WO2016052538A1 - Method for producing polarizing film - Google Patents

Method for producing polarizing film Download PDF

Info

Publication number
WO2016052538A1
WO2016052538A1 PCT/JP2015/077578 JP2015077578W WO2016052538A1 WO 2016052538 A1 WO2016052538 A1 WO 2016052538A1 JP 2015077578 W JP2015077578 W JP 2015077578W WO 2016052538 A1 WO2016052538 A1 WO 2016052538A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
meth
polarizer
resin layer
Prior art date
Application number
PCT/JP2015/077578
Other languages
French (fr)
Japanese (ja)
Inventor
恵美 中岡
健太郎 池嶋
俊樹 大峰
聡司 三田
岸 敦史
友徳 上野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015189278A external-priority patent/JP6077620B2/en
Priority claimed from JP2015189275A external-priority patent/JP6018276B2/en
Priority claimed from JP2015189273A external-priority patent/JP6078132B1/en
Priority claimed from JP2015189276A external-priority patent/JP6077619B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/515,885 priority Critical patent/US10088705B2/en
Priority to CN201580053060.2A priority patent/CN106716196B/en
Priority to SG11201706378XA priority patent/SG11201706378XA/en
Priority to KR1020177009611A priority patent/KR101883795B1/en
Publication of WO2016052538A1 publication Critical patent/WO2016052538A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for producing a polarizing film.
  • the polarizing film can be used as a polarizing film in which a protective film is provided on at least one surface of a polarizer. Further, the polarizing film may be further provided with an adhesive layer and used as a polarizing film with an adhesive layer.
  • the polarizing film can form an image display device such as a liquid crystal display device (LCD) or an organic EL display device alone or as an optical film obtained by laminating the polarizing film.
  • LCD liquid crystal display device
  • organic EL display device alone or as an optical film obtained by laminating the polarizing film.
  • Liquid crystal display devices are rapidly expanding in the market for watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, etc.
  • the liquid crystal display device visualizes the polarization state by switching of the liquid crystal, and a polarizer is used from the display principle.
  • the polarizer since it has a high transmittance and a high degree of polarization, for example, an iodine-based polarizer having a structure in which iodine is adsorbed on polyvinyl alcohol and stretched is most widely used.
  • a polarizer has a disadvantage that the mechanical strength is extremely weak, and the polarizing function is remarkably lowered due to contraction due to heat and moisture. Therefore, the obtained polarizer is immediately bonded to the protective film coated with the adhesive via the adhesive and used as a polarizing film.
  • a transport (peelable protective film) film is used for manufacturing a thin polarizer.
  • a thin polarizer can be obtained on the transport film by stretching and dyeing a laminate having a transport film and a polyvinyl alcohol-based resin layer formed on one side of the transport film ( Patent Documents 1 to 6).
  • the protective film can be used only on one side of the polarizer and the protective film can be used on the other side without the protective film.
  • the single-protective polarizing film can be a thin type because the protective film is less than one protective polarizing film provided with protective films on both sides of the polarizer.
  • Liquid crystal display devices are required to have durability capable of maintaining optical characteristics even under severe conditions at high temperatures.
  • the durability is also required for a polarizing film using the above thin polarizer.
  • the transport film is usually peeled off.
  • a protective film is laminated
  • a piece protective polarizing film is produced.
  • a pressure-sensitive adhesive layer is laminated on the polarizer side of the single protective polarizing film.
  • An object of the present invention is to provide a method for producing a polarizing film using a thin polarizer that can satisfy durability even in a heating environment.
  • the present invention provides a laminate (a) having a transport film and a polarizer (a) having a thickness of 10 ⁇ m or less containing a polyvinyl alcohol-based resin formed on one side of the transport film (1), Step (2) of peeling the film for conveyance from the laminate (a), and curable resin layer or resin layer on the side of the laminate (a) from which the film for conveyance is peeled off.
  • a polarizing film comprising a step (3) of forming a transparent resin layer having a thickness of 0.2 ⁇ m or more by applying a liquid material containing a component and then solidifying or curing the liquid material Manufacturing method.
  • the transparent resin layer preferably has a compression elastic modulus at 80 ° C. of 0.1 GPa or more.
  • the transparent resin layer formed in the step (3) can be formed by applying a liquid material containing a resin component dissolved or dispersed in water and then solidifying.
  • the liquid material containing the resin component is preferably an aqueous solution containing a polyvinyl alcohol resin.
  • the liquid material preferably has a viscosity at 25 ° C. of 1000 mPa ⁇ s or less.
  • the laminate (a) in the step (1) is a laminate (a ′) having a transport film and a polyvinyl alcohol-based resin layer formed on one surface of the transport film. Those obtained by performing at least a stretching step and a dyeing step can be used.
  • the said polarizing film can have the process (4) which forms a protective film in the polarizer side of the said laminated body (a), and a protective film is provided only as one side of a polarizer as the said polarizing film.
  • the piece protection polarizing film which has can be manufactured.
  • the polarizer has an optical property represented by the following formula: P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 , T ⁇ 42.3), or It is preferably in the range represented by P ⁇ 99.9 (where T ⁇ 42.3).
  • the said polarizing film can have the process (5) which forms an adhesive layer further on the transparent resin layer side formed at the said process (3), and a polarizing film with an adhesive layer is provided. Can be manufactured.
  • the said polarizer In the manufacturing method of the polarizing film of this invention, after peeling a film for conveyance from the laminated body (a) which has a film for conveyance and the polarizer of thickness 10 micrometers or less formed in the single side
  • the polarizing film obtained by the production method of the present invention is provided with a transparent resin layer on the surface of the polarizer, it is possible to suppress the expansion of damage caused to the polarizer even under heating conditions.
  • the polarizing film obtained by the production method of the present invention can suppress light leakage due to the damage even when the polarizing film is placed in a heating environment, and can satisfy durability. .
  • a transparent resin layer provided on a thin polarizer having a compression elastic modulus at 80 ° C. of 0.1 GPa or more is effective from the viewpoint of durability.
  • the transparent resin layer (with a compressive modulus at 80 ° C. of 0.1 GPa or more) is preferable for suppressing defects due to damage caused in the polarizer while satisfying the reduction in thickness and in a heating environment. .
  • FIG. 1 It is a conceptual diagram which shows an example of embodiment which concerns on the manufacturing method of the polarizing film of this invention. It is a photograph which shows sectional drawing before and behind heat processing about the piece protection polarizing film before forming a transparent resin layer at a process (3). It is a photograph which shows sectional drawing before and behind heat processing about the piece protection polarizing film with a transparent resin layer after forming a transparent resin layer at a process (3).
  • steps (1) to (5) of the method for producing a polarizing film of the present invention will be described with reference to FIG.
  • the steps (2) to (3) are sequentially performed after the step (1) of preparing the laminate (a) having the thin polarizer 1 and the transport film 3. Is done.
  • the laminate (a) is likely to break during transportation. Therefore, as shown in FIG. 1, before performing the step (2) on the laminate (a), the protective film 2 is applied to the laminate 1 (a) on the polarizer 1 side by the step (4). It is preferable to provide and manufacture a piece protective polarizing film A ′ with a transport film.
  • FIG. 1 shows a piece protective polarizing film A ′ with a transport film.
  • a single protective polarizing film B with a transparent resin layer shown in FIG. 1 has a protective film 2 only on one side of a polarizer 1, and a transparent resin layer 4 is (directly) laminated on the other side of the polarizer 1. Has been.
  • the adhesive layer 5 is provided in the transparent resin layer 4 of the piece protection polarizing film B with a transparent resin layer by a process (5), and the polarizing film C with an adhesive layer is manufactured. be able to.
  • the pressure-sensitive adhesive layer 5 can be provided on the transparent resin layer 4 side and / or the protective film 2 side of the piece protective polarizing film B with a transparent resin layer.
  • the case where the adhesive layer 5 is provided in the transparent resin layer 4 side of the piece protection polarizing film B with a transparent resin layer is illustrated as a process (5).
  • FIG. 2A is a photograph of a cross-sectional view of the piece protective polarizing film A before forming the transparent resin layer 4 in the step (3) according to the prior art.
  • A1 of FIG. 2A it turns out that the damage d has arisen in the polarizer 1 as a result of peeling the film 3 for conveyance in a process (2).
  • A2 of FIG. 2 shows the photograph of sectional drawing when the said piece protection polarizing film A is put in a heating environment.
  • the damage d of the polarizer 1 is expanded by heating.
  • FIG. 2B is a photograph of a cross-sectional view of a piece protective polarizing film B with a transparent resin layer in which the transparent resin layer 4 is formed in the step (3) according to the present invention.
  • B ⁇ b> 1 of FIG. 2B it can be seen that damage d generated in the polarizer 1 is repaired (d ′) by the transparent resin layer 4 as a result of peeling the transport film 3 in the step (2).
  • B2 of FIG. 2 shows the photograph of sectional drawing at the time of heat-processing the piece protection polarizing film B with the said transparent resin layer.
  • the damage d of the polarizer 1 is not enlarged even by the heat treatment and is sufficiently repaired (d ′).
  • a laminate (a) having a transport film 3 and a polarizer 1 having a thickness of 10 ⁇ m or less formed on one surface of the transport film 3 is prepared.
  • the said laminated body (a) should just have the polarizer 1 with a thickness of 10 micrometers or less on the at least single side
  • the said laminated body (a) is a polarizer on both surfaces of the film 3 for conveyance. 1 can be included.
  • the laminate (a) includes, for example, at least a laminate (a ′) having a transport film and a polyvinyl alcohol resin (hereinafter also referred to as PVA resin) layer formed on one surface of the transport film. It is obtained by performing a stretching process and a dyeing process.
  • the transport film can form a long PVA-based resin layer by using a long material, which is advantageous for continuous production.
  • thermoplastic resin films can be used as the transport film.
  • the material for forming the thermoplastic resin film include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polyethylene and polypropylene, polyamide rheo resins, polycarbonate resins, and the like. And a copolymer resin. Of these, ester resins are preferred from the viewpoint of ease of production and cost reduction.
  • an amorphous ester-based thermoplastic resin film or a crystalline ester-based thermoplastic resin film can be used as the ester-based thermoplastic resin film.
  • the thickness of the thermoplastic resin film is preferably thicker from the viewpoint of avoiding breakage in the stretching step and easy transport of the laminate (a).
  • the thickness before the stretching step is 20 to 200 ⁇ m. More preferably, it is 30 to 150 ⁇ m.
  • thermoplastic resin film a film provided with a peelable adhesive layer on the thermoplastic resin film can be used.
  • adhesive layer the thing similar to what is used for the peelable surface protection film etc. can be used.
  • the polarizer in the laminate (a) contains a polyvinyl alcohol resin and has a thickness of 10 ⁇ m or less.
  • the thickness of the polarizer is preferably 8 ⁇ m or less from the viewpoint of thinning, more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the thickness of the polarizer is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • Such a thin polarizer is liable to be damaged when the transport film is peeled from the laminate (a) in the step (2).
  • a thin polarizer has little thickness unevenness, excellent visibility, and is excellent in durability against thermal shock because of little dimensional change.
  • the polarizer preferably contains boric acid from the viewpoint of stretching stability and optical durability.
  • the boric acid content in the polarizer is the total amount of the polarizer from the viewpoint of suppressing the occurrence of cracks in the heat cycle test (repetition of ⁇ 40 ° C. and 80 ° C.) and the damage to the polarizer that occurs when the film for transportation is peeled off.
  • the amount is preferably 25% by weight or less, more preferably 20% by weight or less, further 18% by weight or less, and further preferably 16% by weight or less.
  • the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
  • Patent No. 4751486 Japanese Patent No. 4751481, Patent No. 4815544, Patent No. 5048120, International Publication No. 2014/077599 pamphlet, International Publication No. 2014/077636 Pamphlet, And the thin polarizers obtained from the production methods described therein.
  • the polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 (where T ⁇ 42.3), Or It is preferably configured to satisfy the condition of P ⁇ 99.9 (however, T ⁇ 42.3).
  • a polarizer configured so as to satisfy the above-described conditions uniquely has performance required as a display for a liquid crystal television using a large display element. Specifically, the contrast ratio is 1000: 1 or more and the maximum luminance is 500 cd / m 2 or more. As other uses, for example, it is bonded to the viewing side of the organic EL display device.
  • a polarizer containing a polyvinyl alcohol-based resin configured to satisfy the above conditions is combined with a thickness of 10 ⁇ m or less because the polyvinyl alcohol-based molecule exhibits high orientation, The tensile breaking stress in the direction orthogonal to the absorption axis direction is significantly reduced.
  • this invention is especially suitable for the piece protection polarizing film which employ
  • the thin-type polarizer among the production methods including a stretching step and a dyeing step in the state of the laminate (a ′), it can be stretched at a high magnification and can improve polarization performance.
  • Patent Nos. 4,751,481 and 4,815,544, and those obtained by a production method including a step of stretching in an aqueous boric acid solution are preferable, and particularly, patents 4,751,481, and 4,815,544. What is obtained by the manufacturing method including the process of extending
  • These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a film for stretching in the state of a laminate. If it is this manufacturing method, even if a PVA-type resin layer is thin, it will be possible to extend
  • PVA-based resin polyvinyl alcohol-based resin
  • the laminate (a ′) can be formed, for example, by applying an aqueous solution of PVA-based resin to a transport film and then drying.
  • the PVA-type resin layer in the said laminated body (a ') can be formed on a film for conveyance by extrusion molding.
  • the PVA-based resin layer can be formed by laminating a PVA-based resin film prepared in advance on a transport film. The thickness of the PVA-based resin layer is appropriately determined in consideration of the draw ratio and the like so that the thickness of the polarizer obtained after stretching is 10 ⁇ m or less.
  • the PVA-type resin film is dyed, the dyeing process performed to a laminated body (a ') can be skipped.
  • the stretching step applied to the laminate (a ′) is preferably performed, for example, so that the total stretching ratio of the PVA-based resin layer is in the range of 3 to 10 times in terms of the total stretching ratio.
  • the total draw ratio is preferably 4 to 8 times, more preferably 5 to 7 times.
  • the total draw ratio is desirably 5 times or more.
  • the stretching process can also be performed in the dyeing process and other processes.
  • the total stretching ratio refers to a cumulative stretching ratio including stretching in those processes when stretching is performed in a process other than the stretching process.
  • the dyeing process applied to the laminate (a ′) is performed by adsorbing and orienting a dichroic dye or iodine to the PVA resin layer.
  • the dyeing process can be performed together with the stretching process.
  • a dyeing process is generally performed, for example, by immersing in the laminate (a ′) iodine solution for an arbitrary time.
  • the iodine aqueous solution used as the iodine solution an aqueous solution containing iodine ions with iodine and an iodide compound which is a dissolution aid is used.
  • Examples of the iodide compound include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Etc. are used.
  • potassium iodide is preferred.
  • the iodide compound used in the present invention is the same as described above when used in other steps.
  • the iodine concentration in the iodine solution is about 0.01 to 10% by weight, preferably 0.02 to 5% by weight, and more preferably 0.02 to 0.5% by weight.
  • the iodide compound concentration is preferably about 0.1 to 10% by weight, more preferably 0.2 to 8% by weight.
  • the temperature of the iodine solution is usually about 20 to 50 ° C., preferably 25 to 40 ° C.
  • the immersion time is usually about 10 to 300 seconds, preferably 20 to 240 seconds.
  • the laminate (a ′) can be subjected to, for example, an insolubilization step, a crosslinking step, a drying (adjustment of moisture content) step, and the like in addition to the above steps.
  • a boron compound is used as a crosslinking agent.
  • the order of these steps is not particularly limited.
  • the crosslinking step can be performed together with the dyeing step and the stretching step.
  • the insolubilization step and the crosslinking step can be performed a plurality of times.
  • the boron compound include boric acid and borax.
  • the boron compound is generally used in the form of an aqueous solution or a water-organic solvent mixed solution. Usually, an aqueous boric acid solution is used.
  • the boric acid concentration in the boric acid aqueous solution is about 1 to 10% by weight, preferably 2 to 7% by weight.
  • the boric acid concentration is preferably used.
  • the boric acid aqueous solution or the like can contain an iodide compound such as potassium iodide.
  • the iodide compound concentration is preferably about 0.1 to 10% by weight, more preferably 0.5 to 8% by weight.
  • a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate
  • styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin)
  • AS resin acrylonitrile / styrene copolymer
  • These protective films are usually bonded to the polarizer by an adhesive layer.
  • thermoplastic resin in the protective film is preferably 50 to 100% by mass, more preferably 50 to 99% by mass, still more preferably 60 to 98% by mass, and particularly preferably 70 to 97% by mass.
  • content of the said thermoplastic resin in a protective film is 50 mass% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.
  • a retardation film As the protective film, a retardation film, a brightness enhancement film, a diffusion film, and the like can also be used.
  • the retardation film include those having a front retardation of 40 nm or more and / or a retardation having a thickness direction retardation of 80 nm or more.
  • the front phase difference is usually controlled in the range of 40 to 200 nm
  • the thickness direction phase difference is usually controlled in the range of 80 to 300 nm.
  • the retardation film functions also as a polarizer protective film, so that the thickness can be reduced.
  • the retardation film examples include a birefringent film obtained by uniaxially or biaxially stretching a thermoplastic resin film.
  • the stretching temperature, stretching ratio, and the like are appropriately set depending on the retardation value, film material, and thickness.
  • the thickness of the protective film can be determined as appropriate, but in general, it is preferably 3 to 200 ⁇ m, more preferably 3 to 100 ⁇ m from the viewpoints of workability such as strength and handleability, and thin layer properties. Is preferred.
  • the thickness of the protective film (when a film is formed in advance) is preferably 10 to 60 ⁇ m, more preferably 10 to 45 ⁇ m from the viewpoint of transportability.
  • the thickness of the protective film (when formed by coating and curing) is preferably 3 to 25 ⁇ m, more preferably 3 to 20 ⁇ m from the viewpoint of transportability.
  • the protective film may be used in a plurality of layers or in a plurality of layers.
  • a functional layer such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the protective film to which the polarizer is not adhered.
  • the hard coat layer, the antireflection layer, the antisticking layer, the diffusion layer, the antiglare layer, and other functional layers can be provided on the protective film itself, or can be provided separately from the protective film. it can.
  • the said protective film and polarizer can be laminated
  • the intervening layer of the polarizer 1 and the protective film 2 is not shown in FIG.
  • the adhesive layer is formed with an adhesive.
  • the type of the adhesive is not particularly limited, and various types can be used.
  • the adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt-based, active energy ray-curable types, and the like. Or an active energy ray hardening-type adhesive agent is suitable.
  • water-based adhesives examples include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex systems, and water-based polyesters.
  • the water-based adhesive is usually used as an adhesive composed of an aqueous solution, and usually contains 0.5 to 60% by weight of solid content.
  • the active energy ray curable adhesive is an adhesive that cures by an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type. Can be used.
  • an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type.
  • an active energy ray curable adhesive for example, a photo radical curable adhesive can be used.
  • the photo radical curable active energy ray curable adhesive is used as an ultraviolet curable adhesive, the adhesive contains a radical polymerizable compound and a photo polymerization initiator.
  • the adhesive coating method is appropriately selected depending on the viscosity of the adhesive and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the adhesive is preferably applied so that the finally formed adhesive layer has a thickness of 30 to 300 nm.
  • the thickness of the adhesive layer is more preferably 60 to 150 nm.
  • the thickness of the adhesive layer is preferably 0.2 to 20 ⁇ m.
  • an easily bonding layer can be provided between a protective film and an adhesive bond layer.
  • the easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.
  • the easy-adhesion layer is usually provided in advance on a protective film, and the easy-adhesion layer side of the protective film and the polarizer are laminated with an adhesive layer.
  • the easy-adhesion layer is formed by applying and drying a material for forming the easy-adhesion layer on a protective film by a known technique.
  • the material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying and the smoothness of coating.
  • the thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 ⁇ m, more preferably 0.02 to 2 ⁇ m, and still more preferably 0.05 to 1 ⁇ m. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.
  • the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive.
  • Various pressure-sensitive adhesives can be used as the pressure-sensitive adhesive, such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, Examples include acrylamide-based adhesives and cellulose-based adhesives.
  • An adhesive base polymer is selected according to the type of the adhesive.
  • acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and are excellent in weather resistance and heat resistance.
  • the undercoat layer (primer layer) is formed to improve the adhesion between the polarizer and the protective film.
  • the material constituting the primer layer is not particularly limited as long as the material exhibits a certain degree of strong adhesion to both the base film and the polyvinyl alcohol-based resin layer.
  • a thermoplastic resin excellent in transparency, thermal stability, stretchability, etc. is used.
  • the thermoplastic resin include an acrylic resin, a polyolefin resin, a polyester resin, a polyvinyl alcohol resin, or a mixture thereof.
  • the said film 3 for conveyance is peeled from the said laminated body (a) or the piece protection polarizing film A 'with a film for conveyance.
  • a film for conveyance There is no restriction
  • an angle may be given to the polarizer 1 (or the piece protective polarizing film A) side, or an angle may be given to the transport film 3 side.
  • the thin polarizer 1 is likely to be damaged by the peeling of the transport film 3.
  • the angle at which the transport film 3 is peeled is arbitrarily set.
  • the angle at which the peeling force becomes weak depends on the configuration, the peeling speed, the humidity at the time of peeling, and the rigidity of the film to be peeled, and can be determined as appropriate.
  • ⁇ Step (3)> the transparent resin layer 4 is formed in the said polarizer 1 side in which the said film 3 for conveyance was peeled in the said process (2), and a polarizing film is manufactured.
  • FIG. 1 in the piece protection polarizing film A in which the protective film 2 is provided only on one side of the polarizer 1, the other side of the polarizer 1 of the piece protection polarizing film A (the surface on which the protection film 2 is not laminated). The case where the transparent resin layer 4 is provided is illustrated.
  • the transparent resin layer preferably has a compression elastic modulus at 80 ° C. of 0.1 GPa or more. Damage to the polarizer can be controlled by controlling the compressive elastic modulus of the transparent resin layer at 80 ° C. to 0.1 GPa or more, thereby suppressing the expansion of defects due to damage generated in the polarizer even under heating conditions.
  • the compression elastic modulus of the transparent resin layer is preferably 0.5 GPa or more, further 3 GPa or more, more preferably 5 GPa or more, and further preferably 8 GPa or more.
  • the compression elastic modulus of the transparent resin layer can be adjusted by material selection.
  • the compression elastic modulus in 80 degreeC of a transparent resin layer is a value measured based on description of an Example.
  • the transparent resin layer is provided so as to have a thickness of 0.2 ⁇ m or more from the viewpoint of suppressing expansion of a damaged portion.
  • the thickness is preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more.
  • the thickness of the transparent resin layer is preferably 5 ⁇ m or less, preferably 3 ⁇ m or less, more preferably less than 3 ⁇ m, and even more preferably 2 ⁇ m or less. .
  • Examples of the material for forming the transparent resin layer include polyester resins, polyether resins, polycarbonate resins, polyurethane resins, silicone resins, polyamide resins, polyimide resins, PVA resins, acrylic resins, and epoxy resins. Based resins and the like. These resin materials can be used singly or in combination of two or more, and among these, one or more selected from the group consisting of polyurethane resins, PVA resins, acrylic resins, and epoxy resins Are preferable, and PVA resin and acrylic resin are more preferable.
  • the transparent resin layer is coated on the surface of the polarizer (the surface from which the transport film has been peeled) with a liquid material containing a curable component that can constitute the resin component or resin, It can be formed by solidifying or curing the liquid.
  • the form of the liquid coating liquid is not particularly limited as long as it exhibits a liquid state, and may be any of water-based, water-dispersed, solvent-based, and solvent-free.
  • the liquid (coating liquid) having a lower viscosity is advantageous because it easily penetrates into the damaged part of the polarizer.
  • the viscosity measured at 25 ° C. is preferably 2000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, further preferably 500 mPa ⁇ s or less, and further 100 mPa ⁇ s. It is preferable that:
  • the resin component is solidified according to the type.
  • the liquid substance containing the resin component is a solution obtained by dissolving or dispersing the resin component in a solvent, and is used as, for example, an aqueous solution, an aqueous dispersion, or a solvent solution.
  • the solidification means forming a resin layer by removing a solvent from the liquid material.
  • the resin component is a polyvinyl alcohol-based resin
  • the liquid material can be used as an aqueous solution and can be solidified by heating or the like.
  • the resin component is water-soluble acrylic, it can be solidified similarly.
  • the curable component forms a resin according to the type of the curable component.
  • the liquid material containing a curable component that can constitute the resin can be used in a solventless system as long as the curable component exhibits a liquid material.
  • the liquid material may be a solution in which the curable component is dissolved in a solvent.
  • the said curable component exhibits a liquid substance, it can be used as a solution.
  • the solvent can be appropriately selected according to the curable component to be used.
  • the liquid material containing the curable component is irradiated with active energy rays (ultraviolet rays). Curing by irradiation) or the like can be performed.
  • the transparent resin layer is preferably formed by applying a liquid material containing a resin component dissolved or dispersed in water to a polarizer and then solidifying the liquid material.
  • the resin component dissolved or dispersed in water refers to a resin dissolved in water at room temperature (25 ° C.) or a resin soluble in water dissolved in an aqueous solvent. It is advantageous that the coating liquid is aqueous or water-dispersed because the surface of the polarizer swells so that the coating liquid becomes compatible with the damaged part. That is, when the coating liquid is an aqueous or water-dispersed system, the orientation of the polyvinyl alcohol molecules around the damaged part constituting the polarizer is partially relaxed and the boric acid content around the damaged part is reduced. Therefore, even if the thickness of the transparent resin layer is small (for example, less than 3 ⁇ m, preferably 2 ⁇ m or less), the expansion of the damaged portion can be effectively suppressed.
  • the resin component polyvinyl alcohol resin, poly (meth) acrylic acid, and methylolated melamine are preferably used.
  • a polyvinyl alcohol resin is suitable as the resin component from the viewpoint of adhesion to the polyvinyl alcohol resin constituting the polarizer. Below, the case where a polyvinyl alcohol-type resin is used is demonstrated.
  • the transparent resin layer is preferably formed from a forming material containing a polyvinyl alcohol-based resin.
  • the polyvinyl alcohol resin forming the transparent resin layer may be the same as or different from the polyvinyl alcohol resin contained in the polarizer as long as it is a “polyvinyl alcohol resin”.
  • the thickness of the transparent resin layer formed from a forming material containing a polyvinyl alcohol-based resin is preferably 0.2 ⁇ m or more, from the viewpoint of repairing damage generated on the surface of the polarizer and maintaining optical properties.
  • the thickness of the transparent resin layer is preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more.
  • the thickness of the transparent resin layer is preferably 3 ⁇ m or less, more preferably less than 3 ⁇ m, and further 2 ⁇ m or less. Is preferred.
  • polyvinyl alcohol resin examples include polyvinyl alcohol.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • polyvinyl alcohol-based resin examples include a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability.
  • the copolymerizable monomer is ethylene
  • an ethylene-vinyl alcohol copolymer is obtained.
  • the copolymerizable monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ethylene, propylene, and the like.
  • ⁇ -olefin (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N- Examples include vinyl pyrrolidone derivatives. These polyvinyl alcohol resins can be used alone or in combination of two or more.
  • the saponification degree of the polyvinyl alcohol-based resin can be, for example, 95 mol% or more, but from the viewpoint of satisfying moisture heat resistance and water resistance, the saponification degree is preferably 99 mol% or more, Is preferably 99.7 mol% or more.
  • the degree of saponification represents the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted to vinyl alcohol units by saponification, and the residue is a vinyl ester unit.
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be, for example, 500 or more. From the viewpoint of satisfying the heat and moisture resistance and water resistance, the average degree of polymerization is preferably 1000 or more, and more preferably 1500 or more. Is preferable, and 2000 or more is more preferable. The average degree of polymerization of the polyvinyl alcohol resin is measured according to JIS-K6726.
  • a modified polyvinyl alcohol resin having a hydrophilic functional group in the side chain of the polyvinyl alcohol or a copolymer thereof can be used.
  • the hydrophilic functional group include an acetoacetyl group and a carbonyl group.
  • modified polyvinyl alcohol obtained by acetalization, urethanization, etherification, grafting, phosphoric esterification or the like of a polyvinyl alcohol resin can be used.
  • the ratio of the polyvinyl alcohol resin in the transparent resin layer or the forming material is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
  • the forming material is prepared as a solution in which the polyvinyl alcohol resin is dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, it is preferable to use it as an aqueous solution using water as a solvent.
  • the concentration of the polyvinyl alcohol-based resin in the forming material is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5%, in consideration of coating properties and storage stability. ⁇ 10% by weight.
  • a plasticizer for example, polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants.
  • coupling agents such as silane coupling agents and titanium coupling agents, various tackifiers, ultraviolet absorbers, antioxidants, heat stabilizers, hydrolysis stabilizers, and other stabilizers can be added.
  • the transparent resin layer can be formed by applying and drying the forming material on the other surface of the polarizer (the surface not having the protective film).
  • the forming material is applied so that the thickness after drying is 0.2 ⁇ m or more.
  • the application operation is not particularly limited, and any appropriate method can be adopted.
  • various means such as a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) can be employed.
  • the drying temperature is usually preferably 60 to 200 ° C, and more preferably 70 to 120 ° C.
  • the drying time is preferably 10 to 1800 seconds, more preferably 20 to 600 seconds.
  • the curable component can be roughly classified into an active energy ray curable type such as an electron beam curable type, an ultraviolet ray curable type, and a visible light curable type, and a thermosetting type. Furthermore, the ultraviolet curable type and the visible light curable type can be classified into a radical polymerization curable type and a cationic polymerization curable type. In the present invention, an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light, and an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light.
  • the radical polymerization curable component can be used as a thermosetting curable component.
  • the curable component examples include a radical polymerizable compound.
  • the radical polymerizable compound examples include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group.
  • these curable components either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used.
  • these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types.
  • compounds having a (meth) acryloyl group are suitable.
  • (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.
  • Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group.
  • the (meth) acrylamide derivative is preferable in terms of ensuring adhesion with the polarizer and having a high polymerization rate and excellent productivity.
  • (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N— N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as
  • heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring examples include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine. Etc.
  • an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable from the viewpoint of adhesion to a polarizer, and N-hydroxyethyl (meth) acrylamide is particularly preferable.
  • examples of the monofunctional radical polymerizable compound include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-
  • Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate; Aralkyl (meth) acrylates such as benzyl (meth) acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclo Polycyclic (meth) acrylates such as pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like; 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (
  • Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, etc.
  • hydroxyl groups such as [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc.
  • Meth) acrylate Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) ) Halogen-containing (meth) acrylates such as acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate; Alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate; 3-Oxetanylmethyl (meth) acrylate
  • examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinyl pyrrolidone, N-vinyl- ⁇ -caprolactam, and methyl vinyl pyrrolidone; vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • lactam vinyl monomers such as N-vinyl pyrrolidone, N-vinyl- ⁇ -caprolactam, and methyl vinyl pyrrolidone
  • vinyl pyridine vinyl piperidone
  • vinyl pyrimidine vinyl piperazine
  • vinyl pyrazine examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • a radically polymerizable compound having an active methylene group can be used as the monofunctional radically polymerizable compound.
  • the radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule.
  • the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group.
  • the active methylene group is preferably an acetoacetyl group.
  • radical polymerizable compound having an active methylene group examples include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like.
  • Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide.
  • the radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.
  • Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylol
  • Aronix M-220, M-306 manufactured by Toagosei Co., Ltd.
  • light acrylate 1,9ND-A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DGE-4A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DCP- A manufactured by Kyoeisha Chemical Co., Ltd.
  • SR-531 manufactured by Sartomer
  • CD-536 manufactured by Sartomer
  • various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
  • the radical polymerizable compound is preferably used in combination with a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of achieving both adhesion to the polarizer and optical durability.
  • the radical polymerization curable forming material can be used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material does not need to contain a photopolymerization initiator, but when using ultraviolet rays or visible light for the active energy ray, It preferably contains a photopolymerization initiator.
  • the curable component when used as a thermosetting component, the forming material preferably contains a thermal polymerization initiator.
  • the photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray.
  • a photopolymerization initiator for ultraviolet light or visible light cleavage is used.
  • photopolymerization initiator examples include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, aromatic ketone compounds such as ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, ⁇ -hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl ether; Benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether, benzoin butyl ether and ani
  • the blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 5 parts by weight.
  • a photopolymerization initiator that is particularly sensitive to light of 380 nm or more.
  • a photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.
  • the compound represented by following General formula (1) (Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later.
  • the adhesion is excellent as compared with the case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
  • the composition ratio of the compound represented by the general formula (1) in the forming material is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component, and preferably 0.5 to 4 parts. More preferred are parts by weight, and even more preferred is 0.9 to 3 parts by weight.
  • polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, etc. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable.
  • a polymerization initiation assistant When a polymerization initiation assistant is used, its addition amount is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.
  • a known photopolymerization initiator can be used in combination as necessary. Since the protective film having UV absorbing ability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more as the photopolymerization initiator.
  • 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) 1-yl) -phenyl) titanium and the like.
  • a photopolymerization initiator in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2); Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it.
  • the compound represented by the general formula (2) 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercial product is suitable. Can be used.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF)
  • 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferred because of its high sensitivity.
  • thermal polymerization initiator those in which polymerization does not start by thermal cleavage are preferable.
  • thermal polymerization initiator those having a 10-hour half-life temperature of 65 ° C. or higher, more preferably 75 to 90 ° C. are preferable.
  • the half-life is an index representing the decomposition rate of the polymerization initiator, and means the time until the remaining amount of the polymerization initiator is halved.
  • the decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog, for example, “Organic peroxide catalog 9th edition by Nippon Oil & Fats Co., Ltd.” (May 2003) ".
  • thermal polymerization initiator examples include lauroyl peroxide (10 hour half-life temperature: 64 ° C.), benzoyl peroxide (10 hour half-life temperature: 73 ° C.), 1,1-bis (t-butylperoxy) -3.
  • thermal polymerization initiator examples include 2,2′-azobisisobutyronitrile (10 hour half-life temperature: 67 ° C.), 2,2′-azobis (2-methylbutyronitrile) (10 hours). And azo compounds such as 1,1-azobis-cyclohexane-1-carbonitrile (10 hour half-life temperature: 87 ° C.).
  • the blending amount of the thermal polymerization initiator is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the thermal polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 3 parts by weight.
  • Examples of the curable component of the cationic polymerization curable forming material include compounds having an epoxy group or an oxetanyl group.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • a preferable epoxy compound a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
  • the cationic polymerization curable forming material contains the epoxy compound and the oxetane compound described above as the curable component, and both of these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein.
  • This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.
  • the formation of the transparent resin layer by the curable forming material is performed by coating the curable forming material on the surface of the polarizer and then curing.
  • the polarizer may be subjected to a surface modification treatment before coating the curable forming material.
  • Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
  • the coating method of the curable forming material is appropriately selected depending on the viscosity of the curable forming material and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the curable forming material is used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type.
  • the aspect of the curable forming material is preferably an active energy ray curable forming material rather than a thermosetting forming material from the viewpoint of productivity, and moreover, the active energy ray curable forming material is a visible light curable forming material. It is preferable from the viewpoint of productivity.
  • active energy ray curing type In the active energy ray curable forming material, after applying the active energy ray curable forming material to the polarizer, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated, and the active energy ray curable forming material is applied. Curing to form a transparent resin layer.
  • the irradiation direction of active energy rays can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent resin layer side.
  • the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the deepest part of the transparent resin layer and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong, and a protective film or polarizer May cause damage.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive When the irradiation dose is less than 5 kGy, the adhesive is insufficiently cured, and when it exceeds 100 kGy, the protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. Can not.
  • the electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced.
  • active energy rays containing visible light having a wavelength range of 380 nm to 450 nm, particularly active energy rays having the largest irradiation amount of visible light having a wavelength range of 380 nm to 450 nm are used as active energy rays. It is preferable.
  • active energy ray according to the present invention a gallium-encapsulated metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable.
  • low pressure mercury lamp medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight
  • a light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter.
  • thermosetting type forming material by heating, polymerization is started by a thermal polymerization initiator to form a cured product layer.
  • the heating temperature is set according to the thermal polymerization initiator, but is about 60 to 200 ° C., preferably 80 to 150 ° C.
  • the transparent resin layer 4 of the polarizing film (or the piece-protecting polarizing film B) obtained by the production method of the present invention is laminated with an adhesive layer, and the polarizing film with the adhesive layer (or the piece-protecting polarizing film).
  • Film C) can be produced.
  • a separator can be provided in the pressure-sensitive adhesive layer of the polarizing film with the pressure-sensitive adhesive layer (or the piece protective polarizing film C).
  • Adhesive layer An appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited.
  • Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
  • pressure-sensitive adhesives those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used.
  • An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
  • the pressure-sensitive adhesive layer for example, a method in which the pressure-sensitive adhesive is applied to a release-treated separator, the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer, and then transferred to a polarizer or a polarizer.
  • the pressure-sensitive adhesive is applied to the film, and the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer on the polarizer.
  • one or more solvents other than the polymerization solvent may be added as appropriate.
  • a silicone release liner is preferably used as the release-treated separator.
  • an appropriate method may be adopted as appropriate according to the purpose.
  • a method of heating and drying the coating film is used.
  • the heating and drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and particularly preferably 70 ° C to 170 ° C.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
  • Various methods are used as a method for forming the pressure-sensitive adhesive layer. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 ⁇ m.
  • the thickness is preferably 2 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and still more preferably 5 to 35 ⁇ m.
  • the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with a peeled sheet (separator) until practical use.
  • constituent material of the separator examples include, for example, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films, porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films
  • porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • a thin film can be used, but a plastic film is preferably used because of its excellent surface smoothness.
  • the plastic film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer.
  • a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyvinyl chloride film, and a vinyl chloride co-polymer are used.
  • examples thereof include a polymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 100 ⁇ m.
  • mold release and antifouling treatment with a silicone type, fluorine type, long chain alkyl type or fatty acid amide type release agent, silica powder, etc., coating type, kneading type, vapor deposition type It is also possible to carry out antistatic treatment such as.
  • the release property from the pressure-sensitive adhesive layer can be further improved by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the separator.
  • a surface protective film can be provided on the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with an adhesive layer).
  • the surface protective film usually has a base film and an adhesive layer, and protects the polarizer via the adhesive layer.
  • a film material having isotropic property or close to isotropic property is selected from the viewpoints of inspection property and manageability.
  • film materials include polyester resins such as polyethylene terephthalate film, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, and the like. Examples thereof include transparent polymers such as resins. Of these, polyester resins are preferred.
  • the base film can be used as a laminate of one kind or two or more kinds of film materials, and a stretched product of the film can also be used.
  • the thickness of the base film is generally 500 ⁇ m or less, preferably 10 to 200 ⁇ m.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer of the surface protective film includes a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or a rubber-based pressure-sensitive adhesive. Can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable.
  • the thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required adhesive force. Usually, it is about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the surface protective film can be provided with a release treatment layer on the surface opposite to the surface on which the pressure-sensitive adhesive layer is provided on the base film, using a low adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
  • the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer) of the present invention can be used as an optical film laminated with another optical layer in practical use.
  • the optical layer is not particularly limited.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film.
  • One or more optical layers that may be used can be used.
  • a reflective polarizing film or a semi-transmissive polarizing film in which a reflective plate or a semi-transmissive reflective plate is further laminated on the piece protective polarizing film of the present invention an elliptical polarizing film in which a retardation plate is further laminated on the polarizing film, or A circular viewing film, a wide viewing angle polarizing film in which a viewing angle compensation film is further laminated on the polarizing film, or a polarizing film in which a brightness enhancement film is further laminated on the polarizing film are preferable.
  • An optical film obtained by laminating the above optical layer on the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with an adhesive layer) is also formed by a method of sequentially laminating separately in the manufacturing process of liquid crystal display devices and the like.
  • the optical film laminated in advance is excellent in quality stability and assembly work, and has the advantage of improving the manufacturing process of liquid crystal display devices and the like.
  • an appropriate adhesive means such as a pressure-sensitive adhesive layer can be used.
  • the polarizing film (including a piece protective polarizing film and a polarizing film with an adhesive layer) or an optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film with an adhesive layer or an optical film, and an illumination system as necessary, and incorporating a drive circuit.
  • the polarizing film of the present invention including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer
  • an optical film according to the present invention is used.
  • As the liquid crystal cell an arbitrary type such as an IPS type or a VA type can be used, but is particularly suitable for the IPS type.
  • An appropriate liquid crystal display device such as can be formed.
  • the polarizing film (including a piece protective polarizing film and a polarizing film with an adhesive layer) or an optical film of the present invention can be installed on one side or both sides of the liquid crystal cell.
  • the polarizing film of the present invention including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer
  • an optical film is provided on both sides, they may be the same or different.
  • a liquid crystal display device for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.
  • Viscosity measurement> The viscosity of the aqueous solution (coating solution) which is a liquid was measured using a VISCOMETER R85 viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) under the following conditions. Measurement temperature: 25 ° C Rotation speed: 0.5-100rpm Cone rotor: 1 ° 34 ' ⁇ R24
  • ⁇ Forming material for transparent resin layer> Polyvinyl alcohol-based forming material: PVA-A
  • a polyvinyl alcohol resin having a polymerization degree of 2500 and a saponification degree of 99.7 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 4% by weight and a viscosity of 60 mPa ⁇ S.
  • Polyvinyl alcohol-based forming material PVA-B
  • a polyvinyl alcohol resin having a polymerization degree of 500 and a saponification degree of 96.0 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 4% by weight and a viscosity of 60 mPa ⁇ S.
  • Polyvinyl alcohol-based forming material (Polyvinyl alcohol-based forming material :: PVA-C) A polyvinyl alcohol resin having a polymerization degree of 2500 and a saponification degree of 99.7 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 8 wt% and a viscosity of 1500 mPa ⁇ S.
  • methyl ethyl ketone was added to prepare a coating solution having a viscosity of 10 mPa ⁇ S.
  • Methyl ethyl ketone was adjusted so that the ratio of the acrylic forming material A in the solution was 40% in the preparation of the acrylic forming material B.
  • aqueous solution (coating solution) having a solid content concentration of 3% and a viscosity of 10 mPa ⁇ S.
  • composition of epoxy-based forming material A no solvent
  • the following materials were mixed at 50 ° C. and stirred for 1 hour to prepare a coating solution having a viscosity of 10 mPa ⁇ S. 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Daicel Chemical Industries, trade name “Celoxide 2021P”) 100 parts Photocationic polymerization initiator (4- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate , Made by Sun Apro, trade name "CPI-100P”)
  • HEAA N-hydroxyethylacrylamide
  • ACMO acryloylmorpholine
  • UVGACURE 819 photoinitiator
  • TAC Transtective film
  • TD80UL triacetyl cellulose film having a thickness of 80 ⁇ m
  • a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%)
  • 50 parts of methylol melamine was dissolved in pure water under a temperature condition of 30 ° C. to prepare an aqueous solution adjusted to a solid content concentration of 3.7%.
  • An aqueous adhesive solution was prepared by adding 18 parts of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts of the aqueous solution.
  • Example 1 Preparation of Laminate (a)> As a transport film, a long, amorphous phthalate copolymerized polyethylene terephthalate (PET) film with a water absorption of 0.75% and Tg of 75 ° C. (trade name “Novaclear”, thickness 100 ⁇ m, manufactured by Mitsubishi Chemical Corporation) Using. One side of the transport film is subjected to corona treatment, and on this corona-treated surface, 90 parts by weight of polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl).
  • PET polyethylene terephthalate
  • aqueous solution containing 10 parts by weight of a modification degree of 4.6%, a saponification degree of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and trade name “Gosefimer Z200”) was applied and dried at 60 ° C. to obtain a thickness.
  • a 10 ⁇ m PVA resin layer (coating type) was formed to produce a laminate (a ′).
  • the obtained laminate (a ′) was uniaxially stretched at a free end 1.8 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching).
  • the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • an insolubilization bath a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water
  • it is immersed for 60 seconds in a dyeing bath having a liquid temperature of 30 ° C.
  • an iodine aqueous solution obtained by blending 0.2 parts by weight of iodine and 1.0 part by weight of potassium iodide with respect to 100 parts by weight of water (Staining treatment).
  • it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C.
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water.
  • Crosslinking treatment Thereafter, the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C.
  • uniaxial stretching was performed in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds (underwater stretching).
  • the draw ratio was adjusted so that the thickness of the obtained polarizer was 5 ⁇ m.
  • the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
  • a cleaning bath an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water
  • cleaning treatment a liquid temperature of 30 ° C.
  • Step 4 Lamination of protective film: production of a piece protective polarizing film A ′ with a transport film
  • the ultraviolet curable adhesive was applied to the surface of the polarizer of the laminate (a) so that the thickness of the adhesive layer after curing was 1 ⁇ m, and the protective film (acrylic) was bonded.
  • ultraviolet rays were applied as active energy rays to cure the adhesive.
  • Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc.
  • Step 3 Production of a piece protective polarizing film B with a transparent resin layer
  • the polyvinyl alcohol system adjusted to 25 ° C. as a transparent resin layer forming material on the polarizer surface (polarizer surface on which no protective film is provided) of the single protective polarizing film A from which the transport film has been peeled off
  • the forming material (PVA-A) was applied with a wire bar so that the thickness after drying was 1 ⁇ m, and then dried with hot air at 85 ° C. for 25 seconds to prepare a piece protective polarizing film B with a transparent resin layer.
  • Example 2 the piece-protecting polarizing film B with a transparent resin layer was used in the same manner as in Example 1 except that the materials, thicknesses, and means for forming each layer used in each step were changed as shown in Table 1. Was made.
  • Table 1 with respect to the transport film in the step (1), in Examples 3 and 4, it is a long, amorphous isophthalic acid copolymerized polyethylene terephthalate (PET) film having a water absorption of 0.75% and a Tg of 75 ° C. (Mitsubishi Chemical Co., Ltd., trade name “NOVA CLEAR”, thickness 38 ⁇ m) was used and provided with the following pressure-sensitive adhesive layer X.
  • the pressure-sensitive adhesive layer X was used by transferring a pressure-sensitive adhesive layer of a pressure-sensitive adhesive sheet prepared by the following method.
  • a PVA-based resin layer was formed or a PVA film was bonded to the pressure-sensitive adhesive layer to produce a laminate (a ′).
  • the glass transition temperature calculated from the Fox formula of this acrylic polymer (a) was ⁇ 68 ° C., and the weight average molecular weight was 550,000.
  • 100 parts by mass of toluene, 40 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Chemical Co., Ltd.), 60 parts of methyl methacrylate (MMA) and methyl thioglycolate as a chain transfer agent Five parts were put into a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, a cooler, and a dropping funnel. Then, after stirring for 1 hour at 70 ° C.
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • methyl thioglycolate methyl thioglycolate
  • the obtained (meth) acrylic polymer 1 had a glass transition temperature calculated from the Fox formula of 130 ° C. and a weight average molecular weight of 4300.
  • the (meth) acrylic polymer 1 is added to 500 parts of the (meth) acrylic polymer (a) solution (35%) diluted to 20% with ethyl acetate (100 parts of the (meth) acrylic polymer (a)).
  • the pressure-sensitive adhesive composition (1) was applied to the surface opposite to the antistatic treatment surface of a polyethylene terephthalate film with an antistatic treatment layer (trade name: Diafoil T100G38, manufactured by Mitsubishi Plastics, Inc., thickness 38 ⁇ m). The mixture was heated at 0 ° C. for 2 minutes to form a pressure-sensitive adhesive layer having a thickness of 15 ⁇ m. Next, a silicone-treated surface of a release liner (20 ⁇ m thick polyethylene terephthalate film with one side subjected to silicone treatment) was bonded to the surface of the pressure-sensitive adhesive layer to produce a pressure-sensitive adhesive sheet.
  • a silicone-treated surface of a release liner (20 ⁇ m thick polyethylene terephthalate film with one side subjected to silicone treatment
  • Example 7 a polyethylene (PE) film (manufactured by Toray Film Processing Co., Ltd., Tretec 7332, thickness 31 ⁇ m) was used for the transport film in step (1).
  • a polypropylene (PP) film manufactured by Toray Industries Inc., Treffan 2500H, thickness 60 ⁇ m was used.
  • Example 1 In Table 1, with respect to the method of forming the polarizer in step (1), in Examples 2, 4, and 6, the PVA-based resin layer (coating type) was formed in Example 1 when producing the laminate (a ′). Instead, a polyvinyl alcohol film (film type) having an average polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 20 ⁇ m was bonded to the transport film. The obtained laminate (a ′) was treated in the same manner as in Example 1 to obtain a laminate (a) containing a 7 ⁇ m thick polarizer after stretching.
  • a protective film was bonded to the surface of the polarizer using an adhesive aqueous solution. After bonding the protective film (TAC), drying was performed at 50 ° C. for 5 minutes. The adhesive layer was adjusted so that the thickness after drying was 0.1 ⁇ m.
  • the heating time, heating temperature, and film thickness shown in Table 1 were employed.
  • acrylic forming material A or epoxy forming material A is used as the forming material of the transparent resin layer (Examples 11 and 14)
  • the forming material is made to have a thickness of 5 ⁇ m using a wire bar coater.
  • a piece protective polarizing film B with a transparent resin layer was produced by irradiating active energy rays in a nitrogen atmosphere.
  • active energy ray visible light (gallium filled metal halide lamp) Irradiation device: Fusion UV Systems, Inc.
  • Light HAMMER10 bulb V bulb Peak illuminance: 1600 mW / cm 2 , integrated irradiation dose 1000 / mJ / cm 2 (wavelength 380-440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell. Moreover, when the acrylic type forming material B (solvent type) was used as the forming material of the transparent resin layer (Example 12), after the coating, it was dried in an oven at 60 ° C. for 1 second, and then the solvent was removed. In the same manner as above, active energy rays were irradiated in a nitrogen atmosphere to form a transparent resin layer. Moreover, when the acrylic type forming material C (aqueous type) was used as the forming material of the transparent resin layer (Example 13), it was dried in an oven at 90 ° C. for 60 seconds after coating to form a transparent resin layer.
  • solvent type active energy rays
  • Comparative Examples 1 and 2 the step (3) (formation of a transparent resin layer) was not performed.
  • Comparative Example 3 instead of forming a transparent resin layer, only water was applied and a drying process was performed.
  • Comparative Example 4 the step (3) (formation of a transparent resin layer) was performed with a thickness of 0.1 ⁇ m.
  • Comparative Example 5 the film for conveyance could not be conveyed because it was not used.
  • ⁇ Single transmittance T and degree of polarization P> The single transmittance T and polarization degree P of the obtained piece-protecting polarizing film A were measured using a spectral transmittance measuring device with an integrating sphere (Dot-3c of Murakami Color Research Laboratory).
  • the degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated
  • Polarization degree P (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
  • step (1) whether or not the laminate (a ′) was able to be transported when subjected to underwater stretching (wet stretching step) was determined based on the following criteria.
  • Can be transported.
  • Can be transported, but cracks to the extent that it can be transported to the end of the polarizer.
  • X Cannot be transported due to breakage.
  • the pressure-sensitive adhesive layer Y was provided on the surface of the piece protective polarizing film A from which the transport film was peeled off.
  • the pressure-sensitive adhesive layer Y was provided on the surface of the single protective polarizing film A on which water was applied. In this way, a sample (polarizing film with an adhesive layer) was prepared.
  • the pressure-sensitive adhesive layer Y side of the sample was attached to both surfaces of a non-alkali glass having a thickness of 0.5 mm using a laminator so that the sample was crossed Nicol. Subsequently, the sample was autoclaved at 50 ° C. and 0.5 MPa for 15 minutes to completely adhere the sample to the acrylic-free glass.
  • cross-linking agent 100 parts by weight of the solid content of the acrylic polymer solution is a cross-linking agent mainly composed of a compound having an isocyanate group of 0.5 part (trade name “Coronate L” manufactured by Nippon Polyurethane Co., Ltd.). And 0.075 parts of ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KMB-403”) as a silane coupling agent in this order, was prepared.
  • the pressure-sensitive adhesive solution was applied to the surface of a release sheet (separator) composed of a peeled polyethylene terephthalate film (thickness 38 ⁇ m) so that the thickness after drying was 20 ⁇ m, dried, and pressure-sensitive adhesive layer Y Formed.
  • a 'piece protective polarizing film with film for transportation A piece protective polarizing film B piece protective polarizing film with transparent resin layer C piece protective polarizing film with adhesive layer (with transparent resin layer) DESCRIPTION OF SYMBOLS 1 Polarizer 2 Protective film 3 Film for conveyance 4 Transparent resin layer 5 Adhesive layer

Abstract

This method for producing a polarizing film comprises: a step (1) for preparing a laminate (a) which comprises a film for conveyance and a polarizer that is formed on one surface of the film for conveyance and contains a polyvinyl alcohol resin, while having a thickness of 10 μm or less; a step (2) for removing the film for conveyance from the laminate (a); and a step (3) for forming a transparent resin layer having a thickness of 0.2 μm or more by applying a liquid material that contains a resin component or a curable component which is capable of constituting a resin layer to a surface of the laminate (a), from which the film for conveyance is removed, and subsequently solidifying or curing the liquid material. This production method enables the achievement of a polarizing film which is able to have satisfactory durability in a heated environment even in cases where a thin polarizer is used therefor.

Description

偏光フィルムの製造方法Manufacturing method of polarizing film
 本発明は、偏光フィルムの製造方法に関する。前記偏光フィルムは、偏光子の少なくとも片面に保護フィルムが設けられた偏光フィルムとして用いることができる。さらには、前記偏光フィルムには、さらに粘着剤層を設けて、粘着剤層付の偏光フィルムとして用いることができる。前記偏光フィルムはこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置などの画像表示装置を形成しうる。 The present invention relates to a method for producing a polarizing film. The polarizing film can be used as a polarizing film in which a protective film is provided on at least one surface of a polarizer. Further, the polarizing film may be further provided with an adhesive layer and used as a polarizing film with an adhesive layer. The polarizing film can form an image display device such as a liquid crystal display device (LCD) or an organic EL display device alone or as an optical film obtained by laminating the polarizing film.
 時計、携帯電話、PDA、ノートパソコン、パソコン用モニタ、DVDプレーヤー、TVなどでは液晶表示装置が急激に市場展開している。液晶表示装置は、液晶のスイッチングによる偏光状態を可視化させたものであり、その表示原理から、偏光子が用いられる。 Liquid crystal display devices are rapidly expanding in the market for watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, etc. The liquid crystal display device visualizes the polarization state by switching of the liquid crystal, and a polarizer is used from the display principle.
 偏光子としては、高透過率、高偏光度を有することから、例えばポリビニルアルコールにヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が最も一般的に広く使用されている。このような偏光子は、機械的強度が極端に弱く、熱や水分により収縮してしまい偏光機能が顕著に低下してしまう短所をもっている。従って、得られた偏光子は直ちに、接着剤が塗工された保護フィルムと接着剤を介して貼り合わせられて、偏光フィルムとして用いられている。 As the polarizer, since it has a high transmittance and a high degree of polarization, for example, an iodine-based polarizer having a structure in which iodine is adsorbed on polyvinyl alcohol and stretched is most widely used. Such a polarizer has a disadvantage that the mechanical strength is extremely weak, and the polarizing function is remarkably lowered due to contraction due to heat and moisture. Therefore, the obtained polarizer is immediately bonded to the protective film coated with the adhesive via the adhesive and used as a polarizing film.
 一方、液晶表示装置等の画像表示装置は、薄型化がすすんでおり、偏光フィルムについても薄型化が要求されている。薄型偏光子を作製する際には、偏光子が薄いことで偏光子が損傷を受ける。そのため、薄型偏光子の製造には、搬送用(剥離可能な保護フィルム)フィルムが使用される。例えば、搬送用フィルムと当該搬送用フィルムの片側に形成されたポリビニルアルコール系樹脂層とを有する積層体を延伸、染色することにより、当該搬送用フィルム上に、薄型偏光子を得ることができる(特許文献1乃至6)。また、偏光子の片側にのみ保護フィルムを設け、他の片側には保護フィルムを設けていない片保護偏光フィルムを用いることができる。当該片保護偏光フィルムは、偏光子の両面に保護フィルムを設けた両保護偏光フィルムに比べると、保護フィルムが一枚少ないため、薄化型を図ることができる。 On the other hand, image display devices such as liquid crystal display devices are becoming thinner, and the polarizing film is also required to be thinner. When a thin polarizer is manufactured, the polarizer is damaged due to the thin polarizer. Therefore, a transport (peelable protective film) film is used for manufacturing a thin polarizer. For example, a thin polarizer can be obtained on the transport film by stretching and dyeing a laminate having a transport film and a polyvinyl alcohol-based resin layer formed on one side of the transport film ( Patent Documents 1 to 6). Moreover, the protective film can be used only on one side of the polarizer and the protective film can be used on the other side without the protective film. The single-protective polarizing film can be a thin type because the protective film is less than one protective polarizing film provided with protective films on both sides of the polarizer.
特開2000-338329号公報JP 2000-338329 A 特開2001-343521号公報JP 2001-343521 A 特開2011-227450号公報JP 2011-227450 A 特開2013-033084号公報JP 2013-033084 A 国際公開第2014/077599号パンフレットInternational Publication No. 2014/077599 Pamphlet 国際公開第2014/077636号パンフレットInternational Publication No. 2014/077636 Pamphlet
 液晶表示装置には、高温下の過酷な条件下においても光学特性を維持することができる耐久性が求められている。上記の薄型の偏光子を用いた偏光フィルムについても、前記耐久性が求められる。 Liquid crystal display devices are required to have durability capable of maintaining optical characteristics even under severe conditions at high temperatures. The durability is also required for a polarizing film using the above thin polarizer.
 上記特許文献1乃至6に記載の製造方法により得られた、薄型偏光子を、実用に供する場合には、通常、搬送用フィルムが剥離される。また、前記薄型偏光子を利用して、片保護偏光フィルムを作製する場合には、例えば、偏光子に接着剤を介して保護フィルムを積層し、次いで、搬送用フィルムを偏光子から剥離することにより、片保護偏光フィルムが作製される。かかる片保護偏光フィルムの偏光子側には、そのまま、例えば、粘着剤層が積層されて用いられている。 When the thin polarizer obtained by the production method described in Patent Documents 1 to 6 is put to practical use, the transport film is usually peeled off. Moreover, when producing a piece protection polarizing film using the said thin polarizer, a protective film is laminated | stacked through an adhesive agent on a polarizer, for example, Then, a film for conveyance is peeled from a polarizer. Thus, a piece protective polarizing film is produced. For example, a pressure-sensitive adhesive layer is laminated on the polarizer side of the single protective polarizing film.
 しかし、前記製造方法において、搬送用フィルムを偏光子から剥離する際に、偏光子表面の一部が搬送用フィルムとともに取り除かれてしまったり、搬送用フィルムを剥離した衝撃により偏光子が割れたりして、偏光子に損傷(外観不良)が生じ、加熱環境下におかれた場合には、前記損傷が顕在化して光ヌケの欠点として視認されることが分かった。殊に、特許文献1乃至6に記載の製造方法等により得られた前記薄型偏光子を用いた前記の片保護偏光フィルムにおいては、搬送用フィルム側には保護フィルムが設けられていないため、加熱環境下におかれた場合に、損傷部に前記光ヌケが発生する問題が発生しやすい。そのため、前記製造方法により得られる薄型偏光子や、当該薄型偏光子を用いた片保護偏光フィルムでは、前記耐久性を満足したものは得られていなかった。 However, in the above manufacturing method, when the transport film is peeled off from the polarizer, a part of the surface of the polarizer is removed together with the transport film, or the polarizer is broken by the impact of peeling the transport film. Thus, it was found that when the polarizer was damaged (defective appearance) and was placed in a heating environment, the damage became obvious and was visually recognized as a defect of light leakage. In particular, in the above-mentioned piece protective polarizing film using the thin polarizer obtained by the production methods described in Patent Documents 1 to 6, since the protective film is not provided on the transport film side, When placed in an environment, the problem of the occurrence of light leakage at the damaged portion is likely to occur. Therefore, in the thin polarizer obtained by the said manufacturing method, and the piece protection polarizing film using the said thin polarizer, what satisfy | filled the said durability was not obtained.
 本発明は、加熱環境下においても耐久性を満足することができる、薄型の偏光子を用いた偏光フィルムの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a polarizing film using a thin polarizer that can satisfy durability even in a heating environment.
 本願発明者らは、鋭意検討の結果、下記の偏光フィルムの製造方法により上記課題を解決し得ることを見出し、本発明に至った。 As a result of intensive studies, the present inventors have found that the above-described problems can be solved by the following method for producing a polarizing film, and have reached the present invention.
 即ち本発明は、搬送用フィルムと、当該搬送用フィルムの片面に形成されたポリビニルアルコール系樹脂を含有する厚み10μm以下の偏光子を有する積層体(a)を準備する工程(1)、
 前記積層体(a)から前記搬送用フィルムを剥離する工程(2)、および
 前記積層体(a)において搬送用フィルムが剥離された側に、樹脂成分または樹脂層を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより厚みが0.2μm以上の透明樹脂層を形成する工程(3)を含むことを特徴とする偏光フィルムの製造方法、に関する。
That is, the present invention provides a laminate (a) having a transport film and a polarizer (a) having a thickness of 10 μm or less containing a polyvinyl alcohol-based resin formed on one side of the transport film (1),
Step (2) of peeling the film for conveyance from the laminate (a), and curable resin layer or resin layer on the side of the laminate (a) from which the film for conveyance is peeled off. A polarizing film comprising a step (3) of forming a transparent resin layer having a thickness of 0.2 μm or more by applying a liquid material containing a component and then solidifying or curing the liquid material Manufacturing method.
 前記偏光フィルムの製造方法において、前記透明樹脂層は、80℃における圧縮弾性率が0.1GPa以上であることが好ましい。 In the method for producing a polarizing film, the transparent resin layer preferably has a compression elastic modulus at 80 ° C. of 0.1 GPa or more.
 前記偏光フィルムの製造方法において、前記工程(3)で形成される透明樹脂層は、水に溶解または分散した樹脂成分を含む液状物を塗工した後に、固化することによって形成することができる。 In the method for producing a polarizing film, the transparent resin layer formed in the step (3) can be formed by applying a liquid material containing a resin component dissolved or dispersed in water and then solidifying.
 前記偏光フィルムの製造方法において、前記樹脂成分を含む液状物としては、ポリビニルアルコール系樹脂を含有する水溶液が好適である。 In the method for producing a polarizing film, the liquid material containing the resin component is preferably an aqueous solution containing a polyvinyl alcohol resin.
 前記偏光フィルムの製造方法において、前記液状物は、25℃における粘度が1000mPa・s以下であることが好ましい。 In the method for producing a polarizing film, the liquid material preferably has a viscosity at 25 ° C. of 1000 mPa · s or less.
 前記偏光フィルムの製造方法において、前記工程(1)における積層体(a)は、搬送用フィルムと当該搬送用フィルムの片面に形成されたポリビニルアルコール系樹脂層とを有する積層体(a´)に、少なくとも延伸工程および染色工程を施すことにより得られたものを用いることができる。 In the manufacturing method of the polarizing film, the laminate (a) in the step (1) is a laminate (a ′) having a transport film and a polyvinyl alcohol-based resin layer formed on one surface of the transport film. Those obtained by performing at least a stretching step and a dyeing step can be used.
 前記偏光フィルムの製造方法において、前記積層体(a)の偏光子の側に、保護フィルムを形成する工程(4)を有することができ、前記偏光フィルムとして、偏光子の片側にのみ保護フィルムを有する片保護偏光フィルムを製造することができる。 In the manufacturing method of the said polarizing film, it can have the process (4) which forms a protective film in the polarizer side of the said laminated body (a), and a protective film is provided only as one side of a polarizer as the said polarizing film. The piece protection polarizing film which has can be manufactured.
 前記偏光フィルムの製造方法において、前記偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、下記式
 P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
 P≧99.9(ただし、T≧42.3)によって表される範囲にあることが好ましい。
In the method for producing a polarizing film, the polarizer has an optical property represented by the following formula: P> − (10 0.929T-42.4 −1) × 100 , T <42.3), or
It is preferably in the range represented by P ≧ 99.9 (where T ≧ 42.3).
 前記偏光フィルムの製造方法において、前記工程(3)で形成される透明樹脂層の側に、さらに、粘着剤層を形成する工程(5)を有することができ、粘着剤層付の偏光フィルムを製造することができる。 In the manufacturing method of the said polarizing film, it can have the process (5) which forms an adhesive layer further on the transparent resin layer side formed at the said process (3), and a polarizing film with an adhesive layer is provided. Can be manufactured.
 本発明の偏光フィルムの製造方法では、搬送用フィルムと、当該搬送用フィルムの片面に形成された厚み10μm以下の偏光子を有する積層体(a)から搬送用フィルムを剥離した後に、当該偏光子の表面に厚みが0.2μm以上透明樹脂層を形成している。かかる透明樹脂層によって、薄型偏光子の表面に生じた損傷を修復することができ、偏光子に係る外観不良を解消することができる。 In the manufacturing method of the polarizing film of this invention, after peeling a film for conveyance from the laminated body (a) which has a film for conveyance and the polarizer of thickness 10 micrometers or less formed in the single side | surface of the said film for conveyance, the said polarizer A transparent resin layer having a thickness of 0.2 μm or more is formed on the surface. Such a transparent resin layer can repair the damage generated on the surface of the thin polarizer and can eliminate the appearance defect related to the polarizer.
 また、本発明の製造方法で得られる偏光フィルムは、偏光子の表面に透明樹脂層が設けられているため、加熱条件下においても偏光子に生じた損傷の拡張を抑えることができる。このように本発明の製造方法で得られる偏光フィルムは、当該偏光フィルムが加熱環境下に置かれた場合においても、前記損傷による光ヌケを抑制することができ、耐久性を満足することができる。 Moreover, since the polarizing film obtained by the production method of the present invention is provided with a transparent resin layer on the surface of the polarizer, it is possible to suppress the expansion of damage caused to the polarizer even under heating conditions. Thus, the polarizing film obtained by the production method of the present invention can suppress light leakage due to the damage even when the polarizing film is placed in a heating environment, and can satisfy durability. .
 また本発明の製造方法において、薄型の偏光子に設けられる透明樹脂層として、80℃における圧縮弾性率が0.1GPa以上のものが前記耐久性の観点から有効である。前記透明樹脂層(80℃における圧縮弾性率が0.1GPa以上)は、薄型化を満足しながら、かつ、加熱環境下においても、偏光子に生じる損傷による光ヌケの欠陥を抑制するうえで好ましい。 In the production method of the present invention, a transparent resin layer provided on a thin polarizer having a compression elastic modulus at 80 ° C. of 0.1 GPa or more is effective from the viewpoint of durability. The transparent resin layer (with a compressive modulus at 80 ° C. of 0.1 GPa or more) is preferable for suppressing defects due to damage caused in the polarizer while satisfying the reduction in thickness and in a heating environment. .
本発明の偏光フィルムの製造方法に係る実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment which concerns on the manufacturing method of the polarizing film of this invention. 工程(3)で透明樹脂層を形成する前の片保護偏光フィルムについて、加熱処理前後の断面図を示す写真である。It is a photograph which shows sectional drawing before and behind heat processing about the piece protection polarizing film before forming a transparent resin layer at a process (3). 工程(3)で透明樹脂層を形成した後の透明樹脂層付の片保護偏光フィルムについて、加熱処理前後の断面図を示す写真である。It is a photograph which shows sectional drawing before and behind heat processing about the piece protection polarizing film with a transparent resin layer after forming a transparent resin layer at a process (3).
 以下に本発明の偏光フィルムの製造方法について、図1を参照しながら、工程(1)乃至(5)を説明する。本発明の偏光フィルムの製造方法では、薄型の偏光子1と搬送用フィルム3を有する積層体(a)を準備する工程(1)の後に、工程(2)乃至工程(3)が順次に施される。前記積層体(a)は、搬送時に破断が発生しやすい。そのため、図1に示すように、前記積層体(a)に工程(2)を施す前には、工程(4)により、前記積層体(a)の偏光子1の側に、保護フィルム2を設けて、搬送用フィルム付の片保護偏光フィルムA´を製造することが好ましい。図1では、工程(4)の後に、工程(2)により、搬送用フィルム付の片保護偏光フィルムA´から搬送用フィルム3を剥離して片保護偏光フィルムAを製造した後に、工程(3)を施して、透明樹脂層付の片保護偏光フィルムBを製造している。図1に示す、透明樹脂層付の片保護偏光フィルムBは、偏光子1の片面にのみ保護フィルム2を有し、偏光子1の他の片面には、透明樹脂層4が(直接)積層されている。 Hereinafter, steps (1) to (5) of the method for producing a polarizing film of the present invention will be described with reference to FIG. In the method for producing a polarizing film of the present invention, the steps (2) to (3) are sequentially performed after the step (1) of preparing the laminate (a) having the thin polarizer 1 and the transport film 3. Is done. The laminate (a) is likely to break during transportation. Therefore, as shown in FIG. 1, before performing the step (2) on the laminate (a), the protective film 2 is applied to the laminate 1 (a) on the polarizer 1 side by the step (4). It is preferable to provide and manufacture a piece protective polarizing film A ′ with a transport film. In FIG. 1, after the step (4), the step (2) is followed by the step (2) after the transport film 3 is peeled from the piece protective polarizing film A ′ with the transport film to produce the piece protective polarizing film A. ) To produce a piece protective polarizing film B with a transparent resin layer. A single protective polarizing film B with a transparent resin layer shown in FIG. 1 has a protective film 2 only on one side of a polarizer 1, and a transparent resin layer 4 is (directly) laminated on the other side of the polarizer 1. Has been.
 また、図1に示すように、工程(5)により、透明樹脂層付の片保護偏光フィルムBの透明樹脂層4に粘着剤層5を設けて、粘着剤層付の偏光フィルムCを製造することができる。工程(5)では、透明樹脂層付の片保護偏光フィルムBの透明樹脂層4の側および/また保護フィルム2側に粘着剤層5を設けることができる。なお、図1では、工程(5)として、透明樹脂層付の片保護偏光フィルムBの透明樹脂層4の側に粘着剤層5を設けた場合が例示されている。 Moreover, as shown in FIG. 1, the adhesive layer 5 is provided in the transparent resin layer 4 of the piece protection polarizing film B with a transparent resin layer by a process (5), and the polarizing film C with an adhesive layer is manufactured. be able to. In the step (5), the pressure-sensitive adhesive layer 5 can be provided on the transparent resin layer 4 side and / or the protective film 2 side of the piece protective polarizing film B with a transparent resin layer. In addition, in FIG. 1, the case where the adhesive layer 5 is provided in the transparent resin layer 4 side of the piece protection polarizing film B with a transparent resin layer is illustrated as a process (5).
 図2Aは、従来技術に係り、工程(3)で透明樹脂層4を形成する前の片保護偏光フィルムAの断面図の写真である。図2AのA1では、工程(2)において搬送用フィルム3を剥離した結果、偏光子1に損傷dが生じていることが分かる。また、図2のA2は、前記片保護偏光フィルムAが加熱環境下におかれた場合の断面図の写真が示されている。図2AのA2では、加熱により、偏光子1の損傷dが拡大していることが分かる。 FIG. 2A is a photograph of a cross-sectional view of the piece protective polarizing film A before forming the transparent resin layer 4 in the step (3) according to the prior art. In A1 of FIG. 2A, it turns out that the damage d has arisen in the polarizer 1 as a result of peeling the film 3 for conveyance in a process (2). Moreover, A2 of FIG. 2 shows the photograph of sectional drawing when the said piece protection polarizing film A is put in a heating environment. In A2 of FIG. 2A, it turns out that the damage d of the polarizer 1 is expanded by heating.
 図2Bは、本発明に係り、工程(3)で透明樹脂層4を形成した、透明樹脂層付の片保護偏光フィルムBの断面図の写真である。図2BのB1では、工程(2)において搬送用フィルム3を剥離した結果により、偏光子1に生じた損傷dが透明樹脂層4により修復(d´)されていることが分かる。また、図2のB2は、前記透明樹脂層付の片保護偏光フィルムBを加熱処理した場合の断面図の写真が示されている。図2BのB2では、加熱処理によっても、偏光子1の損傷dの拡大はなく十分に修復(d´)されていることが分かる。 FIG. 2B is a photograph of a cross-sectional view of a piece protective polarizing film B with a transparent resin layer in which the transparent resin layer 4 is formed in the step (3) according to the present invention. In B <b> 1 of FIG. 2B, it can be seen that damage d generated in the polarizer 1 is repaired (d ′) by the transparent resin layer 4 as a result of peeling the transport film 3 in the step (2). Moreover, B2 of FIG. 2 shows the photograph of sectional drawing at the time of heat-processing the piece protection polarizing film B with the said transparent resin layer. In B2 of FIG. 2B, it can be seen that the damage d of the polarizer 1 is not enlarged even by the heat treatment and is sufficiently repaired (d ′).
 <工程(1)>
 工程(1)では、搬送用フィルム3と、当該搬送用フィルム3の片面に形成された厚み10μm以下の偏光子1を有する積層体(a)を準備する。なお、前記積層体(a)は、搬送用フィルム3の少なくとも片面に厚み10μm以下の偏光子1を有していればよい、前記積層体(a)は、搬送用フィルム3の両面に偏光子1を有することができる。
<Process (1)>
In the step (1), a laminate (a) having a transport film 3 and a polarizer 1 having a thickness of 10 μm or less formed on one surface of the transport film 3 is prepared. In addition, the said laminated body (a) should just have the polarizer 1 with a thickness of 10 micrometers or less on the at least single side | surface of the film 3 for conveyance, The said laminated body (a) is a polarizer on both surfaces of the film 3 for conveyance. 1 can be included.
 ≪積層体(a)≫
 前記積層体(a)は、例えば、搬送用フィルムと当該搬送用フィルムの片面に形成されたポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層とを有する積層体(a´)に、少なくとも延伸工程および染色工程を施すことにより得られる。前記搬送用フィルムは長尺物を用いることにより、長尺のPVA系樹脂層を形成することができ、連続生産に有利である。
≪Laminated body (a) ≫
The laminate (a) includes, for example, at least a laminate (a ′) having a transport film and a polyvinyl alcohol resin (hereinafter also referred to as PVA resin) layer formed on one surface of the transport film. It is obtained by performing a stretching process and a dyeing process. The transport film can form a long PVA-based resin layer by using a long material, which is advantageous for continuous production.
 ≪搬送用フィルム≫
 搬送用フィルムとしては、各種の熱可塑性樹脂フィルムを用いることができる。熱可塑性樹脂フィルムの形成材料としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリアミドレオ樹脂、ポリカーボネート系樹脂、これらの共重合樹脂等が挙げられる。これらのなかでも製造のしやすさ及びコスト軽減の点から、エステル系樹脂が好ましい。エステル系熱可塑性樹脂フィルムは、非晶性エステル系熱可塑性樹脂能フィルムまたは結晶性エステル系熱可塑性樹脂フィルムを用いることができる。また、前記熱可塑性樹脂フィルムの厚みは、延伸工程での破断回避および積層体(a)の搬送のし易さから厚い方が好ましく、通常、延伸工程前の厚みは20~200μmであるのが好ましく、さらには、30~150μmであるのが好ましい。
<< Conveyor film >>
Various thermoplastic resin films can be used as the transport film. Examples of the material for forming the thermoplastic resin film include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polyethylene and polypropylene, polyamide rheo resins, polycarbonate resins, and the like. And a copolymer resin. Of these, ester resins are preferred from the viewpoint of ease of production and cost reduction. As the ester-based thermoplastic resin film, an amorphous ester-based thermoplastic resin film or a crystalline ester-based thermoplastic resin film can be used. The thickness of the thermoplastic resin film is preferably thicker from the viewpoint of avoiding breakage in the stretching step and easy transport of the laminate (a). Usually, the thickness before the stretching step is 20 to 200 μm. More preferably, it is 30 to 150 μm.
 また、搬送用フィルムとしては、前記熱可塑性樹脂フィルムに剥離可能な粘着剤層を設けたものを用いることができる。粘着剤層としては、剥離可能な表面保護フィルム等に用いられるものと同様のものを用いることができる。 Further, as the transport film, a film provided with a peelable adhesive layer on the thermoplastic resin film can be used. As an adhesive layer, the thing similar to what is used for the peelable surface protection film etc. can be used.
 ≪薄型偏光子≫
 前記積層体(a)における偏光子はポリビニルアルコール系樹脂を含有し、厚みは10μm以下である。偏光子の厚みは薄型化の観点から8μm以下であるのが好ましく、さらには7μm以下、さらには6μm以下であるのが好ましい。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。このような薄型の偏光子は、工程(2)において、前記積層体(a)から搬送用フィルムを剥離する際に、薄型の偏光子に損傷が発生しやすい。一方、薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため熱衝撃に対する耐久性に優れる。
≪Thin polarizer≫
The polarizer in the laminate (a) contains a polyvinyl alcohol resin and has a thickness of 10 μm or less. The thickness of the polarizer is preferably 8 μm or less from the viewpoint of thinning, more preferably 7 μm or less, and further preferably 6 μm or less. On the other hand, the thickness of the polarizer is preferably 2 μm or more, and more preferably 3 μm or more. Such a thin polarizer is liable to be damaged when the transport film is peeled from the laminate (a) in the step (2). On the other hand, a thin polarizer has little thickness unevenness, excellent visibility, and is excellent in durability against thermal shock because of little dimensional change.
 偏光子はホウ酸を含有していることが延伸安定性や光学耐久性の点から好ましい。また、偏光子に含まれるホウ酸含有量は、ヒートサイクル試験(-40℃と80℃の繰り返し)におけるクラックや搬送用フィルムの剥離時に生じる偏光子の損傷の発生抑制の観点から、偏光子全量に対して25重量%以下であるのが好ましく、さらには20重量%以下であるのが好ましく、さらには18重量%以下、さらには16重量%以下であることが好ましい。偏光子に含まれるホウ酸含有量が20重量%を超える場合には、偏光子の厚みを10μm以下に制御した場合であっても偏光子の収縮応力が高まりクラックが発生しやすくなるため好ましくない。一方、偏光子の延伸安定性や光学耐久性の観点から、偏光子全量に対するホウ酸含有量は10重量%以上であることが好ましく、さらには12重量%以上であることが好ましい。 The polarizer preferably contains boric acid from the viewpoint of stretching stability and optical durability. In addition, the boric acid content in the polarizer is the total amount of the polarizer from the viewpoint of suppressing the occurrence of cracks in the heat cycle test (repetition of −40 ° C. and 80 ° C.) and the damage to the polarizer that occurs when the film for transportation is peeled off. The amount is preferably 25% by weight or less, more preferably 20% by weight or less, further 18% by weight or less, and further preferably 16% by weight or less. When the content of boric acid contained in the polarizer exceeds 20% by weight, even if the thickness of the polarizer is controlled to 10 μm or less, the contraction stress of the polarizer increases and cracks are likely to occur, which is not preferable. . On the other hand, from the viewpoint of the stretching stability and optical durability of the polarizer, the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
 薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子またはこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。
As a thin polarizer, typically,
Patent No. 4751486,
Japanese Patent No. 4751481,
Patent No. 4815544,
Patent No. 5048120,
International Publication No. 2014/077599 pamphlet,
International Publication No. 2014/077636 Pamphlet,
And the thin polarizers obtained from the production methods described therein.
 前記偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、次式
P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたことが好ましい。前記条件を満足するように構成された偏光子は、一義的には、大型表示素子を用いた液晶テレビ用のディスプレイとして求められる性能を有する。具体的にはコントラスト比1000:1以上かつ最大輝度500cd/m以上である。他の用途としては、例えば有機EL表示装置の視認側に貼り合される。
The polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula P> − (10 0.929T-42.4 −1) × 100 (where T <42.3), Or
It is preferably configured to satisfy the condition of P ≧ 99.9 (however, T ≧ 42.3). A polarizer configured so as to satisfy the above-described conditions uniquely has performance required as a display for a liquid crystal television using a large display element. Specifically, the contrast ratio is 1000: 1 or more and the maximum luminance is 500 cd / m 2 or more. As other uses, for example, it is bonded to the viewing side of the organic EL display device.
 一方、前記条件を満足するように構成されたポリビニルアルコール系樹脂を含有する偏光子は、ポリビニルアルコール系分子が高い配向性を示すため、厚み10μm以下であることと相俟って、偏光子の吸収軸方向に直交する方向の引張破断応力が顕著に小さくなる。その結果、工程(2)において、搬送用フィルム付き片保護偏光フィルムから前記搬送用フィルムを剥離する際に、偏光子の表面に損傷が生じやすい。よって、本発明は、当該偏光子を採用した片保護偏光フィルムに特に好適である。 On the other hand, a polarizer containing a polyvinyl alcohol-based resin configured to satisfy the above conditions is combined with a thickness of 10 μm or less because the polyvinyl alcohol-based molecule exhibits high orientation, The tensile breaking stress in the direction orthogonal to the absorption axis direction is significantly reduced. As a result, in the step (2), when the transport film is peeled from the piece-protecting polarizing film with a transport film, the surface of the polarizer is easily damaged. Therefore, this invention is especially suitable for the piece protection polarizing film which employ | adopted the said polarizer.
 前記薄型偏光子としては、積層体(a´)の状態で延伸工程と染色工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許第4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用搬送用フィルムを積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用搬送用フィルムに支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。 As the thin-type polarizer, among the production methods including a stretching step and a dyeing step in the state of the laminate (a ′), it can be stretched at a high magnification and can improve polarization performance. Patent Nos. 4,751,481 and 4,815,544, and those obtained by a production method including a step of stretching in an aqueous boric acid solution are preferable, and particularly, patents 4,751,481, and 4,815,544. What is obtained by the manufacturing method including the process of extending | stretching in the air auxiliary | assistant before extending | stretching in the boric-acid aqueous solution described in (5) is preferable. These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a film for stretching in the state of a laminate. If it is this manufacturing method, even if a PVA-type resin layer is thin, it will be possible to extend | stretch without troubles, such as a fracture | rupture by extending | stretching, by being supported by the film for conveyance for extending | stretching.
 前記積層体(a´)は、例えば、搬送用フィルムにPVA系樹脂の水溶液を塗工した後、乾燥することによって形成することができる。また、前記積層体(a´)におけるPVA系樹脂層は押出し成型により搬送用フィルム上に形成することができる。さらには、前記PVA系樹脂層は、予め調製しておいたPVA系樹脂フィルムを、搬送用フィルムに積層することにより形成することも可能である。前記PVA系樹脂層の厚みは、延伸後に得られる偏光子の厚みが10μm以下になるように、延伸倍率等を考慮して適宜に決定される。なお、PVA系樹脂フィルムを染色しておけば、積層体(a´)に施す染色工程を省略することができる。 The laminate (a ′) can be formed, for example, by applying an aqueous solution of PVA-based resin to a transport film and then drying. Moreover, the PVA-type resin layer in the said laminated body (a ') can be formed on a film for conveyance by extrusion molding. Furthermore, the PVA-based resin layer can be formed by laminating a PVA-based resin film prepared in advance on a transport film. The thickness of the PVA-based resin layer is appropriately determined in consideration of the draw ratio and the like so that the thickness of the polarizer obtained after stretching is 10 μm or less. In addition, if the PVA-type resin film is dyed, the dyeing process performed to a laminated body (a ') can be skipped.
 前記積層体(a´)に施す延伸工程は、例えば、PVA系樹脂層の総延伸倍率が、総延伸倍率で3~10倍の範囲になるように行うのが好ましい。総延伸倍率は好ましくは4~8倍、さらに好ましくは5~7倍である。総延伸倍率は5倍以上になるように行うのが望ましい。前記延伸工程は、染色工程や他の工程においても施すことができる。前記総延伸倍率は、延伸工程以外の工程において延伸を伴う場合には、それらの工程における延伸を含めた累積の延伸倍率をいう。 The stretching step applied to the laminate (a ′) is preferably performed, for example, so that the total stretching ratio of the PVA-based resin layer is in the range of 3 to 10 times in terms of the total stretching ratio. The total draw ratio is preferably 4 to 8 times, more preferably 5 to 7 times. The total draw ratio is desirably 5 times or more. The stretching process can also be performed in the dyeing process and other processes. The total stretching ratio refers to a cumulative stretching ratio including stretching in those processes when stretching is performed in a process other than the stretching process.
 前記積層体(a´)に施す染色工程は、PVA系樹脂層に二色性染料またはヨウ素を吸着・配向させることにより行う。染色工程は、延伸工程とともに行うことができる。染色工程は、例えば、前記積層体(a´)ヨウ素溶液に任意の時間、浸漬することにより一般に行われる。ヨウ素溶液として用いられるヨウ素水溶液は、ヨウ素および溶解助剤であるヨウ化化合物によりヨウ素イオンを含有させた水溶液などが用いられる。ヨウ化化合物としては、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が用いられる。ヨウ化化合物としては、ヨウ化カリウムが好適である。本発明で用いるヨウ化化合物は、他の工程で用いる場合についても、上記同様である。 The dyeing process applied to the laminate (a ′) is performed by adsorbing and orienting a dichroic dye or iodine to the PVA resin layer. The dyeing process can be performed together with the stretching process. A dyeing process is generally performed, for example, by immersing in the laminate (a ′) iodine solution for an arbitrary time. As the iodine aqueous solution used as the iodine solution, an aqueous solution containing iodine ions with iodine and an iodide compound which is a dissolution aid is used. Examples of the iodide compound include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Etc. are used. As the iodide compound, potassium iodide is preferred. The iodide compound used in the present invention is the same as described above when used in other steps.
 前記ヨウ素溶液中のヨウ素濃度は0.01~10重量%程度、好ましくは0.02~5重量%、さらに好ましくは0.02~0.5重量%である。ヨウ化化合物濃度は0.1~10重量%程度、さらには0.2~8重量%で用いるのが好ましい。ヨウ素染色にあたり、ヨウ素溶液の温度は、通常20~50℃程度、好ましくは25~40℃である。浸漬時間は通常10~300秒間程度、好ましくは20~240秒間の範囲である。 The iodine concentration in the iodine solution is about 0.01 to 10% by weight, preferably 0.02 to 5% by weight, and more preferably 0.02 to 0.5% by weight. The iodide compound concentration is preferably about 0.1 to 10% by weight, more preferably 0.2 to 8% by weight. In iodine staining, the temperature of the iodine solution is usually about 20 to 50 ° C., preferably 25 to 40 ° C. The immersion time is usually about 10 to 300 seconds, preferably 20 to 240 seconds.
 また、前記積層体(a´)には、上記工程以外に、例えば、不溶化工程、架橋工程、乾燥(水分率の調節)工程等を施すことができる。 The laminate (a ′) can be subjected to, for example, an insolubilization step, a crosslinking step, a drying (adjustment of moisture content) step, and the like in addition to the above steps.
 不溶化工程、架橋工程には、架橋剤として、ホウ素化合物を用いて行う。これら工程の順序は特に制限されない。架橋工程は、染色工程、延伸工程とともに行うことができる。不溶化工程、架橋工程は複数回行うことができる。ホウ素化合物としては、ホウ酸、ホウ砂等があげられる。ホウ素化合物は、水溶液または水-有機溶媒混合溶液の形態で一般に用いられる。通常は、ホウ酸水溶液が用いられる。ホウ酸水溶液のホウ酸濃度は、1~10重量%程度、好ましくは2~7重量%である。架橋度により耐熱性を付与する、または搬送用フィルムの剥離時のダメージを抑制するには、前記ホウ酸濃度とするのが好ましい。ホウ酸水溶液等には、ヨウ化カリウム等のヨウ化化合物を含有させることができる。ホウ酸水溶液にヨウ化化合物を含有させる場合、ヨウ化化合物濃度は0.1~10重量%程度、さらには0.5~8重量%で用いるのが好ましい。 In the insolubilization step and the crosslinking step, a boron compound is used as a crosslinking agent. The order of these steps is not particularly limited. The crosslinking step can be performed together with the dyeing step and the stretching step. The insolubilization step and the crosslinking step can be performed a plurality of times. Examples of the boron compound include boric acid and borax. The boron compound is generally used in the form of an aqueous solution or a water-organic solvent mixed solution. Usually, an aqueous boric acid solution is used. The boric acid concentration in the boric acid aqueous solution is about 1 to 10% by weight, preferably 2 to 7% by weight. In order to impart heat resistance depending on the degree of crosslinking, or to suppress damage during peeling of the transport film, the boric acid concentration is preferably used. The boric acid aqueous solution or the like can contain an iodide compound such as potassium iodide. When the iodide compound is contained in the boric acid aqueous solution, the iodide compound concentration is preferably about 0.1 to 10% by weight, more preferably 0.5 to 8% by weight.
 <工程(4)>
 上記のように、工程(2)を施す前には、前記積層体(a)の偏光子1の側に、保護フィルム2を形成する工程(4)を施すことが好ましい。当該工程(4)により、偏光子1の片側にのみ保護フィルム2を有する搬送用フィルム付きの片保護偏光フィルムA´が得られる。
<Process (4)>
As mentioned above, before performing a process (2), it is preferable to perform the process (4) which forms the protective film 2 in the polarizer 1 side of the said laminated body (a). By the said process (4), the piece protection polarizing film A 'with the film for conveyance which has the protection film 2 only on the one side of the polarizer 1 is obtained.
 ≪保護フィルム≫
 前記保護フィルムを構成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記保護フィルムを形成するポリマーの例として挙げられる。これら保護フィルムは、通常、接着剤層により、偏光子に貼り合わせられる。
≪Protective film≫
As the material constituting the protective film, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) And polymers based on polycarbonate and polycarbonate. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Polymer blends and the like can also be mentioned as examples of the polymer forming the protective film. These protective films are usually bonded to the polarizer by an adhesive layer.
 なお、保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤等が挙げられる。保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50~100質量%、より好ましくは50~99質量%、さらに好ましくは60~98質量%、特に好ましくは70~97質量%である。保護フィルム中の上記熱可塑性樹脂の含有量が50質量%以下の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現できないおそれがある。 In addition, 1 or more types of arbitrary appropriate additives may be contained in the protective film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent. The content of the thermoplastic resin in the protective film is preferably 50 to 100% by mass, more preferably 50 to 99% by mass, still more preferably 60 to 98% by mass, and particularly preferably 70 to 97% by mass. When content of the said thermoplastic resin in a protective film is 50 mass% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.
 前記保護フィルムとしては、位相差フィルム、輝度向上フィルム、拡散フィルム等も用いることができる。位相差フィルムとしては、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有するものが挙げられる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。保護フィルムとして位相差フィルムを用いる場合には、当該位相差フィルムが偏光子保護フィルムとしても機能するため、薄型化を図ることができる。 As the protective film, a retardation film, a brightness enhancement film, a diffusion film, and the like can also be used. Examples of the retardation film include those having a front retardation of 40 nm or more and / or a retardation having a thickness direction retardation of 80 nm or more. The front phase difference is usually controlled in the range of 40 to 200 nm, and the thickness direction phase difference is usually controlled in the range of 80 to 300 nm. In the case where a retardation film is used as the protective film, the retardation film functions also as a polarizer protective film, so that the thickness can be reduced.
 位相差フィルムとしては、熱可塑性樹脂フィルムを一軸または二軸延伸処理してなる複屈折性フィルムが挙げられる。上記延伸の温度、延伸倍率等は、位相差値、フィルムの材料、厚みにより適宜に設定される。 Examples of the retardation film include a birefringent film obtained by uniaxially or biaxially stretching a thermoplastic resin film. The stretching temperature, stretching ratio, and the like are appropriately set depending on the retardation value, film material, and thickness.
 前記保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より3~200μmであるのが好ましく、さらには3~100μmであるのが好ましい。特に、前記保護フィルム(予めフィルムが形成されている場合)の厚みは、搬送性の点から10~60μmが好ましく、さらには10~45μmが好ましい。一方、前記保護フィルム(塗布、硬化により形成する場合)の厚みは搬送性の点から、3~25μmが好ましく、さらには3~20μmが好ましい。前記保護フィルムは、複数枚または複数層で用いることもできる。 The thickness of the protective film can be determined as appropriate, but in general, it is preferably 3 to 200 μm, more preferably 3 to 100 μm from the viewpoints of workability such as strength and handleability, and thin layer properties. Is preferred. In particular, the thickness of the protective film (when a film is formed in advance) is preferably 10 to 60 μm, more preferably 10 to 45 μm from the viewpoint of transportability. On the other hand, the thickness of the protective film (when formed by coating and curing) is preferably 3 to 25 μm, more preferably 3 to 20 μm from the viewpoint of transportability. The protective film may be used in a plurality of layers or in a plurality of layers.
 前記保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、保護フィルムそのものに設けることができるほか、別途、保護フィルムとは別体のものとして設けることもできる。 A functional layer such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the protective film to which the polarizer is not adhered. In addition, the hard coat layer, the antireflection layer, the antisticking layer, the diffusion layer, the antiglare layer, and other functional layers can be provided on the protective film itself, or can be provided separately from the protective film. it can.
 <介在層>
 前記保護フィルムと偏光子は接着剤層、粘着剤層、下塗り層(プライマー層)などの介在層を介して積層することができる。この際、介在層により両者を空気間隙なく積層することが望ましい。なお、偏光子1と保護フィルム2の介在層は図1では示していない。
<Intervening layer>
The said protective film and polarizer can be laminated | stacked through intervening layers, such as an adhesive bond layer, an adhesive layer, and undercoat (primer layer). At this time, it is desirable that the both are laminated without an air gap by an intervening layer. In addition, the intervening layer of the polarizer 1 and the protective film 2 is not shown in FIG.
 接着剤層は接着剤により形成される。接着剤の種類は特に制限されず、種々のものを用いることができる。前記接着剤層は光学的に透明であれば特に制限されず、接着剤としては、水系、溶剤系、ホットメルト系、活性エネルギー線硬化型等の各種形態のものが用いられるが、水系接着剤または活性エネルギー線硬化型接着剤が好適である。 The adhesive layer is formed with an adhesive. The type of the adhesive is not particularly limited, and various types can be used. The adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt-based, active energy ray-curable types, and the like. Or an active energy ray hardening-type adhesive agent is suitable.
 水系接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等を例示できる。水系接着剤は、通常、水溶液からなる接着剤として用いられ、通常、0.5~60重量%の固形分を含有してなる。 Examples of water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex systems, and water-based polyesters. The water-based adhesive is usually used as an adhesive composed of an aqueous solution, and usually contains 0.5 to 60% by weight of solid content.
 活性エネルギー線硬化型接着剤は、電子線、紫外線(ラジカル硬化型、カチオン硬化型)等の活性エネルギー線により硬化が進行する接着剤であり、例えば、電子線硬化型、紫外線硬化型の態様で用いることができる。活性エネルギー線硬化型接着剤は、例えば、光ラジカル硬化型接着剤を用いることができる。光ラジカル硬化型の活性エネルギー線硬化型接着剤を、紫外線硬化型として用いる場合には、当該接着剤は、ラジカル重合性化合物および光重合開始剤を含有する。 The active energy ray curable adhesive is an adhesive that cures by an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type. Can be used. As the active energy ray curable adhesive, for example, a photo radical curable adhesive can be used. When the photo radical curable active energy ray curable adhesive is used as an ultraviolet curable adhesive, the adhesive contains a radical polymerizable compound and a photo polymerization initiator.
 接着剤の塗工方式は、接着剤の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーター等が挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。 The adhesive coating method is appropriately selected depending on the viscosity of the adhesive and the target thickness. Examples of coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like. In addition, for coating, a method such as a dapping method can be appropriately used.
 また、前記接着剤の塗工は、水系接着剤等を用いる場合には、最終的に形成される接着剤層の厚みが30~300nmになるように行うのが好ましい。前記接着剤層の厚さは、さらに好ましくは60~150nmである。一方、活性エネルギー線硬化型接着剤を用いる場合には、前記接着剤層の厚みは0.2~20μmになるよう行うのが好ましい。 In addition, when the water-based adhesive or the like is used, the adhesive is preferably applied so that the finally formed adhesive layer has a thickness of 30 to 300 nm. The thickness of the adhesive layer is more preferably 60 to 150 nm. On the other hand, when an active energy ray curable adhesive is used, the thickness of the adhesive layer is preferably 0.2 to 20 μm.
 なお、偏光子と保護フィルムの積層にあたって、保護フィルムと接着剤層の間には、易接着層を設けることができる。易接着層は、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格などを有する各種樹脂により形成することができる。これらポリマー樹脂は1種を単独で、または2種以上を組み合わせて用いることができる。また易接着層の形成には他の添加剤を加えてもよい。具体的にはさらには粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤などを用いてもよい。 In addition, in laminating | stacking a polarizer and a protective film, an easily bonding layer can be provided between a protective film and an adhesive bond layer. The easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.
 易接着層は、通常、保護フィルムに予め設けておき、当該保護フィルムの易接着層側と偏光子とを接着剤層により積層する。易接着層の形成は、易接着層の形成材を保護フィルム上に、公知の技術により塗工、乾燥することにより行われる。易接着層の形成材は、乾燥後の厚み、塗工の円滑性などを考慮して適当な濃度に希釈した溶液として、通常調整される。易接着層は乾燥後の厚みは、好ましくは0.01~5μm、さらに好ましくは0.02~2μm、さらに好ましくは0.05~1μmである。なお、易接着層は複数層設けることができるが、この場合にも、易接着層の総厚みは上記範囲になるようにするのが好ましい。 The easy-adhesion layer is usually provided in advance on a protective film, and the easy-adhesion layer side of the protective film and the polarizer are laminated with an adhesive layer. The easy-adhesion layer is formed by applying and drying a material for forming the easy-adhesion layer on a protective film by a known technique. The material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying and the smoothness of coating. The thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 μm, more preferably 0.02 to 2 μm, and still more preferably 0.05 to 1 μm. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.
 粘着剤層は、粘着剤から形成される。粘着剤としては各種の粘着剤を用いることができ、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。前記粘着剤の種類に応じて粘着性のベースポリマーが選択される。前記粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れる点から、アクリル系粘着剤が好ましく使用される。 The pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive. Various pressure-sensitive adhesives can be used as the pressure-sensitive adhesive, such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, Examples include acrylamide-based adhesives and cellulose-based adhesives. An adhesive base polymer is selected according to the type of the adhesive. Among the pressure-sensitive adhesives, acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and are excellent in weather resistance and heat resistance. The
 下塗り層(プライマー層)は、偏光子と保護フィルムとの密着性を向上させるために形成される。プライマー層を構成する材料としては、基材フィルムとポリビニルアルコール系樹脂層との両方にある程度強い密着力を発揮する材料であれば特に限定されない。たとえば、透明性、熱安定性、延伸性などに優れる熱可塑性樹脂などが用いられる。熱可塑性樹脂としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、又はそれらの混合物が挙げられる。 The undercoat layer (primer layer) is formed to improve the adhesion between the polarizer and the protective film. The material constituting the primer layer is not particularly limited as long as the material exhibits a certain degree of strong adhesion to both the base film and the polyvinyl alcohol-based resin layer. For example, a thermoplastic resin excellent in transparency, thermal stability, stretchability, etc. is used. Examples of the thermoplastic resin include an acrylic resin, a polyolefin resin, a polyester resin, a polyvinyl alcohol resin, or a mixture thereof.
 <工程(2)>
 工程(2)では、前記積層体(a)または搬送用フィルム付き片保護偏光フィルムA´から前記搬送用フィルム3を剥離する。搬送用フィルム3の剥離方法は特に制限はない。搬送用フィルム3を剥離するに際しては、偏光子1(または片保護偏光フィルムA)側に角度をつけてもよいし、搬送用フィルム3側に角度をつけて剥離してもよい。また、両側に角度をつけて剥離してもよい。いずれの場合でも、薄型の偏光子1には、搬送用フィルム3の剥離により損傷が発生しやすい。搬送用フィルム3を剥離する際の角度は任意に設定される。搬送用フィルム3を剥離する際には、もっとも剥離力が弱くなる角度が存在する。剥離力が弱くなる角度は構成や剥離速度、剥離する際の湿度、剥離するフィルムの剛性に左右されるため、適宜に決定することができる。
<Step (2)>
At a process (2), the said film 3 for conveyance is peeled from the said laminated body (a) or the piece protection polarizing film A 'with a film for conveyance. There is no restriction | limiting in particular in the peeling method of the film 3 for conveyance. When peeling the transport film 3, an angle may be given to the polarizer 1 (or the piece protective polarizing film A) side, or an angle may be given to the transport film 3 side. Moreover, you may peel at an angle on both sides. In any case, the thin polarizer 1 is likely to be damaged by the peeling of the transport film 3. The angle at which the transport film 3 is peeled is arbitrarily set. When the transport film 3 is peeled, there is an angle at which the peel force is weakest. The angle at which the peeling force becomes weak depends on the configuration, the peeling speed, the humidity at the time of peeling, and the rigidity of the film to be peeled, and can be determined as appropriate.
 <工程(3)>
 工程(3)では、前記工程(2)において、前記搬送用フィルム3が剥離された、前記偏光子1側に、透明樹脂層4を形成して、偏光フィルムを製造する。図1では、偏光子1の片面にのみ保護フィルム2が設けられた片保護偏光フィルムAにおいて、片保護偏光フィルムAの偏光子1の他の片面(保護フィルム2を積層していない面)に透明樹脂層4が設けられる場合が例示されている。
<Step (3)>
In a process (3), the transparent resin layer 4 is formed in the said polarizer 1 side in which the said film 3 for conveyance was peeled in the said process (2), and a polarizing film is manufactured. In FIG. 1, in the piece protection polarizing film A in which the protective film 2 is provided only on one side of the polarizer 1, the other side of the polarizer 1 of the piece protection polarizing film A (the surface on which the protection film 2 is not laminated). The case where the transparent resin layer 4 is provided is illustrated.
 ≪透明樹脂層≫
 本発明において、透明樹脂層は、80℃における圧縮弾性率0.1GPa以上であることが好ましい。偏光子に生じた損傷は、透明樹脂層の80℃における圧縮弾性率を0.1GPa以上に制御することで、加熱条件下においても、偏光子に生じる損傷による欠陥の拡大を抑制することができる。透明樹脂層の圧縮弾性率は0.5GPa以上、さらには3GPa以上、さらには5GPa以上、さらには8GPa以上であるのが好ましい。透明樹脂層の圧縮弾性率は、材料選定により調整することができる。なお、透明樹脂層の80℃における圧縮弾性率は実施例の記載に基づいて測定される値である。
≪Transparent resin layer≫
In the present invention, the transparent resin layer preferably has a compression elastic modulus at 80 ° C. of 0.1 GPa or more. Damage to the polarizer can be controlled by controlling the compressive elastic modulus of the transparent resin layer at 80 ° C. to 0.1 GPa or more, thereby suppressing the expansion of defects due to damage generated in the polarizer even under heating conditions. . The compression elastic modulus of the transparent resin layer is preferably 0.5 GPa or more, further 3 GPa or more, more preferably 5 GPa or more, and further preferably 8 GPa or more. The compression elastic modulus of the transparent resin layer can be adjusted by material selection. In addition, the compression elastic modulus in 80 degreeC of a transparent resin layer is a value measured based on description of an Example.
 前記透明樹脂層は、損傷部の拡大抑制の観点から、厚さが0.2μm以上になるように設けられる。前記厚さは、0.5μm以上であるのが好ましく、さらには0.7μm以上であるのが好ましい。一方、光学信頼性の観点から前記透明樹脂層の厚さは5μm以下であるのが好ましく、3μm以下であるのが好ましく、さらには3μm未満であるのが好ましく、2μm以下であるのがより好ましい。 The transparent resin layer is provided so as to have a thickness of 0.2 μm or more from the viewpoint of suppressing expansion of a damaged portion. The thickness is preferably 0.5 μm or more, and more preferably 0.7 μm or more. On the other hand, from the viewpoint of optical reliability, the thickness of the transparent resin layer is preferably 5 μm or less, preferably 3 μm or less, more preferably less than 3 μm, and even more preferably 2 μm or less. .
 前記透明樹脂層の形成材料としては、例えば、ポリエステル系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、PVA系樹脂、アクリル系樹脂、エポキシ系樹脂等を挙げることができる。これら樹脂材料は1種を単独で又は2種以上を組み合わせて用いることができるが、これらの中でもポリウレタン系樹脂、PVA系樹脂、アクリル系樹脂、エポキシ系樹脂からなる群から選択される1種以上が好ましく、PVA系樹脂、アクリル系樹脂がより好ましい。 Examples of the material for forming the transparent resin layer include polyester resins, polyether resins, polycarbonate resins, polyurethane resins, silicone resins, polyamide resins, polyimide resins, PVA resins, acrylic resins, and epoxy resins. Based resins and the like. These resin materials can be used singly or in combination of two or more, and among these, one or more selected from the group consisting of polyurethane resins, PVA resins, acrylic resins, and epoxy resins Are preferable, and PVA resin and acrylic resin are more preferable.
 前記透明樹脂層は、前記偏光子の表面(前記搬送用フィルムが剥離された面)に、前記樹脂成分または樹脂を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより形成することができる。また、前記液状物である塗工液の形態は、液状を示すものであれば特に制限はなく、水系、水分散系、溶剤系、無溶剤のいずれでもよい。 The transparent resin layer is coated on the surface of the polarizer (the surface from which the transport film has been peeled) with a liquid material containing a curable component that can constitute the resin component or resin, It can be formed by solidifying or curing the liquid. The form of the liquid coating liquid is not particularly limited as long as it exhibits a liquid state, and may be any of water-based, water-dispersed, solvent-based, and solvent-free.
 前記液状物(塗工液)は、粘度が低い方が、偏光子の損傷部に浸透しやすいため有利である。前記粘度は、25℃で測定した値が2000mPa・s以下であるのが好ましく、さらには1000mPa・s以下であるのが好ましく、さらには500mPa・s以下であるのが好ましく、さらには100mPa・s以下であるのが好ましい。 The liquid (coating liquid) having a lower viscosity is advantageous because it easily penetrates into the damaged part of the polarizer. The viscosity measured at 25 ° C. is preferably 2000 mPa · s or less, more preferably 1000 mPa · s or less, further preferably 500 mPa · s or less, and further 100 mPa · s. It is preferable that:
 前記透明樹脂層の形成にあたり、前記樹脂成分を含む液状物を塗工した後には、当該樹脂成分に種類に応じて固化させる。前記樹脂成分を含む液状物は、前記樹脂成分を溶剤に溶解した溶液または分散させた分散液であり、例えば、水系の溶液、水分散系の分散液、または溶剤系の溶液として用いられる。前記固化は、前記液状物中から溶剤を除去することにより樹脂層を形成することをいう。例えば、前記樹脂成分がポリビニルアルコール系樹脂の場合には、前記液状物は水溶液として用いることができ、加熱等により固化を施すことができる。また、前記樹脂成分が水溶性アクリルの場合も同様に固化を施すことができる。 In forming the transparent resin layer, after applying a liquid material containing the resin component, the resin component is solidified according to the type. The liquid substance containing the resin component is a solution obtained by dissolving or dispersing the resin component in a solvent, and is used as, for example, an aqueous solution, an aqueous dispersion, or a solvent solution. The solidification means forming a resin layer by removing a solvent from the liquid material. For example, when the resin component is a polyvinyl alcohol-based resin, the liquid material can be used as an aqueous solution and can be solidified by heating or the like. Further, when the resin component is water-soluble acrylic, it can be solidified similarly.
 一方、前記透明樹脂層の形成にあたり、樹脂を構成することができる硬化性成分を含む液状物を塗工した後には、当該硬化性成分の種類に応じて、当該硬化性成分が樹脂を形成することができる硬化を施す。前記樹脂を構成することができる硬化性成分を含む液状物は、前記硬化性成分が液状物を呈するものであれば、無溶剤系で用いることができる。また、前記液状物は、前記硬化性成分を溶剤に溶解した溶液を用いることができる。なお、前記硬化性成分が液状物を呈する場合にも溶液として用いることができる。前記溶剤としは、用いる硬化性成分に応じて適宜に選択することができる。例えば、前記硬化性成分として、アクリル系樹脂を形成するアクリル系モノマーを用いる場合、エポキシ樹脂を形成するエポキシ系モノマーを用いる場合には、前記硬化性成分を含む液状物に活性エネルギー線照射(紫外線照射)等による硬化を施すことができる。 On the other hand, in forming the transparent resin layer, after applying a liquid material containing a curable component capable of constituting the resin, the curable component forms a resin according to the type of the curable component. Can be cured. The liquid material containing a curable component that can constitute the resin can be used in a solventless system as long as the curable component exhibits a liquid material. The liquid material may be a solution in which the curable component is dissolved in a solvent. In addition, when the said curable component exhibits a liquid substance, it can be used as a solution. The solvent can be appropriately selected according to the curable component to be used. For example, when an acrylic monomer that forms an acrylic resin is used as the curable component, or when an epoxy monomer that forms an epoxy resin is used, the liquid material containing the curable component is irradiated with active energy rays (ultraviolet rays). Curing by irradiation) or the like can be performed.
 前記透明樹脂層の形成は、水に溶解または分散した樹脂成分を含む液状物を偏光子に塗工した後に、当該液状物を固化することによって形成することが好ましい。水に溶解または分散した樹脂成分は、常温(25℃)で、水に溶解した樹脂、水に可溶な樹脂を水系溶媒に溶解させたもののことをいう。塗工液が、水系または水分散系であると、偏光子の表面が膨潤することで損傷部に、前記塗工液が馴染むため有利である。すなわち、塗工液が水系または水分散系であると、偏光子を構成する当該損傷部周辺のポリビニルアルコール分子の配向性を一部緩和すると共に、当該損傷部周辺のホウ酸含有量を低減することができるため、透明樹脂層の厚みが小さくても(例えば3μm未満、好ましくは2μm以下であっても)、当該損傷部の拡大を効果的に抑制することができる。 The transparent resin layer is preferably formed by applying a liquid material containing a resin component dissolved or dispersed in water to a polarizer and then solidifying the liquid material. The resin component dissolved or dispersed in water refers to a resin dissolved in water at room temperature (25 ° C.) or a resin soluble in water dissolved in an aqueous solvent. It is advantageous that the coating liquid is aqueous or water-dispersed because the surface of the polarizer swells so that the coating liquid becomes compatible with the damaged part. That is, when the coating liquid is an aqueous or water-dispersed system, the orientation of the polyvinyl alcohol molecules around the damaged part constituting the polarizer is partially relaxed and the boric acid content around the damaged part is reduced. Therefore, even if the thickness of the transparent resin layer is small (for example, less than 3 μm, preferably 2 μm or less), the expansion of the damaged portion can be effectively suppressed.
 水に溶解または分散することができる樹脂成分の代表例としては、例えば、ポリビニルアルコール系樹脂、ポリ(メタ)アクリル酸、ポリアクリルアミド、メチロール化メラミン樹脂、メチロール化ユリア樹脂、レゾール型フェノール樹脂、ポリエチレンオキシド、カルボキシメチルセルロースなどがあげられる。これは単独で用いても良いし、複数を組み合わせて用いても良い。前記樹脂成分としてはポリビニルアルコール系樹脂、ポリ(メタ)アクリル酸、メチロール化メラミンが好適に用いられる。特に、偏光子を構成するポリビニルアルコール系樹脂との密着性の観点から前記樹脂成分としてはポリビニルアルコール系樹脂が好適である。以下では、ポリビニルアルコール系樹脂を用いた場合を説明する。 Representative examples of resin components that can be dissolved or dispersed in water include, for example, polyvinyl alcohol resin, poly (meth) acrylic acid, polyacrylamide, methylolated melamine resin, methylolated urea resin, resol type phenolic resin, Examples thereof include ethylene oxide and carboxymethyl cellulose. These may be used alone or in combination. As the resin component, polyvinyl alcohol resin, poly (meth) acrylic acid, and methylolated melamine are preferably used. In particular, a polyvinyl alcohol resin is suitable as the resin component from the viewpoint of adhesion to the polyvinyl alcohol resin constituting the polarizer. Below, the case where a polyvinyl alcohol-type resin is used is demonstrated.
 透明樹脂層は、ポリビニルアルコール系樹脂を含有する形成材から形成することが好ましい。透明樹脂層を形成するポリビニルアルコール系樹脂は、「ポリビニルアルコール系樹脂」である限り、偏光子が含有するポリビニルアルコール系樹脂と同一でも異なってもいてもよい。 The transparent resin layer is preferably formed from a forming material containing a polyvinyl alcohol-based resin. The polyvinyl alcohol resin forming the transparent resin layer may be the same as or different from the polyvinyl alcohol resin contained in the polarizer as long as it is a “polyvinyl alcohol resin”.
 ポリビニルアルコール系樹脂を含有する形成材から形成される透明樹脂層の厚さは0.2μm以上であるのが、偏光子の表面に生じる損傷を修復して、光学特性を維持するうえで好ましい。前記透明樹脂層の厚さは0.5μm以上であるのが好ましく、さらには0.7μm以上であるのが好ましい。一方、透明樹脂層の厚くなりすぎると光学信頼性と耐水性が低下するため、透明樹脂層の厚さは3μm以下であるのが好ましく、さらには3μm未満であるのが好ましく、さらには2μm以下であるのが好ましい。 The thickness of the transparent resin layer formed from a forming material containing a polyvinyl alcohol-based resin is preferably 0.2 μm or more, from the viewpoint of repairing damage generated on the surface of the polarizer and maintaining optical properties. The thickness of the transparent resin layer is preferably 0.5 μm or more, and more preferably 0.7 μm or more. On the other hand, when the transparent resin layer becomes too thick, the optical reliability and water resistance are lowered. Therefore, the thickness of the transparent resin layer is preferably 3 μm or less, more preferably less than 3 μm, and further 2 μm or less. Is preferred.
 前記ポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコールが挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。また、ポリビニルアルコール系樹脂としては、酢酸ビニルと共重合性を有する単量体との共重合体のケン化物が挙げられる。前記共重合性を有する単量体がエチレンの場合には、エチレン-ビニルアルコール共重合体が得られる。また、前記共重合性を有する単量体としては、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸およびそのエステル類;エチレン、プロピレン等のα-オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N-メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N-ビニルピロリドン、N-ビニルピロリドン誘導体等が挙げられる。これらポリビニルアルコール系樹脂は一種を単独で又は二種以上を併用することができる。 Examples of the polyvinyl alcohol resin include polyvinyl alcohol. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. Examples of the polyvinyl alcohol-based resin include a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability. When the copolymerizable monomer is ethylene, an ethylene-vinyl alcohol copolymer is obtained. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ethylene, propylene, and the like. α-olefin, (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N- Examples include vinyl pyrrolidone derivatives. These polyvinyl alcohol resins can be used alone or in combination of two or more.
 前記ポリビニルアルコール系樹脂のケン化度は、例えば、95モル%以上のものを用いることができるが、耐湿熱性や耐水性を満足させる観点からは、ケン化度は99モル%以上が好ましく、さらには99.7モル%以上が好ましい。ケン化度は、ケン化によりビニルアルコール単位に変換され得る単位の中で、実際にビニルアルコール単位にケン化されている単位の割合を表したものであり、残基はビニルエステル単位である。ケン化度は、JIS K 6726-1994に準じて求めることができる。 The saponification degree of the polyvinyl alcohol-based resin can be, for example, 95 mol% or more, but from the viewpoint of satisfying moisture heat resistance and water resistance, the saponification degree is preferably 99 mol% or more, Is preferably 99.7 mol% or more. The degree of saponification represents the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted to vinyl alcohol units by saponification, and the residue is a vinyl ester unit. The degree of saponification can be determined according to JIS K 6726-1994.
 前記ポリビニルアルコール系樹脂の平均重合度は、例えば、500以上のものを用いることができるが、耐湿熱性や耐水性を満足させる観点からは、平均重合度は、1000以上が好ましく、さらには1500以上が好ましく、さらには2000以上が好ましい。ポリビニルアルコール系樹脂の平均重合度はJIS-K6726に準じて測定される。 The average degree of polymerization of the polyvinyl alcohol-based resin can be, for example, 500 or more. From the viewpoint of satisfying the heat and moisture resistance and water resistance, the average degree of polymerization is preferably 1000 or more, and more preferably 1500 or more. Is preferable, and 2000 or more is more preferable. The average degree of polymerization of the polyvinyl alcohol resin is measured according to JIS-K6726.
 また前記ポリビニルアルコール系樹脂としては、前記ポリビニルアルコールまたはその共重合体の側鎖に親水性の官能基を有する変性ポリビニルアルコール系樹脂を用いることができる。前記親水性の官能基としては、例えば、アセトアセチル基、カルボニル基等が挙げられる。その他、ポリビニルアルコール系樹脂をアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールを用いることができる。 As the polyvinyl alcohol resin, a modified polyvinyl alcohol resin having a hydrophilic functional group in the side chain of the polyvinyl alcohol or a copolymer thereof can be used. Examples of the hydrophilic functional group include an acetoacetyl group and a carbonyl group. In addition, modified polyvinyl alcohol obtained by acetalization, urethanization, etherification, grafting, phosphoric esterification or the like of a polyvinyl alcohol resin can be used.
 透明樹脂層または形成材(固形分)中のポリビニルアルコール系樹脂の割合は、80重量%以上であるのが好ましく、さらには90重量%以上、さらには95重量%以上であるのが好ましい。 The ratio of the polyvinyl alcohol resin in the transparent resin layer or the forming material (solid content) is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
 前記形成材は、前記ポリビニルアルコール系樹脂を溶媒に溶解させた溶液として調整される。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドN-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、溶剤として水を用いた水溶液として用いるのが好ましい。前記形成材(例えば水溶液)における、前記ポリビニルアルコール系樹脂の濃度は、特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1~15重量%、好ましくは0.5~10重量%である。 The forming material is prepared as a solution in which the polyvinyl alcohol resin is dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, it is preferable to use it as an aqueous solution using water as a solvent. The concentration of the polyvinyl alcohol-based resin in the forming material (for example, an aqueous solution) is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5%, in consideration of coating properties and storage stability. ~ 10% by weight.
 なお、前記形成材(例えば水溶液)には、添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。さらにシランカップリング剤、チタンカップリング剤などのカップリング剤、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、耐加水分解安定剤などの安定剤等を配合することもできる。 In addition, as for the said forming material (for example, aqueous solution), a plasticizer, surfactant, etc. are mentioned as an additive, for example. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants. Furthermore, coupling agents such as silane coupling agents and titanium coupling agents, various tackifiers, ultraviolet absorbers, antioxidants, heat stabilizers, hydrolysis stabilizers, and other stabilizers can be added.
 前記透明樹脂層は、前記形成材を、偏光子の他の片面(保護フィルムを有しない面)に、塗布して乾燥することにより形成することができる。前記形成材の塗布は、乾燥後の厚みが0.2μm以上になるように行なう。塗布操作は特に制限されず、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等各種手段を採用できる。乾燥温度は、通常、60~200℃であるのが好ましく、さらには70~120℃であるのが好ましい。乾燥時間は10~1800秒であるのが好ましく、さらには20~600秒であるのが好ましい。 The transparent resin layer can be formed by applying and drying the forming material on the other surface of the polarizer (the surface not having the protective film). The forming material is applied so that the thickness after drying is 0.2 μm or more. The application operation is not particularly limited, and any appropriate method can be adopted. For example, various means such as a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) can be employed. The drying temperature is usually preferably 60 to 200 ° C, and more preferably 70 to 120 ° C. The drying time is preferably 10 to 1800 seconds, more preferably 20 to 600 seconds.
 次いで、前記透明樹脂層の形成にあたり、樹脂を構成することができる硬化性成分を含む液状物を用いる場合について説明する。硬化性成分としては、電子線硬化型、紫外線硬化型、可視光線硬化型等の活性エネルギー線硬化型と熱硬化型に大別することができる。さらには、紫外線硬化型、可視光線硬化型は、ラジカル重合硬化型とカチオン重合硬化型に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。前記ラジカル重合硬化型の硬化性成分は、熱硬化型の硬化性成分として用いることができる。 Next, in the formation of the transparent resin layer, a case where a liquid material containing a curable component capable of constituting a resin is used will be described. The curable component can be roughly classified into an active energy ray curable type such as an electron beam curable type, an ultraviolet ray curable type, and a visible light curable type, and a thermosetting type. Furthermore, the ultraviolet curable type and the visible light curable type can be classified into a radical polymerization curable type and a cationic polymerization curable type. In the present invention, an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light, and an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light. The radical polymerization curable component can be used as a thermosetting curable component.
 ≪ラジカル重合硬化型形成材≫
 前記硬化性成分としては、例えば、ラジカル重合性化合物が挙げられる。ラジカル重合性化合物は、(メタ)アクリロイル基、ビニル基等の炭素-炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら硬化性成分は、単官能ラジカル重合性化合物または二官能以上の多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。
≪Radical polymerization curable forming material≫
Examples of the curable component include a radical polymerizable compound. Examples of the radical polymerizable compound include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group. As these curable components, either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used. Moreover, these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, compounds having a (meth) acryloyl group are suitable. In the present invention, (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.
 ≪単官能ラジカル重合性化合物≫
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、偏光子との密着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド等のN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド等のN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド等のN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等があげられる。
≪Monofunctional radical polymerizable compound≫
Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group. The (meth) acrylamide derivative is preferable in terms of ensuring adhesion with the polarizer and having a high polymerization rate and excellent productivity. Specific examples of (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N— N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth) acrylamide derivatives such as mercaptomethyl (meth) acrylamide and mercaptoethyl (meth) acrylamide; It is done. Examples of the heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine. Etc.
 前記(メタ)アクリルアミド誘導体のなかでも、偏光子との密着性の点から、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、特に、N-ヒドロキシエチル(メタ)アクリルアミドが好ましい。 Among the (meth) acrylamide derivatives, an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable from the viewpoint of adhesion to a polarizer, and N-hydroxyethyl (meth) acrylamide is particularly preferable.
 また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 In addition, examples of the monofunctional radical polymerizable compound include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 4-methyl-2-propylpentyl ( (Meth) acrylate, n-o Tadeshiru (meth) (meth) acrylic acid (1-20 carbon atoms) such as acrylates alkyl esters.
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;
 ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート;
 2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、等の多環式(メタ)アクリレート;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレート等のアルコキシ基またはフェノキシ基含有(メタ)アクリレート;等が挙げられる。
Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate;
Aralkyl (meth) acrylates such as benzyl (meth) acrylate;
2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclo Polycyclic (meth) acrylates such as pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like;
2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) Examples thereof include alkoxy groups such as acrylates and alkylphenoxypolyethylene glycol (meth) acrylates or phenoxy group-containing (meth) acrylates.
 また、前記(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;
 グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基含有(メタ)アクリレート;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート;
 ジメチルアミノエチル(メタ)アクリレート等のアルキルアミノアルキル(メタ)アクリレート;
 3-オキセタニルメチル(メタ)アクリレート、3-メチルーオキセタニルメチル(メタ)アクリレート、3-エチルーオキセタニルメチル(メタ)アクリレート、3-ブチルーオキセタニルメチル(メタ)アクリレート、3-ヘキシルーオキセタニルメチル(メタ)アクリレート等のオキセタン基含有(メタ)アクリレート;
 テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p-フェニルフェノール(メタ)アクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, etc. And hydroxyl groups such as [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc. Meth) acrylate;
Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether;
2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) ) Halogen-containing (meth) acrylates such as acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate;
Alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate;
3-Oxetanylmethyl (meth) acrylate, 3-methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, 3-butyl-oxetanylmethyl (meth) acrylate, 3-hexyloxetanylmethyl (meta) ) Oxetane group-containing (meth) acrylates such as acrylates;
(Meth) acrylates having a heterocyclic ring such as tetrahydrofurfuryl (meth) acrylate, butyrolactone (meth) acrylate, neopentyl glycol (meth) acrylic acid adducts such as hydroxypivalate, p-phenylphenol (meth) acrylate, etc. Can be mentioned.
 また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。 Also, examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 また、単官能ラジカル重合性化合物としては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。 Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinyl pyrrolidone, N-vinyl-ε-caprolactam, and methyl vinyl pyrrolidone; vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
 また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2-アセトアセトキシエチル(メタ)アクリレート、2-アセトアセトキシプロピル(メタ)アクリレート、2-アセトアセトキシ-1-メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2-エトキシマロニルオキシエチル(メタ)アクリレート、2-シアノアセトキシエチル(メタ)アクリレート、N-(2-シアノアセトキシエチル)アクリルアミド、N-(2-プロピオニルアセトキシブチル)アクリルアミド、N-(4-アセトアセトキシメチルベンジル)アクリルアミド、N-(2-アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。 Also, as the monofunctional radically polymerizable compound, a radically polymerizable compound having an active methylene group can be used. The radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule. Examples of the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group. The active methylene group is preferably an acetoacetyl group. Specific examples of the radical polymerizable compound having an active methylene group include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like. Acetoacetoxyalkyl (meth) acrylate; 2-ethoxymalonyloxyethyl (meth) acrylate, 2-cyanoacetoxyethyl (meth) acrylate, N- (2-cyanoacetoxyethyl) acrylamide, N- (2-propionylacetoxybutyl) Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide. The radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.
 ≪多官能ラジカル重合性化合物≫
 また、二官能以上の多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM-220、M-306(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)等が挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等が挙げられる。
≪Polyfunctional radical polymerizable compound≫
Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylolpropane formal (meth) acrylate, dioxane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta Esterified products of (meth) acrylic acid and polyhydric alcohols such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, EO-modified diglycerin tetra (meth) acrylate, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene. Specific examples include Aronix M-220, M-306 (manufactured by Toagosei Co., Ltd.), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP- A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer), CD-536 (manufactured by Sartomer) and the like. Moreover, various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
 ラジカル重合性化合物は、偏光子との密着性と光学耐久性を両立させる観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物を併用することが好ましい。通常は、ラジカル重合性化合物100重量%に対して、単官能ラジカル重合性化合物3~80重量%と多官能ラジカル重合性化合物20~97重量%の割合で併用することが好ましい。 The radical polymerizable compound is preferably used in combination with a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of achieving both adhesion to the polarizer and optical durability. Usually, it is preferable to use a combination of 3 to 80% by weight of the monofunctional radical polymerizable compound and 20 to 97% by weight of the polyfunctional radical polymerizable compound with respect to 100% by weight of the radical polymerizable compound.
 ≪ラジカル重合硬化型形成材の態様≫
 ラジカル重合硬化型形成材は、活性エネルギー線硬化型または熱硬化型の形成材として用いることができる。活性エネルギー線に電子線等を用いる場合には、当該活性エネルギー線硬化型形成材は光重合開始剤を含有することは必要ではないが、活性エネルギー線に紫外線または可視光線を用いる場合には、光重合開始剤を含有するのが好ましい。一方、前記硬化性成分を熱硬化性成分として用いる場合には、当該形成材は熱重合開始剤を含有するのが好ましい。
≪Aspects of radical polymerization curable forming material≫
The radical polymerization curable forming material can be used as an active energy ray curable forming material or a thermosetting forming material. When using an electron beam or the like for the active energy ray, the active energy ray curable forming material does not need to contain a photopolymerization initiator, but when using ultraviolet rays or visible light for the active energy ray, It preferably contains a photopolymerization initiator. On the other hand, when the curable component is used as a thermosetting component, the forming material preferably contains a thermal polymerization initiator.
 ≪光重合開始剤≫
 ラジカル重合性化合物を用いる場合の光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。
≪Photopolymerization initiator≫
The photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray. In the case of curing by ultraviolet light or visible light, a photopolymerization initiator for ultraviolet light or visible light cleavage is used. Examples of the photopolymerization initiator include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, aromatic ketone compounds such as α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, α-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl ether; Benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether, benzoin butyl ether and anisoin methyl ether; aromatic ketal compounds such as benzyldimethyl ketal; aromatic sulfonyl chloride compounds such as 2-naphthalenesulfonyl chloride; 1-phenone-1 , 1-propanedione-2- (o-ethoxycarbonyl) oxime, etc .; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone Thioxanthone compounds such as Son, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone; camphorquinone; halogenated ketone; Inokishido; and acyl phospholipase diisocyanate, and the like.
 前記光重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、20重量部以下である。光重合開始剤の配合量は、0.01~20重量部であるのが好ましく、さらには、0.05~10重量部、さらには0.1~5重量部であるのが好ましい。 The blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound). The blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 5 parts by weight.
 また、硬化性成分としてラジカル重合性化合物を含有する可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。 Also, when using a visible light curable type containing a radical polymerizable compound as a curable component, it is preferable to use a photopolymerization initiator that is particularly sensitive to light of 380 nm or more. A photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.
 前記光重合開始剤としては、下記一般式(1)で表される化合物;
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(1)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて密着性に優れる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。当該形成材中の一般式(1)で表される化合物の組成比率は、硬化性成分の全量100重量部に対して、0.1~5重量部であることが好ましく、0.5~4重量部であることがより好ましく、0.9~3重量部であることがさらに好ましい。
As said photoinitiator, the compound represented by following General formula (1);
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later. When the compound represented by the general formula (1) is used, the adhesion is excellent as compared with the case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone. Among the compounds represented by the general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable. The composition ratio of the compound represented by the general formula (1) in the forming material is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component, and preferably 0.5 to 4 parts. More preferred are parts by weight, and even more preferred is 0.9 to 3 parts by weight.
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、硬化性成分の全量100重量部に対して、通常0~5重量部、好ましくは0~4重量部、最も好ましくは0~3重量部である。 Further, it is preferable to add a polymerization initiation assistant as necessary. Examples of polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, etc. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable. When a polymerization initiation assistant is used, its addition amount is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.
 また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する保護フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 Further, a known photopolymerization initiator can be used in combination as necessary. Since the protective film having UV absorbing ability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more as the photopolymerization initiator. Specifically, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) 1-yl) -phenyl) titanium and the like.
 特に、光重合開始剤として、一般式(1)の光重合開始剤に加えて、さらに下記一般式(2)で表される化合物;
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは-H、-CH、-CHCH、-iPrまたはClを示し、R、RおよびRは同一または異なっても良い)を使用することが好ましい。一般式(2)で表される化合物としては、市販品でもある2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE907 メーカー:BASF)が好適に使用可能である。その他、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE369 メーカー:BASF)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE379 メーカー:BASF)が感度が高いため好ましい。
In particular, as a photopolymerization initiator, in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2);
Figure JPOXMLDOC01-appb-C000002
Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it. As the compound represented by the general formula (2), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercial product is suitable. Can be used. In addition, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF), 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferred because of its high sensitivity.
 ≪熱重合開始剤≫
 熱重合開始剤としては、熱開裂によって重合が開始しないものが好ましい。例えば、熱重合開始剤としては、10時間半減期温度が65℃以上、さらには75~90℃であるものが好ましい。なお、の半減期とは、重合開始剤の分解速度を表す指標であり、重合開始剤の残存量が半分になるまでの時間をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログなどに記載されており、たとえば、日本油脂株式会社の「有機過酸化物カタログ第9版(2003年5月)」などに記載されている。
≪Thermal polymerization initiator≫
As the thermal polymerization initiator, those in which polymerization does not start by thermal cleavage are preferable. For example, as the thermal polymerization initiator, those having a 10-hour half-life temperature of 65 ° C. or higher, more preferably 75 to 90 ° C. are preferable. The half-life is an index representing the decomposition rate of the polymerization initiator, and means the time until the remaining amount of the polymerization initiator is halved. The decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog, for example, “Organic peroxide catalog 9th edition by Nippon Oil & Fats Co., Ltd.” (May 2003) ".
 熱重合開始剤としては、例えば、過酸化ラウロイル(10時間半減期温度:64℃)、過酸化ベンゾイル(10時間半減期温度:73℃)、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロへキサン(10時間半減期温度:90℃)、ジ(2-エチルヘキシル)パーオキシジカーボネート(10時間半減期温度:49℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート(10時間半減期温度:51℃)、t-ブチルパーオキシネオデカノエート(10時間半減期温度:48℃)、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド(10時間半減期温度:64℃)、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(10時間半減期温度:66℃)、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド(10時間半減期温度:73℃)、t-ブチルパーオキシイソブチレート(10時間半減期温度:81℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン等の有機系過酸化物があげられる。 Examples of the thermal polymerization initiator include lauroyl peroxide (10 hour half-life temperature: 64 ° C.), benzoyl peroxide (10 hour half-life temperature: 73 ° C.), 1,1-bis (t-butylperoxy) -3. , 3,5-trimethylcyclohexane (10-hour half-life temperature: 90 ° C.), di (2-ethylhexyl) peroxydicarbonate (10-hour half-life temperature: 49 ° C.), di (4-t-butylcyclohexyl) Peroxydicarbonate, di-sec-butylperoxydicarbonate (10-hour half-life temperature: 51 ° C.), t-butyl peroxyneodecanoate (10-hour half-life temperature: 48 ° C.), t-hexyl peroxy Pivalate, t-butylperoxypivalate, dilauroyl peroxide (10 hour half-life temperature: 64 ° C.), di-n- octanoyl peroxide 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (10-hour half-life temperature: 66 ° C.), di (4-methylbenzoyl) peroxide, dibenzoyl peroxide (half-hour 10 hours) Organic peroxide such as t-butyl peroxyisobutyrate (10-hour half-life temperature: 81 ° C.), 1,1-di (t-hexylperoxy) cyclohexane, and the like.
 また、熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(10時間半減期温度:67℃)、2,2’-アゾビス(2-メチルブチロニトリル)(10時間半減期温度:67℃)、1,1-アゾビス-シクロへキサン-1-カルボニトリル(10時間半減期温度:87℃)などのアゾ系化合物があげられる。 Examples of the thermal polymerization initiator include 2,2′-azobisisobutyronitrile (10 hour half-life temperature: 67 ° C.), 2,2′-azobis (2-methylbutyronitrile) (10 hours). And azo compounds such as 1,1-azobis-cyclohexane-1-carbonitrile (10 hour half-life temperature: 87 ° C.).
 熱重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、0.01~20重量部である。熱重合開始剤の配合量は、さらには0.05~10重量部、さらには0.1~3重量部であるのが好ましい。 The blending amount of the thermal polymerization initiator is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound). The blending amount of the thermal polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 3 parts by weight.
 ≪カチオン重合硬化型形成材≫
 カチオン重合硬化型形成材の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
≪Cation polymerization curable forming material≫
Examples of the curable component of the cationic polymerization curable forming material include compounds having an epoxy group or an oxetanyl group. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used. As a preferable epoxy compound, a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
 ≪光カチオン重合開始剤≫
 カチオン重合硬化型形成材は、硬化性成分として以上説明したエポキシ化合物及びオキセタン化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。
≪Photo cationic polymerization initiator≫
The cationic polymerization curable forming material contains the epoxy compound and the oxetane compound described above as the curable component, and both of these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein. This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.
 前記硬化型の形成材による透明樹脂層の形成は、偏光子の面に、硬化型形成材を塗工し、その後、硬化することにより行う。 The formation of the transparent resin layer by the curable forming material is performed by coating the curable forming material on the surface of the polarizer and then curing.
 偏光子は、上記硬化型形成材を塗工する前に、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、ケン化処理による処理などが挙げられる。 The polarizer may be subjected to a surface modification treatment before coating the curable forming material. Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
 硬化型形成材の塗工方式は、当該硬化型形成材の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。 The coating method of the curable forming material is appropriately selected depending on the viscosity of the curable forming material and the target thickness. Examples of coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like. In addition, for coating, a method such as a dapping method can be appropriately used.
 <形成材の硬化>
 前記硬化型形成材は、活性エネルギー線硬化型形成材または熱硬化型形成材として用いられる。活性エネルギー線硬化型形成材では、電子線硬化型、紫外線硬化型、可視光線硬化型の態様で用いることができる。前記硬化型形成材の態様は生産性の観点から熱硬化型形成材よりも、活性エネルギー線硬化型形成材が好ましく、さらには活性エネルギー線硬化型形成材としては、可視光線硬化型形成材が生産性の観点から好ましい。
<Curing of forming material>
The curable forming material is used as an active energy ray curable forming material or a thermosetting forming material. The active energy ray curable forming material can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type. The aspect of the curable forming material is preferably an active energy ray curable forming material rather than a thermosetting forming material from the viewpoint of productivity, and moreover, the active energy ray curable forming material is a visible light curable forming material. It is preferable from the viewpoint of productivity.
 ≪活性エネルギー線硬化型≫
 活性エネルギー線硬化型形成材では、偏光子に活性エネルギー線硬化型形成材を塗工した後、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化型形成材を硬化して透明樹脂層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明樹脂層側から照射する。
≪Active energy ray curing type≫
In the active energy ray curable forming material, after applying the active energy ray curable forming material to the polarizer, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated, and the active energy ray curable forming material is applied. Curing to form a transparent resin layer. The irradiation direction of active energy rays (electron beam, ultraviolet ray, visible light, etc.) can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent resin layer side.
 ≪電子線硬化型≫
 電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型形成材を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が透明樹脂層最深部まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。
≪Electron beam curing type≫
In the electron beam curable type, any appropriate condition can be adopted as the electron beam irradiation condition as long as the active energy ray curable forming material can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the deepest part of the transparent resin layer and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong, and a protective film or polarizer May cause damage. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive is insufficiently cured, and when it exceeds 100 kGy, the protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. Can not.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。 The electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced.
 ≪紫外線硬化型、可視光線硬化型≫
 本発明に係る偏光フィルムの製造方法では、活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。本発明に係る活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。
≪Ultraviolet curing type, visible light curing type≫
In the method for producing a polarizing film according to the present invention, active energy rays containing visible light having a wavelength range of 380 nm to 450 nm, particularly active energy rays having the largest irradiation amount of visible light having a wavelength range of 380 nm to 450 nm are used as active energy rays. It is preferable. As the active energy ray according to the present invention, a gallium-encapsulated metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable. Or low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight A light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter.
 ≪熱硬化型≫
 一方、熱硬化型形成材では、加熱することにより、熱重合開始剤により重合を開始して、硬化物層を形成する。加熱温度は、熱重合開始剤に応じて設定されるが、60~200℃程度、好ましくは80~150℃である。
≪Thermosetting type≫
On the other hand, in the thermosetting type forming material, by heating, polymerization is started by a thermal polymerization initiator to form a cured product layer. The heating temperature is set according to the thermal polymerization initiator, but is about 60 to 200 ° C., preferably 80 to 150 ° C.
 <工程(5)>
 上記のように本発明の製造方法で得られた偏光フィルム(または片保護偏光フィルムB)の透明樹脂層4には、粘着剤層を積層して、粘着剤層付き偏光フィルム(または片保護偏光フィルムC)を製造することができる。粘着剤層付き偏光フィルム(または片保護偏光フィルムC)の粘着剤層には、セパレータを設けることができる。
<Step (5)>
As described above, the transparent resin layer 4 of the polarizing film (or the piece-protecting polarizing film B) obtained by the production method of the present invention is laminated with an adhesive layer, and the polarizing film with the adhesive layer (or the piece-protecting polarizing film). Film C) can be produced. A separator can be provided in the pressure-sensitive adhesive layer of the polarizing film with the pressure-sensitive adhesive layer (or the piece protective polarizing film C).
 <粘着剤層>
 粘着剤層の形成には、適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる。
<Adhesive layer>
An appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited. Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
 これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。 Among these pressure-sensitive adhesives, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
 粘着剤層を形成する方法としては、例えば、前記粘着剤を剥離処理したセパレータなどに塗布し、重合溶剤などを乾燥除去して粘着剤層を形成した後に、偏光子に転写する方法または偏光子に前記粘着剤を塗布し、重合溶剤などを乾燥除去して粘着剤層を偏光子に形成する方法などにより作製される。なお、粘着剤の塗布にあたっては、適宜に、重合溶剤以外の一種以上の溶剤を新たに加えてもよい。 As a method for forming the pressure-sensitive adhesive layer, for example, a method in which the pressure-sensitive adhesive is applied to a release-treated separator, the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer, and then transferred to a polarizer or a polarizer. The pressure-sensitive adhesive is applied to the film, and the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer on the polarizer. In applying the pressure-sensitive adhesive, one or more solvents other than the polymerization solvent may be added as appropriate.
 剥離処理したセパレータとしては、シリコーン剥離ライナーが好ましく用いられる。このようなライナー上に本発明の粘着剤を塗布、乾燥させて粘着剤層を形成する工程において、粘着剤を乾燥させる方法としては、目的に応じて、適宜、適切な方法が採用され得る。好ましくは、上記塗布膜を過熱乾燥する方法が用いられる。加熱乾燥温度は、好ましくは40℃~200℃であり、さらに好ましくは、50℃~180℃であり、特に好ましくは70℃~170℃である。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤を得ることができる。 A silicone release liner is preferably used as the release-treated separator. In the step of forming the pressure-sensitive adhesive layer by applying and drying the pressure-sensitive adhesive of the present invention on such a liner, an appropriate method may be adopted as appropriate according to the purpose. Preferably, a method of heating and drying the coating film is used. The heating and drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and particularly preferably 70 ° C to 170 ° C. By setting the heating temperature within the above range, an adhesive having excellent adhesive properties can be obtained.
 乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、好ましくは5秒~20分、さらに好ましくは5秒~10分、特に好ましくは、10秒~5分である。 Appropriate time can be adopted as the drying time. The drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
 粘着剤層の形成方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーターなどによる押出しコート法などの方法があげられる。 Various methods are used as a method for forming the pressure-sensitive adhesive layer. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
 粘着剤層の厚さは、特に制限されず、例えば、1~100μm程度である。好ましくは、2~50μm、より好ましくは2~40μmであり、さらに好ましくは、5~35μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 μm. The thickness is preferably 2 to 50 μm, more preferably 2 to 40 μm, and still more preferably 5 to 35 μm.
 前記粘着剤層が露出する場合には、実用に供されるまで剥離処理したシート(セパレータ)で粘着剤層を保護してもよい。 When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with a peeled sheet (separator) until practical use.
 セパレータの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルムなどのプラスチックフィルム、紙、布、不織布などの多孔質材料、ネット、発泡シート、金属箔、およびこれらのラミネート体などの適宜な薄葉体などをあげることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。 Examples of the constituent material of the separator include, for example, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films, porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof. A thin film can be used, but a plastic film is preferably used because of its excellent surface smoothness.
 そのプラスチックフィルムとしては、前記粘着剤層を保護し得るフィルムであれば特に限定されず、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルムなどがあげられる。 The plastic film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer. For example, a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyvinyl chloride film, and a vinyl chloride co-polymer are used. Examples thereof include a polymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
 前記セパレータの厚みは、通常5~200μm、好ましくは5~100μm程度である。前記セパレータには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉などによる離型および防汚処理や、塗布型、練り込み型、蒸着型などの帯電防止処理もすることもできる。特に、前記セパレータの表面にシリコーン処理、長鎖アルキル処理、フッ素処理などの剥離処理を適宜おこなうことにより、前記粘着剤層からの剥離性をより高めることができる。 The thickness of the separator is usually about 5 to 200 μm, preferably about 5 to 100 μm. For the separator, if necessary, mold release and antifouling treatment with a silicone type, fluorine type, long chain alkyl type or fatty acid amide type release agent, silica powder, etc., coating type, kneading type, vapor deposition type It is also possible to carry out antistatic treatment such as. In particular, the release property from the pressure-sensitive adhesive layer can be further improved by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the separator.
 <表面保護フィルム>
 本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)には、表面保護フィルムを設けることができる。表面保護フィルムは、通常、基材フィルムおよび粘着剤層を有し、当該粘着剤層を介して偏光子を保護する。
<Surface protection film>
A surface protective film can be provided on the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with an adhesive layer). The surface protective film usually has a base film and an adhesive layer, and protects the polarizer via the adhesive layer.
 表面保護フィルムの基材フィルムとしては、検査性や管理性などの観点から、等方性を有する又は等方性に近いフィルム材料が選択される。そのフィルム材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーがあげられる。これらのなかでもポリエステル系樹脂が好ましい。基材フィルムは、1種または2種以上のフィルム材料のラミネート体として用いることもでき、また前記フィルムの延伸物を用いることもできる。基材フィルムの厚さは、一般的には、500μm以下、好ましくは10~200μmである。 As the base film of the surface protective film, a film material having isotropic property or close to isotropic property is selected from the viewpoints of inspection property and manageability. Examples of film materials include polyester resins such as polyethylene terephthalate film, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, and the like. Examples thereof include transparent polymers such as resins. Of these, polyester resins are preferred. The base film can be used as a laminate of one kind or two or more kinds of film materials, and a stretched product of the film can also be used. The thickness of the base film is generally 500 μm or less, preferably 10 to 200 μm.
 表面保護フィルムの粘着剤層を形成する粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとする粘着剤を適宜に選択して用いることができる。透明性、耐候性、耐熱性などの観点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。粘着剤層の厚さ(乾燥膜厚)は、必要とされる粘着力に応じて決定される。通常1~100μm程度、好ましくは5~50μmである。 The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer of the surface protective film includes a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or a rubber-based pressure-sensitive adhesive. Can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable. The thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required adhesive force. Usually, it is about 1 to 100 μm, preferably 5 to 50 μm.
 なお、表面保護フィルムには、基材フィルムにおける粘着剤層を設けた面の反対面に、シリコーン処理、長鎖アルキル処理、フッ素処理などの低接着性材料により、剥離処理層を設けることができる。 The surface protective film can be provided with a release treatment layer on the surface opposite to the surface on which the pressure-sensitive adhesive layer is provided on the base film, using a low adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
 <他の光学層>
 本発明の本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルムなどの液晶表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の片保護偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。
<Other optical layers>
The polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer) of the present invention can be used as an optical film laminated with another optical layer in practical use. The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing film or a semi-transmissive polarizing film in which a reflective plate or a semi-transmissive reflective plate is further laminated on the piece protective polarizing film of the present invention, an elliptical polarizing film in which a retardation plate is further laminated on the polarizing film, or A circular viewing film, a wide viewing angle polarizing film in which a viewing angle compensation film is further laminated on the polarizing film, or a polarizing film in which a brightness enhancement film is further laminated on the polarizing film are preferable.
 本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)に上記光学層を積層した光学フィルムは、液晶表示装置などの製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業などに優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着剤層などの適宜な接着手段を用いうる。上記の粘着剤層付偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。 An optical film obtained by laminating the above optical layer on the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with an adhesive layer) is also formed by a method of sequentially laminating separately in the manufacturing process of liquid crystal display devices and the like. However, the optical film laminated in advance is excellent in quality stability and assembly work, and has the advantage of improving the manufacturing process of liquid crystal display devices and the like. For the lamination, an appropriate adhesive means such as a pressure-sensitive adhesive layer can be used. When adhering the polarizing film with the pressure-sensitive adhesive layer and other optical films, their optical axes can be arranged at an appropriate angle depending on the intended retardation characteristics and the like.
 本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)または光学フィルムは液晶表示装置などの各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと粘着剤層付偏光フィルムまたは光学フィルム、及び必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による、本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)または光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばIPS型、VA型などの任意なタイプのものを用いうるが、特にIPS型に好適である。 The polarizing film (including a piece protective polarizing film and a polarizing film with an adhesive layer) or an optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film with an adhesive layer or an optical film, and an illumination system as necessary, and incorporating a drive circuit. In the invention, there is no particular limitation except that the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer) or an optical film according to the present invention is used. As the liquid crystal cell, an arbitrary type such as an IPS type or a VA type can be used, but is particularly suitable for the IPS type.
 液晶セルの片側又は両側に本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)または光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)または光学フィルムは液晶セルの片側又は両側に設置することができる。両側に本発明の偏光フィルム(片保護偏光フィルム、粘着剤層付偏光フィルムを含む)または光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。 A liquid crystal display device in which the polarizing film of the present invention (including a single protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer) or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or reflector used in an illumination system An appropriate liquid crystal display device such as can be formed. In that case, the polarizing film (including a piece protective polarizing film and a polarizing film with an adhesive layer) or an optical film of the present invention can be installed on one side or both sides of the liquid crystal cell. When the polarizing film of the present invention (including a piece protective polarizing film and a polarizing film with a pressure-sensitive adhesive layer) or an optical film is provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.
 以下に、本発明を実施例を挙げて説明するが、本発明は以下に示した実施例に制限されるものではない。なお、各例中の部および%はいずれも重量基準である。以下に特に規定のない室温放置条件は全て23℃65%RHである。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples shown below. In addition, all the parts and% in each example are based on weight. The room temperature standing conditions not specifically defined below are all 23 ° C. and 65% RH.
 <粘度測定>
 液状物である水溶液(塗工液)の粘度は、VISCOMETER R85型粘度計 RE85L(東機産業社製)を用いて下記の条件で測定した。
 測定温度:25℃
 回転数:0.5~100rpm
 コーンローター:1°34‘×R24
<Viscosity measurement>
The viscosity of the aqueous solution (coating solution) which is a liquid was measured using a VISCOMETER R85 viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) under the following conditions.
Measurement temperature: 25 ° C
Rotation speed: 0.5-100rpm
Cone rotor: 1 ° 34 '× R24
 <透明樹脂層の形成材>
(ポリビニルアルコール系形成材:PVA‐A)
 重合度2500、ケン化度99.7モル%のポリビニルアルコール樹脂を純水に溶解し、固形分濃度4重量%、粘度60mPa・Sの水溶液(塗工液)を調製した。
<Forming material for transparent resin layer>
(Polyvinyl alcohol-based forming material: PVA-A)
A polyvinyl alcohol resin having a polymerization degree of 2500 and a saponification degree of 99.7 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 4% by weight and a viscosity of 60 mPa · S.
(ポリビニルアルコール系形成材:PVA‐B)
 重合度500、ケン化度96.0モル%のポリビニルアルコール樹脂を純水に溶解し、固形分濃度4重量%、粘度60mPa・Sの水溶液(塗工液)を調製した。
(Polyvinyl alcohol-based forming material: PVA-B)
A polyvinyl alcohol resin having a polymerization degree of 500 and a saponification degree of 96.0 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 4% by weight and a viscosity of 60 mPa · S.
(ポリビニルアルコール系形成材::PVA‐C)
 重合度2500、ケン化度99.7モル%のポリビニルアルコール樹脂を純水に溶解し、固形分濃度8重量%、粘度1500mPa・Sの水溶液(塗工液)を調製した。
(Polyvinyl alcohol-based forming material :: PVA-C)
A polyvinyl alcohol resin having a polymerization degree of 2500 and a saponification degree of 99.7 mol% was dissolved in pure water to prepare an aqueous solution (coating liquid) having a solid content concentration of 8 wt% and a viscosity of 1500 mPa · S.
(アクリル系形成材A:無溶剤)
 下記材料を50℃で混合し1時間撹拌して、粘度20mPa・Sの塗工液を調製した。
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 20部
 ウレタンアクリレート(日本合成化学社製、商品名「UV-1700B」) 80部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製,商品名「IRGACURE907」) 3部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(Acrylic forming material A: Solvent-free)
The following materials were mixed at 50 ° C. and stirred for 1 hour to prepare a coating solution having a viscosity of 20 mPa · S.
N-hydroxyethylacrylamide (trade name “HEAA” manufactured by Kojin Co., Ltd.) 20 parts Urethane acrylate (trade name “UV-1700B” manufactured by Nippon Synthetic Chemical Co., Ltd.) 80 parts Photoradical polymerization initiator (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF, trade name “IRGACURE907”) 3 parts Photosensitizer (diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd., trade name “KAYACURE DETX-S” ]) 2 parts
(アクリル系形成材B:溶剤系)
 上記アクリル系形成材Aの調製にあたり、メチルエチルケトンを加えて、粘度10mPa・Sの塗工液を調製した。メチルエチルケトンは、アクリル系形成材Bの調製にあたり溶液中のアクリル系形成材Aの割合が40%になるように調整した。
(Acrylic-based forming material B: solvent-based)
In preparing the acrylic forming material A, methyl ethyl ketone was added to prepare a coating solution having a viscosity of 10 mPa · S. Methyl ethyl ketone was adjusted so that the ratio of the acrylic forming material A in the solution was 40% in the preparation of the acrylic forming material B.
(アクリル系形成材C:水系)
 ジュリマーFC-80(東亞合成社製)100部に純水900部を添加し、固形分濃度3%、粘度10mPa・Sの水溶液(塗工液)を調製した。
(Acrylic forming material C: aqueous)
900 parts of pure water was added to 100 parts of Jurimer FC-80 (manufactured by Toagosei Co., Ltd.) to prepare an aqueous solution (coating solution) having a solid content concentration of 3% and a viscosity of 10 mPa · S.
(エポキシ系形成材Aの組成:無溶剤)
 下記材料を50℃で混合し1時間撹拌して、粘度10mPa・Sの塗工液を調製した。
 3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学工業社製、商品名「セロキサイド2021P」) 100部
 光カチオン重合開始剤(4-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、サンアプロ社製、商品名「CPI-100P」) 1部
(Composition of epoxy-based forming material A: no solvent)
The following materials were mixed at 50 ° C. and stirred for 1 hour to prepare a coating solution having a viscosity of 10 mPa · S.
3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Daicel Chemical Industries, trade name “Celoxide 2021P”) 100 parts Photocationic polymerization initiator (4- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate , Made by Sun Apro, trade name "CPI-100P")
 <保護フィルム(アクリル)および接着剤>
 厚み40μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムの易接着処理面にコロナ処理を施して用いた。
<Protective film (acrylic) and adhesive>
A (meth) acrylic resin film having a lactone ring structure with a thickness of 40 μm was subjected to corona treatment on the easy adhesion treated surface.
 上記の保護フィルム(アクリル)に適用する接着剤として、N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。 As an adhesive applied to the protective film (acrylic), 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO), and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF) Were mixed to prepare an ultraviolet curable adhesive.
 <保護フィルム(TAC)および接着剤>
 厚さ80μm(TD80UL、富士フィルム株式会社製)のトリアセチルセルロースフィルムを用いた。
<Protective film (TAC) and adhesive>
A triacetyl cellulose film having a thickness of 80 μm (TD80UL, manufactured by Fuji Film Co., Ltd.) was used.
 上記の保護フィルム(TAC)に適用する接着剤として、アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100部に対し、メチロールメラミン50部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調製した。前記水溶液100部に対し、アルミナコロイド水溶液(平均粒子径15nm,固形分濃度10%,正電荷)18部を加えて接着剤水溶液を調製した。 As an adhesive applied to the protective film (TAC), a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) With respect to 100 parts, 50 parts of methylol melamine was dissolved in pure water under a temperature condition of 30 ° C. to prepare an aqueous solution adjusted to a solid content concentration of 3.7%. An aqueous adhesive solution was prepared by adding 18 parts of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts of the aqueous solution.
 実施例1
 (工程1:積層体(a)の準備>
 搬送用フィルムとして、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(PET)フィルム(三菱化学社製,商品名「ノバクリア」,厚み100μm)を用いた。
 前記搬送用フィルムの片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)90重量部およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)10重量部を含む水溶液を60℃で塗布および乾燥して、厚み10μmのPVA系樹脂層(塗布型)を形成し、積層体(a´)を作製した。
 得られた積層体(a´)を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に1.8倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液)に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に一軸延伸を行った(水中延伸)。ここでは、得られる偏光子の厚みが5μmになるように延伸倍率を調整した。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 以上により、搬送用フィルム上に、厚み5μmの偏光子を含む積層体(a)を得た。
Example 1
(Step 1: Preparation of Laminate (a)>
As a transport film, a long, amorphous phthalate copolymerized polyethylene terephthalate (PET) film with a water absorption of 0.75% and Tg of 75 ° C. (trade name “Novaclear”, thickness 100 μm, manufactured by Mitsubishi Chemical Corporation) Using.
One side of the transport film is subjected to corona treatment, and on this corona-treated surface, 90 parts by weight of polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl). An aqueous solution containing 10 parts by weight of a modification degree of 4.6%, a saponification degree of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and trade name “Gosefimer Z200”) was applied and dried at 60 ° C. to obtain a thickness. A 10 μm PVA resin layer (coating type) was formed to produce a laminate (a ′).
The obtained laminate (a ′) was uniaxially stretched at a free end 1.8 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching).
Next, the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, it is immersed for 60 seconds in a dyeing bath having a liquid temperature of 30 ° C. (an iodine aqueous solution obtained by blending 0.2 parts by weight of iodine and 1.0 part by weight of potassium iodide with respect to 100 parts by weight of water). (Staining treatment).
Subsequently, it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (Crosslinking treatment).
Thereafter, the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C. However, uniaxial stretching was performed in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds (underwater stretching). Here, the draw ratio was adjusted so that the thickness of the obtained polarizer was 5 μm.
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
As described above, a laminate (a) including a polarizer having a thickness of 5 μm was obtained on the transport film.
 (工程4:保護フィルムの積層:搬送用フィルム付き片保護偏光フィルムA´の作製)
 続いて、上記積層体(a)の偏光子の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚みが1μmになるように塗布し、上記保護フィルム(アクリル)を貼合せたのち、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。
 以上のようにして、搬送用フィルム付き片保護偏光フィルムA´を作製した。得られた搬送用フィルム付き片保護偏光フィルムA´の光学特性は、透過率42.8%、偏光度99.99%であった。
(Step 4: Lamination of protective film: production of a piece protective polarizing film A ′ with a transport film)
Subsequently, the ultraviolet curable adhesive was applied to the surface of the polarizer of the laminate (a) so that the thickness of the adhesive layer after curing was 1 μm, and the protective film (acrylic) was bonded. After that, ultraviolet rays were applied as active energy rays to cure the adhesive. Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc. Light HAMMER 10, Inc., bulb: V bulb, peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm) ), And the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell.
As described above, a piece protective polarizing film A ′ with a transport film was produced. The optical properties of the obtained piece-protecting polarizing film A ′ with a transport film were a transmittance of 42.8% and a polarization degree of 99.99%.
 (工程2:搬送用フィルムの剥離)
 次いで、搬送用フィルム付き片保護偏光フィルムA´から、搬送用フィルムを剥離して、片保護偏光フィルムAを得た。
(Process 2: Peeling of film for conveyance)
Subsequently, the film for conveyance was peeled from the piece protection polarizing film A 'with a film for conveyance, and the piece protection polarizing film A was obtained.
 (工程3:透明樹脂層付の片保護偏光フィルムBの作製)
 上記搬送用フィルムが剥離された、片保護偏光フィルムAの偏光子の面(保護フィルムが設けられていない偏光子面)に、透明樹脂層の形成材として、25℃に調整した上記ポリビニルアルコール系形成材(PVA‐A)をワイヤーバーで乾燥後の厚みが1μmになるように塗布した後、85℃で25秒間熱風乾燥して、透明樹脂層付の片保護偏光フィルムBを作製した。
(Step 3: Production of a piece protective polarizing film B with a transparent resin layer)
The polyvinyl alcohol system adjusted to 25 ° C. as a transparent resin layer forming material on the polarizer surface (polarizer surface on which no protective film is provided) of the single protective polarizing film A from which the transport film has been peeled off The forming material (PVA-A) was applied with a wire bar so that the thickness after drying was 1 μm, and then dried with hot air at 85 ° C. for 25 seconds to prepare a piece protective polarizing film B with a transparent resin layer.
 実施例2~15、比較例1~4
 実施例1において、各工程で用いる材料、厚さ、各層の形成手段等を表1に示すように変えたこと以外は、実施例1と同様にして、透明樹脂層付の片保護偏光フィルムBを作製した。
Examples 2 to 15 and Comparative Examples 1 to 4
In Example 1, the piece-protecting polarizing film B with a transparent resin layer was used in the same manner as in Example 1 except that the materials, thicknesses, and means for forming each layer used in each step were changed as shown in Table 1. Was made.
 表1中、工程(1)の搬送用フィルムに関して、実施例3、4では、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(PET)フィルム(三菱化学社製,商品名「ノバクリア」,厚み38μm)を用いて、下記の粘着剤層Xを設けたものを用いた。粘着剤層Xは下記方法により調製した粘着シートの粘着剤層を転写して用いた。工程(1)における、当該粘着剤層に、PVA系樹脂層を形成またはPVAフィルムを貼り合わせて、積層体(a´)を作製した。 In Table 1, with respect to the transport film in the step (1), in Examples 3 and 4, it is a long, amorphous isophthalic acid copolymerized polyethylene terephthalate (PET) film having a water absorption of 0.75% and a Tg of 75 ° C. (Mitsubishi Chemical Co., Ltd., trade name “NOVA CLEAR”, thickness 38 μm) was used and provided with the following pressure-sensitive adhesive layer X. The pressure-sensitive adhesive layer X was used by transferring a pressure-sensitive adhesive layer of a pressure-sensitive adhesive sheet prepared by the following method. In the step (1), a PVA-based resin layer was formed or a PVA film was bonded to the pressure-sensitive adhesive layer to produce a laminate (a ′).
 <粘着剤層Xの形成>
 攪拌羽根、温度計、窒素ガス導入管、冷却器、滴下ロートを備えた四つ口フラスコに、アクリル酸2-エチルヘキシル(2EHA)96部、アクリル酸2-ヒドロキシエチル(HEA)4部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.2部、および酢酸エチル150質量部を仕込み、緩やかに攪拌しながら窒素ガスを導入し、フラスコ内の液温を65℃付近に保って6時間重合反応を行い、アクリル系ポリマー(a)溶液(40%)を調製した。このアクリル系ポリマー(a)のFox式より算出したガラス転移温度は-68℃、重量平均分子量55万であった。
 一方、トルエン100質量部、ジシクロペンタニルメタクリレート(DCPMA)(商品名:FA-513M、日立化成工業社製)40部、メチルメタクリレート(MMA)60部および連鎖移動剤としてチオグリコール酸メチル3.5部を攪拌羽根、温度計、窒素ガス導入管、冷却器、滴下ロートを備えた4つ口フラスコに投入した。そして、70℃にて窒素雰囲気下で1時間攪拌した後、熱重合開始剤としてアゾビスイソブチロニトリル0.2質量部を投入し、70℃で2時間反応させ、続いて80℃で4時間反応させた後に、90℃で1時間反応させた。得られた(メタ)アクリル系重合体1のFox式より算出したガラス転移温度は130℃、重量平均分子量は4300であった。
 (メタ)アクリル系ポリマー(a)溶液(35%)を酢酸エチルで20%に希釈した溶液500部((メタ)アクリル系ポリマー(a)100部)に、(メタ)アクリル系重合体1を1質量部、イオン性化合物として、ビス(トリフルオロメタンスルホニル)イミドリチウム(東京化成工業社製、LiTFSI)0.03部、ポリオキシアルキレン鎖を有する化合物として、ポリオキシアルキレン鎖を有するオルガノポリシロキサン(商品名:KF6004、信越化学工業社製)0.5部、架橋剤としてコロネートL(トリメチロールプロパン/トリレンジイソシアネート3量体付加物の固形分75%酢酸エチル溶液、日本ポリウレタン工業社製)2.0部、架橋触媒としてジラウリン酸ジオクチルスズの固形分1%酢酸エチル溶液を3質量部を加えて、25℃下で約5分間混合攪拌を行って粘着剤組成物(1)を調製した。
<Formation of adhesive layer X>
In a four-necked flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube, condenser, and dropping funnel, 96 parts of 2-ethylhexyl acrylate (2EHA), 4 parts of 2-hydroxyethyl acrylate (HEA), polymerization started 2,2′-azobisisobutyronitrile as an agent and 150 parts by mass of ethyl acetate were charged, nitrogen gas was introduced while gently stirring, and the liquid temperature in the flask was kept at around 65 ° C. A polymerization reaction was carried out for 6 hours to prepare an acrylic polymer (a) solution (40%). The glass transition temperature calculated from the Fox formula of this acrylic polymer (a) was −68 ° C., and the weight average molecular weight was 550,000.
On the other hand, 100 parts by mass of toluene, 40 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Chemical Co., Ltd.), 60 parts of methyl methacrylate (MMA) and methyl thioglycolate as a chain transfer agent Five parts were put into a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, a cooler, and a dropping funnel. Then, after stirring for 1 hour at 70 ° C. in a nitrogen atmosphere, 0.2 part by mass of azobisisobutyronitrile as a thermal polymerization initiator was added and reacted for 2 hours at 70 ° C., followed by 4 at 80 ° C. After reacting for an hour, it was reacted at 90 ° C. for 1 hour. The obtained (meth) acrylic polymer 1 had a glass transition temperature calculated from the Fox formula of 130 ° C. and a weight average molecular weight of 4300.
The (meth) acrylic polymer 1 is added to 500 parts of the (meth) acrylic polymer (a) solution (35%) diluted to 20% with ethyl acetate (100 parts of the (meth) acrylic polymer (a)). 1 part by mass, as an ionic compound, 0.03 part of bis (trifluoromethanesulfonyl) imide lithium (manufactured by Tokyo Chemical Industry Co., Ltd., LiTFSI), as a compound having a polyoxyalkylene chain, an organopolysiloxane having a polyoxyalkylene chain ( Product name: KF6004, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts, coronate L (trimethylolpropane / tolylene diisocyanate trimer adduct 75% ethyl acetate solution, manufactured by Nippon Polyurethane Industry Co., Ltd.) 2 0.0 part, 3 mass of 1% solid content ethyl acetate solution of dioctyltin dilaurate as a crosslinking catalyst Was added, pressure-sensitive adhesive composition performed mixed and stirred for about 5 minutes at 25 ° C. (1) was prepared.
 (粘着シートの作製)
 上記粘着剤組成物(1)を、帯電防止処理層付きポリエチレンテレフタレートフィルム(商品名:ダイアホイルT100G38、三菱樹脂社製、厚さ38μm)の帯電防止処理面とは反対の面に塗布し、130℃で2分間加熱して、厚さ15μmの粘着剤層を形成した。次いで、上記粘着剤層の表面に、剥離ライナー(片面にシリコーン処理を施した厚さ20μmのポリエチレンテレフタレートフィルム)のシリコーン処理面を貼合せて粘着シートを作製した。
(Preparation of adhesive sheet)
The pressure-sensitive adhesive composition (1) was applied to the surface opposite to the antistatic treatment surface of a polyethylene terephthalate film with an antistatic treatment layer (trade name: Diafoil T100G38, manufactured by Mitsubishi Plastics, Inc., thickness 38 μm). The mixture was heated at 0 ° C. for 2 minutes to form a pressure-sensitive adhesive layer having a thickness of 15 μm. Next, a silicone-treated surface of a release liner (20 μm thick polyethylene terephthalate film with one side subjected to silicone treatment) was bonded to the surface of the pressure-sensitive adhesive layer to produce a pressure-sensitive adhesive sheet.
 表1中、工程(1)の搬送用フィルムに関して、実施例5、6、比較例2では、ポリエチレン(PE)フィルム(東レフィルム加工社製,トレテック7332,厚み31μm)を用いた。また、実施例7では、ポリプロピレン(PP)フィルム(東レ社製,トレファン2500H,厚み60μm)を用いた。 In Table 1, regarding Examples 5 and 6 and Comparative Example 2, a polyethylene (PE) film (manufactured by Toray Film Processing Co., Ltd., Tretec 7332, thickness 31 μm) was used for the transport film in step (1). In Example 7, a polypropylene (PP) film (manufactured by Toray Industries Inc., Treffan 2500H, thickness 60 μm) was used.
 表1中、工程(1)の偏光子の形成方法に関して、実施例2、4、6では、積層体(a´)を作製するにあたり、実施例1においてPVA系樹脂層(塗布型)を形成していた代わりに、平均重合度2400、ケン化度99.9モル%、厚さ20μmのポリビニルアルコールフィルム(フィルム型)を搬送用フィルムに貼り合わせた。得られた積層体(a´)は、実施例1と同様に処理して、延伸後の厚み7μmの偏光子を含む積層体(a)を得た。 In Table 1, with respect to the method of forming the polarizer in step (1), in Examples 2, 4, and 6, the PVA-based resin layer (coating type) was formed in Example 1 when producing the laminate (a ′). Instead, a polyvinyl alcohol film (film type) having an average polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 20 μm was bonded to the transport film. The obtained laminate (a ′) was treated in the same manner as in Example 1 to obtain a laminate (a) containing a 7 μm thick polarizer after stretching.
 表1中、工程(4)に関して、実施例5、6では、偏光子の表面に、保護フィルム(TAC)を、接着剤水溶液を用いて貼り合わせた。保護フィルム(TAC)を貼合せたのち、50℃で5分間の乾燥を行った。接着剤層は乾燥後の厚さが0.1μmになるように調整した。 In Table 1, with respect to step (4), in Examples 5 and 6, a protective film (TAC) was bonded to the surface of the polarizer using an adhesive aqueous solution. After bonding the protective film (TAC), drying was performed at 50 ° C. for 5 minutes. The adhesive layer was adjusted so that the thickness after drying was 0.1 μm.
 表1中、工程(3)に関して、透明樹脂層の形成材としてポリビニルアルコール系形成材を用いた場合には、表1に記載の加熱時間、加熱温度、膜厚を採用した。一方、透明樹脂層の形成材としてアクリル系形成材Aまたはエポキシ形成材Aを用いた場合(実施例11、14)には、当該形成材をワイヤーバーコーターを用いて、厚み5μmになるように塗工した後、窒素雰囲気下で活性エネルギー線を照射することで、透明樹脂層付の片保護偏光フィルムBを作製した。なお、活性エネルギー線として、可視光線(ガリウム封入メタルハライドランプ) 照射装置:Fusion UV Systems,Inc社製Light HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用した。なお、可視光線の照度は、Solatell社製Sola-Checkシステムを使用して測定した。
 また、透明樹脂層の形成材としてアクリル系形成材B(溶剤系)を用いた場合(実施例12)には、塗工後に60℃のオーブンで1秒間乾燥させた後、溶剤を除去してから、上記同様に窒素雰囲気下で活性エネルギー線照射し、透明樹脂層を形成した。
 また、透明樹脂層の形成材としてアクリル系形成材C(水系)を用いた場合(実施例13)には、塗工後に90℃のオーブンで60秒乾燥させて、透明樹脂層を形成した。
In Table 1, regarding the step (3), when a polyvinyl alcohol-based forming material was used as the forming material for the transparent resin layer, the heating time, heating temperature, and film thickness shown in Table 1 were employed. On the other hand, when acrylic forming material A or epoxy forming material A is used as the forming material of the transparent resin layer (Examples 11 and 14), the forming material is made to have a thickness of 5 μm using a wire bar coater. After coating, a piece protective polarizing film B with a transparent resin layer was produced by irradiating active energy rays in a nitrogen atmosphere. As an active energy ray, visible light (gallium filled metal halide lamp) Irradiation device: Fusion UV Systems, Inc. Light HAMMER10 bulb: V bulb Peak illuminance: 1600 mW / cm 2 , integrated irradiation dose 1000 / mJ / cm 2 (wavelength 380-440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.
Moreover, when the acrylic type forming material B (solvent type) was used as the forming material of the transparent resin layer (Example 12), after the coating, it was dried in an oven at 60 ° C. for 1 second, and then the solvent was removed. In the same manner as above, active energy rays were irradiated in a nitrogen atmosphere to form a transparent resin layer.
Moreover, when the acrylic type forming material C (aqueous type) was used as the forming material of the transparent resin layer (Example 13), it was dried in an oven at 90 ° C. for 60 seconds after coating to form a transparent resin layer.
 比較例1、2では、工程(3)(透明樹脂層の形成)を行わなかった。
 比較例3では、透明樹脂層を形成する代わりに、水のみを塗工して乾燥処理を行った。
 比較例4は、工程(3)(透明樹脂層の形成)を厚み0.1μmで行った。
 比較例5では、搬送用フィルムを使用しなかった為、搬送できなかった。
In Comparative Examples 1 and 2, the step (3) (formation of a transparent resin layer) was not performed.
In Comparative Example 3, instead of forming a transparent resin layer, only water was applied and a drying process was performed.
In Comparative Example 4, the step (3) (formation of a transparent resin layer) was performed with a thickness of 0.1 μm.
In Comparative Example 5, the film for conveyance could not be conveyed because it was not used.
 上記実施例、比較例で得られた透明樹脂層付の片保護偏光フィルムBまたは片保護偏光フィルムAについて下記評価を行った。結果を表1に示す。 The following evaluation was performed on the piece protective polarizing film B or the piece protective polarizing film A with a transparent resin layer obtained in the above Examples and Comparative Examples. The results are shown in Table 1.
 <80℃における圧縮弾性率の測定>
 圧縮弾性率の測定にはTI900 TriboIndenter(Hysitron社製)を使用した。得られた透明樹脂層付き片保護偏光フィルムBを10mm×10mmのサイズに裁断しTriboIndenter備付の支持体に固定し、ナノインデンテーション法により圧縮弾性率の測定を行った。その際、使用圧子が透明樹脂層の中心部付近を押し込むように位置を調整した。測定条件を以下に示す。
 使用圧子:Berkovich(三角錐型)
 測定方法:単一押し込み測定
 測定温度:80℃
 押し込み深さ設定:100nm
<Measurement of compression modulus at 80 ° C.>
TI900 TriboIndenter (manufactured by Hystron) was used for the measurement of the compression modulus. The obtained piece-protecting polarizing film B with a transparent resin layer was cut into a size of 10 mm × 10 mm, fixed to a support equipped with a TriboIndenter, and the compression modulus was measured by a nanoindentation method. At that time, the position was adjusted such that the working indenter pushed in the vicinity of the center of the transparent resin layer. The measurement conditions are shown below.
Working indenter: Berkovich (triangular pyramid type)
Measuring method: Single indentation measurement Measuring temperature: 80 ° C
Indentation depth setting: 100 nm
 <単体透過率Tおよび偏光度P>
 得られた片保護偏光フィルムAの単体透過率Tおよび偏光度Pを、積分球付き分光透過率測定器(村上色彩技術研究所のDot-3c)を用いて測定した。
 なお、偏光度Pは、2枚の同じ偏光フィルムを両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:Tp)および、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:Tc)を以下の式に適用することにより求められるものである。偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 各透過率は、グランテラープリズム偏光子を通して得られた完全偏光を100%として、JIS Z8701の2度視野(C光源)により視感度補整したY値で示したものである。
<Single transmittance T and degree of polarization P>
The single transmittance T and polarization degree P of the obtained piece-protecting polarizing film A were measured using a spectral transmittance measuring device with an integrating sphere (Dot-3c of Murakami Color Research Laboratory).
The degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated | required by applying the transmittance | permeability (orthogonal transmittance | permeability: Tc) at the time of combining to the following formula | equation. Polarization degree P (%) = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100
Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
 <搬送性>
 工程(1)において、積層体(a´)に、水中延伸(湿潤延伸工程)を施す際に搬送することができたか否かを、下記の基準で判断した。
 ○:搬送可能。
 △:搬送は可能だが、偏光子端部に搬送可能な程度の割れが発生。
 ×:破断のため搬送できない。
<Transportability>
In step (1), whether or not the laminate (a ′) was able to be transported when subjected to underwater stretching (wet stretching step) was determined based on the following criteria.
○: Can be transported.
Δ: Can be transported, but cracks to the extent that it can be transported to the end of the polarizer.
X: Cannot be transported due to breakage.
 <耐久性:光抜け欠点:発生個数>
 実施例1~15、比較例4で得られた透明樹脂層付の片保護偏光フィルムBおよび比較例1~3で得られた片保護偏光フィルムAを吸収軸方向が長辺になるように32インチサイズに裁断したものを3枚用意した。同様に、吸収軸方向が短辺になるように32インチサイズに裁断したものを3枚用意した。次いで、実施例1~15および比較例4では透明樹脂層付の片保護偏光フィルムBに透明樹脂層面に、厚さ20μmの下記方法で形成した粘着剤層Yを設けた。比較例1、2では片保護偏光フィルムAの搬送用フィルムを剥離した面に粘着剤層Yを設けた。比較例3では片保護偏光フィルムAの水を塗工した面に粘着剤層Yを設けた。このようにしてサンプル(粘着層付き偏光フィルム)を調製した。前記サンプルの粘着剤層Y側を厚さ0.5mmの無アルカリガラスの両面に前記サンプルがクロスニコルになるように、ラミネーターを用いて貼着した。次いで、50℃、0.5MPaで15分間オートクレーブ処理して、上記サンプルを完全に無アクリルガラスに密着させた。こうしてクロスニコルに透明樹脂層付の片保護偏光フィルムBまたは片保護偏光フィルムAが貼られた32インチサイズの評価サンプルを各3枚ずつ調製した。かかる評価サンプルに、80℃(加熱条件)の各雰囲気下で500時間処理を施した後、3枚の評価サンプルの光ヌケ欠点の個数を目視で確認して、それらの個数を合計し、下記の基準で評価した。
 〇:発生なし。
 △:1~9個。
 ×:10個以上。
<Durability: Light leakage defect: Number of occurrences>
The piece protective polarizing film B with a transparent resin layer obtained in Examples 1 to 15 and Comparative Example 4 and the piece protective polarizing film A obtained in Comparative Examples 1 to 3 were arranged so that the absorption axis direction was the longer side. Three pieces cut to inch size were prepared. Similarly, three sheets cut to a 32-inch size so that the absorption axis direction is the short side were prepared. Next, in Examples 1 to 15 and Comparative Example 4, the pressure-sensitive adhesive layer Y formed by the following method having a thickness of 20 μm was provided on the transparent resin layer surface of the piece protective polarizing film B with a transparent resin layer. In Comparative Examples 1 and 2, the pressure-sensitive adhesive layer Y was provided on the surface of the piece protective polarizing film A from which the transport film was peeled off. In Comparative Example 3, the pressure-sensitive adhesive layer Y was provided on the surface of the single protective polarizing film A on which water was applied. In this way, a sample (polarizing film with an adhesive layer) was prepared. The pressure-sensitive adhesive layer Y side of the sample was attached to both surfaces of a non-alkali glass having a thickness of 0.5 mm using a laminator so that the sample was crossed Nicol. Subsequently, the sample was autoclaved at 50 ° C. and 0.5 MPa for 15 minutes to completely adhere the sample to the acrylic-free glass. Thus, three 32-inch evaluation samples each having a piece of polarizing protective film B with a transparent resin layer or a piece of polarizing protective film A with a transparent resin layer were prepared. The evaluation sample was treated for 500 hours in each atmosphere at 80 ° C. (heating conditions), and then the number of light spot defects in the three evaluation samples was visually confirmed, and the total number of the samples was as follows. Evaluation based on the criteria.
○: No occurrence.
Δ: 1 to 9 pieces.
X: 10 or more.
 <粘着剤層Yの形成>
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル100部、アクリル酸3部、アクリル酸2-ヒドロキシエチル0.1部および2,2´-アゾビスイソブチロニトリル0.3部を酢酸エチルと共に加えて溶液を調製した。次いで、この溶液に窒素ガスを吹き込みながら撹拌して、55℃で8時間反応させて、重量平均分子量220万のアクリル系ポリマーを含有する溶液を得た。さらに、このアクリル系ポリマーを含有する溶液に、酢酸エチルを加えて固形分濃度を30%に調整したアクリル系ポリマー溶液を得た。
 前記アクリル系ポリマー溶液の固形分100部に対して、架橋剤として、0.5部のイソシアネート基を有する化合物を主成分とする架橋剤(日本ポリウレタン(株)製,商品名「コロネートL」)と、シランカップリング剤として、0.075部のγ-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製,商品名「KMB-403」)とをこの順に配合して、粘着剤溶液を調製した。上記粘着剤溶液を、剥離処理したポリエチレンテレフタレートフィルム(厚さ38μm)からなる離型シート(セパレータ)の表面に、乾燥後の厚みが20μmになるように塗布し、乾燥して、粘着剤層Yを形成した。
<Formation of adhesive layer Y>
In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer, 100 parts of butyl acrylate, 3 parts of acrylic acid, 0.1 part of 2-hydroxyethyl acrylate and 2,2′-azobisisobutyrate A solution was prepared by adding 0.3 parts of ronitrile with ethyl acetate. Next, the solution was stirred while blowing nitrogen gas and reacted at 55 ° C. for 8 hours to obtain a solution containing an acrylic polymer having a weight average molecular weight of 2.2 million. Furthermore, the acrylic polymer solution which added ethyl acetate to the solution containing this acrylic polymer and adjusted solid content concentration to 30% was obtained.
As a cross-linking agent, 100 parts by weight of the solid content of the acrylic polymer solution is a cross-linking agent mainly composed of a compound having an isocyanate group of 0.5 part (trade name “Coronate L” manufactured by Nippon Polyurethane Co., Ltd.). And 0.075 parts of γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KMB-403”) as a silane coupling agent in this order, Was prepared. The pressure-sensitive adhesive solution was applied to the surface of a release sheet (separator) composed of a peeled polyethylene terephthalate film (thickness 38 μm) so that the thickness after drying was 20 μm, dried, and pressure-sensitive adhesive layer Y Formed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 A´ 搬送用フィルム付き片保護偏光フィルム
 A  片保護偏光フィルム
 B  透明樹脂層付の片保護偏光フィルム
 C  粘着剤層付き片保護偏光フィルム(透明樹脂層付)
 1  偏光子
 2  保護フィルム
 3  搬送用フィルム
 4  透明樹脂層
 5  粘着剤層
A 'piece protective polarizing film with film for transportation A piece protective polarizing film B piece protective polarizing film with transparent resin layer C piece protective polarizing film with adhesive layer (with transparent resin layer)
DESCRIPTION OF SYMBOLS 1 Polarizer 2 Protective film 3 Film for conveyance 4 Transparent resin layer 5 Adhesive layer

Claims (9)

  1.  搬送用フィルムと、当該搬送用フィルムの片面に形成されたポリビニルアルコール系樹脂を含有する厚み10μm以下の偏光子を有する積層体(a)を準備する工程(1)、
     前記積層体(a)から前記搬送用フィルムを剥離する工程(2)、および
     前記積層体(a)において搬送用フィルムが剥離された側に、樹脂成分または樹脂層を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより厚みが0.2μm以上の透明樹脂層を形成する工程(3)を含むことを特徴とする偏光フィルムの製造方法。
    A step (1) of preparing a laminate (a) having a transport film and a polarizer having a thickness of 10 μm or less containing a polyvinyl alcohol-based resin formed on one surface of the transport film;
    Step (2) of peeling the film for conveyance from the laminate (a), and curable resin layer or resin layer on the side of the laminate (a) from which the film for conveyance is peeled off. A polarizing film comprising a step (3) of forming a transparent resin layer having a thickness of 0.2 μm or more by applying a liquid material containing a component and then solidifying or curing the liquid material Production method.
  2.  前記透明樹脂層は、80℃における圧縮弾性率が0.1GPa以上であることを特徴とする請求項1に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to claim 1, wherein the transparent resin layer has a compressive elastic modulus at 80 ° C of 0.1 GPa or more.
  3.  前記工程(3)で形成される透明樹脂層は、水に溶解または分散した樹脂成分を含む液状物を塗工した後に、固化することによって形成することを特徴とする請求項1または2に記載の偏光フィルムの製造方法。 The transparent resin layer formed in the step (3) is formed by applying a liquid material containing a resin component dissolved or dispersed in water and then solidifying. Manufacturing method of the polarizing film.
  4.  前記樹脂成分を含む液状物が、ポリビニルアルコール系樹脂を含有する水溶液であることを特徴とする請求項3記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to claim 3, wherein the liquid material containing the resin component is an aqueous solution containing a polyvinyl alcohol resin.
  5.  前記液状物は、25℃における粘度が1000mPa・s以下であることを特徴とする請求項1~4のいずれかに記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to any one of claims 1 to 4, wherein the liquid material has a viscosity at 25 ° C of 1000 mPa · s or less.
  6.  前記工程(1)における積層体(a)は、搬送用フィルムと当該搬送用フィルムの片面に形成されたポリビニルアルコール系樹脂層とを有する積層体(a´)に、少なくとも延伸工程および染色工程を施すことにより得られたものであることを特徴とする請求項1~5のいずれかに記載の偏光フィルムの製造方法。 The laminate (a) in the step (1) comprises at least a stretching step and a dyeing step on a laminate (a ′) having a transport film and a polyvinyl alcohol-based resin layer formed on one side of the transport film. 6. The method for producing a polarizing film according to claim 1, wherein the polarizing film is obtained by applying.
  7.  前記積層体(a)の偏光子の側に、保護フィルムを形成する工程(4)を有し、
     前記偏光フィルムとして、偏光子の片側にのみ保護フィルムを有する片保護偏光フィルムを製造することを特徴とする請求項1~6のいずれかに記載の偏光フィルムの製造方法。
    A step (4) of forming a protective film on the polarizer side of the laminate (a);
    The method for producing a polarizing film according to any one of claims 1 to 6, wherein a piece-protecting polarizing film having a protective film only on one side of the polarizer is produced as the polarizing film.
  8.  前記偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、下記式
     P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
     P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたことを特徴とする請求項1~7のいずれかに記載の偏光フィルムの製造方法。
    The polarizer has an optical characteristic represented by the following formula: P> − (10 0.929T-42.4 −1) × 100 (where T <42.3) Or
    8. The method for producing a polarizing film according to claim 1, wherein the polarizing film is configured to satisfy a condition of P ≧ 99.9 (where T ≧ 42.3).
  9.  前記工程(3)で形成される透明樹脂層の側に、さらに、粘着剤層を形成する工程(5)を有することを特徴とする請求項1~8のいずれかに記載の偏光フィルムの製造方法。 The production of the polarizing film according to any one of claims 1 to 8, further comprising a step (5) of forming an adhesive layer on the side of the transparent resin layer formed in the step (3). Method.
PCT/JP2015/077578 2014-09-30 2015-09-29 Method for producing polarizing film WO2016052538A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/515,885 US10088705B2 (en) 2014-09-30 2015-09-29 Method for producing polarizing film
CN201580053060.2A CN106716196B (en) 2014-09-30 2015-09-29 The manufacturing method of polarizing coating
SG11201706378XA SG11201706378XA (en) 2014-09-30 2015-09-29 Method for producing polarizing film
KR1020177009611A KR101883795B1 (en) 2014-09-30 2015-09-29 Method for producing polarizing film

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2014-202623 2014-09-30
JP2014202624 2014-09-30
JP2014-202624 2014-09-30
JP2014202623 2014-09-30
JP2015-026586 2015-02-13
JP2015026586 2015-02-13
JP2015167695 2015-08-27
JP2015-167695 2015-08-27
JP2015189278A JP6077620B2 (en) 2014-09-30 2015-09-28 Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
JP2015189275A JP6018276B2 (en) 2015-02-13 2015-09-28 Polarizing film, polarizing film with pressure-sensitive adhesive layer, and image display device
JP2015-189276 2015-09-28
JP2015-189278 2015-09-28
JP2015189273A JP6078132B1 (en) 2015-08-27 2015-09-28 Manufacturing method of polarizing film
JP2015189276A JP6077619B2 (en) 2014-09-30 2015-09-28 Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
JP2015-189273 2015-09-28
JP2015-189275 2015-09-28

Publications (1)

Publication Number Publication Date
WO2016052538A1 true WO2016052538A1 (en) 2016-04-07

Family

ID=55630564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077578 WO2016052538A1 (en) 2014-09-30 2015-09-29 Method for producing polarizing film

Country Status (1)

Country Link
WO (1) WO2016052538A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129632A1 (en) * 2015-02-13 2016-08-18 日東電工株式会社 Polarizing film provided with adhesive layer, method for manufacturing same, and image display device and method for manufacturing same
JP2016153884A (en) * 2015-02-13 2016-08-25 日東電工株式会社 Polarizing film with adhesive layer and manufacturing method of the same, and image display device and continuous manufacturing method of the same
KR20190086465A (en) 2016-11-30 2019-07-22 니폰 제온 가부시키가이샤 Polarizer, and method for producing polarizer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043858A (en) * 2003-03-31 2005-02-17 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method therefor
JP2009211057A (en) * 2008-02-04 2009-09-17 Sumitomo Chemical Co Ltd Polarization plate
JP2010009027A (en) * 2008-05-27 2010-01-14 Nitto Denko Corp Adhesive polarization plate, image display, and method for manufacturing them
JP2011227450A (en) * 2010-03-31 2011-11-10 Sumitomo Chemical Co Ltd Method for manufacturing polarizing laminated film and method for manufacturing polarizing plate
JP2013068804A (en) * 2011-09-22 2013-04-18 Sumitomo Chemical Co Ltd Stretched film and method for manufacturing the same
JP2014119501A (en) * 2012-12-13 2014-06-30 Nitto Denko Corp Manufacturing method of polarizing film
JP2014182321A (en) * 2013-03-21 2014-09-29 Sumitomo Chemical Co Ltd Polarizing plate and method for manufacturing the same
JP2014206725A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
JP2015161782A (en) * 2014-02-27 2015-09-07 住友化学株式会社 Method for manufacturing polarizing plate and polarizing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043858A (en) * 2003-03-31 2005-02-17 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method therefor
JP2009211057A (en) * 2008-02-04 2009-09-17 Sumitomo Chemical Co Ltd Polarization plate
JP2010009027A (en) * 2008-05-27 2010-01-14 Nitto Denko Corp Adhesive polarization plate, image display, and method for manufacturing them
JP2011227450A (en) * 2010-03-31 2011-11-10 Sumitomo Chemical Co Ltd Method for manufacturing polarizing laminated film and method for manufacturing polarizing plate
JP2013068804A (en) * 2011-09-22 2013-04-18 Sumitomo Chemical Co Ltd Stretched film and method for manufacturing the same
JP2014119501A (en) * 2012-12-13 2014-06-30 Nitto Denko Corp Manufacturing method of polarizing film
JP2014206725A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
JP2014182321A (en) * 2013-03-21 2014-09-29 Sumitomo Chemical Co Ltd Polarizing plate and method for manufacturing the same
JP2015161782A (en) * 2014-02-27 2015-09-07 住友化学株式会社 Method for manufacturing polarizing plate and polarizing plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129632A1 (en) * 2015-02-13 2016-08-18 日東電工株式会社 Polarizing film provided with adhesive layer, method for manufacturing same, and image display device and method for manufacturing same
JP2016153884A (en) * 2015-02-13 2016-08-25 日東電工株式会社 Polarizing film with adhesive layer and manufacturing method of the same, and image display device and continuous manufacturing method of the same
KR20190086465A (en) 2016-11-30 2019-07-22 니폰 제온 가부시키가이샤 Polarizer, and method for producing polarizer
US11002897B2 (en) 2016-11-30 2021-05-11 Zeon Corporation Polarizing plate and method for manufacturing polarizing plate

Similar Documents

Publication Publication Date Title
JP6077618B2 (en) Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
JP6077619B2 (en) Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
US11137522B2 (en) One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
KR101883795B1 (en) Method for producing polarizing film
WO2017204161A1 (en) Multilayer film and image display device
WO2017159454A1 (en) Method for producing one-side-protected polarizing film having transparent resin layer, method for producing polarizing film having adhesive layer, and method for producing optical laminate
JP2023075141A (en) Polarizing film with pressure-sensitive adhesive layer, and image display device
WO2016052549A1 (en) One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
JP6078132B1 (en) Manufacturing method of polarizing film
CN108780181B (en) Method for producing single-side protective polarizing film with adhesive layer
WO2016052531A1 (en) One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
TW201730599A (en) Polarizing film with pressure-sensitive adhesive layer, and image display device
TW201840413A (en) One-side-protected polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method therefor
WO2016052538A1 (en) Method for producing polarizing film
JP6931518B2 (en) Single-sided protective polarizing film, polarizing film with adhesive layer, image display device and its continuous manufacturing method
TW201843274A (en) One-side-protected polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method therefor
WO2016052534A1 (en) Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
JP7190268B2 (en) Polarizing film with adhesive layer, method for peeling the same, and image display device
TWI603109B (en) Polarizing film manufacturing method
JP7309521B2 (en) Adhesive layer-attached polarizing film laminate and optical display panel using the adhesive layer-attached polarizing film laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515885

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177009611

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201706378X

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 15846664

Country of ref document: EP

Kind code of ref document: A1