WO2016052664A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2016052664A1
WO2016052664A1 PCT/JP2015/077852 JP2015077852W WO2016052664A1 WO 2016052664 A1 WO2016052664 A1 WO 2016052664A1 JP 2015077852 W JP2015077852 W JP 2015077852W WO 2016052664 A1 WO2016052664 A1 WO 2016052664A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
composition according
acid
acrylate
Prior art date
Application number
PCT/JP2015/077852
Other languages
French (fr)
Japanese (ja)
Inventor
宜司 水村
和樹 深澤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN201580045863.3A priority Critical patent/CN107075258B/en
Priority to KR1020177009763A priority patent/KR102325095B1/en
Priority to JP2016552147A priority patent/JPWO2016052664A1/en
Publication of WO2016052664A1 publication Critical patent/WO2016052664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/38Thiocarbonic acids; Derivatives thereof, e.g. xanthates ; i.e. compounds containing -X-C(=X)- groups, X being oxygen or sulfur, at least one X being sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin composition, a die attach paste including the resin composition, and an adhesive for a heat radiation member including the resin composition. Moreover, this invention relates to the semiconductor device produced using this die attach paste or the adhesive agent for heat radiating members.
  • a resin composition containing a thermosetting resin, a curing agent, and an inorganic filler is used to adhere a semiconductor element such as an IC or LSI to a lead frame or the like.
  • a resin composition containing a thermosetting resin, a hardening agent, and an inorganic filler is used (patent document 1).
  • the former is known as a die attach paste.
  • the die attach paste is required not to peel off a cured product in a high temperature process such as wire bonding or solder reflow. Therefore, a die attach paste using a sulfur compound, particularly a thiol-based compound, is known for preventing the cured product from peeling.
  • lead frames and substrates on which noble metal plating such as silver plating has been applied have been used as support members for semiconductor elements.
  • noble metal plating such as silver plating has been applied
  • copper lead frames and copper substrates have been used to reduce manufacturing costs.
  • a resin composition used for a die attach paste or the like is required to effectively maintain the conductivity of a filler in which a conductive material is coated on the surface of an insulating core material.
  • the pot life of the resin composition is required to be maintained appropriately.
  • it is required to have excellent adhesion to a substrate made of copper or the like and not to peel off the cured product in a high temperature process.
  • the present invention has been made from the above viewpoint, and an object thereof is to provide a resin composition capable of maintaining an appropriate pot life while effectively maintaining the conductivity of a filler. Moreover, it aims at providing the resin composition which was excellent in the adhesive strength to a board
  • the present invention can be suitably applied particularly when the support member is a copper or resin substrate.
  • the present invention [1] (A) a filler having a conductive material on the surface of the insulating core material; (B) a thermosetting resin; (C) a curing agent; (D) It is related with the resin composition containing a thioether type compound.
  • the conductive material in (A) is at least one conductive material selected from the group consisting of silver, gold, copper, palladium and alloys thereof. It relates to the resin composition described.
  • the present invention [3] relates to the resin composition according to the present invention [1] or [2], wherein (D) is a thioether compound having a diester structure and / or a thioether compound having a benzene ring.
  • the present invention [4] further comprises (E) (E1) a metal salt of an organic acid having a boiling point of 200 ° C. or higher, and / or (E2) an organic acid having a boiling point of 200 ° C. or higher and metal particles and / or metal oxide particles. And the resin composition according to any one of [1] to [3] of the present invention.
  • (E1) is a metal salt of an organic acid selected from the group consisting of 2-ethylhexanoic acid, naphthenic acid and cyclopentanecarboxylic acid
  • (E2) is 2-ethylhexanoic acid.
  • the present invention relates to the resin composition according to the present invention [4], which is a combination of an organic acid selected from the group consisting of xanthic acid, naphthenic acid and cyclopentanecarboxylic acid and metal particles and / or metal oxide particles.
  • the present invention [6] is a salt in which the metal salt in (E1) is selected from the group consisting of zinc salt, cobalt salt, nickel salt, magnesium salt, manganese salt and tin salt,
  • the metal salt in (E1) is selected from the group consisting of zinc salt, cobalt salt, nickel salt, magnesium salt, manganese salt and tin salt
  • the resin composition of the present invention [5] wherein the metal particles and / or metal oxide particles in (E2) are particles selected from the group consisting of zinc, cobalt, nickel, magnesium, manganese, tin and oxides thereof.
  • (D) is 0.05 to 1.5 parts by mass with respect to a total of 100 parts by mass of (A) to (C).
  • the present invention relates to any one of the resin compositions.
  • the invention [8] is any one of the inventions [4] to [7], wherein (E) is 0.1 to 5 parts by mass with respect to a total of 100 parts by mass of (A) to (E). It relates to the resin composition described in 1.
  • the present invention [9] relates to a die attach paste containing the resin composition of any one of the present invention [1] to [8].
  • the present invention [10] relates to an adhesive for a heat radiating member comprising the resin composition of any one of the present invention [1] to [8].
  • the present invention [11] relates to a semiconductor device produced using the die attach paste of the present invention [9].
  • the present invention [12] relates to a semiconductor device manufactured using the adhesive for heat dissipation member of the present invention [10].
  • the present invention [13] relates to the semiconductor device of the present invention [11], wherein the surface to which the die attach paste is applied is copper.
  • the present invention [14] relates to the semiconductor device according to the present invention [12], wherein the surface to which the heat radiating member adhesive is applied is copper.
  • the resin composition of the present invention includes (A) a filler having a conductive substance on the surface of an insulating core material, and (D) a thioether compound.
  • hydroperoxide generated in a high-temperature process such as solder reflow can be decomposed.
  • Hydroperoxide is a substance that can promote deterioration of a cured product. Therefore, since the deterioration of the cured product is suppressed, the resin composition of the present invention has excellent adhesion to the support member surface.
  • thermosetting resins such as an epoxy resin
  • the conductivity can be maintained, (2) an appropriate pot life can be maintained, (3) the adhesive strength is excellent, and (4) the cured product is peeled off in a high temperature process. The effect that it can suppress is obtained. Therefore, the resin composition of the present invention can be suitably applied to a die attach paste or a heat radiating member adhesive.
  • the semiconductor device manufactured using the resin composition of the present invention has excellent resistance to moisture reflow and has high reliability. Furthermore, since the resin composition of this invention can exhibit these effects also when a supporting member is copper, its usefulness is high.
  • the resin composition of the present invention is (A) a filler having a conductive material on the surface of the insulating core material; (B) a thermosetting resin; (C) a curing agent; (D) including a thioether compound.
  • (A) Filler having conductive material on surface of insulating core material The conductivity of the cured product made of the resin composition according to the present invention is obtained by the conductive material on the surface of the filler.
  • the insulating core material include particles of silica, alumina, titania, zirconia, glass, silicon carbide, aluminum nitride, and boron nitride.
  • the insulating core material is preferably alumina or silica particles.
  • the filler used in the resin composition of the present invention has a conductive substance on the surface of the insulating core material.
  • the conductive material is preferably coated on the surface of the core material.
  • Examples of the conductive substance include metals having a standard electrode potential of 0 V or higher, or alloys thereof. By using a metal having a standard electrode potential of 0 V or more, the influence of (A) is reduced by the organic acid component contained in (E) described later.
  • Examples of metals having a standard electrode potential of 0 V or more include silver, gold, copper, and palladium.
  • the conductive material is preferably at least one selected from the group consisting of silver, gold, copper, palladium, and alloys thereof.
  • the conductive substance is preferably silver or an alloy containing silver. Examples of the alloy include an alloy containing at least one selected from silver, gold, copper, and palladium.
  • the alloy is, for example, an alloy containing silver and copper, or an alloy containing silver and tin.
  • the surface of the filler core material may be coated with a conductive substance.
  • the coverage of the conductive material is not particularly limited, but is preferably 10 to 70% by mass, and more preferably 20 to 60% by mass with respect to 100% by mass of the whole filler.
  • the “covering ratio of the conductive substance” means the ratio of the mass of the conductive substance to the total mass of the filler.
  • the shape of the filler is not particularly limited. Examples of the shape of the filler include a spherical shape and a flake shape. The shape of the filler is preferably a flake shape.
  • the average particle size of the filler is preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 40 ⁇ m, and further preferably 0.5 to 25 ⁇ m.
  • the average particle diameter means a volume-based median diameter measured by a laser diffraction method.
  • (A) may be used alone or in combination of two or more.
  • thermosetting resin (B) Although a thermosetting resin is not specifically limited, It is preferable that it is liquid at room temperature (25 degreeC). Examples of thermosetting resins include epoxy resins, (meth) acrylic resins, and maleimide resins.
  • An epoxy resin is a compound having one or more glycidyl groups in the molecule.
  • the epoxy resin is a resin that can be cured by forming a three-dimensional network structure by reaction of a glycidyl group by heating. It is preferable that two or more glycidyl groups are contained in one molecule from the viewpoint of cured product characteristics.
  • epoxy resin examples include bisphenol compounds such as bisphenol A, bisphenol F, and biphenol or derivatives thereof (for example, alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, and cyclohexanedi. Difunctional having an alicyclic structure such as methanol or shidilohexanediethanol or a derivative thereof, and an epoxidized aliphatic diol such as butanediol, hexanediol, octanediol, nonanediol or decanediol, or a derivative thereof.
  • bisphenol compounds such as bisphenol A, bisphenol F, and biphenol or derivatives thereof (for example, alkylene oxide adducts)
  • hydrogenated bisphenol A hydrogenated bisphenol F
  • hydrogenated biphenol hydrogenated biphenol
  • cyclohexanediol hydrogenated biphenol
  • Epoxy resin trifunctional epoxy resin having trihydroxyphenylmethane skeleton and aminophenol skeleton; phenol novolac resin, cresol novolac resin, phenol aral Le resins, biphenyl aralkyl resins, polyfunctional epoxy resins obtained by epoxidizing a naphthol aralkyl resin and the like, without limitation.
  • the epoxy resin is preferably liquid at room temperature (25 ° C.).
  • the epoxy resin is preferably liquid at room temperature, alone or in a mixture.
  • the epoxy resin can also be made liquid by using a reactive diluent.
  • the reactive diluent include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
  • the (meth) acrylic resin can be used as the thermosetting resin.
  • the (meth) acrylic resin can be a compound having a (meth) acryloyl group in the molecule.
  • the (meth) acrylic resin can be cured by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group.
  • (meth) acrylic resins include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, isodecyl (meth) acrylate, Lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isoamyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , Other alkyl (meth) acrylates, cyclohexyl (meth) acrylate, tertiary butyl cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth)
  • N, N'-methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, (meth) acrylamide of 1,2-di (meth) acrylamide ethylene glycol can also be used. It is also possible to use vinyl compounds such as n-vinyl-2-pyrrolidone, styrene derivatives, ⁇ -methylstyrene derivatives and the like.
  • Poly (meth) acrylate can be used as the (meth) acrylic resin.
  • the poly (meth) acrylate is preferably a copolymer of (meth) acrylic acid and (meth) acrylate, or a copolymer of (meth) acrylate having a hydroxyl group and (meth) acrylate having no polar group. .
  • Examples of (meth) acrylic resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1 , 2-cyclohexanedimethanol mono (meth) acrylate, 1,3-cyclohexanedimethanol mono (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 1,2-cyclohexanedi Tanol mono (meth) acrylate, 1,3-cyclohexanediethanol mono
  • (Meth) acrylates and (meth) acrylates having carboxy groups obtained by reacting (meth) acrylates having these hydroxyl groups with dicarboxylic acids or their derivatives It is also possible to use and the like.
  • dicarboxylic acid usable here include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and tetrahydrophthalic acid.
  • examples include acids, hexahydrophthalic acid, and derivatives thereof.
  • Maleimide resin can be used as the thermosetting resin.
  • Maleimide resin is a compound containing one or more maleimide groups in one molecule.
  • the maleimide resin can be cured by forming a three-dimensional network structure by the reaction of the maleimide group by heating.
  • maleimide resins include N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis [4- (4- And bismaleimide resins such as maleimidophenoxy) phenyl] propane.
  • maleimide resins are compounds obtained by reaction of dimer acid diamine and maleic anhydride, and compounds obtained by reaction of maleimidated amino acids such as maleimide acetic acid and maleimide caproic acid with polyols.
  • Maleimidated amino acids can be obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid.
  • polyol polyether polyol, polyester polyol, polycarbonate polyol, and poly (meth) acrylate polyol are preferable, and those that do not contain an aromatic ring are particularly preferable. Since the maleimide group can react with the allyl group, the combined use with an allyl ester resin is also preferable.
  • the allyl ester resin is preferably an aliphatic one, and particularly preferred is a compound obtained by transesterification of a cyclohexane diallyl ester and an aliphatic polyol.
  • the resin composition of the present invention contains a curing agent.
  • the curing agent include aliphatic amines, aromatic amines, dicyandiamide, dihydrazide compounds, acid anhydrides, and phenol resins.
  • these curing agents can be suitably used.
  • aliphatic amines examples include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, m-xylenediamine, 2-methylpentamethylenediamine, and other aliphatic polyamines, isophoronediamine, 1,3- Alicyclic polyamines such as bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) ) Piperazine type polyamines such as piperazine.
  • 1,3- Alicyclic polyamines such as bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperaz
  • aromatic amines include aromatic polyamines such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethylene oxide-di-p-aminobenzoate, etc. Etc.
  • dihydrazide compounds include carboxylic acid dihydrazides such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide.
  • acid anhydrides examples include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, a reaction product of maleic anhydride and polybutadiene, maleic anhydride and styrene. And the like.
  • a phenol resin the compound which has two or more phenolic hydroxyl groups in 1 molecule from the point of hardened
  • the number of phenolic hydroxyl groups is preferably 2-5. When the number of phenolic hydroxyl groups is within this range, the viscosity of the resin composition can be controlled within an appropriate range.
  • the number of phenolic hydroxyl groups in one molecule is two or three.
  • examples of such compounds include bisphenol F, bisphenol A, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol S, dihydroxy diphenyl ether, dihydroxy benzophenone, tetramethyl biphenol, ethylidene bisphenol, methyl ethylidene bis ( Methylphenol), cyclohexylidenebisphenol, bisphenols such as biphenol and derivatives thereof, trifunctional phenols such as tri (hydroxyphenyl) methane and tri (hydroxyphenyl) ethane and derivatives thereof, phenol novolac, cresol novolac, etc.
  • a compound obtained by reacting phenols with formaldehyde which is mainly dinuclear or trinuclear and its derivatives Body, and the like.
  • a polymerization initiator such as a thermal radical polymerization initiator
  • a (meth) acrylic resin is used as the thermosetting resin
  • such a curing agent can be suitably used.
  • a well-known thing can be used as a polymerization initiator.
  • Specific examples of the thermal radical polymerization initiator include methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane.
  • the resin composition of the present invention can contain a curing accelerator.
  • the curing accelerator include imidazoles, triphenylphosphine or tetraphenylphosphine salts.
  • 2-methylimidazole, 2-ethylimidazole 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5- Preference is given to imidazole compounds such as dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, adducts of 2-methylimidazole and 2,4-diamino-6-vinyltriazine.
  • Modified imidazole compounds can also be used.
  • an epoxy-imidazole adduct compound or an acrylate-imidazole adduct compound can be used.
  • examples of commercially available epoxy-imidazole adduct compounds include “Amure PN-23” manufactured by Ajinomoto Fine Techno Co., “Amure PN-40” manufactured by the same company, “NovaCure HX-3721” manufactured by Asahi Kasei Co., Ltd., and Fuji Kasei Kogyo Co., Ltd. Examples include “Fujicure FX-1000”.
  • Examples of commercially available acrylate-imidazole adduct compounds include “EH2021” manufactured by ADEKA. “Novacure HX-3088” manufactured by Asahi Kasei Corporation can also be used.
  • (B) is preferably an epoxy resin and / or a (meth) acrylic resin.
  • the amount of the epoxy resin and the (meth) acrylic resin used is preferably 95: 5 to 40:60, more preferably 90:10 to 51:51, by mass ratio (epoxy resin: (meth) acrylic resin). 49.
  • curing agent for epoxy resins and a thermal radical polymerization initiator as (C).
  • the thioether compound is preferably a secondary antioxidant.
  • Antioxidants are generally classified into primary antioxidants (radical scavengers) and secondary antioxidants (peroxide decomposers).
  • hydroperoxide generated in a high-temperature process such as solder reflow can be decomposed by using (D) a thioether compound.
  • Hydroperoxide is a substance that can promote deterioration of a cured product. Therefore, since the deterioration of the cured product is suppressed, the resin composition of the present invention has excellent adhesion to the support member surface.
  • thermosetting resins such as an epoxy resin
  • thioether compound examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditridecyl-3,3 Examples thereof include thioether compounds having a diester structure such as' -thiodipropionate, and thioether compounds having a benzene ring such as bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide. These thioether compounds may be used alone or in combination of two or more.
  • Thioether compounds include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditridecyl-3,3′-thio. It is preferably at least one thioether compound selected from the group consisting of dipropionate and bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide.
  • (E) A metal salt of an organic acid having a boiling point of 200 ° C. or higher and / or (E2) A combination of an organic acid having a boiling point of 200 ° C. or higher and metal particles and / or metal oxide particles (E1)
  • An organic acid in a metal salt of an organic acid having a temperature of 200 ° C. or higher has a boiling point of 200 ° C. or higher.
  • the organic acid has a boiling point of 200 to 300 ° C., for example. By using an organic acid having a boiling point of 200 ° C. or higher, generation of voids in the heat curing step is suppressed.
  • the boiling point is a numerical value under atmospheric pressure.
  • the resin composition of the present invention exhibits excellent adhesive strength and suppresses the peeling of the cured product in a high temperature process.
  • the resin composition of the present invention by using the (D) thioether compound, hydroperoxide that can promote the deterioration of the cured product can be decomposed. By decomposing the hydroperoxide, it is possible to suppress deterioration of the cured product obtained by curing the resin composition. As a result, the resin composition of the present invention exhibits excellent adhesion to the support member surface.
  • the (D) thioether compound sulfidizes copper when copper is present on the surface of the support member.
  • the metal portion of (E) suppresses excessive sulfurization of the conductive material on the surface of the filler.
  • the metal portion of (E) suppresses excessive sulfidation of the base material (for example, copper) that is the support member.
  • the base material for example, copper
  • the metal portion of (E) suppresses excessive sulfidation of the base material (for example, copper) that is the support member.
  • organic acids include saturated monocarboxylic acids.
  • the organic acid is preferably a saturated monocarboxylic acid that is liquid at room temperature (25 ° C.).
  • the saturated monocarboxylic acid is, for example, a branched or linear carboxylic acid.
  • These carboxylic acids may have an alicyclic group (such as a cyclopentane residue or a cyclohexane residue).
  • organic acids include branched saturated monocarboxylic acids such as 2-ethylhexanoic acid and cycloalkane monocarboxylic acids such as cyclopentanecarboxylic acid.
  • a mixture of carboxylic acids such as naphthenic acid having a boiling point of 200 ° C. or higher can also be used as the organic acid in (E1).
  • the organic acid is preferably 2-ethylhexanoic acid, cyclopentanecarboxylic acid, or naphthenic acid.
  • the metal salt in the metal salt of an organic acid having a boiling point of 200 ° C. or higher is, for example, a metal salt having a standard electrode potential of less than 0V.
  • metals with a standard electrode potential less than 0V are zinc, cobalt, nickel, magnesium, manganese, and tin.
  • these metal salts are zinc salts, cobalt salts, nickel salts, magnesium salts, manganese salts, and tin salts.
  • the metal salt is preferably a zinc salt or a cobalt salt.
  • Examples of (E1) include zinc 2-ethylhexanoate, cobalt 2-ethylhexanoate, nickel 2-ethylhexanoate, magnesium 2-ethylhexanoate, manganese 2-ethylhexanoate, 2- Tin ethylhexanoate, zinc cyclopentanecarboxylate, cobalt cyclopentanecarboxylate, nickel cyclopentanecarboxylate, magnesium cyclopentanecarboxylate, manganese cyclopentanecarboxylate, tin cyclopentanecarboxylate, zinc naphthenate, cobalt naphthenate, Examples include nickel naphthenate, magnesium naphthenate, manganese naphthenate, and tin naphthenate.
  • (E1) is preferably zinc 2-ethylhexanoate, zinc cyclopentanoate, zinc naphthenate, cobalt 2-ethylhexanoate, cobalt cyclopentanoate or cobalt naphthenate.
  • the organic acid having a boiling point of 200 ° C. or higher in (E2) the organic acids shown above in relation to (E1) can be used.
  • the organic acid in (E2) is preferably 2-ethylhexanoic acid, cyclopentanecarboxylic acid, or naphthenic acid.
  • Examples of the metal particles include metal particles having a standard electrode potential of less than 0V.
  • the metal particles are, for example, particles of zinc, cobalt, nickel, magnesium, manganese, tin, and alloys thereof.
  • Examples of the alloy include an alloy containing at least one selected from zinc, cobalt, nickel, magnesium, manganese, and tin.
  • the alloy is, for example, an alloy containing zinc and aluminum, or brass.
  • the metal particles are preferably zinc particles, cobalt particles, or zinc alloy particles.
  • the support member contains copper it is preferable to use copper or a metal having a higher ionization tendency than copper. Thereby, the outflow of copper from a support member can be prevented. Furthermore, the support member containing copper is protected by the sacrificial oxidation of tin by adding tin particles. Thereby, the shear strength of the die
  • Examples of the metal oxide particles include metal oxide particles having a standard electrode potential of less than 0V.
  • Examples of the metal oxide particles include zinc, cobalt, nickel, magnesium, manganese, and tin oxide particles.
  • the metal oxide particles in (E2) are preferably zinc oxide particles.
  • the shape of the metal particles and metal oxide particles in (E2) is not particularly limited, and is, for example, spherical or flake shaped.
  • the average particle size of the metal particles and metal oxide particles can be 0.05 to 20 ⁇ m, preferably 0.05 to 15 ⁇ m, and more preferably 0.1 to 8 ⁇ m.
  • the average particle diameter means a volume-based median diameter measured by a laser diffraction method.
  • (E2) may be a combination of an organic acid having a boiling point of 200 ° C. or higher and a metal particle, a combination of an organic acid having a boiling point of 200 ° C. or higher and a metal oxide particle, or an organic acid having a boiling point of 200 ° C. or higher.
  • a combination of metal particles and metal oxide particles may be used.
  • (E2) specifically, at least one selected from 2-ethylhexanoic acid, cyclopentanecarboxylic acid and naphthenic acid, and selected from zinc particles, cobalt particles, zinc alloy particles and zinc oxide particles
  • 2-ethylhexanoic acid specifically, at least one selected from 2-ethylhexanoic acid, cyclopentanecarboxylic acid and naphthenic acid, and selected from zinc particles, cobalt particles, zinc alloy particles and zinc oxide particles
  • the amount of the organic acid having a boiling point of 200 ° C. or higher and the amount of metal particles and / or metal oxide particles used is a mass ratio (organic acid having a boiling point of 200 ° C. or higher: metal particles and / or metal oxide particles. ) Is preferably 10:90 to 90:10, more preferably 20:80 to 60:40.
  • (A) can be 40 to 90 parts by mass with respect to 100 parts by mass in total of (A) to (D). From the viewpoint of electrical conductivity, (A) is more preferably 55 to 90 parts by mass, and still more preferably 60 to 88 parts by mass.
  • (B) can be 5 to 55 parts by mass with respect to a total of 100 parts by mass of (A) to (D). From the viewpoint of thermosetting, (B) is more preferably 5 to 50 parts by mass, and still more preferably 10 to 40 parts by mass.
  • (C) can be 1 to 50 parts by mass with respect to a total of 100 parts by mass of (A) to (D). From the viewpoint of curability, (C) is more preferably 2 to 40 parts by mass, and further preferably 2 to 20 parts by mass.
  • (D) can be 0.05 to 1.5 parts by mass with respect to 100 parts by mass in total of (A) to (C).
  • (D) is more preferably 0.05 to 1.0 part by mass, and further preferably, from the viewpoint of suppressing storage stability and conductivity decrease due to excessive sulfurization of the conductive material on the surface of the filler. Is 0.05 to 0.75 parts by mass.
  • the blending amounts of (A) to (D) are as described above.
  • (E) can be 0.1 to 5 parts by mass with respect to 100 parts by mass in total of (A) to (E). From the viewpoint of the effect of suppressing delamination of the cured product in a high temperature process, (E) is more preferably 0.1 to 2 parts by mass, and still more preferably 0.1 to 1 part by mass.
  • the resin composition of this invention can contain (F) other components.
  • Other components are additives, such as a coupling agent (a silane coupling agent, a titanium coupling agent, etc.), a coloring agent, an antifoamer, surfactant, a polymerization inhibitor, for example.
  • the resin composition of the present invention is prepared by mixing components other than (A), kneading these components using a three-roll disperser, then adding (A) and mixing uniformly. be able to.
  • the resin composition of the present invention can be suitably used as a die attach paste or an adhesive for a heat radiating member.
  • a semiconductor element, a heat radiating member, or the like is mounted on a lead frame, a substrate, or the like to which a die attach paste containing the resin composition of the present invention or a heat radiating member adhesive is applied.
  • the die attach paste and the adhesive are heated and cured.
  • a semiconductor element, a heat radiating member, etc. can be adhered to a lead frame, a substrate, or the like.
  • the heating conditions can be appropriately selected.
  • the die attach paste or the adhesive can be heated at a peak temperature of 100 to 200 ° C.
  • a semiconductor device can be manufactured through wire bonding and sealing processes.
  • the cured product of the resin composition of the present invention has excellent adhesive strength, and the cured product is difficult to peel off in a high temperature process. Further, the cured product of the resin composition of the present invention is prevented from being deteriorated in strength due to moisture absorption in a high temperature process. In particular, when the support member is a copper lead frame, a copper substrate, or a resin substrate, these effects are effectively exhibited.
  • the average particle diameter is a volume-based median diameter measured by a laser diffraction method.
  • a1 50% by mass Ag-coated alumina particles (average particle size 20 ⁇ m, silver plating thickness 1 ⁇ m)
  • a2 30% by mass Ag-coated alumina particles (average particle size 20 ⁇ m, silver plating thickness 1 ⁇ m)
  • a3 Tin particles (average particle size 5 ⁇ m)
  • b2 neopentyl glycol dimethacrylate
  • b3 N-acryloyloxyethyl hexahydrophthalimide
  • b4 1,6-hexanediol glycidyl ether
  • b5 cyclohexanedimethanol diglycidyl ether
  • the resin compositions of Examples and Comparative Examples were produced according to the following procedures (1) to (4).
  • (1) b1 to b3 in Tables 1 to 3 were mixed and heated to 100 ° C.
  • (2) c1 was added to the mixture obtained in the above (1). After adding c1, the mixture was heated to dissolve c1. After c1 dissolved, the mixture was cooled to room temperature.
  • (3) Components other than c2, c3 and a1 to a3 were added to the mixture obtained in (2) above, and mixed uniformly using a stirrer with a stirring blade.
  • (4) Further, a1 to a3 were added to the mixture obtained in the above (3) and dispersed using a three-roll disperser.
  • the test member subjected to the treatment of (2) was immersed in boiling water for 2 hours.
  • the test member subjected to the treatment of (3) was cooled to room temperature in water (not dried). Thereafter, the test member was heated at a solder reflow temperature (270 ° C.).
  • the peeling state of the chip on the test member subjected to the treatment of (4) was observed using a scanning ultrasonic microscope manufactured by SONIX. Specifically, the ratio of the adhesion area to the chip area was determined from an image obtained by observation with a microscope. When the adhesion area with respect to the chip area was 80% or more, it was evaluated as “no peeling”. When the adhesion area relative to the chip area was less than 80%, it was evaluated that “there was peeling”.
  • the initial viscosity of the prepared resin composition was measured. Specifically, the viscosity (Pa ⁇ s) of the resin composition at 5 rpm and 25 ° C. was measured using an Brookfield E-type rotational viscometer HBDV-2 Pro (using a cone plate and a spindle CP51). Next, the viscosity of the resin composition stored for 48 hours in an environment of 25 ° C. and 50% humidity was measured in the same procedure. The thickening rate (%) of the resin composition was calculated by the following formula.
  • Thickening rate (%) 100 ⁇ (viscosity after storage for 48 hours ⁇ initial viscosity) / (initial viscosity)
  • the pot life of the resin composition was evaluated using the calculated thickening rate as an index. Specifically, when the viscosity increase rate was less than 25%, the pot life of the resin composition was sufficiently long, and it was evaluated as passing.
  • the electrical resistivity ( ⁇ ⁇ m) of a cured product obtained by curing the prepared resin composition was measured. Specifically, a zigzag pattern having a length of 71 mm, a width of 1 mm, and a thickness of 20 ⁇ m was printed on an alumina substrate having a width of 20 mm, a length of 20 mm, and a thickness of 1 mm using the resin composition. A 200 mesh stainless steel screen was used for pattern printing. Next, the temperature around the pattern was raised from room temperature to 150 ° C. over 30 minutes. Next, the external electrode was formed by curing the pattern at 150 ° C. for 60 minutes in the air.
  • the thickness of the zigzag pattern was measured with a surface roughness profile measuring machine (product name: Surfcom 1400) manufactured by Tokyo Seimitsu. Specifically, the thickness of the zigzag pattern was obtained from the average of measured values at six points arranged so as to intersect the pattern.
  • the electrical resistivity ( ⁇ ⁇ m) of the pattern was measured by the 4-terminal method using an LCR meter. Tables 1 to 3 show the measured electrical resistivity ( ⁇ 10 ⁇ 3 ⁇ ⁇ cm). When the electrical resistivity was less than 10 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, it was evaluated as passing.
  • the resin compositions of Examples 1 to 15 include (A) a conductive substance and (D) a thioether compound on the surface of the insulating core material.
  • the resin compositions of Examples 1 to 15 hydroperoxide generated in a high temperature process such as solder reflow can be decomposed. Hydroperoxide is a substance that can promote deterioration of a cured product. Accordingly, the resin compositions of Examples 1 to 15 have excellent adhesiveness to the surface of the support member because the deterioration of the cured product is suppressed. As a result, the resin compositions of Examples 1 to 15 were evaluated as “no peeling”.
  • the metal portion of (E) suppresses excessive sulfurization of the conductive material on the surface of the filler. To do.
  • the metal portion of (E) suppresses excessive sulfidation of the base material (for example, copper) that is the support member. As a result, when the support member contains copper, a decrease in the adhesion of the resin composition to the support member is suppressed.
  • (E) removes substances that inhibit the adhesion of the support member surface by using (D) the thioether compound and (E) in combination.
  • (D) decomposes hydroperoxide that is generated in a high-temperature process and can accelerate deterioration of the cured product. By these actions, peeling of the cured product is suppressed.
  • the resin compositions of Examples 1 to 15 were evaluated as “no peeling”.
  • the adhesion area after the hygroscopic high temperature test was 80 to 90%.
  • the adhesion area after the hygroscopic high temperature test was 90% or more, and peeling was further suppressed.
  • the resin composition which can maintain moderate pot life can be provided, maintaining the electroconductivity of a filler. Moreover, the adhesive strength to a board
  • the resin composition of the present invention can be suitably used as a die attach paste or a heat radiating member adhesive. Particularly, in the cured product of the resin composition of the present invention, strength deterioration due to moisture absorption is suppressed.
  • a semiconductor device manufactured using the resin composition of the present invention has excellent resistance to moisture reflow and has high reliability. Since the resin composition of the present invention can exhibit these effects even when the support member is copper or resin, it is highly useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 The resin composition according to the present invention can maintain a reasonable pot life and maintain the conductivity of a filler. The resin composition according to the present invention has excellent adhesive strength. The resin composition according to the present invention can suppress peeling of a hardened material during a high-temperature process. The resin composition according to the present invention is suitable for use as a die-attach paste or an adhesive for a heat radiation member. The resin composition comprises: (A) a filler having a conductive material on the surface of an insulating core material; (B) a thermosetting resin; (C) a curing agent; and (D) a thioether compound. The present invention relates to an adhesive for a heat radiation member or a die-attach paste, the adhesive comprising the resin composition. The present invention relates to a semiconductor device manufactured using the adhesive for a heat radiation member or die-attach paste.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物、この樹脂組成物を含むダイアタッチペースト、及び、この樹脂組成物を含む放熱部材用接着剤に関する。また、本発明は、このダイアタッチペースト又は放熱部材用接着剤を用いて作製された半導体装置に関する。 The present invention relates to a resin composition, a die attach paste including the resin composition, and an adhesive for a heat radiation member including the resin composition. Moreover, this invention relates to the semiconductor device produced using this die attach paste or the adhesive agent for heat radiating members.
 半導体装置の製造において、IC、LSI等の半導体素子をリードフレーム等に接着させるため、熱硬化性樹脂、硬化剤及び無機フィラーを含有する樹脂組成物が用いられている。あるいは、放熱部材を半導体素子、リードフレーム等に接着させるため、熱硬化性樹脂、硬化剤及び無機フィラーを含有する樹脂組成物が用いられている(特許文献1)。前者は、ダイアタッチペーストとして知られている。ダイアタッチペーストを用いて半導体素子を支持部材と接着させた後、ワイヤボンディング、及び、封止の工程を経て、半導体装置を製造することができる。半導体装置は、プリント配線基板上にはんだ実装することができる。ダイアタッチペーストには、優れた接着強度を発揮することが求められている。特に、ダイアタッチペーストには、ワイヤボンディングやはんだリフローといった高温プロセスにおいて、硬化物の剥離がないことが要求される。そこで、硬化物の剥離防止のために、硫黄化合物、特に、チオール系化合物を用いたダイアタッチペーストが知られている。 In the manufacture of semiconductor devices, a resin composition containing a thermosetting resin, a curing agent, and an inorganic filler is used to adhere a semiconductor element such as an IC or LSI to a lead frame or the like. Or in order to adhere a heat radiating member to a semiconductor element, a lead frame, etc., a resin composition containing a thermosetting resin, a hardening agent, and an inorganic filler is used (patent document 1). The former is known as a die attach paste. After the semiconductor element is bonded to the support member using the die attach paste, the semiconductor device can be manufactured through the steps of wire bonding and sealing. The semiconductor device can be solder mounted on a printed wiring board. The die attach paste is required to exhibit excellent adhesive strength. In particular, the die attach paste is required not to peel off a cured product in a high temperature process such as wire bonding or solder reflow. Therefore, a die attach paste using a sulfur compound, particularly a thiol-based compound, is known for preventing the cured product from peeling.
 近年では、ダイアタッチペーストの製造コストを低減するため、絶縁性のコア材に導電性物質をコートしたフィラーが用いられている(特許文献2~5)。このフィラーは、ダイアタッチペーストに使用される樹脂組成物に含有される。このような絶縁性のコア材に導電性物質をコートしたフィラーは、表面にある導電性物質が侵されてしまうと、導電性が低下してしまうという課題があった。
 また、剥離防止のために添加されるチオール系化合物によって、樹脂組成物のポットライフが短くなってしまうという課題があった。
In recent years, fillers obtained by coating an insulating core material with a conductive substance have been used in order to reduce the manufacturing cost of die attach paste (Patent Documents 2 to 5). This filler is contained in the resin composition used for the die attach paste. Such a filler in which an insulating core material is coated with a conductive material has a problem in that the conductivity decreases when the conductive material on the surface is attacked.
Moreover, the thiol type compound added for peeling prevention had the subject that the pot life of a resin composition will become short.
 半導体素子の支持部材には、従来、銀メッキ等の貴金属メッキが施されたリードフレームや基板が用いられてきた。近年では、製造コストを低減するため、銅リードフレームや銅基板が使用されるようになってきている。 Conventionally, lead frames and substrates on which noble metal plating such as silver plating has been applied have been used as support members for semiconductor elements. In recent years, copper lead frames and copper substrates have been used to reduce manufacturing costs.
 すなわち、ダイアタッチペースト等に使用される樹脂組成物には、絶縁性のコア材の表面に導電性物質をコートしたフィラーの導電性を有効に維持することが求められる。また、同時に、樹脂組成物のポットライフが適度に維持されることが求められる。さらに、銅等からなる基板へ接着性に優れるとともに、高温プロセスにおいて硬化物の剥離がないことが求められる。 That is, a resin composition used for a die attach paste or the like is required to effectively maintain the conductivity of a filler in which a conductive material is coated on the surface of an insulating core material. At the same time, the pot life of the resin composition is required to be maintained appropriately. Furthermore, it is required to have excellent adhesion to a substrate made of copper or the like and not to peel off the cured product in a high temperature process.
特開2011-086669号公報JP2011-086669A 特開2007-250540号公報JP 2007-250540 A 特開2006-249426号公報JP 2006-249426 A 特開2009-256539号公報JP 2009-256539 A 特開2002-  8443号公報Japanese Patent Laid-Open No. 2002-8443
 本発明は、上記観点からなされたものであって、フィラーの導電性を有効に維持しつつ、適度なポットライフを維持することができる樹脂組成物を提供することを目的とする。また、基板への接着強度が優れており、高温プロセスにおける硬化物の剥離が抑制された樹脂組成物を提供することを目的とする。本発明は、特に、支持部材が銅や樹脂製の基板である場合に、好適に適用することができる。 The present invention has been made from the above viewpoint, and an object thereof is to provide a resin composition capable of maintaining an appropriate pot life while effectively maintaining the conductivity of a filler. Moreover, it aims at providing the resin composition which was excellent in the adhesive strength to a board | substrate and the peeling of the hardened | cured material in the high temperature process was suppressed. The present invention can be suitably applied particularly when the support member is a copper or resin substrate.
 本発明〔1〕は、
 (A)絶縁性のコア材の表面に導電性物質を有するフィラーと、
 (B)熱硬化性樹脂と、
 (C)硬化剤と、
 (D)チオエーテル系化合物
を含む樹脂組成物に関する。
The present invention [1]
(A) a filler having a conductive material on the surface of the insulating core material;
(B) a thermosetting resin;
(C) a curing agent;
(D) It is related with the resin composition containing a thioether type compound.
 本発明〔2〕は、(A)における導電性物質が、銀、金、銅、パラジウム及びこれらの合金からなる群より選択される少なくとも1種の導電性物質である、本発明〔1〕に記載の樹脂組成物に関する。 In the present invention [2], the conductive material in (A) is at least one conductive material selected from the group consisting of silver, gold, copper, palladium and alloys thereof. It relates to the resin composition described.
 本発明〔3〕は、(D)が、ジエステル構造を有するチオエーテル系化合物及び/又はベンゼン環を有するチオエーテル系化合物である、本発明〔1〕又は〔2〕に記載の樹脂組成物に関する。 The present invention [3] relates to the resin composition according to the present invention [1] or [2], wherein (D) is a thioether compound having a diester structure and / or a thioether compound having a benzene ring.
 本発明〔4〕は、さらに(E)(E1)沸点が200℃以上の有機酸の金属塩、並びに/又は(E2)沸点が200℃以上の有機酸と金属粒子及び/若しくは金属酸化物粒子との組み合わせを含む、本発明〔1〕~〔3〕のいずれかに記載の樹脂組成物に関する。 The present invention [4] further comprises (E) (E1) a metal salt of an organic acid having a boiling point of 200 ° C. or higher, and / or (E2) an organic acid having a boiling point of 200 ° C. or higher and metal particles and / or metal oxide particles. And the resin composition according to any one of [1] to [3] of the present invention.
 本発明〔5〕は、(E1)が、2-エチルへキサン酸、ナフテン酸及びシクロペンタンカルボン酸からなる群より選択される有機酸の金属塩であり、(E2)が、2-エチルへキサン酸、ナフテン酸及びシクロペンタンカルボン酸からなる群より選択される有機酸と金属粒子及び/若しくは金属酸化物粒子との組み合わせである、本発明〔4〕に記載の樹脂組成物に関する。 In the present invention [5], (E1) is a metal salt of an organic acid selected from the group consisting of 2-ethylhexanoic acid, naphthenic acid and cyclopentanecarboxylic acid, and (E2) is 2-ethylhexanoic acid. The present invention relates to the resin composition according to the present invention [4], which is a combination of an organic acid selected from the group consisting of xanthic acid, naphthenic acid and cyclopentanecarboxylic acid and metal particles and / or metal oxide particles.
 本発明〔6〕は、(E1)における金属塩が、亜鉛塩、コバルト塩、ニッケル塩、マグネシウム塩、マンガン塩及びスズ塩からなる群より選択される塩であり、
 (E2)における金属粒子及び/若しくは金属酸化物粒子が、亜鉛、コバルト、ニッケル、マグネシウム、マンガン、スズ及びこれらの酸化物からなる群より選択される粒子である、本発明〔5〕の樹脂組成物に関する。
The present invention [6] is a salt in which the metal salt in (E1) is selected from the group consisting of zinc salt, cobalt salt, nickel salt, magnesium salt, manganese salt and tin salt,
The resin composition of the present invention [5], wherein the metal particles and / or metal oxide particles in (E2) are particles selected from the group consisting of zinc, cobalt, nickel, magnesium, manganese, tin and oxides thereof. Related to things.
 本発明〔7〕は、(D)が、(A)~(C)の合計100質量部に対して、0.05~1.5質量部である、本発明〔1〕~〔6〕のいずれかに記載の樹脂組成物に関する。 According to the present invention [7], (D) is 0.05 to 1.5 parts by mass with respect to a total of 100 parts by mass of (A) to (C). The present invention relates to any one of the resin compositions.
 本発明〔8〕は、(E)が、(A)~(E)の合計100質量部に対して、0.1~5質量部である、本発明〔4〕~〔7〕のいずれかに記載の樹脂組成物に関する。 The invention [8] is any one of the inventions [4] to [7], wherein (E) is 0.1 to 5 parts by mass with respect to a total of 100 parts by mass of (A) to (E). It relates to the resin composition described in 1.
 本発明〔9〕は、本発明〔1〕~〔8〕のいずれかの樹脂組成物を含むダイアタッチペーストに関する。 The present invention [9] relates to a die attach paste containing the resin composition of any one of the present invention [1] to [8].
 本発明〔10〕は、本発明〔1〕~〔8〕のいずれかの樹脂組成物を含む放熱部材用接着剤に関する。 The present invention [10] relates to an adhesive for a heat radiating member comprising the resin composition of any one of the present invention [1] to [8].
 本発明〔11〕は、本発明〔9〕のダイアタッチペーストを用いて作製された半導体装置に関する。 The present invention [11] relates to a semiconductor device produced using the die attach paste of the present invention [9].
 本発明〔12〕は、本発明〔10〕の放熱部材用接着剤を用いて作製された半導体装置に関する。 The present invention [12] relates to a semiconductor device manufactured using the adhesive for heat dissipation member of the present invention [10].
 本発明〔13〕は、ダイアタッチペーストを適用した表面が銅である、本発明〔11〕の半導体装置に関する。 The present invention [13] relates to the semiconductor device of the present invention [11], wherein the surface to which the die attach paste is applied is copper.
 本発明〔14〕は、放熱部材用接着剤を適用した表面が銅である、本発明〔12〕の半導体装置に関する。 The present invention [14] relates to the semiconductor device according to the present invention [12], wherein the surface to which the heat radiating member adhesive is applied is copper.
 本発明の樹脂組成物は、(A)絶縁性のコア材の表面に導電性物質を有するフィラーと、(D)チオエーテル系化合物を含む。これにより、フィラーの表面の導電性物質が過度に硫化されないため、樹脂組成物を硬化させて得られる硬化物の導電性を維持することができる。 The resin composition of the present invention includes (A) a filler having a conductive substance on the surface of an insulating core material, and (D) a thioether compound. Thereby, since the conductive substance on the surface of the filler is not excessively sulfided, the conductivity of the cured product obtained by curing the resin composition can be maintained.
 また、本発明の樹脂組成物によれば、はんだリフロー等の高温プロセスで発生するハイドロパーオキサイドを分解することができる。ハイドロパーオキサイドは、硬化物の劣化を促進させうる物質である。したがって、本発明の樹脂組成物は、硬化物の劣化が抑制されるため、支持部材表面への優れた接着性を有する。 Moreover, according to the resin composition of the present invention, hydroperoxide generated in a high-temperature process such as solder reflow can be decomposed. Hydroperoxide is a substance that can promote deterioration of a cured product. Therefore, since the deterioration of the cured product is suppressed, the resin composition of the present invention has excellent adhesion to the support member surface.
 また、本発明の樹脂組成物によれば、樹脂組成物を硬化させて得られる硬化物の支持部材からの剥離が抑制される。 Moreover, according to the resin composition of the present invention, peeling of the cured product obtained by curing the resin composition from the support member is suppressed.
 また、本発明の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、構造立体障害が起きる。これにより、エポキシ樹脂等の熱硬化性樹脂に対する反応が抑制されるため、適度なポットライフを維持することができる。 Further, according to the resin composition of the present invention, structural steric hindrance occurs by using the (D) thioether compound. Thereby, since reaction with respect to thermosetting resins, such as an epoxy resin, is suppressed, a moderate pot life can be maintained.
 本発明の樹脂組成物によれば、(1)導電性を維持できる、(2)適度なポットライフを維持できる、(3)接着強度に優れる、及び、(4)高温プロセスにおいて硬化物の剥離を抑制することができる、等の効果が得られる。したがって、本発明の樹脂組成物は、ダイアタッチペースト又は放熱部材用接着剤に好適に適用できる。 According to the resin composition of the present invention, (1) the conductivity can be maintained, (2) an appropriate pot life can be maintained, (3) the adhesive strength is excellent, and (4) the cured product is peeled off in a high temperature process. The effect that it can suppress is obtained. Therefore, the resin composition of the present invention can be suitably applied to a die attach paste or a heat radiating member adhesive.
 特に、本発明の樹脂組成物の硬化物は、吸湿による強度劣化が抑制されている。したがって、本発明の樹脂組成物を用いて作製された半導体装置は、吸湿リフローに対する耐性に優れており、信頼性が高い。さらに、本発明の樹脂組成物は、支持部材が銅である場合にも、これらの効果を発揮することができるため、有用性が高い。 Particularly, in the cured product of the resin composition of the present invention, strength deterioration due to moisture absorption is suppressed. Therefore, the semiconductor device manufactured using the resin composition of the present invention has excellent resistance to moisture reflow and has high reliability. Furthermore, since the resin composition of this invention can exhibit these effects also when a supporting member is copper, its usefulness is high.
 本発明の樹脂組成物は、
 (A)絶縁性のコア材の表面に導電性物質を有するフィラーと、
 (B)熱硬化性樹脂と、
 (C)硬化剤と、
 (D)チオエーテル系化合物
を含む。
The resin composition of the present invention is
(A) a filler having a conductive material on the surface of the insulating core material;
(B) a thermosetting resin;
(C) a curing agent;
(D) including a thioether compound.
(A)絶縁性のコア材の表面に導電性物質を有するフィラー
 本発明に係る樹脂組成物からなる硬化物の導電性は、フィラーの表面の導電性物質によって得られる。
 絶縁性のコア材の例としては、シリカ、アルミナ、チタニア、ジルコニア、ガラス、炭化ケイ素、窒化アルミニウム、及び窒化ホウ素の粒子が挙げられる。絶縁性のコア材は、好ましくは、アルミナ又はシリカの粒子である。
 本発明の樹脂組成物に用いられるフィラーは、絶縁性のコア材の表面に導電性物質を有している。導電性物質は、コア材の表面に被覆されていることが好ましい。
(A) Filler having conductive material on surface of insulating core material The conductivity of the cured product made of the resin composition according to the present invention is obtained by the conductive material on the surface of the filler.
Examples of the insulating core material include particles of silica, alumina, titania, zirconia, glass, silicon carbide, aluminum nitride, and boron nitride. The insulating core material is preferably alumina or silica particles.
The filler used in the resin composition of the present invention has a conductive substance on the surface of the insulating core material. The conductive material is preferably coated on the surface of the core material.
 導電性物質の例としては、標準電極電位が0V以上の金属又はこれらの合金が挙げられる。標準電極電位が0V以上の金属を用いることによって、後述する(E)に含まれる有機酸成分により、(A)が受ける影響が少なくなる。標準電極電位が0V以上の金属の例としては、銀、金、銅、及びパラジウムが挙げられる。
 導電性物質は、銀、金、銅、パラジウム及びこれらの合金からなる群より選択される少なくとも1種であることが好ましい。導電性物質は、銀又は銀を含む合金であることが好ましい。合金の例としては、銀、金、銅及びパラジウムから選ばれる少なくとも1種を含む合金が挙げられる。合金は、例えば、銀及び銅を含む合金や、銀及びスズを含む合金である。
Examples of the conductive substance include metals having a standard electrode potential of 0 V or higher, or alloys thereof. By using a metal having a standard electrode potential of 0 V or more, the influence of (A) is reduced by the organic acid component contained in (E) described later. Examples of metals having a standard electrode potential of 0 V or more include silver, gold, copper, and palladium.
The conductive material is preferably at least one selected from the group consisting of silver, gold, copper, palladium, and alloys thereof. The conductive substance is preferably silver or an alloy containing silver. Examples of the alloy include an alloy containing at least one selected from silver, gold, copper, and palladium. The alloy is, for example, an alloy containing silver and copper, or an alloy containing silver and tin.
 フィラーのコア材の表面には、導電性物質が被覆されてもよい。導電性物質の被覆率は、特に限定されないが、好ましくはフィラー全体100質量%に対して、10~70質量%であり、より好ましくは20~60質量%である。ここでいう「導電性物質の被覆率」は、フィラー全体の質量に対する、導電性物質の質量の割合を意味する。 The surface of the filler core material may be coated with a conductive substance. The coverage of the conductive material is not particularly limited, but is preferably 10 to 70% by mass, and more preferably 20 to 60% by mass with respect to 100% by mass of the whole filler. Here, the “covering ratio of the conductive substance” means the ratio of the mass of the conductive substance to the total mass of the filler.
 フィラーの形状は、特に限定されない。フィラーの形状の例としては、球状、リン片状等が挙げられる。フィラーの形状は、好ましくは、リン片状である。
 フィラーの平均粒子径は、好ましくは0.05~50μmであり、より好ましくは0.1~40μmであり、さらに好ましくは0.5~25μmである。ここで、平均粒子径は、レーザー回折法によって測定した体積基準のメジアン径を意味する。
The shape of the filler is not particularly limited. Examples of the shape of the filler include a spherical shape and a flake shape. The shape of the filler is preferably a flake shape.
The average particle size of the filler is preferably 0.05 to 50 μm, more preferably 0.1 to 40 μm, and further preferably 0.5 to 25 μm. Here, the average particle diameter means a volume-based median diameter measured by a laser diffraction method.
 (A)は、1種のみ用いてもよく、2種以上を併用してもよい。 (A) may be used alone or in combination of two or more.
(B)熱硬化性樹脂
 (B)熱硬化性樹脂は、特に限定されないが、室温(25℃)で液状であることが好ましい。熱硬化性樹脂の例としては、エポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂が挙げられる。
(B) Thermosetting resin (B) Although a thermosetting resin is not specifically limited, It is preferable that it is liquid at room temperature (25 degreeC). Examples of thermosetting resins include epoxy resins, (meth) acrylic resins, and maleimide resins.
 エポキシ樹脂は、グリシジル基を分子内に1つ以上有する化合物である。エポキシ樹脂は、加熱によりグリシジル基が反応することで3次元的網目構造を形成し、硬化することのできる樹脂である。グリシジル基は、硬化物特性の点から、1分子に2つ以上含まれていることが好ましい。 An epoxy resin is a compound having one or more glycidyl groups in the molecule. The epoxy resin is a resin that can be cured by forming a three-dimensional network structure by reaction of a glycidyl group by heating. It is preferable that two or more glycidyl groups are contained in one molecule from the viewpoint of cured product characteristics.
 エポキシ樹脂の例としては、ビスフェノールA、ビスフェノールF、ビフェノール等のビスフェノール化合物又はこれらの誘導体(例えば、アルキレンオキシド付加物)、水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シジロヘキサンジエタノール等の脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール又はこれらの誘導体等をエポキシ化した2官能性エポキシ樹脂;トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能性エポキシ樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂等をエポキシ化した多官能性エポキシ樹脂が挙げられるが、これらに限定されない。 Examples of the epoxy resin include bisphenol compounds such as bisphenol A, bisphenol F, and biphenol or derivatives thereof (for example, alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, and cyclohexanedi. Difunctional having an alicyclic structure such as methanol or shidilohexanediethanol or a derivative thereof, and an epoxidized aliphatic diol such as butanediol, hexanediol, octanediol, nonanediol or decanediol, or a derivative thereof. Epoxy resin; trifunctional epoxy resin having trihydroxyphenylmethane skeleton and aminophenol skeleton; phenol novolac resin, cresol novolac resin, phenol aral Le resins, biphenyl aralkyl resins, polyfunctional epoxy resins obtained by epoxidizing a naphthol aralkyl resin and the like, without limitation.
 エポキシ樹脂は、室温(25℃)で液状であることが好ましい。エポキシ樹脂は、単独又は混合物の状態において、室温で液状であることが好ましい。反応性の希釈剤を使用して、エポキシ樹脂を液状とすることもできる。反応性希釈剤の例としては、フェニルグリシジルエーテル、クレジルグリシジルエーテルなどの1官能の芳香族グリシジルエーテル類、脂肪族グリシジルエーテル類等が挙げられる。 The epoxy resin is preferably liquid at room temperature (25 ° C.). The epoxy resin is preferably liquid at room temperature, alone or in a mixture. The epoxy resin can also be made liquid by using a reactive diluent. Examples of the reactive diluent include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
 熱硬化性樹脂として、(メタ)アクリル樹脂を使用することができる。(メタ)アクリル樹脂は、分子内に(メタ)アクリロイル基を有する化合物であることができる。(メタ)アクリル樹脂は、(メタ)アクリロイル基が反応することで3次元的網目構造を形成し、硬化することができる。(メタ)アクリル樹脂の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャルブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ターシャルブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3-テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4-ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリアルキレングリコールモノ(メタ)アクリレート、オクトキシポリアルキレングリコールモノ(メタ)アクリレート、ラウロキシポリアルキレングリコールモノ(メタ)アクリレート、ステアロキシポリアルキレングリコールモノ(メタ)アクリレート、アリロキシポリアルキレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリアルキレングリコールモノ(メタ)アクリレート、ジ(メタ)アクリロイルオキシメチルトリシクロデカン、N-(メタ)アクリロイルオキシエチルマレイミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイルオキシエチルフタルイミドが挙げられる。N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミド、1,2-ジ(メタ)アクリルアミドエチレングリコールの(メタ)アクリルアミドを使用することもできる。n-ビニル-2-ピロリドン、スチレン誘導体、α-メチルスチレン誘導体等のビニル化合物を使用することも可能である。 (Meth) acrylic resin can be used as the thermosetting resin. The (meth) acrylic resin can be a compound having a (meth) acryloyl group in the molecule. The (meth) acrylic resin can be cured by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group. Examples of (meth) acrylic resins include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, isodecyl (meth) acrylate, Lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isoamyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , Other alkyl (meth) acrylates, cyclohexyl (meth) acrylate, tertiary butyl cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) ) Acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, zinc mono (meth) acrylate, zinc di (meth) acrylate, dimethylaminoethyl (meth) acrylate , Diethylaminoethyl (meth) acrylate, neopentyl glycol (meth) acrylate, trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4, 4-hexafluorobutyl (meth) acrylate, perfluorooctyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol Di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,3-butanediol di ( (Meth) acrylate, 1,10-decanediol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxypolyalkylene glycol Mono (meth) acrylate, Octoxy polyalkylene glycol mono (meth) acrylate, Lauroxy polyalkylene glycol mono (meth) acrylate, Stearoxy polyalkylene glycol mono (meth) acrylate , Allyloxy polyalkylene glycol mono (meth) acrylate, nonylphenoxy polyalkylene glycol mono (meth) acrylate, di (meth) acryloyloxymethyltricyclodecane, N- (meth) acryloyloxyethylmaleimide, N- (meth) acryloyl Examples thereof include oxyethyl hexahydrophthalimide and N- (meth) acryloyloxyethyl phthalimide. N, N'-methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, (meth) acrylamide of 1,2-di (meth) acrylamide ethylene glycol can also be used. It is also possible to use vinyl compounds such as n-vinyl-2-pyrrolidone, styrene derivatives, α-methylstyrene derivatives and the like.
 (メタ)アクリル樹脂として、ポリ(メタ)アクリレートを使用することができる。ポリ(メタ)アクリレートとしては、(メタ)アクリル酸と(メタ)アクリレートとの共重合体又は水酸基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体等が好ましい。 Poly (meth) acrylate can be used as the (meth) acrylic resin. The poly (meth) acrylate is preferably a copolymer of (meth) acrylic acid and (meth) acrylate, or a copolymer of (meth) acrylate having a hydroxyl group and (meth) acrylate having no polar group. .
 (メタ)アクリル樹脂として、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,2-シクロヘキサンジオールモノ(メタ)アクリレート、1,3-シクロヘキサンジオールモノ(メタ)アクリレート、1,4-シクロヘキサンジオールモノ(メタ)アクリレート、1,2-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレートやこれら水酸基を有する(メタ)アクリレートとジカルボン酸又はその誘導体を反応して得られるカルボキシ基を有する(メタ)アクリレート等を使用することもできる。ここで使用可能なジカルボン酸としては、例えば、しゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸及びこれらの誘導体が挙げられる。 Examples of (meth) acrylic resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1 , 2-cyclohexanedimethanol mono (meth) acrylate, 1,3-cyclohexanedimethanol mono (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 1,2-cyclohexanedi Tanol mono (meth) acrylate, 1,3-cyclohexanediethanol mono (meth) acrylate, 1,4-cyclohexanediethanol mono (meth) acrylate, glycerin mono (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane mono ( Has a hydroxyl group such as (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate, etc. (Meth) acrylates and (meth) acrylates having carboxy groups obtained by reacting (meth) acrylates having these hydroxyl groups with dicarboxylic acids or their derivatives It is also possible to use and the like. Examples of the dicarboxylic acid usable here include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and tetrahydrophthalic acid. Examples include acids, hexahydrophthalic acid, and derivatives thereof.
 熱硬化性樹脂として、マレイミド樹脂を使用することができる。マレイミド樹脂は、1分子内にマレイミド基を1つ以上含む化合物である。マレイミド樹脂は、加熱によりマレイミド基が反応することで3次元的網目構造を形成し、硬化することができる。マレイミド樹脂の例として、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等のビスマレイミド樹脂が挙げられる。より好ましいマレイミド樹脂は、ダイマー酸ジアミンと無水マレイン酸の反応により得られる化合物、マレイミド酢酸、マレイミドカプロン酸といったマレイミド化アミノ酸とポリオールの反応により得られる化合物である。マレイミド化アミノ酸は、無水マレイン酸とアミノ酢酸又はアミノカプロン酸とを反応することで得られる。ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリ(メタ)アクリレートポリオールが好ましく、芳香族環を含まないものが特に好ましい。マレイミド基は、アリル基と反応可能であるので、アリルエステル樹脂との併用も好ましい。アリルエステル樹脂としては、脂肪族のものが好ましく、中でも特に好ましいのは、シクロヘキサンジアリルエステルと脂肪族ポリオールのエステル交換により得られる化合物である。 Maleimide resin can be used as the thermosetting resin. Maleimide resin is a compound containing one or more maleimide groups in one molecule. The maleimide resin can be cured by forming a three-dimensional network structure by the reaction of the maleimide group by heating. Examples of maleimide resins include N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis [4- (4- And bismaleimide resins such as maleimidophenoxy) phenyl] propane. More preferred maleimide resins are compounds obtained by reaction of dimer acid diamine and maleic anhydride, and compounds obtained by reaction of maleimidated amino acids such as maleimide acetic acid and maleimide caproic acid with polyols. Maleimidated amino acids can be obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid. As the polyol, polyether polyol, polyester polyol, polycarbonate polyol, and poly (meth) acrylate polyol are preferable, and those that do not contain an aromatic ring are particularly preferable. Since the maleimide group can react with the allyl group, the combined use with an allyl ester resin is also preferable. The allyl ester resin is preferably an aliphatic one, and particularly preferred is a compound obtained by transesterification of a cyclohexane diallyl ester and an aliphatic polyol.
(C)硬化剤
 本発明の樹脂組成物は、硬化剤を含む。硬化剤の例としては、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール樹脂等が挙げられる。熱硬化性樹脂としてエポキシ樹脂を使用する場合、これらの硬化剤を好適に使用することができる。
(C) Curing agent The resin composition of the present invention contains a curing agent. Examples of the curing agent include aliphatic amines, aromatic amines, dicyandiamide, dihydrazide compounds, acid anhydrides, and phenol resins. When an epoxy resin is used as the thermosetting resin, these curing agents can be suitably used.
 脂肪族アミンの例としては、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、トリメチルヘキサメチレンジアミン、m-キシレンジアミン、2-メチルペンタメチレンジアミン等の脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン等の脂環式ポリアミン、N-アミノエチルピペラジン、1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジン等のピペラジン型のポリアミンが挙げられる。芳香族アミンの例としては、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート等の芳香族ポリアミン等が挙げられる。
 ジヒドラジド化合物の例としては、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、p-オキシ安息香酸ジヒドラジド等のカルボン酸ジヒドラジド等が挙げられる。酸無水物の例としては、フタル酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物、無水マレイン酸とポリブタジエンの反応物、無水マレイン酸とスチレンの共重合体等が挙げられる。フェノール樹脂としては、硬化物特性の点から、1分子内にフェノール性水酸基を2つ以上有する化合物を使用することができる。好ましいフェノール性水酸基の数は、2~5である。フェノール性水酸基の数がこの範囲であれば、樹脂組成物の粘度を適切な範囲に制御することができる。より好ましい1分子内のフェノール性水酸基の数は、2つまたは3つである。このような化合物の例としては、ビスフェノールF、ビスフェノールA、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシベンゾフェノン、テトラメチルビフェノール、エチリデンビスフェノール、メチルエチリデンビス(メチルフェノール)、シクロへキシリデンビスフェノール、ビフェノールなどのビスフェノール類及びその誘導体、トリ(ヒドロキシフェニル)メタン、トリ(ヒドロキシフェニル)エタン等の3官能のフェノール類及びその誘導体、フェノールノボラック、クレゾールノボラック等のフェノール類とホルムアルデヒドを反応することで得られる化合物で2核体又は3核体がメインのもの及びその誘導体等が挙げられる。
Examples of aliphatic amines include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, trimethylhexamethylenediamine, m-xylenediamine, 2-methylpentamethylenediamine, and other aliphatic polyamines, isophoronediamine, 1,3- Alicyclic polyamines such as bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) ) Piperazine type polyamines such as piperazine. Examples of aromatic amines include aromatic polyamines such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethylene oxide-di-p-aminobenzoate, etc. Etc.
Examples of dihydrazide compounds include carboxylic acid dihydrazides such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide. Examples of acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, a reaction product of maleic anhydride and polybutadiene, maleic anhydride and styrene. And the like. As a phenol resin, the compound which has two or more phenolic hydroxyl groups in 1 molecule from the point of hardened | cured material characteristic can be used. The number of phenolic hydroxyl groups is preferably 2-5. When the number of phenolic hydroxyl groups is within this range, the viscosity of the resin composition can be controlled within an appropriate range. More preferably, the number of phenolic hydroxyl groups in one molecule is two or three. Examples of such compounds include bisphenol F, bisphenol A, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol S, dihydroxy diphenyl ether, dihydroxy benzophenone, tetramethyl biphenol, ethylidene bisphenol, methyl ethylidene bis ( Methylphenol), cyclohexylidenebisphenol, bisphenols such as biphenol and derivatives thereof, trifunctional phenols such as tri (hydroxyphenyl) methane and tri (hydroxyphenyl) ethane and derivatives thereof, phenol novolac, cresol novolac, etc. A compound obtained by reacting phenols with formaldehyde, which is mainly dinuclear or trinuclear and its derivatives Body, and the like.
 硬化剤として、熱ラジカル重合開始剤等の重合開始剤を使用することができる。熱硬化性樹脂として(メタ)アクリル樹脂を用いる場合、このような硬化剤を好適に使用することができる。重合開始剤としては、公知のものを用いることができる。熱ラジカル重合開始剤の具体例としては、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルハイドロパーオキサイド、P-メンタンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ケイ皮酸パーオキサイド、m-トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、α、α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルへキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-m-トルオイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、t-ブチルパーオキシアリルモノカーボネート、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。これらは、1種のみ使用してもよく、2種以上を併用してもよい。 As the curing agent, a polymerization initiator such as a thermal radical polymerization initiator can be used. When a (meth) acrylic resin is used as the thermosetting resin, such a curing agent can be suitably used. A well-known thing can be used as a polymerization initiator. Specific examples of the thermal radical polymerization initiator include methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane. 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, n-butyl 4,4-bis (t-butylperoxy) ) Valerate, 2,2-bis (t-butylperoxy) butane, 1, -Bis (t-butylperoxy) -2-methylcyclohexane, t-butyl hydroperoxide, P-menthane hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-hexyl hydroperoxide , Dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, α, α′-bis (t-butylperoxy) diisopropylbenzene, t-butylcumyl peroxide, di -T-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide , Lauroyl peroxide, cinnamic acid peroxide, m-torr Ile peroxide, benzoyl peroxide, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-3-methoxybutyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di -Sec-butylperoxydicarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, α, α'-bis (neodecanoylper) Oxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexyl Peroxyneode Noate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate , T-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, t-butylperoxylaurate, t-butylperoxy-3,5 5-trimethylhexanoate, t-butyl peroxyisopropyl monocarbonate, t-butyl para Oxy-2-ethylhexyl monocarbonate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyacetate, t-hexylperoxybenzoate, t-butylperoxy-m-toluoyl Benzoate, t-butylperoxybenzoate, bis (t-butylperoxy) isophthalate, t-butylperoxyallyl monocarbonate, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, etc. Is mentioned. These may be used alone or in combination of two or more.
 本発明の樹脂組成物は、硬化促進剤を含むことができる。熱硬化性樹脂としてエポキシ樹脂を使用する場合、硬化促進剤の例として、イミダゾール類、トリフェニルホスフィン又はテトラフェニルホスフィンの塩類等が挙げられる。これらの中では、2-メチルイミダゾール、2-エチルイミダゾール2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-C1123-イミダゾール、2-メチルイミダゾールと2,4-ジアミノ-6-ビニルトリアジンとの付加物等のイミダゾール化合物が好ましい。変性イミダゾール化合物も使用することができる。例えば、エポキシ-イミダゾールアダクト系化合物やアクリレート-イミダゾールアダクト化合物が使用できる。市販されているエポキシ-イミダゾールアダクト系化合物としては、例えば味の素ファインテクノ社製「アミキュアPN-23」、同社製「アミキュアPN-40」、旭化成社製「ノバキュアHX-3721」、富士化成工業社製「フジキュアFX-1000」等が挙げられる。市販されているアクリレート-イミダゾールアダクト系化合物としては、例えばADEKA社製「EH2021」等が挙げられる。旭化成社製「ノバキュアHX-3088」も使用することができる。 The resin composition of the present invention can contain a curing accelerator. When an epoxy resin is used as the thermosetting resin, examples of the curing accelerator include imidazoles, triphenylphosphine or tetraphenylphosphine salts. Among these, 2-methylimidazole, 2-ethylimidazole 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5- Preference is given to imidazole compounds such as dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, adducts of 2-methylimidazole and 2,4-diamino-6-vinyltriazine. Modified imidazole compounds can also be used. For example, an epoxy-imidazole adduct compound or an acrylate-imidazole adduct compound can be used. Examples of commercially available epoxy-imidazole adduct compounds include “Amure PN-23” manufactured by Ajinomoto Fine Techno Co., “Amure PN-40” manufactured by the same company, “NovaCure HX-3721” manufactured by Asahi Kasei Co., Ltd., and Fuji Kasei Kogyo Co., Ltd. Examples include “Fujicure FX-1000”. Examples of commercially available acrylate-imidazole adduct compounds include “EH2021” manufactured by ADEKA. “Novacure HX-3088” manufactured by Asahi Kasei Corporation can also be used.
 (B)は、エポキシ樹脂、及び/又は、(メタ)アクリル樹脂であることが好ましい。特に、エポキシ樹脂と(メタ)アクリル樹脂とを併用することが好ましい。この場合、エポキシ樹脂と(メタ)アクリル樹脂の使用量は、質量割合(エポキシ樹脂:(メタ)アクリル樹脂)で、95:5~40:60が好ましく、より好ましくは、90:10~51:49である。このようにエポキシ樹脂と(メタ)アクリル樹脂とを併用する場合においては、(C)として、エポキシ樹脂用の硬化剤と熱ラジカル重合開始剤とを併用することが好ましい。 (B) is preferably an epoxy resin and / or a (meth) acrylic resin. In particular, it is preferable to use an epoxy resin and a (meth) acrylic resin in combination. In this case, the amount of the epoxy resin and the (meth) acrylic resin used is preferably 95: 5 to 40:60, more preferably 90:10 to 51:51, by mass ratio (epoxy resin: (meth) acrylic resin). 49. Thus, when using together an epoxy resin and a (meth) acrylic resin, it is preferable to use together the hardening | curing agent for epoxy resins, and a thermal radical polymerization initiator as (C).
(D)チオエーテル系化合物
 チオエーテル系化合物は、二次酸化防止剤であることが好ましい。酸化防止剤は、一般に、一次酸化防止剤(ラジカル補足剤)と二次酸化防止剤(過酸化物分解剤)に分類される。
(D) Thioether compound The thioether compound is preferably a secondary antioxidant. Antioxidants are generally classified into primary antioxidants (radical scavengers) and secondary antioxidants (peroxide decomposers).
 本発明の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、フィラーの表面に被覆された導電性物質を過度に硫化することなく、樹脂組成物を硬化させた硬化物の導電性を維持することができる。 According to the resin composition of the present invention, by using the (D) thioether compound, the conductivity of the cured product obtained by curing the resin composition without excessive sulfidation of the conductive material coated on the surface of the filler. Sex can be maintained.
 また、本発明の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、はんだリフロー等の高温プロセスで発生するハイドロパーオキサイドを分解することができる。ハイドロパーオキサイドは、硬化物の劣化を促進させうる物質である。したがって、本発明の樹脂組成物は、硬化物の劣化が抑制されるため、支持部材表面への優れた接着性を有する。 Moreover, according to the resin composition of the present invention, hydroperoxide generated in a high-temperature process such as solder reflow can be decomposed by using (D) a thioether compound. Hydroperoxide is a substance that can promote deterioration of a cured product. Therefore, since the deterioration of the cured product is suppressed, the resin composition of the present invention has excellent adhesion to the support member surface.
 また、本発明の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、構造立体障害が起こる。これにより、エポキシ樹脂等の熱硬化性樹脂に対する反応が抑制されるため、適度なポットライフを維持することができる。 Further, according to the resin composition of the present invention, structural steric hindrance occurs by using the (D) thioether compound. Thereby, since reaction with respect to thermosetting resins, such as an epoxy resin, is suppressed, a moderate pot life can be maintained.
 チオエーテル系化合物の具体例として、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート等のジエステル構造を有するチオエーテル系化合物、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィドのようにベンゼン環を有するチオエーテル系化合物等が挙げられる。これらのチオエーテル系化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
 チオエーテル系化合物は、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート及びビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィドからなる群より選ばれる少なくとも1種のチオエーテル系化合物であることが好ましい。
Specific examples of the thioether compound include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditridecyl-3,3 Examples thereof include thioether compounds having a diester structure such as' -thiodipropionate, and thioether compounds having a benzene ring such as bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide. These thioether compounds may be used alone or in combination of two or more.
Thioether compounds include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditridecyl-3,3′-thio. It is preferably at least one thioether compound selected from the group consisting of dipropionate and bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide.
 (E)(E1)沸点が200℃以上の有機酸の金属塩、並びに/又は(E2)沸点が200℃以上の有機酸と金属粒子及び/若しくは金属酸化物粒子との組み合わせ
 (E1)沸点が200℃以上の有機酸の金属塩における有機酸は、沸点が200℃以上である。有機酸は、例えば、沸点が200~300℃である。沸点が200℃以上の有機酸を使用することにより、加熱硬化工程でのボイドの発生が抑制される。沸点は、大気圧下における数値である。
(E) (E1) A metal salt of an organic acid having a boiling point of 200 ° C. or higher and / or (E2) A combination of an organic acid having a boiling point of 200 ° C. or higher and metal particles and / or metal oxide particles (E1) An organic acid in a metal salt of an organic acid having a temperature of 200 ° C. or higher has a boiling point of 200 ° C. or higher. The organic acid has a boiling point of 200 to 300 ° C., for example. By using an organic acid having a boiling point of 200 ° C. or higher, generation of voids in the heat curing step is suppressed. The boiling point is a numerical value under atmospheric pressure.
 本発明の樹脂組成物は、優れた接着強度を示し、高温プロセスでの硬化物の剥離を抑制する。本発明の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、硬化物の劣化を促進させうるハイドロパーオキサイドを分解することができる。ハイドロパーオキサイドを分解することによって、樹脂組成物を硬化させた硬化物の劣化を抑制することができる。その結果、本発明の樹脂組成物は、支持部材表面への優れた接着性を発揮する。ここで、(D)チオエーテル系化合物は、支持部材表面に銅が存在する場合には、銅を硫化させる。(D)チオエーテル系化合物と(E)を併用することにより、(E)の金属部分が、フィラーの表面の導電性物質の過度な硫化を抑制する。また、(D)チオエーテル系化合物と(E)を併用することにより、(E)の金属部分が、支持部材である基材の材料(例えば銅)の過度な硫化を抑制する。その結果、支持部材が銅を含む場合には、樹脂組成物の、支持部材への接着性の低下が抑制されると考えられる。さらに、(E)が、支持部材表面の接着性を阻害する物質を除去する。(D)が、高温プロセスで発生する、硬化物の劣化を促進させうるハイドロパーオキサイドを分解する。これらの作用によって、硬化物の剥離が抑制されると考えられる。 The resin composition of the present invention exhibits excellent adhesive strength and suppresses the peeling of the cured product in a high temperature process. According to the resin composition of the present invention, by using the (D) thioether compound, hydroperoxide that can promote the deterioration of the cured product can be decomposed. By decomposing the hydroperoxide, it is possible to suppress deterioration of the cured product obtained by curing the resin composition. As a result, the resin composition of the present invention exhibits excellent adhesion to the support member surface. Here, the (D) thioether compound sulfidizes copper when copper is present on the surface of the support member. (D) By using the thioether compound and (E) in combination, the metal portion of (E) suppresses excessive sulfurization of the conductive material on the surface of the filler. In addition, by using (D) the thioether-based compound and (E) in combination, the metal portion of (E) suppresses excessive sulfidation of the base material (for example, copper) that is the support member. As a result, when a support member contains copper, it is thought that the fall of the adhesiveness to the support member of a resin composition is suppressed. Further, (E) removes a substance that inhibits the adhesion of the surface of the support member. (D) decomposes hydroperoxide that is generated in a high-temperature process and can accelerate deterioration of the cured product. It is thought that peeling of hardened | cured material is suppressed by these effect | actions.
 有機酸の例として、具体的には、飽和モノカルボン酸等が挙げられる。有機酸は、好ましくは、室温(25℃)で液状である飽和モノカルボン酸である。飽和モノカルボン酸は、例えば、分岐又は直鎖状のカルボン酸である。これらのカルボン酸は、脂環式基(シクロペンタン残基、シクロへキサン残基等)を有していてもよい。 Specific examples of organic acids include saturated monocarboxylic acids. The organic acid is preferably a saturated monocarboxylic acid that is liquid at room temperature (25 ° C.). The saturated monocarboxylic acid is, for example, a branched or linear carboxylic acid. These carboxylic acids may have an alicyclic group (such as a cyclopentane residue or a cyclohexane residue).
 有機酸の例として、具体的には、2-エチルへキサン酸等の分岐状飽和モノカルボン酸、シクロペンタンカルボン酸等のシクロアルカンモノカルボン酸が挙げられる。また、ナフテン酸等のカルボン酸混合物であって、沸点が200℃以上のものも、(E1)における有機酸として使用することができる。有機酸は、好ましくは、2-エチルへキサン酸、シクロペンタンカルボン酸、またはナフテン酸である。 Specific examples of organic acids include branched saturated monocarboxylic acids such as 2-ethylhexanoic acid and cycloalkane monocarboxylic acids such as cyclopentanecarboxylic acid. A mixture of carboxylic acids such as naphthenic acid having a boiling point of 200 ° C. or higher can also be used as the organic acid in (E1). The organic acid is preferably 2-ethylhexanoic acid, cyclopentanecarboxylic acid, or naphthenic acid.
 (E1)沸点が200℃以上の有機酸の金属塩における金属塩は、例えば、標準電極電位が0V未満の金属の塩である。標準電極電位が0V未満の金属の例は、亜鉛、コバルト、ニッケル、マグネシウム、マンガン、及びスズである。これらの金属の塩の例は、亜鉛塩、コバルト塩、ニッケル塩、マグネシウム塩、マンガン塩、及びスズ塩である。金属塩は、好ましくは、亜鉛塩、又はコバルト塩である。支持部材が銅を含む場合、銅又は銅よりもイオン化傾向の高い金属の塩を用いることにより、支持部材からの銅の流出を防止することができる。 (E1) The metal salt in the metal salt of an organic acid having a boiling point of 200 ° C. or higher is, for example, a metal salt having a standard electrode potential of less than 0V. Examples of metals with a standard electrode potential less than 0V are zinc, cobalt, nickel, magnesium, manganese, and tin. Examples of these metal salts are zinc salts, cobalt salts, nickel salts, magnesium salts, manganese salts, and tin salts. The metal salt is preferably a zinc salt or a cobalt salt. When the support member contains copper, the outflow of copper from the support member can be prevented by using copper or a metal salt having a higher ionization tendency than copper.
 (E1)の例としては、2-エチルへキサン酸亜鉛、2-エチルへキサン酸コバルト、2-エチルへキサン酸ニッケル、2-エチルへキサン酸マグネシウム、2-エチルへキサン酸マンガン、2-エチルへキサン酸スズ、シクロペンタンカルボン酸亜鉛、シクロペンタンカルボン酸コバルト、シクロペンタンカルボン酸ニッケル、シクロペンタンカルボン酸マグネシウム、シクロペンタンカルボン酸マンガン、シクロペンタンカルボン酸スズ、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸ニッケル、ナフテン酸マグネシウム、ナフテン酸マンガン、ナフテン酸スズが挙げられる。(E1)は、好ましくは、2-エチルへキサン酸亜鉛、シクロペンタン酸亜鉛、ナフテン酸亜鉛、2-エチルへキサン酸コバルト、シクロペンタン酸コバルト、又はナフテン酸コバルトである。 Examples of (E1) include zinc 2-ethylhexanoate, cobalt 2-ethylhexanoate, nickel 2-ethylhexanoate, magnesium 2-ethylhexanoate, manganese 2-ethylhexanoate, 2- Tin ethylhexanoate, zinc cyclopentanecarboxylate, cobalt cyclopentanecarboxylate, nickel cyclopentanecarboxylate, magnesium cyclopentanecarboxylate, manganese cyclopentanecarboxylate, tin cyclopentanecarboxylate, zinc naphthenate, cobalt naphthenate, Examples include nickel naphthenate, magnesium naphthenate, manganese naphthenate, and tin naphthenate. (E1) is preferably zinc 2-ethylhexanoate, zinc cyclopentanoate, zinc naphthenate, cobalt 2-ethylhexanoate, cobalt cyclopentanoate or cobalt naphthenate.
 (E2)における、沸点が200℃以上の有機酸としては、(E1)との関係で上記に示した有機酸を使用することができる。(E2)における有機酸は、好ましくは、2-エチルへキサン酸、シクロペンタンカルボン酸、又はナフテン酸である。 As the organic acid having a boiling point of 200 ° C. or higher in (E2), the organic acids shown above in relation to (E1) can be used. The organic acid in (E2) is preferably 2-ethylhexanoic acid, cyclopentanecarboxylic acid, or naphthenic acid.
 (E2)における金属粒子の例としては、標準電極電位が0V未満の金属の粒子が挙げられる。金属粒子は、例えば、亜鉛、コバルト、ニッケル、マグネシウム、マンガン、スズ及びこれらの合金の粒子である。合金の例としては、亜鉛、コバルト、ニッケル、マグネシウム、マンガン及びスズから選ばれる少なくとも1種を含む合金が挙げられる。合金は、例えば、亜鉛及びアルミニウムを含む合金、又は、黄銅である。金属粒子は、好ましくは、亜鉛粒子、コバルト粒子、又は亜鉛合金粒子である。支持部材が銅を含む場合、銅又は銅よりもイオン化傾向の高い金属を用いることが好ましい。これにより、支持部材からの銅の流出を防止することができる。さらに、スズ粒子を添加することで、スズの犠牲酸化により、銅を含む支持部材が保護される。これにより、支持部材に接合されたダイのシェア強度を向上させることができる。 (E2) Examples of the metal particles include metal particles having a standard electrode potential of less than 0V. The metal particles are, for example, particles of zinc, cobalt, nickel, magnesium, manganese, tin, and alloys thereof. Examples of the alloy include an alloy containing at least one selected from zinc, cobalt, nickel, magnesium, manganese, and tin. The alloy is, for example, an alloy containing zinc and aluminum, or brass. The metal particles are preferably zinc particles, cobalt particles, or zinc alloy particles. When the support member contains copper, it is preferable to use copper or a metal having a higher ionization tendency than copper. Thereby, the outflow of copper from a support member can be prevented. Furthermore, the support member containing copper is protected by the sacrificial oxidation of tin by adding tin particles. Thereby, the shear strength of the die | dye joined to the supporting member can be improved.
 (E2)における、金属酸化物粒子としては、標準電極電位が0V未満の金属の酸化物粒子が挙げられ。金属酸化物粒子として、例えば、亜鉛、コバルト、ニッケル、マグネシウム、マンガン、及びスズの酸化物粒子が挙げられる。(E2)における金属酸化物粒子は、好ましくは、酸化亜鉛粒子である。 (E2) Examples of the metal oxide particles include metal oxide particles having a standard electrode potential of less than 0V. Examples of the metal oxide particles include zinc, cobalt, nickel, magnesium, manganese, and tin oxide particles. The metal oxide particles in (E2) are preferably zinc oxide particles.
 (E2)における、金属粒子及び金属酸化物粒子の形状は、特に限定されず、例えば、球状、リン片状等である。金属粒子及び金属酸化物粒子の平均粒子径は、0.05~20μmであることができ、好ましくは0.05~15μmであり、さらに好ましくは0.1~8μmである。ここで、平均粒子径は、レーザー回折法によって測定された体積基準のメジアン径を意味する。 The shape of the metal particles and metal oxide particles in (E2) is not particularly limited, and is, for example, spherical or flake shaped. The average particle size of the metal particles and metal oxide particles can be 0.05 to 20 μm, preferably 0.05 to 15 μm, and more preferably 0.1 to 8 μm. Here, the average particle diameter means a volume-based median diameter measured by a laser diffraction method.
 (E2)は、沸点が200℃以上の有機酸と金属粒子の組み合わせでもよいし、沸点が200℃以上の有機酸と金属酸化物粒子の組み合わせでもよいし、沸点が200℃以上の有機酸と金属粒子と酸化金属粒子との組み合わせでもよい。 (E2) may be a combination of an organic acid having a boiling point of 200 ° C. or higher and a metal particle, a combination of an organic acid having a boiling point of 200 ° C. or higher and a metal oxide particle, or an organic acid having a boiling point of 200 ° C. or higher. A combination of metal particles and metal oxide particles may be used.
 (E2)の例として、具体的には、2-エチルへキサン酸、シクロペンタンカルボン酸及びナフテン酸から選択される1種以上と、亜鉛粒子、コバルト粒子、亜鉛合金粒子及び酸化亜鉛粒子から選択される1種以上との組み合わせが挙げられる。 As an example of (E2), specifically, at least one selected from 2-ethylhexanoic acid, cyclopentanecarboxylic acid and naphthenic acid, and selected from zinc particles, cobalt particles, zinc alloy particles and zinc oxide particles The combination with 1 or more types to be performed is mentioned.
 (E2)における、沸点が200℃以上の有機酸と、金属粒子及び/又は金属酸化物粒子の使用量は、質量割合(沸点が200℃以上の有機酸:金属粒子及び/又は金属酸化物粒子)で、10:90~90:10が好ましく、より好ましくは20:80~60:40である。 In (E2), the amount of the organic acid having a boiling point of 200 ° C. or higher and the amount of metal particles and / or metal oxide particles used is a mass ratio (organic acid having a boiling point of 200 ° C. or higher: metal particles and / or metal oxide particles. ) Is preferably 10:90 to 90:10, more preferably 20:80 to 60:40.
 (E)として、(E1)のみ、又は(E2)のみを使用してもよく、(E1)と(E2)とを併用してもよい。(E2)を使用する場合、有機酸の量を制御し易く、硬化時に、有機酸のブリードを抑制することができる。 (E) Only (E1) or (E2) may be used, or (E1) and (E2) may be used in combination. When (E2) is used, the amount of the organic acid can be easily controlled, and bleeding of the organic acid can be suppressed during curing.
 本発明において、(A)~(D)の合計100質量部に対して、(A)は、40~90質量部であることができる。電気伝導性の点から、(A)は、より好ましくは、55~90質量部であり、さらに好ましくは、60~88質量部である。 In the present invention, (A) can be 40 to 90 parts by mass with respect to 100 parts by mass in total of (A) to (D). From the viewpoint of electrical conductivity, (A) is more preferably 55 to 90 parts by mass, and still more preferably 60 to 88 parts by mass.
 (A)~(D)の合計100質量部に対して、(B)は、5~55質量部であることができる。熱硬化性の点から、(B)は、より好ましくは、5~50質量部であり、さらに好ましくは、10~40質量部である。 (B) can be 5 to 55 parts by mass with respect to a total of 100 parts by mass of (A) to (D). From the viewpoint of thermosetting, (B) is more preferably 5 to 50 parts by mass, and still more preferably 10 to 40 parts by mass.
 (A)~(D)の合計100質量部に対して、(C)は、1~50質量部であることができる。硬化性の点から、(C)は、より好ましくは、2~40質量部であり、さらに好ましくは、2~20質量部である。 (C) can be 1 to 50 parts by mass with respect to a total of 100 parts by mass of (A) to (D). From the viewpoint of curability, (C) is more preferably 2 to 40 parts by mass, and further preferably 2 to 20 parts by mass.
 (D)は、(A)~(C)の合計100質量部に対して、0.05~1.5質量部であることができる。保存安定性と、フィラーの表面の導電性物質の過度な硫化による導電性の低下を抑制する点から、(D)は、より好ましくは、0.05~1.0質量部であり、さらに好ましくは、0.05~0.75質量部である。 (D) can be 0.05 to 1.5 parts by mass with respect to 100 parts by mass in total of (A) to (C). (D) is more preferably 0.05 to 1.0 part by mass, and further preferably, from the viewpoint of suppressing storage stability and conductivity decrease due to excessive sulfurization of the conductive material on the surface of the filler. Is 0.05 to 0.75 parts by mass.
 本発明において、(A)~(D)の配合量は、前述の通りである。
 (E)は、(A)~(E)の合計100質量部に対して、0.1~5質量部であることができる。高温プロセスでの硬化物の剥離抑制効果の点から、(E)は、より好ましくは、0.1~2質量部であり、さらに好ましくは、0.1~1質量部である。
In the present invention, the blending amounts of (A) to (D) are as described above.
(E) can be 0.1 to 5 parts by mass with respect to 100 parts by mass in total of (A) to (E). From the viewpoint of the effect of suppressing delamination of the cured product in a high temperature process, (E) is more preferably 0.1 to 2 parts by mass, and still more preferably 0.1 to 1 part by mass.
(F)その他の成分
 本発明の樹脂組成物は、(F)その他の成分を含有することができる。(F)その他の成分は、例えば、カップリング剤(シランカップリング剤、チタンカップリング剤等)、着色剤、消泡剤、界面活性剤、重合禁止剤等の添加剤である。
(F) Other components The resin composition of this invention can contain (F) other components. (F) Other components are additives, such as a coupling agent (a silane coupling agent, a titanium coupling agent, etc.), a coloring agent, an antifoamer, surfactant, a polymerization inhibitor, for example.
 本発明の樹脂組成物は、(A)以外の成分を混合した後、3本ロール分散機を用いてこれらの成分を混練し、次いで(A)を添加して均一に混合することにより調製することができる。 The resin composition of the present invention is prepared by mixing components other than (A), kneading these components using a three-roll disperser, then adding (A) and mixing uniformly. be able to.
 本発明の樹脂組成物は、ダイアタッチペースト、あるいは、放熱部材用接着剤として好適に使用することができる。
 具体的には、本発明の樹脂組成物を含有するダイアタッチペーストや放熱部材用接着剤が適用されたリードフレームや基板等に、半導体素子や放熱部材等をマウントする。次に、ダイアタッチペーストや接着剤を加熱して硬化させる。これにより、半導体素子や放熱部材等を、リードフレームや基板等に接着することができる。加熱の条件は、適宜、選択することができる。例えば、100~200℃のピーク温度で、ダイアタッチペーストや接着剤を加熱することができる。次いで、ワイヤボンディング及び封止の工程を経て、半導体装置を製造することができる。この半導体装置をプリント配線基板上にはんだ実装することにより、各種の電子部品を製造することができる。本発明の樹脂組成物の硬化物は、接着強度に優れており、高温プロセスにおいて硬化物が剥離しにくい。また、本発明の樹脂組成物の硬化物は、高温プロセスにおいて、吸湿によって強度が劣化することが抑制されている。特に、支持部材が、銅リードフレーム、銅基板、あるいは樹脂基板である場合に、これらの効果が有効に発揮される。
The resin composition of the present invention can be suitably used as a die attach paste or an adhesive for a heat radiating member.
Specifically, a semiconductor element, a heat radiating member, or the like is mounted on a lead frame, a substrate, or the like to which a die attach paste containing the resin composition of the present invention or a heat radiating member adhesive is applied. Next, the die attach paste and the adhesive are heated and cured. Thereby, a semiconductor element, a heat radiating member, etc. can be adhered to a lead frame, a substrate, or the like. The heating conditions can be appropriately selected. For example, the die attach paste or the adhesive can be heated at a peak temperature of 100 to 200 ° C. Next, a semiconductor device can be manufactured through wire bonding and sealing processes. Various electronic parts can be manufactured by solder mounting this semiconductor device on a printed wiring board. The cured product of the resin composition of the present invention has excellent adhesive strength, and the cured product is difficult to peel off in a high temperature process. Further, the cured product of the resin composition of the present invention is prevented from being deteriorated in strength due to moisture absorption in a high temperature process. In particular, when the support member is a copper lead frame, a copper substrate, or a resin substrate, these effects are effectively exhibited.
 以下、実施例及び比較例によって、本発明を更に詳細に説明する。部、%は、他に断りのない限り、質量部、質量%を表す。本発明は、これらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Unless otherwise indicated, parts and% represent parts by mass and% by mass. The present invention is not limited by these examples.
 平均粒子径は、レーザー回折法によって測定した体積基準のメジアン径である。 The average particle diameter is a volume-based median diameter measured by a laser diffraction method.
 実施例で使用した各成分は、以下のとおりである。
 a1:50質量%Agコートアルミナ粒子(平均粒子径20μm、銀メッキ厚さ1μm)
 a2:30質量%Agコートアルミナ粒子(平均粒子径20μm、銀メッキ厚さ1μm)
 a3:スズ粒子(平均粒子径5μm)
 b1:ビスフェノールAプロピレンオキシド付加物のポリグリシジルエーテル(エポキシ当量=320g/eq、水酸基当量=1120)
 b2:ネオペンチルグリコールジメタクリレート
 b3:N-アクリロイルオキシエチルヘキサヒドロフタルイミド
 b4:1,6-ヘキサンジオールグリシジルエーテル
 b5:シクロヘキサンジメタノールジグリシジルエーテル
 c1:クレゾールノボラック樹脂 水酸基当量=118g/eq 軟化点105~115℃
 c2:ノバキュアHX3088(旭化成イ-マテリアルズ社製、マイクロカプセル化イミダゾール)
 c3:1,1,3,3-テトラメチルブチルペルオキシ2-エチルヘキサノアート
 d1:ジトリデシル-3,3’-チオジプロピオネート
 d2:ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド
 d3:ジステアリル-3,3’-チオジプロピオネート
 d4:2-メルカプトベンゾイミダゾール
 d5:ペンタエリスリトールテトラキス(3-メルカプトブチレート)
 e1:2-エチルへキサン酸(沸点228℃)
 e2:酸化亜鉛粒子(平均粒子径0.60μm)
 e3:2-エチルヘキサン酸亜鉛(亜鉛含有量22質量%)
 e4:亜鉛粒子(平均粒子径3.7μm)
 e5:ナフテン酸コバルト(コバルト含有量8質量%)
 e6:ビス(2-エチルヘキサン酸)コバルト(II)(コバルト含有量8質量%)
 e7:ナフテン酸(沸点200℃以上)
 f1:3-グリシドキシプロピルトリメトキシシラン
 f2:ビス(トリエトキシシリルプロピル)テトラスルフィド
Each component used in the examples is as follows.
a1: 50% by mass Ag-coated alumina particles (average particle size 20 μm, silver plating thickness 1 μm)
a2: 30% by mass Ag-coated alumina particles (average particle size 20 μm, silver plating thickness 1 μm)
a3: Tin particles (average particle size 5 μm)
b1: Polyglycidyl ether of bisphenol A propylene oxide adduct (epoxy equivalent = 320 g / eq, hydroxyl equivalent = 1120)
b2: neopentyl glycol dimethacrylate b3: N-acryloyloxyethyl hexahydrophthalimide b4: 1,6-hexanediol glycidyl ether b5: cyclohexanedimethanol diglycidyl ether c1: cresol novolac resin hydroxyl group equivalent = 118 g / eq softening point 105- 115 ° C
c2: NovaCure HX3088 (manufactured by Asahi Kasei Materials Co., Ltd., microencapsulated imidazole)
c3: 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate d1: ditridecyl-3,3′-thiodipropionate d2: bis (3,5-di-tert-butyl-4-hydroxy Benzyl) sulfide d3: distearyl-3,3′-thiodipropionate d4: 2-mercaptobenzimidazole d5: pentaerythritol tetrakis (3-mercaptobutyrate)
e1: 2-ethylhexanoic acid (boiling point 228 ° C.)
e2: Zinc oxide particles (average particle size 0.60 μm)
e3: Zinc 2-ethylhexanoate (Zinc content 22% by mass)
e4: Zinc particles (average particle size 3.7 μm)
e5: Cobalt naphthenate (cobalt content 8 mass%)
e6: Bis (2-ethylhexanoic acid) cobalt (II) (cobalt content 8 mass%)
e7: Naphthenic acid (boiling point 200 ° C. or higher)
f1: 3-glycidoxypropyltrimethoxysilane f2: bis (triethoxysilylpropyl) tetrasulfide
 実施例及び比較例の樹脂組成物を、以下の(1)~(4)の手順に従って製造した。
(1)表1~3のb1~b3を混合し、100℃になるまで加熱した。
(2)上記(1)で得られた混合物に、c1を添加した。c1を添加した後、混合物を加熱してc1を溶解させた。c1が溶解した後、混合物を室温まで冷却した。
(3)上記(2)で得られた混合物に、c2、c3及びa1~a3以外の成分を添加し、撹拌翼付撹拌機を用いて均一に混合した。
(4)さらに、上記(3)で得られた混合物に、a1~a3を添加し、3本ロール分散機を用いて分散させた。a1~a3を分散させた後、c2及びc3を添加し、撹拌翼付撹拌機を用いて均一に混合して、樹脂組成物を得た。
 表1~3中、評価の項に記載された数値以外の数値は、質量部を示す。
The resin compositions of Examples and Comparative Examples were produced according to the following procedures (1) to (4).
(1) b1 to b3 in Tables 1 to 3 were mixed and heated to 100 ° C.
(2) c1 was added to the mixture obtained in the above (1). After adding c1, the mixture was heated to dissolve c1. After c1 dissolved, the mixture was cooled to room temperature.
(3) Components other than c2, c3 and a1 to a3 were added to the mixture obtained in (2) above, and mixed uniformly using a stirrer with a stirring blade.
(4) Further, a1 to a3 were added to the mixture obtained in the above (3) and dispersed using a three-roll disperser. After a1 to a3 were dispersed, c2 and c3 were added and mixed uniformly using a stirrer with a stirring blade to obtain a resin composition.
In Tables 1 to 3, numerical values other than those described in the evaluation section indicate parts by mass.
 実施例及び比較例の各樹脂組成物を、以下のように評価した。評価の結果を、表1~3に示す。 Each resin composition of Examples and Comparative Examples was evaluated as follows. The results of evaluation are shown in Tables 1 to 3.
1.吸湿高温試験後の剥離
 吸湿処理後の樹脂組成物を高温に曝露した時に発生する剥離を観察した。観察は、下記の手順(1)~(5)に従って行った。
(1)3mm×3mmのシリコンチップを、実施例及び比較例の各樹脂組成物を用いて、銅リードフレーム上にマウントし、試験部材を得た。その後、試験部材の周囲を室温から175℃に30分かけて昇温し、175℃で30分間保持し、樹脂組成物を硬化させた。これにより、シリコンチップを銅リードフレーム上に接着させた。
(2)チップがエポキシモールディングコンパウンドにて被覆されることを想定して、一般的なエポキシモールディングコンパウンドの硬化条件(175℃、4時間)によって、(1)の処理を行った試験部材を加熱した。
(3)(2)の処理を行った試験部材を、沸騰水中に2時間浸した。
(4)(3)の処理を行った試験部材を、水中(乾燥させない状態)で室温まで冷却した。その後、この試験部材を、はんだリフロー温度(270℃)にて加熱した。
(5)(4)の処理を行った試験部材上のチップの剥離状態を、SONIX社製の走査型超音波顕微鏡を用いて観察した。具体的には、顕微鏡による観察によって得られた画像から、チップ面積に対する接着面積の割合を求めた。チップ面積に対する接着面積が80%以上である場合、「剥離が無い」と評価した。チップ面積に対する接着面積が80%未満である場合、「剥離が有る」と評価した。
1. Peeling after moisture absorption high temperature test Peeling that occurred when the resin composition after moisture absorption treatment was exposed to high temperature was observed. The observation was performed according to the following procedures (1) to (5).
(1) A 3 mm × 3 mm silicon chip was mounted on a copper lead frame using the resin compositions of Examples and Comparative Examples to obtain test members. Thereafter, the temperature around the test member was increased from room temperature to 175 ° C. over 30 minutes and held at 175 ° C. for 30 minutes to cure the resin composition. Thereby, the silicon chip was bonded onto the copper lead frame.
(2) Assuming that the chip is covered with an epoxy molding compound, the test member subjected to the treatment of (1) was heated according to the curing conditions (175 ° C., 4 hours) of a general epoxy molding compound. .
(3) The test member subjected to the treatment of (2) was immersed in boiling water for 2 hours.
(4) The test member subjected to the treatment of (3) was cooled to room temperature in water (not dried). Thereafter, the test member was heated at a solder reflow temperature (270 ° C.).
(5) The peeling state of the chip on the test member subjected to the treatment of (4) was observed using a scanning ultrasonic microscope manufactured by SONIX. Specifically, the ratio of the adhesion area to the chip area was determined from an image obtained by observation with a microscope. When the adhesion area with respect to the chip area was 80% or more, it was evaluated as “no peeling”. When the adhesion area relative to the chip area was less than 80%, it was evaluated that “there was peeling”.
2.ポットライフ(増粘率)
 調製した樹脂組成物の初期粘度を測定した。具体的には、ブルックフィールド社製E型回転粘度計HBDV-2 Pro(コーンプレート及びスピンドルCP51を使用)を用いて、5rpm、25℃における樹脂組成物の粘度(Pa・s)を測定した。次に、密閉容器の内部で、25℃、湿度50%の環境にて48時間保管した樹脂組成物の粘度を、同様の手順で測定した。樹脂組成物の増粘率(%)を、以下の式によって算出した。
 増粘率(%)=100×(48時間保管後の粘度-初期粘度)/(初期粘度)
 算出した増粘率を指標として、樹脂組成物のポットライフを評価した。具体的には、増粘率が25%未満である場合、樹脂組成物のポットライフが十分に長く、合格であると評価した。
2. Pot life (thickening rate)
The initial viscosity of the prepared resin composition was measured. Specifically, the viscosity (Pa · s) of the resin composition at 5 rpm and 25 ° C. was measured using an Brookfield E-type rotational viscometer HBDV-2 Pro (using a cone plate and a spindle CP51). Next, the viscosity of the resin composition stored for 48 hours in an environment of 25 ° C. and 50% humidity was measured in the same procedure. The thickening rate (%) of the resin composition was calculated by the following formula.
Thickening rate (%) = 100 × (viscosity after storage for 48 hours−initial viscosity) / (initial viscosity)
The pot life of the resin composition was evaluated using the calculated thickening rate as an index. Specifically, when the viscosity increase rate was less than 25%, the pot life of the resin composition was sufficiently long, and it was evaluated as passing.
3.電気抵抗率(Ω・m)の測定
 調製した樹脂組成物を硬化させた硬化物の電気抵抗率(Ω・m)を測定した。具体的には、幅20mm、長さ20mm、厚さ1mmのアルミナ基板上に、樹脂組成物を用いて、長さ71mm、幅1mm、厚さ20μmのジグザグパターンを印刷した。パターンの印刷には、200メッシュのステンレス製スクリーンを用いた。次に、パターンの周囲を、室温から150℃に30分間かけて昇温した。次に、パターンを、大気中で、150℃で、60分間硬化させることによって、外部電極を形成した。ジグザグパターンの厚さは、東京精密製表面粗さ形状測定機(製品名:サーフコム1400)にて測定した。具体的には、ジグザグパターンの厚さは、パターンと交差するように配置された6点における測定値の平均より求めた。パターンが硬化した後に、LCRメータを用いて、4端子法でパターンの電気抵抗率(Ω・m)を測定した。表1~3に、測定された電気抵抗率(×10-3Ω・cm)を示す。電気抵抗率が10×10-3Ω・cm未満である場合、合格であると評価した。
3. Measurement of electrical resistivity (Ω · m) The electrical resistivity (Ω · m) of a cured product obtained by curing the prepared resin composition was measured. Specifically, a zigzag pattern having a length of 71 mm, a width of 1 mm, and a thickness of 20 μm was printed on an alumina substrate having a width of 20 mm, a length of 20 mm, and a thickness of 1 mm using the resin composition. A 200 mesh stainless steel screen was used for pattern printing. Next, the temperature around the pattern was raised from room temperature to 150 ° C. over 30 minutes. Next, the external electrode was formed by curing the pattern at 150 ° C. for 60 minutes in the air. The thickness of the zigzag pattern was measured with a surface roughness profile measuring machine (product name: Surfcom 1400) manufactured by Tokyo Seimitsu. Specifically, the thickness of the zigzag pattern was obtained from the average of measured values at six points arranged so as to intersect the pattern. After the pattern was cured, the electrical resistivity (Ω · m) of the pattern was measured by the 4-terminal method using an LCR meter. Tables 1 to 3 show the measured electrical resistivity (× 10 −3 Ω · cm). When the electrical resistivity was less than 10 × 10 −3 Ω · cm, it was evaluated as passing.
4.総合評価
 上記1~3の評価に基づいて、実施例及び比較例の各樹脂組成物を、以下の基準で総合的に評価した。
 ○:剥離がなく、ポットライフが合格であり、かつ、電気抵抗率が合格である場合、○と評価した。
 ×:剥離がある、ポットライフが合格ではない、または、電気抵抗率が合格ではない場合、×と評価した。
4). Comprehensive evaluation Based on the above evaluations 1 to 3, the resin compositions of Examples and Comparative Examples were comprehensively evaluated according to the following criteria.
(Circle): When there was no peeling, pot life passed, and electrical resistivity passed, it evaluated as (circle).
X: When there is peeling, the pot life is not acceptable, or the electrical resistivity is not acceptable, it was evaluated as x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~15の樹脂組成物は、(A)絶縁性のコア材の表面に導電性物質と、(D)チオエーテル系化合物を含む。これにより、フィラーの表面の導電性物質が過度に硫化されないため、樹脂組成物を硬化させて得られる硬化物の導電性を維持することができる。 The resin compositions of Examples 1 to 15 include (A) a conductive substance and (D) a thioether compound on the surface of the insulating core material. Thereby, since the conductive substance on the surface of the filler is not excessively sulfided, the conductivity of the cured product obtained by curing the resin composition can be maintained.
 また、実施例1~15の樹脂組成物によれば、はんだリフロー等の高温プロセスで発生するハイドロパーオキサイドを分解することができる。ハイドロパーオキサイドは、硬化物の劣化を促進させうる物質である。したがって、実施例1~15の樹脂組成物は、硬化物の劣化が抑制されるため、支持部材表面への優れた接着性を有する。その結果、実施例1~15の樹脂組成物については、「剥離が無い」という評価となった。 Further, according to the resin compositions of Examples 1 to 15, hydroperoxide generated in a high temperature process such as solder reflow can be decomposed. Hydroperoxide is a substance that can promote deterioration of a cured product. Accordingly, the resin compositions of Examples 1 to 15 have excellent adhesiveness to the surface of the support member because the deterioration of the cured product is suppressed. As a result, the resin compositions of Examples 1 to 15 were evaluated as “no peeling”.
 また、実施例1~15の樹脂組成物によれば、(D)チオエーテル系化合物を用いることによって、構造立体障害が起きる。これにより、エポキシ樹脂等の熱硬化性樹脂に対する反応が抑制されるため、適度なポットライフを維持することができた。その結果、実施例1~15の樹脂組成物は、ポットライフの評価がすべて合格であった。 In addition, according to the resin compositions of Examples 1 to 15, structural steric hindrance occurs due to the use of (D) the thioether compound. Thereby, since the reaction with respect to thermosetting resins, such as an epoxy resin, was suppressed, the moderate pot life was able to be maintained. As a result, the resin compositions of Examples 1 to 15 all passed the pot life evaluation.
 実施例10~15の樹脂組成物によれば、(D)チオエーテル系化合物と(E)を併用することにより、(E)の金属部分が、フィラーの表面の導電性物質の過度な硫化を抑制する。また、(D)チオエーテル系化合物と(E)を併用することにより、(E)の金属部分が、支持部材である基材の材料(例えば銅)の過度な硫化を抑制する。その結果、支持部材が銅を含む場合には、樹脂組成物の、支持部材への接着性の低下が抑制される。 According to the resin compositions of Examples 10 to 15, when (D) the thioether compound and (E) are used in combination, the metal portion of (E) suppresses excessive sulfurization of the conductive material on the surface of the filler. To do. In addition, by using (D) the thioether-based compound and (E) in combination, the metal portion of (E) suppresses excessive sulfidation of the base material (for example, copper) that is the support member. As a result, when the support member contains copper, a decrease in the adhesion of the resin composition to the support member is suppressed.
 また、実施例10~15の樹脂組成物によれば、(D)チオエーテル系化合物と(E)を併用することにより、(E)が、支持部材表面の接着性を阻害する物質を除去する。(D)が、高温プロセスで発生する、硬化物の劣化を促進させうるハイドロパーオキサイドを分解する。これらの作用によって、硬化物の剥離が抑制される。その結果、実施例1~15の樹脂組成物については、「剥離が無い」という評価となった。 In addition, according to the resin compositions of Examples 10 to 15, (E) removes substances that inhibit the adhesion of the support member surface by using (D) the thioether compound and (E) in combination. (D) decomposes hydroperoxide that is generated in a high-temperature process and can accelerate deterioration of the cured product. By these actions, peeling of the cured product is suppressed. As a result, the resin compositions of Examples 1 to 15 were evaluated as “no peeling”.
 実施例1~9の樹脂組成物については、吸湿高温試験後の接着面積が80~90%であった。実施例10~15の樹脂組成物については、吸湿高温試験後の接着面積が90%以上であり、剥離がさらに抑制されていた。 For the resin compositions of Examples 1 to 9, the adhesion area after the hygroscopic high temperature test was 80 to 90%. For the resin compositions of Examples 10 to 15, the adhesion area after the hygroscopic high temperature test was 90% or more, and peeling was further suppressed.
 一方、比較例1の樹脂組成物は、チオエーテル系化合物を含まないため、接着性が低下しており、硬化物の剥離が確認された。
 チオエーテル系化合物の代わりにチオール系化合物を含む比較例2及び3の樹脂組成物は、樹脂組成物を硬化させた硬化物の比抵抗値が増大しており、導電性が低下していた。
 また、比較例2及び3の樹脂組成物は、増粘率が上昇しており、適度なポットライフが維持されていなかった。
On the other hand, since the resin composition of Comparative Example 1 did not contain a thioether-based compound, the adhesiveness was lowered, and peeling of the cured product was confirmed.
In the resin compositions of Comparative Examples 2 and 3 containing a thiol compound instead of the thioether compound, the specific resistance value of the cured product obtained by curing the resin composition was increased, and the conductivity was decreased.
Moreover, the resin composition of Comparative Examples 2 and 3 had an increased viscosity increase rate, and an appropriate pot life was not maintained.
 本発明によれば、フィラーの導電性を維持しつつ、適度なポットライフを維持することができる樹脂組成物を提供できる。また、基板への接着強度が優れており、高温プロセスにおける硬化物の剥離が抑制された樹脂組成物を提供できる。
 本発明の樹脂組成物は、ダイアタッチペースト又は放熱部材用接着剤として好適に用いることができる。
 特に、本発明の樹脂組成物の硬化物は、吸湿による強度の劣化が抑制されている。本発明の樹脂組成物を用いて作製された半導体装置は、吸湿リフローに対する耐性に優れており、信頼性が高い。
 本発明の樹脂組成物は、支持部材が銅や樹脂である場合にもこれらの効果を発揮できるため、有用性が高い。
ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can maintain moderate pot life can be provided, maintaining the electroconductivity of a filler. Moreover, the adhesive strength to a board | substrate is excellent, and the resin composition in which peeling of the cured | curing material in the high temperature process was suppressed can be provided.
The resin composition of the present invention can be suitably used as a die attach paste or a heat radiating member adhesive.
Particularly, in the cured product of the resin composition of the present invention, strength deterioration due to moisture absorption is suppressed. A semiconductor device manufactured using the resin composition of the present invention has excellent resistance to moisture reflow and has high reliability.
Since the resin composition of the present invention can exhibit these effects even when the support member is copper or resin, it is highly useful.

Claims (14)

  1.  (A)絶縁性のコア材の表面に導電性物質を有するフィラーと、
     (B)熱硬化性樹脂と、
     (C)硬化剤と、
     (D)チオエーテル系化合物
    を含むことを特徴とする樹脂組成物。
    (A) a filler having a conductive material on the surface of the insulating core material;
    (B) a thermosetting resin;
    (C) a curing agent;
    (D) A resin composition comprising a thioether compound.
  2.  (A)における導電性物質が、銀、金、銅、パラジウム及びこれらの合金からなる群より選択される少なくとも1種の導電性物質である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the conductive substance in (A) is at least one conductive substance selected from the group consisting of silver, gold, copper, palladium, and alloys thereof.
  3.  (D)が、ジエステル構造を有するチオエーテル化合物及び/又はベンゼン環を有するチオエーテル系化合物である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein (D) is a thioether compound having a diester structure and / or a thioether compound having a benzene ring.
  4.  さらに(E)(E1)沸点が200℃以上の有機酸の金属塩、並びに/又は(E2)沸点が200℃以上の有機酸と金属粒子及び/若しくは金属酸化物粒子との組み合わせを含む、請求項1~3のいずれか1項記載の樹脂組成物。 And (E) (E1) a metal salt of an organic acid having a boiling point of 200 ° C. or higher, and / or (E2) a combination of an organic acid having a boiling point of 200 ° C. or higher and metal particles and / or metal oxide particles. Item 4. The resin composition according to any one of Items 1 to 3.
  5.  (E1)が、2-エチルへキサン酸、ナフテン酸及びシクロペンタンカルボン酸からなる群より選択される有機酸の金属塩であり、(E2)が、2-エチルへキサン酸、ナフテン酸及びシクロペンタンカルボン酸からなる群より選択される有機酸と金属粒子及び/若しくは金属酸化物粒子との組み合わせである、請求項4記載の樹脂組成物。 (E1) is a metal salt of an organic acid selected from the group consisting of 2-ethylhexanoic acid, naphthenic acid and cyclopentanecarboxylic acid, and (E2) is 2-ethylhexanoic acid, naphthenic acid and cyclohexane The resin composition according to claim 4, which is a combination of an organic acid selected from the group consisting of pentanecarboxylic acids and metal particles and / or metal oxide particles.
  6.  (E1)における金属塩が、亜鉛塩、コバルト塩、ニッケル塩、マグネシウム塩、マンガン塩及びスズ塩からなる群より選択される塩であり、
     (E2)における金属粒子及び/若しくは金属酸化物粒子が、亜鉛、コバルト、ニッケル、マグネシウム、マンガン、スズ及びこれらの酸化物からなる群より選択される粒子である、請求項5記載の樹脂組成物。
    The metal salt in (E1) is a salt selected from the group consisting of zinc salt, cobalt salt, nickel salt, magnesium salt, manganese salt and tin salt,
    The resin composition according to claim 5, wherein the metal particles and / or metal oxide particles in (E2) are particles selected from the group consisting of zinc, cobalt, nickel, magnesium, manganese, tin, and oxides thereof. .
  7.  (D)が、(A)~(C)の合計100質量部に対して、0.05~1.5質量部である、請求項1~6のいずれか1項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein (D) is 0.05 to 1.5 parts by mass with respect to 100 parts by mass in total of (A) to (C).
  8.  (E)が、(A)~(E)の合計100質量部に対して、0.1~5質量部である、請求項4~7のいずれか1項記載の樹脂組成物。 The resin composition according to any one of claims 4 to 7, wherein (E) is 0.1 to 5 parts by mass with respect to 100 parts by mass in total of (A) to (E).
  9.  請求項1~8のいずれか1項記載の樹脂組成物を含むダイアタッチペースト。 A die attach paste comprising the resin composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項記載の樹脂組成物を含む放熱部材用接着剤。 An adhesive for a heat radiating member comprising the resin composition according to any one of claims 1 to 8.
  11.  請求項9記載のダイアタッチペーストを用いて作製された半導体装置。 A semiconductor device manufactured using the die attach paste according to claim 9.
  12.  請求項10記載の放熱部材用接着剤を用いて作製された半導体装置。 A semiconductor device manufactured using the adhesive for heat dissipation member according to claim 10.
  13.  ダイアタッチペーストを適用した表面が銅である、請求項11記載の半導体装置。 The semiconductor device according to claim 11, wherein the surface to which the die attach paste is applied is copper.
  14.  放熱部材用接着剤を適用した表面が銅である、請求項12記載の半導体装置。 The semiconductor device according to claim 12, wherein the surface to which the heat radiating member adhesive is applied is copper.
PCT/JP2015/077852 2014-10-01 2015-09-30 Resin composition WO2016052664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580045863.3A CN107075258B (en) 2014-10-01 2015-09-30 Resin composition
KR1020177009763A KR102325095B1 (en) 2014-10-01 2015-09-30 Resin composition
JP2016552147A JPWO2016052664A1 (en) 2014-10-01 2015-09-30 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203467 2014-10-01
JP2014-203467 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052664A1 true WO2016052664A1 (en) 2016-04-07

Family

ID=55630687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077852 WO2016052664A1 (en) 2014-10-01 2015-09-30 Resin composition

Country Status (5)

Country Link
JP (1) JPWO2016052664A1 (en)
KR (1) KR102325095B1 (en)
CN (1) CN107075258B (en)
TW (1) TWI683872B (en)
WO (1) WO2016052664A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181536A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Adhesive composition and structural body
WO2019198336A1 (en) * 2018-04-10 2019-10-17 タツタ電線株式会社 Electroconductive coating material and method for producing shielded package using said electroconductive coating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338529A (en) * 2000-05-30 2001-12-07 Togo Seisakusho Corp Conductive resin composition
JP2009263499A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Thermosetting resin composition and process for producing the same
WO2014157175A1 (en) * 2013-03-29 2014-10-02 ナミックス株式会社 Resin composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008443A (en) 2000-06-26 2002-01-11 Tokuriki Honten Co Ltd Thermal hardening type low resistance conductive paste
US7326369B2 (en) 2005-03-07 2008-02-05 National Starch And Chemical Investment Holding Corporation Low stress conductive adhesive
JP4802667B2 (en) * 2005-11-08 2011-10-26 住友金属鉱山株式会社 Epoxy resin adhesive composition and optical semiconductor adhesive using the same
KR20110036777A (en) * 2005-12-26 2011-04-08 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material and connecting structure of circuit member
JP5089885B2 (en) * 2006-01-17 2012-12-05 太陽ホールディングス株式会社 Thermal insulation resin composition and printed wiring board using the same
US20070213429A1 (en) 2006-03-10 2007-09-13 Chih-Min Cheng Anisotropic conductive adhesive
KR101410108B1 (en) * 2007-05-15 2014-06-25 히타치가세이가부시끼가이샤 Circuit-connecting material, and connection structure for circuit member
JP5266719B2 (en) * 2007-10-29 2013-08-21 住友ベークライト株式会社 Resin composition and semiconductor device produced using resin composition
WO2009057530A1 (en) * 2007-10-29 2009-05-07 Sumitomo Bakelite Co., Ltd. Adhesive composition for semiconductor and semicondutor device produced using the adhesive composition
JP5651913B2 (en) 2008-04-21 2015-01-14 スリーボンドファインケミカル株式会社 Conductive resin composition
TW201028454A (en) * 2008-10-22 2010-08-01 Hitachi Chemical Co Ltd Adhesive film
CN101778919B (en) * 2008-10-24 2012-09-05 住友电木株式会社 Adhesive composition for semiconductor and semiconductor device manufactured using the same
JP2011086669A (en) 2009-10-13 2011-04-28 Asahi Kasei E-Materials Corp Die bonding paste and semiconductor device using the same
TWI534256B (en) * 2011-05-16 2016-05-21 Showa Denko Kk Hardened heat dissipation composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338529A (en) * 2000-05-30 2001-12-07 Togo Seisakusho Corp Conductive resin composition
JP2009263499A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Thermosetting resin composition and process for producing the same
WO2014157175A1 (en) * 2013-03-29 2014-10-02 ナミックス株式会社 Resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181536A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Adhesive composition and structural body
CN110461982A (en) * 2017-03-29 2019-11-15 日立化成株式会社 Adhesive composite and structural body
JPWO2018181536A1 (en) * 2017-03-29 2020-02-06 日立化成株式会社 Adhesive composition and structure
JP7172990B2 (en) 2017-03-29 2022-11-16 昭和電工マテリアルズ株式会社 Adhesive composition and structure
WO2019198336A1 (en) * 2018-04-10 2019-10-17 タツタ電線株式会社 Electroconductive coating material and method for producing shielded package using said electroconductive coating material
JPWO2019198336A1 (en) * 2018-04-10 2021-05-20 タツタ電線株式会社 Conductive paint and method for manufacturing a shield package using the conductive paint
JP7266023B2 (en) 2018-04-10 2023-04-27 タツタ電線株式会社 Conductive paint and method for manufacturing shield package using conductive paint
US11912897B2 (en) 2018-04-10 2024-02-27 Tatsuta Electric Wire & Cable Co., Ltd. Electroconductive coating material and method for producing shielded package using said electroconductive coating material

Also Published As

Publication number Publication date
JPWO2016052664A1 (en) 2017-07-13
CN107075258B (en) 2020-03-06
CN107075258A (en) 2017-08-18
TW201619325A (en) 2016-06-01
KR102325095B1 (en) 2021-11-11
KR20170062475A (en) 2017-06-07
TWI683872B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP6254015B2 (en) Conductive paste, electrical / electronic component and manufacturing method thereof
WO2018225773A1 (en) Thermally-conductive and electrically-conductive adhesive composition
TWI608062B (en) Resin composition, semiconductor device using said resin composition, and method of producing semiconductor device
WO2012118061A1 (en) Electrically conductive composition
JP6310799B2 (en) Thermosetting resin composition, semiconductor device, electric / electronic component and method for producing plate-type silver fine particles
JP5428134B2 (en) Liquid resin composition and semiconductor device manufactured using the liquid resin composition
JPWO2016158828A1 (en) Resin composition, conductive resin composition, adhesive, conductive adhesive, electrode forming paste, semiconductor device
EP2717301A1 (en) Semiconductor device
JP2016219600A (en) Die attach paste for semiconductor and semiconductor device
JP4983166B2 (en) Resin composition and semiconductor device produced using resin composition
JP7100651B2 (en) Paste compositions, semiconductor devices and electrical / electronic components
JP6106007B2 (en) Resin composition
JP2016079215A (en) Resin composition for semiconductor adhesion and semiconductor device
JP6244124B2 (en) Resin composition for die attach
KR102168846B1 (en) Resin composition
JP5396914B2 (en) Resin composition and semiconductor device manufactured using resin composition
JP6069071B2 (en) Resin composition
JP4973120B2 (en) Method for producing liquid resin composition, liquid resin composition and semiconductor device
WO2016052664A1 (en) Resin composition
JP6134597B2 (en) Die attach agent
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP6111535B2 (en) Thermosetting resin composition, semiconductor device and method for manufacturing semiconductor device
JP4961968B2 (en) Curing accelerator for epoxy resin, epoxy resin composition, and resin composition for electronic material
JP4835229B2 (en) Resin composition and semiconductor device produced using resin composition
JP6973768B2 (en) Inkjet resin composition, electronic components, manufacturing method of electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009763

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15847448

Country of ref document: EP

Kind code of ref document: A1