WO2016052511A1 - 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 - Google Patents
気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 Download PDFInfo
- Publication number
- WO2016052511A1 WO2016052511A1 PCT/JP2015/077526 JP2015077526W WO2016052511A1 WO 2016052511 A1 WO2016052511 A1 WO 2016052511A1 JP 2015077526 W JP2015077526 W JP 2015077526W WO 2016052511 A1 WO2016052511 A1 WO 2016052511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bubble ejection
- injection
- electrode
- bubble
- tip
- Prior art date
Links
- 238000002347 injection Methods 0.000 title claims description 144
- 239000007924 injection Substances 0.000 title claims description 144
- 238000000034 method Methods 0.000 title claims description 46
- 238000002679 ablation Methods 0.000 title claims description 39
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 11
- 239000004020 conductor Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 80
- 239000000126 substance Substances 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 30
- 229920002120 photoresistant polymer Polymers 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 22
- 238000009413 insulation Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000009434 installation Methods 0.000 description 9
- 239000011162 core material Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/04—Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
- C12M3/006—Cell injection or fusion devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/89—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00964—Features of probes
Definitions
- the present invention relates to a bubble ejection tip, a local ablation device, a local ablation method, an injection device and an injection method, and in particular, an arbitrary number of bubble ejection portions can be formed on a substrate, and a bubble ejection port
- the present invention relates to a bubble ejection tip that can reliably control the size of the bubble, a mass-produced bubble ejection tip, a local ablation device and a local ablation method including the bubble ejection tip, and an injection device and an injection method.
- local processing technique examples include a contact processing technique using a probe such as an electric knife or a non-contact ablation technique using a laser or the like. Widely known.
- a technique for improving the resolution by suppressing the heat invasive region has been devised by recently suppressing the contact processing technique of the electric knife to a sintered surface on the order of several micrometers (see Non-Patent Document 1).
- Non-Patent Document 2 a technology for performing cell processing (see Non-Patent Document 2) and a laser processing technology that suppresses bubble generation in the liquid phase have been devised.
- the conventional contact processing technique using a probe such as an electric scalpel has the property of burning an object by Joule heat generated by continuous high frequency. There was a problem that the influence was great. Further, even in a non-contact processing technique using a laser such as a femtosecond laser, there is a problem of a thermal invasion effect on a tissue around a cut surface due to a high density energy being locally applied.
- injection method for introducing a nucleic acid substance or the like into a cell or the like
- electroporation, ultrasonic sonopo And the like are widely known.
- the conventional electroporation technique there is a limit in improving the permeability of the cell membrane due to the electric field strength, and it is difficult to inject an object having a hard cell membrane or cell wall instead of a flexible lipid bilayer membrane.
- the sonoporation technique using ultrasonic waves it is difficult to focus the ultrasonic waves, and it is difficult to increase the resolution by generating local bubble cavitation.
- the injection method based on the particle gun method also has a problem that the introduction efficiency is low because a substance adhered to the particle surface is detached from the surface when the particle is driven.
- the electroporation method, the sonoporation method, and the particle gun method have a problem that it is difficult to inject a valuable substance because the amount of the substance to be injected is large.
- the present inventors have formed a core material made of a conductive material, an insulating material, covered the core material, and the tip of the core material.
- a bubble ejecting member including an outer portion including a stretched portion, and a gap formed between the stretched portion of the outer portion and the tip of the core, and immersing the bubble ejecting member in a solution;
- a patent application has been filed for finding that bubbles are generated by applying a high-frequency voltage in a solution, and that the workpiece can be cut (local ablation) by continuously discharging the bubbles to the workpiece (patent) Reference 1).
- an outer shell portion is provided outside the outer shell portion of the bubble ejection member so as to have a shell portion and a space, and the injection material is dissolved by introducing a solution in which the injection material is dissolved and / or dispersed in the space. And / or the dispersed solution can generate bubbles adsorbed on the interface, and the injection target contained in the solution covering the bubbles while cutting the workpiece by continuously releasing the bubbles to the workpiece.
- Patent Document 1 has been found to be capable of being injected into a workpiece, and a patent application has been filed (see Patent Document 1).
- the bubble ejecting member and the gas-liquid ejecting member described in Patent Document 1 are manufactured by heating and tearing a conductive core member and an insulating member. For this reason, there is a problem that it is difficult to accurately align the sizes of the bubble ejection ports of the individual bubble ejection members and gas-liquid ejection members, and it is difficult to achieve mass production.
- the outer periphery of the bubble ejection member described in Patent Document 1 is covered with an insulating outer portion, and the outer periphery of the gas-liquid ejection member is covered with an outer outer portion.
- the size is not constant because the insulating material is heated and cut. Therefore, there is a problem that the combination work is difficult because the sizes are different.
- tip of a bubble ejection member and a gas-liquid ejection member is very weak, there exists a problem that the combination operation
- the present invention has been made in order to solve the above-mentioned problems, and as a result of extensive research, it has been found that by using a photolithography technique, (1) bubbles of the same size having bubble outlets of the same size. It is possible to produce and mass-produce a bubble ejection tip including any number of ejection parts, (2) by sandwiching an electrode formed of a conductive material with a photosensitive resin, and extending the photosensitive resin from the electrode, It is possible to form a bubble jet port using a photosensitive resin, and (3) by forming a flow path for flowing a solution containing an injection substance on the bubble jet side of the bubble jet part, the solution containing the injection substance is adsorbed on the interface. Bubbles can be continuously ejected to the workpiece, cutting the workpiece and injecting the injection substance contained in the solution covering the bubbles into the workpiece. Kill it, it was newly found.
- an object of the present invention is to provide a bubble ejection tip, a local ablation device, a local ablation method, an injection device, and an injection method.
- the present invention relates to a bubble ejection tip, a local ablation device, a local ablation method, an injection device, and an injection method described below.
- the bubble ejection part is Electrodes made of conductive material, An insulating part that is formed of an insulating photosensitive resin, is provided so as to sandwich the electrode, and includes an extending part that extends from the tip of the electrode, and between the extending part of the insulating part and the tip of the electrode Including formed voids, Bubble ejection tip.
- a local ablation apparatus including the bubble ejection tip according to any one of (1) to (8).
- the bubble ejection tip is formed by using the photolithography technique, so that mass production is possible.
- (4) By forming a flow path through which the solution containing the injection substance flows on the bubble jetting side of the bubble jetting part, it becomes easy to continuously eject the bubbles having the solution containing the injection substance adsorbed on the interface to the workpiece.
- the injection substance contained in the solution covering the bubbles can be injected into the object to be processed.
- FIG. 1 is a diagram showing an outline of a bubble ejection tip 1 of the present invention.
- FIG. 2 is a view showing another embodiment of the bubble ejection tip 1.
- Drawing 3 is a figure showing an example of a manufacturing process of a 1st embodiment of bubble ejection tip 1 of the present invention.
- FIG. 4 shows another embodiment of the bubble ejection tip 1 of the present invention.
- FIG. 4 (1) is the entire bubble ejection tip 1
- FIG. 4 (2) is an enlarged view of the vicinity of the bubble ejection portion 3.
- FIG. 5 is a diagram showing an overall configuration of a local ablation apparatus 6 using the bubble ejection tip 1 of the present invention.
- FIG. 6 is a diagram showing an outline of the bubble ejection tip 1 suitable for the injection apparatus.
- FIG. 7 (1-1) is a cross-sectional view of an example of the bubble ejection tip 1 for injection
- FIG. 7 (1-2) is a top view thereof
- FIG. 7 (2-1) is a cross-sectional view of another example of the injection bubble ejection tip 1
- FIG. 7 (2-2) is a top view thereof.
- FIG. 8 is a diagram showing an example of a manufacturing process of the injection bubble ejection tip 1 shown in FIGS. 7 (2-1) and (2-2).
- FIGS. 9A and 9B are diagrams showing another embodiment of the bubble ejection tip 1 for injection.
- FIG. 10 is a drawing-substituting photograph
- FIG. 10 (1) is a photograph of the bubble ejection tip 1 produced in Example 1
- FIG. 10 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- FIG. 11 is a drawing-substituting photograph
- FIG. 11 (1) is a photograph of the bubble ejection tip 1 produced in Example 2
- FIG. 11 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- FIG. 12 is a drawing-substituting photograph, which is a photograph of the generation of bubbles 36 with a high-speed camera in Example 3.
- FIG. 13 is a drawing-substituting photograph
- FIG. 13 (1) is a photograph of the bubble ejection tip 1 produced in Example 4
- FIG. 13 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- FIG. 14 is a drawing-substituting photograph, which is a photograph of the generation of bubbles 36 taken with a high-speed camera in Example 5.
- FIG. 1 is a diagram showing an outline of a bubble ejection tip 1 of the present invention.
- the bubble ejection tip 1 of the present invention has a bubble ejection portion 3 formed on a substrate 2.
- the bubble ejection portion 3 is formed of an electrode 31 formed of a conductive material, and an insulating portion 33 including an extending portion 32 provided so as to sandwich the electrode 31 and extending from the tip of the electrode 31, and extends from the tip of the electrode 31.
- a gap 34 is formed with the portion 32.
- the energization unit 4 connected to the electrode 31 is formed. However, the energization unit 4 may be formed integrally when the bubble ejection tip 1 is manufactured, or the bubble ejection tip 1.
- the counter electrode 5 is also formed on the substrate 2, but the counter electrode 5 may be formed integrally when the bubble ejection tip 1 is manufactured, or separate from the bubble ejection tip 1 and when energized. It may be immersed in a solution. By applying a voltage to the electrode 31 and the counter electrode 5, the bubbles 36 can be continuously ejected from the bubble ejection ports 35 formed by the adjacent extending portions 32.
- the material for forming the substrate 2 is not particularly limited as long as the electrode 31 and the insulating portion 33 can be deposited, and examples thereof include glass, quartz, PMMA, and silicon.
- the material for forming the electrode 31 is not particularly limited as long as it is a material that can be energized and can be laminated on the substrate 2 by a method such as electroplating or electroless plating.
- nickel, gold, platinum examples thereof include metals such as silver, copper, tin, magnesium, chromium, and tungsten, or alloys thereof.
- the insulating portion 33 including the extending portion 32 is formed using a photolithography technique. Therefore, the material for forming the insulating portion 33 including the extending portion 32 is not particularly limited as long as it is an insulating photosensitive resin. Examples thereof include commercially available positive photoresists such as TSMR V50 and PMER, and negative photoresists such as SU-8 and KMPR.
- a load is likely to be applied to the bubble outlet 35, which is a fine part, particularly when a high voltage is applied.
- negative photoresists such as SU-8 and KMPR are harder than positive photoresists, it is preferable to use a negative photoresist as the photosensitive resin when a high voltage is applied to the bubble ejection portion 3.
- the energization unit 4 and the counter electrode 5 are not particularly limited as long as electricity from an external power source can be passed to the electrode 31, and the same material as the electrode 31 can be used.
- the energization unit 4 is separated from the bubble ejection tip 1, the end of the electrode 31 may be protruded from the insulating unit 33 so that the energization unit 4 can be easily connected.
- the counter electrode 5 is a separate body, there is no particular limitation on the shape, such as a rod shape, a plate shape, or the like, as long as the electrode 31 can be energized.
- the gap 34 is preferably small as it approaches the bubble outlet 35 in order to give directionality to the jetted bubbles 36, and a photomask having a shape in which the extending portion 32 is tapered in the manufacturing process described later. May be used.
- the depth of the gap 34 (the length from the tip of the electrode 31 to the bubble ejection port 35.
- L / D is a size at which bubbles can be generated at least in the gap 34. It is necessary that L / D is at least 1 or more.
- the upper limit of L / D is not particularly limited as long as the bubbles can be continuously ejected.
- the tip of the bubble ejection member described in Patent Document 1 is manufactured by heating and drawing glass or the like, the tip of the bubble ejection member was very thin and easily damaged. There is no fear of breakage because the bubble jet port is formed of photosensitive resin.
- L / D can be adjusted by the shape of the photomask.
- the size of the bubble 36 to be ejected can be adjusted by changing the diameter D of the bubble ejection port 35, and may be adjusted by the shape of the photomask at the time of manufacture.
- FIG. 2 is a view showing another embodiment of the bubble ejection tip 1.
- the size of the substrate 2 may be the same as that of the bubble ejection portion 3 (insulating portion 33).
- the bubble ejection tip 1 is immersed in a solution that can conduct electricity, or the solution is injected onto the substrate 2 so that the electrode and the counter electrode are conductive, and the processing is performed on the substrate 2.
- the bubble ejection tip 1 shown in FIG. 2 may immerse at least the bubble ejection port 35 in the solution. In any form, it is sufficient that the solution is injected so that the electrode and the counter electrode are electrically connected in use.
- an insulating layer is formed on the upper surface when using the bubble ejection tip 1 to prevent leakage when the bubble ejection tip 1 is immersed in a solution.
- a known insulating material such as polydimethylsiloxane (PDMS), parylene, epoxy resin, polyimide, polyethylene, glass, quartz, PMMA, silicon, or the like may be used.
- the insulating layer may be attached to the bubble ejection tip 1 before use, or may be formed in advance when the bubble ejection tip 1 is manufactured.
- Drawing 3 is a figure showing an example of a manufacturing process of a 1st embodiment of bubble ejection tip 1 of the present invention.
- FIG. 3 shows an example in which one bubble ejection portion 3 is shown because of the illustration, but when a plurality of bubble ejection portions 3 are formed, the shape of the photomask may be changed.
- the substrate 2 is cleaned using acetone, ethanol, ultrapure water, or the like.
- the material for forming the energizing portion 4 is laminated on the substrate 2 by sputtering.
- Photoresist 8 is applied, and exposure and development are performed using a mask so that the photoresist 8 remains in a portion where the energization portion 4 is finally formed.
- the material other than the portion where the energizing portion 4 is formed is removed by a method such as wet etching.
- the energization portion 4 is formed by removing the photoresist 8.
- the portion where the electrode 31 is formed is a cross-sectional view taken along the line AA ′
- the portion where the insulating portion 33 including the extended portion 32 is the cross section taken along the line BB ′ Shown as a diagram.
- the positions of the AA ′ and BB ′ sectional views are shown in the drawing of (5) above (the left side of FIGS. 3-2 and 3-3).
- a material for forming the insulating portion 33 including the extending portion 32 is laminated by spin coating. (7) It exposes using the photomask designed in the shape where the insulation part 33 including the extending part 32 remains. In order to facilitate connection to an external power source, it is desirable to use a photomask having such a shape that the insulating portion 33 at the end portion of the substrate 2 is removed and the energizing portion 4 is exposed. (8) After the development, materials other than the portion for forming the insulating portion 33 including the extending portion 32 are removed. (9) The electrode 31 is grown on the energizing portion 4 by electroplating. (10) The insulating layer 37 is formed.
- the electrode 31 is grown on the energization unit 4 by electroplating, but the energization unit 4 may not be provided.
- the insulating portion 33 is formed on the substrate 2 by omitting the steps (2) to (4), and then the material for forming the thin plate-like electrode 31 has the shape of the electrode 31. It is only necessary to cut and squeeze between the insulating parts 33. In that case, it is preferable to form the electrode 31 so as to be exposed at the end of the substrate 2 so that the external power source can be directly energized.
- the manufacturing process shows an example in which the bubble ejection portions 3 are two-dimensionally arranged on the substrate 2, by repeating the steps (2) to (10) after the completion of the step (10), the substrate 2 On top of this, the bubble ejection part 3 can also be formed three-dimensionally.
- FIG. 4 shows another embodiment of the bubble ejection tip 1 of the present invention.
- FIG. 4 (1) is the entire bubble ejection tip 1
- FIG. 4 (2) is an enlarged view of the vicinity of the bubble ejection portion 3.
- the bubble ejection tip 1 of the present invention may form the insulating layer 37 on the upper surface of the bubble ejection tip 1 to prevent leakage.
- an assist flow path 38 may be provided in the insulating portion 33 to form an assist flow (arrow in FIG. 4B) that pushes the ejected bubbles 36 forward.
- the assist flow path 38 is not particularly limited as long as it can form an assist flow that pushes the bubbles 36 forward as described above.
- the assist flow may be formed so as to flow along the bubble ejection portion 3.
- the assist flow path 38 is provided between both ends of the plurality of bubble ejection portions 3 and between each bubble ejection portion 3.
- the assist flow path 38 is provided for each of the plurality of bubble ejection portions 3. You may form in.
- the bubble ejection portion 3 protrudes from the insulating portion 33, but the bubble ejection tip has a shape in which the bubble ejection portion 3 shown in FIGS. 1 and 2 does not protrude from the insulating portion 33.
- the assist channel 38 may be formed in the insulating portion 33 by changing the shape of the photomask in the manufacturing process (7).
- a pump connection portion 39 for connecting a pump for feeding liquid to the assist flow path 38 is formed at the end of the assist flow path 38 as shown in FIG. May be.
- the pump connection portion 39 may be formed in the insulating portion 33 by changing the shape of the photomask in the manufacturing process (7).
- a hole is formed in the insulating layer 37 on the upper surface of the bubble ejection tip 1, and a silicon tube or the like may be connected to the hole.
- FIG. 5 is a diagram showing an overall configuration of a local ablation apparatus 6 using the bubble ejection tip 1 of the present invention.
- the local ablation device 6 includes an electric output means.
- the electric output means includes a general commercial AC power supply device 61 and an electric wire 62 for forming a circuit with the electrode 31 and the counter electrode 5 of the bubble ejection tip 1.
- a non-inductive resistor 63, a voltage amplification circuit 64, a DIO (Digital Input Output) port (not shown), and the like may be provided as needed.
- the electric output means can be easily created by incorporating a non-inductive resistor 63, a DIO port or the like into a conventional electric knife electric circuit and setting the output configuration for a minute object.
- the electric current, voltage, and frequency output to the electrode 31 and the counter electrode 5 are not particularly limited as long as the bubble can be ejected and the bubble ejection portion 3 is not damaged.
- the current is 10 mA. ⁇ 80 mA is preferable, and 25 mA to 75 mA is more preferable. If the current is less than 10 mA, the bubbles 36 may not be generated well, and if the current is more than 80 mA, electrode wear occurs, which is not preferable.
- the voltage is preferably 100V to 800V, more preferably 200V to 600V. If the voltage is less than 100V, it is difficult to generate the bubbles 36, and if it is more than 800V, the electrode 31 may be worn and the stretched portion 32 may be damaged.
- the frequency is preferably 1 kHz to 1 GHz, more preferably 5 kHz to 1 MHz, and particularly preferably 10 kHz to 60 kHz. If the frequency is less than 1 kHz, the stretched portion 32 may be damaged, and if it is greater than 1 GHz, the bubbles 36 may not be generated, which is not preferable.
- the bubble ejection tip 1 and the counter electrode 5 of the local ablation apparatus 6 of the present invention are immersed in a conductive solution, or the electrode 31 and the counter electrode 5 are placed on the substrate 2 so as to be conductive. Inject the solution. And a processing target object is arrange
- the processing object is not particularly limited as long as it can be ablated by bubbles, and examples thereof include cells and proteins.
- cells include stem cells, skin cells, mucosal cells, hepatocytes, pancreatic islet cells, nerve cells, chondrocytes, endothelial cells, epithelial cells, bone cells, muscle cells, egg cells and the like isolated from human or non-human animal tissues.
- examples include cells such as animal cells, plant cells, insect cells, microbial cells such as Escherichia coli, yeast and mold.
- processing in the present invention means that a hole is made in a target object or a part of the target object is cut by ejecting bubbles to the target object.
- Patent Document 1 the present inventors have revealed that bubbles ejected from a bubble ejecting member can adsorb an injection substance.
- the bubbles generated by energizing the core material are charged with electricity, and it is considered that the injection substance is adsorbed by the bubbles. Accordingly, when local ablation is performed using the bubble ejection tip 1 shown in FIG. 1 or FIG. 2, if an injection substance is included in the conductive solution in which the bubble ejection tip 1 is immersed, the bubbles 36 around which the injection substance is adsorbed. Can be erupted. Therefore, the injection substance can be introduced while locally ablating the workpiece.
- substrate 2 of the bubble ejection tip 1 of this invention to the insulating layer 37 is a micrometer order. Therefore, in terms of fluid dynamics, a laminar flow of the solution containing the injection substance can be formed by extruding the solution containing the injection substance into the conductive solution using a pump or the like.
- FIG. 6 is a view showing an outline of a bubble ejection tip 1 (hereinafter, sometimes referred to as “injection bubble ejection tip”) more suitable for an injection apparatus.
- a flow path 7 (hereinafter sometimes referred to as “injection solution flow path”) through which a solution containing an injection substance flows on the gap 34 side of the bubble ejection section 3. Is formed.
- injection solution flow path 7 As described above, even if the injection solution flow path 7 is not particularly formed, a solution containing the injection substance can be made into a laminar flow in terms of fluid dynamics. However, by forming the injection solution flow path 7, the injection substance flow can be reduced. The contained solution tends to be more laminar.
- FIG. 1 hereinjection bubble ejection tip
- FIG. 7 (1-1) is a cross-sectional view of an example of the bubble ejection tip 1 for injection
- FIG. 7 (1-2) is a top view thereof.
- the current-carrying part 4 is not formed in the portion corresponding to the injection solution flow path 7, so that the flow path is made relatively lower than the other parts. 7 is formed.
- FIG. 7 (2-1) is a cross-sectional view of another example of the bubble injection tip 1 for injection
- FIG. 7 (2-2) is a top view thereof.
- the insulating wall 71 is formed on the opposite side of the bubble ejection portion 3, so that the flow path is formed between the extending portion 32 of the bubble ejection portion 3 and the insulation wall 71. 7 is formed.
- the bubbles 36 pass through the flow path 7 to form bubbles 36 around which the injection substance is adsorbed. be able to.
- a processing object installation flow path 72 for placing the processing object is formed on the insulating wall 71 facing the bubble ejection portion 3. It is desirable.
- the insulating wall 71 may be made of the same material as the insulating portion 32. In the example shown in FIGS. 7 (2-1) and (2-2), when the flow path 7 is very narrow and only the solution containing the injection substance is flowed, the processing object installation flow path 72 is formed, It is necessary to fill the processing object installation flow path 72 with a conductive solution.
- the object to be processed can be arranged in the flow path 7.
- the object installation flow path 72 is not essential.
- an injection port for allowing the injection substance to flow in the flow path 7 may be formed in the bubble injection tip 1 for injection.
- a solution flow containing an injection substance is formed in the conductive solution in which the bubble ejection tip 1 is immersed by injecting a solution containing an injection substance adjusted to have a different hydrophilicity from that of the conductive solution. be able to.
- the number of inlets is not limited to one, and a plurality of inlets may be formed.
- the discharge port may be formed on the opposite side of the flow path 7.
- the injection port and the discharge port may be formed by forming a hole in the insulating layer 37 on the upper surface of the bubble ejection tip 1 and connecting a silicon tube or the like to the hole.
- FIG. 8 is a diagram showing an example of a manufacturing process of the injection bubble ejection tip 1 shown in FIGS. 7 (2-1) and (2-2).
- the manufacturing process shown in FIG. 3 may be the same as the process shown in FIG. 3 except that the shape of the photomask in the step (7) is a shape that allows the insulating layer 71 and the workpiece installation flow path 72 to be formed.
- FIG. 9 is a view showing another embodiment of the bubble ejection tip 1 for injection.
- the bubble injection tip 1 for injection shown in FIGS. 6 and 7 has the bubble outlet 35 facing the injection solution flow path 7, but the bubble injection tip 1 for injection shown in FIG.
- a first injection solution flow path 8 containing a first injection substance is formed around the first injection solution flow path 8, and the first injection solution flow path 8 is connected to the injection solution flow path 7 shown in FIGS.
- an injection flow a containing an injection substance from the pump a is formed in the first injection solution flow path 8, and an injection flow containing an injection substance from the pump b in the injection solution flow path 7.
- b is formed, and the injection flows a and b become laminar flows.
- the injection flow a also serves as the assist flow described above.
- the first injection substance contained in the solution flowing through the first injection solution flow path 8 is adsorbed around the bubbles ejected from the bubble outlet, and the injection substance contained in the solution flowing through the injection solution flow path 7 is surrounded by the first injection substance. Adsorb.
- the processing object installation flow path 72 also has an injection flow c containing an injection substance. It is also possible to provide a pump c for forming and to make the injection flow into three layers.
- the first injection solution flow path 8 containing the first injection substance is formed around the bubble ejection part 3, and the first injection solution flow path 8 includes the first injection solution flow path 8.
- a hole 81 is formed for the passage of bubbles adsorbed by the injection substance.
- a second injection solution channel 9 containing a second injection substance is formed around the first injection solution channel 8.
- the first injection substance flowing through the first injection solution channel 8 is adsorbed around the bubbles ejected from the bubble ejection port, and the second injection solution channel 9 is surrounded around the first injection substance channel. It is possible to adsorb the second injection material flowing through the.
- a pump connection portion for connecting a pump for feeding a solution containing an injection substance may be formed at the end of the injection solution flow paths 8 and 9. Good.
- the injection solution channels 8 and 9 and the pump connection portion may be formed in the insulating portion 33 by changing the shape of the photomask in the manufacturing process (7).
- a hole is formed in the insulating layer 37 on the upper surface of the injection bubble ejection tip 1, and a silicon tube or the like may be connected to the hole.
- the injection device can be manufactured by using the bubble ejection tip 1 for injection instead of the bubble ejection tip 1 of the local ablation device 6 described above.
- the injection substance can be introduced while locally ablating the object to be processed in the same procedure as the local ablation method except that the solution containing the injection substance is flowed to the flow path 7.
- a conductive solution containing no injection substance it can be used as a local ablation device.
- the injection substance is not particularly limited as long as it can be dissolved and / or dispersed in a liquid regardless of whether it is a gas, a solid, or a liquid.
- the gas include air, nitrogen, helium, carbon dioxide, carbon monoxide, argon, oxygen, and the like.
- the solid include DNA, RNA, protein, amino acid, and inorganic substance, and examples of the liquid include a drug solution and an amino acid solution.
- the solution for dissolving and / or dispersing the injection substance include physiological saline, a culture medium, and the like.
- Example 1 [Production of bubble ejection tip 1]
- the glass substrate was organically cleaned with an ultrasonic cleaner at 100 kHz for 5 minutes in order of acetone, ethanol, and ultrapure water, and baked at 120 ° C. for 30 minutes.
- a sputtering apparatus (Vacuum Device MSP-30T) was used to deposit Au on the glass substrate for 1 minute with a plasma current value (80 mA).
- OFPR-800 LB (200CP) was spin-coated on a glass substrate at 2000 rpm for 30 seconds and 4000 rpm for 2 seconds, and prebaked at 90 ° C. for 30 minutes in an oven.
- Polydimethylsiloxane (PDMS) was spin-coated on an OHP film at 1000 rpm for 20 seconds and baked in an oven at 90 ° C. for 15 minutes to prepare a sheet having a thickness of about 100 ⁇ m.
- This PDMS sheet was placed on the upper surface of the produced bubble ejection chip 1 and adhered using an adhesive (SuperX Cemedine Co., Ltd.).
- FIG. 10 (1) is a photograph of the bubble ejection tip 1 produced in Example 1
- FIG. 10 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- the size of the bubble outlet 35 was about 50 ⁇ m.
- Example 2 [Production of bubble ejection tip 1]
- the shape of the emulsion mask in the step (7) of Example 1 was changed to produce a bubble ejection tip 1 having a plurality of bubble ejection portions.
- FIG. 11 (1) is a photograph of the bubble ejection tip 1 produced in Example 2
- FIG. 11 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- the size of the bubble outlet 35 was about 50 ⁇ m.
- Example 3 [Production of local ablation device and injection device and bubble ejection experiment]
- the bubble ejection tip 1 produced in Example 1 is incorporated, and further, a non-inductive resistor and a DIO port are incorporated in the electric output means, and a local ablation apparatus and injection apparatus are incorporated.
- a local ablation apparatus and injection apparatus are incorporated.
- the bubble ejection tip 1 is immersed in a 5M NaCl solution, and feedback is performed at a voltage of 27.7 mA, a current of 309 V, an output frequency of 450 kHz, and a sampling frequency for impedance matching of 450 kHz and 3.5 kHz. Electricity was output to 31 and the counter electrode 5.
- the formation of bubbles was photographed using a high speed camera (VW-9000, manufactured by Keyence).
- the counter electrode 5 was made of a copper plate and was arranged away from the bubble ejection tip 1.
- FIG. 12 is a photograph of the occurrence of bubbles 36 with a high speed camera. As is apparent from the photograph, it was confirmed that the bubbles 36 could be ejected from the bubble ejection port 35 by using the bubble ejection tip 1 produced in Example 1.
- Example 4 By changing the shape of the emulsion mask in the step (7) of Example 1 above, the bubble ejection tip 1 including the flow path 7 was produced.
- FIG. 13 (1) is a photograph of the bubble ejection tip 1 produced in Example 4, and
- FIG. 13 (2) is an enlarged photograph of the vicinity of the bubble ejection portion.
- the size of the bubble ejection port 35 was about 50 ⁇ m
- the height of the electrode 31 was 25 ⁇ m
- the height of the flow path 7 was 50 ⁇ m
- the width was 100 ⁇ m.
- Example 5 A local ablation device and an injection device were produced using the same device as in Example 3 except that the bubble ejection tip 1 produced in Example 4 was used instead of the bubble ejection tip 1 produced in Example 1. A squirting experiment was conducted.
- FIG. 14 is a photograph of the occurrence of bubbles 36 with a high speed camera. As is apparent from the photograph, by using the bubble ejection tip 1 produced in Example 4, the bubbles 36 can be ejected from the bubble ejection port 35 and the ejected bubbles 36 have reached the workpiece installation flow path 72. Was confirmed.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Mechanical Engineering (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Plasma & Fusion (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Electromagnetism (AREA)
- Virology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
前記気泡噴出部が、
導電材料で形成された電極、
絶縁性の感光性樹脂で形成され、前記電極を挟むように設けられ、且つ前記電極の先端より延伸した延伸部を含む絶縁部、及び
前記絶縁部の延伸部及び前記電極の先端との間に形成された空隙を含む、
気泡噴出チップ。
(2)前記延伸部が、テーパー状である上記(1)に記載の気泡噴出チップ。
(3)前記感光性樹脂が、ネガティブ型フォトレジストである上記(1)又は(2)に記載の気泡噴出チップ。
(4)前記気泡噴出部が2以上形成されている上記(1)~(3)の何れか一に記載の気泡噴出チップ。
(5)前記絶縁部にアシスト流路が形成されている上記(1)~(4)の何れか一に記載の気泡噴出チップ。
(6)前記電極に接続する通電部を含む上記(1)~(5)の何れか一に記載の気泡噴出チップ。
(7)前記気泡噴出部の電極とで電極対を構成する対向電極が、前記基板上に形成されている上記(1)~(6)の何れか一に記載の気泡噴出チップ。
(8)前記気泡噴出部の空隙側に、インジェクション物質を含む溶液を流す流路が形成されている上記(1)~(7)の何れか一に記載の気泡噴出チップ。
(9)上記(1)~(8)の何れか一に記載の気泡噴出チップを含む局所アブレーション装置。
(10)上記(1)~(8)の何れか一に記載された気泡噴出チップを含むインジェクション装置。
(11)上記(9)に記載の局所アブレーション装置の電極と対向電極が導通するように溶液を注入し、
前記局所アブレーション装置の電極と対向電極とで構成される電極対に高周波電気パルスを印加することで、気泡噴出部の先端から気泡を放出させ、
該気泡で加工対象物を加工する局所アブレーション方法。
(12)上記(10)に記載のインジェクション装置の電極と対向電極が導通するように溶液を注入し、
インジェクション物質を含む溶液を気泡噴出部の前に流し、
前記インジェクション装置の電極と対向電極とで構成される電極対に高周波電気パルスを印加することで、前記インジェクション物質を含む溶液が吸着した気泡を放出させ、
気泡で加工対象物を局所アブレーションしながら、加工対象物にインジェクション物質を導入するインジェクション方法。
(2)単一の加工対象物の複数個所を、同時に局所アブレーション又は局所インジェクションを行う場合、複数個所に対して、同じ大きさの気泡を噴出することができる。また、単一の気泡噴出チップ1上の気泡噴出部の気泡噴出口の大きさを変えることもでき、加工対象物の複数個所に対して、異なる大きさの気泡を噴出することもできる。
(3)従来の芯材と絶縁材料を加熱して引き切る製造方法と違い、フォトリソグラフィ技術を用いて気泡噴出チップを形成することから量産化が可能である。
(4)気泡噴出部の気泡噴出口側にインジェクション物質を含む溶液を流す流路を形成することで、インジェクション物質を含む溶液が界面に吸着した気泡を加工対象物に連続的に噴出しやすくなり、加工対象物を切削するとともに、気泡を覆う溶液に含まれるインジェクション物質を加工対象物にインジェクションすることができる。
(1)基板2を、アセトン・エタノール・超純水等を用いて洗浄する。
(2)通電部4を形成する材料をスパッタリングにより基板2上に積層する。
(3)フォトレジスト8を塗布し、最終的に通電部4を形成する部分にフォトレジスト8が残るように、マスクを用いて露光・現像する。
(4)ウェットエッチング等の方法により、通電部4を形成する部分以外の材料を除去する。
(5)フォトレジスト8を除去することで、通電部4を形成する。
以下の製造工程については、電極31を形成する部分はA-A’断面図、延伸部32を含む絶縁部33(図面上の符号は33のみ記載)を形成する部分は、B-B’断面図として示す。なお、A-A’断面図、B-B’断面図の位置については、上記(5)の図面に図示した(図3-2及び図3-3の左側)。
(6)延伸部32を含む絶縁部33を形成する材料をスピンコートにより積層する。
(7)延伸部32を含む絶縁部33が残るような形状に設計したフォトマスクを用いて露光する。なお、外部電源への接続を容易にするため、基板2の端部部分の絶縁部33を除去し、通電部4が露出するような形状のフォトマスクを用いることが望ましい。
(8)現像後、延伸部32を含む絶縁部33を形成する部分以外の材料を除去する。
(9)通電部4の上に、電気メッキにより電極31を成長させる。
(10)絶縁層37を形成する。
〔気泡噴出チップ1の作製〕
(1)ガラス基板をアセトン・エタノール・超純水の順に100kHzで5分間ずつ超音波洗浄機により有機洗浄し、120℃で30分間ベイクした。
(2)ガラス基板を常温まで冷却した後にガラス基板上にスパッタリング装置((株)真空デバイスMSP-30T)を用いて、Auをプラズマ電流値(80mA)、1分間成膜した。
(3)ガラス基板上にOFPR-800 LB (200CP)を2000rpmで30秒間、及び4000rpmで2秒間スピンコートし,オーブン内で90℃で30分間プリベイクした。次いで、エマルジョンマスクを用いて露光後、NMD-3を用いて現像した。現像後は、超純水を用いてリンスをし、スピンドライヤー等で水分を飛ばし乾燥させた。
(4)パターニングされたOFPR以外の領域にAuエッチャント(AURUM-302、関東化学(株)を浸漬させてAuをエッチングし、超純水でリンスした。
(5)ガラス基板をアセトンにつけて残りのOFPR膜を除去して、Au電極部のパターニングを完成した。
(6)ガラス基板にSU-8をスピンコートし、ホットプレート上で95℃で50分間、プリベイクした。
(7)エマルジョンマスクを用いて露光後、ホットプレートの上で95℃で5分間、ポストエクスポージャベイクを行った。
(8)PGMEA(2-Methoxy-1-methylethyl acetate; CAS Number:142300-82-1)を用いて現像した。現像後は、超純水を用いてリンスし、スピンドライヤー等で水分をとばし乾燥させSU-8のパターニング作業を完了した。
(9)Auパターニング部に電極を接続し、SU-8のパターニングに沿ってNiめっきをSU-8パターンの高さ(100μm)まで成長させて、気泡噴出チップ1を作製した。
(10)ポリジメチルシロキサン(PDMS)をOHPフィルムの上において1000rpmで20秒スピンコートし、オーブンにて90℃で15分間ベイクして、厚さ100μm程度のシート状として用意した。このPDMSシートを、作製した気泡噴出チップ1の上面に被せ、接着剤(SuperXセメダイン(株))を用いて接着した。
〔気泡噴出チップ1の作製〕
上記実施例1の(7)の工程のエマルジョンマスクの形状を変え、気泡噴出部を複数形成した気泡噴出チップ1を作製した。図11(1)は実施例2で作製した気泡噴出チップ1の写真で、図11(2)は気泡噴出部付近を拡大した写真である。気泡噴出口35の大きさは、約50μmであった。
〔局所アブレーション装置及びインジェクション装置の作製及び気泡噴出実験〕
医療用電気メス(ConMed社製、Hyfrecator2000)のメスに換え、実施例1で作製した気泡噴出チップ1を組み込み、更に、無誘導抵抗及びDIOポートを電気出力手段に組み込み、局所アブレーション装置及びインジェクション装置を作製した。
上記実施例1の(7)の工程のエマルジョンマスクの形状を変えることで、流路7を含む気泡噴出チップ1を作製した。図13(1)は実施例4で作製した気泡噴出チップ1の写真で、図13(2)は気泡噴出部付近を拡大した写真である。気泡噴出口35の大きさは約50μm、電極31の高さは25μm、流路7の高さは50μm及び幅は100μmであった。
<実施例5>
実施例1で作製した気泡噴出チップ1に換え、実施例4で作製した気泡噴出チップ1を用いた以外は、実施例3と同様の装置を用いて局所アブレーション装置及びインジェクション装置を作製し、気泡噴出実験を行った。
Claims (12)
- 基板、該基板上に形成された気泡噴出部を含み、
前記気泡噴出部が、
導電材料で形成された電極、
絶縁性の感光性樹脂で形成され、前記電極を挟むように設けられ、且つ前記電極の先端より延伸した延伸部を含む絶縁部、及び
前記絶縁部の延伸部及び前記電極の先端との間に形成された空隙を含む、
気泡噴出チップ。 - 前記延伸部が、テーパー状である請求項1に記載の気泡噴出チップ。
- 前記感光性樹脂が、ネガティブ型フォトレジストである請求項1又は2に記載の気泡噴出チップ。
- 前記気泡噴出部が2以上形成されている請求項1~3の何れか一項に記載の気泡噴出チップ。
- 前記絶縁部にアシスト流路が形成されている請求項1~4の何れか一項に記載の気泡噴出チップ。
- 前記電極に接続する通電部を含む請求項1~5の何れか一項に記載の気泡噴出チップ。
- 前記気泡噴出部の電極とで電極対を構成する対向電極が、前記基板上に形成されている請求項1~6の何れか一項に記載の気泡噴出チップ。
- 前記気泡噴出部の空隙側に、インジェクション物質を含む溶液を流す流路が形成されている請求項1~7の何れか一項に記載の気泡噴出チップ。
- 請求項1~8の何れか一項に記載の気泡噴出チップを含む局所アブレーション装置。
- 請求項1~8の何れか一項に記載された気泡噴出チップを含むインジェクション装置。
- 請求項9に記載の局所アブレーション装置の電極と対向電極が導通するように溶液を注入し、
前記局所アブレーション装置の電極と対向電極とで構成される電極対に高周波電気パルスを印加することで、気泡噴出部の先端から気泡を放出させ、
該気泡で加工対象物を加工する局所アブレーション方法。 - 請求項10に記載のインジェクション装置の電極と対向電極が導通するように溶液を注入し、
インジェクション物質を含む溶液を気泡噴出部の前に流し、
前記インジェクション装置の電極と対向電極とで構成される電極対に高周波電気パルスを印加することで、前記インジェクション物質を含む溶液が吸着した気泡を放出させ、
気泡で加工対象物を局所アブレーションしながら、加工対象物にインジェクション物質を導入するインジェクション方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15847462.7A EP3202884A4 (en) | 2014-09-30 | 2015-09-29 | Bubble jetting chip, local ablation device and local ablation method, and injection device and injection method |
RU2017107150A RU2654674C1 (ru) | 2014-09-30 | 2015-09-29 | Пузырьково-струйный чип для обработки объектов, средство для локальной абляции и способ локальной абляции, средство для инъекции и способ инъекции |
JP2016552066A JP6385450B2 (ja) | 2014-09-30 | 2015-09-29 | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 |
US15/512,618 US11053472B2 (en) | 2014-09-30 | 2015-09-29 | Bubble-jetting chip, localized ablation device and localized ablation method, and injection device and injection method |
CN201580048277.4A CN106715672A (zh) | 2014-09-30 | 2015-09-29 | 气泡喷出头、局部消融装置及局部消融方法、以及注射装置及注射方法 |
KR1020177005866A KR101948633B1 (ko) | 2014-09-30 | 2015-09-29 | 기포 분출 칩, 국소 어블레이션 장치 및 국소 어블레이션 방법, 및 인젝션 장치 및 인젝션 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014201440 | 2014-09-30 | ||
JP2014-201440 | 2014-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052511A1 true WO2016052511A1 (ja) | 2016-04-07 |
Family
ID=55630538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077526 WO2016052511A1 (ja) | 2014-09-30 | 2015-09-29 | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11053472B2 (ja) |
EP (1) | EP3202884A4 (ja) |
JP (1) | JP6385450B2 (ja) |
KR (1) | KR101948633B1 (ja) |
CN (1) | CN106715672A (ja) |
RU (1) | RU2654674C1 (ja) |
WO (1) | WO2016052511A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069085A1 (ja) * | 2015-10-19 | 2017-04-27 | 株式会社ベックス | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 |
WO2019078229A1 (ja) | 2017-10-19 | 2019-04-25 | 国立大学法人九州大学 | めっき方法、気泡噴出部材、めっき装置、および、デバイス |
WO2020022198A1 (ja) * | 2018-07-23 | 2020-01-30 | 株式会社ベックス | 気泡噴出方法、電源装置、および、気泡噴出用装置 |
WO2020085281A1 (ja) | 2018-10-26 | 2020-04-30 | 国立大学法人九州大学 | 気泡噴出方法、気泡噴出用デバイス、および、気泡噴出装置 |
WO2020090312A1 (ja) * | 2018-10-29 | 2020-05-07 | 株式会社ベックス | 気泡噴出方法、気泡噴出用電源装置、および、気泡噴出装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102126679B1 (ko) * | 2016-08-18 | 2020-06-25 | 주식회사 엘지화학 | 그물구조 전도체의 제조방법 |
EP3952726A4 (en) * | 2019-04-08 | 2023-06-07 | Velanidi Technologies LLC | SYSTEM, APPARATUS AND METHOD FOR CAPTURE, DETECTION AND IMPLEMENTATION IN A MICROMETRIC TO NANOMETRIC ENVIRONMENT |
CN111440697B (zh) * | 2020-03-05 | 2022-03-29 | 清华大学 | 微流控通道、微流控芯片及对细胞进行处理的方法 |
CN111286456B (zh) * | 2020-03-05 | 2021-08-10 | 清华大学 | 微流控通道、微流控芯片及制备囊泡的方法 |
CN115997124A (zh) | 2020-04-30 | 2023-04-21 | 维兰尼迪科技有限责任公司 | 用于检测生物或化学实体或事件的分子导线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508663A (ja) * | 2002-12-03 | 2006-03-16 | ジェネトロニクス,インコーポレイティド | 大規模エレクトロポレーションプレート、システム及びその使用方法 |
JP2007090135A (ja) * | 2005-09-27 | 2007-04-12 | Yamaha Corp | マイクロチップ |
JP2008509709A (ja) * | 2003-12-02 | 2008-04-03 | セレクトリコン アーベー | 空間的に限定されたエレクトロポレーション方法およびその装置 |
JP2010022360A (ja) * | 2008-06-16 | 2010-02-04 | Tosoh Corp | 微粒子懸濁液導入容器とそれを用いた細胞融合容器、及び細胞融合装置 |
JP2010506136A (ja) * | 2006-05-11 | 2010-02-25 | レインダンス テクノロジーズ, インコーポレイテッド | 微小流体デバイス |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526345A (en) | 1978-08-14 | 1980-02-25 | Shin Nippon Tanko Kk | Construction method of of sheathing |
JPH09207338A (ja) * | 1996-02-08 | 1997-08-12 | Matsushita Electric Ind Co Ltd | 記録ヘッド |
DE10084613T1 (de) * | 1999-05-21 | 2002-09-26 | Univ Leland Stanford Junior | Mikrofluidvorrichtung und Verfahren zum Erzeugen pulsierender Mikrofluidstrahlen in einer Flüssigumgebung |
US6846306B1 (en) * | 2000-10-10 | 2005-01-25 | Cold Spring Harbor Laboratory | Single cell electroporation |
US6796982B2 (en) * | 2001-06-05 | 2004-09-28 | Electrosurgery Associates, Llc | Instant ignition electrosurgical probe and method for electrosurgical cutting and ablation |
CN100532103C (zh) * | 2002-09-24 | 2009-08-26 | 柯尼卡美能达控股株式会社 | 静电吸引式液体喷射头的制造方法,喷嘴板的制造方法,静电吸引式液体喷射装置 |
JP4218949B2 (ja) * | 2002-09-24 | 2009-02-04 | コニカミノルタホールディングス株式会社 | 静電吸引型液体吐出ヘッドの製造方法、ノズルプレートの製造方法、静電吸引型液体吐出ヘッドの駆動方法及び静電吸引型液体吐出装置 |
EP2863226A1 (en) * | 2007-11-02 | 2015-04-22 | Humanix Co., Ltd. | Method of capturing fluid and analyzing components thereof and system for capturing and analyzing fluid |
JP5526345B2 (ja) | 2012-03-02 | 2014-06-18 | 独立行政法人科学技術振興機構 | 気泡噴出部材及びその製造方法、気液噴出部材及びその製造方法、局所アブレーション装置及び局所アブレーション方法、インジェクション装置及びインジェクション方法 |
-
2015
- 2015-09-29 JP JP2016552066A patent/JP6385450B2/ja active Active
- 2015-09-29 KR KR1020177005866A patent/KR101948633B1/ko active IP Right Grant
- 2015-09-29 CN CN201580048277.4A patent/CN106715672A/zh active Pending
- 2015-09-29 EP EP15847462.7A patent/EP3202884A4/en active Pending
- 2015-09-29 WO PCT/JP2015/077526 patent/WO2016052511A1/ja active Application Filing
- 2015-09-29 RU RU2017107150A patent/RU2654674C1/ru active
- 2015-09-29 US US15/512,618 patent/US11053472B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006508663A (ja) * | 2002-12-03 | 2006-03-16 | ジェネトロニクス,インコーポレイティド | 大規模エレクトロポレーションプレート、システム及びその使用方法 |
JP2008509709A (ja) * | 2003-12-02 | 2008-04-03 | セレクトリコン アーベー | 空間的に限定されたエレクトロポレーション方法およびその装置 |
JP2007090135A (ja) * | 2005-09-27 | 2007-04-12 | Yamaha Corp | マイクロチップ |
JP2010506136A (ja) * | 2006-05-11 | 2010-02-25 | レインダンス テクノロジーズ, インコーポレイテッド | 微小流体デバイス |
JP2010022360A (ja) * | 2008-06-16 | 2010-02-04 | Tosoh Corp | 微粒子懸濁液導入容器とそれを用いた細胞融合容器、及び細胞融合装置 |
Non-Patent Citations (7)
Title |
---|
HAMANO, Y. ET AL.: "Development of dispensing multiple membranes-laden micro-bubbles", KAGAKU TO MICRO NANO SYSTEM, vol. 14, no. 1, March 2015 (2015-03-01), pages 35 - 36, XP009500067, ISSN: 1881-364X * |
KAMBAYASHI, T. ET AL.: "Two-dimensional reagent- laden bubble injection by arrayed electrodes", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS DAI 6 KAI MICRO-NANO KOGAKU SYMPOSIUM KOEN RONBUNSHU, 20 October 2014 (2014-10-20), XP008185491 * |
KURIKI, H. ET AL.: "Local ablation of a single cell by micro/nano bubble", PROCEEDINGS OF THE 2012 JSME CONFERENCE ON ROBOTICS AND MECHATRONICS, 2012, pages 1A2 - V05, XP008179897 * |
See also references of EP3202884A4 * |
TAKASAWA, S. ET AL.: "Bio application by electrically induced bubble interface", THE 61ST JSAP SPRING MEETING KOEN YOKOSHU, March 2014 (2014-03-01), pages 19 p, XP008185474 * |
YAMANISHI, Y.: "Local ablation of a single cell by electrically-induced microbubbles", JOURNAL OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 117, no. 1148, July 2014 (2014-07-01), pages 28 - 30, XP008183946, ISSN: 0021-4728 * |
YOKO YAMANISHI: "Bisai Kiho no Kieki Kaimen ni yoru Yakuzai Saibo Yuso", SHIBAURA INSTITUTE OF TECHNOLOGY 2013 NENDO TOKUBETSU KYOIKU KENKYU HOKOKUSHU, 30 June 2014 (2014-06-30), pages 59 - 62, XP008185841, ISSN: 2185-7326 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069085A1 (ja) * | 2015-10-19 | 2017-04-27 | 株式会社ベックス | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 |
JPWO2017069085A1 (ja) * | 2015-10-19 | 2018-07-26 | 株式会社ベックス | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 |
WO2019078229A1 (ja) | 2017-10-19 | 2019-04-25 | 国立大学法人九州大学 | めっき方法、気泡噴出部材、めっき装置、および、デバイス |
WO2020022198A1 (ja) * | 2018-07-23 | 2020-01-30 | 株式会社ベックス | 気泡噴出方法、電源装置、および、気泡噴出用装置 |
JP7397489B2 (ja) | 2018-07-23 | 2023-12-13 | 株式会社ベックス | 気泡噴出方法、電源装置、および、気泡噴出用装置 |
JPWO2020022198A1 (ja) * | 2018-07-23 | 2021-08-02 | 株式会社ベックス | 気泡噴出方法、電源装置、および、気泡噴出用装置 |
KR20210084494A (ko) | 2018-10-26 | 2021-07-07 | 고쿠리쓰다이가쿠호진 규슈다이가쿠 | 기포 분출 방법, 기포 분출용 디바이스 및 기포 분출 장치 |
JPWO2020085281A1 (ja) * | 2018-10-26 | 2021-09-24 | 国立大学法人九州大学 | 気泡噴出方法、気泡噴出用デバイス、および、気泡噴出装置 |
WO2020085281A1 (ja) | 2018-10-26 | 2020-04-30 | 国立大学法人九州大学 | 気泡噴出方法、気泡噴出用デバイス、および、気泡噴出装置 |
JP7466199B2 (ja) | 2018-10-26 | 2024-04-12 | 国立大学法人九州大学 | 気泡噴出方法、気泡噴出用デバイス、および、気泡噴出装置 |
WO2020090312A1 (ja) * | 2018-10-29 | 2020-05-07 | 株式会社ベックス | 気泡噴出方法、気泡噴出用電源装置、および、気泡噴出装置 |
JPWO2020090312A1 (ja) * | 2018-10-29 | 2021-10-14 | 株式会社ベックス | 気泡噴出方法、気泡噴出用電源装置、および、気泡噴出装置 |
JP7121419B2 (ja) | 2018-10-29 | 2022-08-18 | 株式会社ベックス | 気泡噴出方法、気泡噴出用電源装置、および、気泡噴出装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016052511A1 (ja) | 2017-07-06 |
US11053472B2 (en) | 2021-07-06 |
EP3202884A4 (en) | 2017-10-11 |
US20170306284A1 (en) | 2017-10-26 |
JP6385450B2 (ja) | 2018-09-05 |
CN106715672A (zh) | 2017-05-24 |
KR101948633B1 (ko) | 2019-02-15 |
KR20170040308A (ko) | 2017-04-12 |
RU2654674C1 (ru) | 2018-05-21 |
EP3202884A1 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6385450B2 (ja) | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 | |
US11730531B2 (en) | Bubble jetting member and method for producing same, gas/liquid jetting member and method for producing same, localized ablation device and localized ablation method, injection device and injection method, plasma-bubble jetting member, and therapeutic device and therapeutic method | |
JP6670507B2 (ja) | 気泡噴出チップ、局所アブレーション装置及び局所アブレーション方法、並びにインジェクション装置及びインジェクション方法 | |
JP6385453B2 (ja) | 気泡噴出部材、気液噴出部材、局所アブレーション装置及び局所インジェクション装置 | |
JP2015048268A (ja) | タンパク質結晶装置用の気泡噴出部材及びタンパク質吸着気泡噴出部材、タンパク質結晶装置及びタンパク質結晶化方法、並びにタンパク質結晶切削装置及びタンパク質結晶切削方法 | |
JP7397489B2 (ja) | 気泡噴出方法、電源装置、および、気泡噴出用装置 | |
WO2020085281A1 (ja) | 気泡噴出方法、気泡噴出用デバイス、および、気泡噴出装置 | |
JP7121419B2 (ja) | 気泡噴出方法、気泡噴出用電源装置、および、気泡噴出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847462 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177005866 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015847462 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015847462 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017107150 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016552066 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512618 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |