WO2016053022A2 - Method for increasing plant productivity by using ore7 gene, method for reinforcing stress resistance of plants by using ore7 gene and method for delaying plant senescence by using ore7 gene - Google Patents

Method for increasing plant productivity by using ore7 gene, method for reinforcing stress resistance of plants by using ore7 gene and method for delaying plant senescence by using ore7 gene Download PDF

Info

Publication number
WO2016053022A2
WO2016053022A2 PCT/KR2015/010375 KR2015010375W WO2016053022A2 WO 2016053022 A2 WO2016053022 A2 WO 2016053022A2 KR 2015010375 W KR2015010375 W KR 2015010375W WO 2016053022 A2 WO2016053022 A2 WO 2016053022A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
ore7
seq
productivity
Prior art date
Application number
PCT/KR2015/010375
Other languages
French (fr)
Korean (ko)
Other versions
WO2016053022A3 (en
Inventor
이동희
김국진
김동수
정영수
김혜정
정창호
두홍수
Original Assignee
제노마인(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제노마인(주) filed Critical 제노마인(주)
Publication of WO2016053022A2 publication Critical patent/WO2016053022A2/en
Publication of WO2016053022A3 publication Critical patent/WO2016053022A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8266Abscission; Dehiscence; Senescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a method for increasing plant productivity, a method for enhancing plant stress resistance, and a method for delaying plant aging using the ORE7 gene isolated from Arabidopsis.
  • ROS reactive oxygen species
  • SO 2 ⁇ superoxide anion radicals
  • H 2 O 2 hydrogen peroxide
  • hydroxyl radicals that cause physiological disorders, etc.
  • Plant aging is the final stage of plant development, an age-dependent process of decay at the cellular, tissue, organ, or organismal level, leading to the lethal stage through the growth and development stages. As aging progresses, the plant gradually loses its ability to synthesize and the cellular structures and macromolecules are sequentially degraded, resulting in the loss of homeostasis of cells and eventually death (Buchanan-Wollaston et al., Plant Biotechnology Journal 2003, 1: 3-22; Lim and Nam, Curr. Top. Dev. Biol. 2005, 67: 49-83).
  • cytokinin is a physiologically delayed aging hormone and many aging control techniques have been reported.
  • the Amasino group developed a method for regulating aging-specific cytokinin synthesis by recombining the IPT gene into a senescence-specific SAG12 gene promoter, which showed a 50% increase in productivity in cigarettes that delayed aging.
  • catalase isoforms derived from peroxysomes have been proposed by the Zentgraf group with Arabidopsis as a material to control aging of plants with APX1 (Zimmermann P et al., Plant Cell Environ. 2006 Jun; 29 (6): 1049- 60).
  • molecular control studies related to growth such as plant growth, development, and differentiation are important factors in determining the productivity of useful plants. These growth studies are closely related to aging and stress resistance. Aging may be a limiting factor in crop productivity. Aging can lead to quality loss rates such as yellowing of leaves and loss of nutrients in vegetable crops, etc., and resistance to stress may vary depending on the degree of aging of the plant. Therefore, it is possible to improve agricultural traits such as crop productivity, quality and shelf life through sufficient understanding of plant aging and growth process and experimental demonstration of related gene function.
  • Another object of the present invention to provide a method for producing a stress-resistant plant using the ORE7 gene.
  • Another object of the present invention to provide a method for producing a plant having aging delay properties using the ORE7 gene.
  • the inventors have identified the ORE7 gene isolated from the Arabidopsis larvae soybean ( Glycine) as confirmed in the following examples. max L. cv. When introduced to Kwangan, in addition to showing delayed aging characteristics, such as when introduced to Arabidopsis, it also shows productivity enhancement characteristics such as increased individual size and increased yield of seeds, and also shows enhanced resistance to stress such as oxidation.
  • productivity enhancement characteristics such as increased individual size and increased yield of seeds
  • the present invention is provided based on these experimental results, and in one aspect relates to a method for producing a plant having productivity enhancing properties.
  • Method of producing a plant having a productivity enhancing feature of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE 7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant, and (b ) Screening plants having productivity enhancing properties.
  • productivity enhancing properties means that the biomass (size and / or mass) of the whole, stem, root and / or leaves of the plant is increased compared to wild type plants and / or the productivity of the seed of the plant (plant 1). Number and / or mass of seeds per individual) is increased compared to wild type plants.
  • plant is meant to include mature plants, immature plants (plants), plant seeds, plant cells, plant tissues and the like.
  • plant cells or plant tissues are described in European Patent EP0116718, European Patent EP0270822, International Patent WO 84/02913, Gould et al. 1991, Plant Physiol 95,426-434, etc., can be used to develop and grow into mature plants.
  • plant includes all plants for which productivity gains can give useful results to humans.
  • crops whose productivity is primarily useful to humans such as cereals such as rice, wheat, barley, corn, sorghum and oats, soybeans, kidney beans, red beans, mung beans, and lima beans
  • Root and tuber crops such as, peas, potatoes, sweet potatoes, cabbage, cabbage, bok choy, kale, cauliflower, broccoli, young radish, radish, mustard, pepper, spinach, sesame leaf
  • lettuce garland chrysanthemums, carrots, tomatoes, green onions, sprouts, garlic, carrots, onions, etc., strawberry, watermelon, cucumber, melon, pumpkin, ginseng, tobacco, cotton, sesame, sugar cane , Beets, perilla, rapeseed, apple trees, pears, jujube trees, peaches, lambs, grapes, citrus fruits, persimmons, plums,
  • gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is a gene encoding the first amino acid of SEQ ID NO: 2 while having a base sequence different from that of the gene of SEQ ID NO: 1 due to codon degeneracy
  • the nucleotide sequence of SEQ ID NO. It is meant to include all genes made.
  • the gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is preferably higher in sequence homology with the nucleotide sequence of SEQ ID NO: 1, and most preferably, having 100% sequence homology.
  • the gene has a sequence homology of 60% or more with the nucleotide sequence of SEQ ID NO: 1.
  • sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73 %, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, Higher in order of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% is preferred.
  • expression means that the gene of the present invention, that is, ORE7 is not expressed in the wild type of the plant to be introduced, but is expressed in the transgenic plant into which the gene is introduced.
  • Such "expression” is directly confirmed by quantifying the expression amount of the gene of SEQ ID NO: 1 or a gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 (for example, Real-time PCR method)
  • the protein encoded by the gene can also be quantified and indirectly identified.
  • depending on the characteristics of the gene can also be confirmed indirectly through the phenotype by the gene.
  • step (a) may be performed by a genetic engineering method.
  • Genetic engineering method comprises the steps of: (i) inserting the ORE7 gene of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 into an expression vector to be operably linked to a regulatory sequence capable of expressing it, and (ii) transforming the expression vector into a plant.
  • operably means that the transcription and / or translation of a gene is linked to be affected. For example, if a promoter influences the transcription of a gene linked to it, the promoter and the gene are operably linked.
  • regulatory sequence is meant to include all sequences whose presence may affect the transcription and / or translation of a gene linked thereto, and such regulatory sequences include a promoter sequence and a polyadenylation signal. ), Replication start sequence, and the like.
  • promoter follows the conventional meaning known in the art, specifically located at the top (5 'side) based on the transcription initiation point of a gene, binding to DNA-dependent RNA polymerase By nucleic acid sequences having the function of controlling transcription of one or more genes, including sites, transcriptional initiation sites, transcription factor binding sites, and the like.
  • a promoter may be a TATA box upstream of the transcription initiation point (usually at the transcription initiation point (+1) -20 to -30 position), CAAT box (usually approximately -75 position relative to the transcription initiation site if it is of eukaryotes) Present), a 5 'enhancer, a transcription repression factor, and the like.
  • Promoters capable of expressing genes include constitutive promoters (promoters that induce constant expression in all plant tissues), inducible promoters (promoters that induce expression of the gene of interest in response to specific external stimuli, or at specific developmental times or in particular Promoters that specifically induce expression in tissue) can be used.
  • constitutive promoters include the promoter of the 35S RNA gene of cauliflower mosaic virus (CaMV), and the ubiquitin family of promoters (Christensen et al., 1992, Plant Mol). Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol.
  • rice actin promoter Zhang et al. 1991, The Plant Cell 3, 1155-1165
  • rice actin promoter Zhang et al. 1991, The Plant Cell 3, 1155-1165
  • inducible promoters include the yeast metallothionein promoter (Mett et al., Proc. Natl. Acad. Sci., USA, 90: 4567, 1993), which is activated by copper ions, substituted by substituted benzenesulfonamides.
  • In2-1 and In2-2 promoters (Hershey et al., Plant Mol. Biol., 17: 679, 1991), GRE regulatory sequences regulated by glucocorticoids (Schena et al., Proc. Natl. Acad.
  • the transcription termination sequence is a sequence that acts as a poly (A) addition signal (polyadenylation signal) to enhance the integrity and efficiency of transcription.
  • transcription termination sequences that can be used include the transcription termination sequence of the nopaline synthase (NOS) gene, the transcription termination sequence of the rice ⁇ -amylase RAmy1 A gene, and the transcription termination of the Octopine gene of Agrobacterium tumefaciens.
  • the expression vector may include a selection marker gene.
  • Selection marker gene as used herein means a gene encoding a trait that enables the selection of plants comprising such marker genes.
  • the marker gene may be an antibiotic resistance gene or may be a herbicide resistance gene.
  • suitable selection marker genes include genes of adenosine deaminase, genes of dihydrofolate reductase, genes of hygromycin-B-phosphortransferase, genes of thymidine kinase, genes of xanthine-guanine phosphoribosyltransfer Laze gene, phosphinnothricin acetyltransferase gene, etc. are mentioned.
  • the term "transformation” refers to a modification of the genotype of a host plant by the introduction of a hereditary gene, and regardless of the method used for the transformation, the herb gene is a host plant, more precisely a cell of the host plant. Introduced into and integrated into the genome of a cell.
  • the hereditary genes include homologous and heterologous genes, wherein “homologous genes” refer to endogenous genes of a host organism or the same species, and “heterologous genes” are genes that do not exist in the organism to which they are transformed.
  • the Arabidopsis derived gene is a homologous gene for Arabidopsis plants, but a heterologous gene for legume plants.
  • a method for transforming a plant with a foreign gene may be a method known in the art, for example, a direct gene transfer method using a gene gun, in in a floral dip planta transformation method, pollen mediated transformation method, protoplast transformation method, virus mediated transformation method, liposome mediated transformation method and the like can be used.
  • a transformation method suitable for a specific plant for example, a method for transforming corn is described in US Pat. No.
  • Generally used in transforming plants is a method of infecting seedlings, plant seeds and the like with the transformed Agrobacterium.
  • Such Agrobacterium mediated transformation methods are well known in the art (Chilton et al., 1977, Cell 11: 263: 271; European Patent EP 0116718; US Patent US 4,940,838), and methods suitable for particular plants are also known in the art.
  • the Agrobacterium mediated transformation method uses Ti-plasmid, which will contain left and right border sequences that allow the integration of T-DNA into the genome of plant cells.
  • the selection of the step (b) may be selected by comparing the biomass and / or seed productivity of the plant, or when the selection marker gene is transformed with the transformation at the time of transformation may be selected using the selection marker gene, or These methods can also be mixed and screened.
  • the present invention relates to a method for producing a plant with enhanced stress resistance.
  • Method for producing a stress-enhanced plant of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant and (b) stress Selecting a plant having enhanced resistance.
  • stress means hot stress, cold stress, dry (drought) stress, salt stress and / or oxidative stress.
  • Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
  • the step (b) is selected by comparing the stress resistance of the plant (e.g., the progress of leaf sulfidation, the progression of leaf necrosis, the biomass of the leaves and / or stems, chlorophyll content, photosynthetic efficiency, etc.)
  • the selection marker gene When the selection marker gene is transformed together at the time, the selection marker gene may be used for selection, or a combination thereof may be used for selection.
  • the present invention relates to a method for producing a plant having aging delay properties.
  • Method of producing a plant having a delayed aging characteristics of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant and (b) aging Selecting the plant with delayed properties.
  • aging delay refers to a property of prolonged plant life as compared to wild-type plants, and specifically, the yellowing and / or necrosis of leaves and / or stems is delayed compared to wild-type plants or the chlorophyll content of plants is wild-type. It is more characteristic than plants or photosynthetic efficiency of plants is higher than wild type plants.
  • Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
  • step (b) the transformed plant is grown and grown, and the naked eye is selected through the degree of progress of leaf yellowing or the progression of leaf necrosis, or at the time of transformation, the selectable marker gene is transformed together. If selected, the selection may be performed using a selection marker gene, and further, may be selected through a method of quantifying chlorophyll content, photosynthetic efficiency, etc., a method of mixing the above methods, and the like.
  • the present invention relates to a method for increasing the productivity of a plant.
  • the method for increasing the productivity of a plant of the present invention is (a) operably linking an ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector preferably and (b) transforming the expression vector into a plant.
  • the present invention relates to a method for enhancing stress resistance of a plant.
  • the method of enhancing the stress resistance of a plant of the present invention (a) to enable the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector so as to be linked, and (b) transforming the expression vector into a plant.
  • the present invention relates to a method for delaying aging of a plant.
  • the method for delaying aging of a plant of the present invention is to (a) operably link a gene having a nucleotide sequence of SEQ ID NO. 1 or a gene having a sequence similar to that of SEQ ID NO. 1 to a regulatory sequence capable of expressing it. Inserting into the expression vector and (b) transforming the expression vector into a plant.
  • Steps (a) and (b) in the above methods are as described with reference to the method for producing a plant having the productivity enhancing properties of the present invention.
  • the present invention provides a ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having a productivity enhancing property of the present invention By expressing it relates to a transgenic plant having productivity enhancing properties.
  • the plant is a transgenic plant having productivity enhancement properties by introducing and expressing a gene encoding an ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular, an ORE7 gene having the nucleotide sequence of SEQ ID NO: 1.
  • the present invention is a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant with enhanced stress resistance of the present invention
  • the present invention relates to a transgenic plant that is enhanced in stress resistance.
  • the plant is a transgenic plant having enhanced stress resistance by introducing a gene encoding the ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the ORE7 gene having the nucleotide sequence of SEQ ID NO: 1 is introduced to be.
  • the present invention is a delay in aging of the gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a stress-resistant plant of the present invention
  • the present invention relates to a transgenic plant having characteristics.
  • the plant is a transgenic plant having enhanced stress resistance by introducing and expressing a gene encoding an ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular an ORE7 gene having the nucleotide sequence of SEQ ID NO: 1.
  • the "transformed plant” refers to a plant cell, a plant tissue, or a plant seed capable of developing and growing as a mature plant, when the gene is introduced and transformed, as well as by mating with the transformed plant.
  • the resulting genome includes modified plants, plant seeds, plant cells.
  • Figure 1 shows the structure (schematic) of the pB2GW7.0-ORE7 recombinant vector in which the ORE7 gene, which has a function of increasing productivity of plants and has a function of delaying aging and enhancing stress resistance, is introduced in the sense direction.
  • Figure 2 is a soybean transformation and transformant production process through the pB2GW7.0-ORE7 recombinant vector of FIG.
  • (b) Plant induction medium without PPT;
  • (c) Shoot induction medium containing DL-phosphinothricin 10 mg / L for bar selection;
  • (d) Shoot elongation medium with 5 mg / L PPT;
  • Figure 3 shows the results of performing genomic PCR to confirm the introduction of the recombinant gene in the leaves of the T 0 plants of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG.
  • ORE7 gene a gene a gene a BAR gene;
  • c the DNAs between left board and Bar gene;
  • d the DNAs between ORE7 gene and right board;
  • PC binary vector carrying ORE7 and Bar gene as positive control;
  • WT wild type; # 1 ⁇ 24, Soybean T 0 plants transformed with pB2GW7.0-ORE7 recombinant vector.
  • Figure 4 shows the results of performing RT-PCR to confirm the expression of the recombinant gene in the leaves of the T 0 plants of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. WT, wild type; # 1 ⁇ 24, soybean T 0 transformed with pB2GW7.0-ORE7 recombinant vector plant.
  • TUB used as a PCR positive control.
  • FIG. 5 is a genomic southern blotting to confirm the number of copies of the recombinant gene in the leaves of the T 3 line of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. It shows the results of the operation.
  • WT wild type
  • DNA molecule size markers are shown at the right of the figure.
  • 6A shows soybean wild type (WT) and vector control (EV) grown to vegetative stage 2, and T 2
  • WT soybean wild type
  • EV vector control
  • FIG. 6B shows soybean wild type (WT) and vector control (EV) grown to vegetative stage 2, and T 2 2-node leaves of transformation lines # 7, # 9, # 14, and # 15 were detached and maintained in the dark state to investigate the chlorophyll content and photosynthetic efficiency of leaves by Fv / Fm until 14, 18, and 21 days. to be.
  • the SD is shown as error bar.
  • Asterisks indicate significant differences compared to the wild type (P value ⁇ 0.05).
  • FIG. 7A is T 2 and the growth of beans wild type (WT) to the vegetative stage 2 Transformation line # 7, and # 15 to 50 mM H 2 O 2
  • Figure 2 shows the phenotype of 2-node leaves of V2-stage after 7, 11, and 15 days after stress. DAT, days after H 2 O 2 treatment.
  • Figure 7B shows soybean wild type (WT) and T 2 grown up to vegetative stage 2. Transformation line # 7, and # 15 to 50 mM H 2 O 2 Chlorophyll content of 2-node leaves of V2-stage at 7, 11 and 15 days after stress. The SD is shown as error bar. Asterisks indicate significant differences compared to the wild type (* P value ⁇ 0.05; ** P value ⁇ 0.01).
  • soybean wild type WT
  • soybean T 3 transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. 1.
  • Phenotypes of lines # 2, # 7, and # 15 grown for 119 days, 125 days, and 133 days after sowing.
  • DAS days after sowing.
  • FIG. 11 shows soybean wild type (WT) and soybean T 3 transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. 1.
  • Figure 21 shows the seed yield and the expression rate of the ORE7 gene.
  • GM **** soybean T 3 plant individual transformed with pB2GW7.0-ORE7 recombinant vector. Wild type values are the mean value of 20 individuals and the SD (error bar).
  • FIG. 12 shows soybean wild type (WT) and T grown to vegetative stage 2.
  • FIG. 13 shows soybean wild type (WT) and T grown to vegetative stage 2.
  • WT soybean wild type
  • SAGs senescence-associated genes of soybean.
  • ORE7 (putative DNA-binding protein ESCAROLA of Arabidopsis thaliana , AT1G20900) gene was transferred to ORE7-F primer (5'-CAC CAT GGA AGG CGG TTA CGA GCA AG-3 ', SEQ ID NO: 3) and ORE7-R primer ( 5'-TTA AAA AGG TGG TCT TGA AGG TG-3 'was isolated and amplified using pENTR / D-TOPO vector (Invitrogen, Carlsbad, Calif., USA) to prepare pENTR-ORE7. .
  • the prepared pB2GW7.0-ORE7 vector is Agrobacterium tumefaciens ( Agrobacterium) tumefaciens ) was transformed into EHA105 strain and used as a soybean transformation vector.
  • FIG. 1 A schematic diagram of the produced pB2GW7.0-ORE7 vector is shown in FIG. 1. In FIG.
  • BAR refers to a BAR gene (phosphinothricin acetyltransferase gene) that confers resistance to Basta herbicide
  • RB is a right border
  • LB is a left border
  • P35S is a CaMV 35S promoter
  • T35S is a CaMV Points to the 35S terminator.
  • Transformation and transformant production process is as follows. First, the scalpel was inserted between the two cotyledons of the soaked seeds, cut vertically up to the hypocotyl and the seedlings were removed. Hypocotyl was cut at about 1 cm below the cotyledon, and one side of the embryonic axis was wound by scalpel 7,8 times. At this time, 5ml of the concentrate is applied to the scalpel and the target site is wounded. Approximately 50 explants were placed in 15 mL co-cultivation / A.
  • tumefaciens inoculated for 30 minutes after 20 seconds of sonication, vacuum 30 seconds (500 mm.Hg) using a desiccator and diaphragm pump (GAST). .
  • GAST desiccator and diaphragm pump
  • the explant was removed from the tube and placed on sterile filter paper to remove water. Then, one sheet of filter paper was placed and 10 objects were placed (adaxial side down) (Fig. 2a-1). After sealing with Micropore and co-cultured for 5 days at 25 °C, 18 hours photoperiod (Fig. 2a-2).
  • cefotaxime 250 mg / L, vancomycin 50 mg / L and ticarcillin 100 mg / L are used for sterilization.
  • SI shoot induction
  • One plate per plate on the medium was hypocotyl-fixed to the medium, and the part to be redifferentiated was flattened with the flat side facing up at an angle of about 30 ° (FIG. 2b). Each plate was sealed with a micropore and incubated at 25 ° C for 18 hours at photoperiod. After 2 weeks, explants with shoots were wound on SI-2 medium containing antibiotics PPT 10 mg / L.
  • the part is cut off and toothed with adaxial side down (FIG. 2C).
  • the browned shoot / shoot pad was cut with a scalpel and placed in SEM (shoot elongation medium) medium containing 5 mg / L of antibiotic PPT (FIG. 2D). Every two weeks, the browning area of the shoot was removed by tapping the top of the less pointed scalpel, and the shoot pad was scraped off little by little to allow the medium to be absorbed.
  • RM medium FIG. 2E
  • PCR analysis to confirm the introduction of recombinant genes to the soybean transformants produced
  • RT-PCR analysis to confirm the expression of recombinant genes
  • genomic southern blotting to confirm the number of copies of the recombinant genes (Genomic Southern blotting) was performed.
  • ORE7 ORE7-GPCR-F (5' -ATG GAA GGC GGT TAC GAG CAA GGC-3 ', SEQ ID NO: 5) and ORE7-GPCR-R (5'- TTA AAA AGG TGG TCT TGA AGG TGT 3 ', SEQ ID NO: 6) and, in the case of the BAR BAR-GPCR-F (5' -CAT GTA ATG CTG CTC AAG GTA CGC-3', SEQ ID NO: 7) and the BAR-GPCR-R (5'- ATG TAA TGC TGC TCA AGG TAC GC-3 ′, SEQ ID NO: 8).
  • PCR was performed on the left board (LB) and RB (right board) parts to determine whether the vector was inserted with T-DNA.
  • Primers used were as follows: LB portion was left board-F (5'-TGG CTG GTG GCA GGA TAT ATT GTG-3 ', SEQ ID NO: 9) and BAR-R (5'-AGA CAA GCA CGG TCA ACT TCC) GTA-3 ', SEQ ID NO: 10) and the RB portion is ORE7-RF (5'-GGT CAG GGA CAG TTA GGA GGT AAT-3', SEQ ID NO: 11) and right board-RR (5'-TTA AAC) TGA AGG CGG GAA ACG ACA-3 ', SEQ ID NO: 12).
  • RNA was extracted from the leaves of the soybean wild type and the ORE7 soybean transformant using RNasey Plant Mini Kit (QIAGEN, Germany). 1 ⁇ g of RNA each as a template and 5 minutes at 65 ° C. using Superscript III Reverse Tanscriptase (INVITROGEN, USA); 60 minutes at 50 ° C; And cDNA was synthesized at 70 ° C. for 15 minutes. Then, using the synthesized cDNA as a template, PCR was performed using the primers specific to the following ORE7 and BAR gene, and the TUB gene used as a PCR positive control. PCR denatured template DNA by heating at 94 ° C.
  • DIG-labeled probes consist of ORE7-GS-F primer (5'-ACA GCT TCA ACC GCA GGG CG-3 ', SEQ ID NO: 19) and ORE7-GS-R primer (5'-CGT GGA CGT TTT CCC GGT GCT-3 ', SEQ ID NO: 20) was used to amplify ORE7 and label it with DIG.
  • Chlorophyll was extracted from each sample leaf using 80% (V / V) acetone to measure chlorophyll content. Chlorophyll content was measured according to the method of Lichtenthaler and Wellburn (Biochemical Society Transduction 603: 591 ⁇ 592, 1983) using extinction coefficients of 663.2 nm and 664.8 nm. The results are shown in FIG. 6B, and the values presented are the mean ⁇ standard deviation of each of six or more lines per line.
  • Photosynthetic efficiency was measured using Oh et al. (Plant Mol. Biol. 30: 939, 1996). First, the leaves of each day after dark treatment (DAT) were treated with cancer for 15 minutes, and then the fluorescence of chlorophyll was measured using a Plant Efficiency Analyzer (Hansatech). Photosynthetic efficiency was expressed by the photochemical efficiency of PSII (photosystem II) using chlorophyll fluorescence properties, which was the maximum variable fluorescence (Fv) versus the maximum value of fluorescence (Fm). It is expressed as the ratio of (Fv / Fm). Higher values indicate better photosynthetic efficiency.
  • ORE7 transgenic soybeans have had a life of leaves appeared to have a much longer phenotype compared to the wild type and vector control, the effectiveness of these life extension is ORE7 It is thought to be caused by the delay of biochemical changes due to aging, which is expressed by a decrease in chlorophyll content and a decrease in photosynthetic efficiency by genes.
  • the ORE7 gene was found to provide weak salt resistance in soybeans (data not shown). Therefore, the ORE7 gene is thought to provide many advantages in the development of stress-resistant crops by providing resistance to oxidative and salt stress in plants as well as delaying aging of plants.
  • GmRbcL Glycine max chloroplast rbcL
  • GmCab3 Glycine max chlorophyll a / b-binding protein gene is a gene whose expression is gradually decreased during aging of soybean.
  • the expression of the two genes was higher in the soybean transformation lines # 7, 9, 14, and 15 lines showing the expression of ORE7 compared to wild-type (WT) and vector control (EV) (Fig. 8).
  • WT wild-type
  • EV vector control
  • ORE7 soybean transformants delay aging by inhibiting the decrease in expression of the GmRbcL and GmCab3 genes, which are used as markers of aging during aging. Therefore, the ORE7 gene in soybean is thought to induce phenotypic prolongation of leaf life by regulating the expression of aging-related genes at the molecular level and then physiological phenomena such as chlorophyll content and photosynthetic efficiency.
  • Example 3> ORE7 Increased productivity of soybean transformants and delayed aging Intertrait Correlation analysis
  • Quantitative real-time PCR was used to investigate the expression of ORE7 genes in ORE7 soybean transformation lines with differences in phenotypic and productivity gains.
  • qRT-PCR was performed with a CFX-96TM Real-Time system (Bio-Rad) using Ex Taq TM Probe. Information on the applied primer / probe sets is shown in Table 3 below.
  • Phytohormone cytokinin regulates aging of plants, leading to increased plant productivity (Gan and Amasino, 1995), and also is known to increase plant production by regulating reproductive meristem activity, flower size, and ovule production. Bartrina et al., 2011).
  • HK histidine kinase
  • HP histidine phosphotransfer proteins
  • Plants wild and ORE7 histidine phosphotransfer proteins (HP) gene in soybean trait beans analyze the transition body Arabidopsis AHP1 homologue of GmHP01, GmHP03, GmHP04, GmHP05, Arabidopsis AHP2, 3, 5 homologue of GmHP09, GmHP10, Arabidopsis AHP4 homologues GmHP07 , GmHP08 , and Arabidopsis AHP6 homologues GmPHP01 and GmPHP03 .
  • Expression of the gene was analyzed by RT-PCR, wherein a positive control was used as TUB , and the primers used are shown in Table 5 below.
  • ORE7 adjusts the GmHK13, GmHK14, GmHK15, GmHK16, and expression of GmHK17 gene of the cytokinin receptor gene proportionally
  • 2) ORE7 is soybean histidine phosphotransfer proteins (HP) also proportionally controlled GmHP04 gene expression of the genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a method for increasing plant productivity by using an ORE7 gene, a method for reinforcing the stress resistance of plants by using the ORE7 gene and a method for delaying plant senescence by using the ORE7 gene, wherein the ORE7 gene is isolated from Arabidopsis thaliana.

Description

ORE7 유전자를 이용한 식물 생산성 증대 방법, 식물 스트레스 내성 강화 방법 및 식물 노화 지연 방법Plant productivity enhancement method, ORE7 stress reinforcement method and plant aging method using ORE7 gene
본 발명은 애기장대에서 분리한 ORE7 유전자를 이용한 식물 생산성 증대 방법, 식물 스트레스 내성 강화 방법 및 식물 노화 지연 방법에 관한 것이다.The present invention relates to a method for increasing plant productivity, a method for enhancing plant stress resistance, and a method for delaying plant aging using the ORE7 gene isolated from Arabidopsis.
생장 및 스트레스 저항성이 향상된 식물체를 생산하기 위한 노력은 농작물의 생산성과 품질 확보 측면에서 중요하기 때문에 미국과 유럽 등의 거대 농업 기업에서 지속적인 연구가 이루어지고 있으며, 수확 후 저장 효율 및 활용 시기의 지속을 위한 식물 노화 연구도 그 산업적 가치 때문에 점점 더 중요성이 높아지고 있다. Efforts to produce plants with improved growth and stress resistance are important in ensuring the productivity and quality of crops. Therefore, continuous research is being conducted by large agricultural companies such as the US and Europe. Plant aging research is also becoming increasingly important because of its industrial value.
식물이 병균, 해충, 바이러스 등의 생물학적 스트레스뿐만 아니라 고온, 저온, 염해, 건조, 중금속, 농약 등의 각종 환경(무생물적) 스트레스를 받게 되면, 생명유지에 필요한 필수 원소이지만 반응성이 높은 산소가 심각한 생리적인 장해 등을 유발하는 수퍼옥사이드 음이온 라디칼(superoxide anion radical, O2 - ), 과산화수소(hydrogen peroxide, H2O2 ), 수산화 라디칼(hydroxyl radical) 등의 활성산소종(reactive oxygen species; ROS)으로 변하게 된다. 식물체에서 이러한 활성산소종이 과다 발생하면 세포막 분해, 단백질 분해, DNA 합성 억제, 광합성 억제, 엽록체 파괴 등 생체 내에 생리적 장해를 일으키며 심할 경우 세포사멸을 초래하며 잎의 황화 현상이 나타난다(Inse D and Van Montau M. Curr Opin Biotechnol 1995. 6:166-172). 이처럼 모든 생물적, 무생물적 스트레스는 식물에 궁극적으로 산화 스트레스 형태로 일어나기 때문에 산화 스트레스 내성은 식물 전체 방어 반응계에서 매우 중요한 의미를 지니고 있으며 이러한 스트레스에 대하여 적절하게 잘 대처할 수 있는 식물의 생산은 농작물 품질 향상 및 생산성 향상과도 밀접한 연관이 있다. 따라서, 스트레스 내성 형질전환체 개발에는 산화 스트레스 조건에서 발현이 강하게 유도되는 SWPA2 등의 프로모터를 사용하여 항산화 유전자를 발현시키거나, 직접적인 스트레스 내성 유전자를 도입하고자 하는 시도가 계속되고 있다(Kim et al., Plant Mol Biol. 2003. 51:831-838).When plants are subjected to various environmental (abiotic) stresses such as high temperature, low temperature, salt, drying, heavy metals, pesticides, as well as biological stresses such as germs, pests, viruses, etc. Reactive oxygen species (ROS) such as superoxide anion radicals (O 2 ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals that cause physiological disorders, etc. Will change to Excessive generation of these reactive oxygen species in plants causes physiological disturbances in vivo, such as cell membrane degradation, protein degradation, DNA synthesis inhibition, photosynthesis inhibition, and chloroplast destruction, which in turn causes cell death and leaves yellowing (Inse D and Van Montau). M. Curr Opin Biotechnol 1995. 6: 166-172). Since all biological and abiotic stresses occur in the plant ultimately in the form of oxidative stress, oxidative stress resistance is of great importance in the overall plant defense response system, and the production of plants that can cope with these stresses properly is the crop quality. It is also closely related to improvement and productivity. Accordingly, in the development of stress resistant transformants, attempts to express antioxidant genes or to introduce direct stress resistance genes by using promoters such as SWPA2, whose expression is strongly induced under oxidative stress conditions, continue (Kim et al. , Plant Mol Biol. 2003. 51: 831-838).
식물의 노화 억제는 그 자체로서의 학문적 중요성뿐만 아니라 작물의 생산성이나 수확 후 저장 효율에 있어서의 개량 가능성 때문에 산업적으로도 중요성이 높다. 식물의 노화는 식물 발생의 마지막 단계로서, 세포, 조직, 기관 혹은 생물체 수준에서 나이-의존적 붕괴 과정이며, 생장 및 발생 단계를 거쳐 치사 단계를 유도한다. 식물은 노화가 진행됨에 따라 점차적으로 합성능력이 저하되고 세포 내 구조물과 거대분자들이 순차적으로 분해되면서 세포의 항상성을 잃게 되고, 결국 죽음에 이르게 된다(Buchanan-Wollaston et al., Plant Biotechnology Journal 2003, 1:3-22.; Lim and Nam, Curr. Top. Dev. Biol. 2005, 67:49-83). 이러한 식물의 노화는 일련의 연속된 생화학적 및 생리학적 현상으로 유전적으로 계획되어 있어 세포, 조직 및 기관의 수준에서 매우 정교하고, 능동적으로 진행되는데 식물 호르몬 등과 같은 내적 환경요인 및 외부 환경 스트레스의 영향을 받게 된다. 식물 호르몬 중 cytokinin은 생리학적으로 노화 지연 호르몬으로서 이를 이용한 노화조절 기술이 많이 보고되고 있다. Amasino 그룹은 노화 특이적인 SAG12 유전자의 promoter에 IPT 유전자를 재조합하여 노화 단계 특이적인 cytokinin 합성 조절 방법을 개발하였으며, 상기 방법으로 노화를 지연시킨 담배에서 50%의 생산성 증대를 볼 수 있었다. 같은 방법으로 상추에 도입시켰을 때 수확 후 저장성이 크게 증가되는 것을 알 수 있었다(McCabe et al., Plant Physiol. 2001, 127(2):505-16). 또한 SAG12 유전자 promoter에 옥수수의 homeobox gene(knotted1)을 발현시킨 담배에서 cytokinin의 level이 증가하였고 잎의 노화도 지연된다는 보고가 있었다. 토마토의 경우 ethylene 조절을 통해 과일의 숙성을 조절한 사례가 보고되고 있으며, 또한 세포벽 분해와 관련된 polygalacturonase 유전자의 발현을 억제시켜 토마토의 운송성과 저장성을 증가시킨 Flav-O-Savor의 경우가 대표적으로 상업화 된 예가 될 수 있다(Giovannoni et al., Plant Cell 1(1):53-63, 1989). 또한 최근 활성산소종(ROS; reactive oxygen species)이 식물체 노화에 중요한 역할을 담당하는 것으로 알려지고 있다. 특히 peroxysome에서 유래된 catalase isoform들은 APX1과 함께 식물체의 노화를 조절한다고 애기장대를 재료로 하여 Zentgraf 그룹에서 제안하고 있다(Zimmermann P et al., Plant Cell Environ. 2006 Jun;29(6):1049-60). The suppression of aging of plants is of great industrial importance, not only because of their academic importance, but also because of the possibility of improvement in crop productivity or post-harvest storage efficiency. Plant aging is the final stage of plant development, an age-dependent process of decay at the cellular, tissue, organ, or organismal level, leading to the lethal stage through the growth and development stages. As aging progresses, the plant gradually loses its ability to synthesize and the cellular structures and macromolecules are sequentially degraded, resulting in the loss of homeostasis of cells and eventually death (Buchanan-Wollaston et al., Plant Biotechnology Journal 2003, 1: 3-22; Lim and Nam, Curr. Top. Dev. Biol. 2005, 67: 49-83). The aging of these plants is genetically planned as a series of consecutive biochemical and physiological phenomena, which are very sophisticated and active at the level of cells, tissues, and organs.The effects of internal environmental factors such as plant hormones and external environmental stresses Will receive. Among the plant hormones, cytokinin is a physiologically delayed aging hormone and many aging control techniques have been reported. The Amasino group developed a method for regulating aging-specific cytokinin synthesis by recombining the IPT gene into a senescence-specific SAG12 gene promoter, which showed a 50% increase in productivity in cigarettes that delayed aging. When introduced into the lettuce by the same method it can be seen that the shelf life after harvest significantly increased (McCabe et al., Plant Physiol. 2001, 127 (2): 505-16). In addition, there was a report that the cytokinin level was increased and leaf aging was delayed in tobacco expressing corn homeobox gene (knotted1) in SAG12 gene promoter. Tomatoes have been reported to control the ripening of fruit through ethylene control.Flav-O-Savor, which has been shown to increase the transport and storage of tomatoes by suppressing the expression of polygalacturonase genes related to cell wall degradation, is commercialized. (Giovannoni et al., Plant Cell 1 (1): 53-63, 1989). In addition, reactive oxygen species (ROS) have recently been known to play an important role in plant aging. In particular, catalase isoforms derived from peroxysomes have been proposed by the Zentgraf group with Arabidopsis as a material to control aging of plants with APX1 (Zimmermann P et al., Plant Cell Environ. 2006 Jun; 29 (6): 1049- 60).
한편, 식물의 성장, 발생, 분화 등 생장과 관련된 분자적 조절연구는 유용 식물체의 생산성을 결정하는 중요한 요소가 되는데 이러한 생장 연구는 노화 및 스트레스 저항과 밀접한 연관성을 지니며, 농업적인 측면에서 보면 식물의 노화는 작물의 생산성을 제한하는 요소일 수 있다. 노화는 채소 작물 등에서 잎의 황화 현상과 영양소 소실 등과 같은 품질 손실율을 유발할 수도 있으며 스트레스에 대한 저항성도 식물의 노화 정도에 따라 다르게 나타날 수 있다. 따라서 식물 노화 및 생육 과정에 대한 충분한 이해 및 관련 유전자 기능에 대한 실험적 증명을 통하여 작물의 생산성, 품질, 저장성 등과 같은 농업적 형질의 향상을 꾀할 수 있다.On the other hand, molecular control studies related to growth such as plant growth, development, and differentiation are important factors in determining the productivity of useful plants. These growth studies are closely related to aging and stress resistance. Aging may be a limiting factor in crop productivity. Aging can lead to quality loss rates such as yellowing of leaves and loss of nutrients in vegetable crops, etc., and resistance to stress may vary depending on the degree of aging of the plant. Therefore, it is possible to improve agricultural traits such as crop productivity, quality and shelf life through sufficient understanding of plant aging and growth process and experimental demonstration of related gene function.
이러한 노력의 일환으로, 논란의 여지가 있음에도 불구하고 농업적 형질 향상의 기능을 지닌 유전자를 식물체에 도입한 유전자변형 작물의 시장이 전 세계적으로 확대되고 있다. 1980년대부터 미국을 중심으로 형질전환기술이 꾸준히 개발되고 있으며, 특히 유전자변형 콩은 생산된 지 15년 이상이 되었다. 여러 유전자의 식물 도입이 형질전환을 통해 시도되고 있는데 세계 인구 증가에 따라 식량 수요도 계속적으로 증가할 것이기 때문에 이러한 추세는 지속될 것으로 보인다. 국내의 경우 다른 작물과 달리 콩에 있어서는 안정적이며 고효율인 형질전환 기술을 확립하지 못하였으며, 일부 실험실에서 부분적인 성공사례는 있었으나 지속적인 결과 도출에는 실패하였다. 유전자를 분리하고 기능을 밝히는 연구는 많이 이루어지고 있지만 실질적으로 작물에 다른 종의 유전자를 형질전환하여 효과를 나타내는 형질전환체를 생산하는 것은 어려운 것으로 알려져 있으며 특히 콩은 효과적인 형질전환체를 생산하는데 어려움이 큰 것으로 알려져 있다.As part of this effort, the market for genetically modified crops in which genes with agricultural trait enhancement functions have been introduced into plants despite controversy is expanding worldwide. Since the 1980s, transformation technologies have been steadily being developed around the United States, especially in GM crops more than 15 years. Plant transduction of several genes is being attempted through transformation, and this trend is likely to continue as food demand will continue to increase as the world population grows. In Korea, unlike other crops, soybeans have not been able to establish stable and high-efficiency transformation technology, and some laboratories have failed to produce continuous results although there have been some success stories in some laboratories. Although many studies have been conducted to isolate genes and to reveal their functions, it is known that it is difficult to produce transformants that are effective by transforming genes of different species into crops, and soybeans are particularly difficult to produce effective transformants. This is known to be great.
본원발명에서는 애기장대에서 분리한 ORE7 유전자를 이용한 식물 생산성 증대 효과, 스트레스 저항성 강화 효과 및 노화 지연 효과를 확인하였다.In the present invention, the plant productivity increase effect, stress resistance reinforcement effect, and aging delay effect using the ORE7 gene isolated from Arabidopsis were confirmed.
본 발명의 목적은 ORE7 유전자를 이용하여 생산성 증대 특성을 갖는 식물체를 제조하는 방법을 제공하는 데 있다.It is an object of the present invention to provide a method for producing a plant having productivity enhancement characteristics using the ORE7 gene.
본 발명의 다른 목적은 ORE7 유전자를 이용하여 스트레스 내성이 강화된 식물체를 제조하는 방법을 제공하는 데 있다.Another object of the present invention to provide a method for producing a stress-resistant plant using the ORE7 gene.
본 발명의 또 다른 목적은 ORE7 유전자를 이용하여 노화 지연 특성을 갖는 식물체를 제조하는 방법을 제공하는 데 있다.Another object of the present invention to provide a method for producing a plant having aging delay properties using the ORE7 gene.
본 발명의 여타의 목적이나 구체적인 목적은 이하에서 제시될 것이다.Other and specific objects of the present invention will be presented below.
본 출원인은 애기장대(Arabidopsis thaliana)로부터 ORE7 유전자(서열번호 1 참조, 그 단백질 서열은 서열번호 2 참조)를 분리하고 이 유전자를 애기장대에 도입할 경우 그 애기장대가 수명 연장, 잎의 황화 현상 지연, 광합성 효율 향상 등의 노화 지연 특성을 보임을 보고한 바 있다(한국 공개특허 제2003-0016893호 참조). Applicant for Arabidopsis thaliana ) from ORE7 If a gene (see SEQ ID NO: 1, its protein sequence see SEQ ID NO: 2) is introduced and the gene is introduced into the Arabidopsis, the Arabidopsis exhibits delayed aging characteristics such as prolonged lifespan, delayed yellowing of leaves, and improved photosynthetic efficiency. It has been reported (see Korean Patent Publication No. 2003-0016893).
본 발명자들은 아래의 실시예에서 확인되는 바와 같이, 상기 애기장대로부터 분리한 ORE7 유전자를 콩(Glycine max L. cv. Kwangan)에 도입할 경우, 애기장대에 도입된 경우 같이 노화 지연 특성을 보이는 이외에도 개체 크기 증가, 종자 수확량의 증가 등의 생산성 증대 특성을 보이고, 나아가 산화 등의 스트레스에 대해서도 강화된 내성을 보임을 확인할 수 있었다.The inventors have identified the ORE7 gene isolated from the Arabidopsis larvae soybean ( Glycine) as confirmed in the following examples. max L. cv. When introduced to Kwangan, in addition to showing delayed aging characteristics, such as when introduced to Arabidopsis, it also shows productivity enhancement characteristics such as increased individual size and increased yield of seeds, and also shows enhanced resistance to stress such as oxidation. Could.
본 발명은 이러한 실험 결과에 기초하여 제공되는 것으로, 일 측면에 있어서 생산성 증대 특성을 갖는 식물체의 제조 방법에 관한 것이다.The present invention is provided based on these experimental results, and in one aspect relates to a method for producing a plant having productivity enhancing properties.
본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 ORE 7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계, 및 (b) 생산성 증대 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성된다.Method of producing a plant having a productivity enhancing feature of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE 7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant, and (b ) Screening plants having productivity enhancing properties.
본 명세서에서, "생산성 증대 특성"이란 식물체의 전체, 줄기, 뿌리 및/또는 잎의 생체량(biomass; 크기 및/또는 질량)이 야생형 식물체에 비하여 증가한 특성 및/또는 식물체의 종자의 생산성(식물 1개체 당 종자의 수 및/또는 질량)이 야생형 식물체에 비하여 증가한 특성을 말한다. As used herein, "productivity enhancing properties" means that the biomass (size and / or mass) of the whole, stem, root and / or leaves of the plant is increased compared to wild type plants and / or the productivity of the seed of the plant (plant 1). Number and / or mass of seeds per individual) is increased compared to wild type plants.
또한 본 명세서에서, "식물체"란 성숙한 식물, 미성숙 식물(유식물체), 식물 종자, 식물 세포, 식물 조직 등을 포함하는 의미이다. 식물 세포나 식물 조직이 형질전환에 사용될 경우에 형질전환된 식물 세포나 식물 조직은 유럽특허 EP0116718, 유럽특허 EP0270822, 국제특허 WO 84/02913, 문헌[Gould et al. 1991, Plant Physiol 95,426-434] 등에 개시된 방법을 사용하여 성숙한 식물체로 발육·생장시킬 수 있다.In addition, in the present specification, "plant" is meant to include mature plants, immature plants (plants), plant seeds, plant cells, plant tissues and the like. When plant cells or plant tissues are used for transformation, the transformed plant cells or plant tissues are described in European Patent EP0116718, European Patent EP0270822, International Patent WO 84/02913, Gould et al. 1991, Plant Physiol 95,426-434, etc., can be used to develop and grow into mature plants.
또한 본 명세서에서, "식물"이란 생산성 증대가 인간에게 유용한 결과를 줄 수 있는 모든 식물을 포함한다. 이러한 식물의 의미에는 일차적으로 생산성 증대가 인간에게 유용한 식물인 작물, 예컨대 벼, 밀, 보리, 옥수수, 수수, 귀리 등의 곡류(cereals), 대두, 강낭콩, 팥, 녹두, 리마콩(Lima Bean), 완두 등의 콩류(beans), 감자, 고구마 등의 서류(root and tuber crops), 배추, 양배추, 청경채, 케일, 콜리플라워, 브로콜리, 열무(young radish), 무, 갓, 고추, 시금치, 깻잎, 상치, 쑥갓, 당근, 토마토, 파, 콩나물, 마늘, 당근, 양파 등의 채소류(vegetables) 등을 포함되는 이외에, 딸기, 수박, 오이, 참외, 호박, 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 유채, 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나 등이 포함될 것이고, 또한 스위치그라스, 억새, 갈대 등과 같은 바이오에너지 작물과 기타 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스, 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립 등이 포함될 것이다. Also herein, "plant" includes all plants for which productivity gains can give useful results to humans. The meaning of these plants is that crops whose productivity is primarily useful to humans, such as cereals such as rice, wheat, barley, corn, sorghum and oats, soybeans, kidney beans, red beans, mung beans, and lima beans Root and tuber crops such as, peas, potatoes, sweet potatoes, cabbage, cabbage, bok choy, kale, cauliflower, broccoli, young radish, radish, mustard, pepper, spinach, sesame leaf In addition to vegetables, lettuce, garland chrysanthemums, carrots, tomatoes, green onions, sprouts, garlic, carrots, onions, etc., strawberry, watermelon, cucumber, melon, pumpkin, ginseng, tobacco, cotton, sesame, sugar cane , Beets, perilla, rapeseed, apple trees, pears, jujube trees, peaches, lambs, grapes, citrus fruits, persimmons, plums, apricots, bananas, and other bioenergy crops such as switchgrass, silver grass, and reeds. Other lygras, red clover, orchardgrass, alpha alpha, Tall pesque, perennialgrass, rose, gladiolus, gerbera, carnation, chrysanthemum, lily, tulip and the like.
또한 본 명세서에서 "서열번호 1의 염기서열과 유사한 서열로 이루어진 유전자"란 첫째 서열번호 2의 아미노산을 암호화하면서도 코돈의 축퇴성(codon degeneracy)으로 인하여 서열번호 1의 유전자와 다른 염기서열을 갖는 유전자와, 서열번호 1의 염기서열로 이루어진 유전자의 동족체(homologue)로서 식물의 생산성을 증대시키는 기능을 지니면서 식물의 종류에 따른 진화적 경로의 상이로 인하여 서열번호 1의 염기서열과 다른 염기서열로 이루어진 모든 유전자를 포함하는 의미이다. 여기서 서열번호 1의 염기서열과 유사한 서열로 이루어진 유전자는 서열번호 1의 염기서열과 서열 상동성이 높을수록 바람직하고, 가장 바람직하게는 당연히 100%의 서열 상동성을 지닐 때이다. 한편, 서열 상동성의 하한에 있어서는 상기 유전자가 서열번호 1의 염기서열과 60% 이상의 서열 상동성을 지니는 경우가 바람직할 것이다. 보다 더 구체적으로는 위 서열 상동성이 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 및 99%의 순서대로 높아질수록 바람직하다.In addition, in the present specification, "gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1" is a gene encoding the first amino acid of SEQ ID NO: 2 while having a base sequence different from that of the gene of SEQ ID NO: 1 due to codon degeneracy And, as a homologue of genes consisting of the nucleotide sequence of SEQ ID NO: 1 and having a function of increasing the productivity of the plant, due to the evolutionary pathways different according to the type of plant, the nucleotide sequence of SEQ ID NO. It is meant to include all genes made. Herein, the gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is preferably higher in sequence homology with the nucleotide sequence of SEQ ID NO: 1, and most preferably, having 100% sequence homology. On the other hand, in the lower limit of sequence homology, it will be preferable that the gene has a sequence homology of 60% or more with the nucleotide sequence of SEQ ID NO: 1. More specifically, the above sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73 %, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, Higher in order of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% is preferred.
또한 본 명세서에서, "발현"이란 본 발명의 유전자 즉 ORE7이 도입될 대상인 식물체의 야생형에서는 발현되지 않고 그 유전자가 도입된 형질전환 식물체에서는 발현되는 것을 의미한다. 이러한 "발현"여부는 상기 서열번호 1의 유전자나 서열번호 1의 염기서열과 유사한 서열로 이루어진 유전자의 발현량을 당업계에 공지된 방법(예컨대 Real-time PCR 방법 등)를 정량하여 직접적으로 확인할 수 있으며, 그 유전자가 암호화하는 단백질을 정량하여 간접적으로 확인할 수도 있다. 또한 유전자의 특성에 따라서는 그 유전자에 의한 표현형을 통해서도 간접적으로 확인할 수도 있다.In addition, in the present specification, "expression" means that the gene of the present invention, that is, ORE7 is not expressed in the wild type of the plant to be introduced, but is expressed in the transgenic plant into which the gene is introduced. Such "expression" is directly confirmed by quantifying the expression amount of the gene of SEQ ID NO: 1 or a gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 (for example, Real-time PCR method) The protein encoded by the gene can also be quantified and indirectly identified. In addition, depending on the characteristics of the gene can also be confirmed indirectly through the phenotype by the gene.
본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법에 있어서, 상기 단계 (a)는 유전공학적 방법으로 수행될 수 있다.In the method for producing a plant having a productivity increasing characteristic of the present invention, step (a) may be performed by a genetic engineering method.
유전공학적인 방법은 (i) 상기 서열번호 1의 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및 (ii) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하여 구성된다.Genetic engineering method comprises the steps of: (i) inserting the ORE7 gene of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 into an expression vector to be operably linked to a regulatory sequence capable of expressing it, and (ii) transforming the expression vector into a plant.
본 명세서에서, "작동 가능하게"란 어떤 유전자의 전사 및/또는 번역이 영향을 받도록 연결된다는 의미이다. 예컨대 어떠한 프로모터가 그것에 연결된 어떤 유전자의 전사에 영향을 준다면 그 프로모터와 그 유전자는 작동 가능하게 연결된 것이다.As used herein, "operably" means that the transcription and / or translation of a gene is linked to be affected. For example, if a promoter influences the transcription of a gene linked to it, the promoter and the gene are operably linked.
또 본 명세서에서, "조절 서열"이란 그것의 존재가 그것에 연결된 유전자의 전사 및/또는 번역에 영향을 미칠 수 있는 모든 서열을 포함하는 의미이며, 이러한 조절 서열에는 프로모터 서열, 전사종결 서열(polyadenylation signal), 복제 개시점 서열 등을 포함한다. In addition, in the present specification, "regulatory sequence" is meant to include all sequences whose presence may affect the transcription and / or translation of a gene linked thereto, and such regulatory sequences include a promoter sequence and a polyadenylation signal. ), Replication start sequence, and the like.
또한 본 명세서에서, "프로모터"는 당업계에 알려진 통상의 의미를 따르는데, 구체적으로는 어떤 유전자의 전사 개시점을 기준으로 상위(5'쪽)에 위치하고, DNA-의존 RNA 중합효소에 대한 결합 부위, 전사 개시점, 전사 인자 결합 부위 등을 포함하는, 하나 이상의 유전자의 전사를 제어하는 기능을 갖는 핵산 서열을 의미한다. 이러한 프로모터는 그것이 진핵생물 유래일 경우 전사 개시점 상류에 있는 TATA 박스(통상 전사 개시점(+1) -20 내지 -30 위치에 존재), CAAT 박스(통상 전사 개시 부위와 비교하여 대략 -75 위치에 존재), 5'인핸서, 전사 억제 인자 등을 포함한다. Also in this specification, "promoter" follows the conventional meaning known in the art, specifically located at the top (5 'side) based on the transcription initiation point of a gene, binding to DNA-dependent RNA polymerase By nucleic acid sequences having the function of controlling transcription of one or more genes, including sites, transcriptional initiation sites, transcription factor binding sites, and the like. Such a promoter may be a TATA box upstream of the transcription initiation point (usually at the transcription initiation point (+1) -20 to -30 position), CAAT box (usually approximately -75 position relative to the transcription initiation site if it is of eukaryotes) Present), a 5 'enhancer, a transcription repression factor, and the like.
사용 가능한 프로모터는 그것에 연결된 서열번호 1의 ORE7 유전자를 발현시킬 수 있는 프로모터라면 구성적 프로모터(모든 식물체 조직에서 상시적으로 발현을 유도하는 프로모터), 유도성 프로모터(특정 외부 자극에 반응하여 목적 유전자의 발현을 유도하는 프로모터 또는 특정 발달 시기나 특정 조직에서 특이적으로 발현을 유도하는 프로모터) 모두 사용될 수 있다. 사용 가능한 구성적 프로모터의 대표적인 예로는 콜리플라워 모자이크 바이러스(CaMV: cauliflower mosaic virus)의 35S RNA 유전자의 프로모터를 들 수 있고, 그 밖에 유비퀴틴(ubiquitin) 계열의 프로모터(Christensen et al., 1992, Plant Mol. Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol. 23, 567-581), 벼 액틴 프로모터(Zhang et al. 1991, The Plant Cell 3, 1155-1165) 등을 들 수 있다. 사용 가능한 유도성 프로모터의 예로는 구리 이온에 의해 활성화되는 효모 메탈로티오네인 프로모터(Mett 등, Proc. Natl. Acad. Sci., U.S.A., 90:4567, 1993), 치환 벤젠설폰아미드에 의해 활성화되는 In2-1 및 In2-2 프로모터(Hershey 등, Plant Mol. Biol., 17:679, 1991), 글루코코르티코이드에 의해 조절되는 GRE 조절 서열(Schena 등, Proc. Natl. Acad. Sci., U.S.A., 88:10421, 1991), 에탄올 조절성 프로모터(Caddick 등, Nature Biotech., 16:177, 1998), 리뷸로스 비스-포스페이트 카르복실라제(ssRUBISCO)의 소 서브유니트에서 유래한 광 조절성 프로모터(Coruzzi 등, EMBO J., 3:1671, 1984; Broglie 등, Science, 224:838, 1984), 만노핀 신타제 프로모터(Velten 등, EMBO J., 3:2723, 1984), 노팔린 신타제(NOS) 프로모터, 옥토핀 신타제(OCS) 프로모터, 열 충격 프로모터(Gurley 등, Mol. Cell. Biol., 6:559, 1986; Severin 등, Plant Mol. Biol., 15:827, 1990) 벼 글루테린(glutelin) 프로모터, 콩 유래 렉틴(lectin) 프로모터, 배추 유래 나핀(napin) 프로모터 등을 들 수 있다.Available promoters include ORE7 of SEQ ID NO: 1 linked to it. Promoters capable of expressing genes include constitutive promoters (promoters that induce constant expression in all plant tissues), inducible promoters (promoters that induce expression of the gene of interest in response to specific external stimuli, or at specific developmental times or in particular Promoters that specifically induce expression in tissue) can be used. Representative examples of constitutive promoters that can be used include the promoter of the 35S RNA gene of cauliflower mosaic virus (CaMV), and the ubiquitin family of promoters (Christensen et al., 1992, Plant Mol). Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol. 23, 567-581), rice actin promoter (Zhang et al. 1991, The Plant Cell 3, 1155-1165), etc. Can be mentioned. Examples of inducible promoters that can be used include the yeast metallothionein promoter (Mett et al., Proc. Natl. Acad. Sci., USA, 90: 4567, 1993), which is activated by copper ions, substituted by substituted benzenesulfonamides. In2-1 and In2-2 promoters (Hershey et al., Plant Mol. Biol., 17: 679, 1991), GRE regulatory sequences regulated by glucocorticoids (Schena et al., Proc. Natl. Acad. Sci., USA, 88 : 10421, 1991), ethanol regulating promoters (Caddick et al., Nature Biotech., 16: 177, 1998), light regulating promoters derived from bovine subunits of ribulose bis-phosphate carboxylase (ssRUBISCO) (Coruzzi et al. , EMBO J., 3: 1671, 1984; Broglie et al., Science, 224: 838, 1984), mannino synthase promoter (Velten et al., EMBO J., 3: 2723, 1984), nopalin synthase (NOS) Promoter, octopin synthase (OCS) promoter, heat shock promoter (Gurley et al., Mol. Cell. Biol., 6: 559, 1986; Severin et al., Plant Mol. Biol., 15: 827, 1990) A terlute (glutelin) promoter, a soybean-derived lectin promoter, a cabbage-derived napin promoter, and the like.
전사 종결 서열은 poly(A) 첨가 신호(polyadenylation signal)로 작용하는 서열로서 전사의 완결성 및 효율성을 높이기 위한 것이다. 사용될 수 있는 전사 종결 서열의 예로는 노팔린 신타아제(NOS) 유전자의 전사 종결 서열, 벼 α-아밀라아제 RAmy1 A 유전자의 전사 종결 서열, 아그로박테리움 투메파시엔스의 옥토파인(Octopine) 유전자의 전사 종결 서열, 밀 열 쇼크 단백질 17의 전사 종결 서열, 밀 유비퀴틴 유전자의 전사 종결 서열, 벼 글루테린 유전자의 전사 종결 서열, 벼 락테이트 디하이드로게나제 유전자의 전사 종결 서열 등을 들 수 있다. The transcription termination sequence is a sequence that acts as a poly (A) addition signal (polyadenylation signal) to enhance the integrity and efficiency of transcription. Examples of transcription termination sequences that can be used include the transcription termination sequence of the nopaline synthase (NOS) gene, the transcription termination sequence of the rice α-amylase RAmy1 A gene, and the transcription termination of the Octopine gene of Agrobacterium tumefaciens. A sequence, a transcription termination sequence of wheat heat shock protein 17, a transcription termination sequence of wheat ubiquitin gene, a transcription termination sequence of rice gluterin gene, a transcription termination sequence of rice lactate dehydrogenase gene, and the like.
상기 발현벡터는 선별 마커 유전자를 포함할 수 있다. 여기서 "선별 마커 유전자"란 그러한 마커 유전자를 포함하는 식물체의 선별을 가능하게 하는 형질을 암호화하는 유전자를 의미한다. 마커 유전자는 항생물질 내성 유전자일 수 있고 제초제 내성 유전자일 수도 있다. 적합한 선별 마커유전자의 예로는 아데노신 데아미나제의 유전자, 디히드로폴레이트 리덕타제의 유전자, 하이그로마이신-B-포스포트랜스퍼라제의 유전자, 티미딘 키나제의 유전자, 크산틴-구아닌 포스포리보실트랜스퍼라제의 유전자, 포스핀노트리신 아세틸트랜스퍼라제 유전자 등을 들 수 있다.The expression vector may include a selection marker gene. "Selection marker gene" as used herein means a gene encoding a trait that enables the selection of plants comprising such marker genes. The marker gene may be an antibiotic resistance gene or may be a herbicide resistance gene. Examples of suitable selection marker genes include genes of adenosine deaminase, genes of dihydrofolate reductase, genes of hygromycin-B-phosphortransferase, genes of thymidine kinase, genes of xanthine-guanine phosphoribosyltransfer Laze gene, phosphinnothricin acetyltransferase gene, etc. are mentioned.
본 명세서에서, 상기 "형질전환"이란 왜래 유전자가 도입됨에 의한 숙주 식물체의 유전자형의 변형을 의미하며, 그 형질전환에 사용된 방법과 상관없이 그 왜래 유전자가 숙주 식물체, 더 정확하게는 숙주 식물의 세포 내로 도입되어 세포의 게놈에 통합된 것을 의미한다. 여기서 왜래 유전자에는 동종성 유전자와 이종성 유전자가 포함되는데, "동종성 유전자"란 숙주 유기체 또는 그와 동일한 생물종의 내인성 유전자를 의미하며, "이종성 유전자"란 그것이 형질전환되는 유기체에서는 존재하지 않는 유전자를 말한다. 예컨대 애기장대 유래 유전자는 애기장대 식물에게는 동종성 유전자이지만 콩류 식물에 있어서는 이종성 유전자가 된다.As used herein, the term "transformation" refers to a modification of the genotype of a host plant by the introduction of a hereditary gene, and regardless of the method used for the transformation, the herb gene is a host plant, more precisely a cell of the host plant. Introduced into and integrated into the genome of a cell. Here, the hereditary genes include homologous and heterologous genes, wherein "homologous genes" refer to endogenous genes of a host organism or the same species, and "heterologous genes" are genes that do not exist in the organism to which they are transformed. Say. For example, the Arabidopsis derived gene is a homologous gene for Arabidopsis plants, but a heterologous gene for legume plants.
한편, 외래 유전자로 식물을 형질전환시키는 방법은 당업계에 공지된 방법을 사용할 수 있는데, 예컨대 유전자 총을 사용한 직접적인 유전자 전달 방법, 프로랄 딥(floral dip)을 이용한 in planta 형질전환 방법, 화분 매개 형질전환 방법, 원형질체의 형질전환 방법, 바이러스 매개 형질전환 방법, 리포좀 매개 형질전환 방법 등을 사용할 수 있다. 또한 특정 식물체에 적합한 형질전환 방법을 선택하여 사용할 수도 있는데, 예컨대 옥수수를 형질전환시키는 방법은 미국특허 US 6,140,553, 문헌(Fromm et al, 1990, Bio/Technology 8, 833-839), 문헌(Gordon-Kamm et al, 1990, The Plant Cell 2, 603-618) 등에 개시된 방법을 사용할 수 있으며, 벼를 형질전환시키기 위한 방법은 문헌(Shimamoto et al, 1989, Nature 338, 274-276), 문헌(Datta et al 1990, Bio/Technology 8, 736-740), 국제특허 WO 92/09696, 국제특허 WO 94/00977, 국제특허 WO 95/06722 등에 개시된 방법을 사용할 수 있다. 또 토마토나 담배 형질전환에 있어서는 문헌(An G. et al., 1986, Plant Physiol. 81: 301-305), 문헌 (Horsch R.B. et al, 1988, In: Plant Molecular Biology Manual A5, Dordrecht, Netherlands, Kluwer Academic Publishers, pp 1-9), 문헌(Koornneef M. et al, 1986, In: Nevins DJ. and R.A. Jones, eds. Tomato Biotechnology, New York, NY, USA, Alan R. Liss, Inc. pp 169-178) 등에 개시된 방법을 사용할 수 있다.Meanwhile, a method for transforming a plant with a foreign gene may be a method known in the art, for example, a direct gene transfer method using a gene gun, in in a floral dip planta transformation method, pollen mediated transformation method, protoplast transformation method, virus mediated transformation method, liposome mediated transformation method and the like can be used. In addition, it is also possible to select and use a transformation method suitable for a specific plant, for example, a method for transforming corn is described in US Pat. No. 6,140,553, Fromm et al, 1990, Bio / Technology 8, 833-839, Gordon- Kamm et al, 1990, The Plant Cell 2, 603-618) and the like can be used, methods for transforming rice are described in Shimamoto et al, 1989, Nature 338, 274-276, Datta et al 1990, Bio / Technology 8, 736-740), international patent WO 92/09696, international patent WO 94/00977, international patent WO 95/06722 and the like. Also, in tomato or tobacco transformation (An G. et al., 1986, Plant Physiol. 81: 301-305), Horsch RB et al, 1988, In: Plant Molecular Biology Manual A5, Dordrecht, Netherlands, Kluwer Academic Publishers, pp 1-9, Koornneef M. et al, 1986, In: Nevins DJ. And RA Jones, eds. Tomato Biotechnology, New York, NY, USA, Alan R. Liss, Inc. pp 169 -178) and the like can be used.
일반적으로 식물을 형질전환시킴에 있어 많이 사용되는 것이, 형질전환된 아그로박테리움으로 유식물체, 식물 종자 등을 감염시키는 방법이다.Generally used in transforming plants is a method of infecting seedlings, plant seeds and the like with the transformed Agrobacterium.
이러한 아그로박테리움이 매개된 형질전환 방법은 당업계에 잘 공지되어 있으며(Chilton 등, 1977, Cell 11:263:271; 유럽특허 EP 0116718; 미국특허 US 4,940,838), 특정 식물체에 적합한 방법도 당업계에 공지되어 있다. 예컨대 목화에 대해서는 미국특허 US 5,159,135, 콩에 대해서는 미국특허 US 5,824,877, 옥수수에 대해서는 미국특허 US 5,591,616 등을 참조할 수 있다. 아그로박테리움 매개 형질전환 방법은 Ti-플라스미드를 이용하는데, 이 플라스미드에는 T-DNA를 식물 세포의 게놈으로 통합시킬 수 있는 좌우 경계(border) 서열이 포함될 것이다.Such Agrobacterium mediated transformation methods are well known in the art (Chilton et al., 1977, Cell 11: 263: 271; European Patent EP 0116718; US Patent US 4,940,838), and methods suitable for particular plants are also known in the art. Known in See, for example, US Pat. No. 5,159,135 for cotton, US Pat. No. 5,824,877 for soybean, US Pat. No. 5,591,616 for corn, and the like. The Agrobacterium mediated transformation method uses Ti-plasmid, which will contain left and right border sequences that allow the integration of T-DNA into the genome of plant cells.
한편, 상기 (b) 단계의 선별은 식물체의 생체량 및/또는 종자 생산성을 비교하여 선별하거나, 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있으며, 또는 이들의 방법을 혼합하여 선별할 수도 있다.On the other hand, the selection of the step (b) may be selected by comparing the biomass and / or seed productivity of the plant, or when the selection marker gene is transformed with the transformation at the time of transformation may be selected using the selection marker gene, or These methods can also be mixed and screened.
또 다른 측면에 있어서, 본 발명은 스트레스 내성이 강화된 식물체의 제조 방법에 관한 것이다.In another aspect, the present invention relates to a method for producing a plant with enhanced stress resistance.
본 발명의 스트레스 내성이 강화된 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계 및 (b) 스트레스 내성이 강화된 식물체를 선별하는 단계를 포함하여 구성된다.Method for producing a stress-enhanced plant of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant and (b) stress Selecting a plant having enhanced resistance.
본 명세서에서, "스트레스"는 고온 스트레스, 저온 스트레스, 건조(가뭄) 스트레스, 염 스트레스 및/또는 산화적 스트레스를 의미한다.As used herein, "stress" means hot stress, cold stress, dry (drought) stress, salt stress and / or oxidative stress.
상기 (a) 단계는 유전공학적으로 수행될 수 있는데, 이러한 유전공학적 방법에 대해서는 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
상기 (b) 단계는 식물체의 스트레스 내성을 비교하여 선별하거나(예컨대 잎의 황화 현상의 진행 정도, 잎의 괴사 현상의 진행 정도, 잎 및/또는 줄기의 생체량, 엽록소 함량, 광합성 효율 등) 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있으며, 또는 이들의 방법을 혼합하여 선별할 수도 있다.The step (b) is selected by comparing the stress resistance of the plant (e.g., the progress of leaf sulfidation, the progression of leaf necrosis, the biomass of the leaves and / or stems, chlorophyll content, photosynthetic efficiency, etc.) When the selection marker gene is transformed together at the time, the selection marker gene may be used for selection, or a combination thereof may be used for selection.
또 다른 측면에 있어서, 본 발명은 노화 지연 특성을 갖는 식물체의 제조 방법에 관한 것이다.In another aspect, the present invention relates to a method for producing a plant having aging delay properties.
본 발명의 노화 지연 특성을 갖는 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계 및 (b) 노화 지연 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성된다.Method of producing a plant having a delayed aging characteristics of the present invention comprises the steps of (a) expressing a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence of SEQ ID NO: 1 in the plant and (b) aging Selecting the plant with delayed properties.
본 명세서에서, "노화 지연"이란 야생형 식물체에 비하여 식물 수명이 연장된 특성을 말하며, 구체적으로는 잎 및/또는 줄기의 황화 현상 및/또는 괴사 현상이 야생형 식물체 비하여 지연되거나 식물체의 엽록소 함량이 야생형 식물체에 비하여 많거나 식물체의 광합성 효율이 야생형 식물체 비하여 높은 특성 말한다.As used herein, the term "aging delay" refers to a property of prolonged plant life as compared to wild-type plants, and specifically, the yellowing and / or necrosis of leaves and / or stems is delayed compared to wild-type plants or the chlorophyll content of plants is wild-type. It is more characteristic than plants or photosynthetic efficiency of plants is higher than wild type plants.
상기 (a) 단계는 유전공학적으로 수행될 수 있는데, 이러한 유전공학적 방법에 대해서는 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
상기 (b) 단계는 형질전환된 식물체를 발육·성장시켜, 잎의 황화 현상의 진행 정도나 잎의 괴사 현상의 진행 정도 등을 통해 육안으로 선별하거나, 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있으며, 나아가 엽록소 함량, 광합성 효율 등을 정량하는 방법, 상기 방법들을 혼합한 방법 등을 통하여 선별할 수 있다.In step (b), the transformed plant is grown and grown, and the naked eye is selected through the degree of progress of leaf yellowing or the progression of leaf necrosis, or at the time of transformation, the selectable marker gene is transformed together. If selected, the selection may be performed using a selection marker gene, and further, may be selected through a method of quantifying chlorophyll content, photosynthetic efficiency, etc., a method of mixing the above methods, and the like.
또 다른 측면에 있어서, 본 발명은 식물체의 생산성을 증대시키는 방법에 관한 것이다.In another aspect, the present invention relates to a method for increasing the productivity of a plant.
본 발명의 식물체의 생산성을 증대시키는 방법은 (a) 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method for increasing the productivity of a plant of the present invention is (a) operably linking an ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector preferably and (b) transforming the expression vector into a plant.
또 다른 측면에 있어서, 본 발명은 식물체의 스트레스 내성을 강화시키는 방법에 관한 것이다.In another aspect, the present invention relates to a method for enhancing stress resistance of a plant.
본 발명의 식물체의 스트레스 내성을 강화시키는 방법은 (a) 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method of enhancing the stress resistance of a plant of the present invention (a) to enable the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector so as to be linked, and (b) transforming the expression vector into a plant.
또 다른 측면에 있어서, 본 발명은 식물체의 노화를 지연시키는 방법에 관한 것이다. In another aspect, the present invention relates to a method for delaying aging of a plant.
본 발명의 식물체의 노화를 지연시키는 방법은 (a) 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method for delaying aging of a plant of the present invention is to (a) operably link a gene having a nucleotide sequence of SEQ ID NO. 1 or a gene having a sequence similar to that of SEQ ID NO. 1 to a regulatory sequence capable of expressing it. Inserting into the expression vector and (b) transforming the expression vector into a plant.
상기 방법들에서 상기 (a) 및 (b) 단계는 상기 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Steps (a) and (b) in the above methods are as described with reference to the method for producing a plant having the productivity enhancing properties of the present invention.
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현됨으로써 생산성 증대 특성을 갖는 형질전환 식물체에 관한 것이다.In another aspect, the present invention provides a ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having a productivity enhancing property of the present invention By expressing it relates to a transgenic plant having productivity enhancing properties.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 ORE7 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 ORE7 유전자가 도입되어 발현됨으로써 생산성 증대 특성을 갖는 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having productivity enhancement properties by introducing and expressing a gene encoding an ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular, an ORE7 gene having the nucleotide sequence of SEQ ID NO: 1.
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 스트레스 내성이 강화된 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 ORE7 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현됨으로써 스트레스 내성이 강화된 형질전환 식물체에 관한 것이다.In another aspect, the present invention is a gene having a sequence similar to the ORE7 gene having a nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant with enhanced stress resistance of the present invention The present invention relates to a transgenic plant that is enhanced in stress resistance.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 ORE7 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 ORE7 유전자가 도입되어 발현됨으로써 스트레스 내성이 강화된 특성을 갖는 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having enhanced stress resistance by introducing a gene encoding the ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the ORE7 gene having the nucleotide sequence of SEQ ID NO: 1 is introduced to be.
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 스트레스 내성 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현된 노화 지연 특성을 갖는 형질전환 식물체에 관한 것이다.In another aspect, the present invention is a delay in aging of the gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a stress-resistant plant of the present invention The present invention relates to a transgenic plant having characteristics.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 ORE7 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 ORE7 유전자가 도입되어 발현됨으로써 스트레스 내성이 강화된 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having enhanced stress resistance by introducing and expressing a gene encoding an ORE7 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular an ORE7 gene having the nucleotide sequence of SEQ ID NO: 1.
본 명세서에서, 상기 "형질전환 식물체"는 성숙한 식물로 발육·생장할 수 있는 식물 세포, 식물 조직, 또는 식물 종자에 상기 유전자가 도입되어 형질전환된 경우뿐만 아니라 형질전환된 식물과의 교배에 의해 얻어지는 게놈이 변형된 식물체, 식물 종자, 식물 세포를 포함한다.In the present specification, the "transformed plant" refers to a plant cell, a plant tissue, or a plant seed capable of developing and growing as a mature plant, when the gene is introduced and transformed, as well as by mating with the transformed plant. The resulting genome includes modified plants, plant seeds, plant cells.
전술한 바와 같이, 본 발명에 따르면 ORE7 유전자를 이용한, 생산성 증대 특성을 갖거나 스트레스 내성이 강화되거나, 노화 지연 특성을 갖는 식물체를 제조하는 방법을 제공할 수 있다.As described above, according to the present invention, it is possible to provide a method for producing a plant having productivity enhancing characteristics, enhanced stress resistance, or delaying aging using the ORE7 gene.
도 1은 식물의 생산성 증대 기능을 가지고 또한 노화 지연과 스트레스 내성 강화 기능을 가지는 ORE7 유전자가 센스 방향으로 도입된 pB2GW7.0-ORE7 재조합 벡터의 구조(모식도)를 나타낸 것이다. Figure 1 shows the structure (schematic) of the pB2GW7.0-ORE7 recombinant vector in which the ORE7 gene, which has a function of increasing productivity of plants and has a function of delaying aging and enhancing stress resistance, is introduced in the sense direction.
도 2는 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터를 통한 콩 형질전환 및 형질전환체 생산과정이다. (a) Half seed explants on CCM, 1-after infection, 2-after 5 days inoculation; (b) Shoot induction medium without PPT; (c) Shoot induction medium containing DL- phosphinothricin 10 mg/L for bar selection; (d) Shoot elongation medium with 5 mg/L PPT; (e) Rooting medium; (f) Acclimate putative transgenic plant in the small pot; (g) Grow transgenic plant in the large pot; (h) 5 days after PPT leaf painting T0 plants were shown, 1- wild type plant was sensitive, 2- transgenic plant was herbicide resistant.Figure 2 is a soybean transformation and transformant production process through the pB2GW7.0-ORE7 recombinant vector of FIG. (a) Half seed explants on CCM, 1-after infection, 2-after 5 days inoculation; (b) Shoot induction medium without PPT; (c) Shoot induction medium containing DL-phosphinothricin 10 mg / L for bar selection; (d) Shoot elongation medium with 5 mg / L PPT; (e) Rooting medium; (f) Acclimate putative transgenic plant in the small pot; (g) Grow transgenic plant in the large pot; (h) 5 days after PPT leaf painting T 0 plants were shown, 1- wild type plant was sensitive, 2- transgenic plant was herbicide resistant.
도 3은 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩의 T0 식물의 잎을 대상으로 재조합 유전자의 도입을 확인하기 위하여 genomic PCR을 수행한 결과를 나타낸 것이다. (a) ORE7 gene; (b) BAR gene; (c) the DNAs between left board and Bar gene; (d) the DNAs between ORE7 gene and right board; PC, binary vector carrying ORE7 and Bar gene as positive control; WT, 야생형; #1~24, pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T0 식물. Figure 3 shows the results of performing genomic PCR to confirm the introduction of the recombinant gene in the leaves of the T 0 plants of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. (a) ORE7 gene; (b) BAR gene; (c) the DNAs between left board and Bar gene; (d) the DNAs between ORE7 gene and right board; PC, binary vector carrying ORE7 and Bar gene as positive control; WT, wild type; # 1 ~ 24, Soybean T 0 plants transformed with pB2GW7.0-ORE7 recombinant vector.
도 4는 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩의 T0 식물의 잎을 대상으로 재조합 유전자의 발현을 확인하기 위하여 RT-PCR을 수행한 결과를 나타낸 것이다. WT, 야생형; #1~24, pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T0 식물. TUB를 PCR 양성 대조구로 사용.Figure 4 shows the results of performing RT-PCR to confirm the expression of the recombinant gene in the leaves of the T 0 plants of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. WT, wild type; # 1 ~ 24, soybean T 0 transformed with pB2GW7.0-ORE7 recombinant vector plant. TUB used as a PCR positive control.
도 5는 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩의 T3 라인의 잎을 대상으로 재조합 유전자의 복제(copy) 수를 확인하기 위하여 제노믹 서던 블로팅(Genomic Southern blotting)을 수행한 결과를 나타낸 것이다. WT, 야생형; #1, 2, 7, 9, 13, 14, 15, 19 and 24, pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T3 라인. DNA 분자 크기 마커는 그림 오른쪽에 제시하였음.5 is a genomic southern blotting to confirm the number of copies of the recombinant gene in the leaves of the T 3 line of the soybean transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. It shows the results of the operation. WT, wild type; Soybean T 3 transformed with # 1, 2, 7, 9, 13, 14, 15, 19 and 24, pB2GW7.0-ORE7 recombinant vector line. DNA molecule size markers are shown at the right of the figure.
도 6A는 vegetative stage 2까지 생육한 콩 야생형(WT)과 벡터 대조구(EV), 그리고 T2 형질전환 라인 #7, #9, #14, 그리고 #15의 2-node 잎을 detach하여 암상태를 유지하여 14, 18, 그리고 21일까지 잎의 표현형을 관찰한 그림이다. DAT, days after dark treatment.6A shows soybean wild type (WT) and vector control (EV) grown to vegetative stage 2, and T 2 The two-node leaves of transformation lines # 7, # 9, # 14, and # 15 were detached to maintain cancer status and observed the phenotype of the leaves until 14, 18, and 21 days. DAT, days after dark treatment.
도 6B는 vegetative stage 2까지 생육한 콩 야생형(WT)과 벡터 대조구(EV), 그리고 T2 형질전환 라인 #7, #9, #14, 그리고 #15의 2-node 잎을 detach하여 암상태를 유지하여 14, 18, 그리고 21일까지 잎의 엽록소 함량 및 광합성 효율을 Fv/Fm로 조사한 그림이다. The SD is shown as error bar. Asterisks indicate significant differences compared to the wild type (P value < 0.05).Figure 6B shows soybean wild type (WT) and vector control (EV) grown to vegetative stage 2, and T 2 2-node leaves of transformation lines # 7, # 9, # 14, and # 15 were detached and maintained in the dark state to investigate the chlorophyll content and photosynthetic efficiency of leaves by Fv / Fm until 14, 18, and 21 days. to be. The SD is shown as error bar. Asterisks indicate significant differences compared to the wild type (P value <0.05).
도 7A는 vegetative stage 2까지 생육한 콩 야생형(WT)과 T2 형질전환 라인 #7, 그리고 #15를 50mM H2O2 스트레스 하에서 방치한 후 7, 11, 그리고 15일째의 V2-stage의 2-node 잎의 표현형을 관찰한 그림이다. DAT, days after H2O2 treatment.7A is T 2 and the growth of beans wild type (WT) to the vegetative stage 2 Transformation line # 7, and # 15 to 50 mM H 2 O 2 Figure 2 shows the phenotype of 2-node leaves of V2-stage after 7, 11, and 15 days after stress. DAT, days after H 2 O 2 treatment.
도 7B는 vegetative stage 2까지 생육한 콩 야생형(WT)과 T2 형질전환 라인 #7, 그리고 #15를 50mM H2O2 스트레스 하에서 방치한 후 7, 11, 그리고 15일째의 V2-stage의 2-node 잎의 엽록소 함량을 조사한 그림이다. The SD is shown as error bar. Asterisks indicate significant differences compared to the wild type (*P value < 0.05; **P value < 0.01).Figure 7B shows soybean wild type (WT) and T 2 grown up to vegetative stage 2. Transformation line # 7, and # 15 to 50 mM H 2 O 2 Chlorophyll content of 2-node leaves of V2-stage at 7, 11 and 15 days after stress. The SD is shown as error bar. Asterisks indicate significant differences compared to the wild type (* P value <0.05; ** P value <0.01).
도 8은 vegetative stage 2까지 생육한 콩 야생형(WT)과 벡터 대조구(EV), 그리고 T2 형질전환 라인 #7, #9, #14, 그리고 #15의 2-node 잎을 detach하여 암상태를 18일 동안 유지한 잎의 노화 마커 유전자의 발현 양상을 RT-PCR을 통하여 분석한 결과를 나타낸 것이며, 18S rRNA를 PCR 양성 대조구로 사용하였다. GmRbcL GmCab3는 콩의 노화 마커 유전자. GmRbcL; Glycine max chloroplast rbcL gene, GmCab3; Glycine max chlorophyll a/b-binding protein mRNA. 8 shows soybean wild type (WT) and vector control (EV) grown to vegetative stage 2, and T 2 RT-PCR was used to analyze the expression patterns of aging marker genes in leaves that maintained cancer for 18 days by detaching 2-node leaves of transformation lines # 7, # 9, # 14, and # 15. 18S rRNA was used as a PCR positive control. With GmRbcL GmCab3 is an aging marker gene in soybeans. GmRbcL ; Glycine max chloroplast rbcL gene, GmCab 3 ; Glycine max chlorophyll a / b-binding protein mRNA.
도 9는 콩 야생형(WT)과 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T3 라인 #2, #7, 그리고 #15를 파종 후 119일, 125일, 그리고 133일 동안 생육시킨 표현형 그림이다. DAS, days after sowing.9 shows soybean wild type (WT) and soybean T 3 transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. 1. Phenotypes of lines # 2, # 7, and # 15 grown for 119 days, 125 days, and 133 days after sowing. DAS, days after sowing.
도 10은 콩 야생형(WT)과 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T3 라인 #2, #7, 그리고 #15의 종자 수확률과 ORE7 유전자의 발현율을 나타낸 그림이다. 10 shows soybean wild type (WT) and soybean T 3 transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. Seed yields and expression rates of the ORE7 gene in lines # 2, # 7, and # 15.
도 11은 콩 야생형(WT)과 상기 도 1의 pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T3 라인을 포장에서 생육하여 임의로 21 개체를 선별하여 종자 수확률과 ORE7 유전자의 발현율을 나타낸 그림이다. GM****, pB2GW7.0-ORE7 재조합 벡터로 형질전환된 콩 T3 식물 개체. 야생형의 값은 20 개체의 평균값과 SD(error bar)임.FIG. 11 shows soybean wild type (WT) and soybean T 3 transformed with the pB2GW7.0-ORE7 recombinant vector of FIG. 1. Figure 21 shows the seed yield and the expression rate of the ORE7 gene. GM ****, soybean T 3 plant individual transformed with pB2GW7.0-ORE7 recombinant vector. Wild type values are the mean value of 20 individuals and the SD (error bar).
도 12는 vegetative stage 2까지 생육한 콩 야생형(WT)과 T3 형질전환 라인 #2, #7, 그리고 #15의 2-node 잎을 대상으로 cytokinin signaling pathway 중 cytokinin receptor로서 기능을 가지는 histidine kinase(HK) 유전자군의 발현 양상을 RT-PCR을 통하여 분석한 결과를 나타낸 것이며, TUB를 PCR 양성 대조구로 사용하였다. 애기장대 AHK1 homologue, GmHK7, GmHK9; 애기장대 AHK2 homologue, GmKH11; 애기장대 AHK3 homologue, GmHK12, GmHK13; 애기장대 AHK4 ( CRE1 ) homologue, GmHK14 , GmHK15 , GmHK16, 그리고 GmHK17.12 shows soybean wild type (WT) and T grown to vegetative stage 2.3 RT-PCR analysis of the expression patterns of histidine kinase (HK) gene family that functions as cytokinin receptors in cytokinin signaling pathways on 2-node leaves of transformation lines # 2, # 7, and # 15. Shown,TUBWas used as a PCR positive control. Baby poleAHK1 homologue,GmHK7, GmHK9; Baby poleAHK2 homologue,GmKH11; Baby poleAHK3 homologue,GmHK12, GmHK13; Baby poleAHK4 ( CRE1 ) homologue,GmHK14 , GmHK15 , GmHK16, AndGmHK17.
도 13은 vegetative stage 2까지 생육한 콩 야생형(WT)과 T3 형질전환 라인 #2, #7, 그리고 #15의 2-node 잎을 대상으로 cytokinin signaling pathway 중 histidine phosphotransfer proteins(HP) 유전자로의 기능을 가지는 유전자군의 발현 양상을 RT-PCR을 통하여 분석한 결과를 나타낸 것이며, TUB를 PCR 양성 대조구로 사용하였다. 애기장대 AHP1 homologue, GmHP01 , GmHP03 , GmHP04 , GmHP05; 애기장대 AHP2 , 3, 5 homologue, GmHP09 , GmHP10; 애기장대 AHP4 homologue, GmHP07 , GmHP08; 애기장대 AHP6 homologue, GmPHP01 그리고 GmPHP03. FIG. 13 shows soybean wild type (WT) and T grown to vegetative stage 2.3 RT-PCR analysis of the expression patterns of genes having the function of histidine phosphotransfer proteins (HP) gene in cytokinin signaling pathways on 2-node leaves of transformation lines # 2, # 7, and # 15 Which representsTUBWas used as a PCR positive control. Baby poleAHP1 homologue,GmHP01 , GmHP03 , GmHP04 , GmHP05; Baby poleAHP2 , 3, 5 homologue,GmHP09 , GmHP10; Baby poleAHP4 homologue,GmHP07 , GmHP08; Baby poleAHP6 homologue,GmPHP01 AndGmPHP03.
도 14는 콩의 생산성 증대와 노화 지연에 있어서 ORE7 유전자의 우점적 역할에 대한 제안된 가설을 그림으로 나타낸 것이다. SAGs: senescence-associated genes of soybean. 14 graphically illustrates the proposed hypothesis for the predominant role of the ORE7 gene in increasing soybean productivity and delaying aging. SAGs: senescence-associated genes of soybean.
이하 본 발명의 실시예를 참조하여 설명한다. 그러나 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다.Hereinafter will be described with reference to embodiments of the present invention. However, the scope of the present invention is not limited to these examples.
<< 실시예Example 1>  1> ORE7ORE7 에 대한 콩 형질전환용 벡터 제작 및 형질전환체 생산Transformation Vector Production and Transformant Production for Soybean
ORE7 콩 형질전환체를 생산하기 위하여 다음의 과정을 수행하였다. To produce ORE7 soybean transformants, the following procedure was performed.
<실시예 1-1> ORE7 에 대한 콩 형질전환용 벡터 제작 <Example 1-1> Soybean transformation vector preparation for ORE7
애기장대에서 ORE7(putative DNA-binding protein ESCAROLA of Arabidopsis thaliana, AT1G20900) 유전자를 ORE7-F primer(5'-CAC CAT GGA AGG CGG TTA CGA GCA AG-3', 서열번호 3)와 ORE7-R primer(5'-TTA AAA AGG TGG TCT TGA AGG TG-3' 서열번호 4)를 이용하여 분리, 증폭한 후 pENTR/D-TOPO vector(Invitrogen, Carlsbad, CA, USA)에 도입하여 pENTR-ORE7을 제작하였다. 제작된 pENTR-ORE7를 목적 벡터(Destination vector)인 pB2GW7.0(VIB-Ghent University, Ghent, Belgium)에 삽입하기 위해서 Invitrogen사의 Gateway® LR Clonase TM Enzyme mix Kit를 사용하였다. 상기 제조된 pB2GW7.0-ORE7 벡터는 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) EHA105 균주에 형질전환한 후 콩 형질전환용 벡터로 사용하였다. 제작된 pB2GW7.0-ORE7 벡터의 모식도는 도 1과 같다. 도 1에서 BAR는 바스타 제초제에 대한 저항성을 부여하는 BAR 유전자(phosphinothricin acetyltransferase gene)를 가리키고, RB는 오른쪽 경계(Right Border), LB는 왼쪽 경계(Left Border), P35S는 CaMV 35S 프로모터, T35S는 CaMV 35S 터미네이터를 가리킨다.In the Arabidopsis, ORE7 (putative DNA-binding protein ESCAROLA of Arabidopsis thaliana , AT1G20900) gene was transferred to ORE7-F primer (5'-CAC CAT GGA AGG CGG TTA CGA GCA AG-3 ', SEQ ID NO: 3) and ORE7-R primer ( 5'-TTA AAA AGG TGG TCT TGA AGG TG-3 'was isolated and amplified using pENTR / D-TOPO vector (Invitrogen, Carlsbad, Calif., USA) to prepare pENTR-ORE7. . Invitrogen's Gateway® LR Clonase ™ Enzyme mix Kit was used to insert the prepared pENTR-ORE7 into the destination vector pB2GW7.0 (VIB-Ghent University, Ghent, Belgium). The prepared pB2GW7.0-ORE7 vector is Agrobacterium tumefaciens ( Agrobacterium) tumefaciens ) was transformed into EHA105 strain and used as a soybean transformation vector. A schematic diagram of the produced pB2GW7.0-ORE7 vector is shown in FIG. 1. In FIG. 1, BAR refers to a BAR gene (phosphinothricin acetyltransferase gene) that confers resistance to Basta herbicide, RB is a right border, LB is a left border, P35S is a CaMV 35S promoter, and T35S is a CaMV Points to the 35S terminator.
<실시예 1-2> 콩 형질전환 및 ORE7 콩 형질전환체 생산 Example 1-2 Soybean Transformation and ORE7 Soybean Transformant Production
콩(Glycine max L. cv. Kwangan) 형질전환 및 형질전환체 생산 과정은 다음과 같다. 우선 침지해 놓은 종자의 양 떡잎 사이로 scalpel을 넣어 하배축까지 수직으로 자르고 종피를 제거하였다. Hypocotyl을 떡잎 밑 약 1㎝ 되는 곳에서 자른 후 embryonic axis가 붙어있는 한 쪽을 scalpel로 7,8회 정도 상처를 내었다. 이 때 scalpel에 5mL 농축액을 묻힌 다음 target 부위에 상처를 낸다. 대략 50개 정도의 explant를 15mL co-cultivation/A. tumefaciens에 넣고 sonication 20초, 데시게이터와 다이어프램 펌프(GAST사)를 이용해 vacuum 30초 (500 mm.Hg) 처리를 한 뒤 30분 동안 접종시켰다. Explant를 tube에서 꺼내 멸균한 filter paper위에 놓고 물기를 제거한 다음, filter paper를 한 장 깔고 10 개체를 올려두었다(adaxial side down)(도 2a-1). 이후 Micropore로 봉한 뒤 25℃, 18시간 광주기에 5일 동안 공동배양하였다(도 2a-2). Beans ( Glycine max L. cv. Kwangan) Transformation and transformant production process is as follows. First, the scalpel was inserted between the two cotyledons of the soaked seeds, cut vertically up to the hypocotyl and the seedlings were removed. Hypocotyl was cut at about 1 cm below the cotyledon, and one side of the embryonic axis was wound by scalpel 7,8 times. At this time, 5ml of the concentrate is applied to the scalpel and the target site is wounded. Approximately 50 explants were placed in 15 mL co-cultivation / A. tumefaciens , inoculated for 30 minutes after 20 seconds of sonication, vacuum 30 seconds (500 mm.Hg) using a desiccator and diaphragm pump (GAST). . The explant was removed from the tube and placed on sterile filter paper to remove water. Then, one sheet of filter paper was placed and 10 objects were placed (adaxial side down) (Fig. 2a-1). After sealing with Micropore and co-cultured for 5 days at 25 ℃, 18 hours photoperiod (Fig. 2a-2).
5일간 co-cultivation 후에 제균을 위해서 cefotaxime 250㎎/L, vancomycin 50㎎/L 그리고 ticarcillin 100㎎/L를 사용하며, 이 후 explant를 filter paper 위에 놓고 물기를 제거한 뒤 선발항생제가 없는 SI(shoot induction)-① 배지에 한 plate당 5개체씩 hypocotyl 부분이 배지에 고착되고 재분화될 부분이 30°정도의 각도로 flat side가 위로 향하도록 치상하였다(도 2b). 각각의 plate를 micropore로 봉한 뒤 25℃, 18시간 광주기에서 배양시키고, 2주 후 shoot가 나온 explant를 선발항생제 PPT 10 ㎎/L가 들어있는 SI-② 배지에 치상하는데, 이때 shoot를 제외한 나머지 부분은 잘라버리고 adaxial side down으로 치상한다(도 2c). 2주 후 갈변한 shoot/shoot pad는 scalpel로 깎아 선발항생제 PPT 5 ㎎/L가 들어있는 SEM(shoot elongation medium) 배지에 치상하였다(도 2d). 2주마다 새로운 SEM 배지로 옮겨주면서 shoot의 갈변 부위는 덜 뾰족한 scalpel 윗면으로 쳐서 제거하고 shoot pad는 조금씩 계속 깎아내어 배지가 잘 흡수되도록 하였다. 이후 선발을 거치면서 신장된 shoot가 4cm 이상일 때 RM 배지에서 뿌리 분화를 유도하였다(도 2e). After 5 days of co-cultivation, cefotaxime 250 mg / L, vancomycin 50 mg / L and ticarcillin 100 mg / L are used for sterilization. After explants are placed on the filter paper, water is removed and SI (shoot induction) is not selected. 5) One plate per plate on the medium was hypocotyl-fixed to the medium, and the part to be redifferentiated was flattened with the flat side facing up at an angle of about 30 ° (FIG. 2b). Each plate was sealed with a micropore and incubated at 25 ° C for 18 hours at photoperiod. After 2 weeks, explants with shoots were wound on SI-② medium containing antibiotics PPT 10 mg / L. The part is cut off and toothed with adaxial side down (FIG. 2C). Two weeks later, the browned shoot / shoot pad was cut with a scalpel and placed in SEM (shoot elongation medium) medium containing 5 mg / L of antibiotic PPT (FIG. 2D). Every two weeks, the browning area of the shoot was removed by tapping the top of the less pointed scalpel, and the shoot pad was scraped off little by little to allow the medium to be absorbed. After the selection, when the elongated shoot was 4 cm or more, root differentiation was induced in RM medium (FIG. 2E).
1~2주가 경과한 후 2개 이상의 뿌리가 나오면 3차 증류수로 배지를 씻어내고 상토와 버미큘라이트를 2:1로 섞어 넣은 small pot(6㎝ > 6㎝ > 5.6㎝)에 재식하였다. 이 small pot는 다시 magenta box 안에 넣어 25℃, 18시간 광주기에서 생장시켜(도 2f), 약 10일 정도 경과 후 잎 표면에 100 ㎎/L DL-PPT로 leaf painting을 하였다(도 2h). Leaf painting으로 유전자 도입을 확인한 식물체를 big pot로 이식하고(도 2g), 투명한 플라스틱 덮개에 2, 4, 10개의 구멍을 만들어 3일 마다 개수가 적은 것에서부터 많은 것으로 바꿔서 씌운다. 약 10일 후, 식물체에 Basta(BAYER사) 처리를 하고 단일처리(8시간 명조건, 16시간 암조건, 종이 box 이용)로 화아 분화를 유도하여 개화시키고, Basta 처리를 하여 저항성을 나타내는 형질전환체를 온실로 옮겨 종자를 수확하였다. 상기의 형질전환 및 형질전환체 생산과정은 도 2에 제시하였다. 우리는 상기의 형질전환 과정을 거쳐 ORE7 콩 형질전환체를 생산하였다.After one to two weeks, two or more roots emerged, and the medium was washed with tertiary distilled water and planted in a small pot (6 cm> 6 cm> 5.6 cm) containing 2: 1 mixed top soil and vermiculite. This small pot was placed in a magenta box again and grown at a photoperiod of 25 ° C. and 18 hours (FIG. 2F), and after about 10 days, leaf painting was performed on leaf surface with 100 mg / L DL-PPT (FIG. 2H). Plants confirmed gene introduction by leaf painting are transplanted into big pots (Fig. 2g), and 2, 4 and 10 holes are made in a transparent plastic cover and replaced with a small number every three days. After about 10 days, the plants were treated with Basta (BAYER), induced flower differentiation by single treatment (8 hours light condition, 16 hours dark condition, using paper box), and then transformed to show resistance by Basta treatment. Seeds were transferred to a greenhouse to harvest seeds. The transformation and transformant production process are shown in FIG. 2. We produced the ORE7 soybean transformant through the above transformation process.
<실시예 1-3> 생산된 ORE7 콩 형질전환체의 검증 Example 1-3 Verification of ORE7 Soybean Transformant Produced
생산된 콩 형질전환체에 대하여 재조합 유전자의 도입을 확인하기 위하여 PCR 분석, 재조합 유전자의 발현을 확인하기 위하여 RT-PCR 분석, 그리고 재조합 유전자의 복제(copy) 수를 확인하기 위하여 제노믹 서던 블로팅(Genomic Southern blotting)을 수행하였다.PCR analysis to confirm the introduction of recombinant genes to the soybean transformants produced, RT-PCR analysis to confirm the expression of recombinant genes, and genomic southern blotting to confirm the number of copies of the recombinant genes (Genomic Southern blotting) was performed.
ORE7 콩 형질전환체의 재조합 유전자 도입을 확인하기 위하여 형질전환체들의 잎을 대상으로 CTAB(certyltrimethyl-ammonium bromide) 방법을 통해서 총 게놈 DNA를 분리하였다. 도입 유전자인 ORE7과 선별 제초제 저항성 유전자인 BAR의 서열을 이용하여 PCR을 수행하였다. 사용된 프라이머는 ORE7의 경우 ORE7-GPCR-F(5'-ATG GAA GGC GGT TAC GAG CAA GGC-3', 서열번호 5)와 ORE7-GPCR-R(5'-TTA AAA AGG TGG TCT TGA AGG TGT-3', 서열번호 6)이며, BAR의 경우 BAR-GPCR-F(5'-CAT GTA ATG CTG CTC AAG GTA CGC-3', 서열번호 7)와 BAR-GPCR-R(5'-ATG TAA TGC TGC TCA AGG TAC GC -3', 서열번호 8)이다. In order to confirm the recombinant gene introduction of the ORE7 soybean transformant, total genomic DNA was isolated from the leaves of the transformants by CTAB (certyltrimethyl-ammonium bromide) method. PCR was performed using the sequences of the introduction gene ORE7 and the selection herbicide resistance gene BAR . The primers used in the case of ORE7 ORE7-GPCR-F (5' -ATG GAA GGC GGT TAC GAG CAA GGC-3 ', SEQ ID NO: 5) and ORE7-GPCR-R (5'- TTA AAA AGG TGG TCT TGA AGG TGT 3 ', SEQ ID NO: 6) and, in the case of the BAR BAR-GPCR-F (5' -CAT GTA ATG CTG CTC AAG GTA CGC-3', SEQ ID NO: 7) and the BAR-GPCR-R (5'- ATG TAA TGC TGC TCA AGG TAC GC-3 ′, SEQ ID NO: 8).
또한 벡터의 T-DNA의 삽입 여부를 알아보기 위해 LB(left board) 및 RB(right board) 부분도 PCR을 수행하였다. 사용된 프라이머는 다음과 같다: LB 부분은 left board-F(5'-TGG CTG GTG GCA GGA TAT ATT GTG-3', 서열번호 9) 및 BAR-R(5'-AGA CAA GCA CGG TCA ACT TCC GTA-3', 서열번호 10)를 사용하고, RB 부분은 ORE7-RF(5'-GGT CAG GGA CAG TTA GGA GGT AAT-3', 서열번호 11) 및 right board-RR(5'-TTA AAC TGA AGG CGG GAA ACG ACA-3', 서열번호 12).In addition, PCR was performed on the left board (LB) and RB (right board) parts to determine whether the vector was inserted with T-DNA. Primers used were as follows: LB portion was left board-F (5'-TGG CTG GTG GCA GGA TAT ATT GTG-3 ', SEQ ID NO: 9) and BAR-R (5'-AGA CAA GCA CGG TCA ACT TCC) GTA-3 ', SEQ ID NO: 10) and the RB portion is ORE7-RF (5'-GGT CAG GGA CAG TTA GGA GGT AAT-3', SEQ ID NO: 11) and right board-RR (5'-TTA AAC) TGA AGG CGG GAA ACG ACA-3 ', SEQ ID NO: 12).
그 결과, 조사한 모든 ORE7 콩 형질전환체는 재조합 유전자인 ORE7BAR 유전자의 도입 및 벡터의 T-DNA가 정상적으로 도입되었음을 확인할 수 있었다(도 3). 이러한 사실은 조사한 모든 ORE7 콩 형질전환체는 정상적인 벡터의 도입이 이루어졌음을 시사한다. As a result, it was confirmed that all the ORE7 soybean transformants examined were introduced with the recombinant genes ORE7 and BAR gene and T-DNA of the vector was normally introduced (FIG. 3). This suggests that all of the ORE7 soybean transformants examined had introduced normal vectors.
선별된 ORE7 콩 형질전환체에 대한 재조합 유전자의 발현을 확인하기 위하여 콩 야생형과 ORE7 콩 형질전환체의 잎으로부터 RNasey Plant Mini Kit (QIAGEN, Germany)을 사용하여 전체 RNA를 각각 추출하였다. 각각 1㎍의 RNA를 주형으로 하고, Superscript III Reverse Tanscriptase(INVITROGEN, USA)을 이용하여 65℃에서 5분; 50℃에서 60분; 및 70℃에서 15분의 조건으로 cDNA를 합성하였다. 이후, 합성된 cDNA를 주형으로 하고, 하기 ORE7BAR 유전자, 그리고 PCR 양성 대조구로 사용된 TUB 유전자에 대해 하기 [표 1]의 특이적인 프라이머를 사용하여 PCR을 수행하였다. PCR은 94℃에서 2분간 가열하여 주형 DNA를 변성시킨 후, 94℃에서 1분; 55℃에서 1분 30초; 및 72℃에서 1분을 한 사이클로 하여 총 30회 반복 수행한 다음, 72℃에서 15분간 최종 반응시켜 수행하였다. 이후, 1% 아가로스 겔 전기영동으로 PCR 산물을 확인하였으며, 그 결과는 도 4에 도시되었다. 야생형에서 재조합 유전자 ORE7과 선별 마커인 BAR 유전자의 발현이 전혀 나타나지 않은 반면에 조사된 모든 ORE7 콩 형질전환체 모두는 정상적으로 재조합 유전자인 ORE7과 선별 마커인 BAR 유전자의 발현이 이루어졌음을 확인할 수 있었고, 이러한 사실은 본 형질전환체가 ORE7 콩 형질전환체임을 입증하고 있다.In order to confirm the expression of recombinant genes for the selected ORE7 soybean transformant, total RNA was extracted from the leaves of the soybean wild type and the ORE7 soybean transformant using RNasey Plant Mini Kit (QIAGEN, Germany). 1 μg of RNA each as a template and 5 minutes at 65 ° C. using Superscript III Reverse Tanscriptase (INVITROGEN, USA); 60 minutes at 50 ° C; And cDNA was synthesized at 70 ° C. for 15 minutes. Then, using the synthesized cDNA as a template, PCR was performed using the primers specific to the following ORE7 and BAR gene, and the TUB gene used as a PCR positive control. PCR denatured template DNA by heating at 94 ° C. for 2 minutes and then 1 minute at 94 ° C .; 1 minute 30 seconds at 55 ° C; And 1 cycle at 72 ℃ one cycle was performed a total of 30 times, followed by a final reaction for 15 minutes at 72 ℃. Then, the PCR product was confirmed by 1% agarose gel electrophoresis, the results are shown in FIG. In the wild type, there was no expression of the recombinant gene ORE7 and the selection marker BAR gene, whereas all the ORE7 soybean transformants examined showed that the normal expression of the recombinant gene ORE7 and the selection marker BAR gene. This fact proves that the transformant is an ORE7 soybean transformant.
표 1
Figure PCTKR2015010375-appb-T000001
Table 1
Figure PCTKR2015010375-appb-T000001
선별된 ORE7 콩 형질전환체에 한 재조합 유전자의 복제(copy) 수를 확인하기 위하여, 콩 야생형과 형질전환체로부터 분리한 5 ㎍ 게놈 DNA를 제한효소 HindIII를 이용하여 밤새 절단하였으며, 절단된 DNA를 0.8% 아가로즈 겔에 전기영동하여 분획하였다. 분획된 DNA를 Hybond-N+나일론 막(Amersham Pharmacia, Piscataway, USA)으로 이동시킨 후 digoxigenin (DIG)-labeled DNA probe를 이용하여 화학발광 시스템(Roche, Germany)을 통해 확인하였다. DIG-labeled probe는 ORE7-GS-F 프라이머(5'-ACA GCT TCA ACC GCA GGG CG-3', 서열번호 19)와 ORE7-GS-R 프라이머(5'-CGT GGA CGT TTT CCC GGT GCT-3', 서열번호 20)을 이용하여 ORE7을 증폭하고 이를 DIG로 라벨링하여 제작하였다.To confirm the number of copies of a recombinant gene in selected ORE7 soybean transformants, 5 μg genomic DNA isolated from soybean wild type and transformants was cut overnight using restriction enzyme Hind III, and the cut DNA Was fractionated by electrophoresis on 0.8% agarose gel. Fractionated DNA was transferred to a Hybond-N + nylon membrane (Amersham Pharmacia, Piscataway, USA) and then identified through a chemiluminescence system (Roche, Germany) using a digoxigenin (DIG) -labeled DNA probe. DIG-labeled probes consist of ORE7-GS-F primer (5'-ACA GCT TCA ACC GCA GGG CG-3 ', SEQ ID NO: 19) and ORE7-GS-R primer (5'-CGT GGA CGT TTT CCC GGT GCT-3 ', SEQ ID NO: 20) was used to amplify ORE7 and label it with DIG.
ORE7 콩 형질전환체의 제노믹 서던 블로팅 결과, #1, 2, 7, 9, 13, 15, 그리고 19 형질전환체 라인들은 2개의 복제(copy) 수를 보인 반면, #24 형질전환 라인은 다수의 복제 수를 보였다. 한편 #14 형질전환 라인의 경우, 서던 블랏에서 1개의 복제 수를 보이는 것 같이 보이지만, 블랏의 두께로 볼 때 이는 아마 여러 개의 복제가 겹쳐서 보이는 것으로 사료된다(도 5). Genomic Southern blotting of the ORE7 soybean transformant showed that the # 1, 2, 7, 9, 13, 15, and 19 transformant lines showed two copies, while the # 24 transform line A large number of replicates were shown. On the other hand, in the case of the # 14 transformation line, it appears that one copy number is seen in the southern blot, but it may be considered that several copies overlap in terms of the thickness of the blot (FIG. 5).
<< 실시예Example 2>  2> ORE7ORE7 콩 형질전환체의 노화 및 스트레스에 대한 특성 분석 Characterization of Aging and Stress of Soybean Transformants
<실시예 2-1> ORE7 콩 형질전환체의 노화에 대한 특성 분석 Example 2-1 Characterization of Aging of ORE7 Soybean Transformants
ORE7 콩 형질전환체의 노화에 대한 특성을 분석하기 위하여, vegetative stage 2까지 생육한 야생형과 형질전환체의 2-node 잎을 detach하여 3mM MES 완충용액 (2-[N-morpholino]-ethanesulfonic acid, pH 5.8)에 부유시킨 후, 암 상태를 유지하여 21일 동안 방치하였다. 암처리 후 14일, 18일 그리고 21일 동안 방치된 잎의 표현형 관찰, 엽록소 함량 측정, 그리고 광합성 효율을 측정하여 콩 야생형 및 벡터 대조구(EV)(ORE7 유전자가 도입되지 아니한 pB2GW7.0 백터로 형질전환된 콩)와 비교하였다. 상기의 조사는 각 변이체 라인별로 6개체 이상을 대상으로 측정하였다.In order to analyze the aging characteristics of ORE7 soybean transformants, the 2-node leaves of wild type and transformants grown up to vegetative stage 2 were detached and 3mM MES buffer solution (2- [N-morpholino] -ethanesulfonic acid, After floating to pH 5.8), it remained in the dark state and left for 21 days. Phenotypic observation, chlorophyll content, and photosynthetic efficiency of leaves left for 14, 18, and 21 days after cancer treatment were measured to determine the soybean wild-type and vector control (EV) (pB2GW7.0 vectors without ORE7 gene). Converted soybeans). The above survey was measured for six or more individuals for each variant line.
표현형 관찰 결과, 야생형(WT)과 벡터 대조구(EV)의 경우 암처리 18일 이후 잎의 황화 현상이 급속하게 나타났는 반면, ORE7 형질전환체 라인들은 대부분 21일 이후 잎의 황화 현상이 나타났다. 특히 #7 형질전환체 라인의 경우, 암처리 21일 후에도 여전히 녹색의 형질을 가지고 있었다(도 6A). 이러한 사실로 미루어보아 ORE7 유전자는 콩에서 노화 지연의 형질을 제공하는 것으로 판단된다.Phenotypic observations showed that the wild type (WT) and vector control (EV) showed rapid yellowing of leaves after 18 days of cancer treatment, whereas most of the ORE7 transformant lines showed yellowing of leaves after 21 days. In particular, the # 7 transformant line still had green traits after 21 days of cancer treatment (FIG. 6A). These facts suggest that the ORE7 gene provides the trait of delayed aging in soybeans.
엽록소의 함량 측정을 위해 각 시료 잎을 80% (V/V) acetone을 사용하여 엽록소를 추출하였다. 엽록소 함량은 663.2 nm와 664.8 nm의 흡광 계수를 이용하여 Lichtenthaler와 Wellburn의 방법(Biochemical Society Transduction 603:591~592, 1983)에 따라 측정하였다. 그 결과는 도 6B에 도시되었으며, 제시된 값은 라인별로 각 6개체 이상의 평균값±표준편차이다. 야생형과 벡터 대조구의 경우 엽록소 함량이 암처리 18일 이후부터 급격한 감소를 보이며 21일째 엽록소의 함량이 20%이하로 떨어진 반면, ORE7 콩 형질전환체의 경우 21일째에도 야생형의 18일째 엽록소 함량 정도 이상을 유지하고 있었다. Chlorophyll was extracted from each sample leaf using 80% (V / V) acetone to measure chlorophyll content. Chlorophyll content was measured according to the method of Lichtenthaler and Wellburn (Biochemical Society Transduction 603: 591 ~ 592, 1983) using extinction coefficients of 663.2 nm and 664.8 nm. The results are shown in FIG. 6B, and the values presented are the mean ± standard deviation of each of six or more lines per line. In wild-type and vector controls, the chlorophyll content decreased sharply after 18 days of cancer treatment, and the chlorophyll content fell below 20% on the 21st day, whereas the ORE7 soybean transformant showed more than the chlorophyll content on the 18th day of the wild type even on the 21st day. Was keeping it.
오 등의 방법(Plant Mol. Biol. 30:939, 1996)을 이용하여 광합성 효율을 측정하였다. 우선 각 DAT(day after dark treatment)의 잎을 15분간 암 처리한 후, 식물 효율 분석기(Plant Efficiency Analyzer)(Hansatech)를 이용하여 엽록소의 형광을 측정하였다. 광합성 효율은 엽록소의 형광도 특성을 이용한 PSⅡ(photosystemⅡ)의 광화학적 효율(photochemical efficiency)로 나타내었는데, 형광도 최대치(maximum value of fluorescence; Fm)에 대한 최대 변형 형광도(maximum variable fluorescence; Fv)의 비율(Fv/Fm)로 나타내었다. 상기 수치가 높을수록 광합성 효율이 우수함을 나타낸다. Photosynthetic efficiency was measured using Oh et al. (Plant Mol. Biol. 30: 939, 1996). First, the leaves of each day after dark treatment (DAT) were treated with cancer for 15 minutes, and then the fluorescence of chlorophyll was measured using a Plant Efficiency Analyzer (Hansatech). Photosynthetic efficiency was expressed by the photochemical efficiency of PSII (photosystem II) using chlorophyll fluorescence properties, which was the maximum variable fluorescence (Fv) versus the maximum value of fluorescence (Fm). It is expressed as the ratio of (Fv / Fm). Higher values indicate better photosynthetic efficiency.
그 결과는 도 6B 아래에 도시되었으며, 제시된 값은 라인별로 각 6개체 이상의 평균값±표준편차이다. 야생형과 벡터 대조구의 경우 Fv/Fm 값이 암처리 18일째 60% 정도로 감소한 후, 21일째 급격히 감소하여 약 40% 수준에 머무른 반면, ORE7 콩 형질전환체의 경우 21일째에도 60% 이상의 Fv/Fm 값을 유지하고 있었다. The results are shown below FIG. 6B and the values presented are the mean value ± standard deviation of each of six or more lines per line. For wild-type and vector controls, the Fv / Fm value decreased to about 60% on day 18 after cancer treatment, and then decreased sharply to about 40% on day 21, while for ORE7 soybean transformants, Fv / Fm was higher than 60% on day 21. It was keeping the value.
상기 결과로부터, ORE7 콩 형질전환체는 야생종 및 벡터 대조구에 비해 잎의 수명이 훨씬 긴 표현형을 갖는 것으로 나타났으며, 이러한 수명연장의 효과는 ORE7 유전자에 의한 엽록소 함량 감소 및 광합성 효율 감소로 표현되는 노화에 따른 생화학적 변화가 지연됨으로써 유발되는 것으로 생각된다. From the above results, ORE7 transgenic soybeans have had a life of leaves appeared to have a much longer phenotype compared to the wild type and vector control, the effectiveness of these life extension is ORE7 It is thought to be caused by the delay of biochemical changes due to aging, which is expressed by a decrease in chlorophyll content and a decrease in photosynthetic efficiency by genes.
<실시예 2-2> ORE7 콩 형질전환체의 스트레스에 대한 특성 분석 Example 2-2 Characterization of Stress of ORE7 Soybean Transformants
ORE7 콩 형질전환체의 산화적 스트레스에 대한 저항성을 조사하기 위하여 3mM MES 용액에 50mM H2O2를 첨가하여 야생형과 형질전환체를 15일 동안 방치하였다. 처리 후 7, 11, 그리고 15일째의 V2-stage의 2-node 잎을 대상으로 표현형적 관찰 및 엽록소 함량을 조사하여 H2O2 스트레스에 대한 저항성 정도 분석하였으며, 적용된 샘플은 라인별로 각 6개체 이상을 대상으로 하였다. To investigate the resistance to oxidative stress of the ORE7 soybean transformants, wild-type and transformants were left for 15 days by adding 50 mM H 2 O 2 to the 3 mM MES solution. Phenotypic observations and chlorophyll content were examined on 2-node leaves of V2-stage at 7, 11, and 15 days after treatment, and resistance to H 2 O 2 stress was analyzed. The above object was made.
야생형 콩은 H2O2 처리 7일째부터 잎의 황화 현상이 뚜렷하게 나타났으며 이후 급격한 잎의 황화 현상이 나타난 반면, ORE7 콩 형질전환체는 H2O2 처리 11일째부터 잎의 황화 현상이 시작하는 것으로 나타났다. 특히 #7 형질전환 라인은 15일째에도 잎의 황화 현상이 많이 일어나지 않음을 관찰할 수 있었다(도 7A). 엽록소 함량 변화를 조사한 결과, 야생형 콩은 H2O2 처리 7일째부터 급격한 엽록소 함량 감소를 나타내어 20% 수준을 유지한 반면, ORE7 콩 형질전환체는 H2O2 처리 15일째에도 거의 40% 수준을 유지하였다(도 7B). 이러한 사실은 ORE7 유전자가 콩에서 산화 스트레스에 대한 저항성을 제공한다는 것을 의미한다. 또한 ORE7 유전자는 콩에서 염 저항성도 약하게 제공하는 것으로 확인하였다(data not shown). 따라서 ORE7 유전자는 식물의 노화 지연뿐만 아니라 식물의 산화 및 염 스트레스에 대한 내성도 제공하여 스트레스 저항성을 가진 작물 개발에 있어 많은 장점을 제공할 것으로 생각된다.In the wild type soybean, the yellowing of leaves appeared clearly from the 7th day of H 2 O 2 treatment, and then the sharp yellowing of the leaves occurred, whereas the yellowing of the leaves started from the 11th day of H 2 O 2 treatment. Appeared to be. In particular, the # 7 transformation line was observed that the yellowing of the leaves does not occur much even on the 15th day (Fig. 7A). The changes in chlorophyll content showed that wild-type soybeans showed a sharp decrease in chlorophyll content from 7 days of H 2 O 2 treatment, and remained at 20%, while ORE7 soybean transformants were nearly 40% at 15 days of H 2 O 2 treatment. Was maintained (FIG. 7B). This means that the ORE7 gene provides resistance to oxidative stress in soybeans. In addition, the ORE7 gene was found to provide weak salt resistance in soybeans (data not shown). Therefore, the ORE7 gene is thought to provide many advantages in the development of stress-resistant crops by providing resistance to oxidative and salt stress in plants as well as delaying aging of plants.
<실시예 2-3> ORE7 콩 형질전환체의 노화관련 유전자의 발현 분석 Example 2-3 Expression Analysis of Gene Related to Aging in ORE7 Soybean Transformant
야생종과 ORE7 콩 노화 관련 유전자들의 발현 양상을 비교하기 위해, vegetative stage 2까지 생육한 콩 야생형(WT)과 벡터 대조구(EV), 그리고 T2 형질전환 라인 #7, #9, #14, 그리고 #15의 2-node 잎을 detach하여 암 상태를 18일 동안 유지한 잎을 대상으로 유전자 발현 양상을 RT-PCR 분석을 통해 확인하였다. RT-PCR 양성 대조구로는 18S rRNA를 사용하였으며, 사용된 프라이머는 하기 표 2에서 제시하였다.To compare the expression patterns of ORE7 soybean aging-related genes with wild species, wild type (WT), vector control (EV), and T 2 grown up to vegetative stage 2 Gene expression patterns were confirmed by RT-PCR analysis on leaves that maintained the cancer state for 18 days by detaching 2-node leaves of transformation lines # 7, # 9, # 14, and # 15. 18S rRNA was used as the RT-PCR positive control, and the primers used are shown in Table 2 below.
표 2
Figure PCTKR2015010375-appb-T000002
TABLE 2
Figure PCTKR2015010375-appb-T000002
GmRbcL(Glycine max chloroplast rbcL)과 GmCab3(Glycine max chlorophyll a/b-binding protein) 유전자는 콩의 노화 진행 동안 발현이 점차 감소되는 유전자로, 노화 진행의 지표로 사용된다. 두 유전자의 발현이 야생형(WT)과 벡터 대조구(EV)에 비하여 ORE7의 발현이 나타나는 콩 형질전환 라인인 #7, 9, 14, 그리고 15 라인들이 높은 것으로 나타났다(도 8). 이러한 사실은 ORE7 콩 형질전환체는 노화 진행 동안 노화의 지표로 사용되는 GmRbcLGmCab3 유전자의 발현 감소를 억제하여 노화를 지연시키는 것으로 보인다. 따라서 콩에서 ORE7 유전자는 분자적 수준에서 노화관련 유전자의 발현을 조절하고 이후 엽록소 함량, 광합성 효율 등과 같은 생리적 현상을 조절함으로써 결과적으로 표현형적으로 잎 수명의 연장을 유발하는 것으로 판단된다. GmRbcL ( Glycine max chloroplast rbcL ) and GmCab3 ( Glycine max chlorophyll a / b-binding protein) gene is a gene whose expression is gradually decreased during aging of soybean. The expression of the two genes was higher in the soybean transformation lines # 7, 9, 14, and 15 lines showing the expression of ORE7 compared to wild-type (WT) and vector control (EV) (Fig. 8). This fact suggests that ORE7 soybean transformants delay aging by inhibiting the decrease in expression of the GmRbcL and GmCab3 genes, which are used as markers of aging during aging. Therefore, the ORE7 gene in soybean is thought to induce phenotypic prolongation of leaf life by regulating the expression of aging-related genes at the molecular level and then physiological phenomena such as chlorophyll content and photosynthetic efficiency.
<< 실시예Example 3>  3> ORE7ORE7 콩 형질전환체의 생산성 증대 형질과 노화 지연  Increased productivity of soybean transformants and delayed aging 형질간의Intertrait 상관관계 분석 Correlation analysis
<실시예 3-1> ORE7 콩 형질전환체의 표현형적 특징 Example 3-1 Phenotypic Features of ORE7 Soybean Transformants
ORE7 콩 형질전환체의 표현형적 특징을 확인하기 위하여 야생형과 T3 transgenic 라인들을 온실에서 생육하여 그들의 표현형적 특징, 특히 노화 지연과 생산성 증대에 대한 특징을 조사하였다. 그 결과 #2 콩 형질전환 라인은 종자 수확시기까지 녹기 연장의 표현형적 특징이 강력하게 나타났고, #15 콩 형질전환 라인은 노화 지연의 표현형적 특징과 개체 크기 증가와 같은 생산성 증대 형질을 둘 다 가짐을 확인할 수 있었다. 한편 #7번 콩 형질전환 라인은 흥미롭게도 야생형과 종자 수확시기가 같아 녹기 연장의 표현형적 특징은 없으나 개체 크기 증가와 같은 생산성 증대 형질은 강력한 것으로 나타났다(도 9). To identify the phenotypic characteristics of the ORE7 soybean transformants, wild-type and T 3 transgenic lines were grown in greenhouses to investigate their phenotypic characteristics, especially aging delay and productivity enhancement. As a result, the # 2 soybean transformation line exhibited strong phenotypic characteristics of prolonged melting until seed harvest, while the # 15 soybean transformation line had both a phenotypic characteristic of delayed aging and productivity-enhancing traits such as increased individual size. It could be confirmed that. On the other hand, the # 7 soybean transformation line was interestingly the same time as the wild type and seed harvest time, there is no phenotypic characteristic of the extension of the melting, but the productivity-increasing traits such as the increase in the individual size was shown to be strong (Figure 9).
<실시예 3-2> ORE7 콩 형질전환체의 생산성 증대 형질과 ORE7 유전자 발현 조절의 상관 관계 Example 3-2 Correlation between Productivity Enhancing Traits and ORE7 Gene Expression Regulation of ORE7 Soybean Transformants
우리는 ORE7 콩 형질전환체의 생산성 증대 형질에 대한 분석을 보다 세밀히 하기 위하여 상기 콩 형질전환 라인들의 종자 수확량을 추가로 조사하였다. 그 결과 #2 콩 형질전환 라인은 야생형과 비슷한 종자 수확량을 가졌으나, 개체 크기 증가와 같은 생산성 증대 형질을 가지는 #7과 #15 콩 형질전환 라인은 야생형에 비하여 현저한 종자 수확량 증가를 가졌으며, 특히 #7 콩 형질전환 라인은 야생형에 비하여 137%의 종자 수확량 증가를 나타내었다(도 10). 이러한 종자 수확량 증가를 생산성 지표로 분석한 결과, 형질전환 라인의 꼬투리 수의 증가 및 백립중의 증가가 종자 수확량 증가를 유도하는 것으로 나타났다. 이러한 사실은 ORE7 유전자가 개체 크기 증가와 종자 수확량 증가와 같은 생산성 증대 형질과 노화 지연 형질을 제공하는데 있어서 일부 중복 기능을 가지고 있지만 생산성 증대 형질 제공은 노화 지연의 형질 발현과 관계없이 독립적으로 유도되는 것으로 판단된다.We further examined the seed yield of the soybean transformation lines to further analyze the productivity of the ORE7 soybean transformant. As a result, the # 2 soybean transformation line had a seed yield similar to that of the wild type, but the # 7 and # 15 soybean transformation lines with productivity-increasing traits such as an increase in individual size had a significant seed yield increase compared to the wild type. The # 7 soybean transformation line showed 137% seed yield increase compared to wild type (FIG. 10). As a result of analyzing the increase in seed yield as an indicator of productivity, the increase in the number of pods and the increase in the number of pods in the transformation line led to an increase in seed yield. This fact suggests that although the ORE7 gene has some overlapping functions in providing productivity-improving traits and aging delayed traits such as increased population size and increased seed yield, the productivity-enhanced traits are induced independently of aging delayed expression. Judging.
표현형적 그리고 생산성 증대에 대한 차이를 가지는 ORE7 콩 형질전환 라인의 ORE7 유전자 발현율을 Quantitative real-time PCR (qRT-PCR)을 통하여 조사하였다. qRT-PCR은 Ex TaqTM Probe를 이용하여 CFX-96TM Real-Time system (Bio-Rad)으로 수행하였으며, 적용된 primer/probe set에 대한 정보는 하기 표3과 같다.Quantitative real-time PCR (qRT-PCR) was used to investigate the expression of ORE7 genes in ORE7 soybean transformation lines with differences in phenotypic and productivity gains. qRT-PCR was performed with a CFX-96TM Real-Time system (Bio-Rad) using Ex Taq Probe. Information on the applied primer / probe sets is shown in Table 3 below.
표 3
Figure PCTKR2015010375-appb-T000003
TABLE 3
Figure PCTKR2015010375-appb-T000003
그 결과, #2 콩 형질전환 라인의 발현율이 현저히 높은 반면, #7과 #15 콩 형질전환 라인의 발현율은 상대적으로 낮음을, 특히 #7 콩 형질전환 라인의 발현율은 현저히 낮음을 알 수 있었다(도 10). 우리는 이러한 사실을 재확인하기 위하여 T3 형질전환체를 포장에 파종하고 동시에 종자 수확을 한 후 임의로 형질전환 개체를 선별하여 형질전환 개체의 종자 수확량과 ORE7 유전자 발현율을 조사하였다. 그 결과 ORE7 유전자 발현율이 높은 개체들, GM0201, GM2020, GM0203, GM0303, GM0306, GM1503은 종자 수확량이 야생형과 비슷한 반면, 상대적으로 ORE7 유전자 발현율이 낮은 나머지 형질전환 개체들은 종자 수확량이 야생형에 비하여 현저히 높음을 재확인할 수 있었다(도 11). 이러한 사실은 본 연구팀이 앞서 chromatin engineering of Genomine 기술(unpublished)에서 언급한 대로 유전자의 발현이 낮은 상태에서 안정성을 유지하면 생산성 증대 형질을 제공하고 유전자 발현이 높으면 높을수록 노화 지연의 형질이 강하게 나타난다는 본 연구팀의 가설과 일치하였으며, 형질전환체의 생산성 증대 형질 및 녹기 연장 형질의 제공은 ORE7 유전자 발현의 조절에 의해, 즉 유전자 발현이 상대적으로 높으면 높을수록 노화 지연의 형질을 그리고 유전자 발현이 상대적으로 낮은 상태에서 안정화를 유지하면 생산성 증대의 형질이 유도된다고 결론내릴 수 있다. As a result, the expression rate of the # 2 soybean transformation line was significantly higher, while the expression rates of the # 7 and # 15 soybean transformation lines were relatively low, especially the expression rate of the # 7 soybean transformation line was significantly lower ( 10). To reconfirm this fact, we seeded T 3 transformants on the field, harvested seeds at the same time, and then randomly selected transformants to investigate seed yield and ORE7 gene expression rate. The result ORE7 Individuals with high gene expression rates, GM0201, GM2020, GM0203, GM0303, GM0306, and GM1503, had similar seed yields to wild type, while the remaining transgenic individuals with lower ORE7 gene expression rates reaffirmed that seed yields were significantly higher than wild type. Could be (FIG. 11). This fact suggests that, as the team noted earlier in the chromatin engineering of Genomine technology (unpublished), stable expression at low levels of expression of the gene provides increased productivity, and higher expression results in stronger aging delayed traits. Consistent with the team's hypothesis, the increased productivity of the transformants and the provision of the melting prolongation traits were regulated by the regulation of ORE7 gene expression, that is, the higher the gene expression, the longer the aging delayed trait and the gene expression were relatively. It can be concluded that maintaining stabilization at low levels leads to traits of increased productivity.
<실시예 3-3> 콩에서 ORE7 유전자의 분자생물학적 기작 분석 Example 3-3 Analysis of Molecular Biology of ORE7 Gene in Soybean
식물호르몬 cytokinin은 식물의 노화를 조절하여 식물 생산성 증가를 유발하고(Gan and Amasino, 1995), 또한 reproductive meristem 활성, 꽃 크기, ovule 생성을 조절하여 식물의 종자 생산 증가를 유발하는 것으로 알려지고 있다(Bartrina et al., 2011). 우리는 ORE7 유전자가 콩에서 cytokinin signaling pathway에 관여하는지를 밝히기 위하여 cytokinin signaling pathway 중 cytokinin receptor로서 기능을 가지는 histidine kinase(HK)와 histidine phosphotransfer proteins(HP)에 대한 유전자의 발현을 조사해 보았다. Phytohormone cytokinin regulates aging of plants, leading to increased plant productivity (Gan and Amasino, 1995), and also is known to increase plant production by regulating reproductive meristem activity, flower size, and ovule production. Bartrina et al., 2011). We investigated the expression of genes for histidine kinase (HK) and histidine phosphotransfer proteins (HP) that function as cytokinin receptors in the cytokinin signaling pathway to determine whether the ORE7 gene is involved in the cytokinin signaling pathway in soybean.
콩 야생종과 ORE7 콩 형질전환체에서 분석한 콩의 histidine kinase 유전자는 애기장대 AHK1 homologue인 GmHK7 , GmHK9, 애기장대 AHK2 homologue인 GmKH11, 애기장대 AHK3 homologue인 GmHK12 , GmHK13, 그리고 애기장대 AHK4 ( CRE1 ) homologue인 GmHK14 , GmHK15 , GmHK16, 그리고 GmHK17이다. 상기 유전자의 발현 양상은 RT-PCR을 통하여 분석하였으며, 이때 양성 대조구로는 TUB을 사용하였고, 사용된 프라이머는 하기 표 4에서 제시하였다.Beans wild type and histidine kinase gene of soybean analysis in ORE7 beans transformant Arabidopsis AHK1 homologue of GmHK7, GmHK9, Arabidopsis AHK2 homologue of GmKH11, Arabidopsis AHK3 homologue of GmHK12, GmHK13, and Arabidopsis AHK4 (CRE1) homologue GmHK14 , GmHK15 , GmHK16 , and GmHK17 . Expression of the gene was analyzed by RT-PCR, wherein a positive control was used as TUB , and the primers used are shown in Table 4 below.
표 4
Figure PCTKR2015010375-appb-T000004
Table 4
Figure PCTKR2015010375-appb-T000004
그 결과 형질전환체의 ORE7 유전자의 발현량과 비례적으로 발현한 유전자는 애기장대 AHK3 homologue중 GmHK13과 애기장대 AHK4 homologue인 GmHK14 , GmHK15 , GmHK16, 그리고 GmHK17이었다(도 12). 이러한 사실은 ORE7 유전자 발현은 콩의 cytokinin receptor 유전자 중 GmHK13 , GmHK14 , GmHK15 , GmHK16, 그리고 GmHK17 유전자의 발현을 비례적으로 조절하고 이를 통하여 대조구보다는 발현이 높지만 상대적으로 낮은 발현을 가진 형질전환체, 특히 #7 형질전환체에 종자수확량 증가와 같은 생산성 증대 형질을 제공하고 상대적으로 높은 발현을 가진 형질전환체, 특히 #2 형질전환체에 노화 지연의 형질을 제공한다는 가설을 세울 수 있었다.As a result, to the gene expression into hyeonryanggwa proportion of ORE7 gene of the transformant was GmHK13 of the Arabidopsis homologue AHK3 and Arabidopsis homologue of AHK4 GmHK14, GmHK15, GmHK16, and GmHK17 (Fig. 12). This fact suggests that ORE7 gene expression proportionally regulates the expression of GmHK13 , GmHK14 , GmHK15 , GmHK16 , and GmHK17 genes in soybean cytokinin receptor genes. It was hypothesized that # 7 transformants would provide productivity-enhancing traits such as increased seed yield and relatively high expression of transformants, particularly # 2 transformants, with delayed aging traits.
콩 야생종과 ORE7 콩 형질전환체에서 분석한 콩의 histidine phosphotransfer proteins(HP) 유전자는 애기장대 AHP1 homologue인 GmHP01 , GmHP03 , GmHP04 , GmHP05, 애기장대 AHP2 , 3, 5 homologue인 GmHP09 , GmHP10, 애기장대 AHP4 homologue인 GmHP07 , GmHP08, 그리고 애기장대 AHP6 homologue인 GmPHP01, 그리고 GmPHP03이다. 상기 유전자의 발현 양상은 RT-PCR을 통하여 분석하였으며, 이때 양성 대조구로는 TUB을 사용하였고, 사용된 프라이머는 하기 표 5에서 제시하였다.Beans wild and ORE7 histidine phosphotransfer proteins (HP) gene in soybean trait beans analyze the transition body Arabidopsis AHP1 homologue of GmHP01, GmHP03, GmHP04, GmHP05, Arabidopsis AHP2, 3, 5 homologue of GmHP09, GmHP10, Arabidopsis AHP4 homologues GmHP07 , GmHP08 , and Arabidopsis AHP6 homologues GmPHP01 and GmPHP03 . Expression of the gene was analyzed by RT-PCR, wherein a positive control was used as TUB , and the primers used are shown in Table 5 below.
표 5
Figure PCTKR2015010375-appb-T000005
Table 5
Figure PCTKR2015010375-appb-T000005
그 결과, 형질전환체의 ORE7 유전자의 발현량과 비례적으로 발현한 유전자는 애기장대 AHP1 homologue중 GmHP04였으며, 흥미롭게도 AHP2 , 3, 5 homologue중 GmHP10ORE7의 발현량이 상대적으로 높으면 대조구보다 낮은 발현량을 나타낸 반면 ORE7의 발현량이 상대적으로 낮으면 대조구보다 높은 발현량을 나타내었다(도 13). 이러한 사실은 ORE7 유전자 발현은 콩의 histidine phosphotransfer proteins(HP) 유전자군 중 GmHP04 유전자의 발현을 비례적으로 조절하고, ORE7 유전자의 상대적으로 높은 발현은 GmHP10 유전자에 대한 negative regulator로 작용하는 반면 ORE7 유전자의 상대적으로 낮은 발현은 GmHP10 유전자에 대한 positive regulator로 작용한다는 것을 시사한다. The result was the gene expressed from the ORE7 gene hyeonryanggwa proportion of transformants GmHP04 of Arabidopsis AHP1 homologue, interesting AHP2, 3, 5 homologue of GmHP10 the amount of the amount of expression of ORE7 relatively high lower expression than the control On the other hand, when the expression level of ORE7 is relatively low, the expression level was higher than that of the control (FIG. 13). This fact ORE7 gene expression is controlled soybeans histidine phosphotransfer proteins (HP) expression of the gene of the gene family of GmHP04 proportionally, and relatively high expression of the gene ORE7 while acting as a negative regulator for GmHP10 gene ORE7 The relatively low expression of the gene suggests that it acts as a positive regulator for the GmHP10 gene.
이러한 분석을 통하여 우리는 다음과 같은 가설을 세울 수 있었다. 1) ORE7은 cytokinin receptor 유전자 중 GmHK13 , GmHK14 , GmHK15 , GmHK16, 그리고 GmHK17 유전자의 발현을 비례적으로 조절, 2) ORE7은 콩 histidine phosphotransfer proteins(HP) 유전자군 중 GmHP04 유전자 발현도 비례적으로 조절, 3) ORE7 유전자의 상대적으로 높은 발현은 GmHP10 유전자에 대한 negative regulator로 작용하는 반면 ORE7 유전자의 상대적으로 낮은 발현은 GmHP10 유전자에 대한 positive regulator로 작용, 4) GmHP04 유전자의 발현량 증가와 GmHP10 유전자의 발현량 감소는 앞선 내용에서 보는 바와 같이 노화관련 유전자의 발현을 조절하여 노화 지연의 형질을 제공하는 반면, GmHP04 유전자의 낮은 발현량 증가와 GmHP10 유전자의 발현량 감소는 식물의 종자 수확량 증가, 바이오매스 증가와 같은 생산성 증대의 형질을 제공(도 14). 이러한 가설을 통해 GmHP10 유전자는 negative regulator 기능을 가졌을 때 식물의 노화 지연과, positive regulator 기능을 가졌을 때 식물의 생산성 증대를 제공하는 중요한 지표로 사용될 수 있을 것이다. Through this analysis, we can hypothesize the following. 1) ORE7 adjusts the GmHK13, GmHK14, GmHK15, GmHK16, and expression of GmHK17 gene of the cytokinin receptor gene proportionally, 2) ORE7 is soybean histidine phosphotransfer proteins (HP) also proportionally controlled GmHP04 gene expression of the genes, 3) the relatively high expression of ORE7 gene, while acting as a negative regulator for GmHP10 gene relatively low expression of ORE7 gene acts as a positive regulator for GmHP10 gene, 4) the expression level increased and the expression of GmHP10 genes GmHP04 gene the amount of reduction, whereas by regulating the expression of senescence-associated genes that provide transfected aging delay, low expression levels and increased expression levels decreased GmHP10 genes GmHP04 gene is increased seed yield of plants, as shown in the preceding information, the biomass increases Provide traits of increased productivity, such as (FIG. 14). This hypothesis could be used as an important indicator for GmHP10 genes to delay plant aging with negative regulator function and to increase plant productivity with positive regulator function.

Claims (15)

  1. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it;
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및 (b) transforming the expression vector into a plant, and
    (c) 생산성 증대 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성되는 생산성 증대 특성을 갖는 식물체의 제조 방법.(c) a method for producing a plant having a productivity increasing characteristic, comprising selecting a plant having the productivity increasing characteristic.
  2. 제1항에 있어서,The method of claim 1,
    상기 유전자는 서열번호 1의 염기 서열로 이루어진 ORE7 유전자인 것을 특징으로 하는 생산성 증대 특성을 갖는 식물체의 제조 방법.The gene is a method for producing a plant having productivity enhancement characteristics, characterized in that the ORE7 gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  3. 제1항에 있어서,The method of claim 1,
    상기 식물체는 콩류인 것을 특징으로 하는 생산성 증대 특성을 갖는 식물체의 제조 방법. The plant is a method of producing a plant having a productivity increase characteristic, characterized in that the legumes.
  4. 제1항 내지 제3항 중 어느 한 항 기재의 방법에 의하여 얻어진 생산성 증대 특성을 갖는 식물체.The plant which has the productivity improvement characteristic obtained by the method of any one of Claims 1-3.
  5. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it;
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및 (b) transforming the expression vector into a plant, and
    (c) 스트레스 내성이 강화된 식물체를 선별하는 단계를 포함하여 구성되는 스트레스 내성이 강화된 식물체의 제조 방법.(c) a method for producing stress-enhanced plants, comprising the step of selecting plants with enhanced stress resistance.
  6. 제5항에 있어서,The method of claim 5,
    상기 유전자는 서열번호 1의 염기 서열로 이루어진 ORE7 유전자인 것을 특징으로 하는 스트레스 내성이 강화된 식물체의 제조 방법.The gene is a method for producing stress-enhanced plants, characterized in that the ORE7 gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  7. 제5항에 있어서,The method of claim 5,
    상기 식물체는 콩류인 것을 특징으로 하는 스트레스 내성이 강화된 식물체의 제조 방법.The plant is a method for producing stress-enhanced plants, characterized in that the legumes.
  8. 제5항 내지 제7항 중 어느 한 항 기재의 방법에 의하여 얻어진 스트레스 내성이 강화된 식물체.A plant with enhanced stress resistance obtained by the method according to any one of claims 5 to 7.
  9. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it;
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및 (b) transforming the expression vector into a plant, and
    (c) 노화 지연 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성되는 노화 지연 특성을 갖는 식물체의 제조 방법.(c) selecting a plant having a aging retardation property.
  10. 제9항에 있어서, The method of claim 9,
    상기 유전자는 서열번호 1의 염기 서열로 이루어진 ORE7 유전자인 것을 특징으로 하는 노화 지연 특성을 갖는 식물체의 제조 방법.The gene is a method for producing a plant having aging delay characteristics, characterized in that the ORE7 gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  11. 제9항에 있어서, The method of claim 9,
    상기 식물체는 콩류인 것을 특징으로 하는 노화 지연 특성을 갖는 식물체의 제조 방법.The plant is a method of producing a plant having a aging delay characteristic, characterized in that the legumes.
  12. 제9항 내지 제11항 중 어느 한 항에 기재된 방법에 의하여 얻어진 노화 지연 특성을 갖는 식물체.The plant which has a aging retardation characteristic obtained by the method in any one of Claims 9-11.
  13. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 식물체의 생산성을 증대시키는 방법.(b) a method of increasing the productivity of a plant, comprising the step of transforming the plant with the expression vector.
  14. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 식물체의 스트레스 내성을 강화시키는 방법.(b) a method of enhancing stress resistance of a plant, the method comprising transforming the plant with the expression vector.
  15. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 식물체의 노화를 지연시키는 방법.(b) A method for delaying aging of a plant, comprising the step of transforming the plant with the expression vector.
PCT/KR2015/010375 2014-10-01 2015-10-01 Method for increasing plant productivity by using ore7 gene, method for reinforcing stress resistance of plants by using ore7 gene and method for delaying plant senescence by using ore7 gene WO2016053022A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140132324A KR20160039370A (en) 2014-10-01 2014-10-01 Methods for Increasing Yield, Enhancing Stress Tolerance and Delaying Senescence in Plants Using ORE7 Genes
KR10-2014-0132324 2014-10-01

Publications (2)

Publication Number Publication Date
WO2016053022A2 true WO2016053022A2 (en) 2016-04-07
WO2016053022A3 WO2016053022A3 (en) 2017-04-27

Family

ID=55631739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010375 WO2016053022A2 (en) 2014-10-01 2015-10-01 Method for increasing plant productivity by using ore7 gene, method for reinforcing stress resistance of plants by using ore7 gene and method for delaying plant senescence by using ore7 gene

Country Status (2)

Country Link
KR (1) KR20160039370A (en)
WO (1) WO2016053022A2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510960B1 (en) * 2001-08-22 2005-08-30 제노마인(주) Gene controlling life span of leaves in plants and method for controlling life span of plants using the gene

Also Published As

Publication number Publication date
WO2016053022A3 (en) 2017-04-27
KR20160039370A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
US9234206B2 (en) Modulation of flowering time and growth cessation in hardwood trees
MX2014005212A (en) Improving plant drought tolerance, nitrogen use efficiency and yield.
KR101775788B1 (en) Method for improving the resistance to the drought stress using CaDRT1 in plants
WO2012148121A2 (en) Atpg7 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
KR101855134B1 (en) ATPG4 Protein Delaying Senescence and Providing Yield Increase and Stress Tolerance in Plants, the Gene Encoding the Protein and Those Uses
KR101431125B1 (en) Transgenic plant with enhanced tolerance to cold stress by introducing grxC gene and preparation method thereof
KR20110092148A (en) Athg1 protein delaying senescence and providing stress tolerance of plants, the gene encoding the protein and those use
WO2018066897A2 (en) Mtatpg1 protein having function of increasing productivity and delaying senescence in plant, gene thereof, and use of the same protein and gene
WO2012148122A2 (en) Atpg8 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
WO2016053022A2 (en) Method for increasing plant productivity by using ore7 gene, method for reinforcing stress resistance of plants by using ore7 gene and method for delaying plant senescence by using ore7 gene
WO2014209036A1 (en) Atpg10 protein and gene thereof having functions of increasing plant yield, resistance to stress, and delaying senescence, and use thereof
KR101855135B1 (en) ATPG3 Protein Delaying Senescence and Providing Yield Increase and Stress Tolerance in Plants, the Gene Encoding the Protein and Those Uses
WO2014209060A1 (en) Atpg6 protein and gene thereof having functions of increasing plant yield, resistance to stress, and delaying senescence, and use of same
KR100637341B1 (en) Gene controlling flowering time of plants and method for manipulating flowering time of plant using the same
KR101592357B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
EP0814161A1 (en) Genetic control of polar auxin transport in plants and manipulation of plant growth, architecture and morphogenesis
KR101190272B1 (en) OSZIP1 Gene and Protein derived from Oryza sativa
CN112877337B (en) Application of rape BnaA09WRKY6 gene in promotion of bolting and flowering of cruciferous plants
NL2030997B1 (en) Zea mays receptor-like kinase 7 (zmrlk7) gene related to kernel and plant type development of maize and use thereof
KR20230029430A (en) Method for Preparing Transformed Soybean Plant Having Increased Productivity Using MtAHL23 and MtAHL5 Genes Isolated from Medicago truncatula
KR101973551B1 (en) Method for producing transgenic plant with increased environmental stress resistance using BrRH22 gene from Brassica rapa and plant thereof
WO2011122761A2 (en) Gsdl2 protein having a life-extension function for plants and a stress resistance function for plants, gene thereof, and use thereof
BR122015007037B1 (en) DNA molecules associated with plant cell proliferation and development and methods of producing increased organ size plants
CN106282199B (en) Gene of dwarf plant and application thereof
KR101485825B1 (en) Gene Implicated in Salt Stress Tolerance and Transformed Plants with the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846864

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846864

Country of ref document: EP

Kind code of ref document: A2