloga Pela primeira vez, primers específicos para a região repetitiva da LiKin foram desenhados e testados por meio da amplificação por PCR. Para permitir que o primer reverso se anele especificamente dentro da porção repetitiva, sem que ocorra sucessivos anelamentos inespecíficos, devido à similaridade entre as sequências de nucleotídeos dentro dessa porção, foi necessário encontrar pelo menos um nucleotídeo degenerado entre os motivos repetitivos (Figurai.). Com o uso de ferramentas de bioinformática (Larkin MA, Blackshields G, et al. Bioinformatics. 2007 Nov 1 ;23(21):2947-8), foi encontrado um nucleotídeo T degenerado. Com isso, nosso primer reverso pode ser desenhado de modo a anelar em cima do nucleotídeo T degenerado (Figurai.). À extremidade 5X de cada primer foram adicionados sítios de restrição para facilitar a transferência dos amplicons entre os vetores de clonagem pGEM®-T (Promega) e de expressão pET28a-TEV.
Tabela 1- Sequência de DNA e proteica da construção K39-KDDR atgggccatc ate ate ate te aeg ag a a te tgt a tttcc agg e atatgcgtg a a age
M G H H H H - H M R E S
g e e tg e g a g c g ge taaceagce tt g a g e a g c a ge t te gc g a a te e g a gg a g c g eg c tg cg
A C E R T S R S E E R Á Á
g agetggeg agee ag tgg a gee aetgetg tgcg a a te teggegg age gg aeege
E Ii A S Q L E A T A A A K S S A E Q D R
ag ae a g aggg e get ag a e ageag tte eg a a te gaggegege etg g ag
E R A T S E A R A A E
tggeg agee a etg agge aetgetgetgega ag t te age g age agg aeegeg ag
L A S Q IL E A T A A A K M S A E Q D R E
a ae aeg aggg ea get g ag a e agcttcgtg eeg aggag geg g gg g g
N T R A T IL E Q Q IL R D S E E R A A E IL
e
Figure imgf000008_0001
g agggee g g ge ag a e teg g te agg ag geg gegg tg eg
T R A T IL E Q Q Ii R D S E E R A A E IL A
gee t g t a a tgetg g aag tgt gg ageagg aeegeg agage g
S Q IL E S T T A A K M S A E Q D R E S T
agggee aeg tag age age agettegega ateeg agg ageg getgegg ag tgg g age
R A T L E Q Q L R E S E E R A A E IL A S
e age tggagteeae taetgetgeg a a g atg te agegg age aggaeegeg ag ageaeg agg
Q I. E S T T A A K M S A E Q D R E S T
gee aegttgg age age age ttegtg aeteeg agg agegegeegegg agetgg egagee ag
T
e tgg agtee aetae tge tgeg a ag a tgte agegg age agg aeegeg agage aegagggee
L E S T T A A K M S A E Q D R E S T R A
aegetagage age age ttegtg aeteegagg agegegetgeggage tggeg agee agetg
T li E Q Q L R D S E E R A A E L A S Q L
g agtee aetae tge tgeg a ag a tgte agegg age agg aeege gag a aeaeg agggee aeg
E S T T A A K M S A E Q D R E N T R A T
eta geage e tegtg a eeg aggag geg tgegg ag tg gagee agetggga
gge aetgetgetgge a agteg tegggegage agg aeegeg ag aae aegaggggeegeeta
g age ageag ttegtg aete g agg agegegeeg gg agetggeg a g te ag tgg aggee
Figure imgf000008_0002
tg aetegag OBs.: Em letra minúscula a sequência de DNA do gene da K39-KDDR (1080pb); em letra maiúscula a sequência de aminoácidos da proteína K39-KDDR (360aa), onde um único motivo de K39 compreende a sequência de aminoácidos de uma letra
LEQQLR(D/E)SE(E/A)RAAELASQLE(A/S)T(A/T)AAK(M/S)SAEQDRE(N/S)TRA(T/A); sublinhado simples estão os motivos repetitivos de 39 aminoácidos da K39 e sublinhado duplo corresponde a cauda His-tag; a sequência de letras maiúsculas destacadas em cinza corresponde ao motivo degenerado KDDR; as letras maiúsculas em negrito dentro do motivo KDDR correspondem aos aminoácidos degenerados.
As amplificações por PCR foram realizadas utilizando como template 150ng de DNA genômico de formas promastigotas de L. infantum (BH 46), com o tampão Green GoTaq®Reaction Buffer (Promega) 1 x; 200μΜ de dNTP; 10ng de cada um dos primers forward e reverse; e 1 ,25U de Tap DNA Polimerase (Phoneutria Biotecnologia e Serviços Ltda), em um volume final de 30 μΙ_ de reação.
Os amplicons (1080 pb) obtidos nas PCRs foram submetidos à separação em gel de agarose 1 % a 120v em tampão TAE 1 X (4,8g/L Tris-base pH8,0; 1 ,14ml_ ácido acético glacial; 2ml_ EDTA 0,5M), contendo brometo de etídio (0,3 μς/μί). Foi utilizado padrão de 1 kb.
Na Figura 2 as bandas mais fortes (destacadas) se encontram sutilmente acima da banda 1000pb do padrão, indicando boa especificidade dos primers quanto ao anelamento nas regiões esperadas (1093-2121 ) no gene da kinesina (ID- CAM66679.2). Outra banda mais fraca aparece na altura dos 1500pb indicando que o primer reverso anela-se ainda mais adentro da porção repetitiva da kinesina.
Após a separação em gel de agarose, as bandas de tamanho esperado foram excisadas, utilizando uma lâmina de bisturi. O bloco de agarose obtido foi submetido ao protocolo do QIAquick® Gel Extraction Kit (Qiagen), para obtenção do DNA purificado.
Exemplo 3- Ligação dos amplicons purificados ao vetor de clonagem pGEM®-T Os amplicons purificados foram clonados no vetor pGEM@-T (Promega), através de incubação por 16 horas a 4°C com a enzima T4-ligase, seguindo as instruções do fabricante (T4 DNA Ligase - Promega). Devido à presença do gene de resistência a ampicilina no vetor, esse antibiótico foi utilizado para seleção de transformantes positivos.
Após a ligação desses amplicons ao vetor pGEM®-T, esse vetor contendo o inserto foram transformados em bactérias E. coli àa linhagem XL1 - Blue (Phoneutria). Cerca de 20ul_ dos sistemas de ligação foram incubados por 5 minutos no gelo com 50μΙ_ de bactérias Escherichia coli, das cepas XL1 -Blue (Phoneutria), ou BL-21 Star, eletrocompetentes. Após este período, as amostras foram transferidas para MicroPulserCuvettes (Bio-Rad) de 0,1 cm, e submetidas a um pulso (2,50kV) em um eletroporador MicroPulser (Bio-Rad). Após a eletroporaçao, foram adicionados 300 μΙ_ do meio de cultura 2xYT líquido, seguido por incubação durante uma hora a 37QC em agitação a 180rpm (rotações por minuto). Após este período, as amostras foram plaqueadas em meio sólido 2xYT-ágar 1 ,5% com ampicilina (100 pg/mL) caso o vetor utilizado tenha sido o pGEM ou kanamicina (50pg/ml_) no caso do vetor pET28a-TEV. As placas foram colocadas em estufa durante 12-16 horas, para obtenção de colónias isoladas.
Os clones positivos obtidos foram inoculados em 3-4 mL de meio 2xYT, contendo o antibiótico específico para cada vetor, e cultivados durante 12-16 horas a 37°C em agitação de 180 rpm. A extração dos plasmídeos foi realizada utilizando o kit QIAprep®Spin Miniprep Kit (Qiagen).
Exemplo 4- Sequenciamento das montagens clonadas em pGEM®-T
O sequenciamento dos clones positivos foi realizado pela empresa Macrogen (Seul, Coréia do Sul) em sequenciador automático ABI Prism®3730xl DNA Analyser (AppliedBiosystems), utilizando os primers M13 forward e reverso para o vetor pGEM@-T. As sequências obtidas foram processadas pelo pacote PhredPhrapConsed (Ewing B, Green P. Genome Research 8:186-194, 1998; Gordon, David, A. D. Baxevanis. in Current Protocols in Bioinformatics. 2004, 1 1 .2.1 -1 1 .2.43) para formação de contigs, retirada de sequências de baixa qualidade e sequências do vetor. Após o processamento, as sequências foram submetidas à pesquisa de homologia usando o programa BLAST (Basic Local Alignment Search Tool - Altschul SF, Gish W, J Mol Biol. 1990 Oct 5;215(3):403-10.) contra o banco de dados "Nucleotidecollection (nr/nt)" do NCBI (National Center for Biotechnology Information) e contra todos os bancos de genoma do Tritrypdb (Aslett M, Aurrecoechea C. Nucleic Acids Res. 2010 Jan; 38 Database issue:D457-62.), para confirmação da identidade dos genes clonados.
Com a identidade confirmada como correta, prosseguiu-se com a subclonagem desses insertos nos vetores de expressão (pET28a-TEV).
Exemplo 5- Digestão dos vetores de clonagem e expressão com enzimas de restrição Os plasmídeos pGEM contendo os insertos, assim como o vetor de expressão pET28a-TEV foram submetidos a dupla digestão, durante 16 horas à 37°C, com as enzimas de restrição específicas para cada amplicon. Após a digestão, as amostras foram submetidas à eletroforese e purificação em gel de agarose, como previamente descrito. Exemplo 6- Ligação ao vetor de expressão pET28a-TEV
O vetor de expressão pET28a-TEV, produzido no centro de Biologia Molecular e Estrutural (CeBiME, Campinas/SP), possui o gene de resistência à kanamicina, para seleção positiva dos transformantes.
A ligação entre os fragmentos obtidos do pGEM por digestão enzimática e o vetor pET28a-TEV, também digerido com as mesmas enzimas de restrição, foi realizada através de suas extremidades coesivas, por incubação a 4°C durante 16 horas com a enzima T4 Ligase (Promega) em tampão específico (Tris-HCI 30mM (pH 7.8 a 25°C), MgCI2 10mM, DTT 10mM e ATP 10mM). Após a incubação, o produto de ligação foi utilizado na transformação de bactérias BL-21 Star através de eletroporação.
Exemplo 7- Indução da expressão das proteínas recombinantes
Colónias isoladas de BL-21 Star contendo o plasmídeo pET28a-TEV tendo como inserto um dos genes que codificam para as proteínas hipotéticas de interesse, foram inoculadas em 3 ou 20mL de meio 2xYT líquido contendo kanamicina (50pg/ml_) e incubadas por 14-16 horas sob a agitação de 180 rpm. Após este período, os inóculos foram diluídos 1 :20 em 10 ou 400ml_ de meio 2xYT/kanamicina (50pg/ml_) e incubados a 37°C a 180 rpm até atingirem DO600 (Densidade óptica) de 0,6 a 0,8. A expressão das proteínas recombinantes foi induzida através da adição de 1 mM IPTG (Invitrogen), sendo a cultura, então, incubada por 3 horas a 37°C a 180rpm ou 16 horas a 30°C a 180rpm. Após as 3 horas de indução, a cultura foi centrifugada a 3000 rpm, por 25 minutos a 4°C em centrífuga Eppendorf 5804R, congelada em nitrogénio líquido e armazenada a -80oC. Alíquotas da cultura imediatamente antes da adição de IPTG, e após 3 horas de expressão, foram também congeladas.
Exemplo 8- Teste de solubilidade
Os sedimentos celulares mantidos a -80°C foram descongelados em gelo e resuspendidos em 5 ml_ de PBS (NaCI 137 mM; KCI 2,7 mM; Na2HPO4 10mM; KH2PO4 1 ,8 mM; pH 7,4) para cada 50 mL de cultura, na presença de Lisozima (100 pg/mL), sendo, então, homogeneizados e deixados em repouso por 15 minutos. Após o repouso, as alíquotas foram submetidas a 4-5 ciclos de congelamento em nitrogénio líquido e descongelamento em banho-maria a 37°C e passadas exaustivamente em seringas de insulina (1 ml_/cc,261/2 G, 13x0,45), para fragmentação de seu DNA genômico. As amostras foram centrifugadas por 10 minutos a 14.000 rpm (Eppendorf 5804R) a 4°C, para separação das frações solúvel (sobrenadante) e insolúvel (pellet). Amostras destas duas frações foram analisadas em eletroforese gel de poliacrilamida- SDS para a avaliação de qual fração a proteína recombinante se encontra. Quando a proteína se apresentou insolúvel, foi adicionado ao tampão de re- suspensão 8 Molar de uréia para torná-la solúvel.
Analisando a Figura 3 veremos que as bactérias não estimuladas com IPTG já apresentaram uma produção basal significativa da proteína K39-KDDP. Após 3 horas de estímulo essas bactérias apresentaram um aumento notável na expressão da K39-KDDR (Figura 3. -2).
O teste de solubilidade revelou que a K39-KDDR é uma proteína solúvel
(Figura 3. -4 e 5), visto que é encontrada praticamente apenas na fração solúvel. Tal característica é uma excelente vantagem para a posterior purificação, uma vez que não será necessário o tratamento prévio com ureia, método este que aumenta drasticamente a perda de proteína a ser purificada.
Exemplo 9- Purificação de proteínas recombinantes por cromatografia de afinidade
O extrato proteico da fração sobrenadante do teste de solubilidade foi aplicado em uma coluna HisTrap HP de 1 mL (GE Healthcare Life Sciences). A coluna foi primeiramente lavada com 5 volumes de coluna com tampão A (fosfato de sódio 20mM; NaCI 500mM; imidazol 30mM). A eluição foi realizada através da adição do tampão B (fosfato de sódio 20mM; NaCI 500mM; imidazol 500mM). O imidazol na concentração de 500mM, compete com a cauda de histidina pela ligação ao níquel na coluna, liberando a proteína recombinante da coluna e permitindo sua obtenção na fração eluida. Todas as frações obtidas que compreendem toda a extensão do pico de absorbância observado durante a eluição foram analisadas por eletroforese em gel de poliacrilamida- SDS.
Na Figura 5 nota-se que o aumento da absorbância durante a eluição da proteína ligada à coluna His-trap começa a acentuar-se na fração 9 até atingir o seu auge na fração 1 1 e posteriormente na fração 13, mantendo-se constante até o final da eluição. A presença de bandas fortes na altura dos 40 KDa (Figura 4) após a corrida de alíquotas dessas frações em gel de poliacrilamida- SDS (SDS-PAGE) corroborou com os resultados achados na curva de eluição.
Exemplo 10- Teste de ELISA
Os ensaios de ELISA foram realizados utilizando a proteína K39-KDDR purificada e a proteína rK39. Placas de ELISA (96 wels) foram sensibilizadas por 12-16 horas a 4QC com 50ng de antígeno diluídos em 1 00uL de tampão carbonato. Após a sensibilização, a placa foi bloqueada com 150uL de PBS- Caseina durante 2 horas à temperatura ambiente. Após o bloqueio, toda a solução dos poços foi removida. A seguir, 100uL dos soros diluídos 1 :100 em PBS-Tween20 a 0,05% foram adicionados aos poços e incubados por 12-16 horas a 4QC. As placas foram lavadas 5 vezes com a solução de lavagem (PBS-0,05% Tween20) e 100uL o anticorpo anti-lgG canino diluído a 1 :2.500 em PBS-Tween20 a 0,05% foi adicionado em todos os poços. Após a incubação a 37QC por 1 hora 30 minutos, as placas foram novamente lavadas 5 vezes com a solução de lavagem, e 100uL da solução reveladora, contendo ácido cítrico 0,1 M, Na2PO4 0,2 M, OPD 0,05% e H2O2 0,1 % foram adicionados. As placas foram incubadas a 37QC ao abrigo de luz por 10 minutos com a solução reveladora, quando a reação foi interrompida pela adição de 50 uL de H2SO4. A absorbância resultante foi lida em leitor de ELISA a 492 nm.
Os dados do gráfico da Figura 6 indicam que a K39-KDDR possui uma resposta muito semelhante à resposta da rK39, entretanto a rK39 apresenta um maior número de falsos negativos (pontos abaixo do CUOFF rK39 nos soros sabidamente positivos). Os resultados preliminares das ELISAs das duas proteínas apresentados pela Tabela 1 corroboram com os dados apresentados no gráfico. A K39-KDDR possui uma maior sensibilidade que a rK39 (78% para K39-KDDR - 51 % para rK39). Enquanto que suas especificidades mantiveram- se altas e extremamente semelhantes (95% para K39-KDDR - 97% para rK39).
Tabela 2. Resultados pareados dos testes de diagnóstico por ensaio imunoenzimático (ELISA)
Figure imgf000014_0001
Exemplo 11- Análise de Bioinformática
Para a predição de epítopos lineares de células B foi utilizado o programa BepiPred 1 .0(Larsen JE, Lund O. Res. 2006 Apr 24;2:2.) e para células T CD4+ e T CD8+ foram utilizados os programas netCTL 1 .2 (Larsen MV, Lundegaard C. BMC Bioinformatics. 2007 Oct 31 ;8:424.) e netMHCII 2.2 (Nielsen M, Lund O. BMC Bioinformatics. 2009 Sep 18;10:296.), respectivamente. Para a determinação do grau de desordem da região da K39- KDDR foi utilizado o programa lUPred (Dosztányi Z, Csizmok V. Bioinformatics. 2005 Aug 15;21 (16):3433-4).
O alto valor de desordem (lUPred) assim como a presença de diversos epítopos lineares preditos tanto para células B quanto para células T (MHCI e MHCII) na região da K39-KDDR (Figura 7), corroboram sua utilização no diagnóstico e como possível antígeno vacinai contra a leishmaniose.
Análise estatística
As análises estatísticas foram realizadas utilizando o software Prism 5.0 e o programa Microsoft Excel 2007.

Claims

REIVINDICAÇÕES
1) PROTEÍNA RECOMBINANTE caracterizada por compreender a sequência de aminoácidos representada por SEQ ID NQ3 e ser denominada rK39-KDDR.
2) PROTEÍNA RECOMBINANTE de acordo com a reivindicação 1 , caracterizada pelos aminoácidos da SEQ ID NQ3 nas posições 34, 73, 1 12, 151 , 190, 229, 268, 307 e 346 serem representados por um aspartato ou um ácido glutâmico; pelos aminoácidos nas posições 37, 76, 1 15, 154, 193, 232, 271 , 310 e 449 serem representados por uma alanina ou um ácido glutâmico; pelos aminoácidos nas posições 48, 87, 126, 165, 204, 243, 282 e 360 serem representados por uma serina ou uma alanina; pelos aminoácidos nas posições 50, 89, 128, 167, 206, 245, 284, 323, 362, 66, 105, 144, 183, 222, 261 e 300 serem representados por uma alanina ou uma treonina; pelos aminoácidos nas posições 54, 93, 132, 171 , 210, 249, 288 e 327 serem representados por uma serina ou uma metionina; pelos aminoácidos nas posições 62, 101 , 140, 179, 218, 257, 296 e 335 serem representados por uma asparagina ou uma serina.
3) PROCESSO DE OBTENÇÃO DE UMA PROTEÍNA RECOMBINANTE caracterizado por compreender o uso dos primers representados pelas sequências SEQ ID NQ1 e SEQ ID NQ2.
4) PROCESSO DE OBTENÇÃO DE UMA PROTEÍNA RECOMBINANTE caracterizado por apresentar as seguintes etapas:
a. Amplificação do gene que codifica a proteína de protozoários do género Leishmania utilizando os primers senso e antisenso, representados, respectivamente, pelas SEQ ID NQ1 e SEQ ID NQ2;
b. Inserção do amplicom obtido na etapa a em vetor de clonagem;
c. Transformação de bactérias com a inserção do plasmídeo recombinante obtido na etapa b;
d. Crescimento em meio de cultura dos clones transformantes positivos obtidos na etapa c; e. Extração dos plasmídeos contendo o gene que codifica para a proteína recombinante denominada rK39-KDDR e representada pela sequência SEQ ID NQ3;
f. Digestão enzimática dos plasmídeos obtidos na etapa e e obtenção dos genes clonados;
g. Inserção dos genes clonados obtidos na etapa f em vetor de expressão; h. Transformação de bactérias com a inserção do plasmídeo recombinante obtido na etapa g;
i. Crescimento em meio de cultura dos clones transformantes positivos obtidos na etapa h;
j. Indução da expressão da proteína recombinante rK39-KDDR representada pela sequência SEQ ID NQ3;
k. Purificação da proteína recombinante obtida na etapa j.
5) PROCESSO DE OBTENÇÃO DE UMA PROTEÍNA RECOMBINANTE, de acordo com a reivindicação 4, etapas b e h, caracterizado pela transformação ser preferencialmente com bactérias Escheríchia coli eletrocompetentes e por eletroporação.
6) PROCESSO DE OBTENÇÃO DA PROTEÍNA RECOMBINANTE rK39- KDDR, de acordo com a reivindicação 4, etapa f, caracterizado pela digestão enzimática ser realizada preferencialmente com as enzimas de restrição Nhe I e Xho I.
7) USO DE UMA PROTEÍNA RECOMBINANTE caracterizado por ser no diagnóstico de leishmanioses em seres humanos e/ou cães e pela proteína (rK39-KDDR) ser representada pela sequência SEQ ID NQ 3 .
8) USO DE UMA PROTEÍNA RECOMBINANTE, de acordo com a reivindicação 7, caracterizado por ser em composição vacinai contra leishmaniose humana e/ou canina e pela proteína recombinante (rK39-KDDR) ser representada pela sequência SEQ ID NQ 3 .
9) KIT PARA DIAGNÓSTICO DE LEISHMANIOSES caracterizado por compreender: a. a proteína recombinante rK39-KDDR representada pela sequência SEQ ID NQ3;
b. anticorpos primários específicos para reconhecimento da proteína descrita no item a;
c. anticorpos secundários ou proteínas conjugados a uma enzima ou um marcador, específicos para reconhecerem o anticorpo primário descrito no item b;
d. um reagente para detectar a enzima ou o marcador mencionados no item c.
PCT/IB2014/065188 2014-10-09 2014-10-09 Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose WO2016055836A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2014/065188 WO2016055836A1 (pt) 2014-10-09 2014-10-09 Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2014/065188 WO2016055836A1 (pt) 2014-10-09 2014-10-09 Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose

Publications (1)

Publication Number Publication Date
WO2016055836A1 true WO2016055836A1 (pt) 2016-04-14

Family

ID=55652638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/065188 WO2016055836A1 (pt) 2014-10-09 2014-10-09 Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose

Country Status (1)

Country Link
WO (1) WO2016055836A1 (pt)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719263A (en) * 1993-01-15 1998-02-17 Corixa Corporation 230Kd antigen present in Leishmania species
WO2005063803A1 (en) * 2003-12-26 2005-07-14 All India Institute Of Medical Sciences Polypeptides for the diagnosis and therapy of leishmaniasis
US20100008924A1 (en) * 2008-07-03 2010-01-14 Infectious Disease Research Institute Fusion proteins and their use in the diagnosis and treatment of leishmaniasis
BRPI0900961A2 (pt) * 2009-03-23 2010-12-21 Fundacao Oswaldo Cruz uso de antìgenos de leishmania em método diagnóstico, vacina e terapia para leishmaniose
KR20110017610A (ko) * 2009-08-14 2011-02-22 베트올 (주) 레이슈마니아 탐지용 항원, 및 이를 포함하는 면역탐지키트
WO2014111207A1 (en) * 2013-01-18 2014-07-24 Philipps-Universität Marburg Diagnosis of leishmania infection
BR102012032499A2 (pt) * 2012-12-19 2014-12-23 Univ Minas Gerais Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719263A (en) * 1993-01-15 1998-02-17 Corixa Corporation 230Kd antigen present in Leishmania species
WO2005063803A1 (en) * 2003-12-26 2005-07-14 All India Institute Of Medical Sciences Polypeptides for the diagnosis and therapy of leishmaniasis
US20100008924A1 (en) * 2008-07-03 2010-01-14 Infectious Disease Research Institute Fusion proteins and their use in the diagnosis and treatment of leishmaniasis
BRPI0900961A2 (pt) * 2009-03-23 2010-12-21 Fundacao Oswaldo Cruz uso de antìgenos de leishmania em método diagnóstico, vacina e terapia para leishmaniose
KR20110017610A (ko) * 2009-08-14 2011-02-22 베트올 (주) 레이슈마니아 탐지용 항원, 및 이를 포함하는 면역탐지키트
BR102012032499A2 (pt) * 2012-12-19 2014-12-23 Univ Minas Gerais Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose
WO2014111207A1 (en) * 2013-01-18 2014-07-24 Philipps-Universität Marburg Diagnosis of leishmania infection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BURNS J M JR. ET AL.: "Molecular characterization of a kinesin- related antigen of Leishmanla chagasi that detects specific antibody in African and American visceral leishmaniasis", PROC NATL ACAD SCI, vol. 90, no. 2, 1993, pages 775 - 779, XP002999744, ISSN: 0027-8424, DOI: doi:10.1073/pnas.90.2.775 *
DHOM-LEMOS L C: "Expressao heteróloga da rKDDR de Leishmania infantum: um novo antigeno recombinante para o diagnóstico da leishmaniose visceral''.", DISSERTAÇÃO DE MESTRADO APRESENTADA AO INSTITUTO DE CIÊNCIAS BIOLOGICAS, 23 October 2014 (2014-10-23), Retrieved from the Internet <URL:http://parasitologia.icb.ufmg.br/defesas/529M.PDF> *
TAKAGI H ET AL.: "Short report: production of recombinant kinesin- related protein of Leishmania donovani and its application in the serodiagnosis of visceral leishmaniasis", AM J TROP MED HYG, vol. 76, no. 5, 2007, pages 902 - 905, XP002699620, ISSN: 0002-9637 *

Similar Documents

Publication Publication Date Title
Hawthorne et al. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts
Rey-Ladino et al. Leishmania major: molecular cloning, sequencing, and expression of theheat shock protein 60Gene reveals unique carboxy terminal peptide sequences
CN104918953A (zh) 抗霉浆菌的亚单位疫苗
Tran et al. Heterologous expression, purification and characterisation of the extracellular domain of trypanosome invariant surface glycoprotein ISG75
Mirahmadi et al. Cloning and sequence analysis of recombinant plasmodium vivax merozoite surface protein 1 (PvMSP-142 kDa) In pTZ57R/T vector
Pattaradilokrat et al. Size and sequence polymorphisms in the glutamate-rich protein gene of the human malaria parasite Plasmodium falciparum in Thailand
Zeng et al. Over-producing soluble protein complex and validating protein–protein interaction through a new bacterial co-expression system
BR102012032499A2 (pt) Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose
WO2016055836A1 (pt) Processo de produção e uso da proteína rk39-kddr e kit para diagnóstico de leishmaniose
WO2021057817A1 (en) His-mbp tagged dna endonuclease for facilitated enzyme removal
Rasouli et al. Expression of recombinant heat-shock protein 70 of MCAN/IR/96/LON-49, a tool for diagnosis and future vaccine research
JP2021175410A (ja) マイコプラズマ・ヒオリニス感染を予防治療する組成物及び当該組成物を生産する方法
Hasanah et al. The expression of the PfEMP1-DBL2β recombinant protein of Plasmodium falciparum isolated from Indonesia
CN114214351A (zh) 一种志贺氏菌多糖表达质粒及其用途
Ocampo et al. Identifying Plasmodium falciparum cytoadherence‐linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes
EP1711520B1 (en) Polypeptides for the diagnosis and therapy of leishmaniasis
Lin et al. Use of a recombinant protein containing major epitopes of hnRNP G to detect anti-hnRNP G antibodies in dogs with systemic lupus erythematosus
Raoufi et al. Expression and antigenic evaluation of Helicobacter pylori UreB fragment
Florio et al. Identification, molecular cloning, and evaluation of potential use of isocitrate dehydrogenase II of Mycobacterium bovis BCG in serodiagnosis of tuberculosis
BRPI0416736A (pt) construções de ácidos nucleicos, proteìnas imunogênicas isoladas, cepas de leishmania geneticamente modificadas, e, processo de transfecção de um parasita de leishmania
Pesce et al. Role of the Hsp40 family of proteins in the survival and pathogenesis of the malaria parasite
Eslamirad et al. A preliminary study: expression of rhoptry protein 1 (ROP1) Toxoplasma gondii in prokaryote system
BR102015032498A2 (pt) Kit for leishmaniosis immunodiagnosis, method and uses
Raoufi et al. Epitope mapping and antigenic evaluation of Helicobacter pylori Urease subunit beta fragment
BR102014028172B1 (pt) kit e método para imunodiagnóstico das leishmanioses e uso de uma proteína de leishmania e de um peptídeo derivado

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903529

Country of ref document: EP

Kind code of ref document: A1