WO2016051695A1 - Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device - Google Patents

Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device Download PDF

Info

Publication number
WO2016051695A1
WO2016051695A1 PCT/JP2015/004664 JP2015004664W WO2016051695A1 WO 2016051695 A1 WO2016051695 A1 WO 2016051695A1 JP 2015004664 W JP2015004664 W JP 2015004664W WO 2016051695 A1 WO2016051695 A1 WO 2016051695A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
film
conductive film
transparent conductive
water repellent
Prior art date
Application number
PCT/JP2015/004664
Other languages
French (fr)
Japanese (ja)
Inventor
川村 基
田丸 博
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016551502A priority Critical patent/JPWO2016051695A1/en
Publication of WO2016051695A1 publication Critical patent/WO2016051695A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a film having a transparent conductive film on the surface, a film with a transparent wiring, a transparent shield film, a touch panel, and a display device.
  • Transparent conductive films are widely used in fields such as liquid crystal display (LCD), plasma display (PDP), touch panel, organic electroluminescence (EL), and solar cell.
  • Such a transparent conductive film that exhibits conductivity can be formed by various methods.
  • the film is formed using a transparent and conductive material.
  • a film is formed by containing a conductive filler in a transparent resin. In this method, even if it is colored, it is possible to form a transparent conductive film that exhibits conductivity while ensuring transparency by the shape and orientation of the conductive filler.
  • Patent Document 1 proposes forming a transparent conductive film using a metal nanowire as a conductive filler.
  • the conductivity of the metal nanowire depends on the metal used. For example, since silver has a very excellent conductivity of 10 ⁇ 7 ⁇ ⁇ cm, it is possible to apply silver nanowires to the transparent electrode.
  • a method of forming a film by applying a resin solution in which metal nanowires are dispersed to the surface of a transparent substrate can be applied.
  • metal nanowires are contained in a transparent resin coating film to form a transparent conductive film.
  • a transparent conductive film expresses electroconductivity by contact between metal nanowires.
  • an overcoat layer is provided on the surface of the transparent conductive film.
  • an overcoat layer is provided by forming a film such as urethane resin on the surface of a transparent conductive film.
  • Patent Document 2 it is proposed that a condensate of a hydrolyzable silane compound is formed as a matrix resin on a transparent coating film containing metal nanowires.
  • a transparent binder having a conductive pattern portion and an insulating pattern portion can be formed by patterning a metal nanowire through the transparent binder in a state where a transparent binder made of an overcoat or the like is formed.
  • a film with a high transparent conductive film is provided.
  • the film with a transparent conductive film according to the present invention has a film-like transparent substrate and a transparent conductive film.
  • the transparent substrate has a first surface and a second surface opposite to the first surface.
  • the transparent conductive film includes metal nanowires and a transparent binder containing a water repellent additive. And it is formed in at least one of the 1st surface and 2nd surface of a transparent base material. A part of the metal nanowire is exposed on the surface of the transparent conductive film.
  • the contact angle of the surface of the transparent conductive film is 80 degrees or more and 125 degrees or less.
  • the contact resistance between the transparent conductive film and other wiring can be reduced. Furthermore, since the contact angle of the surface of the transparent conductive film is 80 degrees or more and 125 degrees or less, it is easy to etch the metal nanowires with the transparent binder formed, and the reliability in the transparent wiring after the metal nanowires are removed by etching. And optical properties can be improved. That is, the metal nanowire can be patterned through the transparent binder in a state where the transparent binder for fixing the metal nanowire is formed. Further, it is possible to improve moisture resistance and reliability in a state in which a part of the metal nanowire is removed and the insulating pattern portion is formed.
  • FIG. 1A is a perspective view of a film with a transparent conductive film according to Embodiment 1 of the present invention.
  • 1B is a cross-sectional view of the film with a transparent conductive film shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view of another film with a transparent conductive film according to Embodiment 1 of the present invention.
  • FIG. 2A is a cross-sectional view illustrating an example of a method for producing the film with a transparent conductive film shown in FIG. 1B or 1C.
  • Drawing 2B is a sectional view explaining an example of a manufacturing method of a film with a transparent conductive film following Drawing 2A.
  • FIG. 1A is a perspective view of a film with a transparent conductive film according to Embodiment 1 of the present invention.
  • 1B is a cross-sectional view of the film with a transparent conductive film shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view of another
  • FIG. 2C is a cross-sectional view illustrating an example of a method for producing a film with a transparent conductive film, following FIG. 2B.
  • FIG. 3A is a cross-sectional view illustrating how the film with a transparent conductive film shown in FIG. 1C is patterned.
  • FIG. 3B is a cross-sectional view for explaining the patterning of the film with a transparent conductive film, following FIG. 3A.
  • FIG. 3C is a cross-sectional view illustrating the patterning of the film with a transparent conductive film, following FIG. 3B.
  • FIG. 4 is a cross-sectional view for explaining how the contact angle of the film with transparent wiring according to Embodiment 1 of the present invention is measured.
  • FIG. 3A is a cross-sectional view illustrating how the film with a transparent conductive film shown in FIG. 1C is patterned.
  • FIG. 3B is a cross-sectional view for explaining the patterning of the film with a transparent conductive film, following FIG
  • FIG. 5 is a schematic diagram for explaining an example of the structure near the surface of the conductive pattern portion of the film with transparent wiring shown in FIG.
  • FIG. 6 is a schematic diagram showing an example of the structure near the surface of the insulating pattern portion of the film with transparent wiring shown in FIG.
  • FIG. 7 is a cross-sectional view showing an example of a touch panel using the film with transparent wiring according to Embodiment 1 of the present invention and a display device.
  • FIG. 8A is a perspective view of a transparent shield film according to Embodiment 2 of the present invention.
  • FIG. 8B is a cross-sectional view of the periphery of the transparent shield film shown in FIG. 8A.
  • FIG. 9A is a perspective view of another transparent shield film according to Embodiment 2 of the present invention.
  • FIG. 9B is a cross-sectional view of the peripheral edge of the transparent shield film shown in FIG. 9A.
  • FIG. 10 is a perspective view showing a state in which a large transparent multi-layer transparent shield film is cut into individual pieces to form individual transparent shield films in Embodiment 2 of the present invention.
  • FIG. 11 is a cross-sectional view illustrating an example of measurement of the contact angle at the cut surface in the second embodiment of the present invention.
  • FIG. 12A is a cross-sectional view illustrating a state in which a part of the metal nanowire comes into contact with the conductive paste composition in the transparent shield film manufacturing process illustrated in FIG. 8B.
  • FIG. 10 is a perspective view showing a state in which a large transparent multi-layer transparent shield film is cut into individual pieces to form individual transparent shield films in Embodiment 2 of the present invention.
  • FIG. 11 is a cross-sectional view illustrating an example of measurement of the contact angle at the cut surface in the second embodiment of the present invention.
  • FIG. 12A
  • FIG. 12B is a cross-sectional view illustrating a state in which a part of the metal nanowire comes into contact with the conductive paste composition in the transparent shield film manufacturing process illustrated in FIG. 9B.
  • FIG. 13A is a side view of a display device according to Embodiment 2 of the present invention.
  • FIG. 13B is a side view of another display device according to the second embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an example of a measurement result of the shielding effect against noise in the display device according to the second embodiment of the present invention.
  • the present invention is not limited to the following embodiment.
  • the embodiment can be changed within the scope of the idea of the present invention. It is also possible to combine two or more of the embodiments.
  • FIG. 1A is a perspective view of a film 110 with a transparent conductive film (hereinafter referred to as film) 110 according to Embodiment 1 of the present invention.
  • film 110 is a long roll shape as shown in FIG. 1A or a sheet-like sheet shape (not shown).
  • FIG. 1B is a schematic diagram for explaining an example of a cross-sectional structure of the film 110.
  • the film 110 includes a transparent base material 130 and a transparent conductive film 150.
  • the transparent substrate 130 is, for example, a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the transparent conductive film 150 is formed on both surfaces of the transparent substrate 130 and includes the metal nanowire 120 and the transparent binder 140.
  • the transparent binder 140 is formed so as to fill between the plurality of metal nanowires 120. A part of the metal nanowire 120 is exposed on the surface of the transparent conductive film 150.
  • FIG. 1C is a schematic diagram for explaining an example of a cross-sectional structure of another transparent conductive film-attached film (hereinafter referred to as a film) 111 according to Embodiment 1 of the present invention.
  • the film 111 has a transparent substrate 130, a transparent conductive film 150 formed on the first surface of the transparent substrate 130, and an antiblocking layer 160 formed on the second surface of the transparent substrate 130. .
  • the configuration of the transparent conductive film 150 is the same as that of the film 110.
  • the anti-blocking layer 160 is formed on the opposite surface where the transparent conductive film 150 is not formed.
  • the contact angle 190 of the water droplet 170 dropped on the transparent conductive film 150 corresponds to the angle between the auxiliary line 180 and the transparent conductive film 150.
  • the contact angle 190 of the transparent conductive film 150 is not less than 80 degrees and not more than 125 degrees. When the contact angle 190 is less than 80 degrees, there may be a problem in reliability such as moisture resistance. Moreover, when the contact angle of the transparent conductive film 150 exceeds 125 degrees, a problem may occur in the optical characteristics (for example, haze and transmittance) of the film.
  • the transparent binder 140 contains a water repellent additive (refer FIG. 5).
  • JIS standard R3257 may be referred to.
  • the contact angle is measured by the sessile drop method. That is, a 4 ⁇ L or less water droplet is left on the test piece.
  • the shape of the water droplet can be regarded as a part of the sphere, the following relationship is established between the contact angle ⁇ and the shape of the water droplet.
  • 2 tan ⁇ 1 (h / r) r is the radius (mm) of the surface of the water drop in contact with the test piece, and h is the height (mm) from the test piece surface to the top of the water drop.
  • r and h are arranged such that the light source, the optical reader, and the test piece are arranged so that the water drop placed on the test piece is positioned at the center of the optical axis of the light source and the optical reader, and an image of the water drop on the test piece is obtained. It is measured by reading with an optical reader.
  • the angle formed by the straight line connecting the apex of the water droplet and the end of the water droplet on the surface of the test piece and the surface of the test piece may be read, and the contact angle may be twice that angle.
  • the transparent substrate 130 is light transmissive.
  • the light transmittance of the transparent substrate 130 is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the shape of the transparent substrate 130 is not particularly limited, but is preferably a plate shape or a film shape.
  • the shape of the transparent substrate 130 is preferably a film.
  • the thickness of the transparent base material 130 is in the range of 10 ⁇ m or more and 500 ⁇ m or less. In this case, the transparency of the transparent substrate 130 is particularly good, and the workability during production and handling of the films 110 and 111 is also good.
  • the thickness of the transparent substrate 130 is more preferably in the range of 25 ⁇ m or more and 200 ⁇ m or less. In particular, when the thickness of the transparent substrate 130 is 25 ⁇ m or more and 150 ⁇ m or less, the films 110 and 111 can be reduced in thickness and weight. Further, the occurrence of interference on the front and back of the films 110 and 111 is suppressed. Further, thermal shrinkage when the transparent base material 130 is heated is suppressed, and problems such as deterioration in workability due to thermal shrinkage of the transparent base material 130 are suppressed.
  • the material of the transparent substrate 130 is not particularly limited.
  • the material of the transparent substrate 130 include glass (or thin glass), a resin film (or resin plate), and the like in the case of a sheet.
  • transparent resins include PET, polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate, polymethyl methacrylate copolymer, triacetyl cellulose, polyolefin, polyamide, polyvinyl chloride, amorphous polyolefin, cycloolefin polymer , Cycloolefin copolymer, acrylate resin, urethane acrylate resin and the like.
  • the transparent base material 130 is formed of polyester.
  • polyesters a biaxially stretched film made of PET or PEN is particularly preferable because it has excellent mechanical properties, heat resistance, chemical resistance, and the like.
  • Such biaxially stretched films include magnetic tapes, ferromagnetic thin film tapes, packaging films, films for electronic parts, electrical insulating films, laminating films, films to be attached to the surface of displays, protective films for various members, etc. Widely used as a material.
  • base films such as prism lens sheets, touch panels, and backlights, which are members of liquid crystal display devices, TV optical film base films, optical films used for plasma TV front optical filters, and near infrared rays It is used as a base film for cut films and electromagnetic shielding films.
  • Aromatic polyester is produced by the reaction of aromatic dicarboxylic acid and glycol.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and examples of glycols include ethylene glycol, 1,4-butanediol, 1,4 -Contains cyclohexanedimethanol and 1,6-hexanediol.
  • PET, polyethylene-2,6-naphthalene dicarboxylate and the like are preferable.
  • the polyester may be produced by copolymerizing a plurality of the above exemplified components.
  • the transparent substrate 130 may contain organic or inorganic particles. In this case, the winding property and transportability of the transparent substrate 130 are improved.
  • particles that can be contained in the transparent substrate 130 calcium carbonate particles, calcium oxide particles, aluminum oxide particles, kaolin, silicon oxide particles, zinc oxide particles, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine Examples thereof include resin particles and crosslinked silicone resin particles.
  • the transparent substrate 130 may further contain a colorant, an antistatic agent, an ultraviolet absorber, an antioxidant, a lubricant, a catalyst, other resins, and the like as long as the transparency is not impaired.
  • the haze of the transparent substrate 130 is preferably 3% or less. In this case, the visibility of images and the like through the conductive optical member 1 is improved, and it is particularly suitable as a member for optical applications. More preferably, the haze is 1.5% or less. In addition, haze is the value which expressed the ratio of the diffuse transmittance in a total light transmittance in percentage, and is about 4% in a general PET film, and is 0% in glass.
  • the transparent substrate 130 it is preferable to use a material with low precipitation such as a low molecular weight oligomer (a material with high anti-oligomer property).
  • a material with low precipitation such as a low molecular weight oligomer (a material with high anti-oligomer property).
  • the surface resistance value may increase, for example, in a film with a transparent conductive film placed under high temperature and high humidity conditions.
  • the oligomer contained in the polyester film precipitates under high temperature conditions, and the oligomer affects the transparent conductive film, thereby possibly increasing the surface resistance value.
  • the reliability of the films 110 and 111 can be increased by using a material that has been processed to suppress the precipitation of the oligomer for the transparent substrate 130.
  • the transparent substrate 130 preferably has an increase in haze of 0.3% or less after heating at 100 ° C. for 60 minutes.
  • a method using a transparent substrate 130 manufactured by a construction method in which oligomers are hardly generated has been studied.
  • a transparent coating layer By forming a transparent coating layer on the surface of the transparent substrate 130, it becomes difficult for low molecular weight components to precipitate from the transparent substrate 130. Therefore, whitening of the transparent base material 130 is suppressed, and the good transparency is maintained.
  • the material of the transparent coating layer for reducing the precipitation of oligomers and the like is not particularly limited, but is formed from, for example, an acrylate resin or a urethane acrylate resin. Further, in order for the transparent coating layer to sufficiently suppress the precipitation of the low molecular weight component from the transparent substrate 130, the thickness of the transparent coating layer is preferably in the range of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the anti-blocking layer 160 is preferably a transparent layer having anti-blocking properties having irregularities on the surface. In order to form irregularities on the surface of the anti-blocking layer 160, for example, the surface of the anti-blocking layer 160 is mechanically processed.
  • the anti-blocking layer 160 may contain irregularities on the surface of the anti-blocking layer 160 by containing a filler such as silica particles.
  • the anti-blocking layer 160 contains, for example, an acrylate resin or a urethane acrylate resin in the range of 80% by mass or more and 95% by mass or less, and further silica particles having an average particle diameter of about 250 nm are 5% by mass or more and 20% by mass. It is preferable to contain in the following ranges.
  • the anti-blocking layer 160 preferably contains, for example, a silicone leveling agent. With this configuration, the slipperiness of the film 111 can be improved.
  • a surface treatment is performed on the second surface of the transparent substrate 130 overlapping the anti-blocking layer 160 before the anti-blocking layer 160 is formed.
  • the wettability and adhesion between the transparent substrate 130 and the anti-blocking layer 160 are improved.
  • the surface treatment method include physical surface treatment such as plasma treatment, corona discharge treatment and flame treatment, and chemical surface treatment with a coupling agent, acidic component, alkaline component and the like.
  • an easy adhesion layer (not shown) may be provided on the surface of the transparent substrate 130.
  • the easy-adhesion layer it is also useful to perform physical surface treatment such as plasma treatment, corona discharge treatment, flame treatment, etc., chemical surface treatment with a coupling agent, acid, or alkali.
  • physical surface treatment such as plasma treatment, corona discharge treatment, flame treatment, etc.
  • chemical surface treatment with a coupling agent, acid, or alkali you may give these processes to the 1st surface of the transparent base material 130, or form an easily bonding layer. In this case, the wettability and adhesion between the transparent substrate 130 and the transparent conductive film 150 are improved. Such processing is also effective for the film 110.
  • the transparent conductive film 150 contains the metal nanowire 120 and the transparent binder 140.
  • the metal nanowire 120 is a metal fiber having a nano-sized (1 to 1000 nm) diameter.
  • the type of metal constituting the metal nanowire 120 is not particularly limited, and examples thereof include Ag, Au, Cu, Co, Al, and Pt.
  • the metal constituting the metal nanowire 120 preferably includes at least one selected from Au, Ag, Cu, and Pt, and in particular, at least selected from Ag and Cu. It is preferable to include one kind.
  • the metal nanowire 120 is particularly preferably a silver nanowire or a copper nanowire.
  • metal nanowires with high conductivity such as silver and copper
  • the use of metal nanowires 120 is suppressed and high transparency of the transparent conductive film 150 is ensured, while the conductive film 150 has high conductivity. It becomes possible to grant.
  • the method for producing the metal nanowire 120 is not particularly limited, and for example, a known method such as a liquid phase method or a gas phase method can be employed.
  • a method for producing silver nanowires Adv. Mater. 2002, 14, P833-837, Chem. Mater. Examples include methods disclosed in documents such as 2002, 14, P4736 to 4745, and JP-T 2009-505358.
  • a specific example of a method for producing Au nanowires (gold nanowires) includes a method disclosed in JP-A-2006-233252.
  • a method for producing Cu nanowires (copper nanowires) a method disclosed in Japanese Patent Application Laid-Open No. 2002-266007 can be cited.
  • Co nanowires examples include those disclosed in Japanese Patent Application Laid-Open No. 2004-149871.
  • Ag nanowires can be produced easily and in large quantities in an aqueous system.
  • the average diameter of the metal nanowire 120 is preferably in the range of 10 nm or more and 100 nm or less. When the average diameter is 10 nm or more, the conductivity of the transparent conductive film 150 is particularly high. Further, when the average particle size is 100 nm or less, the transparency of the transparent conductive film 150 is particularly high.
  • the average diameter of the metal nanowire 120 is more preferably in the range of 20 nm to 100 nm, and most preferably in the range of 40 nm to 100 nm.
  • the average length of the metal nanowire 120 is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less.
  • the conductivity of the transparent conductive film 150 is particularly high.
  • the metal nanowires 120 are less likely to aggregate in the transparent conductive film 150. For this reason, the transparency of the transparent conductive film 150 is improved.
  • the average length of the metal nanowire 120 is more preferably in the range of 1 ⁇ m or more and 50 ⁇ m or less, and most preferably in the range of 3 ⁇ m or more and 50 ⁇ m or less.
  • the average diameter of the metal nanowires 120 is a value obtained by measuring the diameters of a sufficient number of metal nanowires 120 and arithmetically averaging the results.
  • the average length of the metal nanowires 120 is a value obtained by measuring the length of a sufficient number of metal nanowires 120 and arithmetically averaging the results.
  • the diameter and length of the metal nanowire 120 are derived by image analysis of an electron microscope image of the metal nanowire 120. For example, when the metal nanowire 120 is bent in the electron microscope image, the diameter (projection diameter (D)) and area (projection area (S)) of the metal nanowire 120 are calculated by image analysis.
  • the average diameter and average length of the metal nanowires 120 it is preferable to measure the diameter and length of at least 100 metal nanowires 120, and to measure the diameter and length of 300 or more metal nanowires 120 More preferably.
  • the ratio of the metal nanowire 120 in the transparent conductive film 150 is not particularly limited, but is preferably in the range of 0.01% by mass to 90% by mass, and in the range of 0.1% by mass to 30% by mass. It is more preferable if it is in the range of 0.5% by mass or more and 10% by mass or less.
  • the transparent conductive film 150 is formed from, for example, the metal nanowire 120 and a composition containing a resin component.
  • the transparent conductive film 150 can be formed by a wet film formation method.
  • Examples of the transparent binder 140 for forming the transparent conductive film 150 include cellulose resin, silicone resin, fluorine resin, acrylic resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polystyrene resin, and polyethersulfone. Resin, polyarylate resin, polycarbonate resin, polyurethane resin, polyacrylonitrile resin, polyvinyl acetal resin, polyamide resin, polyimide resin, diacryl phthalate resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, other heat A plastic resin is mentioned. Moreover, the copolymer formed by superposing
  • the resin component for forming the transparent binder 140 preferably contains a reactive curable resin.
  • a reactive curable resin for example, at least one of a thermosetting resin and an ionizing radiation curable resin is used.
  • the thermosetting resin for forming the transparent binder 140 includes phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, etc. Is mentioned.
  • the composition may contain a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent, and the like as necessary together with the thermosetting resin.
  • the ionizing radiation curable resin for forming the transparent binder 140 is preferably a resin having an acrylate functional group.
  • the resin having an acrylate functional group include oligomers such as (meth) acrylates of a relatively low molecular weight polyfunctional compound, prepolymers, and the like.
  • Specific examples of the polyfunctional compound include polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and polyhydric alcohols.
  • the composition containing the ionizing radiation curable resin preferably further contains a reactive diluent.
  • reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, and hexanediol (meth) acrylate.
  • Tripropylene glycol di (meth) acrylate Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di
  • the polyfunctional monomer of (meth) acrylate is mentioned.
  • the composition preferably further contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones, and the like.
  • the composition containing the photocurable resin may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator.
  • the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
  • methacryl functional silane and acryl functional silane as a resin for forming the transparent binder 140.
  • methacryl functional silane examples include 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane.
  • acrylic functional silane examples include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropylmethyldimethoxysilane.
  • the content of the methacryl functional silane and the acryl functional silane is not particularly limited, but the ratio of the total amount of the methacryl functional silane and the acrylic functional silane in the transparent binder 140 is preferably in the range of 5 to 30% by mass. When this ratio is 5% by mass or more, the adhesion between the transparent substrate 130 and the plurality of metal nanowires 120 is sufficiently high. Moreover, the crosslinking density in the transparent binder 140 fully improves that it is 30 mass% or less.
  • the refractive index of the transparent conductive film 150 is not particularly limited, but is preferably in the range of 1.35 to 1.65 in order to make the presence of the transparent conductive film 150 inconspicuous.
  • the thickness of the transparent conductive film 150 is not particularly limited, but is preferably in the range of 10 to 300 nm.
  • the refractive index of the transparent conductive film 150 is easily adjusted by changing the composition of the composition for forming the transparent conductive film 150.
  • the transparent binder 140 contains a water repellent additive.
  • the water repellent additive preferably contains a compound containing a fluoroalkyl group or a fluoroalkylene group. It is preferable that a part of the water repellent additive, particularly a fluoroalkyl group or a fluoroalkylene group serving as a water repellent group is exposed on the surface of the transparent conductive film 150. With this configuration, the contact angle of the surface of the transparent conductive film 150 can be reliably adjusted to 80 degrees or more and 125 degrees or less.
  • the composition (or coating solution) for forming the transparent conductive film 150 may contain a solvent as necessary.
  • a solvent for example, an organic solvent or water is used, or an organic solvent and water are used in combination.
  • the organic solvent include alcohols, ketones, esters, halogenated hydrocarbons, aromatic hydrocarbons, and mixtures thereof.
  • alcohols include methanol, ethanol, isopropyl alcohol (IPA).
  • ketones include methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters include ethyl acetate and butyl acetate.
  • the aromatic hydrocarbons include toluene and xylene.
  • the amount of the solvent in the composition for forming the transparent conductive film 150 is appropriately adjusted so that the solid content can be uniformly dissolved or dispersed in the composition.
  • the solid content concentration in the composition is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 30% by mass.
  • the transparent conductive film 150 is formed by applying a composition for forming the transparent conductive film 150 to the transparent substrate 130 and forming a film.
  • a composition for forming the transparent conductive film 150 is formed by applying the composition.
  • an appropriate method such as a roll coating method, a spin coating method, or a dip coating method is employed.
  • the method for forming the composition into a film is appropriately selected according to the type of the resin component or the like in the composition.
  • the composition contains a thermosetting resin
  • the transparent conductive film 150 is formed by heating and thermosetting the composition.
  • the composition contains an ionizing radiation curable resin
  • the composition is cured by irradiating the composition with ionizing radiation such as ultraviolet rays, and the transparent conductive film 150 is formed.
  • the sheet resistance of the transparent conductive film 150 is preferably 0.1 ⁇ / ⁇ or more and 200 ⁇ / ⁇ or less, and more preferably 2 ⁇ / ⁇ or more and 100 ⁇ / ⁇ or less.
  • the sheet resistance of the transparent conductive film 150 is less than 0.1 ⁇ / ⁇ , the density of the metal nanowires 120 included in the transparent conductive film 150 increases, and the transparency of the film 110 may decrease.
  • the sheet resistance is higher than 200 ⁇ / ⁇ , its usage is limited.
  • the film thickness of the transparent conductive film 150 is desirably 20 nm or more and 300 nm or less.
  • the film thickness of the transparent conductive film 150 is less than 20 nm, the overall resistance of the transparent conductive film 150 may increase and the physical strength of the transparent conductive film 150 may decrease.
  • the film thickness of the transparent conductive film 150 exceeds 300 nm, the light transmission property of the transparent conductive film 150 may deteriorate, or the coating workability of the transparent conductive film 150 may decrease.
  • the transparent conductive film 150 is formed as follows. First, a resin liquid containing the metal nanowire 120 is applied to the transparent substrate 130 to form the metal nanowire layer 220. Thereafter, the overcoat liquid 230 is applied on the metal nanowire layer 220, and the overcoat liquid 230 is dried and cured to form the transparent binder 140.
  • FIG. 2A is a cross-sectional view illustrating a state in which the metal nanowire layer 220 is formed on the first surface of the transparent substrate 130.
  • the metal nanowire layer 220 includes at least a binder resin portion 210a that binds the plurality of metal nanowires 120 to each other and a binder resin portion 210b that binds the metal nanowire 120 onto the transparent substrate 130.
  • the binder resin portion 210a and the binder resin portion 210b may be formed of the same binder resin.
  • the binder resin portion 210a and the binder resin portion 210b may be collectively referred to as the binder resin portion 210.
  • the plurality of metal nanowires 120 are attached to the transparent substrate 130 by the binder resin portion 210a and the binder resin portion 210b. Further, it is desirable to provide a gap portion 200 between the plurality of metal nanowires 120.
  • the void portion 200 does not include the binder resin portion 210a or the binder resin portion 210b.
  • the overcoat liquid 230 can be filled to every corner of the metal nanowire layer 220 through the gap portion 200.
  • the uniformity of dispersion of the metal nanowires 120 in the liquid composition may be affected.
  • the stability of the electrical connection between the plurality of metal nanowires 120 can be enhanced by pressurizing the metal nanowire layer 220 in the state of FIG. 2A.
  • the binder resin portion 210 embeds the metal nanowires 120 densely, even if the metal nanowire layer 220 is pressed using a press device or the like, the plurality of metal nanowires 120 are connected to each other. It may be difficult to improve the electrical connection stability.
  • pressurizing using a press apparatus etc. it is preferable to carry out in the state of FIG.
  • the metal nanowire layer 220 shown in FIG. 2A is formed by coating a resin solution in which the metal nanowires 120 are dispersed on the surface of the transparent substrate 130 to form a film. Any method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, and gravure coating can be applied to this coating.
  • an overcoat liquid 230 is applied on the metal nanowire layer 220, and a transparent binder 140 is formed as shown in FIG. 2C.
  • the overcoat liquid 230 for forming the transparent binder 140 preferably contains at least one of a thermosetting resin composition, an ionizing radiation curable resin composition, and a water repellent additive.
  • the overcoat liquid 230 permeates the surface of the plurality of metal nanowires 120 and the binding portion between the metal nanowires 120 and the transparent substrate 130 through the gap portion 200.
  • the binder resin part 210 preferably has a certain degree of compatibility with the overcoat liquid 230. Since the binder resin portion 210 a is compatible with the overcoat liquid 230, a part of the surface of the plurality of metal nanowires 120 can be directly wetted with the overcoat liquid 230. Further, at least a part of the binder resin portion 210a can be replaced with the overcoat liquid 230, and the adhesion between the plurality of metal nanowires 120 can be enhanced. Similarly, since the binder resin portion 210 b is compatible with the overcoat liquid 230, a part or more of the surface of the transparent substrate 130 can be directly wetted with the overcoat liquid 230.
  • the adhesiveness between the transparent base material 130 and the metal nanowire 120 can be enhanced by replacing at least a part of the binder resin portion 210b with the overcoat liquid 230.
  • a part or the whole of the binder resin part 210 may be replaced with the transparent binder 140 by wetting the binder resin part 210 with the overcoat liquid 230.
  • the metal surface can be replaced with the transparent binder 140 without the metal surface directly touching the outside air (or in the atmosphere). As a result, segregation of the water repellent additive on the surface of the metal nanowire 120 can be reduced. This point will be described later.
  • a volatile component such as a solvent contained in the overcoat liquid 230 is removed in a drying furnace or a curing furnace, and the remaining resin component is cured to form a transparent binder 140 from the overcoat liquid 230. Is done. That is, the state of FIG. 2C is formed after the state of FIG. 2B. If the transparent conductive film 150 is also formed on the second surface of the transparent substrate 130, the film 110 is produced. If the anti-blocking layer 160 is formed on the second surface of the transparent substrate 130, the film 110 is produced.
  • a part of the metal nanowire 120 protrudes or is exposed from the surface of the transparent binder 140 to the outside (or in the air). As shown in FIG. 2C, a part of the metal nanowire 120 is exposed to the outside from the surface of the transparent binder 140, so that the connectivity between the transparent conductive film 150 and an external circuit (not shown) is improved.
  • the anti-blocking layer 160 is preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition, like the transparent binder 140.
  • the transparent conductive film 150 is patterned to form a film with transparent wiring (hereinafter referred to as film) 300.
  • FIG. 3A is a cross-sectional view showing a state in which a resist pattern portion 240 is formed on the film 111.
  • the resist pattern portion 240 is formed on the transparent conductive film 150. That is, since the resist pattern part 240 is formed on the transparent binder 140, even when the transparent binder 140 includes a porous part, the porous part can be covered with the resist pattern part 240.
  • the resist pattern part 240 is formed so as to cover the metal nanowire 120 exposed from the transparent conductive film 150 in addition to the transparent binder 140.
  • the metal nanowire 120 exposed from the transparent conductive film 150 is covered with the resist pattern portion 240, and after removing the resist pattern portion 240 (the state of FIG. 3C), the metal nanowire 120 exposed from the transparent conductive film 150 is exposed. Can be left in state.
  • the resist pattern portion 240 can be formed using a commercially available photosensitive resist. As shown in FIG. 3A, an opening 250 is formed between the plurality of resist pattern portions 240. The opening 250 is a portion where the resist pattern portion 240 is not formed. Then, the film 111 in the state shown in FIG. 3A is immersed in an etching solution for the metal nanowire 120 to remove the metal nanowire 120 exposed at the opening 250. Thereafter, the residue of the etching solution is removed by washing with water or the like, and the state shown in FIG. 3B is obtained.
  • FIG. 3B is a cross-sectional view illustrating a state after the metal nanowire 120 partially exposed at the opening 250 is removed by etching.
  • the pore 260 in FIG. 3B is formed by etching away the metal nanowire 120 in which the opening 250 is formed.
  • FIG. 3C is a cross-sectional view showing a state after the resist pattern portion 240 is removed.
  • the region where the resist pattern portion 240 is formed and protected becomes a conductive pattern portion 280.
  • the region indicated by the opening 250 where the resist pattern 240 is not formed becomes the insulating pattern 270.
  • the transparent wiring 290 includes the insulating pattern portion 270 and the conductive pattern portion 280.
  • a protective hard protective sheet for example, a protective plate such as a PET film or a cover glass
  • the transparent wiring 290 including the conductive pattern portion 280 including the transparent binder 140 and the metal nanowire 120 and the insulating pattern portion 270 including the pore portion 260 formed by removing the transparent binder 140 and the metal nanowire 120 is provided.
  • the film-like transparent substrate 130 is formed on one side or both sides.
  • the conductive pattern portion 280 and the insulating pattern portion 270 are both transparent, and no unevenness or step is generated at the boundary between the conductive pattern portion 280 and the insulating pattern portion 270. Therefore, the presence or absence of the wiring pattern portion 279 is not easily recognized with the naked eye.
  • the water droplet 170a and the water droplet 170c are on the conductive pattern portion 280a and the conductive pattern portion 280b, respectively.
  • the water droplet 170b is on the insulating pattern portion 270.
  • the contact angle 190a of the water droplet 170a, the contact angle 190b of the water droplet 170b, and the contact angle 190a of the water droplet 170c are both 80 degrees or more and 125 degrees or less.
  • the patterning property for example, etching property
  • the reliability for example, electrical property in a high humidity state. Both of the reliability are improved.
  • the contact angle 190a, the contact angle 190b, and the contact angle 190c are less than 80 degrees, there may be a problem in reliability even if the patterning property of the metal nanowire 120 is good.
  • the surfaces of the conductive pattern portions 280a and 280b shown in FIG. 4 are the same as the surfaces of the transparent conductive film 150 before patterning shown in FIGS. 1B and 1C. Therefore, the contact angle 190a and the contact angle 190c shown in FIG. 4 are the same as the contact angle 190 of FIGS. 1A and 2B.
  • the contact angle 190a, the contact angle 190b, and the contact angle 190c are larger than 125 degrees, and further when the contact angle is 130 degrees or more, there may be a problem in patterning property even if the reliability is good.
  • the contact angle 190 of the transparent conductive film 150 is not less than 80 degrees and not more than 125 degrees before the metal nanowire 120 is patterned as illustrated in FIGS. 1B and 1C, and is illustrated in FIG. 4.
  • the contact angle 190a, the contact angle 190b, and the contact angle 190c are 80 degrees or more and 125 degrees or less.
  • the contact angle 190a and contact angle 190c in the conductive pattern portion 280 and the contact angle 190b in the insulating pattern portion 270 are 80 degrees or more and 125 degrees or less.
  • the difference between the contact angle 190a and contact angle 190c in the conductive pattern portion 280 and the contact angle 190b in the insulating pattern portion 270 is preferably 10% or less or 10 degrees or less in the range of 3 ⁇ . Further, it is more desirable that the values are substantially the same at 5% or less or 5 degrees or less. If the difference in contact angle between the two exceeds 10% at 3 ⁇ , or exceeds 10 degrees at 3 ⁇ , there is a risk of variations during patterning and reliability evaluation.
  • the difference between the contact angle 190 a and the contact angle 190 c in the conductive pattern portion 280 and the contact angle 190 b in the insulating pattern portion 270 is 10% or less or 10 degrees or less in the range of 3 ⁇ .
  • the reason why this is preferable will be described. That is, the same applies to the difference in contact angle between the film 111 before etching shown in FIG. 3A and after etching shown in FIG. 3B.
  • FIG. 5 schematically shows an example of the surface structure of the conductive pattern portion 280. This surface structure is the same as the surface structure of the transparent conductive film 150 before etching shown in FIGS. 3A and 2C.
  • the transparent conductive film 150 includes a transparent binder 140 and the metal nanowire 120. A part of the metal nanowire 120 is exposed from the surface of the transparent binder 140. Moreover, it is preferable that the outermost surface of the transparent binder 140 is exposed so that the water repellent additive 310 added to the transparent binder 140 is oriented. A part of the water repellent additive 310 is also attached to the surface of the metal nanowire 120.
  • the transparent binder 140 includes a water repellent additive 310 that is a compound having a water repellent group. Therefore, the contact angle of the transparent conductive film 150 can be controlled to 80 degrees or more and 125 degrees or less.
  • the water repellent group is a functional group having a particularly low surface free energy, such as a fluoroalkyl group or a fluoroalkylene group.
  • a perfluoropolyether group-containing silane is used as a water repellent additive. It is preferable to use as 310.
  • the water repellent additive 310 added to the transparent binder 140 generates a driving force for minimizing surface free energy by the water repellent function of the water repellent additive 310 such as a fluoroalkyl group or a fluoroalkylene group. .
  • This driving force is considered to occur mainly on the surface in contact with the outside air (or the atmosphere).
  • water repellent groups such as a fluoroalkyl group and a fluoroalkylene group can be segregated near the surface of the transparent conductive film 150 efficiently.
  • the water repellent additive 310 by exposing a part of the water repellent additive 310, that is, a water repellent group such as a fluoroalkyl group or a fluoroalkylene group to the surface of the transparent conductive film 150, the water repellent additive 310 added to the transparent binder 140. Even if the addition amount is small, the water repellency of the surface of the transparent conductive film 150 can be increased, and the contact angle can be controlled to 80 degrees or more and 125 degrees or less. Further, the water repellent additive 310 can prevent the plurality of metal nanowires 120 from coming into contact with each other and becoming an inhibiting factor when forming a conductive path.
  • a water repellent group such as a fluoroalkyl group or a fluoroalkylene group
  • the contact angle of the transparent conductive film 150 is larger than 125 degrees, and further when the contact angle is 130 degrees or more, it is necessary to increase the amount of the water repellent additive 310 added to the transparent binder 140.
  • the surplus water-repellent additive 310 may form micelles or the like inside the transparent binder 140 and affect the optical properties of the transparent binder 140 in some cases.
  • FIG. 6 schematically illustrates the surface structure of the insulating pattern portion 270.
  • the transparent conductive film 150 includes a transparent binder 140 and pores 260. Since some of the water repellent additive 310a is exposed on the surface of the transparent binder 140, the contact angle of the transparent binder 140 is not less than 80 degrees and not more than 125 degrees. Furthermore, a part of the water repellent additive 310 b is exposed around or inside the pores 260, or on the inner wall forming the pores 260. The effect of this will be described later.
  • the water repellent additive 310a added to the transparent binder 140 is exposed on the outermost surface of the transparent binder 140 so as to be oriented.
  • the pores 260 are also exposed so that the water repellent additive 310b is oriented.
  • the water repellent additive 310a is exposed on the surface of the transparent binder 140 and around the opening of the pore 260, and the water repellent is added around the pore 260 such as the inside (or inner wall) of the pore 260.
  • the agent 310b is exposed. That is, by segregating the fluoroalkyl group and the fluoroalkylene group into the pores 260, it becomes difficult for moisture to enter the pores 260, and the moisture in the pores 260 can be quickly discharged to the outside. .
  • the water repellent additive 310 is segregated mainly on the surface in contact with the outside air (or the atmosphere). Therefore, the water repellent additive 310 is unlikely to segregate at the contact interface between the metal nanowire 120 and the transparent binder 140.
  • the driving force for minimizing the surface free energy is generated by the functions of the water repellent additive 310 such as the fluoroalkyl group and the fluoroalkylene group, and the surface of the water repellent additive 310 is formed on the surface in the pore 260.
  • the water repellent group is oriented. As a result, an effect of suppressing moisture intrusion into the pores 260 is obtained.
  • the water-repellent groups segregated on the surface of the conductive pattern portion 280 a, the insulating pattern portion 270, etc. are examined by an expensive surface analysis method such as SIMS (Secondary Ion Mass Spectrometry). be able to.
  • SIMS Secondary Ion Mass Spectrometry
  • the measurement method using the contact angle is inexpensive, can cope with a large area, and does not damage the surface of the object to be measured. Therefore, the measurement of the contact angle 190b is effective for simply examining the presence of the water-repellent group in the insulating pattern portion 270 having the pores 260.
  • a commercially available surface contact angle measuring instrument using a fine droplet of picoliter order can be used.
  • These contact angle measuring machines using micro droplets are used for contact angles of micro ink droplets for inkjet, wettability evaluation after droplets ejected from an inkjet device land on paper, wafers and glass It is used for the purpose of measuring the contact angle on a fine pattern carved on a substrate, etc., and measuring the contact angle on the hair.
  • the touch panel 360 and the display device 390 include a film with transparent wiring (hereinafter, film) 300.
  • the touch panel 360 includes a film 300, a semiconductor element 350, and a hard protective sheet 340.
  • the semiconductor element 350 is electrically connected to the conductive pattern portion 280 of the film 300 through wiring or the like.
  • the hard protective sheet 340 covers the surface of the film 300 on which the transparent wiring 290 is provided.
  • the touch panel 360 is, for example, a capacitive touch panel that senses the capacitance of a fingertip. As the fingertip 320 approaches the transparent conductive film 150 as indicated by an arrow 370, the semiconductor element 350 detects the capacitive component 330 of the fingertip 320 and detects position information and movement of the fingertip 320.
  • the fingertip 320 on the surface of the touch panel 360 is provided. Increases slipperiness, physical strength, reliability, etc.
  • the insulating pattern part 270 chased by the hard protective sheet 340 has a pore part 260. As shown in FIG. 6, it is preferable that the water repellent additive 310 b is exposed in the pores 260. With this configuration, the reliability of the touch panel 360 is increased.
  • the metal nanowires 120 included in the transparent wiring 290 easily absorb water. Therefore, when the metal nanowire 120 is exposed from the transparent binder 140, the metal nanowire 120 can be removed by etching from the exposed portion. However, moisture or the like that affects reliability is likely to be deposited inside the opening 250 formed by removing the metal nanowire 120 by etching.
  • the transparent wiring 290 the hard protective sheet 340 is fixed via an adhesive or the like. And since the hard protective sheet 340 seals the surface of the pore part 260, it can prevent that a water
  • the outer surface of a general hard protective sheet 340 may be subjected to a water repellent treatment to prevent adhesion of oily dirt transmitted from the fingertip 320.
  • a water repellent treatment is performed only on the surface of the hard protective sheet 340, and is not performed on the pores 260 included in the transparent wiring 290 (insulating pattern portion 270). This is because the adhesive force between the hard protective sheet 340 and the transparent wiring 290 is affected.
  • the water repellent additive 310b is exposed in the pores 260 as described above. Therefore, the pore 260 has water repellency.
  • the display device 390 is, for example, a mobile phone, a tablet terminal, or a personal computer.
  • the display device 390 includes a touch panel 360 and a display element 380 installed to face the touch panel 360.
  • the display element 380 is a display element such as a liquid crystal or an EL.
  • a highly reliable display device 390 can be provided.
  • the water repellent additive 310 exposed in the pores 260 is not affected. That is, such an external process does not affect the inside of the pore 260. This is because the diameter of the pore 260 is small and the length and depth of the pore 260 are large.
  • the water repellent additive 310 exposed in the pores 260 is an internal treatment. That is, the water repellent additive 310 added to the transparent binder 140 is exposed in the pores 260 regardless of the size of the pores 260 by the driving force that minimizes the surface free energy.
  • the films 110 and 111 can be used as a transparent electromagnetic shield (transparent shield film).
  • the transparent electromagnetic shield is attached to the surface of a liquid crystal display device or the like, and has a function of cutting or attenuating various electromagnetic waves radiated from the liquid crystal display device.
  • An example of the transparent electromagnetic shield includes a film 111 cut in accordance with the outer shape of the liquid crystal display device, a ground wiring provided on the peripheral edge of the film 111, and the like. When used for the purpose of electromagnetic shielding, patterning of the transparent conductive film 150 is not necessary. Details of the transparent shield film will be described in Embodiment 2.
  • Formation of metal nanowire layers 14.55 parts by mass of an acrylic resin (“A-DPH” manufactured by Shin-Nakamura Chemical Co., Ltd.) is dissolved in a mixed solvent of 34.87 parts by mass of methyl ethyl ketone and 34.86 parts by mass of methyl isobutyl ketone. Next, metal nanowire is mix
  • A-DPH acrylic resin manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the coating material composition for forming a metal nanowire layer is prepared.
  • the metal nanowire produced according to "Materials Chemistry and Physics vol. 114 p333-338" Preparation of Aganorodwith high yield poly process "" is used.
  • the average diameter of the metal nanowire is 50 nm, the average length is 5 ⁇ m, and the material is silver.
  • the coating material composition for forming the metal nanowire layer is applied to the surface of the PET film, which is a transparent substrate, with a coater so as to have a thickness of 100 nm, and heated and dried. In this way, a metal nanowire layer is formed.
  • seat with which the metal nanowire layer produced with the said mixture ratio was formed is 40 ohms / square.
  • sheets with metal nanowire layers having sheet resistances of 10 ⁇ / ⁇ and 100 ⁇ / ⁇ , respectively, are prepared.
  • Acrylic resin is dissolved by adding 48.3 parts by mass of methyl ethyl ketone and 48.3 parts by mass of methyl isobutyl ketone to 2.1 parts by mass of acrylic resin (manufactured by Shin-Nakamura Chemical Co., Ltd., product number U-6LPA).
  • a mixed solution is prepared.
  • 1.0 part by mass of OPTOOL DSX (solid content: 20% by mass) manufactured by Daikin Industries, Ltd. is added as a water repellent additive and mixed at room temperature.
  • the overcoat solution thus prepared is applied and dried on the metal nanowire layer, and a transparent binder is formed as shown in FIG. 2B to prepare a sample for evaluation.
  • the contact angle of the sample produced with the said mixture ratio is 105 degree
  • evaluation samples having contact angles of 75 degrees, 80 degrees, 125 degrees, and 130 degrees are produced. Further, in the above procedure, an overcoat liquid not containing a water repellent additive is also prepared to form a transparent binder. In this case, the contact angle is 55 degrees.
  • etching property is evaluated as follows. An etching resist is formed on the transparent electrode film in each evaluation sample. Subsequently, each evaluation sample is subjected to an etching treatment using an etching solution (ferric chloride aqueous solution) at 35 ° C. By this operation, the metal nanowire is removed from the region not covered with the etching resist. At this time, the time required for the etching process until the metal nanowire is removed and the insulating pattern portion is formed is measured. The case where the required time is within 1 minute is evaluated as GD (Good), the case where the required time is longer than 1 minute is OK, and the case where the etching is impossible is evaluated as NG (No Good). “GD to OK” means that there are cases of GD or OK as a result of evaluation under a plurality of types of etching conditions. That is, depending on the type and concentration of the etching solution, it may mean GD or OK.
  • the reliability is that the conductive pattern part and the insulating pattern part are formed in a pattern such as a comb blade electrode by etching, and direct current (DC) is applied between the conductive pattern parts for 96 hours in an environment of 85 ° C. and humidity of 85% RH. Evaluation is based on the rate of change in resistance before and after 3 V is continuously applied. GD (Good) when the resistance change rate is less than 1.5 times, OK when 1.5 times or more and less than 2.0 times, NG (No Good) when it is 2.0 times or more It is evaluated. For reliability evaluation, JIS-C-5028 (moisture resistance reliability test of electronic parts) and JIS-Z-3284 (insulation resistance test of solder paste) are referred to.
  • GD to OK means that when a plurality of water repellent additives to be added to the transparent binder are tested with different product numbers, concentrations, molecular weights, and the like, GD or OK may occur.
  • the comprehensive evaluation is a comprehensive evaluation in which mass productivity is added to the quality of the sample, A is good (Good), B may have a problem to be solved (OK), and C means No Good or Poor.
  • Table 1 The evaluation results of each evaluation sample are shown in (Table 1) to (Table 3).
  • Table 1 shows the evaluation results for each sample when a metal nanowire layer having a sheet resistance of 10 ⁇ / ⁇ is used and transparent binders having different contact angles are formed with overcoat liquids having different amounts of water repellent additives. Show.
  • Table 2 and (Table 3) show the evaluation results when using metal nanowire layers with sheet resistances of 40 ⁇ / ⁇ and 100 ⁇ / ⁇ , respectively.
  • the conductive pattern portions 280 are insulated by the insulating pattern portion 270 having the pores 260.
  • a water repellent group such as a fluoroalkyl group or a fluoroalkylene group segregated on the surface of the pore 260 suppresses the movement of the ionized metal material and increases the electrical reliability.
  • a pore sealing process for example, coating a thin resin layer on the surface
  • the reliability is improved.
  • a thin resin layer may be applied and formed on the surface.
  • adding a new pore sealing process after wet etching affects the product price.
  • the contact angle of samples AC2, AC12, and AC22 is 75 degrees.
  • the reliability evaluation results are OK for AC2 with sheet resistance of 10 ⁇ / ⁇ and AC12 with 40 ⁇ / ⁇ , and OK to NG for AC22 with sheet resistance of 100 ⁇ / ⁇ . This is presumably because the water removal effect in the pores by the water repellent additive as shown in FIG. 6 was not obtained.
  • the reliability is GD regardless of the sheet resistance.
  • the blending amount of the water repellent additive so that the contact angle is 80 degrees or more and 125 degrees or less, the water removal effect in the pores 260 by the water repellent additive 310 shown in FIG. It can be seen that is sufficiently obtained.
  • the optical characteristic is GD regardless of the sheet resistance. This is because the water-repellent additive 310 added to the transparent binder 140 is effectively applied to the surface of the transparent conductive film 150 within the range of the water-repellent additive in which the contact angle is 75 degrees or more and 125 degrees or less. This is thought to be due to segregation.
  • the optical characteristics are GD to OK. This is because part of the water-repellent additive added to the transparent binder becomes surplus beyond the saturation state, and even in the transparent conductive film (transparent binder), it is deposited like micelles, affecting the optical properties. It is thought that gave.
  • FIG. 8A is a perspective view of transparent shield film (hereinafter referred to as film) 410 according to Embodiment 2 of the present invention.
  • FIG. 8B is an enlarged view of a part of a cross section taken along line 8B-8B shown in FIG. 8A.
  • One form of the film 410 has a sheet-like sheet shape as shown in FIG. 8A, but may have a long continuous roll shape as shown in FIG. 1A in the first embodiment. Good.
  • the film 410 includes a film-like transparent base material 130, a transparent conductive film 150, and a conductive cured product 430.
  • the transparent substrate 130 has a first surface and a second surface opposite to the first surface.
  • the transparent conductive film 150 includes the metal nanowire 120 and a transparent binder 140 containing a water repellent additive, and is formed on the first surface of the transparent substrate 130.
  • the conductive cured product 430 covers at least a part of the peripheral edge of the transparent conductive film 150.
  • the film 410 has an anti-blocking layer 160 formed on the second surface of the transparent substrate 130.
  • the transparent base material 130, the transparent conductive film 150, and the anti-blocking layer 160 constitute the film 111 with a transparent conductive film in the first embodiment.
  • the transparent base material 130, the transparent conductive film 150, and the anti-blocking layer 160 are the same as those in Embodiment 1, detailed description may be omitted.
  • a part of the metal nanowire 120 exposed from the transparent conductive film 150 is in contact with the conductive cured material 430 that covers the transparent conductive film 150. Alternatively, it penetrates into the inside of the conductive cured product 430. Therefore, the transparent conductive film 150 and the conductive cured product 430 are electrically connected stably. Moreover, the adhesive force between each other is increasing.
  • the peripheral part of the transparent conductive film 150 is a frame-shaped part within 10 mm from the end part of the transparent conductive film 150 or the transparent base material 130. Since the conductive cured product 430 provided at the peripheral portion does not have light transmittance, when the peripheral portion is made larger than 10 mm, the area ratio of the transparent portion of the film 410 is lowered. Note that the width of the peripheral portion is preferably 5 mm or less, and more preferably 2 mm or less.
  • the contact angle 190 of the transparent conductive film 150 corresponds to the angle between the auxiliary line 180 drawn on the water droplet 170 dropped on the transparent conductive film 150 and the transparent conductive film 150. Similar to the first embodiment, the contact angle 190 is not less than 80 degrees and not more than 125 degrees.
  • FIG. 9A is a perspective view of the film 411.
  • FIG. 9B is an enlarged view of a part of a cross section taken along line 9B-9B shown in FIG. 9A.
  • the film 411 is different from the film 410 shown in FIGS. 8A and 8B in that a protective film 510 is provided on the transparent conductive film 150 with an adhesive layer 520 interposed therebetween.
  • Other configurations are the same as those of the film 410.
  • a protective film 510 is provided on the transparent conductive film 150 in the center shown in FIG. 8A.
  • the protective film 510 protects the transparent conductive film 150.
  • a polyester film for example, a PET film
  • a glass plate including an extremely thin glass plate
  • the central portion of the transparent conductive film 150 is covered with a protective film 510 having an adhesive layer 520.
  • a part of the metal nanowire 120 exposed from the transparent conductive film 150 penetrates into the adhesive layer 520. Therefore, the adhesive force between the transparent conductive film 150 and the adhesive layer 520 or the protective film 510 is increased.
  • occurrence of peeling from the end of the protective film 510 can be reduced.
  • the central portion provided with the protective film 510 is a portion excluding the peripheral portion, that is, a portion closer to the center than the position of 10 mm from the end of the transparent base material 130 or the transparent conductive film 150.
  • the outer surface of a general protective film 510 may be subjected to a water repellent treatment to prevent adhesion of oily dirt transmitted from a fingertip or the like.
  • a water repellent treatment is performed only on the surface of the protective film 510, and is not performed on the transparent conductive film 150.
  • the water repellent additive is exposed on the surface of the transparent conductive film 150 as described above. Therefore, the transparent conductive film 150 has water repellency. As a result, the long-term reliability with respect to the humidity of the transparent conductive film 150 can be improved.
  • FIG. 10 is a perspective view showing a state in which, in the present embodiment, the transparent shield film for large multi-capture is cut into individual pieces to form individual transparent shield films.
  • the continuous product 550 is a member for taking multiple pieces, and by cutting the continuous product 550 with a cutting line 530, a transparent shield film as a single product 560 as indicated by an arrow is obtained. If the continuous product 550 without the protective film 510 is used, the film 410 is obtained as a single product 560. If a continuous product having the protective film 510 is used, the film 411 is obtained as a single product.
  • the outer shape of the transparent substrate 130, the end surface of the transparent conductive film 150, and the outer periphery of the conductive cured product 430 can be aligned. As a result, the width of the conductive cured product 430 can be narrowed.
  • the contact angle 190 can be measured at the end surface (or cut surface) of the film 411 when cut along the cutting line 530 of FIG.
  • FIG. 11 shows a state in which the surface tension of the transparent conductive film 150 exposed on the cut surface of the film 411 is measured.
  • the film 410 is cut obliquely.
  • a commercially available surface contact angle measuring device using fine droplets of picoliter order can be used.
  • the sheet resistance of the transparent conductive film 150 is preferably 10 ⁇ / ⁇ or more, more preferably 100 ⁇ / ⁇ or more and 10K ⁇ / ⁇ or less.
  • the sheet resistance of the transparent conductive film 150 is less than 10 ⁇ / ⁇ , the density of the metal nanowires 120 included in the transparent conductive film 150 increases, the transparency of the film 410 may decrease, and the cost may increase.
  • the sheet resistance is higher than 10 K ⁇ / ⁇ , the density and density unevenness of the metal nanowires 120 may occur, and the variation in sheet resistance in the surface may increase.
  • the contact angle 190 is not less than 80 degrees and not more than 125 degrees.
  • the contact angle 190 is less than 80 degrees, there may be a problem in reliability (for example, electrical reliability in a high humidity state).
  • the contact angle 190 is greater than 125 degrees, the adhesion strength of the protective film 510 formed on the transparent conductive film 150 may be reduced, or the film quality of the transparent conductive film 150 may be reduced.
  • the physical strength of the transparent conductive film 150 is reduced, that the transparent conductive film 150 is easily broken, or that the transparent conductive film 150 is easily aggregated.
  • FIGS. 12A and 12B are cross-sectional views illustrating a state in which a part of the metal nanowire 120 is in contact with the conductive paste composition 620 in the process of manufacturing the film 410 illustrated in FIG. 8B.
  • 12B is a cross-sectional view illustrating a state in which a part of the metal nanowire 120 is in contact with the conductive paste composition 620 in the process of manufacturing the film 411 illustrated in FIG. 9B.
  • a conductive cured product 430 can be formed as shown in FIG. 8A by applying a conductive paste composition 620 to the peripheral portion of the transparent conductive film 150 and drying and / or curing.
  • a protective film 510 is attached to the center of the transparent conductive film 150 via an adhesive layer 520, and the conductive paste is provided between the peripheral edge of the protective film 510 and the outer periphery of the transparent conductive film 150.
  • Composition 620 is applied, dried and / or cured.
  • a conductive cured product 430 can be formed as shown in FIG. 9A.
  • the conductive paste composition 620 onto a part of the protective film 510 the conductive cured product 430 and the protective film 510 can be firmly bonded.
  • the conductive paste composition 620 a commercially available liquid conductive paste containing silver powder or silver flakes, a thermosetting epoxy resin, or the like can be used. By using the liquid conductive paste composition 620, a part of the metal nanowire 120 exposed on the surface of the transparent conductive film 150 or protruding from the surface is easily wetted or penetrates into the conductive paste composition 620.
  • the conductive paste composition 620 may contain silver powder, a thermosetting binder resin, and a solvent.
  • a binder resin contained in the conductive paste composition 620 a one-pack type epoxy resin that is cured by a curing reaction with a curing agent may be used.
  • the curing temperature of the conductive paste composition 620 is useful from 80 ° C. to 120 ° C., but may be adjusted according to the heat resistance of the transparent substrate 130.
  • the anti-blocking layer 160 is provided in order to suppress blocking that occurs when wound in a roll shape. Therefore, as shown in FIGS. 8A and 9A, when the films 410 and 411 have a sheet-like sheet shape, the anti-blocking layer 160 may not be provided. The same applies to the films 110 and 111 in the first embodiment.
  • Display devices 670A and 670B in the present embodiment will be described with reference to FIGS. 13A and 13B.
  • Display devices 670 ⁇ / b> A and 670 ⁇ / b> B include the above-described film 410 and a liquid crystal unit 630 which is a display element provided to face the film 410.
  • the anti-blocking layer 160 is not shown, but the anti-blocking layer 160 may or may not be provided as described above.
  • FIG. 13A shows a first structure example using the film 410.
  • Display portion 660 ⁇ / b> A includes a liquid crystal unit 630, an upper liquid crystal glass 640, and an upper polarizing plate 650.
  • a film 410 is provided on the upper polarizing plate 650.
  • the transparent conductive film 150 is provided on the first surface of the transparent substrate 130, and the second surface is in contact with the upper polarizing plate 650.
  • Electromagnetic wave noise generated from the thin film transistor (TFT) portion formed in the liquid crystal portion 630 and the driving device is absorbed by the transparent conductive film 150 of the display device 670A. Therefore, the influence on the transparent touch panel (not shown) installed on the film 410 can be suppressed.
  • the film 410 can suppress the influence of the phase difference between ordinary light and extraordinary light when light passes through a substance having birefringence, which is called retardation.
  • FIG. 13B shows a second structure example using the film 410.
  • the display portion 660B includes a liquid crystal unit 630 and an upper liquid crystal glass 640.
  • a film 410 is provided on the display portion 660B, and an upper polarizing plate 650 is provided on the outermost part of the film 410.
  • the film 410 is closer to the noise generation source than the display device 670A. As a result, an excellent noise shielding effect can be obtained.
  • a coating material composition is prepared using the same material as described in the specific example in the first embodiment, applied to the surface of the PET film with a coater so as to have a thickness of 100 nm, and heated and dried. In this way, a metal nanowire layer is formed. At this time, by adjusting the blending amount of the metal nanowires, sheets each having a metal nanowire layer with a sheet resistance of 100 ⁇ / ⁇ are produced.
  • An overcoat solution having the same material and composition as described in the specific example in the first embodiment is prepared.
  • the overcoat liquid thus prepared is applied and dried on the metal nanowire layer, and a transparent binder is formed as shown in FIG. 2B to produce a film with a transparent conductive film.
  • the addition amount of the water repellent additive was adjusted to produce a film with a transparent conductive film having contact angles of 75 degrees, 80 degrees, 105 degrees, 125 degrees, and 130 degrees, respectively.
  • an overcoat liquid to which no water repellent additive is added is also prepared to form a transparent binder. In this case, the contact angle is 55 degrees.
  • six types of films with transparent conductive films having different contact angles are produced.
  • a conductive paste composition 620 is printed and cured at 100 ° C. for 20 minutes. In this manner, an evaluation sample of the transparent shield film shown in FIGS. 9A and 9B is produced.
  • a contact angle is a contact angle with respect to the water (pure water) of the surface of a transparent conductive film before sticking a protective film.
  • the result of sample BC1 is considered to be NG because the transparent conductive film has water absorption.
  • the reason why the reliability of the sample BC2 is OK is considered that the effect of adding the water repellent additive is limited.
  • the reliability of the samples BE1 to BE3 is GD.
  • the reliability of the sample BC3 is OK. The reason for this is considered to be that the reliability of the connection portion between the conductive cured product and the transparent conductive film was affected as a result of the increased amount of water repellent additive.
  • Embodiment 1 the result of the specific example in Embodiment 1 can be used about the optical characteristic of the part of the film with a transparent conductive film contained in the transparent shield sheet by this Embodiment, and the reliability without a protective film. Therefore, those descriptions are omitted.
  • the comprehensive evaluation is a comprehensive evaluation in which mass productivity is added to the quality of the sample, and A means good (Good), and B means that a problem to be solved may remain (OK).
  • FIG. 14 examples of the near electromagnetic field measurement results of various display device samples are shown.
  • the horizontal axis represents frequency (unit: MHz), and the vertical axis represents noise level (unit: dB ⁇ V).
  • noise level unit: dB ⁇ V.
  • an electric field is measured by scanning a near electromagnetic field probe on the outermost surface of the display device while the display element is driven, and the value is regarded as noise. Samples subjected to this test are as follows.
  • Sample BE4 is an evaluation sample of the display device 670A having the configuration shown in FIG. 13A, which is configured using the transparent shield film 410 of the sample BE1.
  • Sample BE5 is an evaluation sample of the display device 670B having the configuration shown in FIG. 13B, which is configured using the transparent shield film 410 of the sample BE1.
  • Sample BC4 is an evaluation sample configured by replacing the transparent shield film 410 with an indium tin oxide film (ITO) having a sheet resistance of 400 ⁇ / ⁇ as a shield layer in the display device having the configuration shown in FIG. 13A.
  • ITO indium tin oxide film
  • Sample BC5 is an evaluation sample configured without the transparent shield film 410 in the display device having the configuration shown in FIG. 13A.
  • FIG. 14 shows that compared with samples BC4 and BC5, samples BE4 and BE5 have a large noise reduction effect of 10 to 20 dB particularly in a low frequency region of 1 MHz or less. In addition, it can be seen that the samples BE4 and BE5 have an excellent noise reduction effect of 5 to 10 dB even in a frequency band of 1 MHz or higher.
  • the lower the sheet resistance ( ⁇ / ⁇ ) of the shield layer or shield film the higher the shielding effect.
  • the film is colored when the ITO is thickened to lower the sheet resistance.
  • it is necessary to lengthen the sputtering time which causes a process problem. Further, if the sputtering time is lengthened, the color filter serving as a base on which the ITO is formed is also affected.
  • the transparent shield film 410 when used, the sheet is not colored even if the sheet resistance is lowered. Moreover, since the transparent conductive film 150 which is a shield layer using the metal nanowire 120 can be formed by coating, it can be formed by a single coating process regardless of the sheet resistance. As a result, no process problems arise.
  • a transparent conductive film containing metal nanowires can be wet-patterned via a transparent binder, and a film with a transparent conductive film with high electrical reliability can be provided even after patterning. Moreover, the reliability of the film with a transparent wiring produced using this film with a transparent conductive film, a touch panel, and a display apparatus can be improved.
  • the present invention it is possible to improve long-term reliability against humidity in a transparent shield film containing metal nanowires and a display device using the same. Further, by using a transparent shield film having a low sheet resistance, it becomes possible to take a shield measure for a large area device such as a large digital signage in a commercial facility.

Abstract

This film having a transparent conductive film has a film-like transparent base material, and the transparent conductive film. The transparent base material has a first surface, and a second surface on the reverse side of the first surface. The transparent conductive film includes metal nano wires, and a transparent binder containing a water-repellent additive. The transparent conductive film is formed on the first surface and/or the second surface of the transparent base material. Parts of the metal nano wires are exposed from the surface of the transparent conductive film. The contact angle of the surface of the transparent conductive film is 80-125 degrees.

Description

透明導電膜付フィルムと、透明配線付フィルム、透明シールドフィルム、タッチパネル及び表示装置Film with transparent conductive film, film with transparent wiring, transparent shield film, touch panel and display device
 本発明は、透明導電膜を表面に有するフィルムと、透明配線付フィルム、透明シールドフィルム、タッチパネル、表示装置に関する。 The present invention relates to a film having a transparent conductive film on the surface, a film with a transparent wiring, a transparent shield film, a touch panel, and a display device.
 透明導電膜は、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)、タッチパネル、また有機エレクトロルミネッセンス(EL)や太陽電池などの分野で広く用いられている。そしてこのような透明で導電性を発現する透明導電膜は種々の方法で形成することができる。例えば、透明で導電性を有する材料を用いて膜を形成する。あるいは、透明樹脂に導電性フィラーを含有させて膜を形成する。この方法では、着色しても導電性フィラーの形状や配向によって透明性を確保しつつ導電性が発現した透明導電膜を形成することができる。 Transparent conductive films are widely used in fields such as liquid crystal display (LCD), plasma display (PDP), touch panel, organic electroluminescence (EL), and solar cell. Such a transparent conductive film that exhibits conductivity can be formed by various methods. For example, the film is formed using a transparent and conductive material. Alternatively, a film is formed by containing a conductive filler in a transparent resin. In this method, even if it is colored, it is possible to form a transparent conductive film that exhibits conductivity while ensuring transparency by the shape and orientation of the conductive filler.
 例えば特許文献1では、導電性フィラーとして金属ナノワイヤを用いて透明導電膜を形成することが提案されている。金属ナノワイヤの導電性は用いる金属に依存する。例えば銀は10-7Ω・cmと非常に優れた導電性を有しているので、銀ナノワイヤを透明電極に適用することが可能である。金属ナノワイヤを含有する透明導電膜を形成するには、例えば、金属ナノワイヤを分散した樹脂溶液を透明基材の表面に塗布して成膜する方法を適用することができる。この方法では、透明樹脂の塗膜中に金属ナノワイヤが含有されて透明導電膜が形成される。この場合、金属ナノワイヤ同士の接触によって、透明導電膜が導電性を発現する。 For example, Patent Document 1 proposes forming a transparent conductive film using a metal nanowire as a conductive filler. The conductivity of the metal nanowire depends on the metal used. For example, since silver has a very excellent conductivity of 10 −7 Ω · cm, it is possible to apply silver nanowires to the transparent electrode. In order to form a transparent conductive film containing metal nanowires, for example, a method of forming a film by applying a resin solution in which metal nanowires are dispersed to the surface of a transparent substrate can be applied. In this method, metal nanowires are contained in a transparent resin coating film to form a transparent conductive film. In this case, a transparent conductive film expresses electroconductivity by contact between metal nanowires.
 このように透明樹脂中に金属ナノワイヤを含有して形成される透明導電膜の強度は弱く、傷付きやすく、耐磨耗性が低い。このため、透明導電膜を保護するために、透明導電膜の表面にオーバーコート層が設けられる。例えば特許文献1では、透明導電膜の表面にウレタン樹脂などの被膜を形成してオーバーコート層が設けられている。 Thus, the strength of the transparent conductive film formed by containing the metal nanowires in the transparent resin is weak, easily damaged, and has low wear resistance. For this reason, in order to protect a transparent conductive film, an overcoat layer is provided on the surface of the transparent conductive film. For example, in Patent Document 1, an overcoat layer is provided by forming a film such as urethane resin on the surface of a transparent conductive film.
 また特許文献2では、金属ナノワイヤを含む透明塗膜の上に、加水分解性シラン化合物の縮合物をマトリクス樹脂として形成することが提案されている。 In Patent Document 2, it is proposed that a condensate of a hydrolyzable silane compound is formed as a matrix resin on a transparent coating film containing metal nanowires.
特表2009-505358号Special table 2009-505358 特開2011-204649号公報JP 2011-204649 A
 本発明は、オーバーコート等からなる透明バインダーが形成された状態で、この透明バインダー越しに、金属ナノワイヤをパターニングすることで、導電パターン部と絶縁パターン部とを有する透明配線を形成できる、耐湿性の高い透明導電膜付フィルムを提供する。 In the present invention, a transparent binder having a conductive pattern portion and an insulating pattern portion can be formed by patterning a metal nanowire through the transparent binder in a state where a transparent binder made of an overcoat or the like is formed. A film with a high transparent conductive film is provided.
 本発明に係る透明導電膜付フィルムは、フィルム状の透明基材と、透明導電膜とを有する。透明基材は、第1面と、この第1面の反対側の第2面とを有する。透明導電膜は、金属ナノワイヤと、撥水添加剤を含有した透明バインダーとを含む。そして、透明基材の第1面と第2面の少なくとも一方に形成されている。透明導電膜の表面には、金属ナノワイヤの一部が露出している。透明導電膜の表面の接触角は、80度以上、125度以下である。 The film with a transparent conductive film according to the present invention has a film-like transparent substrate and a transparent conductive film. The transparent substrate has a first surface and a second surface opposite to the first surface. The transparent conductive film includes metal nanowires and a transparent binder containing a water repellent additive. And it is formed in at least one of the 1st surface and 2nd surface of a transparent base material. A part of the metal nanowire is exposed on the surface of the transparent conductive film. The contact angle of the surface of the transparent conductive film is 80 degrees or more and 125 degrees or less.
 このように透明導電膜の表面に金属ナノワイヤの一部が露出することにより、透明導電膜と他の配線との接触抵抗を小さくすることができる。さらに透明導電膜の表面の接触角が、80度以上、125度以下であるため、透明バインダーを形成した状態での金属ナノワイヤのエッチングが容易で、金属ナノワイヤをエッチング除去した後の透明配線における信頼性や光学特性を高められる。すなわち、金属ナノワイヤを固定する透明バインダーが形成された状態で、この透明バインダー越しに金属ナノワイヤをパターニングできる。また、金属ナノワイヤの一部を除去して絶縁パターン部を形成した状態での耐湿性や信頼性を高めることができる。 Thus, by exposing a part of the metal nanowire on the surface of the transparent conductive film, the contact resistance between the transparent conductive film and other wiring can be reduced. Furthermore, since the contact angle of the surface of the transparent conductive film is 80 degrees or more and 125 degrees or less, it is easy to etch the metal nanowires with the transparent binder formed, and the reliability in the transparent wiring after the metal nanowires are removed by etching. And optical properties can be improved. That is, the metal nanowire can be patterned through the transparent binder in a state where the transparent binder for fixing the metal nanowire is formed. Further, it is possible to improve moisture resistance and reliability in a state in which a part of the metal nanowire is removed and the insulating pattern portion is formed.
図1Aは、本発明の実施の形態1による透明導電膜付フィルムの斜視図である。FIG. 1A is a perspective view of a film with a transparent conductive film according to Embodiment 1 of the present invention. 図1Bは、図1Aに示す透明導電膜付フィルムの断面図である。1B is a cross-sectional view of the film with a transparent conductive film shown in FIG. 1A. 図1Cは、本発明の実施の形態1による他の透明導電膜付フィルムの断面図である。FIG. 1C is a cross-sectional view of another film with a transparent conductive film according to Embodiment 1 of the present invention. 図2Aは、図1Bまたは図1Cに示す透明導電膜付フィルムの製造方法の一例を説明する断面図である。FIG. 2A is a cross-sectional view illustrating an example of a method for producing the film with a transparent conductive film shown in FIG. 1B or 1C. 図2Bは、図2Aに続く、透明導電膜付フィルムの製造方法の一例を説明する断面図である。Drawing 2B is a sectional view explaining an example of a manufacturing method of a film with a transparent conductive film following Drawing 2A. 図2Cは、図2Bに続く、透明導電膜付フィルムの製造方法の一例を説明する断面図である。FIG. 2C is a cross-sectional view illustrating an example of a method for producing a film with a transparent conductive film, following FIG. 2B. 図3Aは、図1Cに示す透明導電膜付フィルムをパターニングする様子を説明する断面図である。FIG. 3A is a cross-sectional view illustrating how the film with a transparent conductive film shown in FIG. 1C is patterned. 図3Bは、図3Aに続く、透明導電膜付フィルムをパターニングする様子を説明する断面図である。FIG. 3B is a cross-sectional view for explaining the patterning of the film with a transparent conductive film, following FIG. 3A. 図3Cは、図3Bに続く、透明導電膜付フィルムをパターニングする様子を説明する断面図である。FIG. 3C is a cross-sectional view illustrating the patterning of the film with a transparent conductive film, following FIG. 3B. 図4は、本発明の実施の形態1による透明配線付フィルムの接触角を測定する様子を説明する断面図である。FIG. 4 is a cross-sectional view for explaining how the contact angle of the film with transparent wiring according to Embodiment 1 of the present invention is measured. 図5は、図4に示す透明配線付フィルムの導電パターン部の表面付近の構造の一例を説明する模式図である。FIG. 5 is a schematic diagram for explaining an example of the structure near the surface of the conductive pattern portion of the film with transparent wiring shown in FIG. 図6は、図4に示す透明配線付フィルムの絶縁パターン部の表面付近の構造の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of the structure near the surface of the insulating pattern portion of the film with transparent wiring shown in FIG. 図7は、本発明の実施の形態1による透明配線付フィルムを用いたタッチパネルや、表示装置の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a touch panel using the film with transparent wiring according to Embodiment 1 of the present invention and a display device. 図8Aは、本発明の実施の形態2による透明シールドフィルムの斜視図である。FIG. 8A is a perspective view of a transparent shield film according to Embodiment 2 of the present invention. 図8Bは、図8Aに示す透明シールドフィルムの周縁部の断面図である。FIG. 8B is a cross-sectional view of the periphery of the transparent shield film shown in FIG. 8A. 図9Aは、本発明の実施の形態2による他の透明シールドフィルムの斜視図である。FIG. 9A is a perspective view of another transparent shield film according to Embodiment 2 of the present invention. 図9Bは、図9Aに示す透明シールドフィルムの周縁部の断面図である。FIG. 9B is a cross-sectional view of the peripheral edge of the transparent shield film shown in FIG. 9A. 図10は、本発明の実施の形態2において、大判の多丁取り用の透明シールドフィルムを個片に切断し、個々の透明シールドフィルムを形成する様子を示す斜視図である。FIG. 10 is a perspective view showing a state in which a large transparent multi-layer transparent shield film is cut into individual pieces to form individual transparent shield films in Embodiment 2 of the present invention. 図11は、本発明の実施の形態2において、切断面での接触角の測定例を説明する断面図である。FIG. 11 is a cross-sectional view illustrating an example of measurement of the contact angle at the cut surface in the second embodiment of the present invention. 図12Aは、図8Bに示す透明シールドフィルム作製過程において、金属ナノワイヤの一部が導電ペースト組成物と接触する様子を説明する断面図である。FIG. 12A is a cross-sectional view illustrating a state in which a part of the metal nanowire comes into contact with the conductive paste composition in the transparent shield film manufacturing process illustrated in FIG. 8B. 図12Bは、図9Bに示す透明シールドフィルム作製過程において、金属ナノワイヤの一部が導電ペースト組成物と接触する様子を説明する断面図である。FIG. 12B is a cross-sectional view illustrating a state in which a part of the metal nanowire comes into contact with the conductive paste composition in the transparent shield film manufacturing process illustrated in FIG. 9B. 図13Aは、本発明の実施の形態2による表示装置の側面図である。FIG. 13A is a side view of a display device according to Embodiment 2 of the present invention. 図13Bは、本発明の実施の形態2による他の表示装置の側面図である。FIG. 13B is a side view of another display device according to the second embodiment of the present invention. 図14は、本発明の実施の形態2による表示装置におけるノイズに対するシールド効果の測定結果の一例を示す図である。FIG. 14 is a diagram illustrating an example of a measurement result of the shielding effect against noise in the display device according to the second embodiment of the present invention.
 本発明の実施の形態の説明に先立ち、従来の透明導電膜における問題点を簡単に説明する。透明導電膜上に多孔質のオーバーコート部を設けた場合、使用するオーバーコート材によっては、耐湿性やマイグレーション特性に問題を生じる場合がある。 Prior to the description of the embodiment of the present invention, problems in the conventional transparent conductive film will be briefly described. When a porous overcoat part is provided on a transparent conductive film, depending on the overcoat material used, a problem may occur in moisture resistance and migration characteristics.
 以下に本発明の実施の形態について、図面を参照しながら説明する。なお、各実施の形態において、先行する実施の形態と同じ構成には同じ符号を付し、詳細な説明を省略する場合がある。 Embodiments of the present invention will be described below with reference to the drawings. Note that in each embodiment, the same components as those in the preceding embodiments are denoted by the same reference numerals, and detailed description may be omitted.
 なお本発明は以下の実施の形態に限定されない。本発明の思想の範囲において、実施の形態を変更することは可能である。また実施の形態の2つ以上を組み合わせることも可能である。 The present invention is not limited to the following embodiment. The embodiment can be changed within the scope of the idea of the present invention. It is also possible to combine two or more of the embodiments.
 (実施の形態1)
 図1Aは、本発明の実施の形態1による透明導電膜付フィルム(以下、フィルム)110の斜視図である。フィルム110の一つの形態は、図1Aに示したような長尺のロール形状、あるいはシート状の枚葉形状(図示せず)である。
(Embodiment 1)
FIG. 1A is a perspective view of a film 110 with a transparent conductive film (hereinafter referred to as film) 110 according to Embodiment 1 of the present invention. One form of the film 110 is a long roll shape as shown in FIG. 1A or a sheet-like sheet shape (not shown).
 図1Bは、フィルム110の断面構造の一例を説明するための模式図である。図1Bに示すように、フィルム110は、透明基材130と、透明導電膜150を有している。透明基材130は、例えば、ポリエチレンテレフタレート(PET)製のフィルムである。透明導電膜150は透明基材130の両面に形成され、金属ナノワイヤ120と、透明バインダー140とを含んでいる。透明バインダー140は、複数の金属ナノワイヤ120の間を埋めるように形成されている。透明導電膜150の表面には、金属ナノワイヤ120の一部が露出している。 FIG. 1B is a schematic diagram for explaining an example of a cross-sectional structure of the film 110. As illustrated in FIG. 1B, the film 110 includes a transparent base material 130 and a transparent conductive film 150. The transparent substrate 130 is, for example, a polyethylene terephthalate (PET) film. The transparent conductive film 150 is formed on both surfaces of the transparent substrate 130 and includes the metal nanowire 120 and the transparent binder 140. The transparent binder 140 is formed so as to fill between the plurality of metal nanowires 120. A part of the metal nanowire 120 is exposed on the surface of the transparent conductive film 150.
 図1Cは、本発明の実施の形態1による他の透明導電膜付フィルム(以下、フィルム)111の断面構造の一例を説明するための模式図である。フィルム111は、透明基材130と、透明基材130の第1面に形成された透明導電膜150と、透明基材130の第2面に形成されたアンチブロッキング層160とを有している。透明導電膜150の構成はフィルム110と同様である。アンチブロッキング層160は透明導電膜150が形成されていない反対面に形成されている。必要に応じて、アンチブロッキング層160を設けることで、フィルム110をロール状に捲回した場合に発生するブロッキングを抑制する効果が得られる。 FIG. 1C is a schematic diagram for explaining an example of a cross-sectional structure of another transparent conductive film-attached film (hereinafter referred to as a film) 111 according to Embodiment 1 of the present invention. The film 111 has a transparent substrate 130, a transparent conductive film 150 formed on the first surface of the transparent substrate 130, and an antiblocking layer 160 formed on the second surface of the transparent substrate 130. . The configuration of the transparent conductive film 150 is the same as that of the film 110. The anti-blocking layer 160 is formed on the opposite surface where the transparent conductive film 150 is not formed. By providing the anti-blocking layer 160 as needed, the effect which suppresses the blocking generate | occur | produced when the film 110 is wound in roll shape is acquired.
 図1B、図1Cにおいて、透明導電膜150の上に滴下した水滴170の接触角190は、補助線180と透明導電膜150との角度に相当する。透明導電膜150の接触角190は、80度以上、125度以下である。接触角190が80度未満の場合、耐湿性などの信頼性に問題を生じる場合がある。また透明導電膜150の接触角が125度を超えた場合、フィルムの光学特性(例えばヘイズや透過率等)に問題を生じる場合がある。なお接触角190を80度以上、125度以下に制御するために、透明バインダー140は、撥水添加剤(図5参照)を含む。接触角190の測定については、JIS規格R3257を参考にすればよい。 1B and 1C, the contact angle 190 of the water droplet 170 dropped on the transparent conductive film 150 corresponds to the angle between the auxiliary line 180 and the transparent conductive film 150. The contact angle 190 of the transparent conductive film 150 is not less than 80 degrees and not more than 125 degrees. When the contact angle 190 is less than 80 degrees, there may be a problem in reliability such as moisture resistance. Moreover, when the contact angle of the transparent conductive film 150 exceeds 125 degrees, a problem may occur in the optical characteristics (for example, haze and transmittance) of the film. In addition, in order to control the contact angle 190 to 80 degrees or more and 125 degrees or less, the transparent binder 140 contains a water repellent additive (refer FIG. 5). For the measurement of the contact angle 190, JIS standard R3257 may be referred to.
 ここでJIS規格R3257について簡単に説明する。この規格において、接触角は静滴法で測定される。すなわち、4μL以下の水滴を試験片上に静置する。この場合、水滴の形状は球の一部とみなせるので,接触角θと水滴の形状との間には,次のような関係が成り立つ。
θ=2tan-1(h/r)
 rは、水滴の試験片に接している面の半径(mm)、hは、試験片表面から水滴の頂点までの高さ(mm)である。rおよびhは、光源と光学読取装置との光軸の中心に試験片上に静置した水滴が位置するように、光源と光学読取装置と試験片とを配置し、試験片上の水滴の像を光学読取装置で読み取ることにより測定する。あるいは、水滴の頂点と試験片表面上の水滴の端部とを結ぶ直線と、試験片表面とがなす角度を読み取り、その2倍を接触角としてもよい。
Here, the JIS standard R3257 will be briefly described. In this standard, the contact angle is measured by the sessile drop method. That is, a 4 μL or less water droplet is left on the test piece. In this case, since the shape of the water droplet can be regarded as a part of the sphere, the following relationship is established between the contact angle θ and the shape of the water droplet.
θ = 2 tan −1 (h / r)
r is the radius (mm) of the surface of the water drop in contact with the test piece, and h is the height (mm) from the test piece surface to the top of the water drop. r and h are arranged such that the light source, the optical reader, and the test piece are arranged so that the water drop placed on the test piece is positioned at the center of the optical axis of the light source and the optical reader, and an image of the water drop on the test piece is obtained. It is measured by reading with an optical reader. Alternatively, the angle formed by the straight line connecting the apex of the water droplet and the end of the water droplet on the surface of the test piece and the surface of the test piece may be read, and the contact angle may be twice that angle.
 次に、図1A~図1Cにおける透明基材130について説明する。透明基材130は光透過性を有する。透明基材130の光線透過率は、50%以上であることが好ましく、70%以上であればより好ましく、80%以上であれば特に好ましい。 Next, the transparent substrate 130 in FIGS. 1A to 1C will be described. The transparent substrate 130 is light transmissive. The light transmittance of the transparent substrate 130 is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
 透明基材130の形状は、特に制限されないが、板状又はフィルム状であることが好ましい。特に、フィルム110、111の生産性及び運搬性を向上する観点からは、透明基材130の形状はフィルム状であることが好ましい。 The shape of the transparent substrate 130 is not particularly limited, but is preferably a plate shape or a film shape. In particular, from the viewpoint of improving the productivity and transportability of the films 110 and 111, the shape of the transparent substrate 130 is preferably a film.
 透明基材130がフィルム状である場合、透明基材130の厚みは10μm以上、500μm以下の範囲であることが好ましい。この場合、透明基材130の透明性が特に良好になり、またフィルム110、111の生産時及び取り扱い時の作業性も良好になる。透明基材130の厚みは、25μm以上、200μm以下の範囲であることがさらに好ましい。特に、透明基材130の厚みが25μm以上、150μm以下であると、フィルム110、111の薄型化、軽量化が可能となる。またフィルム110、111の表裏における干渉の発生が抑制される。さらに透明基材130が加熱される際の熱収縮が抑制されて透明基材130の熱収縮による加工性の低下等の不具合が抑制される。 When the transparent base material 130 is a film shape, it is preferable that the thickness of the transparent base material 130 is in the range of 10 μm or more and 500 μm or less. In this case, the transparency of the transparent substrate 130 is particularly good, and the workability during production and handling of the films 110 and 111 is also good. The thickness of the transparent substrate 130 is more preferably in the range of 25 μm or more and 200 μm or less. In particular, when the thickness of the transparent substrate 130 is 25 μm or more and 150 μm or less, the films 110 and 111 can be reduced in thickness and weight. Further, the occurrence of interference on the front and back of the films 110 and 111 is suppressed. Further, thermal shrinkage when the transparent base material 130 is heated is suppressed, and problems such as deterioration in workability due to thermal shrinkage of the transparent base material 130 are suppressed.
 透明基材130の材質は、特に制限されない。透明基材130の材質の例としては、シート状であればガラス(あるいは薄板ガラス)や樹脂フィルム(あるいは樹脂板)等が挙げられる。透明樹脂の例としては、PET、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート、ポリメタクリル酸メチル共重合体、トリアセチルセルロース、ポリオレフィン、ポリアミド、ポリ塩化ビニル、非晶質ポリオレフィン、シクロオレフィンポリマー、シクロオレフィンコポリマー、アクリレート樹脂、ウレタンアクリレート樹脂等が挙げられる。 The material of the transparent substrate 130 is not particularly limited. Examples of the material of the transparent substrate 130 include glass (or thin glass), a resin film (or resin plate), and the like in the case of a sheet. Examples of transparent resins include PET, polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate, polymethyl methacrylate copolymer, triacetyl cellulose, polyolefin, polyamide, polyvinyl chloride, amorphous polyolefin, cycloolefin polymer , Cycloolefin copolymer, acrylate resin, urethane acrylate resin and the like.
 特に、透明基材130が、ポリエステルから形成されることが好ましい。ポリエステルのうち、特に、PET又はPENからなる2軸延伸フィルムは、優れた機械的特性、耐熱性、耐薬品性等を有するため好ましい。このような2軸延伸フィルムは、磁気テープ、強磁性薄膜テープ、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、ラミネート用フィルム、ディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として広く用いられている。特に、ディスプレイ用途に関しては、液晶表示装置の部材であるプリズムレンズシート、タッチパネル、バックライト等のベースフィルムや、テレビの光学フィルムのベースフィルム、プラズマテレビの前面光学フィルターに用いられる光学フィルム、近赤外線カットフィルム、電磁波シールドフィルムのベースフィルム等として用いられている。 In particular, it is preferable that the transparent base material 130 is formed of polyester. Among polyesters, a biaxially stretched film made of PET or PEN is particularly preferable because it has excellent mechanical properties, heat resistance, chemical resistance, and the like. Such biaxially stretched films include magnetic tapes, ferromagnetic thin film tapes, packaging films, films for electronic parts, electrical insulating films, laminating films, films to be attached to the surface of displays, protective films for various members, etc. Widely used as a material. Especially for display applications, base films such as prism lens sheets, touch panels, and backlights, which are members of liquid crystal display devices, TV optical film base films, optical films used for plasma TV front optical filters, and near infrared rays It is used as a base film for cut films and electromagnetic shielding films.
 また、ポリエステルとして芳香族ポリエステルが好ましい。芳香族ポリエステルは、芳香族ジカルボン酸とグリコールとが反応することで生成する。芳香族ジカルボン酸の例は、テレフタル酸、イソフタル酸、2,6-ナフタリンジカルボン酸、4,4′-ジフェニルジカルボン酸を含み、グリコールの例はエチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオールを含む。特に、PET、ポリエチレン-2,6-ナフタリンジカルボキシレートなどが、好ましい。またポリエステルは、上記例示した複数の成分が共重合して生成したものでもよい。 Also, aromatic polyester is preferable as the polyester. Aromatic polyester is produced by the reaction of aromatic dicarboxylic acid and glycol. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and examples of glycols include ethylene glycol, 1,4-butanediol, 1,4 -Contains cyclohexanedimethanol and 1,6-hexanediol. In particular, PET, polyethylene-2,6-naphthalene dicarboxylate and the like are preferable. The polyester may be produced by copolymerizing a plurality of the above exemplified components.
 透明基材130は有機または無機の粒子を含有してもよい。この場合、透明基材130の巻き取り性、搬送性等が向上する。透明基材130が含有することができる粒子として、炭酸カルシウム粒子、酸化カルシウム粒子、酸化アルミニウム粒子、カオリン、酸化珪素粒子、酸化亜鉛粒子、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、尿素樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙げられる。 The transparent substrate 130 may contain organic or inorganic particles. In this case, the winding property and transportability of the transparent substrate 130 are improved. As particles that can be contained in the transparent substrate 130, calcium carbonate particles, calcium oxide particles, aluminum oxide particles, kaolin, silicon oxide particles, zinc oxide particles, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine Examples thereof include resin particles and crosslinked silicone resin particles.
 また、透明基材130は、さらに着色剤、帯電防止剤、紫外線吸収剤、酸化防止剤、潤滑剤、触媒、他の樹脂等も、透明性を損なわない範囲で含有してもよい。 The transparent substrate 130 may further contain a colorant, an antistatic agent, an ultraviolet absorber, an antioxidant, a lubricant, a catalyst, other resins, and the like as long as the transparency is not impaired.
 透明基材130のヘイズは3%以下であることが好ましい。この場合、導電性光学部材1を通した映像等の視認性が向上し、光学的用途の部材として特に適するようになる。ヘイズが1.5%以下であればさらに好ましい。なお、ヘイズとは、全光線透過率における拡散透過率の割合を百分率で表した値であり、一般的なPETフィルムでは4%程度であり、ガラスでは0%である。 The haze of the transparent substrate 130 is preferably 3% or less. In this case, the visibility of images and the like through the conductive optical member 1 is improved, and it is particularly suitable as a member for optical applications. More preferably, the haze is 1.5% or less. In addition, haze is the value which expressed the ratio of the diffuse transmittance in a total light transmittance in percentage, and is about 4% in a general PET film, and is 0% in glass.
 なお、透明基材130には、低分子量のオリゴマー等の析出の少ない材料(アンチオリゴマー性の高い材料)を用いることが好ましい。例えば、透明基材の材料としてオリゴマーに対する措置が全く取られていないポリエステルフィルムを用いた場合、例えば高温高湿条件下に置かれた透明導電膜付きフィルムで表面抵抗値が増大する場合がある。この一因として、ポリエステルフィルムに含まれるオリゴマーが高温条件下で析出し、オリゴマーが透明導電膜に影響を与えることにより、表面抵抗値が増加する可能性が考えられる。 For the transparent substrate 130, it is preferable to use a material with low precipitation such as a low molecular weight oligomer (a material with high anti-oligomer property). For example, when a polyester film that does not take any measures against the oligomer is used as the material of the transparent substrate, the surface resistance value may increase, for example, in a film with a transparent conductive film placed under high temperature and high humidity conditions. One possible reason is that the oligomer contained in the polyester film precipitates under high temperature conditions, and the oligomer affects the transparent conductive film, thereby possibly increasing the surface resistance value.
 したがって、透明基材130にはオリゴマーの析出を抑える加工を施した材料を用いることで、フィルム110、111の信頼性を高めることができる。具体的には、透明基材130は、100℃で60分加熱後のヘイズの増大が0.3%以下であることが好ましい。 Therefore, the reliability of the films 110 and 111 can be increased by using a material that has been processed to suppress the precipitation of the oligomer for the transparent substrate 130. Specifically, the transparent substrate 130 preferably has an increase in haze of 0.3% or less after heating at 100 ° C. for 60 minutes.
 オリゴマーがフィルム110、111上に析出すると、フィルム110、111の表面が白濁し、ヘイズの上昇が観察される。このため、オリゴマー析出の度合いについては、ヘイズの増大で確認することが可能である。 When the oligomer is deposited on the films 110 and 111, the surfaces of the films 110 and 111 become cloudy, and an increase in haze is observed. For this reason, it is possible to confirm the degree of oligomer precipitation by increasing the haze.
 オリゴマーの析出を抑えるには、例えば、オリゴマーの発生しにくい工法で製造された透明基材130を用いる方法が検討されている。あるいは透明基材130の表面に、オリゴマー等の析出を低減するための透明被覆層(図示せず)を形成することも好ましい。透明基材130の表面に透明被覆層を形成することで、透明基材130から低分子量成分が析出しにくくなる。そのため透明基材130の白化が抑制され、その良好な透明性が維持される。 In order to suppress oligomer precipitation, for example, a method using a transparent substrate 130 manufactured by a construction method in which oligomers are hardly generated has been studied. Alternatively, it is also preferable to form a transparent coating layer (not shown) for reducing precipitation of oligomers or the like on the surface of the transparent substrate 130. By forming a transparent coating layer on the surface of the transparent substrate 130, it becomes difficult for low molecular weight components to precipitate from the transparent substrate 130. Therefore, whitening of the transparent base material 130 is suppressed, and the good transparency is maintained.
 オリゴマー等の析出を低減するための透明被覆層の材質は、特に制限されないが、例えばアクリレート樹脂、ウレタンアクリレート樹脂等から形成される。また、透明被覆層が、透明基材130からの低分子量成分の析出を充分に抑制するためには、透明被覆層の厚みが、0.5μm以上、10μm以下の範囲であることが好ましい。 The material of the transparent coating layer for reducing the precipitation of oligomers and the like is not particularly limited, but is formed from, for example, an acrylate resin or a urethane acrylate resin. Further, in order for the transparent coating layer to sufficiently suppress the precipitation of the low molecular weight component from the transparent substrate 130, the thickness of the transparent coating layer is preferably in the range of 0.5 μm or more and 10 μm or less.
 図1Cに示すフィルム111が図1Aに示すようにロール状に巻き回されるなどして重ねられる場合に、アンチブロッキング層160によってブロッキングが抑制されることが好ましい。そのためアンチブロッキング層160は、表面に凹凸を有するアンチブロッキング性を有する透明層であることが好ましい。アンチブロッキング層160の表面に凹凸を形成するためには、例えば、アンチブロッキング層160の表面を機械的に加工する。 When the film 111 shown in FIG. 1C is overlapped by being wound into a roll shape as shown in FIG. 1A, blocking is preferably suppressed by the anti-blocking layer 160. Therefore, the anti-blocking layer 160 is preferably a transparent layer having anti-blocking properties having irregularities on the surface. In order to form irregularities on the surface of the anti-blocking layer 160, for example, the surface of the anti-blocking layer 160 is mechanically processed.
 またアンチブロッキング層160がシリカ粒子等のフィラーを含有することで、アンチブロッキング層160の表面に凹凸が形成されていてもよい。この場合、アンチブロッキング層160が、例えばアクリレート樹脂またはウレタンアクリレート樹脂を80質量%以上、95質量%以下の範囲で含有し、さらに平均粒子径250nm程度のシリカ粒子を5質量%以上、20質量%以下の範囲で含有することが好ましい。 Further, the anti-blocking layer 160 may contain irregularities on the surface of the anti-blocking layer 160 by containing a filler such as silica particles. In this case, the anti-blocking layer 160 contains, for example, an acrylate resin or a urethane acrylate resin in the range of 80% by mass or more and 95% by mass or less, and further silica particles having an average particle diameter of about 250 nm are 5% by mass or more and 20% by mass. It is preferable to contain in the following ranges.
 また、アンチブロッキング層160は、例えばシリコーン系のレベリング剤を含有することも好ましい。この構成によりフィルム111の滑性を向上することができる。 Also, the anti-blocking layer 160 preferably contains, for example, a silicone leveling agent. With this configuration, the slipperiness of the film 111 can be improved.
 アンチブロッキング層160と重なる透明基材130の第2面には、アンチブロッキング層160が形成される前に、表面処理が施されることが好ましい。この場合、透明基材130とアンチブロッキング層160との間の濡れ性や密着性が向上する。表面処理の方法の例としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、並びにカップリング剤、酸性成分、アルカリ性成分等による化学的表面処理が挙げられる。あるいは、透明基材130の表面に、易接着層(図示せず)を設けてもよい。易接着層を設けた透明基材130を用いることで、透明基材130とアンチブロッキング層160との間の濡れ性、密着性が向上する。易接着層の形成に加えて、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、カップリング剤、酸、アルカリによる化学的表面処理などを行うことも有用である。なお、透明基材130の第1面にこれらの処理を施したり、易接着層を形成したりしてもよい。この場合、透明基材130と透明導電膜150との間の濡れ性、密着性が向上する。またこのような処理等はフィルム110にも有効である。 It is preferable that a surface treatment is performed on the second surface of the transparent substrate 130 overlapping the anti-blocking layer 160 before the anti-blocking layer 160 is formed. In this case, the wettability and adhesion between the transparent substrate 130 and the anti-blocking layer 160 are improved. Examples of the surface treatment method include physical surface treatment such as plasma treatment, corona discharge treatment and flame treatment, and chemical surface treatment with a coupling agent, acidic component, alkaline component and the like. Alternatively, an easy adhesion layer (not shown) may be provided on the surface of the transparent substrate 130. By using the transparent base material 130 provided with the easy adhesion layer, wettability and adhesion between the transparent base material 130 and the anti-blocking layer 160 are improved. In addition to the formation of the easy-adhesion layer, it is also useful to perform physical surface treatment such as plasma treatment, corona discharge treatment, flame treatment, etc., chemical surface treatment with a coupling agent, acid, or alkali. In addition, you may give these processes to the 1st surface of the transparent base material 130, or form an easily bonding layer. In this case, the wettability and adhesion between the transparent substrate 130 and the transparent conductive film 150 are improved. Such processing is also effective for the film 110.
 次に透明導電膜150について説明する。透明導電膜150は、金属ナノワイヤ120と、透明バインダー140とを含有する。金属ナノワイヤ120とは、ナノサイズ(1~1000nm)の直径を有する金属繊維である。金属ナノワイヤ120を構成する金属の種類は、特に制限されないが、例えばAg、Au、Cu、Co、Al、Pt等が挙げられる。特に透明導電膜150の導電性をより向上するためには、金属ナノワイヤ120を構成する金属がAu、Ag、Cu及びPtから選ばれる少なくとも一種を含むことが好ましく、特にAg及びCuから選ばれる少なくとも一種を含むことが好ましい。 Next, the transparent conductive film 150 will be described. The transparent conductive film 150 contains the metal nanowire 120 and the transparent binder 140. The metal nanowire 120 is a metal fiber having a nano-sized (1 to 1000 nm) diameter. The type of metal constituting the metal nanowire 120 is not particularly limited, and examples thereof include Ag, Au, Cu, Co, Al, and Pt. In particular, in order to further improve the conductivity of the transparent conductive film 150, the metal constituting the metal nanowire 120 preferably includes at least one selected from Au, Ag, Cu, and Pt, and in particular, at least selected from Ag and Cu. It is preferable to include one kind.
 金属ナノワイヤ120は、銀ナノワイヤや銅ナノワイヤとすることが、特に好ましい。銀や銅のように導電率の高い金属ナノワイヤを使用することで、金属ナノワイヤ120の使用量を抑制して透明導電膜150の高い透明性を確保しつつ、透明導電膜150に高い導電性を付与することが可能となる。 The metal nanowire 120 is particularly preferably a silver nanowire or a copper nanowire. By using metal nanowires with high conductivity such as silver and copper, the use of metal nanowires 120 is suppressed and high transparency of the transparent conductive film 150 is ensured, while the conductive film 150 has high conductivity. It becomes possible to grant.
 金属ナノワイヤ120の製造方法としては、特に制限されず、例えば、液相法や気相法等の公知の方法を採用することができる。例えば銀ナノワイヤの製造方法の具体例として、Adv.Mater.2002,14,P833~837、Chem.Mater.2002,14,P4736~4745、特表2009-505358号公報等の文献に開示されている方法が挙げられる。また、Auナノワイヤ(金ナノワイヤ)の製造方法の具体例としては、特開2006-233252号公報等に開示されている方法が、挙げられる。また、Cuナノワイヤ(銅ナノワイヤ)を製造する方法としては、特開2002-266007号公報等に開示されている方法が挙げられる。また、Coナノワイヤ(コバルトナノワイヤ)を製造する方法としては、特開2004-149871号公報等に開示されている方法が挙げられる。特に、Adv.Mater.2002,14,P833~837、並びにChem.Mater.2002,14,P4736~4745に開示されているAgナノワイヤの製造方法では、水系で簡便にかつ大量に銀ナノワイヤを製造することができる。 The method for producing the metal nanowire 120 is not particularly limited, and for example, a known method such as a liquid phase method or a gas phase method can be employed. For example, as a specific example of a method for producing silver nanowires, Adv. Mater. 2002, 14, P833-837, Chem. Mater. Examples include methods disclosed in documents such as 2002, 14, P4736 to 4745, and JP-T 2009-505358. A specific example of a method for producing Au nanowires (gold nanowires) includes a method disclosed in JP-A-2006-233252. Moreover, as a method for producing Cu nanowires (copper nanowires), a method disclosed in Japanese Patent Application Laid-Open No. 2002-266007 can be cited. Examples of the method for producing Co nanowires (cobalt nanowires) include those disclosed in Japanese Patent Application Laid-Open No. 2004-149871. In particular, Adv. Mater. 2002, 14, P833-837, and Chem. Mater. In the method for producing Ag nanowires disclosed in 2002, 14, P4736-4745, silver nanowires can be produced easily and in large quantities in an aqueous system.
 金属ナノワイヤ120の平均直径は、10nm以上、100nm以下の範囲であることが好ましい。平均直径が10nm以上であると、透明導電膜150の導電性が特に高くなる。また平均粒径が100nm以下であると、透明導電膜150の透明性が特に高くなる。金属ナノワイヤ120の平均直径は、20nm以上、100nm以下の範囲であればより好ましく、40nm以上、100nm以下の範囲であれば最も好ましい。 The average diameter of the metal nanowire 120 is preferably in the range of 10 nm or more and 100 nm or less. When the average diameter is 10 nm or more, the conductivity of the transparent conductive film 150 is particularly high. Further, when the average particle size is 100 nm or less, the transparency of the transparent conductive film 150 is particularly high. The average diameter of the metal nanowire 120 is more preferably in the range of 20 nm to 100 nm, and most preferably in the range of 40 nm to 100 nm.
 また金属ナノワイヤ120の平均長さは、1μm以上、100μm以下の範囲であることが好ましい。平均長さが1μm以上であると、透明導電膜150の導電性が特に高くなる。また平均長さが100μm以下であると、透明導電膜150中で金属ナノワイヤ120が凝集しにくくなる。このため透明導電膜150の透明性が向上する。金属ナノワイヤ120の平均長さは、1μm以上、50μm以下の範囲であればより好ましく、3μm以上、50μm以下の範囲であれば最も好ましい。 Further, the average length of the metal nanowire 120 is preferably in the range of 1 μm or more and 100 μm or less. When the average length is 1 μm or more, the conductivity of the transparent conductive film 150 is particularly high. Further, when the average length is 100 μm or less, the metal nanowires 120 are less likely to aggregate in the transparent conductive film 150. For this reason, the transparency of the transparent conductive film 150 is improved. The average length of the metal nanowire 120 is more preferably in the range of 1 μm or more and 50 μm or less, and most preferably in the range of 3 μm or more and 50 μm or less.
 なお、金属ナノワイヤ120の平均直径は、充分な数の金属ナノワイヤ120の直径を測定し、その結果を算術平均して得られる値である。また、金属ナノワイヤ120の平均長さは、充分な数の金属ナノワイヤ120の長さを測定し、その結果を算術平均して得られる値である。金属ナノワイヤ120の直径及び長さは、金属ナノワイヤ120の電子顕微鏡画像を画像解析することで導出される。例えば電子顕微鏡画像において金属ナノワイヤ120が屈曲している場合、画像解析によって金属ナノワイヤ120の直径(投影径(D))及び面積(投影面積(S))を算出する。さらに投影面積(S)を投影径(D)で割ることで、金属ナノワイヤ120の長さ(L=S/D)を求めることができる。金属ナノワイヤ120の平均直径及び平均長さを導出するためには、少なくとも100個の金属ナノワイヤ120の直径及び長さを測定することが好ましく、300個以上の金属ナノワイヤ120の直径及び長さを測定すればさらに好ましい。 Note that the average diameter of the metal nanowires 120 is a value obtained by measuring the diameters of a sufficient number of metal nanowires 120 and arithmetically averaging the results. The average length of the metal nanowires 120 is a value obtained by measuring the length of a sufficient number of metal nanowires 120 and arithmetically averaging the results. The diameter and length of the metal nanowire 120 are derived by image analysis of an electron microscope image of the metal nanowire 120. For example, when the metal nanowire 120 is bent in the electron microscope image, the diameter (projection diameter (D)) and area (projection area (S)) of the metal nanowire 120 are calculated by image analysis. Furthermore, the length (L = S / D) of the metal nanowire 120 can be obtained by dividing the projected area (S) by the projected diameter (D). In order to derive the average diameter and average length of the metal nanowires 120, it is preferable to measure the diameter and length of at least 100 metal nanowires 120, and to measure the diameter and length of 300 or more metal nanowires 120 More preferably.
 透明導電膜150における金属ナノワイヤ120の割合は、特に制限されないが、0.01質量%以上、90質量%以下の範囲であることが好ましく、0.1質量%以上、30質量%以下の範囲であればさらに好ましく、0.5質量%以上、10質量%以下の範囲であれば最も好ましい。 The ratio of the metal nanowire 120 in the transparent conductive film 150 is not particularly limited, but is preferably in the range of 0.01% by mass to 90% by mass, and in the range of 0.1% by mass to 30% by mass. It is more preferable if it is in the range of 0.5% by mass or more and 10% by mass or less.
 透明導電膜150は、例えば金属ナノワイヤ120と、樹脂成分を含有する組成物とから形成される。この場合、湿式の成膜法によって透明導電膜150を形成することができる。 The transparent conductive film 150 is formed from, for example, the metal nanowire 120 and a composition containing a resin component. In this case, the transparent conductive film 150 can be formed by a wet film formation method.
 透明導電膜150を形成するための透明バインダー140としては、例えば、セルロース樹脂、シリコーン樹脂、フッ素樹脂、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアクリルニトリル樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリイミド樹脂、ジアクリルフタレート樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、その他の熱可塑性樹脂が挙げられる。また、これらの樹脂を構成する単量体が2種以上重合して形成された共重合体でもよい。これら樹脂成分によって、金属ナノワイヤ120を、透明基材130の表面に結着する。 Examples of the transparent binder 140 for forming the transparent conductive film 150 include cellulose resin, silicone resin, fluorine resin, acrylic resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polystyrene resin, and polyethersulfone. Resin, polyarylate resin, polycarbonate resin, polyurethane resin, polyacrylonitrile resin, polyvinyl acetal resin, polyamide resin, polyimide resin, diacryl phthalate resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, other heat A plastic resin is mentioned. Moreover, the copolymer formed by superposing | polymerizing 2 or more types of monomers which comprise these resin may be sufficient. With these resin components, the metal nanowires 120 are bound to the surface of the transparent substrate 130.
 透明バインダー140を形成するための樹脂成分は、反応性硬化型樹脂を含有することも好ましい。反応性硬化型樹脂としては、例えば熱硬化型樹脂と電離放射線硬化型樹脂の少なくとも一方が用いられる。 The resin component for forming the transparent binder 140 preferably contains a reactive curable resin. As the reactive curable resin, for example, at least one of a thermosetting resin and an ionizing radiation curable resin is used.
 透明バインダー140を形成するための熱硬化型樹脂としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等が、挙げられる。組成物は、熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等を含有してもよい。 The thermosetting resin for forming the transparent binder 140 includes phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, etc. Is mentioned. The composition may contain a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent, and the like as necessary together with the thermosetting resin.
 また透明バインダー140を形成するための電離放射線硬化型樹脂としては、アクリレート系の官能基を有する樹脂が好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。多官能化合物として具体的には、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂を含有する組成物は、さらに反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。 The ionizing radiation curable resin for forming the transparent binder 140 is preferably a resin having an acrylate functional group. Examples of the resin having an acrylate functional group include oligomers such as (meth) acrylates of a relatively low molecular weight polyfunctional compound, prepolymers, and the like. Specific examples of the polyfunctional compound include polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and polyhydric alcohols. The composition containing the ionizing radiation curable resin preferably further contains a reactive diluent. Examples of reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, and hexanediol (meth) acrylate. , Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di The polyfunctional monomer of (meth) acrylate is mentioned.
 透明バインダー140を形成するための電離放射線硬化型樹脂が紫外線硬化型樹脂などの光硬化型樹脂である場合には、組成物がさらに光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂を含有する組成物が、光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、チオキサントンなどが挙げられる。 When the ionizing radiation curable resin for forming the transparent binder 140 is a photocurable resin such as an ultraviolet curable resin, the composition preferably further contains a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenones, benzophenones, α-amyloxime esters, thioxanthones, and the like. The composition containing the photocurable resin may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
 なお、透明バインダー140を形成するための樹脂として、メタクリル官能性シランと、アクリル官能性シランとのうち少なくとも一方を含有することも好ましい。この構成により、透明基材130や複数の金属ナノワイヤ120との密着性が向上する。メタクリル官能性シランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。アクリル官能性シランとしては3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン等が挙げられる。 In addition, it is also preferable to contain at least one of methacryl functional silane and acryl functional silane as a resin for forming the transparent binder 140. With this configuration, the adhesion with the transparent substrate 130 and the plurality of metal nanowires 120 is improved. Examples of the methacryl functional silane include 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane. Examples of the acrylic functional silane include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropylmethyldimethoxysilane.
 メタクリル官能性シランとアクリル官能性シランの含有量は特に制限されないが、透明バインダー140中のメタクリル官能性シランとアクリル官能性シランの総量の割合が5~30質量%の範囲であることが好ましい。この割合が5質量%以上であると、透明基材130や複数の金属ナノワイヤ120の密着性が十分に高くなる。また30質量%以下であると、透明バインダー140中の架橋密度が十分に向上する。 The content of the methacryl functional silane and the acryl functional silane is not particularly limited, but the ratio of the total amount of the methacryl functional silane and the acrylic functional silane in the transparent binder 140 is preferably in the range of 5 to 30% by mass. When this ratio is 5% by mass or more, the adhesion between the transparent substrate 130 and the plurality of metal nanowires 120 is sufficiently high. Moreover, the crosslinking density in the transparent binder 140 fully improves that it is 30 mass% or less.
 透明導電膜150の屈折率は、特に制限されないが、透明導電膜150の存在を目立たなくなるためには、1.35~1.65の範囲であることが好ましい。また、透明導電膜150の厚みは、特に制限されないが、10~300nmの範囲であることが好ましい。透明導電膜150の屈折率は、透明導電膜150を形成するための組成物の組成が変更されることで、容易に調整される。 The refractive index of the transparent conductive film 150 is not particularly limited, but is preferably in the range of 1.35 to 1.65 in order to make the presence of the transparent conductive film 150 inconspicuous. The thickness of the transparent conductive film 150 is not particularly limited, but is preferably in the range of 10 to 300 nm. The refractive index of the transparent conductive film 150 is easily adjusted by changing the composition of the composition for forming the transparent conductive film 150.
 また透明バインダー140は撥水添加剤を含んでいる。この撥水添加剤は、フルオロアルキル基またはフルオロアルキレン基を含む化合物を含んでいることが望ましい。そして透明導電膜150の表面に、撥水添加剤の一部、特に撥水基となるフルオロアルキル基またはフルオロアルキレン基が露出することが好ましい。この構成により、透明導電膜150の表面の接触角を、80度以上、125度以下に確実に調整することができる。 The transparent binder 140 contains a water repellent additive. The water repellent additive preferably contains a compound containing a fluoroalkyl group or a fluoroalkylene group. It is preferable that a part of the water repellent additive, particularly a fluoroalkyl group or a fluoroalkylene group serving as a water repellent group is exposed on the surface of the transparent conductive film 150. With this configuration, the contact angle of the surface of the transparent conductive film 150 can be reliably adjusted to 80 degrees or more and 125 degrees or less.
 透明導電膜150を形成するための組成物(あるいは塗工液)は、必要に応じて溶媒を含有してもよい。溶媒として、例えば有機溶剤、或いは水が用いられ、或いは有機溶剤と水とが併用される。有機溶媒としては、アルコール類、ケトン類、エステル類、ハロゲン化炭化水素類、芳香族炭化水素類、並びにこれらの混合物が挙げられる。アルコール類の例は、メタノール、エタノール、イソプロピルアルコール(IPA)を含む。ケトン類の例はメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンを含む。エステル類の例は酢酸エチル、酢酸ブチルを含む。芳香族炭化水素類の例はトルエン、キシレンを含む。 The composition (or coating solution) for forming the transparent conductive film 150 may contain a solvent as necessary. As the solvent, for example, an organic solvent or water is used, or an organic solvent and water are used in combination. Examples of the organic solvent include alcohols, ketones, esters, halogenated hydrocarbons, aromatic hydrocarbons, and mixtures thereof. Examples of alcohols include methanol, ethanol, isopropyl alcohol (IPA). Examples of ketones include methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of esters include ethyl acetate and butyl acetate. Examples of the aromatic hydrocarbons include toluene and xylene.
 透明導電膜150を形成するための組成物中の溶媒の量は、組成物中において固形分が均一に溶解又は分散することができるように、適宜調整される。組成物中の固形分濃度は、0.1~50質量%の範囲であることが好ましく、0.5~30質量%の範囲であればさらに好ましい。 The amount of the solvent in the composition for forming the transparent conductive film 150 is appropriately adjusted so that the solid content can be uniformly dissolved or dispersed in the composition. The solid content concentration in the composition is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 30% by mass.
 透明導電膜150を形成するための組成物を透明基材130に塗布し、成膜することで、透明導電膜150が形成される。組成物を塗布する際には、例えばロールコート法、スピンコート法、ディップコート法などの適宜の方法が採用される。組成物を成膜するための手法は、組成物中の樹脂成分等の種類に応じて適宜選択される。例えば組成物が熱硬化型樹脂を含有する場合は、組成物を加熱して熱硬化することで、透明導電膜150が形成される。また、組成物が電離放射線硬化型樹脂を含有する場合には、組成物に紫外線等の電離放射線を照射することで組成物が硬化し、透明導電膜150が形成される。 The transparent conductive film 150 is formed by applying a composition for forming the transparent conductive film 150 to the transparent substrate 130 and forming a film. When applying the composition, an appropriate method such as a roll coating method, a spin coating method, or a dip coating method is employed. The method for forming the composition into a film is appropriately selected according to the type of the resin component or the like in the composition. For example, when the composition contains a thermosetting resin, the transparent conductive film 150 is formed by heating and thermosetting the composition. Further, when the composition contains an ionizing radiation curable resin, the composition is cured by irradiating the composition with ionizing radiation such as ultraviolet rays, and the transparent conductive film 150 is formed.
 透明導電膜150のシート抵抗は、0.1Ω/□以上、200Ω/□以下、さらには2Ω/□以上100Ω/□以下が望ましい。透明導電膜150のシート抵抗が0.1Ω/□未満であると、透明導電膜150内部に含まれる金属ナノワイヤ120の密度が増加し、フィルム110の透明度が低下する場合がある。またシート抵抗が200Ω/□より高い場合、その使用用途が限定される。 The sheet resistance of the transparent conductive film 150 is preferably 0.1Ω / □ or more and 200Ω / □ or less, and more preferably 2Ω / □ or more and 100Ω / □ or less. When the sheet resistance of the transparent conductive film 150 is less than 0.1 Ω / □, the density of the metal nanowires 120 included in the transparent conductive film 150 increases, and the transparency of the film 110 may decrease. In addition, when the sheet resistance is higher than 200Ω / □, its usage is limited.
 また透明導電膜150の膜厚は、20nm以上、300nm以下が望ましい。透明導電膜150の膜厚が20nm未満の場合、透明導電膜150の全体としての抵抗が増加し透明導電膜150の物理的強度が低下する場合がある。また透明導電膜150の膜厚が300nmを超えた場合、透明導電膜150の光通過性が低下したり、透明導電膜150の塗工作業性が低下したりする場合がある。 The film thickness of the transparent conductive film 150 is desirably 20 nm or more and 300 nm or less. When the film thickness of the transparent conductive film 150 is less than 20 nm, the overall resistance of the transparent conductive film 150 may increase and the physical strength of the transparent conductive film 150 may decrease. Moreover, when the film thickness of the transparent conductive film 150 exceeds 300 nm, the light transmission property of the transparent conductive film 150 may deteriorate, or the coating workability of the transparent conductive film 150 may decrease.
 次に、図2A~図2Cを参照しながら、透明基材130上に透明導電膜150を形成する方法の一例を説明する。以下の説明では、透明導電膜150は、次のようにして形成される。まず金属ナノワイヤ120を含む樹脂液を透明基材130に塗布し、金属ナノワイヤ層220を形成する。その後、金属ナノワイヤ層220の上に、オーバーコート液230を塗布し、オーバーコート液230を乾燥、硬化させて透明バインダー140を形成する。 Next, an example of a method for forming the transparent conductive film 150 on the transparent substrate 130 will be described with reference to FIGS. 2A to 2C. In the following description, the transparent conductive film 150 is formed as follows. First, a resin liquid containing the metal nanowire 120 is applied to the transparent substrate 130 to form the metal nanowire layer 220. Thereafter, the overcoat liquid 230 is applied on the metal nanowire layer 220, and the overcoat liquid 230 is dried and cured to form the transparent binder 140.
 図2Aは、透明基材130の第1面に、金属ナノワイヤ層220が形成された状態を説明する断面図である。金属ナノワイヤ層220は、少なくとも、複数の金属ナノワイヤ120同士を結着させる結着樹脂部210aと、透明基材130の上に金属ナノワイヤ120を結着させる結着樹脂部210bとを含む。なお結着樹脂部210aと、結着樹脂部210bは、同じ結着樹脂で形成してもよい。以下、結着樹脂部210aと結着樹脂部210bとを総称して結着樹脂部210と呼ぶ場合がある。 FIG. 2A is a cross-sectional view illustrating a state in which the metal nanowire layer 220 is formed on the first surface of the transparent substrate 130. The metal nanowire layer 220 includes at least a binder resin portion 210a that binds the plurality of metal nanowires 120 to each other and a binder resin portion 210b that binds the metal nanowire 120 onto the transparent substrate 130. Note that the binder resin portion 210a and the binder resin portion 210b may be formed of the same binder resin. Hereinafter, the binder resin portion 210a and the binder resin portion 210b may be collectively referred to as the binder resin portion 210.
 図2Aに示すように、複数の金属ナノワイヤ120は、互いに結着樹脂部210aや結着樹脂部210bによって、透明基材130の上に付着している。また複数の金属ナノワイヤ120の間には空隙部200を設けることが望ましい。空隙部200には結着樹脂部210aや結着樹脂部210bが存在しない。空隙部200を設けることで、図1Aに図示したようにフィルム110を湾曲させる場合に発生する、複数の金属ナノワイヤ120間の応力集中を緩和することができる。さらに図2Bを参照して説明するように、空隙部200を介して、金属ナノワイヤ層220の隅々までオーバーコート液230を充填することができる。 As shown in FIG. 2A, the plurality of metal nanowires 120 are attached to the transparent substrate 130 by the binder resin portion 210a and the binder resin portion 210b. Further, it is desirable to provide a gap portion 200 between the plurality of metal nanowires 120. The void portion 200 does not include the binder resin portion 210a or the binder resin portion 210b. By providing the gap portion 200, stress concentration between the plurality of metal nanowires 120 that occurs when the film 110 is curved as illustrated in FIG. 1A can be reduced. Furthermore, as will be described with reference to FIG. 2B, the overcoat liquid 230 can be filled to every corner of the metal nanowire layer 220 through the gap portion 200.
 なお図2Aに示す結着樹脂部210に撥水添加剤を加えると、液状の組成物中における金属ナノワイヤ120の分散の均一性に影響を与える場合がある。 In addition, when a water repellent additive is added to the binder resin part 210 shown in FIG. 2A, the uniformity of dispersion of the metal nanowires 120 in the liquid composition may be affected.
 なお図2Aの状態で、金属ナノワイヤ層220を加圧することで、複数の金属ナノワイヤ120同士の電気的接続の安定性を高めることができる。しかしながら空隙部200がなく、結着樹脂部210が緻密に金属ナノワイヤ120を埋設している場合、金属ナノワイヤ層220に対して、プレス装置等を使って加圧しても、複数の金属ナノワイヤ120同士の電気的な接続安定性が改善されにくいことがある。プレス装置等を使って加圧する場合、図2Aの状態、すなわち複数の金属ナノワイヤ120の間に空隙部200を有する状態で行うことが好ましい。 In addition, the stability of the electrical connection between the plurality of metal nanowires 120 can be enhanced by pressurizing the metal nanowire layer 220 in the state of FIG. 2A. However, when there is no gap portion 200 and the binder resin portion 210 embeds the metal nanowires 120 densely, even if the metal nanowire layer 220 is pressed using a press device or the like, the plurality of metal nanowires 120 are connected to each other. It may be difficult to improve the electrical connection stability. When pressurizing using a press apparatus etc., it is preferable to carry out in the state of FIG.
 図2Aに示す金属ナノワイヤ層220は、金属ナノワイヤ120を分散した樹脂溶液を透明基材130の表面に塗工して成膜することによって形成される。この塗工にはスピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、グラビアコートなど任意の方法を適用できる。 The metal nanowire layer 220 shown in FIG. 2A is formed by coating a resin solution in which the metal nanowires 120 are dispersed on the surface of the transparent substrate 130 to form a film. Any method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, and gravure coating can be applied to this coating.
 次に、図2Bに示すように、金属ナノワイヤ層220の上にオーバーコート液230を塗布し、図2Cに示すようにして、透明バインダー140を形成する。透明バインダー140を形成するためのオーバーコート液230は、熱硬化性樹脂組成物と、電離放射線硬化型樹脂組成物の、少なくとも一つ以上と、撥水添加剤とが含まれることが望ましい。オーバーコート液230は、空隙部200を介して、複数の金属ナノワイヤ120の表面や、金属ナノワイヤ120と透明基材130との結着部分に浸透する。 Next, as shown in FIG. 2B, an overcoat liquid 230 is applied on the metal nanowire layer 220, and a transparent binder 140 is formed as shown in FIG. 2C. The overcoat liquid 230 for forming the transparent binder 140 preferably contains at least one of a thermosetting resin composition, an ionizing radiation curable resin composition, and a water repellent additive. The overcoat liquid 230 permeates the surface of the plurality of metal nanowires 120 and the binding portion between the metal nanowires 120 and the transparent substrate 130 through the gap portion 200.
 結着樹脂部210は、オーバーコート液230に対して、ある程度の相溶性を有することが好ましい。結着樹脂部210aが、オーバーコート液230に対して相溶性を有することで、複数の金属ナノワイヤ120の表面の一部を直接、オーバーコート液230で濡らすことができる。また結着樹脂部210aの少なくとも一部を、オーバーコート液230で置換することも可能となり、複数の金属ナノワイヤ120間の密着力を高められる。同様に、結着樹脂部210bが、オーバーコート液230に対して相溶性を有することで、透明基材130の表面の一部以上を、直接、オーバーコート液230で濡らすことができる。また結着樹脂部210bの少なくとも一部を、オーバーコート液230で置換することで、透明基材130と金属ナノワイヤ120との間の密着性を高められる。このように結着樹脂部210を、オーバーコート液230で濡らすことで、結着樹脂部210の一部または全体を透明バインダー140に置換してもよい。 The binder resin part 210 preferably has a certain degree of compatibility with the overcoat liquid 230. Since the binder resin portion 210 a is compatible with the overcoat liquid 230, a part of the surface of the plurality of metal nanowires 120 can be directly wetted with the overcoat liquid 230. Further, at least a part of the binder resin portion 210a can be replaced with the overcoat liquid 230, and the adhesion between the plurality of metal nanowires 120 can be enhanced. Similarly, since the binder resin portion 210 b is compatible with the overcoat liquid 230, a part or more of the surface of the transparent substrate 130 can be directly wetted with the overcoat liquid 230. Moreover, the adhesiveness between the transparent base material 130 and the metal nanowire 120 can be enhanced by replacing at least a part of the binder resin portion 210b with the overcoat liquid 230. In this way, a part or the whole of the binder resin part 210 may be replaced with the transparent binder 140 by wetting the binder resin part 210 with the overcoat liquid 230.
 金属ナノワイヤ120を結着樹脂部210で覆っておくことで、金属表面が外気(あるいは大気中)に直接触れることなく、結着樹脂部210から透明バインダー140に置換することができる。この結果、金属ナノワイヤ120の表面への、撥水添加剤の偏析を低減できる。この点については後述する。 By covering the metal nanowire 120 with the binder resin portion 210, the metal surface can be replaced with the transparent binder 140 without the metal surface directly touching the outside air (or in the atmosphere). As a result, segregation of the water repellent additive on the surface of the metal nanowire 120 can be reduced. This point will be described later.
 図2Bの状態の後、オーバーコート液230に含まれる溶剤等の揮発成分を、乾燥炉あるいは硬化炉で除去し、残った樹脂成分を硬化することで、オーバーコート液230から透明バインダー140が形成される。すなわち、図2Bの状態の後に図2Cの状態が形成される。なお、透明基材130の第2面にも透明導電膜150を形成すればフィルム110が作製され、透明基材130の第2面にアンチブロッキング層160を形成すればフィルム110が作製される。 After the state of FIG. 2B, a volatile component such as a solvent contained in the overcoat liquid 230 is removed in a drying furnace or a curing furnace, and the remaining resin component is cured to form a transparent binder 140 from the overcoat liquid 230. Is done. That is, the state of FIG. 2C is formed after the state of FIG. 2B. If the transparent conductive film 150 is also formed on the second surface of the transparent substrate 130, the film 110 is produced. If the anti-blocking layer 160 is formed on the second surface of the transparent substrate 130, the film 110 is produced.
 図2Cに示すように、透明導電膜150では、金属ナノワイヤ120の一部が透明バインダー140の表面から、外部(あるいは空気中)へ突出、あるいは露出している。図2Cのように、金属ナノワイヤ120の一部が、透明バインダー140の表面から、外部へ露出することで、透明導電膜150と、外部回路(図示せず)との接続性が高まる。 As shown in FIG. 2C, in the transparent conductive film 150, a part of the metal nanowire 120 protrudes or is exposed from the surface of the transparent binder 140 to the outside (or in the air). As shown in FIG. 2C, a part of the metal nanowire 120 is exposed to the outside from the surface of the transparent binder 140, so that the connectivity between the transparent conductive film 150 and an external circuit (not shown) is improved.
 なお、アンチブロッキング層160は、透明バインダー140と同様に熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。 The anti-blocking layer 160 is preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition, like the transparent binder 140.
 なお、透明導電膜150の表面には、撥水添加剤の一部が露出することが望ましい。詳細は、後述する。 In addition, it is desirable that a part of the water repellent additive is exposed on the surface of the transparent conductive film 150. Details will be described later.
 次に、透明導電膜150のパターニング方法について、図1Cに示すフィルム111を例として、図3A~図3Cを参照しながら説明する。図3A~図3Cに示すように、透明導電膜150がパターニングされることで、透明配線付フィルム(以下、フィルム)300が形成される。 Next, a method for patterning the transparent conductive film 150 will be described with reference to FIGS. 3A to 3C, taking the film 111 shown in FIG. 1C as an example. As shown in FIGS. 3A to 3C, the transparent conductive film 150 is patterned to form a film with transparent wiring (hereinafter referred to as film) 300.
 図3Aは、フィルム111の上に、レジストパターン部240を形成した様子を示す断面図である。レジストパターン部240は、透明導電膜150の上に形成されている。すなわち、レジストパターン部240は透明バインダー140の上に形成されているため、透明バインダー140が多孔質な部分を含む場合でも、その多孔質な部分もレジストパターン部240で覆うことができる。レジストパターン部240は、透明バインダー140に加えて透明導電膜150から露出した金属ナノワイヤ120も覆うように形成する。透明導電膜150から露出した金属ナノワイヤ120を、レジストパターン部240で覆うことで、レジストパターン部240を除去した後(図3Cの状態)において、透明導電膜150から露出した金属ナノワイヤ120を露出した状態で残すことができる。 FIG. 3A is a cross-sectional view showing a state in which a resist pattern portion 240 is formed on the film 111. The resist pattern portion 240 is formed on the transparent conductive film 150. That is, since the resist pattern part 240 is formed on the transparent binder 140, even when the transparent binder 140 includes a porous part, the porous part can be covered with the resist pattern part 240. The resist pattern part 240 is formed so as to cover the metal nanowire 120 exposed from the transparent conductive film 150 in addition to the transparent binder 140. The metal nanowire 120 exposed from the transparent conductive film 150 is covered with the resist pattern portion 240, and after removing the resist pattern portion 240 (the state of FIG. 3C), the metal nanowire 120 exposed from the transparent conductive film 150 is exposed. Can be left in state.
 レジストパターン部240は、市販の感光性レジストを使って形成することができる。図3Aに示すように、複数のレジストパターン部240の間に開口部250を形成する。開口部250は、レジストパターン部240が形成されていない部分である。そして、図3Aに示した状態のフィルム111を、金属ナノワイヤ120のエッチング液に浸漬し、開口部250に露出した金属ナノワイヤ120を除去する。その後、水洗等によりエッチング液の残渣等を除去し、図3Bの状態とする。 The resist pattern portion 240 can be formed using a commercially available photosensitive resist. As shown in FIG. 3A, an opening 250 is formed between the plurality of resist pattern portions 240. The opening 250 is a portion where the resist pattern portion 240 is not formed. Then, the film 111 in the state shown in FIG. 3A is immersed in an etching solution for the metal nanowire 120 to remove the metal nanowire 120 exposed at the opening 250. Thereafter, the residue of the etching solution is removed by washing with water or the like, and the state shown in FIG. 3B is obtained.
 図3Bは、開口部250に一部が露出した金属ナノワイヤ120をエッチング除去した後の状態を説明する断面図である。図3Bにおける細孔部260は、開口部250の形成された金属ナノワイヤ120がエッチング除去されて形成される。 FIG. 3B is a cross-sectional view illustrating a state after the metal nanowire 120 partially exposed at the opening 250 is removed by etching. The pore 260 in FIG. 3B is formed by etching away the metal nanowire 120 in which the opening 250 is formed.
 図3Cは、レジストパターン部240を除去した後の様子を示す断面図である。レジストパターン部240が形成され保護されていた領域は、導電パターン部280になる。そしてレジストパターン部240が形成されておらず開口部250で示した領域は、絶縁パターン部270となる。このように、透明配線290は、絶縁パターン部270と、導電パターン部280とを含む。絶縁パターン部270と導電パターン部280との間に段差を形成することなく、同じ高さとすることで金属ナノワイヤ120による配線パターンの非視認性を高められる。さらに、必要に応じて、導電パターン部280や絶縁パターン部270を覆うように、保護用の硬質保護シート(例えば、PETフィルムや、カバーガラス等の保護板)を載せてもよい。 FIG. 3C is a cross-sectional view showing a state after the resist pattern portion 240 is removed. The region where the resist pattern portion 240 is formed and protected becomes a conductive pattern portion 280. The region indicated by the opening 250 where the resist pattern 240 is not formed becomes the insulating pattern 270. As described above, the transparent wiring 290 includes the insulating pattern portion 270 and the conductive pattern portion 280. By forming the same height without forming a step between the insulating pattern part 270 and the conductive pattern part 280, the invisibility of the wiring pattern by the metal nanowire 120 can be enhanced. Further, if necessary, a protective hard protective sheet (for example, a protective plate such as a PET film or a cover glass) may be placed so as to cover the conductive pattern portion 280 and the insulating pattern portion 270.
 このようにして、透明バインダー140と金属ナノワイヤ120を含む導電パターン部280と、透明バインダー140と金属ナノワイヤ120が除去されて形成された細孔部260を含む絶縁パターン部270を含む透明配線290を、フィルム状の透明基材130の片面または両面に形成する。また導電パターン部280と絶縁パターン部270とは、共に透明であり、さらに導電パターン部280と絶縁パターン部270との境目には凹凸や段差が発生しない。そのため、配線パターン部279の有無が肉眼で認識されにくい。 Thus, the transparent wiring 290 including the conductive pattern portion 280 including the transparent binder 140 and the metal nanowire 120 and the insulating pattern portion 270 including the pore portion 260 formed by removing the transparent binder 140 and the metal nanowire 120 is provided. The film-like transparent substrate 130 is formed on one side or both sides. Further, the conductive pattern portion 280 and the insulating pattern portion 270 are both transparent, and no unevenness or step is generated at the boundary between the conductive pattern portion 280 and the insulating pattern portion 270. Therefore, the presence or absence of the wiring pattern portion 279 is not easily recognized with the naked eye.
 次に、図4を参照しながら、フィルム300の表面の接触角について説明する。 Next, the contact angle of the surface of the film 300 will be described with reference to FIG.
 水滴170a、水滴170cはそれぞれ、導電パターン部280a、導電パターン部280bの上にある。また水滴170bは、絶縁パターン部270の上にある。水滴170aの接触角190aも、水滴170bの接触角190bも、水滴170cの接触角190aも、共に80度以上、125度以下である。接触角190a、接触角190b、接触角190cを、全て80度以上、125度以下とすることで、金属ナノワイヤ120のパターニング性(例えばエッチング性)と、信頼性(例えば高湿状態での電気的信頼性)の両方が良好になる。 The water droplet 170a and the water droplet 170c are on the conductive pattern portion 280a and the conductive pattern portion 280b, respectively. The water droplet 170b is on the insulating pattern portion 270. The contact angle 190a of the water droplet 170a, the contact angle 190b of the water droplet 170b, and the contact angle 190a of the water droplet 170c are both 80 degrees or more and 125 degrees or less. By setting the contact angle 190a, the contact angle 190b, and the contact angle 190c to 80 degrees or more and 125 degrees or less, the patterning property (for example, etching property) of the metal nanowire 120 and the reliability (for example, electrical property in a high humidity state). Both of the reliability are improved.
 接触角190a、接触角190b、接触角190cが、80度未満の場合、金属ナノワイヤ120のパターニング性は良好であっても、信頼性で問題を生じる場合がある。なお図4に示す導電パターン部280a、280bの表面とは、図1Bや図1Cに示す、パターニングする前の透明導電膜150の表面と同じである。そのため図4に示す接触角190aや接触角190cは、図1Aや図2Bの接触角190と同様である。 When the contact angle 190a, the contact angle 190b, and the contact angle 190c are less than 80 degrees, there may be a problem in reliability even if the patterning property of the metal nanowire 120 is good. Note that the surfaces of the conductive pattern portions 280a and 280b shown in FIG. 4 are the same as the surfaces of the transparent conductive film 150 before patterning shown in FIGS. 1B and 1C. Therefore, the contact angle 190a and the contact angle 190c shown in FIG. 4 are the same as the contact angle 190 of FIGS. 1A and 2B.
 接触角190a、接触角190b、接触角190cが125度より大きい場合、さらには接触角が130度以上となった場合、信頼性は良好であっても、パターニング性で問題を生じる場合がある。 When the contact angle 190a, the contact angle 190b, and the contact angle 190c are larger than 125 degrees, and further when the contact angle is 130 degrees or more, there may be a problem in patterning property even if the reliability is good.
 以上のように、図1B、図1Cに示すように金属ナノワイヤ120がパターニングされる前の状態で、透明導電膜150の接触角190は、80度以上、125度以下であり、図4に示すように金属ナノワイヤ120がパターニングされた後の状態でも、接触角190a、接触角190b、接触角190cは80度以上、125度以下である。さらに図4に示すようにパターニングされた後の状態において、導電パターン部280における接触角190a、接触角190cも、絶縁パターン部270における接触角190bも、80度以上、125度以下である。 As described above, the contact angle 190 of the transparent conductive film 150 is not less than 80 degrees and not more than 125 degrees before the metal nanowire 120 is patterned as illustrated in FIGS. 1B and 1C, and is illustrated in FIG. 4. Thus, even after the metal nanowire 120 is patterned, the contact angle 190a, the contact angle 190b, and the contact angle 190c are 80 degrees or more and 125 degrees or less. Furthermore, as shown in FIG. 4, in the state after patterning, the contact angle 190a and contact angle 190c in the conductive pattern portion 280 and the contact angle 190b in the insulating pattern portion 270 are 80 degrees or more and 125 degrees or less.
 さらに、導電パターン部280における接触角190a、接触角190cと、絶縁パターン部270における接触角190bとの差は、3σの範囲で10%以下または10度以下であることが好ましい。また、5%以下または5度以下で、ほぼ同じ値であることがさらに望ましい。両者の接触角の差が、3σで10%を超える場合、あるいは3σで10度を越える場合、パターニング時や信頼性評価時にバラツキが発生する虞がある。 Furthermore, the difference between the contact angle 190a and contact angle 190c in the conductive pattern portion 280 and the contact angle 190b in the insulating pattern portion 270 is preferably 10% or less or 10 degrees or less in the range of 3σ. Further, it is more desirable that the values are substantially the same at 5% or less or 5 degrees or less. If the difference in contact angle between the two exceeds 10% at 3σ, or exceeds 10 degrees at 3σ, there is a risk of variations during patterning and reliability evaluation.
 次に、図5、図6を参照しながら、導電パターン部280における接触角190a、接触角190cと、絶縁パターン部270における接触角190bとの差が3σの範囲で10%以下または10度以下であることが好ましい理由を説明する。すなわち、フィルム111において、図3Aに示すエッチング前と図3Bに示すエッチング後の接触角の差についても同様である。 Next, referring to FIGS. 5 and 6, the difference between the contact angle 190 a and the contact angle 190 c in the conductive pattern portion 280 and the contact angle 190 b in the insulating pattern portion 270 is 10% or less or 10 degrees or less in the range of 3σ. The reason why this is preferable will be described. That is, the same applies to the difference in contact angle between the film 111 before etching shown in FIG. 3A and after etching shown in FIG. 3B.
 図5は、導電パターン部280の表面構造の一例を模式的に示している。この表面構造は、図3Aや図2Cに示すエッチング前の透明導電膜150の表面構造と同じである。 FIG. 5 schematically shows an example of the surface structure of the conductive pattern portion 280. This surface structure is the same as the surface structure of the transparent conductive film 150 before etching shown in FIGS. 3A and 2C.
 透明導電膜150は、透明バインダー140と、金属ナノワイヤ120とを含む。金属ナノワイヤ120の一部は、透明バインダー140の表面より露出している。また、透明バインダー140の最表面には、透明バインダー140に添加していた撥水添加剤310が配向するように露出していることが好ましい。撥水添加剤310の一部は、金属ナノワイヤ120の表面にも付着している。 The transparent conductive film 150 includes a transparent binder 140 and the metal nanowire 120. A part of the metal nanowire 120 is exposed from the surface of the transparent binder 140. Moreover, it is preferable that the outermost surface of the transparent binder 140 is exposed so that the water repellent additive 310 added to the transparent binder 140 is oriented. A part of the water repellent additive 310 is also attached to the surface of the metal nanowire 120.
 透明バインダー140は、撥水基を有する化合物である撥水添加剤310を含む。そのため、透明導電膜150の接触角を、80度以上、125度以下に制御することができる。撥水基とは、表面自由エネルギーが特に低い官能基のことであり、例えば、フルオロアルキル基、フルオロアルキレン基である。このような化学構造を保有している分子鎖を、透明導電膜150の最表面、すなわち透明バインダー140の最表面に存在させるためには、例えばパーフルオロポリエーテル基含有シランを、撥水添加剤310として用いることが好ましい。パーフルオロポリエーテル基含有シラン化合物としては、ダイキン工業株式会社よりオプスールDSXやオプツールAES4,信越化学工業株式会社よりKY-164やKY-130,株式会社フロロテクノロジーよりフロロサーフFG-5020、ソルベイスペシャルティポリマーズジャパン株式会社よりFluoroLink S10等が提供されている。 The transparent binder 140 includes a water repellent additive 310 that is a compound having a water repellent group. Therefore, the contact angle of the transparent conductive film 150 can be controlled to 80 degrees or more and 125 degrees or less. The water repellent group is a functional group having a particularly low surface free energy, such as a fluoroalkyl group or a fluoroalkylene group. In order for the molecular chain having such a chemical structure to exist on the outermost surface of the transparent conductive film 150, that is, the outermost surface of the transparent binder 140, for example, a perfluoropolyether group-containing silane is used as a water repellent additive. It is preferable to use as 310. As perfluoropolyether group-containing silane compounds, Daikin Industries, Ltd. Opsule DSX, Optool AES4, Shin-Etsu Chemical Co., Ltd. KY-164 and KY-130, Fluoro Technology Co., Ltd. Fluorosurf FG-5020, Solvay Specialty Polymers Japan FluoroLink S10 etc. are provided by the corporation.
 透明バインダー140に添加された撥水添加剤310には、撥水添加剤310が有するフルオロアルキル基、フルオロアルキレン基等の撥水機能によって、表面自由エネルギーを最小にしようとするドライビングフォースが発生する。このドライビングフォースは、主に外気(あるいは大気)に接する表面に発生すると考えられる。この結果、効率的に透明導電膜150の表面近くにフルオロアルキル基、フルオロアルキレン基等の撥水基を偏析させることができる。 The water repellent additive 310 added to the transparent binder 140 generates a driving force for minimizing surface free energy by the water repellent function of the water repellent additive 310 such as a fluoroalkyl group or a fluoroalkylene group. . This driving force is considered to occur mainly on the surface in contact with the outside air (or the atmosphere). As a result, water repellent groups such as a fluoroalkyl group and a fluoroalkylene group can be segregated near the surface of the transparent conductive film 150 efficiently.
 このように撥水添加剤310の一部、すなわちフルオロアルキル基、フルオロアルキレン基等の撥水基を、透明導電膜150の表面に露出させることで、透明バインダー140に添加する撥水添加剤310の添加量が少量であっても、透明導電膜150の表面の撥水性を高め、接触角を80度以上、125度以下に制御できる。また、複数の金属ナノワイヤ120同士が接触して、導電パスを形成する際の阻害要因になることを撥水添加剤310が防止することができる。 Thus, by exposing a part of the water repellent additive 310, that is, a water repellent group such as a fluoroalkyl group or a fluoroalkylene group to the surface of the transparent conductive film 150, the water repellent additive 310 added to the transparent binder 140. Even if the addition amount is small, the water repellency of the surface of the transparent conductive film 150 can be increased, and the contact angle can be controlled to 80 degrees or more and 125 degrees or less. Further, the water repellent additive 310 can prevent the plurality of metal nanowires 120 from coming into contact with each other and becoming an inhibiting factor when forming a conductive path.
 なお透明導電膜150の接触角が125度より大きい場合、さらには接触角が130度以上の場合、透明バインダー140に添加する撥水添加剤310の添加量を増やす必要がある。この場合、余剰となった撥水添加剤310が、透明バインダー140の内部で、ミセル(micelle)等を形成し、透明バインダー140の光学特性に影響を与える場合がある。 When the contact angle of the transparent conductive film 150 is larger than 125 degrees, and further when the contact angle is 130 degrees or more, it is necessary to increase the amount of the water repellent additive 310 added to the transparent binder 140. In this case, the surplus water-repellent additive 310 may form micelles or the like inside the transparent binder 140 and affect the optical properties of the transparent binder 140 in some cases.
 図6は、絶縁パターン部270の表面構造を模式的に説明している。透明導電膜150は、透明バインダー140と、細孔部260とを含む。透明バインダー140の表面に、一部の撥水添加剤310aが露出しているため、透明バインダー140の接触角が80度以上、125度以下になっている。さらに、細孔部260の周辺や内部、あるいは細孔部260を形成する内壁等に一部の撥水添加剤310bが露出している。これによる効果については後述する。 FIG. 6 schematically illustrates the surface structure of the insulating pattern portion 270. The transparent conductive film 150 includes a transparent binder 140 and pores 260. Since some of the water repellent additive 310a is exposed on the surface of the transparent binder 140, the contact angle of the transparent binder 140 is not less than 80 degrees and not more than 125 degrees. Furthermore, a part of the water repellent additive 310 b is exposed around or inside the pores 260, or on the inner wall forming the pores 260. The effect of this will be described later.
 図6において、透明バインダー140の最表面には、透明バインダー140に添加された撥水添加剤310aが配向するように露出している。そして細孔部260にも、撥水添加剤310bが配向するように露出する。このように、透明バインダー140の表面や細孔部260の開口部周辺に撥水添加剤310aが露出し、細孔部260の内部(あるいは内壁)等、細孔部260の周囲に撥水添加剤310bが露出する。すなわちフルオロアルキル基、フルオロアルキレン基を、細孔部260に偏析させることで、細孔部260に水分が侵入しにくくなり、さらに細孔部260内の水分を外部に速やかに排出させることができる。 In FIG. 6, the water repellent additive 310a added to the transparent binder 140 is exposed on the outermost surface of the transparent binder 140 so as to be oriented. The pores 260 are also exposed so that the water repellent additive 310b is oriented. As described above, the water repellent additive 310a is exposed on the surface of the transparent binder 140 and around the opening of the pore 260, and the water repellent is added around the pore 260 such as the inside (or inner wall) of the pore 260. The agent 310b is exposed. That is, by segregating the fluoroalkyl group and the fluoroalkylene group into the pores 260, it becomes difficult for moisture to enter the pores 260, and the moisture in the pores 260 can be quickly discharged to the outside. .
 すなわち図5に示す状態では、撥水添加剤310は、主に外気(あるいは大気)と接する表面に偏析している。そのため、金属ナノワイヤ120と透明バインダー140との接触界面には撥水添加剤310は偏析しにくい。しかし図6に示すように、金属ナノワイヤ120がエッチング除去され細孔部260が形成されると、細孔部260内の表面が外気と接する。そのため、撥水添加剤310が有するフルオロアルキル基、フルオロアルキレン基等の機能によって、表面自由エネルギーを最小にしようとするドライビングフォースが発生し、細孔部260内の表面に撥水添加剤310の撥水基が配向する。その結果、細孔部260への水分の侵入を抑制する効果が得られる。 That is, in the state shown in FIG. 5, the water repellent additive 310 is segregated mainly on the surface in contact with the outside air (or the atmosphere). Therefore, the water repellent additive 310 is unlikely to segregate at the contact interface between the metal nanowire 120 and the transparent binder 140. However, as shown in FIG. 6, when the metal nanowire 120 is removed by etching and the pores 260 are formed, the surface in the pores 260 comes into contact with the outside air. Therefore, the driving force for minimizing the surface free energy is generated by the functions of the water repellent additive 310 such as the fluoroalkyl group and the fluoroalkylene group, and the surface of the water repellent additive 310 is formed on the surface in the pore 260. The water repellent group is oriented. As a result, an effect of suppressing moisture intrusion into the pores 260 is obtained.
 図4や、図5、図6に示すように、導電パターン部280aや絶縁パターン部270等の表面に偏析した撥水基は、SIMS(Secondary Ion Mass Spectrometry)等の高価な表面分析方法で調べることができる。しかしながら、こうした分析方法は被測定物の表面にダメージを与える可能性がある。一方、接触角を用いた測定法は安価であり、大面積にも対応でき、被測定物の表面にダメージを与えることがない。そのため、細孔部260を有する絶縁パターン部270における撥水基の存在を簡易的に調べるために、接触角190bの測定が有効である。 As shown in FIGS. 4, 5, and 6, the water-repellent groups segregated on the surface of the conductive pattern portion 280 a, the insulating pattern portion 270, etc. are examined by an expensive surface analysis method such as SIMS (Secondary Ion Mass Spectrometry). be able to. However, such an analysis method may damage the surface of the object to be measured. On the other hand, the measurement method using the contact angle is inexpensive, can cope with a large area, and does not damage the surface of the object to be measured. Therefore, the measurement of the contact angle 190b is effective for simply examining the presence of the water-repellent group in the insulating pattern portion 270 having the pores 260.
 なお絶縁パターン部270や導電パターン部280の形状が微細になった場合は、ピコリットルオーダーの微小液滴を用いた市販の表面接触角の測定機を用いることができる。こうした微小液滴を用いた接触角の測定機は、インクジェット用の微小インク液滴の接触角や、インクジェット装置から発射された液滴が紙の上に着弾した後の濡れ性評価、ウエハやガラス基板等に刻まれた微細パターン上での接触角の測定、髪の毛の上での接触角の測定等の目的で使われている。 In addition, when the shape of the insulating pattern part 270 or the conductive pattern part 280 becomes fine, a commercially available surface contact angle measuring instrument using a fine droplet of picoliter order can be used. These contact angle measuring machines using micro droplets are used for contact angles of micro ink droplets for inkjet, wettability evaluation after droplets ejected from an inkjet device land on paper, wafers and glass It is used for the purpose of measuring the contact angle on a fine pattern carved on a substrate, etc., and measuring the contact angle on the hair.
 以下に、図7を参照しながら、本実施の形態におけるタッチパネル360や表示装置390について説明する。タッチパネル360や表示装置390は、透明配線付フィルム(以下、フィルム)300を含む。 Hereinafter, the touch panel 360 and the display device 390 according to the present embodiment will be described with reference to FIG. The touch panel 360 and the display device 390 include a film with transparent wiring (hereinafter, film) 300.
 タッチパネル360は、フィルム300と、半導体素子350と、硬質保護シート340とを有する。半導体素子350は、配線等を介してフィルム300の導電パターン部280に電気的に接続されている。硬質保護シート340は、フィルム300の透明配線290が設けられた面を覆っている。 The touch panel 360 includes a film 300, a semiconductor element 350, and a hard protective sheet 340. The semiconductor element 350 is electrically connected to the conductive pattern portion 280 of the film 300 through wiring or the like. The hard protective sheet 340 covers the surface of the film 300 on which the transparent wiring 290 is provided.
 タッチパネル360は、例えば指先の静電容量を感知する静電容量式タッチパネルである。指先320が、矢印370に示すように透明導電膜150に近づくことで、半導体素子350が指先320の容量成分330を検知して、指先320の位置情報や動きを検知する。 The touch panel 360 is, for example, a capacitive touch panel that senses the capacitance of a fingertip. As the fingertip 320 approaches the transparent conductive film 150 as indicated by an arrow 370, the semiconductor element 350 detects the capacitive component 330 of the fingertip 320 and detects position information and movement of the fingertip 320.
 また透明配線290の上で、絶縁パターン部270と導電パターン部280を覆うように、極薄のガラス板やPETフィルム等の硬質保護シート340を設けることで、タッチパネル360の表面での指先320のすべり性や物理的強度、信頼性等が高まる。 Further, by providing a hard protective sheet 340 such as a very thin glass plate or PET film so as to cover the insulating pattern part 270 and the conductive pattern part 280 on the transparent wiring 290, the fingertip 320 on the surface of the touch panel 360 is provided. Increases slipperiness, physical strength, reliability, etc.
 さらに硬質保護シート340で追われる絶縁パターン部270は、細孔部260を有する。図6に示したように、細孔部260には撥水添加剤310bが露出していることが好ましい。この構成によりタッチパネル360の信頼性が高まる。 Furthermore, the insulating pattern part 270 chased by the hard protective sheet 340 has a pore part 260. As shown in FIG. 6, it is preferable that the water repellent additive 310 b is exposed in the pores 260. With this configuration, the reliability of the touch panel 360 is increased.
 なお、透明配線290に含まれる金属ナノワイヤ120は、水を吸いやすいことが知られている。そのため金属ナノワイヤ120が透明バインダー140より露出している場合、この露出部から金属ナノワイヤ120をエッチング除去することができる。しかしながら、金属ナノワイヤ120をエッチングにより除去して形成された開口部250の内部には、信頼性に影響を与える水分等が堆積されやすい。これに対し、透明配線290の上には、硬質保護シート340が接着材等を介して固定される。そして、硬質保護シート340が、細孔部260の表面を封止するため、細孔部260の内部へ水分が侵入、堆積することを防止することができる。 Note that it is known that the metal nanowires 120 included in the transparent wiring 290 easily absorb water. Therefore, when the metal nanowire 120 is exposed from the transparent binder 140, the metal nanowire 120 can be removed by etching from the exposed portion. However, moisture or the like that affects reliability is likely to be deposited inside the opening 250 formed by removing the metal nanowire 120 by etching. On the other hand, on the transparent wiring 290, the hard protective sheet 340 is fixed via an adhesive or the like. And since the hard protective sheet 340 seals the surface of the pore part 260, it can prevent that a water | moisture content penetrate | invades and accumulates inside the pore part 260. FIG.
 一般的な硬質保護シート340の外面には、指先320から伝わる油脂性の汚れ等の付着防止のため撥水処理されることがある。このような撥水処理は硬質保護シート340の表面にだけ施され、透明配線290(絶縁パターン部270)に含まれる細孔部260には施されない。これは硬質保護シート340と透明配線290との密着力に影響を与えるためである。しかしながら本実施の形態では前述のように細孔部260に撥水添加剤310bが露出している。そのため、細孔部260が撥水性を有する。 The outer surface of a general hard protective sheet 340 may be subjected to a water repellent treatment to prevent adhesion of oily dirt transmitted from the fingertip 320. Such a water repellent treatment is performed only on the surface of the hard protective sheet 340, and is not performed on the pores 260 included in the transparent wiring 290 (insulating pattern portion 270). This is because the adhesive force between the hard protective sheet 340 and the transparent wiring 290 is affected. However, in this embodiment, the water repellent additive 310b is exposed in the pores 260 as described above. Therefore, the pore 260 has water repellency.
 表示装置390は、例えば携帯電話やタブレット端末、パソコン等である。表示装置390は、タッチパネル360と、タッチパネル360に対向して設置された表示素子380とを有する。表示素子380は、例えば液晶やEL等の表示素子である。このように、タッチパネル360の片側に表示素子380を設置することで、信頼性の高い表示装置390を提供できる。 The display device 390 is, for example, a mobile phone, a tablet terminal, or a personal computer. The display device 390 includes a touch panel 360 and a display element 380 installed to face the touch panel 360. The display element 380 is a display element such as a liquid crystal or an EL. Thus, by installing the display element 380 on one side of the touch panel 360, a highly reliable display device 390 can be provided.
 なおフィルム110、111や、フィルム300において、硬質保護シート340との密着性を高めるためには、プラズマ処理等の濡れ性改善処理を行うことは有用である。フィルム110、111や、フィルム300の場合、プラズマ処理等の濡れ性改善処理を行っても、細孔部260に露出している撥水添加剤310に影響を与えない。すなわち、このような外的な処理は細孔部260の内部にまで影響を与えない。これは細孔部260の直径が細く、細孔部260の長さや深さが大きいためである。一方、細孔部260に露出している撥水添加剤310は、内的な処理となる。すなわち、透明バインダー140に添加された撥水添加剤310は、その表面自由エネルギーを最小にしようとするドライビングフォースによって、細孔部260の大きさに関係なく、細孔部260内に露出する。 In addition, in order to improve the adhesiveness with the hard protective sheet 340 in the films 110 and 111 and the film 300, it is useful to perform wettability improvement processing such as plasma processing. In the case of the films 110 and 111 and the film 300, even when wettability improving processing such as plasma processing is performed, the water repellent additive 310 exposed in the pores 260 is not affected. That is, such an external process does not affect the inside of the pore 260. This is because the diameter of the pore 260 is small and the length and depth of the pore 260 are large. On the other hand, the water repellent additive 310 exposed in the pores 260 is an internal treatment. That is, the water repellent additive 310 added to the transparent binder 140 is exposed in the pores 260 regardless of the size of the pores 260 by the driving force that minimizes the surface free energy.
 またフィルム110、111を、透明電磁シールド(透明シールドフィルム)として活用することも可能である。透明電磁シールドは、液晶表示装置等の表面に貼り付けられ、液晶表示装置から放射される各種電磁波をカットあるいは減衰させる機能を有する。透明電磁シールドの一例は、液晶表示装置の外形に合わせて切断したフィルム111と、フィルム111の周縁部に設けられたグランド用の配線等を有する。なお電磁シールドの目的で用いる場合、透明導電膜150のパターニングは不要である。透明シールドフィルムとしての詳細は実施の形態2で説明する。 Also, the films 110 and 111 can be used as a transparent electromagnetic shield (transparent shield film). The transparent electromagnetic shield is attached to the surface of a liquid crystal display device or the like, and has a function of cutting or attenuating various electromagnetic waves radiated from the liquid crystal display device. An example of the transparent electromagnetic shield includes a film 111 cut in accordance with the outer shape of the liquid crystal display device, a ground wiring provided on the peripheral edge of the film 111, and the like. When used for the purpose of electromagnetic shielding, patterning of the transparent conductive film 150 is not necessary. Details of the transparent shield film will be described in Embodiment 2.
 次に、具体的な例を用いて、本実施の形態による効果について詳しく説明する。 Next, the effect of this embodiment will be described in detail using a specific example.
 (金属ナノワイヤ層の形成)
 アクリル樹脂(新中村化学工業(株)製「A-DPH」)14.55質量部を、メチルエチルケトン34.87質量部とメチルイソブチルケトン34.86質量部の混合溶媒に溶解する。次にこの溶液に金属ナノワイヤを配合する。具体的にはメチルエチルケトンを分散媒として金属ナノワイヤの固形分3.0質量%を分散して分散液を調製し、上記の溶液にこの分散液を12.0質量部加えてよく混合する。さらに光重合開始剤である1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバガイギー社製「イルガキュア184」)0.72質量部を加えてよく混合し、25℃の恒温雰囲気下で1時間撹拌混合する。このようにして、金属ナノワイヤ層を形成するためのコーティング材組成物を調製する。
(Formation of metal nanowire layers)
14.55 parts by mass of an acrylic resin (“A-DPH” manufactured by Shin-Nakamura Chemical Co., Ltd.) is dissolved in a mixed solvent of 34.87 parts by mass of methyl ethyl ketone and 34.86 parts by mass of methyl isobutyl ketone. Next, metal nanowire is mix | blended with this solution. Specifically, a solid solution of 3.0% by mass of metal nanowires is dispersed using methyl ethyl ketone as a dispersion medium to prepare a dispersion, and 12.0 parts by mass of this dispersion is added to the above solution and mixed well. Further, 0.72 parts by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (“Irgacure 184” manufactured by Ciba Geigy Co.), which is a photopolymerization initiator, is added and mixed well, followed by stirring and mixing in a constant temperature atmosphere at 25 ° C. for 1 hour. Thus, the coating material composition for forming a metal nanowire layer is prepared.
 なお、「Materials Chemistry and Physics vol.114 p333-338“Preparation of Agnanorodswith high yield by polyol process”」に準じて作製した金属ナノワイヤを用いている。この金属ナノワイヤの平均直径は50nm、平均長さは5μmであり、素材は銀である。 In addition, the metal nanowire produced according to "Materials Chemistry and Physics vol. 114 p333-338" Preparation of Aganorodwith high yield poly process "" is used. The average diameter of the metal nanowire is 50 nm, the average length is 5 μm, and the material is silver.
 そして、上記の金属ナノワイヤ層を形成するためのコーティング材組成物を、透明基材であるPETフィルムの表面に、厚さが100nmになるようにコーターによって塗布し、加熱して乾燥する。このようにして、金属ナノワイヤ層を形成する。なお、上記配合比で作製された金属ナノワイヤ層が形成されたシートのシート抵抗は40Ω/□である。 Then, the coating material composition for forming the metal nanowire layer is applied to the surface of the PET film, which is a transparent substrate, with a coater so as to have a thickness of 100 nm, and heated and dried. In this way, a metal nanowire layer is formed. In addition, the sheet resistance of the sheet | seat with which the metal nanowire layer produced with the said mixture ratio was formed is 40 ohms / square.
 さらに、金属ナノワイヤの配合量を調整することにより、それぞれ、シート抵抗が10Ω/□、100Ω/□となる金属ナノワイヤ層が形成されたシートを作製する。 Further, by adjusting the compounding amount of the metal nanowires, sheets with metal nanowire layers having sheet resistances of 10Ω / □ and 100Ω / □, respectively, are prepared.
 (透明バインダーの形成)
 アクリル樹脂(新中村化学工業株式会社製、品番U-6LPA)2.1質量部に、メチルエチルケトン48.3質量部及びメチルイソブチルケトン48.3質量部を加えて混合することで、アクリル樹脂を溶解させ、これにより混合液を調製する。この混合液に、撥水添加剤として、ダイキン工業(株)製オプツールDSX(固形分20質量%)1.0質量部を加え、室温で混合する。この混合液にさらに光重合開始剤1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバガイギー社製、品名イルガキュア184)0.3質量部を加え、よく混合した後、25℃の恒温雰囲気下で30分間撹拌混合する。これにより、透明バインダーを形成するためのオーバーコート液を調製する。
(Formation of transparent binder)
Acrylic resin is dissolved by adding 48.3 parts by mass of methyl ethyl ketone and 48.3 parts by mass of methyl isobutyl ketone to 2.1 parts by mass of acrylic resin (manufactured by Shin-Nakamura Chemical Co., Ltd., product number U-6LPA). Thus, a mixed solution is prepared. To this mixed solution, 1.0 part by mass of OPTOOL DSX (solid content: 20% by mass) manufactured by Daikin Industries, Ltd. is added as a water repellent additive and mixed at room temperature. Further, 0.3 parts by mass of a photopolymerization initiator 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure 184, manufactured by Ciba Geigy Co., Ltd.) was added to this mixed solution and mixed well, followed by stirring for 30 minutes in a constant temperature atmosphere at 25 ° C. Mix. Thereby, the overcoat liquid for forming a transparent binder is prepared.
 このようにして調製されたオーバーコート液を、前述の金属ナノワイヤ層の上に塗布・乾燥し、図2Bに示すように、透明バインダーを形成して、評価用サンプルを作製する。なお、上記配合比で作製されたサンプルの接触角は105度である。 The overcoat solution thus prepared is applied and dried on the metal nanowire layer, and a transparent binder is formed as shown in FIG. 2B to prepare a sample for evaluation. In addition, the contact angle of the sample produced with the said mixture ratio is 105 degree | times.
 さらに撥水添加剤の添加量を調整して、接触角がそれぞれ、75度、80度、125度、130度となる評価サンプルを作製している。また、上記の手順において、撥水添加剤を添加しないオーバーコート液も調製し、透明バインダーを形成している。この場合、接触角は55度である。 Furthermore, by adjusting the addition amount of the water repellent additive, evaluation samples having contact angles of 75 degrees, 80 degrees, 125 degrees, and 130 degrees are produced. Further, in the above procedure, an overcoat liquid not containing a water repellent additive is also prepared to form a transparent binder. In this case, the contact angle is 55 degrees.
 以上のように、金属ナノワイヤ層については、金属ナノワイヤの配合量が異なりシート抵抗が10Ω/□、40Ω/□、100Ω/□となる3種類を用意し、透明バインダーについては撥水添加剤の添加量の異なる6種類を準備する。これらの組み合わせにより18種類の評価サンプルを作製し、評価している。 As described above, three types of metal nanowire layers with different compounding amounts of metal nanowires and sheet resistances of 10Ω / □, 40Ω / □, and 100Ω / □ are prepared, and water-repellent additives are added to the transparent binder. Prepare 6 types with different quantities. 18 kinds of evaluation samples are produced and evaluated by these combinations.
 (評価1-1:エッチング性)
 エッチング性は、以下のようにして評価している。各評価サンプルにおける透明電極膜上にエッチングレジストを形成する。続いて、各評価サンプルに、35℃のエッチング液(塩化第二鉄水溶液)を用いてエッチング処理を施す。この操作にて、エッチングレジストに覆われていない領域から金属ナノワイヤを除去する。このとき、金属ナノワイヤが除去されて絶縁パターン部が形成されるまでのエッチング処理の所用時間を測定している。この所要時間が1分以内の場合をGD(Good)、所要時間が1分より長い場合をOK、エッチング不可能の場合をNG(No Good)と評価している。「GD~OK」は、複数種類のエッチング条件において評価した結果、GDの場合や、OKの場合があることを意味する。すなわち、エッチング液の種類や濃度によってはGDの場合や、OKの場合があることを意味する。
(Evaluation 1-1: Etching)
The etching property is evaluated as follows. An etching resist is formed on the transparent electrode film in each evaluation sample. Subsequently, each evaluation sample is subjected to an etching treatment using an etching solution (ferric chloride aqueous solution) at 35 ° C. By this operation, the metal nanowire is removed from the region not covered with the etching resist. At this time, the time required for the etching process until the metal nanowire is removed and the insulating pattern portion is formed is measured. The case where the required time is within 1 minute is evaluated as GD (Good), the case where the required time is longer than 1 minute is OK, and the case where the etching is impossible is evaluated as NG (No Good). “GD to OK” means that there are cases of GD or OK as a result of evaluation under a plurality of types of etching conditions. That is, depending on the type and concentration of the etching solution, it may mean GD or OK.
 (評価1-2:信頼性)
 信頼性は、エッチングにより櫛刃電極等のパターンで導電パターン部と絶縁パターン部を形成し、85℃、湿度85%RHの環境中で、96時間の間、導電パターン部間に直流(DC)3V印加し続ける前後の抵抗の変化率で評価している。抵抗変化率が、1.5倍未満である場合はGD(Good)、1.5倍以上、2.0倍未満である場合はOK、2.0倍以上である場合はNG(No Good)と評価している。なお信頼性評価については、JIS-C-5028(電子部品の耐湿信頼性試験)や,JIS-Z-3284(ソルダーペーストの絶縁抵抗試験等を参考にしている。
(Evaluation 1-2: Reliability)
The reliability is that the conductive pattern part and the insulating pattern part are formed in a pattern such as a comb blade electrode by etching, and direct current (DC) is applied between the conductive pattern parts for 96 hours in an environment of 85 ° C. and humidity of 85% RH. Evaluation is based on the rate of change in resistance before and after 3 V is continuously applied. GD (Good) when the resistance change rate is less than 1.5 times, OK when 1.5 times or more and less than 2.0 times, NG (No Good) when it is 2.0 times or more It is evaluated. For reliability evaluation, JIS-C-5028 (moisture resistance reliability test of electronic parts) and JIS-Z-3284 (insulation resistance test of solder paste) are referred to.
 (評価1-3:光学特性)
 光学特性は、撥水添加剤を添加していないサンプルを基準とし、同等の場合をGD(Good)、それより光学特性(ヘイズや透過率等)が低下する場合をOKと評価している。「GD~OK」は、透明バインダーに加える撥水添加剤の品番や濃度、分子量等を複数、変化させて実験すると、GDとなったり、OKとなったりする場合があることを意味する。
(Evaluation 1-3: Optical characteristics)
The optical characteristics are evaluated as GD (Good) when the sample is not added with a water-repellent additive, and OK when the optical characteristics (haze, transmittance, etc.) are reduced. “GD to OK” means that when a plurality of water repellent additives to be added to the transparent binder are tested with different product numbers, concentrations, molecular weights, and the like, GD or OK may occur.
 (総合評価1)
 総合評価は、サンプルの品質に量産性を加味した総合評価であり、Aは良好(Good)、Bは解決すべき課題が残る場合がある(OK)、CはNo GoodまたはPoorを意味する。
(Comprehensive evaluation 1)
The comprehensive evaluation is a comprehensive evaluation in which mass productivity is added to the quality of the sample, A is good (Good), B may have a problem to be solved (OK), and C means No Good or Poor.
 各評価サンプルの、評価結果を(表1)~(表3)に示す。(表1)は、シート抵抗が10Ω/□となる金属ナノワイヤ層を用い、撥水添加剤の添加量の異なるオーバーコート液で接触角の異なる透明バインダーを形成した場合の各サンプルの評価結果を示している。同様に、(表2)、(表3)はシート抵抗がそれぞれ、40Ω/□、100Ω/□となる金属ナノワイヤ層を用いた場合の評価結果を示している。 The evaluation results of each evaluation sample are shown in (Table 1) to (Table 3). (Table 1) shows the evaluation results for each sample when a metal nanowire layer having a sheet resistance of 10Ω / □ is used and transparent binders having different contact angles are formed with overcoat liquids having different amounts of water repellent additives. Show. Similarly, (Table 2) and (Table 3) show the evaluation results when using metal nanowire layers with sheet resistances of 40Ω / □ and 100Ω / □, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 接触角が55度であるサンプルAC1、AC11、AC21の結果を比較すると、信頼性評価において、AC1ではOK、AC11ではOK~NG、AC21ではNGとなっている。これはシート抵抗が高くなるほど、透明導電膜の中に含まれる金属ナノワイヤの密度が低下するため、抵抗値変化が大きくなるためと考えられる。すなわち一般的な金属のマイグレーションでは、隣接した電極間がデントライト等の発生によりショート(短絡)してしまう。しかしながら、金属ナノワイヤを含む透明導電膜の場合、二つの導電パターン部の間に、一つの絶縁パターン部を設けて、この二つの導電パターン部間に電圧を印加した場合、デントライトの発生によるショート(短絡)ではなくて、導電パターン部間の断線となる。このような場合、図6に示すように、絶縁パターン部270において、細孔部260の表面が撥水性を有していることが有用である。なお、細孔部260以外に、透明バインダー140に含まれる細孔やボイド等の内表面も撥水性を有していることが有用である。 Comparing the results of samples AC1, AC11, and AC21 having a contact angle of 55 degrees, the reliability evaluation is OK for AC1, OK to NG for AC11, and NG for AC21. This is presumably because the higher the sheet resistance, the lower the density of the metal nanowires contained in the transparent conductive film, and the greater the change in resistance value. That is, in general metal migration, adjacent electrodes are short-circuited due to the generation of dent light or the like. However, in the case of a transparent conductive film including metal nanowires, when one insulating pattern part is provided between two conductive pattern parts and a voltage is applied between the two conductive pattern parts, a short circuit occurs due to the generation of dent light. It is not (short circuit), but is a disconnection between the conductive pattern portions. In such a case, as shown in FIG. 6, in the insulating pattern portion 270, it is useful that the surface of the pore portion 260 has water repellency. In addition to the pores 260, it is useful that the inner surfaces of the pores and voids contained in the transparent binder 140 have water repellency.
 すなわち、金属ナノワイヤ120を構成する金属材料がイオン化しても、導電パターン部280間が、細孔部260を有する絶縁パターン部270で絶縁される。その際、細孔部260の表面に偏析したフルオロアルキル基、フルオロアルキレン基等の撥水基が、イオン化した金属材料の移動を抑制し、電気的な信頼性を高めると考えられる。 That is, even if the metal material constituting the metal nanowire 120 is ionized, the conductive pattern portions 280 are insulated by the insulating pattern portion 270 having the pores 260. At that time, it is considered that a water repellent group such as a fluoroalkyl group or a fluoroalkylene group segregated on the surface of the pore 260 suppresses the movement of the ionized metal material and increases the electrical reliability.
 なおサンプルAC1、AC11、AC21において、金属ナノワイヤが湿式でエッチング除去されて形成された細孔部を封止するために、細孔封止処理(例えば、表面に薄く樹脂層を塗布形成する等)を行えば、信頼性は改善される。例えば、表面に薄く樹脂層を塗布形成すればよい。しかしながら、湿式エッチングの後に新たに細孔封止処理を加えることは、製品価格に影響を与える。 In samples AC1, AC11, and AC21, a pore sealing process (for example, coating a thin resin layer on the surface) is performed in order to seal the pores formed by removing the metal nanowires by wet etching. The reliability is improved. For example, a thin resin layer may be applied and formed on the surface. However, adding a new pore sealing process after wet etching affects the product price.
 サンプルAC2、AC12、AC22の接触角は75度である。信頼性評価結果は、シート抵抗10Ω/□のAC2と40Ω/□のAC12の場合はOK、シート抵抗100Ω/□のAC22の場合はOK~NGである。これは、図6に示したような、撥水添加剤による細孔部における水分排除効果が得られなかったためと考えられる。 The contact angle of samples AC2, AC12, and AC22 is 75 degrees. The reliability evaluation results are OK for AC2 with sheet resistance of 10Ω / □ and AC12 with 40Ω / □, and OK to NG for AC22 with sheet resistance of 100Ω / □. This is presumably because the water removal effect in the pores by the water repellent additive as shown in FIG. 6 was not obtained.
 一方、接触角が80度以上、125度以下のサンプルAE1~AE23では、シート抵抗に関わらず、信頼性がGDである。このように接触角が80度以上、125度以下となるように撥水添加剤の配合量を調整とすることで、図6に示した撥水添加剤310による細孔部260における水分除去効果が充分に得られることがわかる。 On the other hand, in the samples AE1 to AE23 having a contact angle of 80 degrees or more and 125 degrees or less, the reliability is GD regardless of the sheet resistance. In this way, by adjusting the blending amount of the water repellent additive so that the contact angle is 80 degrees or more and 125 degrees or less, the water removal effect in the pores 260 by the water repellent additive 310 shown in FIG. It can be seen that is sufficiently obtained.
 またサンプルAE1~AE23において、シート抵抗に関わらず、光学特性はGDである。これは、接触角が75度以上、125度以下となる撥水添加剤の配合量の範囲では、透明バインダー140に添加された撥水添加剤310が、効果的に透明導電膜150の表面に偏析しているためと考えられる。 In Samples AE1 to AE23, the optical characteristic is GD regardless of the sheet resistance. This is because the water-repellent additive 310 added to the transparent binder 140 is effectively applied to the surface of the transparent conductive film 150 within the range of the water-repellent additive in which the contact angle is 75 degrees or more and 125 degrees or less. This is thought to be due to segregation.
 一方、接触角が130度であるサンプルAC3、AC13、AC23ではいずれも、光学特性がGD~OKとなっている。これは透明バインダーに添加された撥水添加剤の一部が、飽和状態を超えて余剰になり、透明導電膜(透明バインダー)等においても、ミセルのように析出してしまい、光学特性に影響を与えたと考えられる。 On the other hand, in the samples AC3, AC13, and AC23 having a contact angle of 130 degrees, the optical characteristics are GD to OK. This is because part of the water-repellent additive added to the transparent binder becomes surplus beyond the saturation state, and even in the transparent conductive film (transparent binder), it is deposited like micelles, affecting the optical properties. It is thought that gave.
 (実施の形態2)
 図8Aは、本発明の実施の形態2による透明シールドフィルム(以下、フィルム)410の斜視図である。図8Bは、図8Aに示す8B-8B線における断面の一部の拡大図である。フィルム410の一つの形態は、図8Aに示すようなシート状の枚葉形状を有するが、実施の形態1で図1Aに示したように長尺の連続したロール状の形状を有してもよい。
(Embodiment 2)
FIG. 8A is a perspective view of transparent shield film (hereinafter referred to as film) 410 according to Embodiment 2 of the present invention. FIG. 8B is an enlarged view of a part of a cross section taken along line 8B-8B shown in FIG. 8A. One form of the film 410 has a sheet-like sheet shape as shown in FIG. 8A, but may have a long continuous roll shape as shown in FIG. 1A in the first embodiment. Good.
 フィルム410は、フィルム状の透明基材130と、透明導電膜150と、導電硬化物430とを有する。透明基材130は第1面と、この第1面の反対側の第2面とを有する。透明導電膜150は、金属ナノワイヤ120と、撥水添加剤を含有した透明バインダー140とを含み、透明基材130の第1面に形成されている。導電硬化物430は、透明導電膜150の周縁部の少なくとも一部を覆っている。さらに、フィルム410は、透明基材130の第2面に形成されたアンチブロッキング層160を有している。すなわち、フィルム410において、透明基材130と透明導電膜150とアンチブロッキング層160とは、実施の形態1における透明導電膜付フィルム111を構成している。以下、透明基材130、透明導電膜150、アンチブロッキング層160については実施の形態1と同様であるので、詳細な説明を省略する場合がある。 The film 410 includes a film-like transparent base material 130, a transparent conductive film 150, and a conductive cured product 430. The transparent substrate 130 has a first surface and a second surface opposite to the first surface. The transparent conductive film 150 includes the metal nanowire 120 and a transparent binder 140 containing a water repellent additive, and is formed on the first surface of the transparent substrate 130. The conductive cured product 430 covers at least a part of the peripheral edge of the transparent conductive film 150. Furthermore, the film 410 has an anti-blocking layer 160 formed on the second surface of the transparent substrate 130. That is, in the film 410, the transparent base material 130, the transparent conductive film 150, and the anti-blocking layer 160 constitute the film 111 with a transparent conductive film in the first embodiment. Hereinafter, since the transparent base material 130, the transparent conductive film 150, and the anti-blocking layer 160 are the same as those in Embodiment 1, detailed description may be omitted.
 図8Bに示すように、透明導電膜150から露出した金属ナノワイヤ120の一部は、透明導電膜150の上を覆う導電硬化物430と接触している。あるいは導電硬化物430の内部に侵入している。そのため、透明導電膜150と導電硬化物430とが電気的に安定に接続されている。また、互いの間の接着力が高まっている。 As shown in FIG. 8B, a part of the metal nanowire 120 exposed from the transparent conductive film 150 is in contact with the conductive cured material 430 that covers the transparent conductive film 150. Alternatively, it penetrates into the inside of the conductive cured product 430. Therefore, the transparent conductive film 150 and the conductive cured product 430 are electrically connected stably. Moreover, the adhesive force between each other is increasing.
 なお、透明導電膜150の周縁部とは、透明導電膜150あるいは透明基材130の端部から10mm以内の額縁状の部分である。周縁部に設けられた導電硬化物430は光透過性を有しないため、周縁部を10mmよりも大きくした場合、フィルム410の透明部分の面積割合が低下する。なお、周縁部の幅は5mm以下、さらには2mm以下であることが望ましい。 In addition, the peripheral part of the transparent conductive film 150 is a frame-shaped part within 10 mm from the end part of the transparent conductive film 150 or the transparent base material 130. Since the conductive cured product 430 provided at the peripheral portion does not have light transmittance, when the peripheral portion is made larger than 10 mm, the area ratio of the transparent portion of the film 410 is lowered. Note that the width of the peripheral portion is preferably 5 mm or less, and more preferably 2 mm or less.
 図8Bに示すように、透明導電膜150の接触角190は、透明導電膜150の上に滴下した水滴170に対して引かれた補助線180と透明導電膜150との角度に相当する。実施の形態1と同様に、接触角190は、80度以上、125度以下である。 As shown in FIG. 8B, the contact angle 190 of the transparent conductive film 150 corresponds to the angle between the auxiliary line 180 drawn on the water droplet 170 dropped on the transparent conductive film 150 and the transparent conductive film 150. Similar to the first embodiment, the contact angle 190 is not less than 80 degrees and not more than 125 degrees.
 次に、図9A、図9Bを参照しながら、透明導電膜150の表面に、接着層付保護フィルムを設けた透明シールドフィルム(以下、フィルム)411について説明する。図9Aは、フィルム411の斜視図である。図9Bは、図9Aに示す9B-9B線における断面の一部の拡大図である。フィルム411が図8A、図8Bに示すフィルム410と異なるのは、透明導電膜150上に接着層520を介して保護フィルム510が設けられている点である。それ以外の構成はフィルム410と同様である。 Next, a transparent shield film (hereinafter referred to as film) 411 in which a protective film with an adhesive layer is provided on the surface of the transparent conductive film 150 will be described with reference to FIGS. 9A and 9B. FIG. 9A is a perspective view of the film 411. FIG. 9B is an enlarged view of a part of a cross section taken along line 9B-9B shown in FIG. 9A. The film 411 is different from the film 410 shown in FIGS. 8A and 8B in that a protective film 510 is provided on the transparent conductive film 150 with an adhesive layer 520 interposed therebetween. Other configurations are the same as those of the film 410.
 図9Aに示すフィルム411では、図8Aに示す中央部の透明導電膜150の上に保護フィルム510が設けられている。保護フィルム510は透明導電膜150を保護する。保護フィルム510としては、ポリエステルフィルム(例えば、PETフィルム)や、ガラス板(極薄のガラス板も含む)を用いることができる。 In the film 411 shown in FIG. 9A, a protective film 510 is provided on the transparent conductive film 150 in the center shown in FIG. 8A. The protective film 510 protects the transparent conductive film 150. As the protective film 510, a polyester film (for example, a PET film) or a glass plate (including an extremely thin glass plate) can be used.
 図9Bに示すように、透明導電膜150の中央部分は、接着層520を有する保護フィルム510で覆われている。透明導電膜150から露出した金属ナノワイヤ120の一部は、接着層520に侵入している。そのため、透明導電膜150と接着層520や保護フィルム510との接着力が高まっている。保護フィルム510の上に、導電硬化物430の一部を重ねることで、保護フィルム510の端部からの剥がれ等の発生を低減できる。 As shown in FIG. 9B, the central portion of the transparent conductive film 150 is covered with a protective film 510 having an adhesive layer 520. A part of the metal nanowire 120 exposed from the transparent conductive film 150 penetrates into the adhesive layer 520. Therefore, the adhesive force between the transparent conductive film 150 and the adhesive layer 520 or the protective film 510 is increased. By overlapping a part of the conductive cured product 430 on the protective film 510, occurrence of peeling from the end of the protective film 510 can be reduced.
 なお保護フィルム510が設けられた中央部とは、周縁部を除く部分、すなわち透明基材130や透明導電膜150の端部から10mmの位置よりも中央寄りの部分である。保護フィルム510を設ける中央部を広げるほど、フィルム410における光透過部分の面積が大きくなるため好ましい。 The central portion provided with the protective film 510 is a portion excluding the peripheral portion, that is, a portion closer to the center than the position of 10 mm from the end of the transparent base material 130 or the transparent conductive film 150. The wider the central portion where the protective film 510 is provided, the larger the area of the light transmitting portion in the film 410, which is preferable.
 一般的な保護フィルム510の外面には、指先等から伝わる油脂性の汚れ等の付着防止のため撥水処理されることがある。このような撥水処理は保護フィルム510の表面にだけ施され、透明導電膜150には施されない。しかしながら本実施の形態では前述のように透明導電膜150の表面に撥水添加剤が露出している。そのため、透明導電膜150が撥水性を有する。その結果、透明導電膜150の湿度に対する長期信頼性を向上することができる。 The outer surface of a general protective film 510 may be subjected to a water repellent treatment to prevent adhesion of oily dirt transmitted from a fingertip or the like. Such a water repellent treatment is performed only on the surface of the protective film 510, and is not performed on the transparent conductive film 150. However, in this embodiment, the water repellent additive is exposed on the surface of the transparent conductive film 150 as described above. Therefore, the transparent conductive film 150 has water repellency. As a result, the long-term reliability with respect to the humidity of the transparent conductive film 150 can be improved.
 次に、図10を参照しながら、大判の多丁取りの部材から、個々の透明シールドシートを製造する様子を説明する。図10は、本実施の形態において、大判の多丁取り用の透明シールドフィルムを個片に切断し、個々の透明シールドフィルムを形成する様子を示す斜視図である。 Next, referring to FIG. 10, a description will be given of how individual transparent shield sheets are manufactured from large-sized multi-part members. FIG. 10 is a perspective view showing a state in which, in the present embodiment, the transparent shield film for large multi-capture is cut into individual pieces to form individual transparent shield films.
 連続品550は、多丁取り用の部材であり、連続品550を切断線530にて切断することで、矢印で示すような単品560である透明シールドフィルムが得られる。保護フィルム510が無い連続品550を用いれば、単品560としてフィルム410が得られる。また保護フィルム510を有する連続品を用いれば、単品としてフィルム411が得られる。 The continuous product 550 is a member for taking multiple pieces, and by cutting the continuous product 550 with a cutting line 530, a transparent shield film as a single product 560 as indicated by an arrow is obtained. If the continuous product 550 without the protective film 510 is used, the film 410 is obtained as a single product 560. If a continuous product having the protective film 510 is used, the film 411 is obtained as a single product.
 切断線530で連続品550を切断することで、透明基材130の外形と、透明導電膜150の端面と、導電硬化物430の外周とを揃えることができる。その結果、導電硬化物430の幅を狭くできる。 By cutting the continuous product 550 with the cutting line 530, the outer shape of the transparent substrate 130, the end surface of the transparent conductive film 150, and the outer periphery of the conductive cured product 430 can be aligned. As a result, the width of the conductive cured product 430 can be narrowed.
 なお透明導電膜150の表面に、接着層520を介して保護フィルム510が設けられると、透明導電膜150の表面の接触角の測定が難しい場合がある。このような場合は、図11に示すように、図10の切断線530で切断した場合の、フィルム411の端面(あるいは切断面)で、接触角190を測定することができる。図11は、フィルム411の切断面に露出した透明導電膜150の表面張力を測定する様子を示す。なおフィルム411の切断角度を変化させることによって、透明導電膜150の表面張力を測定しやすくなる。フィルム411の切断角度を変化させるには、例えば、フィルム410を斜めに切断する。なお微細部分の表面張力を測定するためには、ピコリットルオーダーの微小液滴を用いた市販の表面接触角の測定機を用いることができる。 If the protective film 510 is provided on the surface of the transparent conductive film 150 via the adhesive layer 520, it may be difficult to measure the contact angle of the surface of the transparent conductive film 150. In such a case, as shown in FIG. 11, the contact angle 190 can be measured at the end surface (or cut surface) of the film 411 when cut along the cutting line 530 of FIG. FIG. 11 shows a state in which the surface tension of the transparent conductive film 150 exposed on the cut surface of the film 411 is measured. In addition, it becomes easy to measure the surface tension of the transparent conductive film 150 by changing the cutting angle of the film 411. In order to change the cutting angle of the film 411, for example, the film 410 is cut obliquely. In addition, in order to measure the surface tension of the fine portion, a commercially available surface contact angle measuring device using fine droplets of picoliter order can be used.
 なお透明導電膜150のシート抵抗は、10Ω/□以上、さらには100Ω/□以上、10KΩ/□以下が望ましい。透明導電膜150のシート抵抗が10Ω/□未満になると、透明導電膜150内部に含まれる金属ナノワイヤ120の密度が増加し、フィルム410の透明度が低下し、コストアップする場合がある。またシート抵抗が10KΩ/□より高い場合、金属ナノワイヤ120の密度や濃度ムラが発生し、面内でのシート抵抗のバラツキが大きくなる場合がある。 The sheet resistance of the transparent conductive film 150 is preferably 10Ω / □ or more, more preferably 100Ω / □ or more and 10KΩ / □ or less. When the sheet resistance of the transparent conductive film 150 is less than 10 Ω / □, the density of the metal nanowires 120 included in the transparent conductive film 150 increases, the transparency of the film 410 may decrease, and the cost may increase. Further, when the sheet resistance is higher than 10 KΩ / □, the density and density unevenness of the metal nanowires 120 may occur, and the variation in sheet resistance in the surface may increase.
 次に、図8Bや図11で説明した、フィルム410の表面の接触角について説明する。前述のように、接触角190は、80度以上、125度以下である。接触角190が、80度未満の場合、信頼性(例えば高湿状態での電気的信頼性)で問題を生じる場合がある。接触角190が125度より大きい場合、透明導電膜150の上に形成する保護フィルム510の付着強度が低下したり、透明導電膜150の膜質が低下したりする虞がある。例えば、透明導電膜150の物理的強度が低下したり、割れやすくなったり、凝集しやすくなったりする虞がある。 Next, the contact angle of the surface of the film 410 described in FIG. 8B and FIG. 11 will be described. As described above, the contact angle 190 is not less than 80 degrees and not more than 125 degrees. When the contact angle 190 is less than 80 degrees, there may be a problem in reliability (for example, electrical reliability in a high humidity state). When the contact angle 190 is greater than 125 degrees, the adhesion strength of the protective film 510 formed on the transparent conductive film 150 may be reduced, or the film quality of the transparent conductive film 150 may be reduced. For example, there is a possibility that the physical strength of the transparent conductive film 150 is reduced, that the transparent conductive film 150 is easily broken, or that the transparent conductive film 150 is easily aggregated.
 次に、図12A、図12Bを参照しながら、透明導電膜150の周縁部に、スクリーン印刷等を使って、導電ペースト組成物620を印刷する工程を説明する。図12Aは、図8Bに示すフィルム410の作製過程において、金属ナノワイヤ120の一部が導電ペースト組成物620と接触する様子を説明する断面図である。図12Bは、図9Bに示すフィルム411の作製過程において、金属ナノワイヤ120の一部が導電ペースト組成物620と接触する様子を説明する断面図である。 Next, the process of printing the conductive paste composition 620 on the peripheral edge of the transparent conductive film 150 using screen printing or the like will be described with reference to FIGS. 12A and 12B. 12A is a cross-sectional view illustrating a state in which a part of the metal nanowire 120 is in contact with the conductive paste composition 620 in the process of manufacturing the film 410 illustrated in FIG. 8B. 12B is a cross-sectional view illustrating a state in which a part of the metal nanowire 120 is in contact with the conductive paste composition 620 in the process of manufacturing the film 411 illustrated in FIG. 9B.
 図12Aに示すように、透明導電膜150の周縁部に導電ペースト組成物620を塗布し、乾燥および/または硬化することにより図8Aに示すように導電硬化物430を形成することができる。また、図12Bに示すように、透明導電膜150の中央部に、接着層520を介して保護フィルム510を貼り付け、保護フィルム510の周縁部と透明導電膜150の外周との間に導電ペースト組成物620を塗布し、乾燥および/または硬化する。このようにして図9Aに示すように導電硬化物430を形成することができる。なお、この際、導電ペースト組成物620を保護フィルム510の一部の上にも塗布することで、導電硬化物430と保護フィルム510とを強固に接合することができる。 As shown in FIG. 12A, a conductive cured product 430 can be formed as shown in FIG. 8A by applying a conductive paste composition 620 to the peripheral portion of the transparent conductive film 150 and drying and / or curing. 12B, a protective film 510 is attached to the center of the transparent conductive film 150 via an adhesive layer 520, and the conductive paste is provided between the peripheral edge of the protective film 510 and the outer periphery of the transparent conductive film 150. Composition 620 is applied, dried and / or cured. In this way, a conductive cured product 430 can be formed as shown in FIG. 9A. At this time, by applying the conductive paste composition 620 onto a part of the protective film 510, the conductive cured product 430 and the protective film 510 can be firmly bonded.
 導電ペースト組成物620としては、銀粉や銀フレークと、熱硬化性エポキシ樹脂等を含む市販の液状の導電ペーストを用いることができる。液状の導電ペースト組成物620を用いることで、透明導電膜150の表面に露出した、あるいは表面から突出した金属ナノワイヤ120の一部が、導電ペースト組成物620に濡れやすく、あるいは侵入しやすくなる。 As the conductive paste composition 620, a commercially available liquid conductive paste containing silver powder or silver flakes, a thermosetting epoxy resin, or the like can be used. By using the liquid conductive paste composition 620, a part of the metal nanowire 120 exposed on the surface of the transparent conductive film 150 or protruding from the surface is easily wetted or penetrates into the conductive paste composition 620.
 導電ペースト組成物620は、銀粉末と熱硬化性のバインダー樹脂と溶剤を含んでもよい。導電ペースト組成物620に含まれるバインダー樹脂としては、硬化剤による硬化反応によって硬化する、一液型のエポキシ樹脂を使ってもよい。また導電ペースト組成物620の硬化温度としては、80℃~120℃が有用であるが、透明基材130の耐熱性に合わせて調整すればよい。 The conductive paste composition 620 may contain silver powder, a thermosetting binder resin, and a solvent. As the binder resin contained in the conductive paste composition 620, a one-pack type epoxy resin that is cured by a curing reaction with a curing agent may be used. Further, the curing temperature of the conductive paste composition 620 is useful from 80 ° C. to 120 ° C., but may be adjusted according to the heat resistance of the transparent substrate 130.
 なお、図1Bに示すフィルム110を用いて、透明基材130の両面に透明導電膜150を設けた透明シールドフィルムを形成してもよい。しかしながら、費用対効果を考慮すると、透明基材130の片面(第1面)にのみ透明導電膜150を設けるほうが好ましい。またシールドのためには透明導電膜150をグラウンドと接続する必要があり、透明基材130の両面に透明導電膜150を設けた場合、それぞれの透明導電膜150にてグラウンドに接続する構造はやや煩雑である。 In addition, you may form the transparent shield film which provided the transparent conductive film 150 on both surfaces of the transparent base material 130 using the film 110 shown to FIG. 1B. However, considering cost effectiveness, it is preferable to provide the transparent conductive film 150 only on one side (first side) of the transparent substrate 130. Further, for shielding, it is necessary to connect the transparent conductive film 150 to the ground, and when the transparent conductive film 150 is provided on both surfaces of the transparent base material 130, the structure of connecting to the ground by each transparent conductive film 150 is somewhat. It is complicated.
 またアンチブロッキング層160は、ロール状に捲回した場合に発生するブロッキングを抑制するために設けられている。したがって、図8A、図9Aに示すように、フィルム410、411がシート状の枚葉形状を有する場合、アンチブロッキング層160を設けなくてもよい。このことは実施の形態1におけるフィルム110、111についても同様である。 Further, the anti-blocking layer 160 is provided in order to suppress blocking that occurs when wound in a roll shape. Therefore, as shown in FIGS. 8A and 9A, when the films 410 and 411 have a sheet-like sheet shape, the anti-blocking layer 160 may not be provided. The same applies to the films 110 and 111 in the first embodiment.
 以下に、図13A、図13Bを参照しながら本実施の形態における表示装置670A、670Bについて説明する。表示装置670A、670Bは、上述のフィルム410と、フィルム410と対向して設けられた表示素子である液晶部630とを有する。なお、これらの図ではアンチブロッキング層160を示していないが、上述のようにアンチブロッキング層160はあってもなくてもよい。 Hereinafter, display devices 670A and 670B in the present embodiment will be described with reference to FIGS. 13A and 13B. Display devices 670 </ b> A and 670 </ b> B include the above-described film 410 and a liquid crystal unit 630 which is a display element provided to face the film 410. In these drawings, the anti-blocking layer 160 is not shown, but the anti-blocking layer 160 may or may not be provided as described above.
 図13Aは、フィルム410を用いた第1の構造例を示している。表示部分660Aは、液晶部630と、上側液晶ガラス640と、上側偏光板650を含む。上側偏光板650の上には、フィルム410が設けられている。フィルム410では、透明基材130の第1面に透明導電膜150が設けられ、第2面が上側偏光板650と接している。 FIG. 13A shows a first structure example using the film 410. Display portion 660 </ b> A includes a liquid crystal unit 630, an upper liquid crystal glass 640, and an upper polarizing plate 650. A film 410 is provided on the upper polarizing plate 650. In the film 410, the transparent conductive film 150 is provided on the first surface of the transparent substrate 130, and the second surface is in contact with the upper polarizing plate 650.
 液晶部630に形成された薄膜トランジスタ(TFT)部分や駆動装置から発生した電磁波ノイズは、表示装置670Aの透明導電膜150に吸収される。そのため、フィルム410の上に設置された透明タッチパネル(図示せず)への影響を抑えることができる。図13Aに示す構成により、フィルム410が、リタデーション(retardation)と呼ばれる、複屈折性を有する物質を光が通過する際の常光と異常光との位相差の影響を抑えられる。 Electromagnetic wave noise generated from the thin film transistor (TFT) portion formed in the liquid crystal portion 630 and the driving device is absorbed by the transparent conductive film 150 of the display device 670A. Therefore, the influence on the transparent touch panel (not shown) installed on the film 410 can be suppressed. With the configuration shown in FIG. 13A, the film 410 can suppress the influence of the phase difference between ordinary light and extraordinary light when light passes through a substance having birefringence, which is called retardation.
 図13Bは、フィルム410を用いた第2の構造例を示している。表示装置670Bの場合、表示部分660Bは、液晶部630と、上側液晶ガラス640とを含む。そして、表示部分660Bの上にフィルム410が設けられ、フィルム410の上の最外部に上側偏光板650が設けられている。この構造では、表示装置670Aに比べて、上述のノイズの発生源にフィルム410がより近い。この結果、優れたノイズシールド効果が得られる。なお図13Bの構成とする場合は、リタデーションの影響を受けないように、透明基材130等を適切に選択することが望ましい。 FIG. 13B shows a second structure example using the film 410. In the case of the display device 670B, the display portion 660B includes a liquid crystal unit 630 and an upper liquid crystal glass 640. A film 410 is provided on the display portion 660B, and an upper polarizing plate 650 is provided on the outermost part of the film 410. In this structure, the film 410 is closer to the noise generation source than the display device 670A. As a result, an excellent noise shielding effect can be obtained. In the case of the configuration of FIG. 13B, it is desirable to appropriately select the transparent substrate 130 and the like so as not to be affected by retardation.
 次に、具体的な例を用いて、本実施の形態による効果について詳しく説明する。 Next, the effect of this embodiment will be described in detail using a specific example.
 (金属ナノワイヤ層の形成)
 実施の形態1における具体例で説明したのと同じ材料でコーティング材組成物を調製し、PETフィルムの表面に、厚さが100nmになるようにコーターによって塗布し、加熱して乾燥する。このようにして、金属ナノワイヤ層を形成する。なおこの際、金属ナノワイヤの配合量を調整することにより、それぞれ、シート抵抗が100Ω/□となる金属ナノワイヤ層が形成されたシートを作製する。
(Formation of metal nanowire layers)
A coating material composition is prepared using the same material as described in the specific example in the first embodiment, applied to the surface of the PET film with a coater so as to have a thickness of 100 nm, and heated and dried. In this way, a metal nanowire layer is formed. At this time, by adjusting the blending amount of the metal nanowires, sheets each having a metal nanowire layer with a sheet resistance of 100Ω / □ are produced.
 (透明バインダーの形成)
 実施の形態1における具体例で説明したのと同じ材料、組成のオーバーコート液を調製する。このようにして調製されたオーバーコート液を、前述の金属ナノワイヤ層の上に塗布・乾燥し、図2Bに示すように、透明バインダーを形成して、透明導電膜付フィルムを作製する。その際、撥水添加剤の添加量を調整して、接触角がそれぞれ、75度、80度、105度、125度、130度となる透明導電膜付フィルムを作製している。また、撥水添加剤を添加しないオーバーコート液も調製し、透明バインダーを形成している。この場合、接触角は55度である。以上のように、接触角の異なる6種類の透明導電膜付フィルムを作製している。
(Formation of transparent binder)
An overcoat solution having the same material and composition as described in the specific example in the first embodiment is prepared. The overcoat liquid thus prepared is applied and dried on the metal nanowire layer, and a transparent binder is formed as shown in FIG. 2B to produce a film with a transparent conductive film. At that time, the addition amount of the water repellent additive was adjusted to produce a film with a transparent conductive film having contact angles of 75 degrees, 80 degrees, 105 degrees, 125 degrees, and 130 degrees, respectively. In addition, an overcoat liquid to which no water repellent additive is added is also prepared to form a transparent binder. In this case, the contact angle is 55 degrees. As described above, six types of films with transparent conductive films having different contact angles are produced.
 次にこれらの透明導電膜付フィルムの表面に、図12Bに示すように接着層520付き保護フィルム510を設けた後、導電ペースト組成物620を印刷形成し、100℃で20分硬化する。このようにして、図9A、図9Bで示す透明シールドフィルムの評価サンプルを作製する。 Next, after providing a protective film 510 with an adhesive layer 520 as shown in FIG. 12B on the surface of these films with a transparent conductive film, a conductive paste composition 620 is printed and cured at 100 ° C. for 20 minutes. In this manner, an evaluation sample of the transparent shield film shown in FIGS. 9A and 9B is produced.
 (評価2-1:導電ペースト組成物による透明導電膜上のファインパターン印刷性)
 透明導電膜の周縁部に、市販の導電ペースト組成物(いわゆる熱硬化性銀ペースト)を、スクリーン印刷や凹版オフセット等のファインパターン用の印刷装置で印刷する。その際の印刷性を評価している。ここで周縁部に印刷する導電パターンの線幅は1mm以下である。ファインパターン印刷性に問題が生じる場合があればOK、問題が全く生じなければGDと評価する。
(Evaluation 2-1: Fine pattern printability on transparent conductive film by conductive paste composition)
A commercially available conductive paste composition (so-called thermosetting silver paste) is printed on the periphery of the transparent conductive film with a fine pattern printing apparatus such as screen printing or intaglio offset. The printability at that time is evaluated. Here, the line width of the conductive pattern printed on the peripheral portion is 1 mm or less. If there is a problem in fine pattern printability, it is evaluated as OK, and if there is no problem at all, it is evaluated as GD.
 (評価2-2:導電硬化物との界面抵抗の信頼性)
 信頼性評価として透明導電膜と、その周縁部に形成した導電硬化物との接続部分の抵抗値の変化率を評価する。その際、85℃、湿度85%RHの環境中で、96時間の間、透明導電膜と導電硬化物との間に直流(DC)3V印加し続ける前後の抵抗の変化率で評価している。抵抗変化率が、1.5倍未満である場合はGD(Good)、1.5倍以上、2.0倍未満である場合はOK、2.0倍以上である場合はNG(No Good)と評価している。
(Evaluation 2-2: Reliability of interfacial resistance with conductive cured product)
As a reliability evaluation, the rate of change in resistance value of the connection portion between the transparent conductive film and the conductive cured material formed on the peripheral edge thereof is evaluated. At that time, in the environment of 85 ° C. and humidity 85% RH, the evaluation is performed by the rate of change of resistance before and after applying 3V direct current (DC) between the transparent conductive film and the conductive cured product for 96 hours. . GD (Good) when the resistance change rate is less than 1.5 times, OK when 1.5 times or more and less than 2.0 times, NG (No Good) when it is 2.0 times or more It is evaluated.
 なお、接触角は、保護フィルムを貼り付ける前の、透明導電膜の表面の水(純水)に対する接触角である。 In addition, a contact angle is a contact angle with respect to the water (pure water) of the surface of a transparent conductive film before sticking a protective film.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果より、接触角が125度以下の場合、透明導電膜上への導電ペースト組成物の印刷性はGDであるが、接触角が130度のサンプルBC3では、ファインパターン印刷性に問題が生じる場合があることがわかる。 From the results shown in Table 4, when the contact angle is 125 degrees or less, the printability of the conductive paste composition on the transparent conductive film is GD, but the sample BC3 with a contact angle of 130 degrees has a fine pattern printability. It can be seen that problems may arise.
 導電硬化物との界面抵抗の信頼性については、サンプルBC1の結果がNGになっているのは、透明導電膜が吸水性を有するためと考えられる。なおサンプルBC2の信頼性はOKであるのは、撥水添加剤の添加効果が限定的だったためと考えられる。サンプルBE1~BE3の信頼性はGDである。一方、サンプルBC3の信頼性はOKである。この理由は、撥水添加剤の添加量が多くなった結果、導電硬化物と透明導電膜との接続部分の信頼性が影響を受けたためと考えられる。 Regarding the reliability of the interfacial resistance with the conductive cured product, the result of sample BC1 is considered to be NG because the transparent conductive film has water absorption. The reason why the reliability of the sample BC2 is OK is considered that the effect of adding the water repellent additive is limited. The reliability of the samples BE1 to BE3 is GD. On the other hand, the reliability of the sample BC3 is OK. The reason for this is considered to be that the reliability of the connection portion between the conductive cured product and the transparent conductive film was affected as a result of the increased amount of water repellent additive.
 なお、本実施の形態による透明シールドシートに含まれる透明導電膜付フィルムの部分の、光学特性や保護フィルムなしでの信頼性については、実施の形態1における具体例の結果を援用できる。そのためそれらの説明は省略する。 In addition, the result of the specific example in Embodiment 1 can be used about the optical characteristic of the part of the film with a transparent conductive film contained in the transparent shield sheet by this Embodiment, and the reliability without a protective film. Therefore, those descriptions are omitted.
 (総合評価2)
 総合評価は、サンプルの品質に量産性を加味した総合評価であり、Aは良好(Good)、Bは解決すべき課題が残る場合がある(OK)、ことを意味する。
(Comprehensive evaluation 2)
The comprehensive evaluation is a comprehensive evaluation in which mass productivity is added to the quality of the sample, and A means good (Good), and B means that a problem to be solved may remain (OK).
 次に、図14を参照しながら、種々の表示装置のサンプルの近傍電磁界測定結果の一例を示す。図14において、横軸は周波数(単位はMHz)、縦軸はノイズレベル(単位はdBμV)である。ノイズの測定として、表示素子を駆動させた状態で、近傍電磁界プローブを表示装置の最表面上で走査させることにより電界を測定し、その値をノイズとしている。この試験に供したサンプルは以下のとおりである。 Next, with reference to FIG. 14, examples of the near electromagnetic field measurement results of various display device samples are shown. In FIG. 14, the horizontal axis represents frequency (unit: MHz), and the vertical axis represents noise level (unit: dBμV). As the measurement of noise, an electric field is measured by scanning a near electromagnetic field probe on the outermost surface of the display device while the display element is driven, and the value is regarded as noise. Samples subjected to this test are as follows.
 サンプルBE4は、上記サンプルBE1の透明シールドフィルム410を用いて構成した、図13Aに示す構成の表示装置670Aの評価サンプルである。 Sample BE4 is an evaluation sample of the display device 670A having the configuration shown in FIG. 13A, which is configured using the transparent shield film 410 of the sample BE1.
 サンプルBE5は、上記サンプルBE1の透明シールドフィルム410を用いて構成した、図13Bに示す構成の表示装置670Bの評価サンプルである。 Sample BE5 is an evaluation sample of the display device 670B having the configuration shown in FIG. 13B, which is configured using the transparent shield film 410 of the sample BE1.
 サンプルBC4は、図13Aに示す構成の表示装置において、シート抵抗が400Ω/□のインジウム・スズ酸化物膜(ITO)をシールド層として、透明シールドフィルム410に代えて構成した評価サンプルである。 Sample BC4 is an evaluation sample configured by replacing the transparent shield film 410 with an indium tin oxide film (ITO) having a sheet resistance of 400Ω / □ as a shield layer in the display device having the configuration shown in FIG. 13A.
 サンプルBC5は、図13Aに示す構成の表示装置において、透明シールドフィルム410なしで構成した評価サンプルである。 Sample BC5 is an evaluation sample configured without the transparent shield film 410 in the display device having the configuration shown in FIG. 13A.
 図14より、サンプルBC4、BC5に比べて、サンプルBE4、BE5は、特に1MHz以下の低周波数域で10~20dBという大きなノイズ低減効果があることがわかる。またサンプルBE4、BE5は、1MHz以上の周波数帯においても、5~10dBという優れたノイズ低減効果があることがわかる。 FIG. 14 shows that compared with samples BC4 and BC5, samples BE4 and BE5 have a large noise reduction effect of 10 to 20 dB particularly in a low frequency region of 1 MHz or less. In addition, it can be seen that the samples BE4 and BE5 have an excellent noise reduction effect of 5 to 10 dB even in a frequency band of 1 MHz or higher.
 なおシールド層やシールドフィルムのシート抵抗(Ω/□)が低いほど、シールド効果は高い。しかしながら、ITOで構成されたシールド層の場合、シート抵抗を低くするためITOを厚くすると膜が着色する。またITOを厚くするには、スパッタ時間を長くする必要があるため、プロセス上の課題が発生する。また、スパッタ時間を長くすると、ITOを形成する下地となるカラーフィルタへの影響も生じる。 In addition, the lower the sheet resistance (Ω / □) of the shield layer or shield film, the higher the shielding effect. However, in the case of a shield layer made of ITO, the film is colored when the ITO is thickened to lower the sheet resistance. In addition, in order to increase the thickness of ITO, it is necessary to lengthen the sputtering time, which causes a process problem. Further, if the sputtering time is lengthened, the color filter serving as a base on which the ITO is formed is also affected.
 一方、透明シールドフィルム410を用いた場合、シート抵抗を低くしても、着色することはない。また金属ナノワイヤ120を用いたシールド層である透明導電膜150は塗布で形成することができるので、シート抵抗の大小に関わらず、一回の塗布工程で形成できる。そのため、プロセス上の問題が生じることもない。 On the other hand, when the transparent shield film 410 is used, the sheet is not colored even if the sheet resistance is lowered. Moreover, since the transparent conductive film 150 which is a shield layer using the metal nanowire 120 can be formed by coating, it can be formed by a single coating process regardless of the sheet resistance. As a result, no process problems arise.
 本発明によれば、金属ナノワイヤを含む透明導電膜において、透明バインダーを介して湿式でパターニングでき、さらにパターニングした後も、電気的な信頼性が高い透明導電膜付フィルムを提供することができる。またこの透明導電膜付フィルムを用いて作製した透明配線付フィルム、タッチパネル及び表示装置の信頼性を高められる。 According to the present invention, a transparent conductive film containing metal nanowires can be wet-patterned via a transparent binder, and a film with a transparent conductive film with high electrical reliability can be provided even after patterning. Moreover, the reliability of the film with a transparent wiring produced using this film with a transparent conductive film, a touch panel, and a display apparatus can be improved.
 また、本発明によれば、金属ナノワイヤを含む透明シールドフィルムおよびそれを用いた表示装置において、湿度に対する長期信頼性を高めることができる。また、低いシート抵抗を有する透明シールドフィルムを用いることで、商業設備における大型のデジタルサーネージ(Digital Sirgnage)等の大面積の機器におけるシールド対策が可能となる。 Further, according to the present invention, it is possible to improve long-term reliability against humidity in a transparent shield film containing metal nanowires and a display device using the same. Further, by using a transparent shield film having a low sheet resistance, it becomes possible to take a shield measure for a large area device such as a large digital signage in a commercial facility.
110,111  透明導電膜付フィルム(フィルム)
120  金属ナノワイヤ
130  透明基材
140  透明バインダー
150  透明導電膜
160  アンチブロッキング層
170,170a,170b,170c  水滴
180  補助線
190,190a,190b,190c  接触角
200  空隙部
210,210a,210b  結着樹脂部
220  金属ナノワイヤ層
230  オーバーコート液
240  レジストパターン部
250  開口部
260  細孔部
270  絶縁パターン部
280,280a,280b  導電パターン部
290  透明配線
300  透明配線付フィルム(フィルム)
310,310a,310b  撥水添加剤
320  指先
330  容量成分
340  硬質保護シート
350  半導体素子
360  タッチパネル
370  矢印
380  表示素子
390  表示装置
410,411  透明シールドフィルム(フィルム)
430  導電硬化物
510  保護フィルム
520  接着層
530  切断線
550  連続品
560  単品
620  導電ペースト組成物
630  液晶部
640  上側液晶ガラス
650  上側偏光板
660A,660B  表示部分
670A,670B  表示装置
110,111 Film with transparent conductive film (film)
120 Metal nanowire 130 Transparent substrate 140 Transparent binder 150 Transparent conductive film 160 Anti-blocking layer 170, 170a, 170b, 170c Water droplet 180 Auxiliary line 190, 190a, 190b, 190c Contact angle 200 Gaps 210, 210a, 210b Binder resin part 220 Metal nanowire layer 230 Overcoat liquid 240 Resist pattern part 250 Opening part 260 Pore part 270 Insulating pattern part 280, 280a, 280b Conductive pattern part 290 Transparent wiring 300 Film with transparent wiring (film)
310, 310a, 310b Water repellent additive 320 Fingertip 330 Capacitance component 340 Hard protective sheet 350 Semiconductor element 360 Touch panel 370 Arrow 380 Display element 390 Display device 410, 411 Transparent shield film (film)
430 Conductive cured product 510 Protective film 520 Adhesive layer 530 Cutting line 550 Continuous product 560 Single product 620 Conductive paste composition 630 Liquid crystal part 640 Upper liquid crystal glass 650 Upper polarizing plate 660A, 660B Display portion 670A, 670B Display device

Claims (16)

  1. 第1面と、前記第1面の反対側の第2面とを有するフィルム状の透明基材と、
    金属ナノワイヤと、撥水添加剤を含有した透明バインダーとを含み、前記透明基材の前記第1面と前記第2面の少なくとも一方に形成された透明導電膜と、を備え、
    前記透明導電膜の表面には、前記金属ナノワイヤの一部が露出し、
    前記透明導電膜の表面の接触角は、80度以上、125度以下である、
    透明導電膜付フィルム。
    A film-like transparent substrate having a first surface and a second surface opposite to the first surface;
    Comprising a metal nanowire and a transparent binder containing a water repellent additive, and comprising a transparent conductive film formed on at least one of the first surface and the second surface of the transparent substrate,
    A part of the metal nanowire is exposed on the surface of the transparent conductive film,
    The contact angle of the surface of the transparent conductive film is 80 degrees or more and 125 degrees or less.
    Film with transparent conductive film.
  2. 前記透明基材の100℃で60分過熱後のヘイズの増大が0.3%以下である、
    請求項1記載の透明導電膜付フィルム。
    The increase in haze after heating the transparent substrate at 100 ° C. for 60 minutes is 0.3% or less,
    The film with a transparent conductive film according to claim 1.
  3. 前記透明バインダーは、熱硬化性樹脂と電離放射線硬化性樹脂との少なくとも一つをさらに含有し、
    前記撥水添加剤は、フルオロアルキル基またはフルオロアルキレン基を含む化合物を含む、
    請求項1、2のいずれか一項に記載の透明導電膜付フィルム。
    The transparent binder further contains at least one of a thermosetting resin and an ionizing radiation curable resin,
    The water repellent additive includes a compound containing a fluoroalkyl group or a fluoroalkylene group,
    The film with a transparent conductive film according to claim 1.
  4. 前記透明導電膜の前記表面には、前記撥水添加剤の一部がさらに露出している、
    請求項1~3のいずれか一項に記載の透明導電膜付フィルム。
    A part of the water repellent additive is further exposed on the surface of the transparent conductive film,
    The film with a transparent conductive film according to any one of claims 1 to 3.
  5. 前記透明導電膜のシート抵抗は、0.1Ω/□以上、200Ω/□以下であり、
    前記透明導電膜の厚さは、20nm以上、300nm以下である、
    請求項1~4のいずれか一項に記載の透明導電膜付フィルム。
    The sheet resistance of the transparent conductive film is 0.1Ω / □ or more and 200Ω / □ or less,
    The thickness of the transparent conductive film is 20 nm or more and 300 nm or less.
    The film with a transparent conductive film according to any one of claims 1 to 4.
  6. 請求項1~5のいずれか一項に記載の透明導電膜付フィルムと、
    前記透明導電膜の周縁部の少なくとも一部を覆う導電硬化物と、をさらに備えた、
    透明シールドフィルム。
    A film with a transparent conductive film according to any one of claims 1 to 5;
    A conductive cured material covering at least a part of the peripheral edge of the transparent conductive film,
    Transparent shield film.
  7. 前記透明導電膜の表面に設けられた保護フィルムをさらに備えた、
    請求項6記載の透明シールドフィルム。
    Further provided with a protective film provided on the surface of the transparent conductive film,
    The transparent shield film according to claim 6.
  8. 請求項6、7のいずれか一項に記載の透明シールドフィルムと、
    前記透明シールドフィルムと対向して設けられた表示素子と、を備えた、
    表示装置。
    The transparent shield film according to any one of claims 6 and 7,
    A display element provided opposite to the transparent shield film,
    Display device.
  9. 第1面と、前記第1面の反対側の第2面とを有するフィルム状の透明基材と、
    金属ナノワイヤと、撥水添加剤を含有した透明バインダーとを含み、前記透明基材の前記第1面と前記第2面の少なくとも一方に形成された透明導電膜と、を備え、
    前記透明導電膜は、前記金属ナノワイヤが存在する導電パターン部と、前記透明バインダーに形成され前記金属ナノワイヤが存在しない細孔部を含む絶縁パターン部とを有し、
    前記透明導電膜における前記導電パターン部の表面には、前記金属ナノワイヤの一部が露出し、
    前記透明導電膜における前記導電パターン部の表面の接触角は、80度以上、125度以下である、
    透明配線付フィルム。
    A film-like transparent substrate having a first surface and a second surface opposite to the first surface;
    Comprising a metal nanowire and a transparent binder containing a water repellent additive, and comprising a transparent conductive film formed on at least one of the first surface and the second surface of the transparent substrate,
    The transparent conductive film has a conductive pattern portion where the metal nanowires are present and an insulating pattern portion including a pore portion which is formed in the transparent binder and where the metal nanowires are not present,
    A part of the metal nanowire is exposed on the surface of the conductive pattern portion in the transparent conductive film,
    The contact angle of the surface of the conductive pattern portion in the transparent conductive film is 80 degrees or more and 125 degrees or less.
    Film with transparent wiring.
  10. 前記透明導電膜における、前記導電パターン部の表面の接触角と、前記絶縁パターン部の表面の接触角との差は、10%以下または10度以下のいずれか一方を満たす、
    請求項9記載の透明配線付フィルム。
    In the transparent conductive film, the difference between the contact angle of the surface of the conductive pattern part and the contact angle of the surface of the insulating pattern part satisfies 10% or less or 10 degrees or less,
    The film with transparent wiring according to claim 9.
  11. 前記透明バインダーは、熱硬化性樹脂と電離放射線硬化性樹脂との少なくとも一つをさらに含有し、
    前記撥水添加剤は、フルオロアルキル基またはフルオロアルキレン基を含む化合物を含む、
    請求項9、10のいずれか一方に記載の透明配線付フィルム。
    The transparent binder further contains at least one of a thermosetting resin and an ionizing radiation curable resin,
    The water repellent additive includes a compound containing a fluoroalkyl group or a fluoroalkylene group,
    The film with a transparent wiring according to any one of claims 9 and 10.
  12. 前記撥水添加剤の一部は、前記細孔部内に露出している、
    請求項9~11のいずれかに一項に記載の透明配線付フィルム。
    A part of the water repellent additive is exposed in the pores,
    The film with a transparent wiring according to any one of claims 9 to 11.
  13. 請求項9~12のいずれか一項に記載の透明配線付フィルムと、
    前記導電パターン部に電気的に接続された半導体素子と、
    前記透明配線を覆う硬質保護シートと、を備えた、
    タッチパネル。
    A film with a transparent wiring according to any one of claims 9 to 12,
    A semiconductor element electrically connected to the conductive pattern portion;
    A hard protective sheet covering the transparent wiring,
    Touch panel.
  14. 前記撥水添加剤の一部は、前記細孔部内に露出している、
    請求項13記載のタッチパネル。
    A part of the water repellent additive is exposed in the pores,
    The touch panel according to claim 13.
  15.    請求項9~12のいずれか一項に記載の透明配線付フィルムと、
       前記導電パターン部に電気的に接続された半導体素子と、
       前記透明配線を覆う硬質保護シートと、を有するタッチパネルと、
    前記タッチパネルに対向して設置された表示素子と、を備えた、
    表示装置。
    A film with a transparent wiring according to any one of claims 9 to 12,
    A semiconductor element electrically connected to the conductive pattern portion;
    A hard protective sheet covering the transparent wiring, and a touch panel,
    A display element disposed opposite to the touch panel,
    Display device.
  16. 前記撥水添加剤の一部は、前記細孔部内に露出している、
    請求項15に記載の表示装置。
    A part of the water repellent additive is exposed in the pores,
    The display device according to claim 15.
PCT/JP2015/004664 2014-09-30 2015-09-14 Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device WO2016051695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551502A JPWO2016051695A1 (en) 2014-09-30 2015-09-14 Film with transparent conductive film, film with transparent wiring, transparent shield film, touch panel and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014200317 2014-09-30
JP2014-200317 2014-09-30
JP2014200312 2014-09-30
JP2014-200312 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051695A1 true WO2016051695A1 (en) 2016-04-07

Family

ID=55629772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004664 WO2016051695A1 (en) 2014-09-30 2015-09-14 Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device

Country Status (2)

Country Link
JP (1) JPWO2016051695A1 (en)
WO (1) WO2016051695A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217491A1 (en) * 2019-04-26 2020-10-29 花王株式会社 Method for manufacturing electrically conductive member
CN113383398A (en) * 2018-12-27 2021-09-10 英属维京群岛商天材创新材料科技股份有限公司 Silver nanowire transparent conductive film
WO2021235431A1 (en) * 2020-05-22 2021-11-25 日東電工株式会社 Electrically conductive film
JP2022023785A (en) * 2020-07-27 2022-02-08 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッド Flexible touch sensor and flexible touch display module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JP2014115739A (en) * 2012-12-06 2014-06-26 Hitachi Chemical Co Ltd Display device
JP2014154264A (en) * 2013-02-05 2014-08-25 Oji Holdings Corp Transparent electroconductive sheet and touch panel using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JP2014115739A (en) * 2012-12-06 2014-06-26 Hitachi Chemical Co Ltd Display device
JP2014154264A (en) * 2013-02-05 2014-08-25 Oji Holdings Corp Transparent electroconductive sheet and touch panel using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383398A (en) * 2018-12-27 2021-09-10 英属维京群岛商天材创新材料科技股份有限公司 Silver nanowire transparent conductive film
CN113383398B (en) * 2018-12-27 2023-01-24 英属维京群岛商天材创新材料科技股份有限公司 Silver nanowire transparent conductive film
WO2020217491A1 (en) * 2019-04-26 2020-10-29 花王株式会社 Method for manufacturing electrically conductive member
CN113728401A (en) * 2019-04-26 2021-11-30 花王株式会社 Method for manufacturing conductive member
EP3961655A4 (en) * 2019-04-26 2022-10-19 Kao Corporation Method for manufacturing electrically conductive member
CN113728401B (en) * 2019-04-26 2023-08-29 花王株式会社 Method for manufacturing conductive member
WO2021235431A1 (en) * 2020-05-22 2021-11-25 日東電工株式会社 Electrically conductive film
JP2022023785A (en) * 2020-07-27 2022-02-08 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッド Flexible touch sensor and flexible touch display module
JP7157209B2 (en) 2020-07-27 2022-10-19 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッド Flexible touch sensor and flexible touch display module

Also Published As

Publication number Publication date
JPWO2016051695A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
KR101137276B1 (en) Transparent conductive laminate and touch panel
KR100779441B1 (en) Transparent conductive laminate
US9756722B2 (en) Transparent electroconductive film
EP2312425B1 (en) Transparent conductive film, method for production thereof and touch panel therewith
US9860981B2 (en) Transparent conductive film and method for producing same
US20160303838A1 (en) Transparent conductive multilayer assembly
CN103730193B (en) Transparent conducting film and application thereof
US9874987B2 (en) Double-sided transparent conductive film and touch panel
KR20100088127A (en) Transparent conductive laminate and touch panel
JP2011145593A (en) Hard coat film and image display element
CN104650635B (en) Hard coat film, transparent and electrically conductive film and capacitance touching control panel
US10809864B2 (en) Film touch sensor
US20170098490A1 (en) Base material with a transparent conductive film, method for manufacturing the same, touch panel, and solar cell
KR20120117646A (en) Transparent conductive film with adhesive layer, laminate film and touch panel
WO2016051695A1 (en) Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device
TW201403635A (en) Conductive laminated body, patterned conductive laminated body, method for producing same, and touch panel using the same
KR20150022765A (en) Laminated body, conductive laminated body, touch panel, coating composition, and method for manufacturing laminated body that uses said coating composition
CN105074637A (en) Display apparatus with capacitive touch panel
KR20150058028A (en) Hibride touch sensing electrode and touch screen panel comprising the same
TW201439872A (en) Transparent conductive film, and touch panel and display device provided with same
TWI770149B (en) Conductive film, touch panel, and image display device
JP6279374B2 (en) Touch panel and manufacturing method thereof
KR101401050B1 (en) Touch sensing electrode and touch screen panel comprising the same
KR102004026B1 (en) Transparent conductor and display apparatus comprising the same
JP2013246975A (en) Conductive optical member and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846474

Country of ref document: EP

Kind code of ref document: A1