WO2016054754A1 - Guía de cátodo deslizable - Google Patents

Guía de cátodo deslizable Download PDF

Info

Publication number
WO2016054754A1
WO2016054754A1 PCT/CL2014/000049 CL2014000049W WO2016054754A1 WO 2016054754 A1 WO2016054754 A1 WO 2016054754A1 CL 2014000049 W CL2014000049 W CL 2014000049W WO 2016054754 A1 WO2016054754 A1 WO 2016054754A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
channel
cathode
sliding
head
Prior art date
Application number
PCT/CL2014/000049
Other languages
English (en)
French (fr)
Inventor
Pedro AYLWIN GÓMEZ
Hernán Alejandro ESCOBAR CELERY
Original Assignee
New Tech Copper Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Tech Copper Spa filed Critical New Tech Copper Spa
Priority to PCT/CL2014/000049 priority Critical patent/WO2016054754A1/es
Publication of WO2016054754A1 publication Critical patent/WO2016054754A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the sliding cathode guide device is composed of a continuous channel whose distance between opposite faces is different between different areas of the channel. The channel is divided into two zones:
  • the first zone or head comprises an octagonal hollow volume transversely cut at an angle (a).
  • This head has this internal shape, because it operates as a funnel or inverted cone to channel the cathode into its guide in its placement. Externally, the same octagonal shape helps fit other pieces complementary to that shape, necessary for production.
  • this extension of the head In the upper part of the head, there is an extension of the same head (d) that serves to hold the guide to the edge of the supporting structure, this extension of the head is hollow and is full, in part (it refers to the fact that only the part that gives the channel, not all its extension), of a composite of arid and polymeric materials (i) to increase its mechanical resistance (hardness) to sliding and / or blows that it can receive when the cathode sheet is positioned, thus avoiding the tearing of it.
  • This first zone, head represents between 5 and 10% of the length of the sliding anode guide, preferably 7.7%.
  • the composites of arid-polymeric materials are constituted for the present development of a polymeric resin and of a material that behaves like an aggregate, preferably quartz, fiberglass, sand, among others.
  • the extension of the head (d) has an upper hole in its vertical axis (e), through which it passes through the head of the penetrating bolt and is also retained by a lower hole (e " ), also arranged in the vertical axis, but in the lower part of the extension of the head, where the bolt crosses the lower part of the head and is anchored to the upper bar of the supporting structure.
  • These holes can have a bolt or bushing (metallic or high shear resistance material) that passes through the guide and supporting structure pressed against a nut or can these bolts or bushings, (metallic or high shear resistance material) be fixed to the sliding cathode guide, through the same structures and without a tightening nut, in order to anchor (and / or lock) the guide by hook and not by bolts, which does not require tools and greatly facilitates its removal and installation in if you.
  • a bolt or bushing metallic or high shear resistance material
  • the second zone or channel (b), more extensive comprises at its upper end next to the head, an elbow (j) that allows to decrease the depth of the guide and separate from the bottom of it (in the direction perpendicular to the guide) , the edge of the cathode, when it is entered into it.
  • this way of entering the guide, using the elbow allows to avoid the phenomenon of cathode binding when it is introduced to the guide.
  • the channel is kept constant and uniform in its width between walls, but not in its depth by the elbow (j).
  • rectangular supports (h) have been inserted in two places that allow the width of the guide channel to be maintained and prevent cathode jamming during the removal and insertion operation.
  • Both the channel area and the head area are made of a single piece of polymeric material with or without inorganic loads resistant to thermal, chemical and improved physical properties, for better performance in the environment where the part is used.
  • thermoplastics based on thermoformable, thermofixed and / or epoxy resins are used, such as PVC (Polyvinylchloride), cPVC, fiberglass, PP (Polypropylene), Teflon and / or mixtures thereof.
  • PVC Polyvinylchloride
  • cPVC Polyvinylchloride
  • fiberglass Polypropylene
  • Teflon Teflon
  • the polymer of best use is PP or cPVC for its thermal resistance above 80 ° C.
  • lower support is less extensive in its length than the head and fulfills the function of anchoring and positioning the lower tip of the cathode, within the guide, maintaining its verticality (avoiding free movement from where it came from in the canal area).
  • This bottom bracket is a separate piece (in a single arrangement) to the head-channel piece, although all work together as one piece, the cathodic slide guide.
  • the lower support as the name says has a double function, guiding and keeping in position, the distal end of the channel (with respect to the head) fixed laterally to the lower side of the cathode and anode supporting structure. This lower support is adjusted to the lower perimeter of the channel area, so that, when the guide is introduced, it is trapped.
  • This area of the lower support comprises two preferred configurations: the first of these configurations is divided into two sections, the first section or cone, (k) has a flat side which in turn contains two perforations (m) to pass screws that are fixed with the lower side of the supporting structure of cathodes and anodes, and the "Y" shaped side, without bottom, which channels the guide in its introduction.
  • the second section or guide fixer, (I) has a parallel bottomless conformation, which anchors the distal end of the channel preventing the guide from leaving the support.
  • the second configuration includes three sections, the first section or cone, (k) has a flat side which in turn contains two perforations (m) to pass screws that are fixed with the lower side of the cathode and anode supporting structure, and the "Y" shaped side, with a bottom (or), which channels the guide in its introduction.
  • the second section or guide fixer, (I) has a "U" shaped formation, with bottom, which anchors the distal end of the channel preventing the guide from leaving the support.
  • the third section or extension of the lower support (n) comprises a parallel "L” shaped structure, with a separation between the parallel "L” s by an inner minichannel (p), in order to retain a guide horizontal that prevents deposition at the lower edge of the cathode and thus avoid the use of wax or other gadgets.
  • the cone-fixing guide-extension sections of the lower support are made in one piece and communicate with each other through a common channel. The ratio of this area to the total sliding cathode guide ranges from 5 to 10%, preferably 6.25%.
  • support structure we refer to a wide range of alternatives ranging from a pair of tie bars to a pre-assembled module with guides for immediate use and the full range of alternatives that may exist between the aforementioned including the same electro deposit cell.
  • Figure 1/6 shows five views (front, side, rear, front and rear angle) of the slide cathode with its head and channel parts, empty, without the aggregate / polymer in its hollow cavities.
  • Figure 2/6 shows four views (side, rear, front and rear angle) of the sliding cathode with its head and channel parts, filled with the polymer in its hollow cavities.
  • Figure 3/6 shows four views (front, side, longitudinal and front angle) of the lower support of the sliding cathode guide in its first configuration, open at the base.
  • Figure 4/6 shows four views (front, side, longitudinal and front angle) of the lower support of the sliding cathode guide in its second configuration, closed at the base.
  • Figure 5/6 shows the positioning of the cathodic slide guide in relation to the supporting structure.
  • the lower support is also seen, at the base of the supporting structure, in its open configuration.
  • Figure 6/6 shows a view of the relationship between sliding cathode guide, supporting structure and the cathode.
  • (e) and (e) are the holes for the upper and lower anchor bolt respectively.
  • the first is located at the top of the extension of the head and lets the bolt head through the extension go through.
  • the second retains the head of the bolt and anchors the lower surface of the extension of the head to the supporting structure.
  • (j) channel elbow its purpose is to increase the depth of the guide, between 70% to 20%, preferably 50%, and thus increase the distance to the edge of the cathode to prevent the cathode sheet from clogging and damaging the guide in case the cathode enters not perpendicular to the base (cathode rotation).
  • (k) cone of the lower support fulfills the function of channeling the lower end of the cathode guide.
  • This cone has two configurations, open or closed, below. When it is open, the guide channel can pierce the cone in order to release and drop erasures that eventually generate short circuits.
  • the copper foil obtained here is in the form of a clamp because the two sheets are connected by the flush of the lower edge of the unprotected cathode.
  • the cone limits the descent of the channel in order to be able to place a lower horizontal guide which eliminates the electro deposition at the lower edge of the cathode inserted in this guide, thus generating, in the harvest, two copper sheets separate electrolytic, one on each side.
  • (I) guide fixer its purpose is to channel and anchor the distal end of the channel preventing the guide from leaving the support.
  • This fixer has two settings, open or closed, below. When it is open, the channel can pass through the support. In the closed configuration, the fixator limits the descent of the channel.
  • the cell was filled with copper sulfate electrolyte, of composition for the Industrial Plant, and the deposit was started at an approximate potential of 2.0 Volts between anode and cathode, using a current density between 280 A / m 2 and 450 A / m 2 .
  • copper sulfate electrolyte of composition for the Industrial Plant
  • the deposit was started at an approximate potential of 2.0 Volts between anode and cathode, using a current density between 280 A / m 2 and 450 A / m 2 .
  • different technologies were evaluated comparatively after a month in operation, the first group of cells used cathodes with conventional edge covers and without guides in a complete bank. The result of this operation was obtaining 13% of short circuits in the cells.
  • the second group of cells used the technology of the cathodic and anodic guides (with uniform widths and without elbows) and with the horizontal anodic separators, the result of the operation delivered values of the order of 3% in the formation of short circuits (with a second different bank).
  • the current efficiencies obtained were respectively 85.3%, 89.7% and 94.5% and their respective qualities 55, 1%, 94.7% and 99.5%.
  • the replacement of the cathodic guide is effective and efficient in the sense that this conformation of the same is able to position and change in situ, without stopping the operation of the cell and without having to remove the electrolyte.
  • its unit replacement is more efficient because being formed in two pieces, the damaged part is quickly removed without requiring electrolyte emptying, because the damaged guide is simply removed individually and replaced with a new one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Dispositivo de guía catódica deslizable que constituye un canal continuo que comprende tres zonas bien definidas, tales como un cabezal, zona del canal y zona de soporte inferior. Este dispositivo, en la zona del cabezal, está configurado con forma de embudo para guiar al cátodo cuando va descendiendo, y posee una prolongación del cabezal que permite su sujeción a la estructura soportante. La zona del cabezal está rellena con árido/polímero tipo resina termoformable, y dispone de agujeros para la fijación de la guía. En la zona del canal la profundidad de la guía es constante a excepción de un área en forma de codo donde el canal es entre un 20% y un 70% menos profundo. La zona de soporte inferior comprende dos tipos de configuración que permiten fijar y canalizar la parte distal del canal.

Description

GUÍA DE CÁTODO DESLIZABLE
CAMPO TÉCNICO DE LA PRESENTE INVENCIÓN El presente desarrollo abarca los campos de electro-refinación y electro- obtención en diferentes metales.
DESCRIPCION DE LO CONOCIDO EN LA MATERIA La obtención y refinación industrial de metales de alta pureza, como cobre, níquel, zinc y otros, se realiza mayoritariamente por electro depositación desde soluciones acuosas ácidas o alcalinas de los metales respectivos. Sea que el metal se obtenga desde sus soluciones utilizando ánodos insolubles o disolviendo ánodos del propio metal, los cátodos utilizados industrialmente en la actualidad, son en ambos casos preferentemente de acero inoxidable, titanio y también en algunos casos del propio metal.
En los procesos industriales de depósito de metales por electro depositación, se acostumbraba a colgar cátodos y ánodos y sumergirlos en el electrolito de las cubas o celdas de electro depositación, apoyando la barra de soporte de cada ánodo y cátodo directamente sobre las respectivas barras conductoras, que están ubicadas en los bordes longitudinales superiores de las celdas. Con este sistema, al contar con guías para su desplazamiento al interior de las cubas, los ánodos y cátodos no pueden oscilar como si fueran péndulos sumergidos en el electrolito.
Si bien, el uso de acero inoxidable o titanio en los cátodos ha resuelto un tipo de dificultades operativas, se han generado otro tipo de nuevas dificultades, como es el despegue del metal depositado en estos cátodos cuando la depositación se extiende e incluye los bordes laterales de estos.
De consiguiente, gran parte de los inconvenientes fueron subsanados al introducir en la celda, una estructura de soporte de material aislante, como la que se describe en la Solicitud de Patente Chilena N° 1020-04, en la que cada ánodo y cada cátodo es ubicado en una posición vertical fija, mediante guías que aseguran además un espaciado uniforme entre ellos, impidiendo también el movimiento relativo de los mismos. Si bien la estructura resuelve los problemas inherentes a la falta de guías de electrodos (oscilación), ocurre que el uso u operación descuidada puede provocar algunas alteraciones y/o desperfectos que demoran la operación.
Parte de los daños producidos por la mala manipulación de los electrodos, está dado porque el cátodo es una estructura con bordes sólidos y en algunos casos filosos, lo que va generando, cuando es posicionado el cátodo en una guía, que ésta sea dañada por el mismo cátodo o que al bajar el cátodo en una guía, éste quede a medio camino atascado. Lo conocido sobre este tipo de dispositivo es lo presentado en la Solicitud de Patente Chilena N° 1300-2006, la cual presenta un sistema modular potenciador de procesos electro-metalúrgicos, el que comprende perfiles de guías cátodos, de sección transversal tipo omega o tipo U, para dejar en posición fija el cátodo. Además posee una cabeza en forma cónica invertida superior para facilitar la entrada de los cátodos.
Otro problema que se suscita al introducir los cátodos en la guía, radica en el hecho de que si no quedan bien sujetos en las paredes laterales, los cátodos tienden a vibrar y moverse por los desplazamientos del electrolito, este fenómeno repercute en la formación de corto circuitos que disminuyen la eficiencia de corriente, generando un menor depósito de metal sobre el cátodo. Una solución existente a este problema es la utilización de una gran cantidad de pernos para fijar las guías tradicionales a la estructura soportante. El alto uso y el aflojamiento de los pernos van produciendo ineficiencias en la cantidad de cobre cosechado por cátodo, afectando así los rendimientos.
Todos estos problemas reducen la calidad del producto obtenido, aumentan los costos de producción y originan pérdidas. Descripción de la Guía de cátodo deslizable.
Este dispositivo se puede acoplar y desacoplar en forma simple, a otros módulos o elementos, que le confieren propiedades que potencian la solución de problemas que se presentan en la práctica de los procesos de Electro - Metalurgia, como los descritos anteriormente en el Capítulo "Descripción de lo Conocido en la Materia". El dispositivo de guia de cátodo deslizable, se compone de un canal continuo cuya distancia entre caras opuestas es diferente entre distintas zonas del canal. El canal se divide en dos zonas:
- La primera zona o cabezal comprende un volumen hueco octagonal cortado transversalmente en ángulo (a). Éste cabezal posee esta forma interna, porque opera a modo de embudo o cono invertido para canalizar al cátodo dentro de su guía en su colocación. Externamente, la misma forma octogonal ayuda a encajar otras piezas complementarias a esa forma, necesarias para la producción. En la parte superior del cabezal, existe una prolongación del mismo cabezal (d) que sirve para sostener la guía al borde de la estructura soportante, esta prolongación del cabezal es hueca y está llena, en parte (se refiere a que solo está llena la parte que da al canal, no toda su prolongación), de un composito de materiales áridos y poliméricos (i) para aumentar su resistencia mecánica (dureza) al deslizamiento y/o golpes que pueda recibir cuando la lámina del cátodo es posicionada, evitando así el desgarramiento de la misma. Esta primera zona, cabezal, representa entre un 5 a un 10 % del largo de la guía de ánodo deslizable, de preferencia un 7,7%.
Los compositos de materiales áridos-poliméricos están constituidos para el presente desarrollo de una resina polimérica y de un material que se comporta como un árido, de preferencia cuarzo, fibra de vidrio, arena, entre otros.
Por otro lado, la prolongación del cabezal (d) posee un agujero superior en su eje vertical (e), por el cual atraviesa la cabeza del perno que penetra y es retenido además por un agujero inferior (e"), también dispuesto en el eje vertical, pero en la parte inferior de la prolongación del cabezal, donde el perno atraviesa la parte inferior del cabezal y se ancla a la barra superior de la estructura soportante.
También en la prolongación del cabezal (d) existen 4 agujeros (g) que la atraviesan en un plano horizontal. Al ser llenado el cabezal con el árido/ polímero, este escurre rellenando los 4 agujeros (g), al solidificar le polímero estos 4 agujeros anclan la nueva pieza árido/polímero al cabezal. Esto es necesario, porque el cabezal al sufrir golpes en la operación, puede perder este relleno si no estuviera anclado a la prolongación del cabezal (d). Este cabezal posee además, en su parte inferior, donde conecta el cabezal con el canal, dos agujeros (f) los cuales son utilizados para anclar lateralmente la guía a la estructura soportante. Estos agujeros pueden llevar un perno o buje (metálico o material de alta resistencia al cizallamiento) que atraviesa la guía y la estructura soportante apretados contra una tuerca o pueden estos pernos o bujes, (metálico o material de alta resistencia al cizallamiento ) estar fijos a la guía deslizable de cátodo, atravesando las mismas estructuras y sin una tuerca de apriete, con el fin de anclar ( y/o trabar) la guía por enganche y no por pernos, lo cual no requiere herramientas y facilitando enormemente su extracción e instalación in situ. - la segunda zona o canal (b), más extenso, comprende en su extremo superior junto al cabezal, un codo (j) que permite disminuir la profundidad de la guía y separar del fondo de esta (En el sentido perpendicular a la guía), el borde del cátodo, cuando este es ingresado a la misma. Además, esta forma de entrar a la guía, utilizando el codo, permite evitar el fenómeno de atascamiento del cátodo cuando es introducido a la guía. Siguiendo de forma descendente la verticalidad de la guía catódica deslizable, el canal se mantiene constante y uniforme en su ancho entre paredes, pero no en su profundidad por el codo (j). Por fuera de la guía se han insertado soportes rectangulares (h) en dos lugares que permiten mantener el ancho del canal de la guia y evitar el atascamiento de los cátodos durante la operación de extracción e inserción de estos.
Tanto la zona del canal como la zona del cabezal están fabricadas en una sola pieza de material polimérico con o sin cargas inorgánicas resistentes al ambiente térmico, químico y con propiedades físicas mejoradas, para un mejor desempeño en el ambiente en donde la pieza se utilice, de preferencia se usan termoplásticos basados en resinas termoformables, termofijadas y/o epóxicas, tales como el PVC (Polivinilcloruro), cPVC, fibra de vidrio, PP (Polipropileno), teflón y/o sus mezclas. En refinación de minerales, de preferencia, el polímero de mejor uso es el PP o cPVC por su resistencia térmica sobre los 80°C. Para procesos de Electro-wining, de preferencia, se prefiere usar PVC o cPVC que resisten temperaturas hasta al menos 60°C.
- la tercera zona, soporte inferior (c), es menos extensa en su largo que el cabezal y cumple la función de anclar y posicionar la punta inferior del cátodo, dentro de la guía, manteniendo su verticalidad (evitando el libre movimiento desde donde venía en la zona del canal). Este soporte inferior es una pieza independiente (en un solo arreglo) a la pieza cabezal-canal, aunque todos trabajan en conjunto como una sola pieza, la guía deslizable catódica. El soporte inferior como su nombre lo dice tiene una doble función, guiar y mantener en su posición, el extremo distal del canal (con respecto al cabezal) fijo lateralmente al lado inferior de la estructura soportante de cátodos y ánodos. Este soporte inferior está ajustado al perímetro inferior de la zona del canal, de forma tal que, al ser introducida la guía queda atrapada.
Esta zona del soporte inferior comprende dos configuraciones preferidas: la primera de estas configuraciones se divide en dos secciones, la primera sección o cono, (k) posee un lado plano el cual a su vez contiene dos perforaciones (m) para pasar tornillos que se fijan con el lado inferior de la estructura soportante de cátodos y ánodos, y el lado con forma en "Y", sin fondo, que canaliza la guía en su introducción. La segunda sección o fijador de guía, (I) posee una conformación paralela sin fondo, el cual ancla el extremo distal del canal evitando que la guía se salga del soporte.
La segunda configuración incluye tres secciones, la primera sección o cono, (k) posee un lado plano el cual a su vez contiene dos perforaciones (m) para pasar tornillos que se fijan con el lado inferior de la estructura soportante de cátodos y ánodos, y el lado con forma en "Y", con fondo (o), que canaliza la guía en su introducción. La segunda sección o fijador de guía, (I) posee una conformación en forma de "U", con fondo, el cual ancla el extremo distal del canal evitando que la guía se salga del soporte. Finalmente, la tercera sección o prolongación del soporte inferior (n), comprende una estructura en forma de "L" paralela, con una separación entre las "L"s paralelas por un minicanal interior (p), con el fin de retener una guía horizontal que prevenga la depositación en el borde inferior del cátodo y asi evitar el uso de cera u otros artilugios. Las secciones cono-fijador de guía-prolongación del soporte inferior, están realizadas en una zola pieza y se comunican entre sí a través de un canal común. La relación de esta zona con la guía de cátodo deslizable total va entre un 5 a 10%, de preferencia un 6,25%.
Con respecto al termino de "estructura soportante" nos referimos a un amplío rango de alternativas que van desde un par de barras de sujeción hasta un módulo pre-armado con guías de uso inmediato y toda la gama de alternativas que puedan existir entre lo mencionado previamente incluyendo la celda misma de electro depositación. DESCRIPCION DE LOS DIBUJOS
La Figura 1/6, muestra cinco vistas (frontal, lateral, trasera, en ángulo frontal y en ángulo trasero) del cátodo deslizable con sus partes del cabezal y canal, vacíos, sin el árido/polímero en sus cavidades huecas.
La Figura 2/6, muestra cuatro vistas (lateral, trasera, en ángulo frontal y en ángulo trasero) del cátodo deslizable con sus partes del cabezal y canal, llenos con el polímero en sus cavidades huecas.
La Figura 3/6, muestra cuatro vistas (frontal, lateral, longitudinal y en ángulo frontal) del soporte inferior de la guia cátodo deslizable en su primera configuración, abierta en la base.
La Figura 4/6, muestra cuatro vistas (frontal, lateral, longitudinal y en ángulo frontal) del soporte inferior de la guia cátodo deslizable en su segunda configuración, cerrada en la base.
La figura 5/6, muestra el posicionamiento de la guía deslizable catódica en relación con la estructura soportante. También se ve el soporte inferior, en la base de la estructura soportante, en su configuración abierta.
La figura 6/6, muestra una vista de la relación entre guía catódica deslizable, estructura soportante y el cátodo.
Las letras que indican los detalles en las diferentes figuras, tienen el siguiente significado:
(a) Zona del cabezal, ancla la parte superior de la guía al borde superior de la estructura soportante y, guía a la parte superior del cátodo en forma vertical dentro de la guía total. También su estructura externa octaédrica le permite encajar con las guías anódicas, formado un bloque de estructuras.
(b) Zona del canal, deja un área libre para el desplazamiento vertical del cátodo.
También el codo permite guiar y separar la hoja catódica del fondo de la guía, evitando así, su desgarro en caso que los bordes del cátodo no entren en forma vertical (rotación). (c) Zona del soporte inferior, en ambas configuraciones, canaliza y posiciona la guía, en forma vertical evitando su movimiento en el plano horizontal. .
(d) Prolongación del cabezal, esta parte funciona como un hombro para sujetarse (se puede apernar) a la estructura soportante, además este hombro al estar relleno con un árido/polimérico también cumple la función de soportar mecánicamente los golpes cuando es introducido un nuevo cátodo de acero inoxidable, el cual, posee un borde inferior filoso que raja la guía si ésta no posee un relleno resistente para estos efectos. Por otro lado, el agujero de anclaje superior (e), el agujero de anclaje inferior (e¾) y el perno de esta prolongación, opera en concomitancia con los pernos de anclaje laterales
(atraviesan los agujeros (f)), fijos o móviles, para enganchar la guía a la estructura soportante y evitar su desplazamiento vertical durante el ingreso o egreso de los cátodos.
(e) y (e ) son los agujeros para el perno de anclaje superior e inferior respectivamente. El primero se ubica en la parte superior de la prolongación del cabezal y deja pasar la cabeza del perno que atraviesa la prolongación. El segundo, retiene la cabeza del perno y ancla la superficie inferior de la prolongación del cabezal a la estructura soportante.
(f) agujero para los pernos de anclaje o traba lateral. (g) agujeros de interconexión de árido/polimérico. Estos agujeros cumplen la función de retener contra golpes horizontales al árido/polimérico en las cavidades donde fue inyectado. Al estar interconectado el polímero a través de los agujeros se genera una estructura que no puede ser expulsada si se golpea el cabezal. (h) soportes rectangulares, estos soportes mantienen en posición vertical y alineada en todo su largo la guía, evitando que esta se doble, llegando al extremo de evitar la liberación del cátodo desde su posición.
(i) relleno árido/polimérico de estructuras huecas en el cabezal, con el fin de aumentar la resistencia de la pieza a los golpes y daños mecánicos derivados del ingreso de nuevos cátodos.
(j) codo del canal, su finalidad es aumentar la profundidad de la guía, entre un 70% a 20%, de preferencia un 50%, y así aumentar la distancia hasta del borde del cátodo para evitar que la lámina catódica se atasque y dañe la guía en caso que el cátodo entre de manera no perpendicular a la base (rotación del cátodo).
(k) cono del soporte inferior, cumple la función de canalizar el extremo inferior de la guia del cátodo. Este cono, tiene dos configuraciones, abierto o cerrado, por abajo. Cuando está abierto, el canal de la guia puede traspasar el cono con el fin de liberar y dejar caer borras que con el tiempo generan cortocircuitos. La lámina de cobre que se obtiene aquí, tiene forma de pinza porque están las dos láminas conectadas por el encarnizamiento del borde inferior del cátodo no protegido. En la configuración cerrada, el cono limita el descenso del canal con el fin de poder poner una guía horizontal inferior la cual elimina la electro deposición en el borde inferior del cátodo insertado en esta guia , generando así, en la cosecha, dos láminas de cobre electrolítico separadas, una por cada lado.
(I) fijador de guía, su finalidad es canalizar y anclar el extremo distal del canal evitando que la guía se salga del soporte. Este fijador tiene dos configuraciones, abierto o cerrado, por abajo. Cuando está abierto, el canal puede traspasar el soporte. En la configuración cerrada, el fijador limita el descenso del canal.
(m) orificios del cono, su finalidad son anclar el fijador de guia a la parte inferior lateral de la estructura soportante.
(n) prolongación del soporte inferior.
(o) fondo del soporte inferior que evita que el canal traspase esta pieza.
(p) mini-canal interior que comprende las secciones cono-fijador de guía- prolongación del soporte inferior con el fin, en algunas aplicaciones, de retener una guía horizontal inferior que prevenga la depositación en el borde inferior del cátodo y asi evitar el uso de cera u otros artilugios actualmente utilizados
(q) estructura soportante de cátodos y ánodos.
(r) cátodo.
(s) huecos en el cabezal y la sección superior del canal.
(t) guía catódica deslizable. Ejemplo de Aplicación
A fin de comprobar los resultados de este dispositivo, y sin que esto signifique limitar su aplicabilidad, se utilizó en Planta, bajo las condiciones de una planta industrial de obtención de cobre, en una nave de 480 celdas, dividida en 4 bancos. Cada celda poseyendo 160 cátodos y 161 ánodos.
Una vez cargados los cátodos y ánodos, se llenó la celda con electrolito de sulfato de cobre, de composición para la Planta Industrial, y se inició el depósito a un potencial aproximado de 2,0 Voltios entre ánodo y cátodo, empleando una densidad de corriente entre los 280 A/m2 y 450 A/m2. Dentro de estas celdas, se evaluaron comparativamente después de un mes en operación diferentes tecnologías, el primer grupo de celdas utilizo cátodos con cubre bordes convencionales y sin guías en un banco completo. El resultado de esta operación fue la obtención de un 13% de cortocircuitos en las celdas. El segundo grupo de celdas utilizó la tecnología de las guías catódicas y anódicas (con anchos uniformes y sin codos) y con los separadores anodicos horizontales, el resultado de la operación entregó valores del orden del 3% en la formación de cortocircuitos (con un segundo banco diferente). Finalmente, el tercer grupo de celdas utilizando las guías catódicas y anódicas deslizables, entregaron un 0% de cortocircuitos. Las eficiencias de corriente obtenidas fueron respectivamente 85,3%, 89,7% y 94.5% y sus respectivas calidades 55, 1 %, 94,7% y 99.5%.
La explicación de estas mejoras energéticas radica en varios puntos dentro de los cuales se pueden mencionar:
-la disminución en la acumulación de borra en el soporte inferior, que al estar en contacto con el cátodo permite la formación de nodulos que llevan a la formación de cortocircuitos.
-la eliminación del encarnizamiento del cátodo, lo cual lleva a pérdidas materiales y en tiempo al intentar recuperar el cátodo.
Fuera de los valores operativos en la mejor eficiencia en el uso de corriente por disminución de cortocircuitos, también se evaluaron otros parámetros como fue la disminución en un 15%, en el mismo período de un mes, del recambio de guías. Además la cantidad de fallas por celda por més que con la tecnología antigua era del orden de 15 fallas/mes, esto disminuyó con la nueva tecnología a 1 falla/mes. Las conclusiones de esta experimentación y en la aplicabilidad del dispositivo en planta se enumeran a continuación:
1.- Mejora en los tiempos de preparación de cátodo, respecto a la velocidad de recambio de los mismos. Al introducir un nuevo cátodo a través de la guía, aquí presentada, es sencillo, rápido y no daña la placa catódica ni la guía deslizable (evita que se tranque el cátodo y que se deteriore la guía por golpes en su superficie cuando se introduce un nuevo cátodo), las modificaciones en la resistencia del cabezal, el codo, el anclaje sin tuercas, la forma exterior complementaria con otros dispositivos necesarios en la producción, soportes rectangulares; mejora los tiempos de manufactura y disminuye recursos de mano de obra que se necesitan.
2 - El recambio de la guía catódica es efectivo y eficiente en el sentido de que esta conformación de la misma es capaz de posicionase y cambiarse in situ, sin detener la operación de la celda y sin tener que remover el electrolito. Además su recambio unitario es más eficiente porque al estar conformado en dos piezas, se extrae rápidamente la pieza dañada sin requerir el vaciamiento del electrolito, porque simplemente se extrae la guía dañada individualmente y se reemplaza por una nueva.
3. Aumenta el tiempo promedio entre fallas de las guias por daño inferido por los cátodos permitiendo una operación más fluida y eficiente.
4. Mejora en forma significativa la eficiencia de corriente y calidad del depósito obtenido.

Claims

REIVINDICACIONES
1. - Dispositivo de guía catódica deslizable, CARACTERIZADO porque es un canal continuo que comprende tres zonas bien definidas, tales como un cabezal (a), zona del canal (b) y zona del soporte inferior (c), además este canal permite el ingreso de cátodos evitando el daño mecánico en la guía por golpes y que el cátodo se tranque en su descenso.
2. - Dispositivo de guía catódica deslizable, según la reivindicación 1 , CARACTERIZADO porque la zona del cabezal (a) permite guiar inicialmente al cátodo cuando este va descendiendo debido a su forma interna de embudo, además comprende la prolongación del cabezal (d) permitiendo su sujeción a la estructura soportante (q).
3. - Dispositivo de guía catódica deslizable, según la reivindicación 2, CARACTERIZADO porque la zona del cabezal está rellena con un árido/polimérico.
4. - Dispositivo de guía catódica deslizable, según la reivindicación 3, CARACTERIZADO porque el árido/polimérico al cual se hace referencia es una resina termoformable, termofijada o epóxica.
5. - Dispositivo de guía catódica deslizable, según la reivindicación 2, CARACTERIZADO porque en la zona del cabezal (a) en la prolongación de la misma (d), hay un agujero para anclar verticalmente la guía (e) y en la parte inferior del cabezal hay dos agujeros (f) para anclar lateralmente la guía, estos agujeros son traspasados por pernos fijos como parte de la estructura o móviles, de material plástico o metálico, con el fin de enganchar la guía a la estructura soportante.
6. - Dispositivo de guía catódica deslizable, según la reivindicación 5, CARACTERIZADO porque los pernos que atraviesan los agujeros (e) y (f) pueden o no estar apretados con tuercas.
7. - Dispositivo de guía catódica deslizable, según la reivindicación 2, CARACTERIZADO porque la zona del cabezal posee una forma externa octaédrica con la cual es fácilmente acoplable a otros dispositivos necesarios para la producción de los cátodos.
8.- Dispositivo de guía catódica deslizable, según la reivindicación 2, CARACTERIZADO porque la zona del canal (b), es simétrico en su espesor en todo su largo, además con respecto a su profundidad existe una variación a nivel del codo (j) en donde el canal es entre un 70 a un 20% más profundo.
9. - Dispositivo de guía catódica deslizable, según la reivindicación 8, CARACTERIZADO porque la zona del codo (j), posee una profundidad del 50% con respecto al total de la profundidad del canal (b).
10. - Dispositivo de guía catódica deslizable, según la reivindicación 2, CARACTERIZADO porque la zona de la prolongación del cabezal (d), está atravesada horizontalmente por 4 agujeros (g) que están dispuestos para poder retener el árido/polímero (i) en su ubicación final dentro de los agujeros di cabezal.
11.- Dispositivo de guía catódica deslizable, según la reivindicación 8, CARACTERIZADO porque la zona del canal (b), tiene estructuras rectangulares (h) para mantener la apertura del canal de la guía constante.
12. - Dispositivo de guía anódica deslizable, según la reivindicación 1 , CARACTERIZADO porque la zona del soporte inferior (c) comprende dos tipos de configuración, la primera posee dos secciones: el cono (k) y el fijador de guía (I); la segunda configuración comprende tres secciones: el cono (k), el fijador de guía (I) y la prolongación del soporte inferior (n), ambas configuraciones canalizan y fijan de forma segura la parte distal del canal (b).
13. - Dispositivo de guía anódica deslizable, según la reivindicación 12, CARACTERIZADO porque la configuración de tres secciones: el cono (k), el fijador de guía (I) y la prolongación del soporte inferior (n) comparten un fondo del soporte inferior común (o), que define además un minicanal (p) donde se apoya una guía horizontal.
14. - Dispositivo de guía anódica deslizable, según la reivindicación 12, CARACTERIZADO porque la configuración de dos secciones: el cono (k) y el fijador de guía (I) no tiene fondo, por lo tanto, la parte inferior del canal de la guia catódica pueden o no atravesarla si se requiere.
15. - Dispositivo de guía anódica deslizable, según la reivindicación 1 , CARACTERIZADO porque este dispositivo permite su reemplazo in situ una vez que falla, sin detener la operación de electro deposítación y sin tener que vaciar el electrolito.
PCT/CL2014/000049 2014-10-06 2014-10-06 Guía de cátodo deslizable WO2016054754A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000049 WO2016054754A1 (es) 2014-10-06 2014-10-06 Guía de cátodo deslizable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000049 WO2016054754A1 (es) 2014-10-06 2014-10-06 Guía de cátodo deslizable

Publications (1)

Publication Number Publication Date
WO2016054754A1 true WO2016054754A1 (es) 2016-04-14

Family

ID=55652449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000049 WO2016054754A1 (es) 2014-10-06 2014-10-06 Guía de cátodo deslizable

Country Status (1)

Country Link
WO (1) WO2016054754A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161514A1 (es) * 2018-02-20 2019-08-29 Salazar Soto Boris Edgardo Sistema modular de centrado y alineación de electrodos y cubrebordes permanentes de cátodos en celdas electrolíticas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997421A (en) * 1976-02-02 1976-12-14 Cominco Ltd. Top-mounted anode spacer clip
US20070284243A1 (en) * 2006-05-30 2007-12-13 New Tech Copper S.A. Modular system for improving electro-metallurgical processes
ES2358651A1 (es) * 2008-01-07 2011-05-12 New Tech Copper, S.A. Sistema de guiado de ánodos y/o cátodos en celdas de producción de metales por electrolisis.
US20120205239A1 (en) * 2011-02-16 2012-08-16 Freeport-Mcmoran Corporation Anode assembly, system including the assembly, and method of using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997421A (en) * 1976-02-02 1976-12-14 Cominco Ltd. Top-mounted anode spacer clip
US20070284243A1 (en) * 2006-05-30 2007-12-13 New Tech Copper S.A. Modular system for improving electro-metallurgical processes
ES2358651A1 (es) * 2008-01-07 2011-05-12 New Tech Copper, S.A. Sistema de guiado de ánodos y/o cátodos en celdas de producción de metales por electrolisis.
US20120205239A1 (en) * 2011-02-16 2012-08-16 Freeport-Mcmoran Corporation Anode assembly, system including the assembly, and method of using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161514A1 (es) * 2018-02-20 2019-08-29 Salazar Soto Boris Edgardo Sistema modular de centrado y alineación de electrodos y cubrebordes permanentes de cátodos en celdas electrolíticas

Similar Documents

Publication Publication Date Title
EP0041045B1 (de) Kathode für eine Schmelzflusselektrolysezelle
ES2606021B1 (es) Proceso y dispositivo electrolíticos de inyección en paralelo
ES2198988T3 (es) Anodo de extraccion electrolitica y procedimiento que permite producir dicho anodo.
IS8762A (is) Rafskaut fyrir álfrafgreiningarker með ekki-sléttri hönnun raufa
AR041042A1 (es) Control de la temperatura y operacion de electrodos inertes durante la produccion de metal de aluminio
WO2016054754A1 (es) Guía de cátodo deslizable
KR20150140342A (ko) 금속 전해 채취를 위한 전해 전지
NO771572L (no) Apparat og fremgangsm}te for peledriving ved hjelp av elektro-osmose
NO158146B (no) Elektrolysecelle for fremstilling av smeltet metall.
WO2016054753A1 (es) Guía de ánodo deslizable
WO2015010220A2 (es) Dispositivo rigidizador de electrodos y sistema rigidizador que utiliza dicho dispositivo
JP4359701B2 (ja) 土留め壁の鋼管杭部分撤去方法
CN213296377U (zh) 一种用于房屋建筑的基坑挡土结构
US9206619B1 (en) Apparatus and method for securing posts to retaining walls
JP2000034731A (ja) 木 柵
DE1467234A1 (de) Amalgamelektrolysezellen und deren Betrieb
US20190062937A1 (en) Electrode structure provided with resistors
CN212671806U (zh) 河底隧道盾构工作井
ES2535870A2 (es) Guía de colector de burbujas y uso de la misma
CN108767512A (zh) 一种自保护接地极及其安装方法
JP4458460B2 (ja) 鋼管矢板の孔形成方法及びその孔形成装置
WO2021097586A1 (es) Sistema y dispositivo protector de electrodos, anti-picaduras y anticorrosivo
CN210086159U (zh) 方便拆装且高强度防洪装置
RU2017106835A (ru) Перфорированный металлический инертный анод для получения алюминия электролизом расплава
US10006134B1 (en) Electrodeposition of metal microstructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903600

Country of ref document: EP

Kind code of ref document: A1