WO2016052831A1 - 전기 화학 단위 셀 - Google Patents

전기 화학 단위 셀 Download PDF

Info

Publication number
WO2016052831A1
WO2016052831A1 PCT/KR2015/005397 KR2015005397W WO2016052831A1 WO 2016052831 A1 WO2016052831 A1 WO 2016052831A1 KR 2015005397 W KR2015005397 W KR 2015005397W WO 2016052831 A1 WO2016052831 A1 WO 2016052831A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit cell
separation region
electrochemical unit
electrochemical
separation
Prior art date
Application number
PCT/KR2015/005397
Other languages
English (en)
French (fr)
Inventor
박경일
문전수
문상봉
Original Assignee
한국전력공사
한국서부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 한국서부발전 주식회사 filed Critical 한국전력공사
Publication of WO2016052831A1 publication Critical patent/WO2016052831A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • One embodiment of the present invention has a structure in which both the role of the movement path of the electrons and the convex-concave structure of the separator plate separating the anode chamber and the cathode chamber are intersected around the membrane electrode assembly in the anode chamber and the cathode chamber.
  • An electrochemical unit cell capable of promoting the mixing of electrolytes and thereby making the temperature and concentration of the electrolyte uniform.
  • Electrochemical cells are generally used in electrolysis cells that produce gas using raw materials such as water, and fuel cells that produce electricity using fuel.
  • an electrochemical cell is an energy conversion device, and is classified into an electrolysis cell and a fuel cell.
  • An electrolysis cell generates hydrogen and oxygen by electrochemically decomposing water
  • a fuel cell is a device that obtains electricity by electrochemically reacting hydrogen and oxygen.
  • a proton exchange membrane electrolysis cell functions to produce hydrogen gas and oxygen gas by electrochemically decomposing water.
  • FIG. 1 is a conceptual diagram illustrating a general electrolysis cell, and illustrates a typical electrolysis cell that produces hydrogen gas and oxygen gas by electrochemically decomposing water.
  • water (H 2 0) is supplied to the anode 110, that is, the oxygen electrode, and decomposes into oxygen gas (O 2 ), electrons (e-), and hydrogen ions (H + ), that is, protons. do.
  • oxygen gas (O 2 ) oxygen gas (O 2 )
  • e- electrons
  • H + hydrogen ions
  • a portion of the water (H 2 0) is discharged to the outside of the electrolysis cell 100 with oxygen gas (O 2 ).
  • the decomposed hydrogen ion (H + ) passes through the hydrogen ion exchange membrane 120 to move to the cathode 130, that is, the hydrogen electrode, to connect the external circuit 140 connecting the anode 110 and the cathode 130. It reacts with the electrons (e-) moved along to form hydrogen gas (H 2 ).
  • the reaction occurs as opposed to the electrolysis mechanism of water as described above.
  • hydrogen, methanol or another hydrogen fuel source and oxygen react to produce electricity.
  • the general reactions occurring in the anode and cathode of the fuel cell are represented by the equations 3 and 4.
  • electrolysis cell which decomposes water if a current density of about 0.05A / cm 2 -4.3A / cm 2 and about 1.48 V - from about 0.0001 if being applied with a voltage of 3.0 V, used as a fuel cell A / cm 2 Current density of 10A / cm 2 and voltage of about 0.4V-1V are drawn to produce gas or fuel cell respectively.
  • Such an electrochemical cell is a membrane electrode assembly having a positive electrode and a negative electrode (hereinafter referred to as 'MEA'), a frame, a separator, a MEA support, and a form arranged to supply and discharge electrons, reactants, and products. Gasket (packing) or the like.
  • 2A is a diagram illustrating a configuration relationship of a general unit cell constituting a fuel cell.
  • the unit cell 200 includes a MEA 210 having catalysts coated on both sides of the electrolyte membrane 211 to form electrodes 212 and 213, and both sides of the MEA 210. It is composed of a pair of packing (220, 230), a pair of separation plates (240, 250) and a frame (not shown) respectively located in the.
  • a porous plate (not shown) formed between the electrodes 212 and 213 and the separation plates 240 and 250 to have the same size as the electrodes 212 and 213 to supply the raw materials and the like to the MEA 210 evenly. More can be installed.
  • supply passages for supplying air or fuel are formed at upper and lower ends of the electrolyte membrane 211, the packing 220, 230, and the separation plates 240 and 250 of the MEA 210, respectively.
  • the separators 240 and 250 are provided with flow passages 241 and 251 through which the fluids of the reactants and the products flow.
  • the fuel flows in the flow passage 241 of the one side separation plate 240, and thus the electrode 212 of the MEA 210 in contact with the fuel electrode (ie, the anode, the anode, and the anode) becomes the other side.
  • Air flows through the flow passage 251 of the separation plate 250, so that the electrode 213 of the MEA 210 in contact therewith becomes the cathode (reduction electrode, cathode, cathode).
  • reference numeral 212 denotes the electrode or the fuel electrode in parallel and the reference numeral 213 denotes the electrode or the air electrode in parallel.
  • FIG. 2B is a diagram illustrating an example of a flow path formed in the separator of FIG. 2A.
  • the flow passage 251 generated in the separator plate 250 may be designed to allow the MEA and the reactant to contact each other.
  • parallel flow paths and the like may also be designed.
  • FIG. 3 is a view schematically showing a configuration relationship of a general cell assembly constituting a fuel cell.
  • the cell assembly 300 is arranged to have a form in which a plurality of unit cells 200 configured as shown in FIG. 2 are stacked in a row, and a pair of current supply plates 310 are formed on both outer sides thereof. And after positioning the end plate 320 (frame), the bolt 330 and the nut 340 is assembled in a tie rod manner. In this case, a plurality of separator plates 240 or 250, the packing 220, the MEA 210, and the other packing 230 constituting the unit cell 200 are sequentially stacked in a row. Accordingly, the fuel supply line 350 supplies fuel to the anode 212 through fuel or air supply passages formed at upper and lower ends of the components constituting the unit cell 200. Air supply lines 360 for supplying air to the cathode 213 are respectively formed. Meanwhile, the current supply plate 310 is made of a copper plate and serves to supply current, and also serves as an end plate for fixing the unit cell 200.
  • each unit cell 200 When fuel and air are supplied to the fuel supply line 350 and the air supply line 360, the flow passage 241 and the cathode 213 of the separator plate 240 of the anode 212 side of each unit cell 200 are provided. As each fuel and air flow into the flow passage 251 of the side separation plate 250, an electrochemical reaction occurs in each unit cell 200. At this time, the current is applied or drawn through the current supply plate 310 or the end plate 320. In addition, packings 220 and 230 are respectively inserted between the separator plates 240 and 250 and the MEA 210 of each unit cell 200 to prevent external leakage of the fluid.
  • the separation plate of the general electrochemical cell as described above has a problem in that the concentration difference between the reaction inlet part and the generation part is severe, and thus a temperature deviation occurs, and the conductivity varies according to the position in the reaction area of the electrochemical cell. Does not flow uniformly but flows unevenly, which may adversely affect the durability and performance of the membrane electrode assembly.
  • One embodiment of the present invention provides an electrochemical unit cell having a separator having a concave-convex structure for greatly improving the mixing effect of the electrolyte and significantly improving the performance and durability of the membrane electrode assembly.
  • An electrochemical unit cell is a MEA having a catalyst coated on both surfaces of an electrolyte membrane and an electrode formed thereon, and a pair of current conducting plates, packings, and separators each provided sequentially on both sides of the MEA.
  • An electrochemical unit cell having a frame and a frame, wherein the separator has a concave first separation region having a concave-convex structure and a convex second separation region, and the first separation.
  • the region VII and the second separation region VII may be located on the same line.
  • the first separation zone can serve as a transport route for reactants and products.
  • the current conducting plate may be in contact with the second isolation region ⁇ .
  • the flow path of the first separation region ⁇ may have a length of 10 to 100 cm.
  • the flow path of the first separation region ⁇ may have a length of 20 to 30 cm.
  • the flow path of the first separation region may be formed to have a width of 2 to 10 cm.
  • the flow path of the first separation region ⁇ may be formed to have a width of 3 to 5 cm.
  • An upper portion of the second separation region ⁇ may have a length of 10 to 100 cm.
  • An upper portion of the second separation region ⁇ may have a length of 20 to 30 cm.
  • An upper portion of the second separation region ⁇ may have a width of 2 to 10 cm.
  • An upper portion of the second separation region ⁇ may be formed to have a width of 3 to 5 cm.
  • the inclination inclination between the first separation region ⁇ and the second separation region ⁇ adjacent thereto may be 20 to 70 degrees.
  • the inclination inclination between the first separation region ⁇ and the second separation region ⁇ adjacent thereto may be 40 to 50 degrees.
  • Supply passages for supplying air or fuel may be formed at upper and lower portions of the electrolyte membrane, the current conduction plate, the separator, and the packing.
  • the electrolyte membrane may be a cation exchange membrane.
  • the surface of the electrode may be coated with a catalyst of any one of platinum, iridium, ruthenium, nickel for the oxidation and reduction reaction.
  • the current conducting plate has the same size as the electrode and may be formed in a porous or mesh form.
  • the separator of the electrochemical unit cell since the separator of the electrochemical unit cell is formed in a concave-convex structure, the temperature and the electrolyte distribution in the electrolytic cell are made constant, which results in a current density distribution. By uniformly improving the performance of the membrane electrode assembly.
  • FIG. 1 is a conceptual diagram showing a general electrolysis cell.
  • 2A is a diagram illustrating a configuration relationship of a general unit cell constituting a fuel cell.
  • FIG. 2B is a diagram illustrating an example of a flow path formed in the separator of FIG. 2A.
  • FIG. 3 is a view schematically showing a configuration relationship of a general cell assembly constituting a fuel cell.
  • FIG. 4 is a diagram illustrating an electrochemical unit cell according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a separator of the concave-convex structure of FIG. 4.
  • FIG. 6 is a diagram illustrating a bipolar electrochemical cell assembly configured by stacking a plurality of electrochemical unit cells of FIG. 4.
  • FIG. 7 illustrates a test state of an electrochemical unit cell according to an exemplary embodiment of the present invention.
  • FIG. 8 is a graph illustrating a change in voltage for each unit cell according to a change in current during the test of FIG.
  • FIG. 9 is a graph illustrating voltage distribution for each unit cell according to a change in current during the test of FIG. 7.
  • FIG. 10 is a graph illustrating a correlation between a current and a hydrogen flow rate during the test of FIG. 7.
  • FIG. 11 is a graph showing the change in efficiency of the electrochemical cell assembly during the test of FIG. 7.
  • the present invention relates to the configuration of an electrolysis cell which is a core technology among various components of a field-type hydrogen generator for supplying hydrogen for the purpose of cooling a large power plant generator.
  • the electrochemical unit cell of the present invention includes a membrane electrode assembly (MEA) in which catalysts are coated on both surfaces of an electrolyte membrane to form electrodes, and the packing is arranged based on the membrane electrode assembly in a form capable of supplying and discharging reactants and products. And a separator and a frame, and the separator is formed in an intersecting uneven shape to enhance the mixing effect in each of the anode chamber and the cathode chamber so that the temperature and concentration are uniform to enhance durability of the membrane electrode assembly. Can be.
  • FIG. 4 is a view showing an electrochemical unit cell according to an embodiment of the present invention
  • Figure 5 is a view showing a separator of the concave-convex structure of Figure 4
  • Figure 6 is a stack of a plurality of electrochemical unit cells of FIG. It is a figure which shows the bipolar electrochemical cell assembly comprised.
  • the electrochemical unit cell 400 of the present invention includes a MEA 410 having a catalyst coated on both sides of an electrolyte membrane 411 and having electrodes 412 and 413 formed thereon. It consists of a pair of current conducting plates (420, 430), a pair of packings (460), a pair of separation plates (440, 450) and a frame (not shown) which are sequentially positioned at both sides of the 410, respectively. .
  • Supply of air or fuel is supplied to upper and lower ends of the electrolyte membrane 411, the current conducting plates 420 and 430, the separation plates 440 and 450 having a concave-convex structure, and the packing 460 of the MEA 410. Passages are formed respectively.
  • the electrolyte membrane 411 is a cation exchange membrane, and the electrodes 412 and 413 are formed by coating a catalyst having a predetermined thickness such as platinum (Pt), iridium, ruthenium, and nickel suitable for oxidation and reduction reactions.
  • a catalyst having a predetermined thickness such as platinum (Pt), iridium, ruthenium, and nickel suitable for oxidation and reduction reactions.
  • MEA 410 in the present invention has high electrochemical reaction activity.
  • the electrodes 412 and 413 are preferably formed by thinly and uniformly applying a catalyst so as to minimize contact resistance and material transfer resistance.
  • the current conduction plates 420 and 430 serve to apply an external current to the MEA 410 or draw it as an external current from the MEA 410, and the diffusion of reactants and products into the MEA 410 and mixing of these electrolytes. Play a role in helping.
  • the current conducting plates 420 and 430 may be manufactured in the same size as the electrodes 412 and 413 of the MEA 410, but may be manufactured in a porous or mesh form. For example, in the case of a porous plate, it is preferable to use a circular plate or a square plate having a thickness of 1 mm or less.
  • the flow paths 441 and 451 formed by the separation plates 440 and 450 diffuse the reactants flowing into the separation plates 440 and 450 into the MEA 410, and separate the products by the electrochemical reaction of the MEA 410. It should serve to help spread to plates 440 and 450.
  • the concentration variation of the reactant inlet and the product outlet in the electrolytic cell having a length of 1 m in the vertical direction is 5%, and the temperature deviation is 3 ° C.
  • the conductivity of the electrolyte is different locally at the outlet and the inlet, and a difference in the current density in the vicinity of the inlet and the outlet occurs according to the conductivity. That is, a large amount of current flows in the outlet portion having high conductivity, and a relatively small current flows in the inlet portion having low conductivity, which affects the life and performance of the MEA 410.
  • concentration uniformity through mixing of electrolytes in the electrolytic cell is a very important factor.
  • the separating plate 500 has a convex portion formed on the first inclined surface 520a and the second inclined surface 520b, that is, a concave portion formed on the first flow path 510a and the third inclined surface 520c. That is, the fluid moving along the second flow path 510b is separated in the separating part 550a and mixed in the mixing part 550b. The fluid mixed in the mixing part 550b flows back into the third third flow path 510c formed in the fourth inclined surface 520d and the fifth inclined surface 520e of the next region. As a result, the reactants moved to adjacent convex flow paths are mixed and uniform in concentration.
  • the inclination of the first to fifth inclined surfaces 520a, 520b, 520c, 520d, and 520e is preferably inclined at 20 degrees to 70 degrees.
  • the inclination is 70 degrees or more, the resistance to fluid movement is increased, so that the required power of the electrolyte circulation pump is increased.
  • the inclination is 20 degrees or less, the interval between the unevenness becomes large, so that sufficient mixing effect is not obtained.
  • the inclination of the first to fifth inclined surfaces 520a, 520b, 520c, 520d, and 520e may be 40 degrees to 50 degrees.
  • the convex portion flow paths that is, the first to third flow paths 510a, 510b, and 510c have a size of 10 to 100 cm and a width of 2 to 10 cm.
  • the mixing effect is excellent, but it is a problem in workability.
  • the length is 100 cm or more and when the width is 10 cm or more, the reactant mixing effect in the electrolytic cell is a problem.
  • the top portion 540 may have a length of 20 cm to 30 cm and a width of 3 cm to 5 cm.
  • the top portion 540 of the ridge portion is a portion in contact with the current conducting plate, and the length of the top portion is preferably 10 to 100 cm and a width of 2 to 10 cm. At this time, when the length is formed to less than 10cm, and the width is formed to be less than 2cm, the electrical conductivity and mixing effect to the current conduction plate is excellent, but the problem in workability, when the length is formed more than 100cm In the case where the width is formed to be 10 cm or more, problems may occur because the reactant mixing effect in the electrolytic cell and the electrical conductivity to the current conducting plate are reduced. More preferably, the size of the top portion 540 may be 20 cm to 30 cm in length and 3 cm to 5 cm in width.
  • the separator 500 configured as described above may be formed of titanium, stainless steel, or the like coated with a metal having excellent conductivity such as titanium, stainless steel, platinum, silver, or copper.
  • the separator plate 500 may be formed of stainless steel plated with platinum.
  • the bipolar electrochemical cell assembly 600 is arranged such that a plurality of unit cells 400 stacked as shown in FIG. 4 are stacked in a row, and a pair of currents are supplied to both outer sides. After placing the plate 690 and the end plate (not shown), respectively, the pair of end plates are assembled by a tie rod method of tightening the bolts and nuts 690.
  • 650 and an air supply line 660 for supplying air to the cathode 413 are formed, respectively.
  • the electrochemical unit cell having the separator configured as described above can improve the mixing effect of the reactants in the electrolytic cell, thereby improving the performance and life of the MEA, thereby achieving a cost reduction effect of innovatively reducing operating costs.
  • FIG. 7 is a diagram illustrating a test state of an electrochemical unit cell according to an exemplary embodiment of the present invention
  • FIG. 8 is a graph illustrating a voltage change of each unit cell according to a change in current during the test of FIG. 7
  • FIG. 9 is a diagram of FIG. 7.
  • FIG. 10 is a graph illustrating a voltage distribution for each cell according to a change in current during a test.
  • FIG. 10 is a graph illustrating a correlation between a current and a hydrogen flow rate during a test of FIG. 7, and
  • FIG. 11 is a change in efficiency of an electrochemical cell assembly during a test of FIG. 7.
  • a cell assembly including a separator plate according to the present invention was manufactured to evaluate performance.
  • the diameter of the membrane electrode assembly used in the cell assembly was 20 cm
  • the effective area is 314 cm 2
  • 11 membrane electrode assemblies were laminated to prepare a cell assembly.
  • the present invention relates to an electrochemical unit cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명의 일 실시예는 전기 화학 단위 셀에 관한 것으로, 해결하고자 하는 기술적 과제는 전해질의 혼합효과를 개선하여 막전극 접합체의 성능과 내구성을 대폭 개선시키기 위한 요철(凹凸)의 구조를 가지는 분리판을 구비한 전기 화학 단위 셀을 제공하는데 있다. 이를 위해 본 발명의 일 실시예는 전해질 막의 양 표면에 촉매가 코팅되어 전극이 각각 형성된 MEA와, 상기 MEA의 양측에 각각 순차적으로 구비되는 한 쌍의 전류 전도판, 패킹 및 분리판과 프레임을 구비하는 전기 화학 단위 셀에 있어서, 상기 분리판은 요철 구조(凹凸)를 가지는 오목형의 제1 분리 영역(凹)과 볼록형의 제2 분리 영역(凸)을 가지고, 상기 제1 분리 영역(凹)과 제2 분리 영역(凸)은 동일선 상에 위치되는 전기 화학 단위 셀을 개시한다.

Description

전기 화학 단위 셀
본 발명의 일 실시예는 막전극접합체(Membrane Electrode Assembly)를 중심으로 양측에 전자의 이동경로 역할과 양극실과 음극실을 분리하는 분리판이 교차되는 요철(凹凸) 구조를 갖게 함으로서 양극실과 음극실내에서 전해질의 혼합을 촉진하고, 이로 인해 온도와 전해질의 농도를 균일하게 할 수 있는 전기 화학 단위 셀에 관한 것이다.
전기 화학 셀은 일반적으로 물과 같은 원료를 이용하여 가스를 만드는 전기분해 셀과, 연료를 이용하여 전기를 생산하는 연료전지 등에 이용된다. 즉, 전기 화학 셀은 에너지변환 장치로서, 전기분해 셀과 연료전지로 구분된다. 전기분해 셀은 물을 전기 화학적으로 분해하여 수소와 산소를 발생하며, 연료전지는 이와 반대로 수소와 산소를 전기 화학적으로 반응시켜 전기를 얻어내는 장치이다.
예를 들어, 수소이온 교환막 전기분해 셀(proton exchange membrane electrolysis cell)은 물을 전기 화학적으로 분해하여 수소가스와 산소가스를 생산하는 기능을 한다.
도 1은 일반적인 전기 분해 셀을 나타내는 개념도로서, 물을 전기 화학적으로 분해하여 수소가스와 산소가스를 생산하는 전형적인 전기분해 셀을 도시하고 있다.
도 1에 도시된 바와 같이, 물(H20)은 양극(110), 즉 산소극으로 공급되어 산소 가스(O2)와 전자(e-) 그리고 수소이온(H+), 즉 프로톤으로 분해된다. 이때, 물(H20)의 일부분은 산소가스(O2)와 함께 전기분해 셀(100)의 외부로 유출된다. 또한, 분해된 수소이온(H+)은 수소 이온 교환막(120)을 통과하여 음극(130), 즉 수소극으로 이동하여, 양극(110)과 음극(130)을 연결하는 외부회로(140)를 따라 이동한 전자(e-)와 반응하여 수소가스(H2)가 된다. 그리고, 수소가스(H2) 및 수소이온(H+)과 동반하여 수소이온 교환막(120)을 통과한 물(H20)은 전기분해 셀(100)의 외부로 유출된다. 이 때, 양극(110)과 음극(130)에서 각각 일어나는 전기 화학적 반응을 표현하면 반응식 1 및 2와 같다.
[반응식 1]
Figure PCTKR2015005397-appb-I000001
[반응식 2]
Figure PCTKR2015005397-appb-I000002
한편, 연료전지는 상기와 같은 물의 전기분해 반응 메커니즘과 반대로 반응이 일어난다. 즉, 연료전지에서는 수소, 메탄올(methanol) 또는 다른 수소 연료원과 산소가 반응하여 전기를 생산한다. 이때, 연료전지의 양극과 음극에서 각각 일어나는 일반적인 반응을 표현하면 반응식 3 및 4와 같다.
[반응식 3]
Figure PCTKR2015005397-appb-I000003
[반응식 4]
Figure PCTKR2015005397-appb-I000004
만약, 전기 화학 셀이 물을 분해하는 전기분해 셀로 이용된다면 약 0.05A/cm2 -4.3A/cm2의 전류밀도와 약 1.48 V - 3.0 V의 전압이 인가되고, 연료전지로 이용된다면 약 0.0001A/cm2 - 10A/cm2의 전류밀도와 약 0.4V - 1V의 전압이 인출되어, 가스 또는 연료전지를 각각 생산한다.
이 같은 전기 화학 셀은 양극과 음극을 갖는 막전극접합체(Membrane Electrode Assembly, 이하 'MEA'라 함), 전자와 반응물 및 생성물의 공급과 배출이 가능한 형태로 배열된 프레임, 분리판, MEA 지지체 및 가스켓(패킹) 등으로 구성된다.
도 2a는 연료전지를 구성하는 일반적인 단위 셀의 구성 관계를 나타내는 도면이다.
도 2a에 도시된 바와 같이, 단위 셀(200; Single Cell)은 전해질 막(211)의 양 측면에 촉매가 코팅되어 전극(212, 213)이 형성된 MEA(210)와, MEA(210)의 양측에 각각 위치하는 한 쌍의 패킹(220, 230)과, 한 쌍의 분리판(240, 250) 및 프레임(미도시)으로 구성된다.
또한, 전극(212, 213)과 분리판(240, 250)의 사이에는 전극(212, 213)과 동일한 크기로 형성되어 원료 등을 MEA(210)에 균등하게 공급하는 다공판(미도시)이 더 설치될 수 있다. 이때, MEA(210)의 전해질 막(211)과 패킹(220, 230) 및 분리판(240, 250)의 상하단에는 공기 또는 연료가 공급되는 공급통로가 각각 형성된다.
또한, 분리판(240, 250)에는 반응물 및 생성물의 유체가 유동하는 유동통로(241, 251)가 각각 형성된다. 이때, 일측 분리판(240)의 유동통로(241)에는 연료가 유동하고, 그에 따라 이와 접촉하는 MEA(210)의 전극(212)이 연료극(즉, 산화전극, 양극, Anode)이 되며, 타측 분리판(250)의 유동통로(251)에는 공기가 유동하고, 그에 따라 이와 접촉하는 MEA(210)의 전극(213)이 공기극(환원전극, 음극, Cathode)이 된다. 한편, 도 2a에서의 도면부호 212는 전극 또는 연료극으로 병행하여 병기하고, 도면부호 213은 전극 또는 공기극으로 병행하여 병기되어 있다.
도 2b는 도 2a의 분리판에 형성된 유로의 일 예를 나타내는 도면이다.
도 2b에 도시된 바와 같이, 분리판(250)에 생성된 유동통로(251)는 MEA와 반응물이 접촉할 수 있도록 설계될 수 있다. 그러나 이러한 형태 외에도 평행 유로 등도 설계될 수도 있다.
도 3은 연료전지를 구성하는 일반적인 셀 조립체의 구성 관계를 개략적으로 나타내는 도면이다.
도 3에 도시된 바와 같이, 셀 조립체(300)는 도 2와 같이 구성되는 단위 셀(200)이 일렬로 다수 개 적층되는 형태를 갖도록 배열하고, 외측 양쪽에 한 쌍의 전류 공급판(310) 및 앤드플레이트(320, 프레임)를 위치시킨 후, 볼트(330)와 너트(340)로 조이는 타이로드 방식으로 조립된다. 이때, 단위 셀(200)을 구성하는 분리판(240 또는 250), 패킹(220), MEA(210) 및 다른 패킹(230)이 순차적으로 일렬로 대수 개 적층된다. 따라서, 셀 조립체(300)의 내부에는 단위 셀(200)을 구성하는 구성요소들의 상하단에 각각 형성되는 연료 또는 공기 공급통로를 통해 연료극(212)으로 연료를 공급하는 연료 공급라인(350)과, 공기극(213)으로 공기를 공급하는 공기 공급라인(360)이 각각 형성된다. 한편, 전류 공급판(310)은 구리 재질의 판형으로 제작되어 전류를 공급하는 역할을 할 뿐만 아니라, 단위 셀(200)을 고정하는 앤드 플레이트의 역할도 한다.
이러한 연료 공급라인(350)과 공기 공급라인(360)으로 연료와 공기가 공급되면, 각 단위셀(200)의 연료극(212)측 분리판(240)의 유동통로(241)와 공기극(213)측 분리판(250)의 유동통로(251)로 각각의 연료와 공기가 각각 유입되면서 각 단위 셀(200)에서 전기 화학 반응이 일어나게 된다. 이때, 전류는 전류 공급판(310) 또는 앤드 플레이트(320)를 통해 인가 또는 인출된다. 또한, 각 단위 셀(200)의 분리판(240, 250)과 MEA(210)사이에 패킹(220, 230)이 각각 삽입되어 있어 유체의 외부 누설을 방지할 수 있다.
그러나, 상기와 같은 일반적인 전기 화학 셀의 분리판은 반응 유입부와 생성부 사이에 농도차가 심하고, 이로 인해 온도 편차가 발생하는 문제점이 있으며, 또한 전기 화학 셀의 반응 면적내 위치 별로 전도도가 달라져 전류가 균일하게 흐르지 않고, 불균일하게 흐르게 되어 막 전극 접합체의 내구성 및 성능에 악영향을 미칠 수 있다는 문제점이 있었다.
본 발명의 일 실시예는 전해질의 혼합효과를 개선하여 막전극 접합체의 성능과 내구성을 대폭 개선시키기 위한 요철(凹凸)의 구조를 가지는 분리판을 구비한 전기 화학 단위 셀을 제공한다.
본 발명의 일 실시예에 의한 전기 화학 단위 셀은 전해질 막의 양 표면에 촉매가 코팅되어 전극이 각각 형성된 MEA와, 상기 MEA의 양측에 각각 순차적으로 구비되는 한 쌍의 전류 전도판, 패킹 및 분리판과 프레임을 구비하는 전기 화학 단위 셀에 있어서, 상기 분리판은 요철 구조(凹凸)를 가지는 오목형의 제1 분리 영역(凹)과 볼록형의 제2 분리 영역(凸)을 가지고, 상기 제1 분리 영역(凹)과 제2 분리 영역(凸)은 동일선 상에 위치될 수 있다.
상기 제1 분리 영역(凹)은 반응물 및 생성물의 이동 경로로 작용할 수 있다.
상기 제2 분리 영역(凸)은 그 상부에 전류 전도판이 접촉될 수 있다.
상기 제1 분리 영역(凹)의 유로는 10 내지 100cm의 길이를 가질 수 있다.
상기 제1 분리 영역(凹)의 유로는 20 내지 30cm의 길이를 가질 수 있다.
상기 제1 분리 영역(凹)의 유로는 2 내지 10cm의 폭으로 형성될 수 있다.
상기 제1 분리 영역(凹)의 유로는 3 내지 5cm의 폭으로 형성될 수 있다.
상기 제2 분리 영역(凸)의 상부는 10 내지 100cm의 길이를 가질 수 있다.
상기 제2 분리 영역(凸)의 상부는 20 내지 30cm의 길이를 가질 수 있다.
상기 제2 분리 영역(凸)의 상부는 2 내지 10cm의 폭으로 형성될 수 있다.
상기 제2 분리 영역(凸)의 상부는 3 내지 5cm의 폭으로 형성될 수 있다.
상기 제1 분리 영역(凹)과, 이에 인접하는 제2 분리 영역(凸) 사이의 경사 기울기는 20 내지 70도일 수 있다.
상기 제1 분리 영역(凹)과, 이에 인접하는 제2 분리 영역(凸) 사이의 경사 기울기는 40 내지 50도일 수 있다.
상기 전해질막, 전류 전도판, 분리판 및 패킹의 상부 및 하부에는 공기 또는 연료가 공급되는 공급 통로가 형성될 수 있다.
상기 전해질 막은 양이온 교환막일 수 있다.
상기 전극의 표면에는 산화 및 환원 반응을 위한 백금, 이리듐, 루테늄, 니켈 중 어느 하나의 촉매가 코팅될 수 있다.
상기 전류 전도판은 상기 전극과 동일한 크기이고, 다공질 또는 메쉬 형태로 형성될 수 있다.
본 발명의 일 실시예에 따른 전기 화학 단위 셀은 전기 화학 단위 셀의 분리판을 요철(凹凸)의 구조로 형성하고 있기 때문에, 전해셀 내의 온도 및 전해질 분포를 일정하게 하고, 이로 인해 전류밀도 분포를 균일하게 하여 막전극 접합체의 성능을 개선할 수 있다.
도 1은 일반적인 전기 분해 셀을 나타내는 개념도이다.
도 2a는 연료전지를 구성하는 일반적인 단위 셀의 구성 관계를 나타내는 도면이다.
도 2b는 도 2a의 분리판에 형성된 유로의 일 예를 나타내는 도면이다.
도 3은 연료전지를 구성하는 일반적인 셀 조립체의 구성 관계를 개략적으로 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 전기 화학 단위 셀을 나타내는 도면이다.
도 5는 도 4의 요철구조의 분리판을 나타내는 도면이다.
도 6은 도 4의 전기 화학 단위 셀을 다수 개 적층하여 구성한 복극식 전기 화학 셀 조립체를 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 전기 화학 단위 셀의 테스트 상태를 나타내는 도면이다.
도 8은 도 7의 테스트시 전류 변화에 따른 단위 셀별 전압 변화를 나타내는 그래프이다.
도 9은 도 7의 테스트시 전류 변화에 따른 단위 셀별 전압 분포를 나타내는 그래프이다.
도 10은 도 7의 테스트시 전류와 수소 유량의 상관 관계를 나타내는 그래프이다.
도 11은 도 7의 테스트시 전기 화학 셀 조립체의 효율 변화를 나타내는 그래프이다.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 일 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.
본 발명은 대형 발전소 발전기의 냉각을 목적으로 수소를 공급하기 위한 현장형 수소 발생기의 여러 구성요소 중 핵심기술인 전해셀의 구성에 관한 것이다. 본 발명의 전기 화학 단위 셀은, 전해질 막의 양 표면에 촉매가 코팅되어 전극이 각각 형성된 막전극접합체(MEA)와, 반응물 및 생성물의 공급과 배출이 가능한 형태로 막전극접합체를 기준으로 배열되는 패킹, 분리판 및 프레임을 포함하며, 분리판은 교차되는 요철(凹凸) 형태로 구성하여 양극실과 음극실 각각의 내부에서 혼합효과를 증진시켜 온도 및 농도를 균일하게 하여 막전극 접합체의 내구성을 증진시킬 수 있다.
도 4는 본 발명의 일 실시예에 따른 전기 화학 단위 셀을 나타내는 도면이고, 도 5는 도 4의 요철구조의 분리판을 나타내는 도면이며, 도 6은 도 4의 전기 화학 단위 셀을 다수 개 적층하여 구성한 복극식 전기 화학 셀 조립체를 나타내는 도면이다.
도 4에 도시된 바와 같이, 본 발명의 전기 화학 단위 셀(400; Single Cell)은 전해질 막(411)의 양 측면에 촉매가 코팅되어 전극(412, 413)이 형성된 MEA(410)와, MEA(410)의 양측에 순차적으로 각각 위치하는 한 쌍의 전류 전도판(420, 430), 한 쌍의 패킹(460), 한 쌍의 분리판(440, 450) 및 프레임(미도시)으로 구성된다.
이러한 MEA(410)의 전해질 막(411), 전류 전도판(420, 430), 요철(凹凸)의 구조의 분리판(440, 450) 및 패킹(460)의 상하단에는 공기 또는 연료가 공급되는 공급통로가 각각 형성된다.
상기 전해질 막(411)은 양이온 교환막이며, 전극(412, 413)은 산화 및 환원반응에 적합한 백금(Pt), 이리듐, 루테늄, 니켈 등의 촉매를 일정 두께로 코팅하여 형성한다.
따라서, 본 발명에서의 MEA(410)는 높은 전기 화학적 반응 활성을 갖게 된다. 이때, 상기 전극(412, 413)은 접촉 저항 및 물질전달 저항을 최소화할 수 있도록 촉매를 얇고 균일하게 도포하여 형성하는 것이 바람직하다.
또한, 상기 전류 전도판(420, 430)은 MEA(410)에 외부 전류를 인가하거나 MEA(410)에서 외부 전류로 인출하는 역할과 반응물과 생성물의 MEA(410)로 확산과 이들 전해질의 혼합을 돕는 역할을 한다. 이러한 전류 전도판(420, 430)은 MEA(410)의 전극(412, 413)과 동일 크기로 제작하되, 다공 또는 메쉬 형태로 제작하는 것이 바람직하다. 예를 들어, 다공판일 경우 두께가 1mm 이하인 원형판 또는 사각판을 이용하는 것이 바람직하다.
상기 분리판(440,450)에 의해 형성되는 유로(441, 451)는 분리판(440, 450)으로 유입되는 반응물을 MEA(410)로 확산하고, MEA(410)의 전기 화학 반응에 의한 생성물을 분리판(440, 450)으로 확산하는데 돕는 역할을 하여야 한다. 예를 들면, 상기 전기 화학적 단위셀이 대형인 경우, 수직 방향으로 1m 길이를 가지는 전해셀에서의 반응물 유입부와 생성물 출구의 농도 편차는 5%, 온도편차는 3℃ 가 발생한다. 이때, 출구와 입구에서 국부적으로 전해질의 전도도가 다르며, 전도도에 따라 입구과 출구 부근에서의 전류 밀도의 차가 발생한다. 즉, 상기 전도도가 큰 출구 부분에서는 전류가 많이 흐르고, 전도도가 작은 입구 부분에서는 전류가 상대적으로 작은 전류가 흐르게 되어 MEA(410)의 수명 및 성능에 영향을 미치게 된다.
따라서, 상기 전해셀 내에서 전해질의 혼합을 통한 농도 균일화는 매우 중요한 인자이다.
도 5에 도시된 바와 같이, 분리판(500)은 제1 경사면(520a) 과 제2 경사면(520b)에 형성된 凹부분, 즉 제1 유로(510a)와 제3 경사면(520c)에 형성된 凹부분 즉, 제2 유로(510b)를 따라 이동하는 유체는 분리부(550a)에서 분리되고 혼합부(550b)에서 혼합된다. 상기 혼합부(550b)에서 혼합된 유체는 다시 다음 영역의 제4 경사면(520d)와 제5 경사면(520e)에 형성된 凹부분 제3 유로(510c)로 유입된다. 그 결과 인접한 凹부분 유로로 이동한 반응물은 혼합이 진행되어 농도가 균일화 된다.
이때, 상기 제1 내지 제5 경사면(520a, 520b, 520c, 520d, 520e)의 기울기는 20도 내지 70도의 경사도가 바람직하다. 상기 기울기가 70도 이상에서는 유체 이동에 저항이 커져 전해질 순환 펌프의 소요동력이 커지는 단점이 발생하며, 기울기가 20도 이하에서는 요철 사이의 간격이 커져 충분한 혼합효과를 얻지 못하게 된다. 더욱 바람직하게는, 제1 내지 제5 경사면(520a, 520b, 520c, 520d, 520e)의 기울기는 40도 내지 50도일 수 있다.
상기 凹부분 유로, 즉 제1 내지 제3 유로(510a, 510b, 510c)의 크기는 10 내지 100cm이고, 폭은 2 내지 10cm인 것이 바람직하다. 상기 길이가 10cm이하인 경우와 폭이 2cm 이하인 경우에서는 혼합 효과는 우수하지만 가공성에서 문제가 되며, 길이가 100cm 이상인 경우와, 폭이 10cm 이상인 경우에서는 전해셀 내의 반응물 혼합 효과에 문제가 된다. 더욱 바람직하게는, 정상부(540) 크기가 길이 20cm 내지 30cm이고, 폭이 3cm 내지 5cm로 형성될 수 있다.
상기 凸부분의 정상부(540)는 전류 전도판과 접촉되는 부분으로 정상부의 길이는 10 내지 100cm이고, 폭은 2 내지 10cm로 형성되는 것이 바람직하다. 이때, 상기 길이가 10cm 이하로 형성되는 경우와, 폭이 2cm 이하로 형성되는 경우에서는 전류 전도판으로의 전기 전도량 및 혼합효과는 우수하지만 가공성에서 문제가 되며, 길이가 100cm 이상으로 형성되는 경우와, 폭이 10cm 이상으로 형성되는 경우에 전해셀 내의 반응물 혼합효과 및 전류 전도판으로의 전기 전도량이 작아지기 때문에 문제가 발생될 수 있다. 더욱 바람직하게는, 정상부(540)의 크기는 길이가 20cm 내지 30cm이고, 폭은 3cm 내지 5cm로 형성될 수 있다.
상기와 같이 구성된 분리판(500)은 티타늄, 스테인리스 스틸, 백금, 은 또는 구리 등의 전도성이 우수한 금속으로 코팅한 티타늄, 스테인리스 스틸 등으로 형성될 수 있다. 바람직하게는, 상기 분리판(500)은 백금이 도금된 스테인리스 스틸로 형성될 수 있다.
도 6에 도시된 바와 같이, 복극식 전기 화학 셀 조립체(600)는 도 4와 같이 구성되는 단위 셀(400)이 일렬로 다수 개 적층되는 형태를 갖도록 배열하고, 외측 양쪽에 한 쌍의 전류 공급판(690) 및 앤드 플레이트(도시안됨)를 각각 위치시킨 후, 한 쌍의 앤드 플레이트를 볼트와 너트(690)로 조이는 타이로드 방식으로 조립하여 구성한다.
이때, 단위 셀(400)을 구성하는 분리판(440 또는 450), 패킹(460), 전류 전도판(420), 패킹(460), MEA(210), 패킹(460), 전류 전도판(430) 및 패킹(460)은 순차적으로 일렬로 적층되는 방식으로 배치된다.
또한, 상기 복극식 전기 화학 셀 조립체(600)의 내부에는 단위 셀(400)을 구성하는 구성요소들의 상하단에 각각 형성되는 연료 또는 공기 공급통로를 통해 연료극(412)으로 연료를 공급하는 연료 공급라인(650)과, 공기극(413)으로 공기를 공급하는 공기 공급라인(660)이 각각 형성된다.
따라서, 상기 연료 공급라인(650)과 공기 공급라인(660)으로 연료와 공기가 공급되면, 각 단위셀(400)의 연료극(412)측 분리판(440)의 유동통로(441)와 공기극(413)측 분리판(450)의 유동통로(451)로 각각의 연료와 공기가 각각 유입되면서 각 단위 셀(400)에서 전기 화학 반응이 일어나게 된다.
따라서, 상기와 같이 구성된 분리판을 구비하는 전기 화학 단위 셀은 전해셀 내의 반응물의 혼합효과를 개선하여 MEA의 성능 및 수명을 증진시켜 운전 비용을 혁신적으로 절감하는 원가 절감의 효과를 얻을 수 있다.
상술한 바와 같은 본 발명의 효과를 확인하기 위해 이하의 실시예를 추가하였다. 본 실시예들은 도 7 내지 도 11을 참조하여 설명하기로 한다.
도 7은 본 발명의 일 실시예에 따른 전기 화학 단위 셀의 테스트 상태를 나타내는 도면이고, 도 8은 도 7의 테스트시 전류 변화에 따른 단위 셀별 전압 변화를 나타내는 그래프이며, 도 9은 도 7의 테스트시 전류 변화에 따른 단위 셀별 전압 분포를 나타내는 그래프이고, 도 10은 도 7의 테스트시 전류와 수소 유량의 상관 관계를 나타내는 그래프이며, 도 11은 도 7의 테스트시 전기 화학 셀 조립체의 효율 변화를 나타내는 그래프이다.
[실시예]
도 7에 도시된 바와 같이, 우선 본 발명에서 제시한 분리판이 포함된 셀 조립체를 제작하여 성능 평가를 시행하였다.
이때, 셀 조립체에 사용된 막 전극 접합체의 직경은 20cm, 유효면적은 314cm2이며, 11개 막 전극 접합체를 적층하여 셀 조립체를 제작하였다.
도 8을 참조하여, 셀 조립체내 11개 단위셀의 전류증가에 따른 전압 변화 그래프를 살펴보면, 평균 셀 전압은 초기 2.00V에서 시작하여 2.26V까지 상승함을 알 수 있었다.
또한, 도 9를 참조하여, 각 단위셀별 전압 분포를 살펴보면, 외부에서 중앙으로 가면서 과전압이 상승하다가 중앙에서 최저 과전압을 보였고 이후 다시 외부로 나오면서 셀 전압이 증가하다가 감소하는 경향을 보였으며, 전체적으로 좌우 대칭인 양상을 보였다.
또한, 도 10을 참조하여, 전류변화에 따른 수소유량(이론값과 실측값) 변화에 대한 그래프를 살펴보면, 유량과 전류와의 관계가 상당히 밀접함을 알 수 있다.
아울러, 도 11을 참조하여, 셀 조립체에서 생산된 수소양을 바탕으로 효율을 계산한 결과를 살펴보면, 전류에 상관없이 약 80%의 효율을 보임을 알 수 있다.
이상에서 설명한 것은 본 발명에 의한 전기 화학 단위 셀을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.
본 발명은 전기 화학 단위 셀에 관한 것이다.

Claims (17)

  1. 전해질 막의 양 표면에 촉매가 코팅되어 전극이 각각 형성된 MEA와, 상기 MEA의 양측에 각각 순차적으로 구비되는 한 쌍의 전류 전도판, 패킹 및 분리판과 프레임을 구비하는 전기 화학 단위 셀에 있어서,
    상기 분리판은 요철 구조(凹凸)를 가지는 오목형의 제1 분리 영역(凹)과 볼록형의 제2 분리 영역(凸)을 가지고,
    상기 제1 분리 영역(凹)과 제2 분리 영역(凸)은 동일선 상에 위치되는 것을 특징으로 하는 전기 화학 단위 셀.
  2. 제1항에 있어서,
    상기 제1 분리 영역(凹)은 반응물 및 생성물의 이동 경로로 작용하는 것을 특징으로 하는 전기 화학 단위 셀.
  3. 제1항에 있어서,
    상기 제2 분리 영역(凸)은 그 상부에 전류 전도판이 접촉되는 것을 특징으로 하는 전기 화학 단위 셀.
  4. 제1항에 있어서,
    상기 제1 분리 영역(凹)의 유로는 10 내지 100cm의 길이를 가지는 것을 특징으로 하는 전기 화학 단위 셀.
  5. 제1항에 있어서,
    상기 제1 분리 영역(凹)의 유로는 20 내지 30cm의 길이를 가지는 것을 특징으로 하는 전기 화학 단위 셀.
  6. 제1항에 있어서,
    상기 제1 분리 영역(凹)의 유로는 2 내지 10cm의 폭으로 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
  7. 제1항에 있어서,
    상기 제1 분리 영역(凹)의 유로는 3 내지 5cm의 폭으로 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
  8. 제1항에 있어서,
    상기 제2 분리 영역(凸)의 상부는 10 내지 100cm의 길이를 가지는 것을 특징으로 하는 전기 화학 단위 셀.
  9. 제1항에 있어서,
    상기 제2 분리 영역(凸)의 상부는 20 내지 30cm의 길이를 가지는 것을 특징으로 하는 전기 화학 단위 셀.
  10. 제1항에 있어서,
    상기 제2 분리 영역(凸)의 상부는 2 내지 10cm의 폭으로 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
  11. 제1항에 있어서,
    상기 제2 분리 영역(凸)의 상부는 3 내지 5cm의 폭으로 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
  12. 제1항에 있어서,
    상기 제1 분리 영역(凹)과, 이에 인접하는 제2 분리 영역(凸) 사이의 경사 기울기는 20 내지 70도인 것을 특징으로 하는 전기 화학 단위 셀.
  13. 제1항에 있어서,
    상기 제1 분리 영역(凹)과, 이에 인접하는 제2 분리 영역(凸) 사이의 경사 기울기는 40 내지 50도인 것을 특징으로 하는 전기 화학 단위 셀.
  14. 제1항에 있어서,
    상기 전해질막, 전류 전도판, 분리판 및 패킹의 상부 및 하부에는 공기 또는 연료가 공급되는 공급 통로가 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
  15. 제1항에 있어서,
    상기 전해질 막은 양이온 교환막인 것을 특징으로 하는 전기 화학 단위 셀.
  16. 제1항에 있어서,
    상기 전극의 표면에는 산화 및 환원 반응을 위한 백금, 이리듐, 루테늄, 니켈 중 어느 하나의 촉매가 코팅되는 것을 특징으로 하는 전기 화학 단위 셀.
  17. 제1항에 있어서,
    상기 전류 전도판은 상기 전극과 동일한 크기이고, 다공질 또는 메쉬 형태로 형성되는 것을 특징으로 하는 전기 화학 단위 셀.
PCT/KR2015/005397 2014-09-29 2015-05-29 전기 화학 단위 셀 WO2016052831A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140130194A KR101667110B1 (ko) 2014-09-29 2014-09-29 전기 화학 단위 셀
KR10-2014-0130194 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052831A1 true WO2016052831A1 (ko) 2016-04-07

Family

ID=55630833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005397 WO2016052831A1 (ko) 2014-09-29 2015-05-29 전기 화학 단위 셀

Country Status (2)

Country Link
KR (1) KR101667110B1 (ko)
WO (1) WO2016052831A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081305B1 (ko) * 2018-03-30 2020-02-25 (주) 테크윈 다중유로 구조를 포함하는 전기분해장치
KR102628206B1 (ko) * 2023-06-08 2024-01-23 주식회사 씨엔엘에너지 수전해 분리판 및 이를 포함하는 수전해 셀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829553B1 (ko) * 2006-11-22 2008-05-14 삼성에스디아이 주식회사 연료전지의 스택 구조체
JP2012048825A (ja) * 2010-08-24 2012-03-08 Toyota Motor Corp 燃料電池、流路部材およびセパレータ
KR101180791B1 (ko) * 2010-11-05 2012-09-10 현대자동차주식회사 연료전지용 금속분리판 어셈블리
JP5077290B2 (ja) * 2009-05-25 2012-11-21 日産自動車株式会社 燃料電池モジュール及びその製造方法
KR20130057716A (ko) * 2011-11-24 2013-06-03 한국과학기술원 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000021687A (ko) 1998-09-30 2000-04-25 전주범 텔레비전의 osd모드 표시방법 및 장치
KR20010060112A (ko) 1999-12-31 2001-07-06 이계안 고분자 전해질 연료전지
KR100409042B1 (ko) * 2001-02-24 2003-12-11 (주)퓨얼셀 파워 막전극 접합체와 그 제조 방법
KR20140052405A (ko) * 2012-10-24 2014-05-07 재단법인 포항산업과학연구원 분리판 및 이를 포함하는 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829553B1 (ko) * 2006-11-22 2008-05-14 삼성에스디아이 주식회사 연료전지의 스택 구조체
JP5077290B2 (ja) * 2009-05-25 2012-11-21 日産自動車株式会社 燃料電池モジュール及びその製造方法
JP2012048825A (ja) * 2010-08-24 2012-03-08 Toyota Motor Corp 燃料電池、流路部材およびセパレータ
KR101180791B1 (ko) * 2010-11-05 2012-09-10 현대자동차주식회사 연료전지용 금속분리판 어셈블리
KR20130057716A (ko) * 2011-11-24 2013-06-03 한국과학기술원 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지

Also Published As

Publication number Publication date
KR20160037522A (ko) 2016-04-06
KR101667110B1 (ko) 2016-10-17

Similar Documents

Publication Publication Date Title
CN101440499B (zh) 电化学装置和废气净化设备
WO2002069426A9 (en) Fluid flow field plates for electrochemical devices
US10998571B2 (en) High-voltage fuel-cell stack
CN108110300B (zh) 固体氧化物燃料电池电堆及为其分配气体的气流分配板
CN213804006U (zh) 一种具有新型通道布置方式的水电解槽
CN102017253B (zh) 燃料电池用隔板以及具备该隔板的燃料电池
US20060115705A1 (en) Bipolar plate and direct liquid feed fuel cell stack
CN106663823A (zh) 与电化学电池一起使用的流场
WO2016052831A1 (ko) 전기 화학 단위 셀
WO2013183885A1 (ko) 연료 전지용 스택 구조물 및 그의 구성
CN102007634A (zh) 燃料电池用隔板以及具备该隔板的燃料电池
WO2011090246A1 (ko) 보조유동유로를 가지는 연료전지용 분리판
KR20120012262A (ko) 평관형 고체산화물 셀 스택
WO2013100554A1 (ko) 분기유로를 이용한 연료전지 스택
US20210159516A1 (en) Fuel cell
WO2019135451A1 (ko) 전기화학적 수소화 반응기 및 이것을 이용한 수소화물의 제조방법
US7097931B2 (en) Fluid flow-fields for electrochemical devices
WO2017146359A1 (ko) 연료전지 분리판 및 이를 갖는 연료전지 스택
KR101052702B1 (ko) 지그재그 구조의 유로를 갖는 연료전지용 분리판
WO2014104732A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지
WO2012053668A1 (ko) 전극구조
WO2018143610A1 (ko) 연료전지 스택
WO2024043637A1 (ko) 정체형 레독스 전지 및 이를 구비한 에너지 저장 시스템
CN218069922U (zh) 氢氧燃料电池、控温系统、移动电源
CN219861604U (zh) 一种pem电解槽的电堆极板及边框

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847473

Country of ref document: EP

Kind code of ref document: A1