WO2016051950A1 - 生体情報測定システム、制御装置、および、プログラム - Google Patents

生体情報測定システム、制御装置、および、プログラム Download PDF

Info

Publication number
WO2016051950A1
WO2016051950A1 PCT/JP2015/071957 JP2015071957W WO2016051950A1 WO 2016051950 A1 WO2016051950 A1 WO 2016051950A1 JP 2015071957 W JP2015071957 W JP 2015071957W WO 2016051950 A1 WO2016051950 A1 WO 2016051950A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
biological information
user
measuring
control unit
Prior art date
Application number
PCT/JP2015/071957
Other languages
English (en)
French (fr)
Inventor
賢一 堀内
昭寿 一色
祥之 石田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016051950A1 publication Critical patent/WO2016051950A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition

Definitions

  • the present invention relates to a biological information measuring system, a control device, and a program for measuring a plurality of biological information.
  • Patent Document 1 discloses an example in which each measuring device is arranged so as to be able to measure each biological information in daily life. Specifically, a sphygmomanometer is placed on a table next to the bed, and a weight scale is placed in a dressing room in the bathroom.
  • JP 2007-111414 A (published on May 10, 2007)
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for accurately measuring a plurality of biological information of a user simultaneously.
  • a biological information measurement system is a biological information measurement system including a first measurement device, a second measurement device, and a control unit, wherein the first measurement device Starts measuring the first biological information of the user by the user's operation, and transmits a first signal indicating that the measurement has started to the control unit.
  • the control unit receives the first measurement device from the first measurement device.
  • the second signal is transmitted to the second measuring device.
  • the measurement of not only the first biological information but also at least one second biological information is started. Therefore, it is possible to simultaneously measure a plurality of pieces of biological information of the user.
  • the measurement is being performed by the first measuring device that has been started by the user's own hand, the user recognizes that the measurement is in progress, so the user is in a stable state. Further, it is possible to measure more accurately by performing the measurement with the second measuring device.
  • the biological information measurement system is a biological information measurement system including a first measurement device, a second measurement device, and a control unit, and the first measurement device is operated by a user operation.
  • the first signal indicating that the measurement has been started is transmitted to the control unit, and the second measurement instrument instructs the measurement unit to start measurement.
  • the measurement of at least one second biological information of the user, which is different from the first biological information is started, the measurement result is transmitted to the control unit, and the control unit 2
  • the second signal is transmitted to the measuring device, and the result received from the second measuring device after receiving the first signal from the first measuring device is used as the normal measurement result of the second biological information. Get as.
  • measurement of biological information can be started without delay even when the user first wears the second measurement device instead of the first measurement device. Further, if the measurement is being performed by the first measurement device that has been started by the user's own hand, the user is in a stable state, and therefore the measurement result by the second measurement device can be acquired as accurate data.
  • the control device is a control device that controls the first measurement device and the second measurement device, and the first measurement device starts measuring the first biological information of the user by a user operation.
  • the second measuring device When receiving the first signal indicating that it has been performed from the first measuring device, the second measuring device starts measuring at least one second biological information of the user that is different from the first biological information.
  • indicates to the said 2nd measuring device is provided.
  • the control device is a control device that controls the first measurement device and the second measurement device, and starts measuring at least one second biological information of the user with respect to the second measurement device.
  • a second signal instructing to be transmitted to the second measuring device, and the first measuring device has started measuring the first biological information of the user, which is different from the second biological information, by the user's operation.
  • a control unit that acquires the measurement result of the second biological information received from the second measurement device after receiving the first signal indicating the first biological signal from the first measurement device as a normal measurement result of the second biological information. Yes.
  • FIG. 1 is a diagram illustrating an overall configuration of a biological information measurement system according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of screen transition displayed on the display device according to the first embodiment.
  • FIG. It is a figure which shows the example of the utilization scene of the biometric information measurement system which concerns on this embodiment, (a) shows a seating scene, (b) shows a login scene, (c) shows a measurement-advice scene. Show.
  • FIG. It is a figure which shows the block configuration of the biometric information measurement system which concerns on Embodiment 1.
  • FIG. 10 is a flowchart illustrating processing of the biological information measurement system according to the second embodiment. 10 is a flowchart illustrating processing of the biological information measurement system according to the third embodiment.
  • FIG. 1 is a diagram illustrating an appearance of a biological information measurement system 1 according to the present embodiment.
  • FIG. 2 is a diagram showing an overall configuration of the biological information measuring system 1 according to the present embodiment.
  • FIG. 5 is a diagram showing a block configuration of the biological information measuring system 1 according to the present embodiment.
  • the biological information measurement system 1 is a chair type, and is a system that measures a plurality of biological information of a user, a chair 2, a sphygmomanometer (first measurement device) 3, a pulse A wave meter (second measuring device) 4, a weight scale (detection unit) 5, a display device 6 and a control device (control unit) 7 are provided.
  • the sphygmomanometer 3, the pulse wave meter 4, the weight scale 5, the display device 6, and the control device 7 may be connected to each other by wired or wireless communication (such as Bluetooth (registered trademark)), or may be connected via a network. May be.
  • the scale 5 is used not only for measuring the weight but also for monitoring the user's condition, so it is preferable that the weight scale 5 is connected by wire to ensure reliability.
  • the chair 2 makes it possible to receive measurement of biological information while the user is sitting, and the angle of the posture is adjusted so that the positions of the sphygmomanometer 3 and the pulse wave meter 4 match the positions of the arm and the finger, respectively. It is adjustable and is linked to the scale 5.
  • this invention is not restricted to the measurement in the state where the user sat down, What is necessary is just a stable attitude
  • the sphygmomanometer 3 starts measuring the blood pressure (first biological information) of the user, transmits a signal indicating the start of measurement (first signal), and compares It is a commercially available device that finishes measurement over a long time (for example, about 1 to 2 minutes), and is characterized in that the start and end of measurement cannot be controlled from the control device 7.
  • An example of a device that starts measurement by a user operation and cannot control the start and end of the measurement from the outside is a thermometer.
  • the pulse wave meter 4 is a commercially available device that measures a user's pulse wave (second biological information), and detects that a finger is inserted and measurement is possible (so that a normal measurement result can be obtained). Temporary measurement processing and main measurement processing for acquiring pulse wave data (measurement data) are performed on the assumption that a finger is inserted and measurement is possible (a normal measurement result is obtained). In the temporary measurement process, measurement is performed for a predetermined period while removing noise, and the waveform is analyzed, so that it takes time to detect that measurement is possible. Regarding the sphygmomanometer 4, the control device 7 knows whether or not a finger is inserted and can be measured, and can control the start and end of monitoring. Will continue to be output.
  • the pulse wave meter 4 has a feature that measurement is started with the detection of a state by a sensor as a trigger, and the measurement is completed in a relatively short time. An example of a device having the same feature is an electroencephalograph.
  • the scale 5 is a device that measures the weight of the user sitting on the chair 2 in conjunction with the chair 2, and the control device 7 can acquire weight data at predetermined intervals (for example, about every 500 ms). . If the user is sitting on the chair 2, the measurement is always possible. Therefore, the control device 7 can determine whether or not the user is sitting on the chair 2 depending on whether or not the weight data from the scale 5 is appropriate.
  • the display device 6 is a device that displays a screen showing usage guidance of the biological information measurement system 1 to a user sitting on the chair 2.
  • the user guidance screen guides the user to perform simultaneous measurement of biological information by sequentially transitioning according to the data from each measurement device and the state of each measurement device.
  • An example of screen transition will be described with reference to FIG.
  • FIG. 3 is a diagram illustrating an example of screen transition displayed on the display device 6 according to the present embodiment.
  • the control device 7 is a device that controls the biological information measurement system 1 as a whole, and advances the process of simultaneously measuring biological information while communicating with each measuring device and the display device 6. This is realized by a PC (Personal Computer), a smartphone, or the like. Specific processing will be described later.
  • an external control device for example, a server
  • a server that can communicate from the control device 7 may execute the process.
  • the touch DP is installed as the display device 6, and the FA computer is installed as the control device 7.
  • FIG. 4 is a diagram illustrating an example of a usage scene of the biological information measurement system 1 according to the present embodiment.
  • 4A shows a seated scene
  • FIG. 4B shows a login scene
  • FIG. 4C shows a measurement to advice scene.
  • FIG. 4 For example, in a gym or drugstore, first, as shown in FIG. 4 (a), the user is prompted to sit on the chair 2. At this time, as shown in the screen G2 in FIG. 3, a message “Please sit down” is displayed. Next, as shown in FIG. 4B, the user is prompted to log in. At this time, an NFC (Near Field Communication) device is used to notify the user of the ID, so that the user is logged in with the notified ID, or if the user does not have the ID, the guest mode is used to log in. Thereafter, as shown in FIG. 4C, the biological information is measured, the measurement results are displayed (screens G9 and G10 in FIG. 3), and further advice is proposed according to the results (screen G11 in FIG. 3). ).
  • NFC Near Field Communication
  • FIG. 6 is a flowchart showing processing of the biological information measuring system 1 according to the present embodiment.
  • This process is mainly the process of the control device 7 and shows the process from the start to the end of the biological information measurement.
  • this is an example in which the measurement of the sphygmomanometer 3 is started before the pulse wave meter 4.
  • the characteristics of this process are the sphygmomanometer 3 which is a measurement device with high reliability related to measurement start (a measurement device that allows the user to directly operate measurement start using a measurement start button or the like), and a device whose state cannot be detected in real time from sensor characteristics ( When the measurable state is detected by the sensor and the provisional measurement process regardless of the measurement start button, the pulse wave meter 4 has at least two measurement devices (pulse wave meter 4 that starts measurement). The start is linked to a direct response of the user to the sphygmomanometer 3 (for example, an operation of pressing a measurement start button).
  • the sphygmomanometer 3 is a measuring device that requires long-time measurement
  • the pulse wave meter 4 is a measuring device that requires short-time measurement.
  • An electroencephalograph may be used instead of pulse wave meter 4.
  • the control device 7 connects the measuring device to the display device 6 as shown in FIG. A screen (G6 in FIG. 3) that prompts the user to wear is displayed, and then the user is guided by UI (User Interface) so as to press the measurement start button of the sphygmomanometer 3 (S601).
  • the user presses the measurement start button of the sphygmomanometer 3 through the arm through the sphygmomanometer 3 (S602). Since the measurement start button of the sphygmomanometer 3 is explicitly operated, it is suitable for a trigger for starting measurement. At this time, the user may put a finger on pulse wave meter 4.
  • the control device 7 monitors whether or not a measurement start notification is received from the sphygmomanometer 3 within a predetermined time (S603). For example, it is monitored whether or not a connection notification by HDP (Health Device Profile) is received for transmission and reception of the measurement state.
  • HDP is one of Bluetooth (registered trademark) profiles (standards for communication protocols), and is intended for connection of medical devices.
  • the control device 7 determines that the user's posture is stable because the user is measuring blood pressure, and the sphygmograph 4 receives data.
  • a signal (second signal) instructing the start of acquisition is transmitted (S604).
  • the pulse wave meter 4 acquires pulse wave data and transmits it to the control device 7.
  • the control device 7 acquires pulse wave data from the pulse wave meter 4, and determines whether or not a waveform exceeding a predetermined threshold is detected within a predetermined time (S605). This is because the sphygmometer 4 cannot detect a measurable state in real time due to the sensor characteristics. Therefore, in order to easily determine whether or not the sphygmograph 4 has a finger, measurement accuracy and real-time performance (efficiency ) Trade-offs. Specifically, the provisional measurement process of pulse wave meter 4 is skipped, and instead, control device 7 controls the start of measurement while performing state detection with weak accuracy, and supplements state detection with weak accuracy. Therefore, a time limit by a timer is added.
  • the measurement start notification is received from the sphygmomanometer 3
  • the measurement time of pulse wave meter 4 can be shortened by performing this measurement process without performing the temporary measurement process.
  • control device 7 determines whether or not the measurement results have been received from all the measuring devices, that is, the sphygmomanometer 3 and the pulse wave meter 4 within a predetermined time (S607).
  • the control device 7 displays the measurement result screen (G9, G10 in FIG. 3) on the display device 6 (S608). Thereafter, an advice screen (G11 in FIG. 3) may be displayed on the display device 6.
  • the control device 7 confirms whether or not to remeasure (S609). For example, when a weak signal error occurs in the pulse wave meter 4, the measurement results are not received from all the measuring devices within a predetermined time (No in S607), and remeasurement is performed a predetermined number of times. The number of re-measurements is adjusted from the measurement time of the measuring device (blood pressure monitor 3) that finishes the measurement last and the assumed total measurement time. The re-measurement is intended for the pulse wave meter 4 and has the purpose of compensating for the measurement failure of the pulse wave meter 4 due to the start of measurement being too early.
  • the control device 7 When performing remeasurement (Yes in S609), the control device 7 performs remeasurement processing (S610). Specifically, a signal for instructing pulse wave meter 4 to start data acquisition is transmitted. The re-measurement of the pulse wave meter 4 is performed before the measurement result of the sphygmomanometer 3 is obtained. And it is determined whether the measurement result of the pulse wave data was received from the pulse wave meter 4 (S611). When the measurement result is received (YES in S611), the measurement result screen is displayed on the display device 6 (S608).
  • the measurement result of the sphygmomanometer 4 is obtained first during the measurement of the sphygmomanometer 3, the measurement result is finally obtained by performing remeasurement according to the measurement result of the sphygmomanometer 4.
  • the accuracy of the pulse wave data to be obtained can be increased.
  • remeasurement is performed when measurement of the sphygmomanometer 4 fails. However, if measurement of the sphygmomanometer 4 is in progress, the measurement of the sphygmomanometer 4 is successful. Alternatively, remeasurement may be performed. Further, the remeasurement may be performed twice or more while the blood pressure monitor 3 is measuring.
  • the control device 7 displays a measurement failure screen (S612).
  • a blood pressure measurement failure screen is displayed.
  • “-(hyphen)” may be displayed in the blood pressure column in the measurement value list, or “please re-measure blood pressure” after the measurement process is completed.
  • the display of the measurement failure screen may not only display failed measurement devices as measurement failures, but may display the entire measurement as failure even if there is one measurement failure. By displaying the whole measurement as a failure, it is not necessary to use each measuring device separately, and a plurality of pieces of biological information can be measured collectively in a stable state.
  • the sphygmomanometer 3 starts measurement by the user's operation, and the control device 7 interlocks the measurement start of the pulse wave meter 4 by using it as a trigger. Can be measured simultaneously. Then, by simply determining whether or not the pulse wave meter 4 can start measurement (whether or not a finger has been inserted), the trade-off between measurement accuracy and real-time characteristics can be adjusted. Moreover, simultaneous measurement of biological information is possible using a combination of commercially available measuring instruments.
  • the blood pressure monitor 3 that has been started by the user's own hand is measuring, the user recognizes that it is in a measurement state, so the user is in a stable state, so during the measurement, By performing the measurement with the pulse wave meter 4 together, an accurate measurement can be performed.
  • the trade described above is applied to a measurement device that can be measured in a measurement time shorter than the measurement device having the longest measurement time (the measurement device that ends measurement last). Apply off adjustment.
  • FIG. 7 is a flowchart showing processing of the biological information measuring system 1 according to the present embodiment.
  • This process is mainly the process of the control device 7 and shows the process from the start to the end of the biological information measurement.
  • this is an example in which measurement of the pulse wave meter 4 is started before the sphygmomanometer 3.
  • the measurement start of the sphygmomanometer 3 is necessary to start the measurement as the whole measuring instrument.
  • the start of measurement as the whole measuring instrument means that the display screen of the display device 6 is changed to the measuring screen and the measurement data of the pulse wave meter 4 is acquired as an accurate measurement result.
  • the configuration of the biological information measurement system 1 is the same as that of the first embodiment.
  • control device 7 displays a screen (G6 in FIG. 3) that prompts the user to attach the measurement device on the display device 6, and then guides the user through the UI to press the measurement start button of the sphygmomanometer 3 (S701). ).
  • control device 7 instructs the pulse wave meter 4 to start data acquisition (S702).
  • the pulse wave meter 4 acquires pulse wave data and transmits it to the control device 7.
  • the control device 7 acquires pulse wave data from the pulse wave meter 4 and detects a waveform exceeding a predetermined threshold value within a predetermined time in order to easily determine whether or not a finger is in the pulse wave meter 4. It is determined whether or not (S703).
  • S703 determines whether or not.
  • the control device 7 has a finger in the pulse wave meter 4, that is, the pulse wave meter 4 is correctly worn and Judge that the wave measurement has started. Even when the above waveform cannot be detected (No in S703), the processing is continued because there is a possibility that the finger has already been placed.
  • the control device 7 monitors whether or not a measurement start notification is received from the sphygmomanometer 3 within a predetermined time (S705). For example, it is monitored whether or not an HDP connection notification has been received for transmission and reception of the measurement state.
  • a measurement screen (G7 in FIG. 3) is displayed on the display device 6 (S706).
  • the biological information measurement system 1 due to the configuration and processing of the biological information measurement system 1 according to the present embodiment, even when the user wears the sphygmomanometer 4 instead of the sphygmomanometer 3, the biological information is measured without delay. Can start.
  • the control device 7 acquires the measurement result received from the sphygmomanometer 4 after receiving the measurement start notification from the sphygmomanometer 3 as a normal measurement result, and before receiving the measurement start notification from the sphygmomanometer 3, the pulse wave The measurement result received from the total 4 is not acquired as a normal measurement result. That is, as shown in FIG. 6, the measurement result of the pulse wave meter 4 is acquired in S707 after receiving the measurement start notification from the sphygmomanometer 3. As a result, if measurement is being performed by the sphygmomanometer 3 that has been started by the user's own hand, the user is in a stable state, so the measurement result by the pulse wave meter 4 can be acquired as accurate data.
  • FIG. 8 is a flowchart showing processing of the biological information measuring system 1 according to the present embodiment. This processing is mainly processing of the control device 7 and shows processing from the start to the end of biological information measurement. The configuration of the biological information measurement system 1 is the same as that of the first embodiment.
  • the feature of this processing is that the user leaves the weighing scale 5 which is the most reliable (always measurable) device for detecting a state when a stable measurement state does not continue for a predetermined time. It is determined that the user's posture is unstable or the measurement of the biological information is stopped.
  • a camera may be used instead of the weight scale 5, or both the weight scale 5 and the camera may be used. Using both increases the accuracy of user monitoring.
  • measurement of biometric information is stopped when a person cannot be detected in a specific range of a captured image. In addition to user monitoring, the camera may be used for other purposes.
  • the control device 7 instructs the weight scale 5 to start measurement with the start of measurement (for example, login by the user), and starts monitoring the absence (absence) of the user (S801). That is, the control device 7 periodically receives weight data from the weight scale 5 and determines that the user has left the chair 2 when the weight is kept below a predetermined value for a predetermined time or more.
  • control device 7 displays a screen (G6 in FIG. 3) that prompts the user to attach the measuring device on the display device 6, and then guides the user through the UI to press the measurement start button of the sphygmomanometer 3 ( S802). In response to this, the user presses the measurement start button of the sphygmomanometer 3 (S803).
  • the control device 7 monitors whether or not a measurement start notification is received from the sphygmomanometer 3 within a predetermined time (S804). For example, it is monitored whether or not an HDP connection notification has been received for transmission and reception of the measurement state.
  • the control device 7 instructs the pulse wave meter 4 to start data acquisition (S805).
  • the pulse wave meter 4 acquires pulse wave data and transmits it to the control device 7.
  • the control device 7 acquires pulse wave data from the pulse wave meter 4 and detects a waveform exceeding a predetermined threshold value within a predetermined time in order to easily determine whether or not a finger is in the pulse wave meter 4. It is determined whether or not (S806). If a waveform exceeding a predetermined threshold is detected within a predetermined time (Yes in S806), the finger is in the sphygmomanometer 4, that is, the sphygmomanometer 4 is correctly worn and pulse wave measurement starts. Judge that it has been. Even in the case where the waveform cannot be detected in S806 (No in S806), the processing is continued because there is a possibility that the finger has already been placed.
  • the control device 7 simply detects a finger within a predetermined time from the pulse wave data received from the pulse wave meter 4, the stable value of the weight data from the weight meter 5 (measured value greater than or equal to the predetermined value). Is determined whether or not (S807). Thereby, it is confirmed whether the user is in the correct posture and the biological information can be accurately measured.
  • the control device 7 determines that each measurement device (the sphygmomanometer 3 and the sphygmomanometer 4) is correctly attached and the measurement can be started, A measuring screen (G7 in FIG. 3) is displayed on the display device 6 (S808).
  • control device 7 determines whether or not the measurement results have been received from all the measuring devices, that is, the sphygmomanometer 3 and the pulse wave meter 4 within a predetermined time (S809).
  • the control device 7 displays the measurement result screen (G9, G10 in FIG. 3) on the display device 6 (S810). Thereafter, an advice screen (G11 in FIG. 3) may be displayed on the display device 6.
  • the control device 7 confirms whether or not to remeasure (S811). For example, if a weak signal error has occurred in pulse wave meter 4, remeasurement is performed a predetermined number of times. The number of re-measurements is adjusted from the measurement time of the measuring device (blood pressure monitor 3) that finishes the measurement last and the assumed total measurement time. Note that the pulse wave meter 4 is the only target device for remeasurement.
  • the control apparatus 7 performs a remeasurement process (S812). Specifically, a signal for instructing pulse wave meter 4 to start data acquisition is transmitted.
  • the re-measurement of the pulse wave meter 4 is performed before the measurement result of the sphygmomanometer 3 is obtained. And it is determined whether the measurement result of the pulse wave data was received from the pulse wave meter 4 (S813). When the measurement result is received (YES in S813), the measurement result screen is displayed on the display device 6 (S608).
  • the control device 7 displays a measurement failure screen (S814).
  • the sphygmomanometer 3 starts measurement by the user's operation, and the control device 7 interlocks the measurement start of the pulse wave meter 4 by using it as a trigger. Can be measured simultaneously. Then, by simply determining whether or not the pulse wave meter 4 can start measurement (whether or not a finger has been inserted), the trade-off between measurement accuracy and real-time characteristics can be adjusted.
  • the reliability of the state detection is the highest among the measuring devices, and the user who is able to constantly measure the weight scale 5 does not continuously enter a stable measurement state during a predetermined period. It can be judged that the measurement has been stopped for some reason, and the measurement of all the devices can be stopped. In addition, by notifying that effect through the UI (screen of the display device 6), the user can be prompted to perform remeasurement.
  • control device 7 is not limited to confirming the weight data in S807 as described above after starting the monitoring in S801, and waits for the weight data by polling processing in another place. It is possible to confirm the weight data in advance, or to set an interrupt so as to occur when the weight data is received from the weight scale 5, and to confirm the weight data in the interrupt processing.
  • Embodiment 2 you may combine this embodiment and Embodiment 2.
  • the control device 7 instructs the pulse wave meter 4 to start data acquisition and receives the measurement start notification from the sphygmomanometer 3. You may acquire the measurement result received from the pulse wave meter 4 as normal data later.
  • the present invention recognizes that the user is in the measurement state if the measurement is being performed by the first measurement device that has been started by the user's own hand, the user is in a stable state. It is based on the original idea of the present inventors that measurement can be performed more accurately by performing measurement with a second measurement device different from the first measurement device during measurement of one measurement device. .
  • the biological information measurement system is a biological information measurement system including a first measurement device, a second measurement device, and a control unit, and the first measurement device is operated by a user operation.
  • the measurement of the first biological information of the user is started, a first signal indicating that the measurement is started is transmitted to the control unit, and the second measurement device instructs the start of measurement from the control unit.
  • the control unit receives the first signal from the first measuring device. If so, the second signal is transmitted to the second measuring device.
  • the measurement of not only the first biological information but also at least one second biological information is started. Therefore, it is possible to simultaneously measure a plurality of pieces of biological information of the user.
  • the measurement is being performed by the first measuring device that has been started by the user's own hand, the user recognizes that the measurement is in progress, so the user is in a stable state. Further, it is possible to measure more accurately by performing the measurement with the second measuring device.
  • a biological information measurement system is a biological information measurement system including a first measurement device, a second measurement device, and a control unit, wherein the first measurement device is operated by a user operation.
  • the first signal indicating that the measurement has been started is transmitted to the control unit, and the second measurement instrument instructs the measurement unit to start measurement.
  • the measurement of at least one second biological information of the user which is different from the first biological information, is started, the measurement result is transmitted to the control unit, and the control unit 2
  • the second signal is transmitted to the measuring device, and the result received from the second measuring device after receiving the first signal from the first measuring device is used as the normal measurement result of the second biological information. Get as.
  • measurement of biological information can be started without delay even when the user first wears the second measurement device instead of the first measurement device. Further, if the measurement is being performed by the first measurement device that has been started by the user's own hand, the user is in a stable state, and therefore the measurement result by the second measurement device can be acquired as accurate data.
  • the second measuring device measuring the second biological information, and whether the obtained measurement result is a normal measurement result?
  • a temporary measurement process for confirming whether or not a normal measurement result is obtained in the temporary measurement process, and then a main measurement process for measuring the second biological information.
  • the main measurement process may be performed without performing the temporary measurement process.
  • the temporary measurement process and the main measurement process are performed for the measurement of the second biological information.
  • the second signal is received, it is clear that at least the user is in a position where measurement by the second measuring device is possible. By performing this, the measurement time of the second biological information can be shortened.
  • the measurement time of the first measurement device may be longer than the measurement time of the second measurement device.
  • the measurement time of the first measurement device is longer than the measurement time of the second measurement device, the measurement time of the second measurement device falls within the measurement time of the first measurement device. Therefore, since the user is in a stable state during the measurement by the first measuring device, the measurement can be performed more accurately including the measurement by the second measuring device in the meantime. Moreover, the measurement time of the whole system can be easily managed by the measurement time of the first measuring device.
  • the biological information measurement system according to aspect 5 of the present invention is the biological information measurement system according to aspect 4, in which the second measurement device transmits a measurement result of the second biological information to the control unit, and the control unit performs the first measurement.
  • the second measuring device may be instructed to remeasure the second biological information in accordance with the measurement result received from the second measuring device. Good.
  • the accuracy of the finally obtained second biological information can be increased by performing remeasurement according to the measurement result of the second biological information.
  • the biological information measurement system further includes a detection unit that detects whether or not the user is present at a predetermined position in the above-described aspects 1 to 5, wherein the control unit includes the detection unit at the predetermined position.
  • the second measurement device may be instructed to stop measurement.
  • the measurement by the second measuring device is stopped. Therefore, when there is no user, the second biological information is not measured, so that a useless measurement operation can be avoided.
  • the user detection unit may include at least one of a scale and a camera.
  • the absence of the user can be easily detected according to at least one of the weight scale and the camera.
  • the first measurement device may be a blood pressure monitor
  • the second measurement device may be a pulse wave meter
  • a biological information measurement system including a sphygmomanometer and a pulse wave meter can be suitably constructed.
  • a control device is a control device that controls a first measurement device and a second measurement device, and the first measurement device starts measuring the first biological information of the user by a user operation.
  • the second measuring device When receiving the first signal indicating that it has been performed from the first measuring device, the second measuring device starts measuring at least one second biological information of the user that is different from the first biological information.
  • indicates to the said 2nd measuring device is provided.
  • a control device is a control device that controls a first measurement device and a second measurement device, and starts measuring at least one second biological information of the user with respect to the second measurement device.
  • a second signal instructing to be transmitted to the second measuring device, and the first measuring device has started measuring the first biological information of the user, which is different from the second biological information, by the user's operation.
  • a control unit that acquires the measurement result of the second biological information received from the second measurement device after receiving the first signal indicating the first biological signal from the first measurement device as a normal measurement result of the second biological information. Yes.
  • control devices according to aspects 9 and 10 of the present invention may be realized by a computer.
  • the control device is realized by a computer by operating the computer as a control unit included in the control device.
  • the program of the control device to be included also falls within the scope of the present invention.
  • Each functional block of the biological information measuring system 1 shown in FIG. 5 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or software using a CPU (Central Processing Unit). It may be realized by.
  • the biological information measurement system 1 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU). ) Or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like.
  • recording media a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the present invention can be used in a system for measuring a plurality of biological information.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 ユーザの複数の生体情報を同時に正確に測定するための技術を提供する。ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、測定開始済を示す第1信号を送信する血圧計(3)と、血圧計から第1信号を受信した場合に、測定開始を指示する旨を示す第2信号を送信する制御装置(7)と、制御装置から第2信号を受信した場合に、第1生体情報とは異なる、ユーザの少なくとも1つの第2生体情報の測定を開始する脈波計(4)と、を備える生体情報測定システム(1)。

Description

生体情報測定システム、制御装置、および、プログラム
 本発明は、複数の生体情報を測定する生体情報測定システム、制御装置およびプログラムに関する。
 健康管理のために、ユーザの様々な生体情報を測定する機器が増えてきている。例えば、特許文献1には、日常生活の中で、各測定機器がそれぞれの生体情報を測定することができるように配置される例が開示されている。具体的には、血圧計がベッドの横のテーブルに置かれており、体重計が風呂場の脱衣場に置かれている。
日本国公開特許公報「特開2007-111414号公報(2007年5月10日公開)」
 しかしながら、上述のような従来技術では、血圧計、体重計など複数の測定機器がばらばらに配置されているので、それぞれの生体情報を別々に測定する必要がある。したがって、ユーザが複数の生体情報をまとめて測定しようとしても、同時に測定することができず、複数の測定機器を使って順次測定するので、時間がかかってしまい、ユーザにとってはストレスにもなり得るという問題がある。
 さらに、ユーザが各測定機器の装脱着のために動いてしまうと、正確な測定ができなくなるおそれがある。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、ユーザの複数の生体情報を同時に正確に測定するための技術を提供することにある。
 上記課題を解決するために、本発明の態様Aに係る生体情報測定システムは、第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、上記制御部は、上記第1測定機器から上記第1信号を受信した場合に、上記第2信号を上記第2測定機器に送信する。
 上記の構成によれば、ユーザが第1生体情報の測定を開始するための操作を行うことにより、第1生体情報だけでなく、少なくとも1つの第2生体情報の測定が開始される。したがって、ユーザの複数の生体情報を同時に測定することができる。また、ユーザ自身の手で開始操作を行った第1測定機器による測定中であれば、ユーザは測定状態であることを認識しているので、ユーザは安定した状態にあるため、当該測定中に、第2測定機器による測定を併せて行うことにより、より正確に測定することができる。
 本発明の態様Bに係る生体情報測定システムは、第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、当該測定した結果を上記制御部に送信し、上記制御部は、上記第2測定機器に対して上記第2信号を送信し、上記第1測定機器から上記第1信号を受信した後に上記第2測定機器から受信した上記結果を、上記第2生体情報の正常な測定結果として取得する。
 上記の構成によれば、ユーザが第1測定機器ではなく、第2測定機器を先に装着した場合であっても、遅滞なく生体情報の測定を開始することができる。また、ユーザ自身の手で開始操作を行った第1測定機器による測定中であれば、ユーザが安定した状態にあるため、第2測定機器による測定結果を正確なデータとして取得することができる。
 本発明の態様Cに係る制御装置は、第1測定機器および第2測定機器を制御する制御装置であって、上記第1測定機器がユーザの操作により当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した場合に、上記第2測定機器に対して上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信する制御部を備えている。
 上記の構成によれば、本発明の態様Aに係る生体情報測定システムと同等の効果を奏する。
 本発明の態様Dに係る制御装置は、第1測定機器および第2測定機器を制御する制御装置であって、上記第2測定機器に対してユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信し、上記第1測定機器がユーザの操作により上記第2生体情報とは異なる、当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した後に上記第2測定機器から受信した上記第2生体情報の測定結果を、当該第2生体情報の正常な測定結果として取得する制御部を備えている。
 上記の構成によれば、本発明の態様Bに係る生体情報測定システムと同等の効果を奏する。
 本発明の一態様によれば、ユーザの複数の生体情報を同時に正確に測定することができるという効果を奏する。
実施形態1に係る生体情報測定システムの外観を示す図である。 実施形態1に係る生体情報測定システムの全体構成を示す図である。 実施形態1に係る表示装置に表示される画面遷移の例を示す図である。 本実施形態に係る生体情報測定システムの利用場面の例を示す図であり、(a)は着席の場面を示し、(b)はログインの場面を示し、(c)は測定~アドバイスの場面を示す。 実施形態1に係る生体情報測定システムのブロック構成を示す図である。 実施形態1に係る生体情報測定システムの処理を示すフローチャートである。 実施形態2に係る生体情報測定システムの処理を示すフローチャートである。 実施形態3に係る生体情報測定システムの処理を示すフローチャートである。
 〔実施形態1〕
 以下、本発明の実施の形態について、詳細に説明する。ただし、この実施形態に記載されている構成は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
 〈システムの構成と概要〉
 まず、本発明の実施形態1に係る生体情報測定システムについて、図1、2および5を参照して説明する。図1は、本実施形態に係る生体情報測定システム1の外観を示す図である。図2は、本実施形態に係る生体情報測定システム1の全体構成を示す図である。図5は、本実施形態に係る生体情報測定システム1のブロック構成を示す図である。
 図1および5に示すように、生体情報測定システム1は、椅子型になっており、ユーザの複数の生体情報を測定するシステムであり、椅子2、血圧計(第1測定機器)3、脈波計(第2測定機器)4、体重計(検知部)5、表示装置6および制御装置(制御部)7を備える。血圧計3、脈波計4、体重計5および表示装置6と、制御装置7とは、有線または無線(Bluetooth(登録商標)など)により通信接続されてもよいし、ネットワークを介して通信接続されていてもよい。なお、体重計5は、体重の測定だけでなく、ユーザの状態監視にも利用されるので、信頼性を確保するために有線で通信接続されるのが好ましい。
 椅子2は、ユーザが座った状態で生体情報の測定を受けることを可能とするものであり、血圧計3および脈波計4の位置がそれぞれ腕および指の位置に合うように姿勢の角度を調節可能であり、また、体重計5に連動している。なお、本発明は、ユーザが座った状態での測定に限られず、安定した姿勢であればよく、ユーザが立ったり、伏せたりした状態で測定してもよい。そのため、本発明の実施の形態に係る生体情報測定システム1は、椅子型に限られず、立席型、ベッド型などであってもよい。
 血圧計3は、ユーザが測定開始ボタンを押す操作を行うと、ユーザの血圧(第1生体情報)の測定を開始し、測定開始の旨を示す信号(第1信号)を送信するとともに、比較的長時間(例えば、約1~2分間)かかって測定を終了する市販の機器であり、制御装置7から測定の開始および終了を制御できないという特徴がある。ユーザの操作により測定を開始し、測定の開始および終了を外部から制御できない機器には、例えば、体温計がある。
 脈波計4は、ユーザの脈波(第2生体情報)を測定する市販の機器であり、指が挿入されて測定可能(正常な測定結果が得られるように)になったことを検出する仮測定処理と、指が挿入されており、測定可能な(正常な測定結果が得られる)ことを前提にして脈波データ(測定データ)を取得する本測定処理とを行う。仮測定処理においては、ノイズを除去しながら所定期間測定を行い、波形を解析するため、測定可能を検出するまでに時間がかかる。脈波計4に関しては、制御装置7により、指が挿入されて測定可能か否かが分かり、モニタリングの開始および終了を制御することができ、そのモニタリングの間に脈波計4から脈波データが出力され続ける。脈波計4は、センサによる状態検出をトリガにして測定を開始し、比較的短時間で測定が終了するという特徴があり、同じ特徴を持つ機器には、例えば、脳波計がある。
 体重計5は、椅子2と連動して、椅子2に座ったユーザの体重を測定する機器であり、制御装置7が所定間隔で(例えば、約500msごとに)体重データを取得することができる。ユーザが椅子2に座っていれば、常に測定可能であるという特徴を持つ。したがって、制御装置7は、体重計5からの体重データが適正か否かに応じて、ユーザが椅子2に座っているか否かを判定することができる。
 表示装置6は、椅子2に座ったユーザに対して、生体情報測定システム1の利用案内を示す画面を表示する装置である。利用案内の画面は、各測定機器からのデータ、各測定機器の状態に応じて順次遷移することにより、生体情報の同時測定を行うように、ユーザを誘導する。画面遷移の例について、図3を参照して説明する。図3は、本実施形態に係る表示装置6に表示される画面遷移の例を示す図である。画面G6において生体情報の同時測定を誘導しており、測定が開始されると、画面G7として「測定中!」が表示され、測定が終了すると画面G8に遷移する。特に、画面G6では、制御装置7から測定開始を制御できない測定機器(血圧計3)を最初に操作するように、ユーザを誘導する。
 制御装置7は、生体情報測定システム1全体を制御する装置であり、各測定機器および表示装置6と通信しながら、生体情報を同時に測定する処理を進める。PC(Personal Computer)、スマートフォンなどによって実現される。具体的な処理については、後述する。なお、制御装置7の代わりに、制御装置7から通信可能な外部の制御装置(例えば、サーバ)が処理を実行してもよい。
 なお、図2においては、表示装置6としてタッチDPが設置され、制御装置7としてFAコンピュータが設置されている。
 〈システムの利用場面〉
 次に、本実施形態に係る生体情報測定システム1の利用場面の例について、図4を参照して説明する。図4は、本実施形態に係る生体情報測定システム1の利用場面の例を示す図である。図4(a)は着席の場面を示し、図4(b)はログインの場面を示し、図4(c)は測定~アドバイスの場面を示す。
 例えば、スポーツジムやドラッグストアでは、まず、図4(a)に示すように、ユーザに対して椅子2に着席するように促す。このとき、図3の画面G2に示すように、「どうぞお座りください」というメッセージが表示される。次に、図4(b)に示すように、ログインを行うように促す。このとき、NFC(Near Field Communication)機器を使って、ユーザにIDを通知することにより、その通知したIDでログインしてもらうか、IDを持っていなければ、ゲストモードによりログインしてもらう。その後、図4(c)に示すように、生体情報を測定し、測定結果を表示し(図3の画面G9、G10)、さらに、その結果に応じてアドバイスを提案する(図3の画面G11)。
 〈システムの処理〉
 続いて、本実施形態に係る生体情報測定システム1の処理について、図6を参照して説明する。図6は、本実施形態に係る生体情報測定システム1の処理を示すフローチャートである。本処理は、主として制御装置7の処理であり、生体情報測定の開始から終了までの処理を示すものであり、特に、血圧計3を脈波計4よりも先に測定開始する例である。
 本処理の特徴は、測定開始に関する信頼度の高い測定機器(測定開始ボタンなどによりユーザが直接測定開始を操作できる測定機器)である血圧計3と、センサ特性からリアルタイムには状態検出できない機器(測定開始ボタンなどによらず、センサおよび仮測定処理により測定可能状態を検出すると、測定を開始する測定機器)である脈波計4の少なくとも2つの測定機器を有し、脈波計4の測定開始を、血圧計3へのユーザの直接的な応答(例えば、測定開始ボタンを押す操作)に連動させるものである。
 なお、血圧計3は長時間測定が必要な測定機器であり、脈波計4は短時間測定でよい測定機器である。なお、脈波計4の代わりに、脳波計を用いてもよい。
 まず、ユーザが椅子2に座ると体重計5が作動し、さらにその他の生体情報が測定可能な状態になったときに、図6に示すように、制御装置7は、表示装置6に測定機器の装着を促す画面(図3のG6)を表示し、その後、血圧計3の測定開始ボタンを押すように、UI(User Interface)によりユーザを誘導する(S601)。これに対応して、ユーザは、血圧計3に腕を通して当該血圧計3の測定開始ボタンを押す(S602)。血圧計3の測定開始ボタンは、明示的に操作されるので、測定開始のトリガに相応しいものである。このとき、ユーザは、脈波計4に指を入れてもよい。
 次に、制御装置7は、血圧計3から所定時間内に測定開始通知を受信したか否かを監視する(S603)。例えば、測定状態の送受信用としてHDP(Health Device Profile)による接続通知が届いたか否かを監視する。HDPは、Bluetooth(登録商標)のプロファイル(通信プロトコルの標準)の1つであり、医療機器の接続を目的とする。所定時間内に上記通知を受信した場合に(S603のYes)、制御装置7は、ユーザが血圧測定中であるので、ユーザの姿勢が安定していると判断して、脈波計4にデータ取得の開始を指示する信号(第2信号)を送信する(S604)。脈波計4は、制御装置7からデータ取得開始の指示信号を受けると、脈波データを取得し、制御装置7に送信する。
 制御装置7は、脈波計4から脈波データを取得し、所定時間内に所定の閾値を超える波形を検出したか否かを判定する(S605)。これは、脈波計4がセンサ特性によりリアルタイムに測定可能状態を検出できないので、脈波計4に指が入っているか否かを簡易的に判断するために、測定の精度およびリアルタイム性(効率)のトレードオフを調整するものである。具体的には、脈波計4の仮測定処理をスキップし、その代わりに、制御装置7が、弱い精度で状態検出を行いながら、測定開始を制御するとともに、弱い精度による状態検出を補完するために、タイマによる時間制限を追加する。
 所定時間内に所定の閾値を超える波形を検出した場合には(S605のYes)、脈波計4に指が入っている、すなわち、脈波計4がユーザに正しく装着され、脈波の測定が開始されていると判断して、表示装置6に測定中画面(図3のG7)を表示する(S606)。S605において、上記波形を検出できない場合にも(S605のNo)、実際には指が既に入っている可能性があるため、S606の処理を行う。
 以上のように、血圧計3から測定開始通知を受信した場合には、少なくともユーザが脈波計4による測定が可能な位置にいることは明らかであり、血圧計3を用いた測定と同時に、脈波計4による測定を行おうとしていると想定することができるため、仮測定処理を行わずに、本測定処理を行うことにより、脈波計4の測定時間を短くすることができる。
 さらに、制御装置7は、所定時間内にすべての測定機器、すなわち、血圧計3および脈波計4から測定結果を受信した否かを判定する(S607)。すべての測定結果を受信した場合に(S607のYes)、制御装置7は、表示装置6に測定結果の画面(図3のG9、G10)を表示する(S608)。その後、表示装置6にアドバイスの画面(図3のG11)を表示してもよい。
 S607において、すべての測定結果を受信していない場合に(S607のNo)、制御装置7は、再測定すべきか否かを確認する(S609)。例えば、脈波計4において弱信号エラーが発生した場合に、所定時間内にすべての測定機器からは測定結果を受信していないので(S607のNo)、再測定を所定回数行う。この再測定回数は、最後に測定が終了する測定機器(血圧計3)の測定時間および想定される合計測定時間から調整する。なお、再測定は、脈波計4を対象としており、測定開始が早過ぎたことによる脈波計4の測定失敗を補う目的がある。再測定を行う場合には(S609のYes)、制御装置7は、再測定処理を行う(S610)。具体的には、脈波計4にデータ取得の開始を指示する信号を送信する。なお、脈波計4の再測定は、血圧計3の測定結果が出る前に行われる。そして、脈波計4から脈波データの測定結果を受信したか否かを判定する(S611)。測定結果を受信した場合には(S611のYES)、表示装置6に測定結果の画面を表示する(S608)。
 このように、血圧計3の測定中に、脈波計4の測定結果が先に得られた場合には、脈波計4の測定結果に応じて再測定を行うことにより、最終的に得られる脈波データの精度を高めることができる。なお、本実施形態では、脈波計4の測定に失敗した場合に、再測定を行うとしたが、血圧計3の測定中であれば、脈波計4の測定に成功した場合であっても、再測定を行ってもよい。また、再測定は、血圧計3の測定中であれば、2回以上行ってもよい。
 S603において所定時間内に上記通知を受信しなかった場合(S603のNo)、S609において再測定を行わない場合(S609のNo)、または、S611において脈波データの測定結果を受信しなかった場合(S611のNo)に、制御装置7は、測定失敗の画面を表示する(S612)。血圧計3による測定結果を受信しなかった場合には、血圧測定失敗の画面を表示する。このとき、例えば、測定値一覧における血圧欄に「-(ハイフン)」を表示してもよいし、測定処理を終了した後に「血圧を再測定してください」と表示してもよい。なお、測定失敗の画面の表示は、失敗した測定機器のみを測定失敗として表示するだけでなく、測定に失敗した機器が1つであっても、測定全体を失敗として表示してもよい。測定全体を失敗として表示することにより、各測定機器を別々に使用することがなくなり、複数の生体情報を安定した状態で一括して測定することができる。
 上記によれば、ユーザの操作で血圧計3が測定を開始し、それをトリガにして制御装置7が脈波計4の測定開始を連動させることにより、1回のユーザ操作で複数の生体情報を同時に測定することができる。そして、脈波計4の測定開始の可否(指を挿入済か否か)を簡易的に判定することにより、測定の精度およびリアルタイム性のトレードオフを調整することができる。また、市販の測定機器を組み合わせて使用して、生体情報の同時測定が可能である。また、ユーザ自身の手で開始操作を行った血圧計3による測定中であれば、ユーザは測定状態であることを認識しているので、ユーザは安定した状態にあるため、当該測定中に、脈波計4による測定を併せて行うことにより、正確な測定を行うことができる。
 なお、3つ以上の生体情報の同時測定を行うときには、測定時間が最も長い測定機器(最後に測定が終了する測定機器)よりも短い測定時間で測定可能な測定機器に対して、上記のトレードオフ調整を適用する。
 〔実施形態2〕
 本発明の実施形態2に係る生体情報測定システム1の処理について、図7を参照して説明する。図7は、本実施形態に係る生体情報測定システム1の処理を示すフローチャートである。本処理は、主として制御装置7の処理であり、生体情報測定の開始から終了までの処理を示すものであり、特に、脈波計4を血圧計3よりも先に測定開始する例である。ただし、測定機器全体としての測定開始には、血圧計3の測定開始が必要である。ここで、測定機器全体としての測定開始とは、表示装置6の表示画面を測定中画面へ遷移させ、脈波計4の測定データを正確な測定結果として取得することを示している。なお、生体情報測定システム1の構成は、実施形態1と同様である。
 まず、制御装置7は、表示装置6に測定機器の装着を促す画面(図3のG6)を表示し、その後、血圧計3の測定開始ボタンを押すように、UIによりユーザを誘導する(S701)。
 次に、制御装置7は、脈波計4にデータ取得の開始を指示する(S702)。脈波計4は、制御装置7からデータ取得開始の指示を受けると、脈波データを取得し、制御装置7に送信する。
 制御装置7は、脈波計4から脈波データを取得し、脈波計4に指が入っているか否かを簡易的に判断するために、所定時間内に所定の閾値を超える波形を検出したか否かを判定する(S703)。所定時間内に所定の閾値を超える波形を検出した場合には(S703のYes)、制御装置7は、脈波計4に指が入っており、すなわち、脈波計4が正しく装着され、脈波の測定が開始されていると判断する。上記波形を検出できない場合にも(S703のNo)、実際には指が既に入っている可能性があるため、処理を続行する。
 S701の処理を受けて、ユーザは、血圧計3の測定開始ボタンを押す(S704)。
 制御装置7は、血圧計3から所定時間内に測定開始通知を受信したか否かを監視する(S705)。例えば、測定状態の送受信用としてHDPによる接続通知が届いたか否かを監視する。所定時間内に上記通知が受信した場合には(S705のYes)、表示装置6に測定中画面(図3のG7)を表示する(S706)。
 S707~S712の処理は、図6のS607~S612の処理と同様であるので、説明を割愛する。
 上記によれば、本実施形態に係る生体情報測定システム1の構成および処理により、ユーザが血圧計3ではなく、脈波計4を先に装着した場合であっても、遅滞なく生体情報の測定を開始することができる。
 また、制御装置7は、血圧計3から測定開始通知を受信した後に脈波計4から受信した測定結果を正常な測定結果として取得し、血圧計3から測定開始通知を受信する前に脈波計4から受信した測定結果は、正常な測定結果としては取得しない。すなわち、図6に示すように、脈波計4の測定結果を取得するのは、血圧計3から測定開始通知を受信した後のS707においてである。これにより、ユーザ自身の手で開始操作を行った血圧計3による測定中であれば、ユーザが安定した状態にあるため、脈波計4による測定結果を正確なデータとして取得することができる。
 〔実施形態3〕
 本発明の実施形態3に係る生体情報測定システム1の処理について、図8を参照して説明する。図8は、本実施形態に係る生体情報測定システム1の処理を示すフローチャートである。本処理は、主として制御装置7の処理であり、生体情報測定の開始から終了までの処理を示すものである。なお、生体情報測定システム1の構成は、実施形態1と同様である。
 本処理の特徴は、測定機器の中で最も状態検出に関する信頼性の高い(常に測定可能な)機器である体重計5において、所定時間中に安定した測定状態が継続しない場合に、ユーザが退席している、または、ユーザの姿勢が不安定であると判断して、生体情報の測定を中止するものである。なお、ユーザの状態監視のために、体重計5の代わりにカメラを用いてもよいし、体重計5およびカメラの両方を用いてもよい。両方を用いれば、ユーザ監視の精度が上がる。カメラを用いた場合には、撮影画像の特定範囲に人物を検出できないときに、生体情報の測定を中止する。また、カメラは、ユーザ監視だけでなく、他の用途に用いられることもある。
 まず、制御装置7は、測定開始(例えば、ユーザによるログイン)を契機にして、体重計5に測定開始を指示し、ユーザの退席(不在)監視を開始する(S801)。すなわち、制御装置7は、体重計5から定期的に体重データを受信し、所定時間以上に亘って体重が所定値以下の状態が継続すると、ユーザが椅子2から退席したと判断する。
 次に、制御装置7は、表示装置6に測定機器の装着を促す画面(図3のG6)を表示し、その後、血圧計3の測定開始ボタンを押すように、UIによりユーザを誘導する(S802)。これに対応して、ユーザが血圧計3の測定開始ボタンを押す(S803)。
 次に、制御装置7は、血圧計3から所定時間内に測定開始通知を受信したか否かを監視する(S804)。例えば、測定状態の送受信用としてHDPによる接続通知が届いたか否かを監視する。所定時間内に上記通知が受信した場合には(S804のYes)、制御装置7は、脈波計4にデータ取得の開始を指示する(S805)。脈波計4は、制御装置7からデータ取得開始の指示を受けると、脈波データを取得し、制御装置7に送信する。
 制御装置7は、脈波計4から脈波データを取得し、脈波計4に指が入っているか否かを簡易的に判断するために、所定時間内に所定の閾値を超える波形を検出したか否かを判定する(S806)。所定時間内に所定の閾値を超える波形を検出した場合には(S806のYes)、脈波計4に指が入っている、すなわち、脈波計4が正しく装着され、脈波の測定が開始されていると判断する。S806において、上記波形を検出できない場合にも(S806のNo)、実際には指が既に入っている可能性があるため、処理を続行する。
 続いて、制御装置7は、脈波計4から受信した脈波データにより所定時間内に指を簡易的に検出した場合に、体重計5から体重データの安定値(所定値以上の測定値)を取得しているか否かを判定する(S807)。これにより、ユーザが正しい姿勢になっており、生体情報を正確に測定できているか否かを確認する。体重データの安定値を取得している場合に(S807のYes)、制御装置7は、各測定機器(血圧計3、脈波計4)が正しく装着され、測定開始できていると判断し、表示装置6に測定中画面(図3のG7)を表示する(S808)。
 さらに、制御装置7は、所定時間内にすべての測定機器、すなわち、血圧計3および脈波計4から測定結果を受信した否かを判定する(S809)。測定結果を受信した場合に(S809のYes)、制御装置7は、表示装置6に測定結果の画面(図3のG9、G10)を表示する(S810)。その後、表示装置6にアドバイスの画面(図3のG11)を表示してもよい。
 S809において、すべての測定結果を受信していない場合に(S809のNo)、制御装置7は、再測定すべきか否かを確認する(S811)。例えば、脈波計4において弱信号エラーが発生していた場合、再測定を所定回数行う。この再測定回数は、最後に測定が終了する測定機器(血圧計3)の測定時間および想定される合計測定時間から調整する。なお、再測定の対象機器は、脈波計4だけである。再測定を行う場合には(S811のYes)、制御装置7は、再測定処理を行う(S812)。具体的には、脈波計4にデータ取得の開始を指示する信号を送信する。なお、脈波計4の再測定は、血圧計3の測定結果が出る前に行われる。そして、脈波計4から脈波データの測定結果を受信したか否かを判定する(S813)。測定結果を受信した場合には(S813のYES)、表示装置6に測定結果の画面を表示する(S608)。
 S804において所定時間内に上記通知が受信しなかった場合(S804のNo)、S807において体重データの安定値を取得できなかった場合(S807のNo)、S811において再測定を行わない場合(S811のNo)、または、S813において脈波データの測定結果を受信しなかった場合(S813のNo)に、制御装置7は、測定失敗の画面を表示する(S814)。
 上記によれば、ユーザの操作で血圧計3が測定を開始し、それをトリガにして制御装置7が脈波計4の測定開始を連動させることにより、1回のユーザ操作で複数の生体情報を同時に測定することができる。そして、脈波計4の測定開始の可否(指を挿入済か否か)を簡易的に判定することにより、測定の精度およびリアルタイム性のトレードオフを調整することができる。
 さらに、測定中止の判断に関しては、測定機器の中で状態検出に関する信頼度が最も高く、常時測定可能な体重計5が、所定期間中に継続して安定した測定状態にならない場合に、ユーザが何らかの理由で測定を止めたと判断し、すべての機器の測定を中止することができる。また、その旨をUI(表示装置6の画面)により通知することにより、ユーザに対して再測定を促すことができる。
 なお、ユーザの退席監視の処理として、制御装置7は、S801で監視を開始した後、上記のようにS807で体重データを確認することに限らず、他の箇所でポーリング処理により体重データを待ってから確認してもよいし、体重計5から体重データを受信したときに割り込みが発生するように予め設定しておき、その割り込み処理の中で体重データを確認してもよい。
 なお、本実施形態と実施形態2とを組み合わせてもよい。すなわち、本実施形態において、制御装置7は、血圧計3から測定開始の通知を受ける前に、脈波計4に対しデータ取得の開始を指示し、血圧計3から測定開始の通知を受けた後に脈波計4から受信した測定結果を正常なデータとして取得してもよい。
 〔まとめ〕
 本発明は、ユーザ自身の手で開始操作を行った第1測定機器による測定中であれば、ユーザは測定状態であることを認識しているので、ユーザは安定した状態にあるため、当該第1測定機器の測定中に、第1測定機器とは異なる第2測定機器による測定を併せて行うことにより、より正確に測定することができるという本発明者らの独自の発想に基づくものである。
 すなわち、本発明の態様1に係る生体情報測定システムは、第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、上記制御部は、上記第1測定機器から上記第1信号を受信した場合に、上記第2信号を上記第2測定機器に送信する。
 上記の構成によれば、ユーザが第1生体情報の測定を開始するための操作を行うことにより、第1生体情報だけでなく、少なくとも1つの第2生体情報の測定が開始される。したがって、ユーザの複数の生体情報を同時に測定することができる。また、ユーザ自身の手で開始操作を行った第1測定機器による測定中であれば、ユーザは測定状態であることを認識しているので、ユーザは安定した状態にあるため、当該測定中に、第2測定機器による測定を併せて行うことにより、より正確に測定することができる。
 本発明の態様2に係る生体情報測定システムは、第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、当該測定した結果を上記制御部に送信し、上記制御部は、上記第2測定機器に対して上記第2信号を送信し、上記第1測定機器から上記第1信号を受信した後に上記第2測定機器から受信した上記結果を、上記第2生体情報の正常な測定結果として取得する。
 上記の構成によれば、ユーザが第1測定機器ではなく、第2測定機器を先に装着した場合であっても、遅滞なく生体情報の測定を開始することができる。また、ユーザ自身の手で開始操作を行った第1測定機器による測定中であれば、ユーザが安定した状態にあるため、第2測定機器による測定結果を正確なデータとして取得することができる。
 本発明の態様3に係る生体情報測定システムは、上記態様1および2において、上記第2測定機器が、上記第2生体情報を測定し、得られた測定結果が、正常な測定結果であるか否かを確認する仮測定処理と、当該仮測定処理において正常な測定結果が得られたことを確認した後に、上記第2生体情報を測定する本測定処理とを行うものであり、上記制御部から上記第2信号を受信した場合には、上記仮測定処理を行わずに、上記本測定処理を行うこととしてもよい。
 第2生体情報の測定には、本来、仮測定処理および本測定処理が行われる。しかし、上記の構成において、第2信号を受信した場合には、少なくともユーザが第2測定機器による測定が可能な位置にいることは明らかであるので、仮測定処理を行わずに、本測定処理を行うことにより、第2生体情報の測定時間を短くすることができる。
 本発明の態様4に係る生体情報測定システムは、上記態様1から3において、上記第1測定機器の測定時間が、上記第2測定機器の測定時間よりも長いこととしてもよい。
 上記の構成によれば、第1測定機器の測定時間が第2測定機器の測定時間よりも長いので、第1測定機器の測定時間内に第2測定機器の測定時間が収まる。したがって、第1測定機器による測定中は、ユーザが安定した状態にあるため、その間における第2測定機器による測定を含めて、さらに正確に行うことができる。また、システム全体の測定時間を、第1測定機器の測定時間により容易に管理することができる。
 本発明の態様5に係る生体情報測定システムは、上記態様4において、上記第2測定機器が、上記第2生体情報の測定結果を上記制御部に送信し、上記制御部が、上記第1測定機器が第1生体情報の測定中であるときには、上記第2測定機器から受信した上記測定結果に応じて、上記第2測定機器に対して上記第2生体情報の再測定を指示することとしてもよい。
 上記の構成によれば、第1生体情報の測定時間が第2生体情報の測定時間よりも長いので、第1生体情報の測定中に、第2生体情報の測定結果が先に得られた場合には、第2生体情報の測定結果に応じて再測定を行うことにより、最終的に得られる第2生体情報の精度を高めることができる。
 本発明の態様6に係る生体情報測定システムは、上記態様1から5において、所定位置に上記ユーザがいるか否かを検知する検知部をさらに備え、上記制御部が、上記検知部が上記所定位置に上記ユーザがいないことを検知した場合に、上記第2測定機器に測定中止を指示することとしてもよい。
 上記の構成によれば、ユーザの不在を検出した場合に、第2測定機器による測定を中止する。したがって、ユーザがいない場合には、第2生体情報を測定しないので、無駄な測定動作を回避することができる。
 本発明の態様7に係る生体情報測定システムは、上記態様6において、上記ユーザ検出部が、体重計およびカメラの少なくとも何れかを備えていることとしてもよい。
 上記の構成によれば、体重計およびカメラの少なくとも何れかによれば、ユーザの不在を容易に検出することができる。
 本発明の態様8に係る生体情報測定システムは、上記態様1から7において、上記第1測定機器は、血圧計であり、上記第2測定機器は、脈波計であってもよい。
 上記の構成によれば、血圧計および脈波計を備える生体情報測定システムを好適に構築することができる。
 本発明の態様9に係る制御装置は、第1測定機器および第2測定機器を制御する制御装置であって、上記第1測定機器がユーザの操作により当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した場合に、上記第2測定機器に対して上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信する制御部を備えている。
 上記の構成によれば、本発明の態様1に係る生体情報測定システムと同等の効果を奏する。
 本発明の態様10に係る制御装置は、第1測定機器および第2測定機器を制御する制御装置であって、上記第2測定機器に対してユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信し、上記第1測定機器がユーザの操作により上記第2生体情報とは異なる、当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した後に上記第2測定機器から受信した上記第2生体情報の測定結果を、当該第2生体情報の正常な測定結果として取得する制御部を備えている。
 上記の構成によれば、本発明の態様2に係る生体情報測定システムと同等の効果を奏する。
 なお、本発明の態様9および10に係る制御装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記制御装置が備える制御部として動作させることにより上記制御装置をコンピュータにて実現させる制御装置のプログラムも、本発明の範疇に入る。
 〔ソフトウェアによる実現例〕
 図5に示す生体情報測定システム1の各機能ブロックは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、生体情報測定システム1は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラム及び各種データがコンピュータ(又はCPU)で読み取り可能に記録されたROM(Read Only Memory)又は記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)等を備えている。そして、コンピュータ(又はCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路等を用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、複数の生体情報を測定するシステムに利用することができる。
 1 生体情報測定システム
 2 椅子
 3 血圧計(第1測定機器)
 4 脈波計(第2測定機器)
 5 体重計(検知部)
 6 表示装置
 7 制御装置(制御部)

Claims (11)

  1.  第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、
     上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、
     上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、
     上記制御部は、上記第1測定機器から上記第1信号を受信した場合に、上記第2信号を上記第2測定機器に送信する
     ことを特徴とする生体情報測定システム。
  2.  第1測定機器、第2測定機器、および、制御部を備える生体情報測定システムであって、
     上記第1測定機器は、ユーザの操作により当該ユーザの第1生体情報の測定を開始するとともに、当該測定が開始したことを示す第1信号を上記制御部に送信し、
     上記第2測定機器は、上記制御部から測定開始を指示する第2信号を受信した場合に、上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始し、当該測定した結果を上記制御部に送信し、
     上記制御部は、上記第2測定機器に対して上記第2信号を送信し、上記第1測定機器から上記第1信号を受信した後に上記第2測定機器から受信した上記結果を、上記第2生体情報の正常な測定結果として取得する
     ことを特徴とする生体情報測定システム。
  3.  上記第2測定機器は、
     上記第2生体情報を測定し、得られた測定結果が、正常な測定結果であるか否かを確認する仮測定処理と、当該仮測定処理において正常な測定結果が得られたことを確認した後に、上記第2生体情報を測定する本測定処理とを行うものであり、
     上記制御部から上記第2信号を受信した場合には、上記仮測定処理を行わずに、上記本測定処理を行う
     ことを特徴とする請求項1または2に記載の生体情報測定システム。
  4.  上記第1測定機器の測定時間は、上記第2測定機器の測定時間よりも長い
     ことを特徴とする請求項1から3のいずれか一項に記載の生体情報測定システム。
  5.  上記第2測定機器は、上記第2生体情報の測定結果を上記制御部に送信し、
     上記制御部は、
     上記第1測定機器が第1生体情報の測定中であるときには、上記第2測定機器から受信した上記測定結果に応じて、上記第2測定機器に対して上記第2生体情報の再測定を指示する
     ことを特徴とする請求項4に記載の生体情報測定システム。
  6.  所定位置に上記ユーザがいるか否かを検知する検知部をさらに備え、
     上記制御部は、
     上記検知部が上記所定位置に上記ユーザがいないことを検知した場合に、上記第2測定機器に測定中止を指示する
     ことを特徴とする請求項1から5のいずれか一項に記載の生体情報測定システム。
  7.  上記検知部は、体重計およびカメラの少なくとも何れかを備えている
     ことを特徴とする請求項6に記載の生体情報測定システム。
  8.  上記第1測定機器は、血圧計であり、
     上記第2測定機器は、脈波計である
     ことを特徴とする請求項1から7のいずれか一項に記載の生体情報測定システム。
  9.  第1測定機器および第2測定機器を制御する制御装置であって、
     上記第1測定機器がユーザの操作により当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した場合に、上記第2測定機器に対して上記第1生体情報とは異なる、上記ユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信する制御部を備えていることを特徴とする制御装置。
  10.  第1測定機器および第2測定機器を制御する制御装置であって、
     上記第2測定機器に対してユーザの少なくとも1つの第2生体情報の測定を開始することを指示する第2信号を上記第2測定機器に送信し、上記第1測定機器がユーザの操作により上記第2生体情報とは異なる、当該ユーザの第1生体情報の測定を開始したことを示す第1信号を第1測定機器から受信した後に上記第2測定機器から受信した上記第2生体情報の測定結果を、当該第2生体情報の正常な測定結果として取得する制御部を備えていることを特徴とする制御装置。
  11.  請求項9または10に記載の制御装置としてコンピュータを機能させるためのプログラムであって、コンピュータを上記制御部として機能させるためのプログラム。
PCT/JP2015/071957 2014-10-03 2015-08-03 生体情報測定システム、制御装置、および、プログラム WO2016051950A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014205267 2014-10-03
JP2014-205267 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016051950A1 true WO2016051950A1 (ja) 2016-04-07

Family

ID=55629996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071957 WO2016051950A1 (ja) 2014-10-03 2015-08-03 生体情報測定システム、制御装置、および、プログラム

Country Status (1)

Country Link
WO (1) WO2016051950A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231629A (ja) * 1990-02-06 1991-10-15 Omron Corp 血圧記録装置
JP2000237149A (ja) * 1999-02-25 2000-09-05 Matsushita Electric Works Ltd 健康測定機器
JP2002136483A (ja) * 2000-11-02 2002-05-14 Rakken:Kk 健診装置
WO2011024425A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 生体情報検出装置およびモーションセンサ
US20140012146A1 (en) * 2012-07-04 2014-01-09 Sony Corporation Measurement apparatus, measurement method, program, storage medium, and measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231629A (ja) * 1990-02-06 1991-10-15 Omron Corp 血圧記録装置
JP2000237149A (ja) * 1999-02-25 2000-09-05 Matsushita Electric Works Ltd 健康測定機器
JP2002136483A (ja) * 2000-11-02 2002-05-14 Rakken:Kk 健診装置
WO2011024425A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 生体情報検出装置およびモーションセンサ
US20140012146A1 (en) * 2012-07-04 2014-01-09 Sony Corporation Measurement apparatus, measurement method, program, storage medium, and measurement system

Similar Documents

Publication Publication Date Title
JP6448626B2 (ja) 転倒検出システム及び方法
JP7227232B2 (ja) ウェアラブル装置の向きの決定
TWI529639B (zh) 基於身分識別的付款方法及腕戴式裝置
TWI574222B (zh) 使用低功率藍芽網狀網路之生理監控系統
JP6360890B2 (ja) 対象のバイタルサインをモニタするセンサ装置及び方法
US20180296188A1 (en) Patient monitor, physiological information measurement system, program to be used in patient monitor, and non-transitory computer readable medium in which program to be used in patient monitor is stored
JP2007289540A (ja) ストレスセンサシステム
JPWO2018105447A1 (ja) 接触状態推定装置及び生体信号測定装置
KR20130137327A (ko) 의자를 이용한 생체정보 획득장치
JP2016195747A (ja) 生体情報処理装置、生体情報処理システム、生体情報処理方法及び生体情報処理プログラム
EP3104778B1 (en) Early acute fall risk detection
US10130305B2 (en) Device and methods for automated testing
US20190021592A1 (en) Terminal device and information processing system
KR20150095439A (ko) 생체 정보 측정 시스템 및 그 측정 방법
US20170265237A1 (en) Body area network data transmission method, body sensing device, and body area network system
WO2016051950A1 (ja) 生体情報測定システム、制御装置、および、プログラム
JP6066893B2 (ja) パルスオキシメータ
KR102154902B1 (ko) 심장 모니터링 방법
KR101783603B1 (ko) 의료요양시스템 및 의료요양서비스 관리방법
US20230207114A1 (en) Biological information analysis system, non-transitory computer readable medium and biological information analysis method
JP4626209B2 (ja) 生体情報測定装置及び生体情報測定制御方法
Hatzfeld et al. Vibrotactile force perception thresholds at the fingertip
US11843905B2 (en) Sensor device, sensing method, and program storage medium
US10524659B2 (en) Electronic apparatus, method for controlling the same, and computer-readable recording medium
JP7176274B2 (ja) 生体情報監視プログラム、および生体情報監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP