WO2016052938A2 - 전기분해 수처리장치 - Google Patents

전기분해 수처리장치 Download PDF

Info

Publication number
WO2016052938A2
WO2016052938A2 PCT/KR2015/010149 KR2015010149W WO2016052938A2 WO 2016052938 A2 WO2016052938 A2 WO 2016052938A2 KR 2015010149 W KR2015010149 W KR 2015010149W WO 2016052938 A2 WO2016052938 A2 WO 2016052938A2
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
port
electrolysis
electrolytic
Prior art date
Application number
PCT/KR2015/010149
Other languages
English (en)
French (fr)
Other versions
WO2016052938A3 (ko
Inventor
박영철
이헌영
Original Assignee
주식회사 뉴워터텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 뉴워터텍 filed Critical 주식회사 뉴워터텍
Publication of WO2016052938A2 publication Critical patent/WO2016052938A2/ko
Publication of WO2016052938A3 publication Critical patent/WO2016052938A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present invention relates to an electrolytic water treatment apparatus, and more specifically, a plurality of electrodes are connected to one anode and one cathode to improve applied current efficiency, and the conventional copper busbar is oxidized by blocking contact between water and busbars.
  • the present invention relates to an electrolysis water treatment device capable of preventing various problems caused during melting.
  • One method of water treatment is electrolysis.
  • Conventional electrolysis water treatment apparatus uses a method of applying a current by connecting a plurality of electrodes by a bus bar.
  • the bus bar mainly uses copper having excellent current transfer efficiency in order to transfer current without losing an applied current amount.
  • the copper busbars have excellent current transfer efficiency, for example, in a seawater-like environment, copper busbars installed in the anode portion may be oxidized and melted, resulting in a problem that the anodes are not connected to each other and are dropped out.
  • the copper busbar acts as a resistance when applying current, the applied current efficiency decreases by the number of busbars used in a large capacity device.
  • the oxidation of the positive electrode continuously occurs as described above, if the copper is melted into the solution, the treated water is toxic and this can be a big problem in the treatment of drinking water, various animals and plants and fish breeding water.
  • Patent Document 1 Domestic Publication No. 10-2013-0101795
  • Patent Document 2 Korean Utility Model Publication No. 20-2012-0001516
  • An object of the present invention is to provide an electrolytic water treatment apparatus which improves the applied current efficiency and solves various problems caused by oxidizing and melting of conventional copper busbars by blocking contact between seawater and busbars.
  • the electrolysis chamber including an electrode module is mounted, and a rectifier for supplying power to the positive and negative electrodes provided in the electrode module, wherein the electrode module is a plurality of An anode and a cathode are alternately stacked, and the plurality of anodes each have an anode port exposed to the outside of the electrolytic chamber, and electrically connected by a plurality of bus bars interposed between the anode ports. And a plurality of cathodes, each having a cathode port exposed to the outside of the electrolytic chamber at a position spaced apart from the anode port, and interposed between the cathode ports.
  • the anode comprises a positive electrode electrolysis portion, and a positive electrode port having a first through hole and protruding from one side of the positive electrode electrolysis portion in the width direction, the negative electrode, the A cathode electrolysis portion overlapping with the anode electrolysis portion, and a cathode port having a second through hole and protruding from one side of the cathode electrolysis portion in a width direction thereof, and the busbar having the first or second penetration portion;
  • An anode connecting means having a third through hole corresponding to the ball and interpolating in the stacking direction to the plurality of first and third through holes to electrically connect the plurality of anodes; and the plurality of second and third through holes. It may further include a cathode connecting means for interpolating along the stacking direction to electrically connect the plurality of cathodes.
  • the electrolysis chamber including an electrolytic chamber equipped with an electrode module, and a rectifier for supplying power to the positive electrode and the negative electrode provided in the electrode module, the electrode module is a plurality of positive and negative electrodes
  • the anodes are alternately stacked, and the anode includes an anode electrolysis unit, a first anode port having a first connection hole, and protruding to the outside of the electrolytic chamber at one side in the width direction of the anode electrolysis unit, and the first connection.
  • the negative electrode may include a negative electrode electrolytic part overlapping with the positive electrode electrolytic part, and a third connecting hole having the same diameter as that of the second connecting hole and having the negative electrode electrolytic part.
  • a first cathode port protruding out of the electrolytic chamber at a position corresponding to the first anode port, and a fourth connection hole having the same diameter as the first connection hole, and the width of the cathode electrolysis unit is formed on one side of the width direction.
  • a second negative electrode port protruding out of the electrolytic chamber at a position corresponding to the second positive electrode port in one side of the direction, and interpolated in the stacking direction in the plurality of first and third connecting holes, 1 is formed in the same diameter as the connecting hole and the anode connecting means for electrically connecting the plurality of the positive electrode and the plurality of second and fourth connecting holes are interpolated along the stacking direction in the same diameter as the fourth connecting hole is formed It provides an electrolysis water treatment apparatus further comprising a cathode connection means for electrically connecting the cathode of the.
  • a non-conductive bushing may be interposed between the first positive electrode port and the first negative electrode port and between the second positive electrode port and the second negative electrode port, respectively.
  • the positive electrode and the negative electrode may be formed of a metal plate (plate).
  • the positive electrode and the negative electrode may be formed of a metal mesh (mesh).
  • a plurality of anodes and cathodes may be modularized to be connected to a single anode and a cathode by using a port and a busbar, respectively, so that the structure and size of the device may be simplified while the applied current efficiency may be improved.
  • the part where the busbars connecting the electrodes are arranged is exposed to the outside of the electrolytic chamber, so that the contact between the water and the busbar is completely blocked, and the busbar is oxidized and melted down by the conventional water and the contact of the busbar. Deterioration and dropping of the electrode, which occurred while falling, and the copper is melted in the solution, there is an effect that can prevent the problem that the treated water becomes toxic in advance.
  • FIG. 1 is a perspective view schematically showing the structure of an electrolysis water treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a cover further included in FIG. 1.
  • Figure 3 is a perspective view showing a state in which the electrode module is coupled to the electrolytic chamber cover in the electrolysis water treatment apparatus according to an embodiment of the present invention.
  • FIG. 4 is a bottom view illustrating the electrolytic chamber cover of FIG. 3.
  • FIG. 5 is a perspective view illustrating the electrode module of FIG. 3.
  • FIG. 6 is a perspective view illustrating a bus bar in the electrode module of FIG. 3.
  • FIG. 7 is a perspective view illustrating a cathode and an anode in FIG. 6.
  • FIG. 8 is a plan view showing another embodiment of the positive electrode of the electrode module of the electrolysis water treatment apparatus according to an embodiment of the present invention.
  • FIG. 9 is a perspective view schematically showing the electrode module of the electrolysis water treatment apparatus according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a non-conductive bushing in the electrode module of FIG. 9.
  • FIG. 11 is a bottom view illustrating an electrolytic chamber cover applied to the electrode module of FIG. 9.
  • FIG. 12 is a plan view illustrating an anode and a cathode in FIG. 9.
  • FIG. 8 is a perspective view showing another embodiment of the positive electrode and the negative electrode of the electrode module of the electrolysis water treatment apparatus according to another embodiment of the present invention.
  • an electrolysis water treatment apparatus includes an electrolytic chamber 200 equipped with an electrode module, an anode 130 and a cathode 140 provided in the electrode module. It includes a rectifier (not shown) for supplying power to.
  • reference numeral 300 is a cover for safely applying a current to the electrode module through the rectifier, the cover 300 includes a flange portion 320 for coupling to the body 310 and the electrode module assembly described later. do.
  • the voltage of the rectifier is different depending on the amount of applied current and may be applied to a voltage of 10V or less for seawater, 15V or less for fresh water, the present invention is not limited thereto.
  • Reference numeral 100 denotes an electrode module assembly in which an electrode module is attached to the cover 110.
  • the electrode module assembly 100 includes a support part for supporting a bottom surface of a stack 110 in which a cover 110, a plurality of anodes 130 and a cathode 140, and a plurality of anodes 130 and a cathode 140 are stacked ( 120 and a support part 121 connecting the cover 100 and the support part 120 to prevent the laminate mounted therebetween from being separated.
  • the cover 110, the support part 120, and the support part 121 may be made of an insulator or an insulator to prevent the short from being generated by the electrical contact between the anode 130 and the cathode 140.
  • the electrolytic chamber 200 is provided with a receiving space 211 for mounting the electrode module therein, the water inlet for supplying the water to be treated by communicating with the receiving space 211 on both sides in the longitudinal direction ( 230 and a sterilizing water discharging unit 220 for discharging sterilized water sterilized by electrolysis is provided.
  • a flange portion 212 having a plurality of screw holes is formed on an open surface of the accommodation space 211, and the electrode module assembly 100 which covers and seals the accommodation space 211 in the flange portion 212.
  • Cover 110 is firmly coupled by a plurality of bolts 410 and nuts 420.
  • the cover 110 is made of a non-conductive non-conductor, for example, may be made of a plastic-based polyamide (PA66), but the present invention is not limited thereto.
  • PA66 is a resin material containing a glass material in plastic and has excellent heat resistance and corrosion resistance against TRO / sea water.
  • a pair of port supporting parts 113 and 114 for supporting the anode port 132 and the cathode port 142 may be provided on the bottom surface of the cover 110.
  • the epoxy coating portion 112 provided by the jaw (112a) can be applied to the epoxy and proceed to dry at room temperature for about two days. have.
  • This operation is to prevent the leakage of water to the outside of the electrolytic chamber 200 by the pressure of the water flowing in the electrolytic chamber 200, and when the plurality of positive electrode 130 and the negative electrode 140 is cross-arranged, Short phenomenon occurring when the electrodes are in contact with each other can be prevented in advance.
  • the epoxy may be used, for example, two-component epoxy, silicone series, tar series. Epoxy takes a lot of time to harden when the temperature is high, such as summer, and even if it hardens, its hardness drops.
  • the tar-based epoxy may be used by controlling the temperature necessary for curing.
  • the above matters are just one example, and the present invention is not limited thereto.
  • the electrode module of the present embodiment includes a plurality of positive electrodes 130 and negative electrodes 140 and a plurality of bus bars 90 in which electrical connections are alternately arranged alternately.
  • the anode 130 has a cathode electrolysis unit 131 accommodated in the accommodation space 211 and a first through hole 133 and protrudes from one side in the width direction of the anode electrolysis unit 131 to cover it.
  • the anode port 132 is exposed to the outside of the electrolytic chamber 200 through the first protrusion formed in the 110.
  • Reference numerals 134 and 135 denote bolt holes for coupling the plurality of positive and negative electrodes 130 and 140 stacked up and down with bolts 191 and 192 made of non-conductors.
  • the cathode 140 is accommodated in the accommodation space 211 and has a cathode electrolysis unit 141 overlapping with the anode electrolysis unit 131, a second through hole 143, and a cathode port 142 in the longitudinal direction. It includes a cathode port 142 protruding from one side in the width direction of the cathode electrolysis unit 141 spaced apart from the electrolyte chamber 200 through the second protrusion hole formed in the cover 110. .
  • Reference numerals 144 and 145 denote bolt holes for coupling the plurality of anodes 130 and the cathodes 140 stacked up and down with bolts 191 and 192 made of non-conductors.
  • the positive electrode 130 and the negative electrode 140 may be formed in various forms according to the properties of raw water to be treated, an installation area, a required unit price, and the like.
  • the anode 130 and the cathode 140 may be formed of a metal plate as shown in FIG. 7, and may be formed of a metal mesh as shown in FIG. 8.
  • the stepped portion 112a provided on the bottom surface of the cover 110 is positioned outside to increase the area of the epoxy coating 112.
  • the amount of epoxy applied to the bottom surface of the cover 110 is increased so that the anode 130 'and the cathode 140' are made of a metal mesh.
  • the cover 110 may be firmly maintained on the bottom surface.
  • the conventional electrolysis device mainly uses a chlorine generating anode (Anode) as part of the dimension stable anode (DSA) electrode.
  • a titanium material may be used to enhance corrosion resistance, and may be formed by coating a mixed solution of ruthenium and iridium on a titanium base to generate more chlorine. have.
  • the solvent is ethanol and the mixing ratio of ruthenium and iridium is preferably 6-8: 2-4, and more preferably the mixing ratio of ruthenium and iridium may be 7: 3.
  • the volume ratio of the entire mixture of ruthenium and iridium and the entanol used is preferably about 8.5 to 9.5: 0.5 to 1.5, and more preferably 9: 1.
  • the ruthenium may also serve to remove TN or TP, which is a BOD-inducing substance, in addition to sterilization purposes.
  • the size of the anode 130 and the cathode 140 may be changed according to the flow rate of the device or the amount of applied current, preferably the size of the anode electrolysis unit 131 and the cathode electrolysis unit 132 is horizontal and vertical You can make the ratio of 3-7: 1. If the ratio of the width and length is less than 3: 1, a problem may arise in that a pipe is formed thick. If the ratio of the width and length is greater than 7: 1, the anode 130 and the cathode may be affected by the flow rate of seawater. As the 140 is shaken, an electrical problem may occur. The ratio of the width and length of the anode electrolysis unit 131 and the cathode electrolysis unit 131 may be 5: 1.
  • the busbar 90 may be formed in a generally hexahedral shape to facilitate installation between the cathode port 142 and the anode port 131, and has a diameter corresponding to the first or second through holes 133 and 143 in the center thereof. It may have a third through hole 91 having.
  • the busbars 90 are interposed between the plurality of anode ports 132 and the plurality of cathode ports 142, respectively, to electrically connect the plurality of anode ports 132 and the plurality of cathode ports 142, respectively.
  • the busbar 90 may perform nickel plating on the surface. Accordingly, it is possible to prevent the current transfer efficiency from being lowered by inhibiting corrosion caused by moisture in the air.
  • the plurality of first and third through holes 133 and 91 are interposed with bolts 151 from the upper side in the stacking direction of the positive and negative electrodes 130 and 140 to electrically connect the plurality of positive electrodes 130.
  • the nuts 152 and 153 may be fastened to the lower end of the laminate in which the ends of the bolts 151 are exposed to maintain the electrical connection between the bolts 151 and the anodes 130.
  • the plurality of second and third through holes 143 and 91 interpolate bolts 161 from the upper side in the stacking direction of the anode and the cathode 130 and 140 to electrically connect the plurality of cathodes 140.
  • the nuts 162 and 163 may be fastened to the lower end of the laminate in which the ends of the bolts 161 are exposed to maintain the electrical connection state between the bolts 161 and the cathodes 140.
  • the electrolytic treatment means configured as described above through the potential difference by the following scheme 1 when the introduced water passes through the anode electrolysis unit and cathode electrolysis unit (131, 141) of the anode and cathode 130, 140 of the electrode module Electrolysis will proceed.
  • the conventional electrode module is not modularized, in order to secure the allowable current amount per unit area, the size of one electrode is inevitably increased.
  • a plurality of electrode modules are required for the electrolysis, which is inconvenient to fasten the wire for each electrode separately.
  • the wire acts as one resistor, it causes a drop in current transfer efficiency, which increases the amount of power used.
  • the anode 130 and the cathode 140 may be modularized into an electrode module assembly 100 connected by one line, respectively, so that the size of one electrode may be compact, and the minimum number of wires is provided. It can be configured to solve the problem caused by a number of conventional wires.
  • the electrode module is easily coupled to and detached from the electrolytic chamber 100, thereby facilitating installation, exchange and maintenance of the device.
  • the busbar 190 is located outside the electrolytic chamber 100, it is possible to prevent the corrosion of the busbar 190 due to contact with water.
  • FIG. 9 to 13 show the electrode module of the electrolysis water treatment apparatus according to another embodiment of the present invention.
  • the structure of the electrolytic chamber and the like is similar to the above-described embodiment, a detailed description thereof will be omitted in order to avoid duplication.
  • the electrode module of the present embodiment includes a plurality of anodes 400 and a plurality of cathodes 500.
  • the positive electrode 400 has a positive electrode electrolytic part 410 and a first connection hole 431, and is formed to protrude out of the electrolytic chamber 100 on one side in the width direction of the positive electrode electrolytic part 410. It has a positive electrode port 430 and a second connecting hole 421 having a diameter larger than the first connecting hole 431 and the length of the first positive electrode port 430 of one side in the width direction of the positive electrode electrolytic part 410 It includes a second anode port 420 protruding to the outside of the electrolytic chamber 100 at a position spaced along the direction. At this time, the size of the first connection hole 431 and the second connection hole 421 may be produced in a ratio of 1: 1.5 to 2.5, preferably in a ratio of 1: 2.
  • the cathode 500 has a cathode electrolysis unit 410 overlapping with the anode electrolysis unit 410, and a third connector hole 531 having the same diameter as that of the second connection hole 421.
  • the same diameter as the first cathode port 530 and the first connection hole 431 are formed to protrude out of the electrolytic chamber 100 at a position corresponding to the first anode port 430 of one side of the width direction of the 410.
  • a second negative electrode port protruding to the outside of the electrolytic chamber 100 at a position corresponding to the second positive electrode port 420 of one side in the width direction of the negative electrode electrolytic part 510 of the negative electrode electrolytic part 510; 520.
  • the anode electrolysis unit 410 and the first and second anode ports 430 and 420 of the anode 400 may be formed of a metal plate and the cathode 500.
  • the cathode electrolysis unit 510 and the first and second cathode ports 530 and 520 may also be formed of a metal plate.
  • the anode electrolysis unit 410 'and the first and second anode ports 430' and 420 'of the anode 400' are formed of a metal mesh.
  • the cathode electrolysis unit 510 'and the first and second cathode ports 530' and 520 'of the cathode 500' may also be formed of a metal mesh.
  • bolts 161 are interpolated from the upper side in the plurality of first and third connection holes 431 and 531 along the stacking direction of the positive and negative electrodes 400 and 500.
  • the bolt 161 is formed to have the same diameter as the first connection hole 431 and only contacts the first connection hole 431, thereby electrically connecting the plurality of anodes 400.
  • a nut may be fastened to the lower end of the laminate in which the end of the bolt 161 is exposed to maintain the electrical connection between the bolt 161 and the anode 400.
  • the bolts 151 are interpolated from the upper side in the plurality of second and fourth connection holes 421 and 521 along the stacking direction of the positive and negative electrodes 400 and 500.
  • the bolt 151 is formed to have the same diameter as the fourth connection hole 521 and thus only contacts the fourth connection hole 521 to electrically connect the plurality of cathodes 500.
  • a nut may be fastened to the lower end of the laminate in which the end of the bolt 151 is exposed so as to maintain an electrical connection state between the bolt 151 and the cathode 500.
  • the non-conductive bushing 600 may be interposed between the first positive electrode port 430 and the first negative electrode port 530, and between the second positive electrode port 420 and the second negative electrode port 520.
  • the non-conductive bushing 600 has a hollow portion 630 having a larger diameter than the first or fourth connecting holes 431 and 521, and the second or third connecting holes 421 and 531. Interposed between the lower body 620 inserted from the upper side and the anode port and the cathode port to maintain the gap (gap) so as to more firmly bond the anode 400 and the cathode 500 disposed up and down An upper body 610 having a larger flange shape than the lower body 620 may be included.
  • the non-conductive bushing 600 is a current that does not pass, it is preferable to use a material having excellent heat resistance and corrosion resistance in a high salt concentration in the air, for example, easy to manufacture Teflon, MC nylon (Mono Cast Nylon) , ABS (acrylonitrile-butadiene-styrene) may be used to suit the situation, but the present invention is not limited thereto.
  • the bus bar 90 used in the conventional electrolysis water treatment apparatus is not used at all, it is possible to block in advance a problem that may be caused by the conventional bus bar.
  • the carbon dioxide micro-bubble generating means may be installed to first inject the atomized carbon dioxide micro-bubbles in the treated water and then perform electrolysis.
  • the pH of the water may be lowered to increase the electrolysis efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

본 발명은 다수의 전극을 각각 하나의 양극과 음극으로 연결하여 모듈화하여 설비를 간소화시키면서도 인가전류효율은 향상시키며, 물과 부스바의 접촉을 차단시켜 종래의 동 부스바가 산화되어 녹아 내리면서 발생되던 여러 문제점을 사전에 방지할 수 있는 전기분해 수처리장치를 제공한다.

Description

전기분해 수처리장치
본 발명은 전기분해 수처리장치에 관한 것으로, 보다 구체적으로는 다수의 전극을 각각 하나의 양극과 음극으로 연결하여 인가전류효율을 향상시키며, 물과 부스바의 접촉을 차단시켜 종래의 동 부스바가 산화되어 녹아 내리면서 발생되던 여러 문제점을 사전에 방지할 수 있도록 한 전기분해 수처리장치에 관한 것이다.
수처리의 한 방법으로 전기분해 방식이 있다.
종래의 전기분해 수처리장치는 다수의 전극을 부스바(bus bar)로 연결하여 전류를 인가시키는 방식을 사용한다. 이때, 상기 부스바는 인가 전류량의 손실 없이 전류를 전달하기 위하여 전류전달효율이 우수한 동(copper)를 주로 사용한다.
그러나, 상기 동 재질의 부스바는 전류전달효율은 우수하지만 예컨대 해수와 같은 환경에서는 양극 부분에 설치된 동 부스바가 산화되어 녹아 내리는 현상이 발생하여 양극이 서로 연결되지 못하고 탈락되는 문제점이 있었다. 또한, 상기 동 부스바는 전류 인가시 저항으로 작용하므로 용량이 큰 장치에서는 사용되는 부스바의 개수만큼 인가전류효율이 저하되는 문제점이 있었다.
또한, 위와 같이 양극의 산화작용이 지속적으로 발생하여 동이 용액 속으로 용융되면 처리수가 독성을 갖게 되고 이에 식수나 각종 동식물 및 어류 사육수 처리시에 큰 문제가 될 수 있다.
선행기술문헌
특허문헌
(특허문헌 1) 국내공개특허공보 제10-2013-0101795호
(특허문헌 2) 국내공개실용신안공보 제20-2012-0001516호
본 발명의 목적은, 인가전류효율을 향상시키며, 해수와 부스바의 접촉을 차단시켜 종래의 동 부스바가 산화되어 녹아 내리면서 발생되던 여러 문제점을 해결할 수 있는 전기분해 수처리장치를 제공하려는 것이다.
본 발명에 의한 전기분해 수처리장치는, 전극모듈이 장착된 전해챔버와, 상기 전극모듈에 구비된 양극 및 음극에 전원을 공급하는 정류기를 포함하는 전기분해 수처리장치에 있어서, 상기 전극모듈은 복수의 양극 및 음극이 번갈아 적층되며, 상기 복수의 양극은, 상기 전해챔버 외부로 노출되는 양극포트(port)를 각각 가지며, 상기 각각의 양극포트 사이에 개재되는 복수의 부스바(bus bar)에 의해 전기적으로 연결되며, 상기 복수의 음극은, 상기 양극포트와 이격된 위치에서 상기 전해챔버 외부로 노출되는 음극포트를 각각 가지며, 상기 각각의 음극포트 사이에 개재되는 것을 특징으로 한다.
본 발명의 다른 바람직한 특징에 의하면, 상기 양극은, 양극 전기분해부와, 제1 관통공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면에서 돌출 형성되는 양극포트를 포함하며, 상기 음극은, 상기 양극 전기분해부와 오버랩되는 음극 전기분해부와, 제2 관통공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면에서 돌출 형성되는 음극포트를 포함하며, 상기 부스바는 상기 제1 또는 제2 관통공과 대응되는 제3 관통공을 가지며, 상기 복수의 제1 및 제3 관통공에 적층 방향을 따라 내삽되어 상기 복수의 양극을 전기적으로 연결하는 양극연결수단 및 상기 복수의 제2 및 제3 관통공에 적층 방향을 따라 내삽되어 상기 복수의 음극을 전기적으로 연결하는 음극연결수단을 더 포함할 수 있다.
본 발명의 다른 측면은, 전극모듈이 장착된 전해챔버와, 상기 전극모듈에 구비된 양극 및 음극에 전원을 공급하는 정류기를 포함하는 전기분해 수처리장치에 있어서, 상기 전극모듈은 복수의 양극 및 음극이 번갈아 적층되며, 상기 양극은, 양극 전기분해부와, 제1 연결공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면에서 상기 전해챔버 외부로 돌출 형성되는 제1 양극포트와, 상기 제1 연결공 보다 큰 직경의 제2 연결공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면 중 상기 제1 양극포트와 길이방향을 따라 이격된 위치에서 상기 전해챔버 외부로 돌출 형성되는 제2 양극포트를 포함하며, 상기 음극은, 상기 양극 전기분해부와 오버랩되는 음극 전기분해부와, 상기 제2 연결공과 동일한 직경의 제3 연결공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면 중 상기 제1 양극포트와 대응되는 위치에서 상기 전해챔버 외부로 돌출 형성되는 제1 음극포트와, 상기 제1 연결공과 동일한 직경의 제4 연결공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면 중 상기 제2 양극포트와 대응되는 위치에서 상기 전해챔버 외부로 돌출 형성되는 제2 음극포트를 포함하며, 상기 복수의 제1 및 제3 연결공에 적층 방향을 따라 내삽되되 상기 제1 연결공과 동일한 직경으로 형성되어 상기 복수의 양극을 전기적으로 연결하는 양극연결수단 및 상기 복수의 제2 및 제4 연결공에 적층 방향을 따라 내삽되되 상기 제4 연결공과 동일한 직경으로 형성되어 상기 복수의 음극을 전기적으로 연결하는 음극연결수단을 더 포함하는 전기분해 수처리장치를 제공한다.
본 발명의 다른 바람직한 특징에 의하면, 상기 제1 양극포트와 상기 제1 음극포트 사이 및 상기 제2 양극포트와 상기 제2 음극포트 사이에 비도전성부싱이 각각 개재될 수 있다.
본 발명의 일 실시 예에서, 상기 양극 및 음극이 금속 플레이트(plate)로 형성될 수 있다.
본 발명의 일 실시 예에서, 상기 양극 및 음극이 금속 망(mesh)으로 형성될 수 있다.
본 발명의 일 실시 예에 따르면, 다수의 양극과 음극을 포트 및 부스바를 이용하여 하나의 양극과 음극으로 각각 일원화하여 연결되도록 모듈화하여 장치의 구조 및 크기는 간소화하면서도 인가전류효율은 향상시킬 수 있다.
또한, 전극을 서로 연결하는 부스바가 배치되는 부분이 전해챔버 외부에 노출되도록 구성됨으로써 물과 부스바의 접촉이 완전히 차단되어 종래의 물과 동 재질의 부스바의 접촉에 의해 부스바가 산화되어 녹아 내리면서 발생되던 전극의 연결성 저하 및 탈락 현상과, 동이 용액 속에 용융되면서 처리수가 독성을 갖게 되던 문제점을 사전에 방지할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 전기분해 수처리장치의 구조를 개략적으로 나타낸 사시도이다.
도 2는 도 1에 커버가 더 포함된 분해사시도이다.
도 3은 본 발명의 일 실시 예에 따른 전기분해 수처리장치에서 전극모듈이 전해챔버 커버에 결합된 상태를 나타낸 사시도이다.
도 4는 도 3의 전해챔버 커버를 나타낸 저면도이다.
도 5는 도 3의 전극모듈을 나타낸 사시도이다.
도 6은 도 3의 전극모듈에서 부스바를 나타낸 사시도이다.
도 7은 도 6에서 양극 및 음극을 나타낸 사시도이다.
도 8은 본 발명의 일 실시 예에 따른 전기분해 수처리장치의 전극모듈 중에서 양극의 다른 실시 예를 나타낸 평면도이다.
도 9는 본 발명의 다른 실시 예에 따른 전기분해 수처리장치의 전극모듈을 개략적으로 나타낸 사시도이다.
도 10은 도 9의 전극모듈에서 비도전성부싱을 나타낸 사시도이다.
도 11은 도 9의 전극모듈에 적용되는 전해챔버 커버를 나타낸 저면도이다.
도 12는 도 9에서 양극 및 음극을 나타낸 평면도이다.
도 8은 본 발명의 다른 실시 예에 따른 전기분해 수처리장치의 전극모듈 중에서 양극 및 음극의 다른 실시 예를 나타낸 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다. 그러나, 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 예로 한정되는 것은 아니다.
본 발명의 실시 예는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 1 내지 도 7을 참조하면, 본 발명의 일 실시 예에 따른 전기분해 수처리장치는, 전극모듈이 장착된 전해챔버(200)와, 상기 전극모듈에 구비된 양극(130) 및 음극(140)에 전원을 공급하는 정류기(미도시)를 포함한다. 여기서, 도면 부호 300은 상기 정류기를 통해 상기 전극모듈에 전류를 안전하게 인가시키기 위한 커버이며, 이 커버(300)는 몸체(310)와 후술하는 전극모듈 결합체에 결합하기 위한 플랜지부(320)를 포함한다.
상기 정류기의 전압은 인가 전류량에 따라 다르며 해수의 경우 10V 이하, 담수의 경우 15V 이하의 전압을 인가할 수 있으며, 본 발명이 이에 한정되는 것은 아니다.
도면부호 100은 커버(110)에 전극모듈이 부착된 전극모듈 결합체를 나타낸다. 이러한 전극모듈 결합체(100)는 커버(110), 복수의 양극(130) 및 음극(140), 복수의 양극(130)과 음극(140)이 적층된 적층체의 저면을 지지하기 위한 받침부(120) 및 커버(100)와 받침부(120)를 연결하여 그 사이에 장착된 적층체가 분리되지 않도록 하는 지지부(121)를 포함한다. 이때, 커버(110), 받침부(120) 및 지지부(121)는 부도체 또는 절연체로 이루어져 양극(130)과 음극(140)이 전기적으로 접촉되어 쇼트가 발생되는 것을 방지할 수 있다.
전해챔버(200)는 내부에 상기 전극모듈을 장착하기 위한 수용공간(211)이 마련되고, 길이 방향으로 양 측면에는 수용공간(211)과 연통되어 처리하고자 하는 물을 공급하는 처리수유입부(230)와 전기분해에 의해 살균 처리된 살균수를 배출시키는 살균수배출부(220)가 마련된다.
또한, 수용공간(211)의 개방된 면에는 복수의 나사공을 갖는 플랜지부(212)가 형성되며, 이 플랜지부(212)에 수용공간(211)을 커버하여 밀폐시키는 전극모듈 결합체(100)의 커버(110)가 복수의 볼트(410) 및 너트(420)에 의해 견고하게 결합된다.
이때, 커버(110)는 전기가 통하지 않는 부도체로 이루어지며, 예를 들어 플라스틱 계열의 폴리아미드(PA66) 등으로 이루어질 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 상기 PA66은 플라스틱에 유리(glass) 소재가 함유된 수지 재료로서 내열성 및 TRO/해수 등에 대한 내식성이 우수한 특성을 가진다.
또한, 도 4를 참조하면, 커버(110)의 저면에는 양극포트(132) 및 음극포트(142)를 지지하기 위한 한 쌍의 포트지지부(113, 114)가 마련될 수 있다.
한편, 커버(110)는 양극포트(131) 및 음극포트(142)를 결합한 후 턱(112a)에 의해 마련된 에폭시 도포부(112)에 에폭시를 도포하고 2일 정도 상온에서 건조시키는 작업을 진행할 수 있다. 이러한 작업은 전해챔버(200) 내부에 흐르는 물의 압력으로 전해챔버(200) 외부로 누수가 발생되는 것을 차단하기 위한 것이며, 이에 복수의 양극(130) 및 음극(140)을 교차 배열하는 경우 각각의 전극이 서로 접촉할 때 발생하는 쇼트 현상을 사전에 예방할 수 있다.
이때, 상기 에폭시는 예를 들어 2액형 에폭시, 실리콘계열, 타르계열을 사용할 수 있다. 에폭시는 여름과 같이 온도가 높을 경우 굳을 때까지 시간이 많이 소요되고, 굳는다 하여도 물렁물렁 하는 등 경도가 떨어진다.
이에 본 실시 예에서, 양식장 등 비교적 낮은 TRO 농도 설정이 가능한 분야에서는 다른 물질과 혼합하여 사용할 수 있는 2액형 에폭시를 사용하여 내구성을 확보할 수 있다.
다만, 1,000암페어 이상 고전류를 사용하는 경우 등에서는 경화에 필요한 온도조절을 하여 타르계열의 에폭시를 사용할 수 있다. 다만, 상기의 사항은 하나의 예시이며, 본 발명이 이에 한정되는 것은 아니다.
이하, 본 실시 예의 전극모듈에 대해 상세히 설명한다. 본 실시 예의 전극모듈은 전기적 연결부가 서로 엇갈리게 교차 배열되는 복수의 양극(130) 및 음극(140)과 복수의 부스바(bus bar: 90)를 포함한다.
양극(130)은, 수용공간(211)에 수용되는 양극 전기분해부(131)와, 제1 관통공(133)을 가지며 양극 전기분해부(131)의 폭 방향의 일 측면에서 돌출 형성되어 커버(110)에 형성된 제1 돌출공을 통해 전해챔버(200) 외부로 노출되는 양극포트(132)를 포함한다. 도면부호 134 및 135는 상하로 적층된 복수의 양극(130) 및 음극(140)을 부도체로 이루어진 볼트(191, 192)로 결합하기 위한 볼트공을 나타낸다.
음극(140)은 수용공간(211)에 수용되며 양극 전기분해부(131)와 오버랩되는 음극 전기분해부(141)와, 제2 관통공(143)을 가지며 길이방향으로 양극포트(142)와 이격된 위치에서 음극 전기분해부(141)의 폭 방향의 일 측면에서 돌출 형성되어 커버(110)에 형성된 제2 돌출공을 통해 전해챔버(200) 외부로 노출되는 음극포트(142)를 포함한다. 도면부호 144 및 145는 상하로 적층된 복수의 양극(130) 및 음극(140)을 부도체로 이루어진 볼트(191, 192)로 결합하기 위한 볼트공을 나타낸다.
이러한 양극(130) 및 음극(140)은 처리 대상이 되는 원수의 성상 및 현장 설치구역(Installation area), 요구단가 등에 따라 여러 형태로 형성될 수 있다. 예컨대, 양극(130) 및 음극(140)은, 도 7에 도시된 바와 같이 금속 플레이트(plate)로 형성될 수 있으며, 도 8에 도시된 바와 같이 금속 망(mesh)으로 형성될 수 있다.
이때, 양극(130') 및 음극(140')이 금속 망으로 형성되는 경우, 커버(110)의저면에 마련된 단턱(112a)을 보다 바깥쪽에 위치하도록 하여 에폭시 도포부(112)의 면적을 늘림으로써, 양극(130) 및 음극(140)이 금속 플레이트로 형성된 경우에 비해 커버(110) 저면에 도포되는 에폭시의 양을 늘려 양극(130') 및 음극(140')이 금속 망으로 이루어지더라도 커버(110) 저면에 견고하게 유지될 수 있도록 한다.
한편, 종래의 전기분해장치는 DSA(Dimension stable anode) 전극의 일환으로 염소 발생용 양극(Anode)를 주로 사용한다. 그러나, 본 실시 예에서는 기존 DSA전극과 달리 내식성을 강화하기 위하여 티타늄 소재를 사용할 수 있으며, 보다 많은 염소를 발생시키기 위하여 티타늄 베이스에 루테늄(Ruthenium) 및 이리듐(Iridium) 혼합용액을 코팅하여 형성될 수 있다.
이때, 용매는 에탄올을 사용하며 루테늄과 이리듐의 혼합 비율은 6~8:2~4의 부피비율이 바람직하며 더 바람직하게는 루테늄과 이리듐의 혼합비율은 7:3일 수 있다. 또한, 루테늄과 이리듐 혼합액 전체와 사용되는 엔탄올과의 부피비는 8.5~9.5:0.5~1.5 정도가 바람직하며, 더 바람직하게는 9:1일 수 있다. 한편, 상기 루테늄은 살균 목적 이외에 BOD 유발물질인 TN이나 TP를 제거하는 역할도 할 수 있다.
또한, 양극(130) 및 음극(140)의 크기는 장치의 유량 또는 인가 전류량에 따라 변경 될 수 있으며, 바람직하게 양극 전기분해부(131) 및 음극 전기분해부(132)의 크기가 가로와 세로의 비율이 3~7:1이 되도록 할 수 있다. 만약 상기 가로와 세로의 비율이 3:1 미만인 경우 배관을 두껍게 형성해야 하는 문제점이 발생할 수 있으며, 상기 가로와 세로의 비율이 7:1을 초과하는 경우 해수의 유속에 의해 양극(130) 및 음극(140)이 떨리면서 전기적 문제가 발생할 수 있다. 이 양극 전기분해부(131) 및 음극 전기분해부(131)의 가로와 세로의 비율은 바람직하게는 5:1일 수 있다.
부스바(90)는 음극포트(142)와 양극포트(131) 사이에 설치가 용이하도록 대체로 육면체 형상으로 이루어질 수 있으며, 중앙에 제1 또는 제2 관통공(133, 143)과 대응되는 직경을 갖는 제3 관통공(91)을 가질 수 있다. 이러한 부스바(90)는 복수의 양극포트(132)와 복수의 음극포트(142) 사이에 각각 개재되어 복수의 양극포트(132)와 복수의 음극포트(142)를 각각 전기적으로 연결한다.
또한, 부스바(90)는 표면에 니켈 도금을 수행할 수 있다. 이에 공기 중 수분에 의한 부식을 억제하여 전류전달효율이 저하되는 것을 방지할 수 있다.
또한, 복수의 제1 및 제3 관통공(133, 91)에는 양극 및 음극(130, 140)의 적층 방향을 따라 상측으로부터 볼트(151)가 내삽되어 복수의 양극(130)을 전기적으로 연결한다. 이때, 볼트(151)의 단부가 노출되는 적층체의 하단에는 볼트(151)와 양극(130)들의 전기적 연결상태를 유지할 수 있도록 너트(152, 153)가 체결될 수 있다.
또한, 복수의 제2 및 제3 관통공(143, 91)에는 양극 및 음극(130, 140)의 적층 방향을 따라 상측으로부터 볼트(161)가 내삽되어 복수의 음극(140)을 전기적으로 연결한다. 이때, 볼트(161)의 단부가 노출되는 적층체의 하단에는 볼트(161)와 음극(140)들의 전기적 연결상태를 유지할 수 있도록 너트(162, 163)가 체결될 수 있다.
위와 같이 구성된 전기분해 처리수단은 유입된 물이 전극모듈의 양극 및 음극(130, 140)의 양극 전기분해부 및 음극 전기분해부(131, 141)를 통과할 때 아래 반응식 1에 의해 전위차를 통해 전기분해가 진행되게 된다.
[반응식 1]
<염소화>
NaCl → Na+ + Cl-
2Cl- → Cl2 + 2e-
Cl2 + H20 → HCl + HOCl
HOCl → H+ + OCl-
H2O → H+ + OH-
Na+ + OH- → NaOH
Cl2 + 2NaOH → NaOCl + NaCl + H2O
<브롬화>
HOCl + Br- → HOBr + Cl-
HOBr → H+ + OBr-
위 반응식 1에 의해 생성된 화학종 중 HOCl, OCl-, OH-, NaOCl, HOBr, OBr- 등의 산화물질을 총칭하여 TRO(Total residual oxidants)라고 하며, TRO는 각종 미생물을 살균 소독하게 된다. 또한, 이러한 전기분해시 양극 및 음극의 전위차에 의해 해수 내에 포함된 미생물 세포벽을 파괴하게 된다.
종래의 전극모듈은 모듈화가 이루어지지 않아 단위 면적당 허용전류량을 확보하기 위해서는 어쩔 수 없이 전극 하나의 크기가 커질 수 밖에 없다. 또한, 전기분해시 복수의 전극 모듈이 필요하며, 이에 각각의 전극마다 전선을 따로 체결해야 하는 불편함이 있다. 이 경우, 전선은 하나의 저항으로 작용하므로 전류전달효율을 떨어뜨리는 원인이 되어 전력사용량이 증가하게 된다.
본 실시 예에 따르면, 양극(130)과 음극(140)이 각각 하나의 라인으로 연결된 전극모듈 결합체(100)로 모듈화되어 전극 하나의 크기를 컴팩트화(compact)할 수 있으며, 최소의 전선 수로 장치를 구성하여 종래 다수의 전선에 의한 문제점을 해소할 수 있다. 또한, 전극모듈을 전해챔버(100)에 결합 및 탈착시키기 용이하여 장치의 설치, 교환 및 유지관리가 용이한 이점이 있다. 또한, 부스바(190)가 전해챔버(100) 외부에 위치함으로써, 물과의 접촉에 의한 부스바(190)의 부식의 우려도 방지할 수 있다.
도 9 내지 도 13에는 본 발명의 다른 실시 예에 따른 전기분해 수처리장치의 전극모듈이 도시되어 있다. 여기서, 전해챔버 등의 구조는 앞서 설명한 일 실시 예와 유사하므로 중복을 피하기 위하여 이에 대한 구체적인 설명은 생략한다.
도 9 내지 도 13을 참조하면, 본 실시 예의 전극모듈은 복수의 양극(400), 복수의 음극(500)을 포함한다.
양극(400)은, 양극 전기분해부(410)와, 제1 연결공(431)을 가지며 양극 전기분해부(410)의 폭 방향의 일 측면에서 전해챔버(100) 외부로 돌출 형성되는 제1 양극포트(430)와, 제1 연결공(431) 보다 큰 직경의 제2 연결공(421)을 가지며 양극 전기분해부(410)의 폭 방향의 일 측면 중 제1 양극포트(430)와 길이방향을 따라 이격된 위치에서 전해챔버(100) 외부로 돌출 형성되는 제2 양극포트(420)를 포함한다. 이때, 제1 연결공(431)과 제2 연결공(421)의 크기는 1:1.5~2.5의 비율로 제작할 수 있으며, 바람직하게는 1:2의 비율로 제작할 수 있다.
음극(500)은, 양극 전기분해부(410)와 오버랩되는 음극 전기분해부(410)와, 제2 연결공(421)과 동일한 직경의 제3 연결공(531)을 가지며 음극 전기분해부(410)의 폭 방향의 일 측면 중 제1 양극포트(430)와 대응되는 위치에서 전해챔버(100) 외부로 돌출 형성되는 제1 음극포트(530)와, 제1 연결공(431)과 동일한 직경의 제4 연결공(521)을 가지며 음극 전기분해부(510)의 폭 방향의 일 측면 중 제2 양극포트(420)와 대응되는 위치에서 전해챔버(100) 외부로 돌출 형성되는 제2 음극포트(520)를 포함한다.
이때, 도 12에 도시된 바와 같이, 양극(400)의 양극 전기분해부(410)와 제1 및 제2 양극포트(430, 420)는 금속 플레이트(plate)로 형성될 수 있고, 음극(500)의 음극 전기분해부(510)와 제1 및 제2 음극포트(530, 520)도 금속 플레이트(plate)로 형성될 수 있다.
또한, 도 13에 도시된 바와 같이, 다른 예로서, 양극(400')의 양극 전기분해부(410')와 제1 및 제2 양극포트(430', 420')는 금속 망(mesh)로 형성될 수 있고, 음극(500')의 음극 전기분해부(510')와 제1 및 제2 음극포트(530', 520')도 금속 망으로 형성될 수 있다.
또한, 복수의 제1 및 제3 연결공(431, 531)에는 양극 및 음극(400, 500)의 적층 방향을 따라 상측으로부터 볼트(161)가 내삽된다. 이때, 볼트(161)는 제1 연결공(431)과 동일한 직경으로 형성되어 제1 연결공(431)하고만 접촉되므로 복수의 양극(400)을 전기적으로 연결하게 된다. 이때, 볼트(161)의 단부가 노출되는 적층체의 하단에는 볼트(161)와 양극(400)들의 전기적 연결상태를 유지할 수 있도록 너트가 체결될 수 있다.
또한, 복수의 제2 및 제4 연결공(421, 521)에는 양극 및 음극(400, 500)의 적층 방향을 따라 상측으로부터 볼트(151)가 내삽된다. 이때, 볼트(151)는 제4 연결공(521)과 동일한 직경으로 형성되어 제4 연결공(521)하고만 접촉되므로 복수의 음극(500)을 전기적으로 연결하게 된다. 이때, 볼트(151)의 단부가 노출되는 적층체의 하단에는 볼트(151)와 음극(500)들의 전기적 연결상태를 유지할 수 있도록 너트가 체결될 수 있다.
이때, 제1 양극포트(430)와 제1 음극포트(530) 사이 및 제2 양극포트(420)와 제2 음극포트(520) 사이에는 비도전성부싱(600)이 각각 개재될 수 있다.
도 10을 참조하면, 비도전성부싱(600)은 제1 또는 제4 연결공(431, 521) 보다는 큰 직경의 중공부(630)를 가지며, 제2 또는 제3 연결공(421, 531)에 상측으로부터 끼워져 삽입되는 하부몸체(620)와, 양극포트와 음극포트 사이에 개재되어 갭(gap)을 유지하여 상하로 배치된 양극(400)과 음극(500)의 결합을 보다 견고하게 할 수 있도록 하부몸체(620) 보다 큰 플랜지 형상으로 된 상부몸체(610)를 포함할 수 있다.
또한, 이러한 비도전성부싱(600)은 전류가 통하지 않고, 공기 중 염분 농도가 높은 곳에서 내열성 및 내식성이 우수한 재질을 사용하는 것이 바람직하며, 예컨대 제작이 용이한 테프론, MC나일론(Mono Cast Nylon), ABS(acrylonitrile-butadiene-styrene) 등의 재질을 상황에 맞게 사용할 수 있으며, 다만 본 발명이 이에 한정되는 것은 아니다.
위와 같은 구성에 따르면, 본 실시 예에서는 종래 전기분해 수처리장치에 사용되던 부스바(90)가 아예 사용되지 않으므로, 종래의 부스바에 의한 문제점이 생길 수 있는 여지를 사전에 차단할 수 있다.
한편, 본 실시 예에서는, 전기분해를 하기 이전에 이산화탄소 미세기포 발생수단을 설치하여 처리수에 미립화된 이산화탄소 미세기포를 먼저 주입한 후 전기분해를 수행할 수 있다. 이 경우, 물의 pH가 낮아져 전기분해 효율이 상승될 수 있다.
본 발명은 상술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다.
따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.
부호의 설명
90 ; 부스바
100 ; 전극모듈 결합체
110 ; 커버
130, 130' 400, 400'; 양극
131 ; 양극 전기분해부
132 ; 양극포트
141 ; 음극 전기분해부
142 ; 음극포트
140, 500, 500'; 음극
200 ; 전해챔버
600 ; 비도전성부싱

Claims (6)

  1. 전극모듈이 장착된 전해챔버와, 상기 전극모듈에 구비된 양극 및 음극에 전원을 공급하는 정류기를 포함하는 전기분해 수처리장치에 있어서,
    상기 전극모듈은 복수의 양극 및 음극이 번갈아 적층되며,
    상기 복수의 양극은, 상기 전해챔버 외부로 노출되는 양극포트(port)를 각각 가지며, 상기 각각의 양극포트 사이에 개재되는 복수의 부스바(bus bar)에 의해 전기적으로 연결되며,
    상기 복수의 음극은, 상기 양극포트와 이격된 위치에서 상기 전해챔버 외부로 노출되는 음극포트를 각각 가지며, 상기 각각의 음극포트 사이에 개재되는 복수의 부스바(bus bar)에 의해 전기적으로 연결되는 전기분해 수처리장치.
  2. 제1항에 있어서, 상기 양극은, 양극 전기분해부와, 제1 관통공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면에서 돌출 형성되는 양극포트를 포함하며,
    상기 음극은, 상기 양극 전기분해부와 오버랩되는 음극 전기분해부와, 제2 관통공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면에서 돌출 형성되는 음극포트를 포함하며,
    상기 부스바는 상기 제1 또는 제2 관통공과 대응되는 제3 관통공을 가지며,
    상기 복수의 제1 및 제3 관통공에 적층 방향을 따라 내삽되어 상기 복수의 양극을 전기적으로 연결하는 양극연결수단 및 상기 복수의 제2 및 제3 관통공에 적층 방향을 따라 내삽되어 상기 복수의 음극을 전기적으로 연결하는 음극연결수단을 더 포함하는 전기분해 수처리장치.
  3. 전극모듈이 장착된 전해챔버와, 상기 전극모듈에 구비된 양극 및 음극에 전원을 공급하는 정류기를 포함하는 전기분해 수처리장치에 있어서,
    상기 전극모듈은 복수의 양극 및 음극이 번갈아 적층되며,
    상기 양극은, 양극 전기분해부와, 제1 연결공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면에서 상기 전해챔버 외부로 돌출 형성되는 제1 양극포트와, 상기 제1 연결공 보다 큰 직경의 제2 연결공을 가지며 상기 양극 전기분해부의 폭 방향의 일 측면 중 상기 제1 양극포트와 길이방향을 따라 이격된 위치에서 상기 전해챔버 외부로 돌출 형성되는 제2 양극포트를 포함하며,
    상기 음극은, 상기 양극 전기분해부와 오버랩되는 음극 전기분해부와, 상기 제2 연결공과 동일한 직경의 제3 연결공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면 중 상기 제1 양극포트와 대응되는 위치에서 상기 전해챔버 외부로 돌출 형성되는 제1 음극포트와, 상기 제1 연결공과 동일한 직경의 제4 연결공을 가지며 상기 음극 전기분해부의 폭 방향의 일 측면 중 상기 제2 양극포트와 대응되는 위치에서 상기 전해챔버 외부로 돌출 형성되는 제2 음극포트를 포함하며,
    상기 복수의 제1 및 제3 연결공에 적층 방향을 따라 내삽되되 상기 제1 연결공과 동일한 직경으로 형성되어 상기 복수의 양극을 전기적으로 연결하는 양극연결수단 및 상기 복수의 제2 및 제4 연결공에 적층 방향을 따라 내삽되되 상기 제4 연결공과 동일한 직경으로 형성되어 상기 복수의 음극을 전기적으로 연결하는 음극연결수단을 더 포함하는 전기분해 수처리장치.
  4. 제3항에 있어서, 상기 제1 양극포트와 상기 제1 음극포트 사이 및 상기 제2 양극포트와 상기 제2 음극포트 사이에 비도전성부싱이 각각 개재되는 전기분해 수처리장치.
  5. 제1항 또는 제3항에 있어서, 상기 양극 및 음극이 금속 플레이트(plate)로 형성되는 전기분해 수처리장치.
  6. 제1항 또는 제3항에 있어서, 상기 양극 및 음극이 금속 망(mesh)으로 형성되는 전기분해 수처리장치.
PCT/KR2015/010149 2014-09-30 2015-09-25 전기분해 수처리장치 WO2016052938A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140130902A KR20160038298A (ko) 2014-09-30 2014-09-30 전기분해 수처리장치
KR10-2014-0130902 2014-09-30

Publications (2)

Publication Number Publication Date
WO2016052938A2 true WO2016052938A2 (ko) 2016-04-07
WO2016052938A3 WO2016052938A3 (ko) 2016-05-26

Family

ID=55631734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010149 WO2016052938A2 (ko) 2014-09-30 2015-09-25 전기분해 수처리장치

Country Status (2)

Country Link
KR (1) KR20160038298A (ko)
WO (1) WO2016052938A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037168A (zh) * 2017-12-11 2018-05-15 重庆晓微城企业孵化器有限公司 一种用于水质分析传感器的阳极单元

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102033725B1 (ko) 2017-03-02 2019-10-17 주식회사 뉴워터텍 양식장 전해수 처리 장치
KR102131344B1 (ko) 2018-08-03 2020-07-07 경원에너텍 주식회사 전기분해장치용 전극모듈
KR101934837B1 (ko) * 2018-09-11 2019-04-05 (주)세광 티타늄 전극 표면에 생성된 석회질 피막을 제거할 수 있는 자동 양방향 전원장치 해수전해설비
KR102260290B1 (ko) * 2020-09-18 2021-06-03 주식회사 일주종합건설 미세버블 및 자외선을 이용한 수처리 장치
KR102424957B1 (ko) * 2021-11-29 2022-07-25 (주)씨엔티솔루션 탄소나노튜브 복합소재를 이용한 수전해 전극판, 이를 포함하는 살균기능 수전해 스택, 및 이를 포함하는 가습기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236542B1 (ko) * 1997-05-23 2000-01-15 박영배 복극식 전해조 및 복극식 전해조를 이용한 오폐수정화처리장치
KR200248039Y1 (ko) * 2001-03-15 2001-10-18 (주)아이수 전기분해에 의한 오폐수처리설비
KR100840762B1 (ko) * 2006-10-14 2008-06-23 창원환경산업 주식회사 복극식 전기분해시스템을 이용한 선박 밸러스트수 살균장치
KR100927445B1 (ko) * 2009-03-04 2009-11-19 조금일 살균수 생성 유닛, 이를 포함하는 살균수 생성 카트리지 및살균 세탁기
KR101272295B1 (ko) * 2011-12-08 2013-06-07 (주) 테크로스 선박 밸러스트 수 살균용 전극 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037168A (zh) * 2017-12-11 2018-05-15 重庆晓微城企业孵化器有限公司 一种用于水质分析传感器的阳极单元

Also Published As

Publication number Publication date
WO2016052938A3 (ko) 2016-05-26
KR20160038298A (ko) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2016052938A2 (ko) 전기분해 수처리장치
US4714534A (en) Electrolytic halogenator device
US5364512A (en) Electrochemical ionization apparatus system for purifying water
KR101768119B1 (ko) 전기분해 수처리장치
WO2013035946A1 (ko) 튜블라 타입 전해 장치
WO2011030945A1 (ko) 접촉 비표면적을 증대시킨 유가금속 회수용 전해조
WO2016153145A1 (ko) 축산용 살균수 제조장치
WO2009139555A2 (ko) 유체의 정전처리 장치
WO2018043968A1 (ko) 금속 이온을 이용한 살균수 생성장치
KR101481327B1 (ko) 복극식 전기분해 반응기
WO2016104935A1 (ko) 파이프형 전해셀
CN208378500U (zh) 智能循环水处理装置
WO2012053668A1 (ko) 전극구조
KR20190132764A (ko) 수소 발생 장치
CN214087848U (zh) 带倒极功能的电解水模块
EP2383229A1 (en) Adaptable electrode holder for electrolysis
CN105668721B (zh) 用于处理船舶/平台生活污水的过流式电絮凝装置
CN105112933B (zh) 一种高产氯电解装置
WO2019225797A1 (ko) 브라운 가스 발생 장치
KR101568173B1 (ko) 전기분해식 수처리 장치 및 이를 포함하는 선박 평형수 정화 시스템
CN211470886U (zh) 复极式连接的电絮凝装置
WO2020138793A1 (ko) 팔라듐, 이리듐 및 탄탈럼으로 구성된 전극용 촉매층 및 상기 전극용 촉매가 코팅된 살균수 생성 모듈
WO2019231005A1 (ko) 수소 발생 장치
KR100801166B1 (ko) 전극과의 반응성을 극대화시킨 관로형 전해설비용반응기
CN106517428A (zh) 一种大流量消毒杀菌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846751

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846751

Country of ref document: EP

Kind code of ref document: A2