WO2016054794A1 - 一种短焦正投影屏幕 - Google Patents

一种短焦正投影屏幕 Download PDF

Info

Publication number
WO2016054794A1
WO2016054794A1 PCT/CN2014/088257 CN2014088257W WO2016054794A1 WO 2016054794 A1 WO2016054794 A1 WO 2016054794A1 CN 2014088257 W CN2014088257 W CN 2014088257W WO 2016054794 A1 WO2016054794 A1 WO 2016054794A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
layer
ambient light
absorbing
light
Prior art date
Application number
PCT/CN2014/088257
Other languages
English (en)
French (fr)
Inventor
廖天驹
乔俊枫
张昭宇
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2014/088257 priority Critical patent/WO2016054794A1/zh
Priority to CN201480082073.8A priority patent/CN106716249A/zh
Publication of WO2016054794A1 publication Critical patent/WO2016054794A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present invention relates to a front projection screen, and in particular to a short focal projection screen.
  • the screen is divided into two categories: front projection screen (reflective) and rear projection screen (transmissive).
  • the projection distance of the front projection screen is longer (compared to the short-focus projection), which is seriously affected by the ambient light, but the structure is simple and adapts to various scenes.
  • the rear projection screen has a strong overall feeling, and the influence of ambient light is small, but the structure is complicated and the size is limited by volume.
  • diffuse screens are usually used.
  • the diffuse reflection screen is characterized by large viewing angle, low gain, strong adaptability to ambient light, and wide application range.
  • One of the diffuse reflection screen technologies is to directly process the surface of the material, the screen angle and resolution are not ideal, and the solar effect is also serious.
  • Another diffuse reflection screen technology is made by using a transparent material such as acrylic or glass as a substrate, and a rear-projection soft screen is attached to the surface. There are usually additional structures on this soft screen to implement other functions, such as Fresnel lenses.
  • Fresnel optical lens screen increases the gain of the screen, but its vertical viewing angle is limited.
  • Fresnel optical lens screens vary according to the Fresnel lens slot angle, and each screen has a different focal length to meet the needs of different lens projectors.
  • each unit of the Fresnel sheet is designed as a triangular structure. Projected light is projected from the front and bottom of the screen onto the screen.
  • the upper surface 101 of the small triangular model is an absorbing layer, generally absorbing particles are added to absorb ambient light or the mirror reflects ambient light 103 from the upper portion.
  • the lower surface 102 is a diffuse scattering layer for diffusely reflecting the projected light 104 into the field of view region 106. This structure can effectively absorb or reflect ambient light and project the projected light into the field of view of a person. However, in this design, if the ambient light 105 is projected onto the lower surface 102, the reflected light of the diffuse reflection layer also enters the field of view area 106, affecting the projection effect.
  • the short-focus orthographic projection screen of the present invention has an absorption layer and a microstructure in the absorption layer of the short-focus orthographic projection screen of the present invention.
  • Ambient light can be additionally absorbed or reflected, so under the same conditions, some ambient light capable of entering the diffuse reflection layer of the prior art short-focus orthographic projection screen cannot enter the diffuse reflection layer of the short-focus orthographic projection screen of the present invention, and It is illuminated to the absorbing layer, so that the short-focus orthographic projection screen of the present invention reduces ambient light entering the diffuse reflective layer, thereby reducing the effect of ambient light on short-focus orthographic projection screen imaging.
  • a short-focus orthographic projection screen comprising a bottom layer and an absorbing layer, the bottom layer for diffusely projecting light, and absorbing ambient light or reflecting ambient light; the absorbing layer covering one side of the bottom layer for receiving the projected light, and the outer surface of the absorbing layer for receiving
  • the projection light has at least one microstructure for absorbing or reflecting ambient light, and the surface of the microstructure absorbing or reflecting the ambient light forms a first angle with the outer surface of the absorbing layer, and the microstructure absorbs or reflects the ambient light. Upward, the first angle is an angle less than 90°.
  • the number of microstructures is plural, and from the bottom to the top of the screen, the angles of the first angles of the respective microstructures are equal or sequentially decreased.
  • a large number of microstructures can be divided into multiple groups, each group containing a plurality of identical microstructures, and the first angle of each group is equal, from the bottom of the screen to the top, the first angle of each group is sequentially decreased. small.
  • the microstructures are distributed in a circular arc shape on the screen, and the radius of the arc increases from the bottom to the top of the screen.
  • the short-focus orthographic projection screen of the present invention has an absorbing layer in addition to the short-focus orthographic projection screen of the present invention, and the microstructure in the absorbing layer may additionally Absorbing or reflecting ambient light, so under the same conditions, some ambient light that can enter the diffuse reflection layer of the prior art short-focus orthographic projection screen cannot enter the diffuse reflection layer of the short-focus orthographic projection screen of the present invention, but is irradiated
  • the absorbing layer whereby the short-focus orthographic projection screen of the present invention reduces ambient light entering the diffuse reflective layer, thereby reducing the effect of ambient light on short-focus orthographic projection screen imaging.
  • FIG. 1 is a schematic diagram of a projection principle of a prior art short-focus orthographic projection screen
  • FIG. 2 is a schematic diagram of a projection principle of a short-focus orthographic projection screen according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram showing the microstructure distribution of the surface of a short-focus orthographic projection screen according to Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of a projection principle of a short-focus orthographic projection screen according to Embodiment 2 of the present application;
  • FIG. 5 is a schematic diagram of a principle of absorbing ambient light by a short-focus orthographic projection screen according to Embodiment 2 of the present application;
  • FIG. 6 is a comparison diagram of absorption of ambient light by a short-focus orthographic projection screen of a second embodiment of the present application in the case of a support layer of different thickness;
  • FIG. 7 is a schematic diagram of a projection principle of a short-focus orthographic projection screen according to Embodiment 3 of the present application.
  • FIG. 2 is a schematic diagram of a projection principle of a short-focus orthographic projection screen of the present embodiment, including a bottom layer 110, a support layer 120, and an absorbing layer 130.
  • the absorbing layer covers one side of the bottom layer that receives the projection light, and includes a microstructure 131 and an absorbing layer.
  • the medium 132 and the absorbing layer surface 133, the surface of the microstructure absorbing ambient light forms a first angle 134 with the absorbing layer surface 133, the first angle is an angle of less than 90°, and the microstructure is used for additionally absorbing ambient light.
  • the ambient light and the diffusely reflected projection light are absorbed; the support layer is located between the bottom surface and the absorption layer for supporting the absorption layer.
  • the bottom layer is a Fresnel sawtooth structure, the period is 100um, the main material is ultraviolet curing or heat curing resin, and the specific structure is a plurality of triangular protrusions 111, and the upper surface 112 of the triangular protrusion is composed of carbon black of absorbing material, the main The function is to absorb the ambient light 002 from the upper part. Since the projection is a short-focus projection, the projection angle is large, which ensures that the projection light cannot reach this layer, so that the absorption layer simply absorbs the ambient light.
  • the contrast of the screen is improved; the lower surface 113 of the triangular protrusion realizes reflection and scattering by roughening the surface, and the reflective material is made of metal-based material aluminum or Blackpear1 for diffuse reflection of the projection light 001, thereby making the projection Light enters the field of view 140. Due to the design of the structure, most of the projected light is reflected into the projected area. With such a structure, the energy of the light is more concentrated, and the waste of Lambertian scattering is avoided.
  • the serrated structure may be formed by a roll-to-roll process imprinting UV-cured or thermo-cured resin, and the double-sided material may be formed by the addition control during imprinting.
  • the support layer 120 is mainly made of PVC (PolyVinyl Chloride, Polyvinyl chloride), which acts to support and connect the bottom layer and the absorbing layer, because the thickness of the sawtooth structure and the thickness of the additional absorbing layer are not large (on the order of a hundred micrometers), so a support structure is required to prop up the screen. In addition, the purpose of pulling apart the additional absorbent layer and the sawtooth structure is also achieved.
  • PVC PolyVinyl Chloride, Polyvinyl chloride
  • the absorbing layer 130 is embedded with microstructures 131 in the PVC, and these microstructures are mainly composed of absorbing material carbon black.
  • the number of microstructures is plural, and from the bottom to the top of the screen, the angles of the first angles 134 of the respective microstructures are equal.
  • a second angle 121 is formed between the upper surface 112 of the triangular protrusion and the support layer 120.
  • the values of the first angle 134 and the second angle 121 are equal, such that the microstructure 131 and the upper surface of the triangular protrusion 112 parallel.
  • FIG. 3 reflects that the layout of the microstructures on the entire screen is distributed in a circular arc shape, and the radius of the arcs is sequentially increased, and all the circles are concentric circles.
  • Ambient light 002 can pass through the absorption layer without being absorbed, but after reaching the bottom layer, it will be absorbed by the upper surface of the triangular protrusion; after entering the absorption layer, the ambient light 003 will be absorbed by the microstructure 131, thereby enhancing the screen.
  • the overall absorption of ambient light; ambient light 004 can be diffused and reflected on the lower surface of the triangular protrusion without the absorption layer, thereby affecting the projection effect, and after the absorption layer is increased, the ambient light 004 is absorbed by the microstructure 131 This avoids the ambient light 004 from illuminating the lower surface of the triangular protrusion, eliminating its influence on the projection.
  • the screen can absorb the ambient light to the greatest extent, reducing the ambient light entering the diffuse reflection layer, thereby reducing the influence of ambient light on the short-focus orthographic projection screen imaging, and maximally retaining the projection light. Increases the contrast between the projected light and the ambient light, improving the adaptation to the glare environment.
  • FIG. 4 and FIG. 5 are schematic diagrams showing the principle of projection of the short-focus orthographic projection screen of the present embodiment and a schematic diagram of the principle of absorbing ambient light, including the bottom layer 210, the support layer 220 and the absorption layer 230, and the absorption layer covers the bottom portion of the received projection light.
  • the microstructure 231 in the absorbing layer is used for additionally absorbing ambient light, and the angle formed by the surface of the microstructure absorbing the ambient light and the surface of the absorbing layer is the first angle 234, and the first angle is an angle of less than 90°.
  • the bottom layer is for absorbing ambient light and diffusely projected light; the support layer is located between the bottom surface and the absorbing layer for supporting the absorbing layer.
  • the bottom layer is a Fresnel sawtooth structure with a period of 100um, and the main material is ultraviolet curing or heat curing resin.
  • the specific structure is a plurality of triangular protrusions 211, and the upper surface 212 of the triangular protrusions is composed of carbon black, and its main function is It is to absorb the ambient light from the upper part. Since the projection is a short-focus projection, the projection angle is large, which ensures that the projection light cannot reach this layer, so that the absorption layer simply absorbs the ambient light. The effect of improving the contrast; the lower surface 213 of the triangular protrusion is used for diffuse reflection of the projection light 001, so that the projection light enters the field of view. Due to the design of the structure, most of the projection light is reflected into the projection area, through The energy of such structured light is more concentrated, avoiding the waste of Lambertian scattering.
  • the support layer 220 is mainly made of PVC (PolyVinyl Chloride, Polyvinyl chloride), functioning as a support structure, because the thickness of the sawtooth structure and the thickness of the additional absorbing layer are not large (on the order of a hundred micrometers), so a support structure is needed to prop up the screen, and it also reaches the pull The purpose of opening the additional absorbent layer and the sawtooth structure.
  • PVC PolyVinyl Chloride, Polyvinyl chloride
  • the absorbing layer 230 is embedded with microstructures 231 in the PVC, and these microstructures are mainly composed of carbon black.
  • the number of microstructures is plural, and from the bottom to the top of the screen, the angles of the first angles 234 of the respective microstructures are sequentially decreased.
  • a second angle 221 is formed between the upper surface 212 of the triangular protrusion and the support layer 220.
  • the first angle 234 is equal to the value of the corresponding second angle 221, from the bottom of the screen to the top, each second The angle of the included angle 221 is sequentially decreased, and the microstructure 231 and the upper surface 212 of the triangular protrusion are parallel.
  • the projection light source is far from the screen, and the projection light has a small opening angle, so the screen can take a larger area to absorb the ambient light as the absorption surface.
  • the microstructure can also have a larger cross section.
  • the projection light source is closer to the screen, and the projection light has a larger opening angle. Therefore, the screen needs a larger area to reflect the projection light, and the microstructure cross section needs to be reduced.
  • the layout of the microstructure on the entire screen is distributed in a circular arc shape, and the radius of the arc increases in turn, and all the circles are concentric circles.
  • the ambient light 004 can illuminate the lower surface of the triangular protrusion without the absorption layer to affect the projection effect, and after the absorption layer is added, the ambient light 004 is absorbed by the microstructure 231, thus avoiding The ambient light 004 illuminates the lower surface of the triangular projection, eliminating its effect on the projection.
  • the middle support layer enlarges the distance between the absorption layer and the bottom layer, which can increase the absorption cross section and achieve better absorption of ambient light.
  • Fig. 6 comparing the screens with different thicknesses of the support layers but the other features are identical, the effects of the two screens absorbing ambient light are different under the same external environment.
  • the projection direction of the ambient light 005A and the ambient light 005B is the same, and similarly, the projection direction of the ambient light 006A and the ambient light 006B is the same.
  • Ambient light 006A and ambient light 006B are both blocked by the microstructure in the case of two thickness support layers.
  • the ambient light 005A can illuminate the lower surface 213A of the triangular protrusion to avoid the projection effect; while increasing the thickness of the support layer, that is, the support layer 220B is thicker than the support layer 220A, the projection light 005B will be The microstructure 231B is blocked so as not to be irradiated onto the lower surface 213B of the triangular projection, so that the projection effect of the screen is better.
  • the screen can absorb the ambient light to the greatest extent, reducing the ambient light entering the diffuse reflection layer, thereby reducing the influence of ambient light on the short-focus orthographic projection screen imaging, and maximally retaining the projection light. Increases the contrast between the projected light and the ambient light, improving the adaptation to the glare environment.
  • FIG. 7 is a schematic diagram showing the projection principle of the short-focus orthographic projection screen of the embodiment, including a bottom layer 610 and an absorbing layer 630.
  • the absorbing layer covers one side of the bottom layer that receives the projection light, and includes a microstructure 631 and an absorbing layer surface 633.
  • the surface of the structure that reflects the ambient light forms a first angle 634 with the absorbing layer surface 633, the first angle is an angle of less than 90°, the microstructure is used to additionally reflect ambient light, and the bottom layer is used to reflect ambient light and diffuse projection light. .
  • the bottom layer is a Fresnel sawtooth structure, the period is 100um, the main material is ultraviolet curing or heat curing resin, and the specific structure is a plurality of protrusions 611.
  • the main function of the upper surface 612 of the protrusion 611 is that the pair is from the upper half. Part of the ambient light is reflected. Since the projection is a short-focus projection, the projection angle is large, which ensures that the projection light cannot reach this layer, so that the absorption layer simply absorbs the ambient light and achieves the contrast enhancement effect.
  • the raised lower surface 613 is used for diffuse reflection of the projection light 001, so that the projected light enters the field of view. Due to the design of the structure, most of the projected light is reflected into the projection area, and the energy of the light through such structure is more Concentration avoids the waste of Lambertian scattering.
  • the absorbing layer 630 is composed of PVC, and the microstructure 631 is embedded in the absorbing layer, and the number of microstructures is plural. From the bottom to the top of the screen, the angles of the first angles 634 of the respective microstructures are equal.
  • the projection light 001 passes through the absorption layer, since the shape is over-matched, the projection light is rarely reflected by the microstructure, so that the projection light is retained to the utmost extent.
  • the sawtooth structure When the sawtooth structure is reached, diffuse reflection through the lower surface of the triangular protrusion can basically enter the field of view.
  • the ambient light 004 can illuminate the lower surface of the protrusion without the absorption layer to affect the projection effect, and after the absorption layer is added, the ambient light 004 is reflected by the microstructure 631, thus avoiding the ambient light 004 from being irradiated to the triangular convex
  • the lower surface eliminates its effect on the projection.
  • Ambient light 003 that is not irradiated to the microstructure directly illuminates the upper surface of the bump to be reflected.
  • the screen can absorb the ambient light to the greatest extent, reducing the ambient light entering the diffuse reflection layer, thereby reducing the influence of ambient light on the short-focus orthographic projection screen imaging, and maximally retaining the projection light. Increases the contrast between the projected light and the ambient light, improving the adaptation to the glare environment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种短焦正投影屏幕,该屏幕包括底层和吸收层,底层用于吸收环境光和漫反射投影光,吸收层覆盖底层的接收投影光的一面,吸收层内部分布有至少一个用于吸收或者反射环境光的微结构,微结构吸收或者反射环境光的面朝向上方。微结构在屏幕上呈圆弧形分布,从屏幕下方至上方,圆弧半径逐渐增大。这种新型短焦正投影屏幕可以额外地吸收更多的环境光,在同样的条件下,某些能够进入现有技术短焦正投影屏幕漫反射层的环境光无法进入新型短焦正投影屏幕的漫反射层,而是照射到吸收层,从而新型短焦正投影屏幕减少了进入漫反射层的环境光,进而减少环境光对短焦正投影屏幕成像的影响。

Description

一种短焦正投影屏幕 技术领域
本发明涉及正投影屏幕,具体涉及一种短焦正投影屏幕。
背景技术
屏幕从投影方式分为正面投影屏幕(反射式)和背面投影屏幕(透射式)两大类。正投屏幕投影距离较长(与短焦投影相比),会受环境光的影响造成画面对比度的严重下降,但是结构简单,适应多种场景。背投屏幕画面整体感较强,环境光的影响较小,但是结构复杂,大小受到体积限制。
而对于屏幕本身而言,通常主要采用漫反射屏。漫反射屏幕的特点是视角大、增益低、对环境光适应能力比较强,应用范围广阔。漫反射屏幕技术之一是直接对材质表面进行处理,屏幕视角和清晰度都不理想,太阳效应也比较严重。
另一种漫反射屏幕技术则是利用亚克力、玻璃等透明体材料作为基底,在其表面粘贴背投软质屏幕制作而成。通常在这层软质屏幕上会有额外的结构来实现其他功能,比如菲涅尔透镜。
菲涅尔光学透镜屏幕则能增加屏幕的增益,但是其垂直视角却受到了一定的限制。菲涅尔光学透镜屏幕根据菲涅尔透镜槽距角度的不同而不同,每款屏幕都具有不同的焦距,以便满足不同镜头投影机的需要。
图1为现有技术中基于普通漫反射模型的短焦正投影屏幕100,图中菲涅尔片每一个单位被设计成了三角形的结构。投影光从屏幕的前下方投射到屏幕上。其中小三角模型的上表面101为吸收层,一般加入吸收颗粒来吸收环境光或者反射镜反射来自上半部分的环境光103。下表面102为漫散射层,用于对投影光104进行漫反射使之进入视野区域106。这种结构可以有效的将环境光进行吸收或反射,而将投影光投射至人的视野范围。但是此设计方案中,如果环境光105投射到下表面102,则其漫反射层的反射光也会进入视野区域106,影响投影效果。
发明内容
依据本发明的短焦正投影屏幕,本发明的短焦正投影屏幕和现有技术短焦正投影屏幕相比,本发明的短焦正投影屏幕多了一个吸收层,吸收层中的微结构可以额外地吸收或者反射环境光,因此在同样的条件下,某些能够进入现有技术短焦正投影屏幕漫反射层的环境光无法进入本发明的短焦正投影屏幕的漫反射层,而是照射到吸收层,从而本发明的短焦正投影屏幕减少了进入漫反射层的环境光,进而减少环境光对短焦正投影屏幕成像的影响。
一种短焦正投影屏幕,包括底层和吸收层,底层用于漫反射投影光,以及吸收环境光或者反射环境光;吸收层覆盖底层的接收投影光的一面,吸收层的外表面用于接收投影光,内部分布有至少一个用于吸收或者反射环境光的微结构,微结构吸收或者反射环境光的面与吸收层的外表面形成第一夹角,微结构吸收或者反射环境光的面朝向上方,第一夹角为小于90°的夹角。
微结构数量为多个,从屏幕下方至上方,所述各个微结构的第一夹角的角度相等或者依次减小。数量众多的微结构可以分为多个组,每一组包含多个相同的微结构,每一组的第一夹角角度相等,从屏幕下方至上方,各个组的第一夹角角度依次减小。
微结构在屏幕上呈圆弧形分布,从屏幕下方至上方,圆弧半径依次增大。
本申请的有益效果是,本发明的短焦正投影屏幕和现有技术短焦正投影屏幕相比,本发明的短焦正投影屏幕多了一个吸收层,吸收层中的微结构可以额外地吸收或者反射环境光,因此在同样的条件下,某些能够进入现有技术短焦正投影屏幕漫反射层的环境光无法进入本发明的短焦正投影屏幕的漫反射层,而是照射到吸收层,从而本发明的短焦正投影屏幕减少了进入漫反射层的环境光,进而减少环境光对短焦正投影屏幕成像的影响。
附图说明
图1为现有技术短焦正投影屏幕的投影原理示意图;
图2为本申请实施例一的短焦正投影屏幕的投影原理示意图;
图3为本申请实施例一的短焦正投影屏幕表面各微结构分布示意图;
图4为本申请实施例二的短焦正投影屏幕的投影原理示意图;
图5为本申请实施例二的短焦正投影屏幕吸收环境光的原理示意图;
图6为本申请实施例二的短焦正投影屏幕在不同厚度的支撑层情况下吸收环境光的对比图;
图7为本申请实施例三的短焦正投影屏幕的投影原理示意图。
具体实施方式
实施例1:
如图2所示为本实施例的短焦正投影屏幕的投影原理示意图,包括底层110、支撑层120和吸收层130,吸收层覆盖底层的接收投影光的一面,包括微结构131、吸收层介质132和吸收层表面133,微结构吸收环境光的面与吸收层表面133形成第一夹角134,第一夹角为小于90°的夹角,微结构用于额外吸收环境光,底层用于吸收环境光和漫反射投影光;支撑层位于底层表面和吸收层之间,用于支撑吸收层。
底层为菲涅尔锯齿结构,周期为100um,主体材料为紫外线固化或热固化的树脂,具体结构为数量众多的三角凸起111,三角凸起的上表面112由吸收材料碳黑构成,其主要的功用在于对来源于上部分的环境光002进行吸收,由于投影是短焦投影故而其投影角度很大,这保证了投影光是无法到达这一层的,这样吸收层就单纯的吸收环境光,使屏幕的对比度得以提高;三角凸起的下表面113采用粗化表面的方法实现反射和散射,其反射材料使用金属基材料铝或者Blackpear1,用于对投影光001进行漫反射,从而使投影光进入视野区140,由于结构的设计,大部分的投影光被反射到了投影区域里,通过这样的结构,光的能量更加集中,避免了朗伯散射的浪费。锯齿状结构可由卷对卷工艺压印紫外线固化或热固化树脂构成,其双面材料可由压印时的加料控制形成。
支撑层120主要由PVC(PolyVinyl Chloride, 聚氯乙烯)构成,起到支撑和连接底层与吸收层的作用,因为锯齿结构的厚度和额外吸收层的厚度都不会很大(在百微米量级),故而需要支撑结构来撑起屏幕,另外也达到拉开额外吸收层和锯齿结构的目的。
吸收层130是在PVC中嵌入了微结构131,这些微结构主要由吸收材料碳黑构成。微结构数量为多个,从屏幕下方至上方,所述各个微结构的第一夹角134的角度相等。
三角凸起的上表面112与支撑层120之间形成第二夹角121,通过形状匹配,第一夹角134和第二夹角121的数值相等,这样微结构131和三角凸起的上表面112平行。
微结构131的分布形式如图3所示,图3反映了微结构在整个屏幕上的布局呈圆弧形分布,圆弧半径依次增大,所有的圆都是同心圆。
如图2所示,投影光001通过吸收层时,由于形状进行过匹配,投影光很少被吸收,故而投影光最大程度地得到保留。在达到锯齿结构时,通过三角凸起的下表面进行漫反射,基本都能进入视野区。
环境光002能够通过吸收层而不被吸收,但到达底层后,会被三角凸起的上表面吸收掉;环境光003在进入吸收层后,会被微结构131吸收掉,从而增强了屏幕的整体吸收环境光的性能;环境光004在没有吸收层的情况下能够照射到三角凸起的下表面被漫反射,从而影响投影效果,而增加吸收层后,环境光004由于被微结构131吸收,这样就避免了环境光004照射到三角凸起的下表面,消除了其对投影的影响。
通过对屏幕的这种改进,屏幕能够最大程度地对环境光进行吸收,减少了进入漫反射层的环境光,从而减少环境光对短焦正投影屏幕成像的影响,最大限度地保留了投影光,增大了投影光与环境光的对比度,提高了对强光环境的适应。
实施例2:
如图4和图5所示为本实施例的短焦正投影屏幕的投影原理示意图和吸收环境光的原理示意图,包括底层210、支撑层220和吸收层230,吸收层覆盖底层的接收投影光的一面,吸收层中的微结构231用于额外吸收环境光,微结构吸收环境光的面与吸收层表面形成的夹角为第一夹角234,第一夹角为小于90°的夹角,底层用于吸收环境光和漫反射投影光;支撑层位于底层表面和吸收层之间,用于支撑吸收层。
底层为菲涅尔锯齿结构,周期为100um,主体材料为紫外线固化或热固化的树脂,具体结构为数量众多的三角凸起211,三角凸起的上表面212由碳黑构成,其主要的功用在于对来源于上半部分的环境光进行吸收,由于投影是短焦投影故而其投影角度很大,这保证了投影光是无法到达这一层的,这样吸收层就单纯的吸收环境光,达到了对对比度的提高效果;三角凸起的下表面213用于对投影光001进行漫反射,从而使投影光进入视野区,由于结构的设计,大部分的投影光被反射到了投影区域里,通过这样的结构光的能量更加集中,避免了朗伯散射的浪费。
支撑层220主要由PVC(PolyVinyl Chloride, 聚氯乙烯)构成,起作用是支撑结构,因为锯齿结构的厚度和额外吸收层的厚度都不会很大(在百微米量级),故而需要支撑结构来撑起屏幕,另外其也达到拉开额外吸收层和锯齿结构的目的。
吸收层230是在PVC中嵌入了微结构231,这些微结构主要由碳黑构成。微结构数量为多个,从屏幕下方至上方,所述各个微结构的第一夹角234的角度依次减小。
三角凸起的上表面212与支撑层220之间形成第二夹角221,通过形状匹配,第一夹角234与对应的第二夹角221的数值相等,从屏幕下方至上方,各个第二夹角221的角度依次减小,微结构231和三角凸起的上表面212平行。屏幕上方部分,投影光源离屏幕较远,投影光张角小,故而屏幕可以拿出更大的面积来作为吸收面吸收环境光。微结构也可以有更大截面。
屏幕下方部分,投影光源离屏幕较近,投影光张角大,故而屏幕需要更大面积来反射投影光,微结构截面需减小。
微结构在整个屏幕上的布局呈圆弧形分布,圆弧半径依次增大,所有的圆都是同心圆。
如图4所示,投影光001通过吸收层时,由于形状进行过匹配,投影光很少被吸收层吸收,故而投影光最大程度的得到保留。在达到锯齿结构时,通过三角凸起的下表面进行漫反射,基本都能进入视野区。
如图5所示,环境光004在没有吸收层的情况下能够照射到三角凸起的下表面从而影响投影效果,而增加吸收层后,环境光004由于被微结构231吸收,这样就避免了环境光004照射到三角凸起的下表面,消除了其对投影的影响。
中间的支撑层将吸收层与底层的距离拉大,可以增大吸收截面,实现对环境光更好的吸收。如图6所示,对比了两个支撑层厚度不同但其他特征完全相同的屏幕,在外部环境完全相同的条件下,两个屏幕吸收环境光的效果有所不同。环境光005A与环境光005B的投射方向相同,同样地,环境光006A与环境光006B的投射方向相同。环境光006A与环境光006B在两种厚度的支撑层情况下都被微结构阻挡。环境光005A能够避开微结构231A而照射到三角凸起的下表面213A上从而影响投影效果;而增大支撑层的厚度后,即支撑层220B比支撑层220A厚,则投影光005B将被微结构231B阻挡,从而不会照射到三角凸起的下表面213B上,使得屏幕的投影效果更好。
通过对屏幕的这种改进,屏幕能够最大程度地对环境光进行吸收,减少了进入漫反射层的环境光,从而减少环境光对短焦正投影屏幕成像的影响,最大限度地保留了投影光,增大了投影光与环境光的对比度,提高了对强光环境的适应。
实施例3:
如图7所示为本实施例的短焦正投影屏幕的投影原理示意图,包括底层610和吸收层630,吸收层覆盖底层的接收投影光的一面,包括微结构631和吸收层表面633,微结构反射环境光的面与吸收层表面633形成第一夹角634,第一夹角为小于90°的夹角,微结构用于额外反射环境光,底层用于反射环境光和漫反射投影光。
底层为菲涅尔锯齿结构,周期为100um,主体材料为紫外线固化或热固化的树脂,具体结构为数量众多的凸起611,凸起611的上表面612的主要的功用在于对来源于上半部分的环境光进行反射,由于投影是短焦投影故而其投影角度很大,这保证了投影光是无法到达这一层的,这样吸收层就单纯的吸收环境光,达到了对对比度的提高效果;凸起的下表面613用于对投影光001进行漫反射,从而是投影光进入视野区,由于结构的设计,大部分的投影光被反射到了投影区域里,通过这样的结构光的能量更加集中,避免了朗伯散射的浪费。
吸收层630由PVC构成,在吸收层中嵌入了微结构631,微结构数量为多个,从屏幕下方至上方,所述各个微结构的第一夹角634的角度相等。
投影光001通过吸收层时,由于形状进行过匹配,投影光很少被微结构反射,故而投影光最大程度的得到保留。在达到锯齿结构时,通过三角凸起的下表面进行漫反射,基本都能进入视野区。
环境光004在没有吸收层的情况下能够照射到凸起的下表面从而影响投影效果,而增加吸收层后,环境光004由于被微结构631反射,这样就避免了环境光004照射到三角凸起的下表面,消除了其对投影的影响。没有照射到微结构的环境光003直接照射到凸起的上表面从而被反射。
通过对屏幕的这种改进,屏幕能够最大程度地对环境光进行吸收,减少了进入漫反射层的环境光,从而减少环境光对短焦正投影屏幕成像的影响,最大限度地保留了投影光,增大了投影光与环境光的对比度,提高了对强光环境的适应。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (9)

  1. 一种短焦正投影屏幕,其特征在于,包括:
    底层,用于漫反射投影光,以及吸收环境光或者反射环境光;
    吸收层,所述吸收层覆盖底层的接收投影光的一面,所述吸收层的外表面用于接收投影光,内部分布有至少一个用于吸收或者反射环境光的微结构,所述微结构吸收或者反射环境光的面与吸收层的外表面形成第一夹角,所述微结构吸收或者反射环境光的面朝向上方,所述第一夹角为小于90°的夹角。
  2. 如权利要求1所述的屏幕,其特征在于,还包括支撑层,所述支撑层位于底层和吸收层之间,用于支撑吸收层。
  3. 如权利要求1所述的屏幕,其特征在于,所述微结构数量为多个,各个微结构的第一夹角的角度相等。
  4. 如权利要求1所述的屏幕,其特征在于,所述微结构数量为多个,各个微结构的第一夹角按屏幕下方至上方的方向依次减小。
  5. 如权利要求1所述的屏幕,其特征在于,所述微结构数量为多个且分为多个组,每一组包含多个相同的微结构,每一组的第一夹角角度相等,各个组的第一夹角角度按屏幕下方至上方的方向依次减小。
  6. 如权利要求1所述的屏幕,其特征在于,所述微结构在屏幕上呈弧线形分布。
  7. 如权利要求6所述的屏幕,其特征在于,所述微结构在屏幕上呈圆弧形分布,从屏幕下方至上方,圆弧半径依次增大。
  8. 如权利要求1所述的屏幕,其特征在于,所述底层接收投影光的一面为菲涅尔透镜锯齿结构。
  9. 如权利要求1所述的屏幕,其特征在于,所述微结构的材料为炭黑。
PCT/CN2014/088257 2014-10-10 2014-10-10 一种短焦正投影屏幕 WO2016054794A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/088257 WO2016054794A1 (zh) 2014-10-10 2014-10-10 一种短焦正投影屏幕
CN201480082073.8A CN106716249A (zh) 2014-10-10 2014-10-10 一种短焦正投影屏幕

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088257 WO2016054794A1 (zh) 2014-10-10 2014-10-10 一种短焦正投影屏幕

Publications (1)

Publication Number Publication Date
WO2016054794A1 true WO2016054794A1 (zh) 2016-04-14

Family

ID=55652483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088257 WO2016054794A1 (zh) 2014-10-10 2014-10-10 一种短焦正投影屏幕

Country Status (2)

Country Link
CN (1) CN106716249A (zh)
WO (1) WO2016054794A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703711A (zh) * 2017-09-27 2018-02-16 深圳市真屏科技发展有限公司 可用作电子黑板的可提高对比度的超短焦投影屏幕
CN108345165A (zh) * 2017-01-21 2018-07-31 深圳市三铭科技有限公司 无边框超短焦光学硬屏幕
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655686A (zh) * 2021-08-21 2021-11-16 山东宇影光学仪器有限公司 一种具有线性菲涅尔透镜层的正投影屏幕

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294317A (zh) * 1999-11-01 2001-05-09 孙柏林 正投屏幕
CN101405652A (zh) * 2006-03-20 2009-04-08 惠普开发有限公司 环境光吸收屏幕
CN101430495A (zh) * 2008-12-09 2009-05-13 张家港市红叶视听器材有限公司 高清投影屏幕
JP2013114248A (ja) * 2011-12-01 2013-06-10 Seiko Epson Corp スクリーン及びスクリーンの製造方法
CN104062839A (zh) * 2014-07-21 2014-09-24 成都菲斯特科技有限公司 一种带正向投影光学屏幕的投影系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107011A (ja) * 2003-09-29 2005-04-21 Daicel Chem Ind Ltd 反射スクリーン、それを用いた表示方法および表示装置
CN2718623Y (zh) * 2004-04-28 2005-08-17 黄文水 黑栅精显投影屏幕
US20090046361A1 (en) * 2005-10-24 2009-02-19 Tatsuo Itoh Reflection type screen and forward projection system
JP2008116911A (ja) * 2006-10-13 2008-05-22 Seiko Epson Corp スクリーン及びプロジェクションシステム
JP5189372B2 (ja) * 2008-01-16 2013-04-24 株式会社クラレ 反射型スクリーン
CN102023471A (zh) * 2009-09-19 2011-04-20 陈波 一种完全屏蔽环境光的正向投影屏
CN203595892U (zh) * 2013-12-06 2014-05-14 深圳市真屏科技发展有限公司 抗环境光投影屏幕

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294317A (zh) * 1999-11-01 2001-05-09 孙柏林 正投屏幕
CN101405652A (zh) * 2006-03-20 2009-04-08 惠普开发有限公司 环境光吸收屏幕
CN101430495A (zh) * 2008-12-09 2009-05-13 张家港市红叶视听器材有限公司 高清投影屏幕
JP2013114248A (ja) * 2011-12-01 2013-06-10 Seiko Epson Corp スクリーン及びスクリーンの製造方法
CN104062839A (zh) * 2014-07-21 2014-09-24 成都菲斯特科技有限公司 一种带正向投影光学屏幕的投影系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345165A (zh) * 2017-01-21 2018-07-31 深圳市三铭科技有限公司 无边框超短焦光学硬屏幕
CN107703711A (zh) * 2017-09-27 2018-02-16 深圳市真屏科技发展有限公司 可用作电子黑板的可提高对比度的超短焦投影屏幕
CN110262178A (zh) * 2019-07-22 2019-09-20 顾亮 一种用于超短焦正投影的弧形反射幕布

Also Published As

Publication number Publication date
CN106716249A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016054794A1 (zh) 一种短焦正投影屏幕
WO2020191877A1 (zh) 背光模块及显示装置
KR101330763B1 (ko) 조명기구
US10203551B2 (en) Light guide plate, backlight module and display device
WO2015070695A1 (zh) 一种 led 可变焦成像灯的光学系统
KR20050034646A (ko) 프레넬렌즈시트와 이를 이용한 투과형 스크린 및배면투과형 표시장치
US8545048B2 (en) LED illumination structure without light guide plate
KR101279483B1 (ko) 광학플레이트 및 이를 이용한 조명부재
WO2020138555A1 (ko) 움직이는 인피니티 미러 효과를 갖는 리어램프
KR101279486B1 (ko) 조명 부재 및 이를 이용한 조명기기
WO2013168990A1 (ko) 광학시트유닛
TWI406057B (zh) 背光模組
CN109459811A (zh) 一种反射片、背光模组及显示设备
WO2016054795A1 (zh) 一种短焦正投影屏幕结构
JP2009080357A (ja) 光制御シート及びそれを用いたバックライトユニット、ディスプレイ装置
CN214174812U (zh) 一种新型倾斜投影装置
WO2013009039A2 (en) Lighting device
JP2006030715A (ja) 透過型スクリーン
TWI334508B (en) Backlight module and back bezel
TW201520479A (zh) 可過濾特定光波長能量的罩體
JP4867167B2 (ja) 透過型スクリーンおよび背面投射型ディスプレイ装置
WO2024108667A1 (zh) 一种侧发光平板灯和一种照明装置
TW201430398A (zh) 擴散板及背光模組
CN108267804A (zh) 一种光学膜
CN219571714U (zh) 一种多层导光护眼灯罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903556

Country of ref document: EP

Kind code of ref document: A1