WO2016051667A1 - Electroless plating base agent, method for producing same and plating laminate using electroless plating base agent - Google Patents

Electroless plating base agent, method for producing same and plating laminate using electroless plating base agent Download PDF

Info

Publication number
WO2016051667A1
WO2016051667A1 PCT/JP2015/004472 JP2015004472W WO2016051667A1 WO 2016051667 A1 WO2016051667 A1 WO 2016051667A1 JP 2015004472 W JP2015004472 W JP 2015004472W WO 2016051667 A1 WO2016051667 A1 WO 2016051667A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
catalyst
metal
electroless
layer
Prior art date
Application number
PCT/JP2015/004472
Other languages
French (fr)
Japanese (ja)
Inventor
荻野 雅史
堅慈 内山
津田 正信
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2016051667A1 publication Critical patent/WO2016051667A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron

Definitions

  • the present invention relates to an electroless plating base agent, a method for producing the same, and a plating laminate using the electroless plating base agent.
  • a film with a uniform thickness can be obtained by simply immersing the substrate in the plating solution, regardless of the type or shape of the substrate.
  • Metal plating films can also be applied to non-conductive materials such as plastic, ceramic, and glass. Therefore, it is widely used in various fields such as decorative applications such as imparting a sense of quality and aesthetics to resin moldings such as automobile parts, and wiring technologies such as electromagnetic shielding, printed circuit boards and large-scale integrated circuits.
  • a specific example of what is manufactured using such electroless plating is a fixing member of an image forming apparatus such as a copying machine or a printer that employs an electrophotographic system.
  • Patent Document 1 discloses a fixing member having an electroless nickel plating layer, an electrolytic copper plating layer, and a silicone rubber layer on a base layer made of polyimide resin.
  • the fixing member disclosed in Patent Document 1 has the following problems. That is, in order to form a fixing member having the metal plating layer, it is usually an activation in which a precursor of a catalytic metal such as Pd is applied to the surface of a polymer base layer and then the precursor is metallized by reduction. Process. Then, after such a plating pretreatment step for the base layer, an electroless metal plating layer is formed on the surface of the base layer. Furthermore, an electrolytic metal plating layer is formed using this as an electrode.
  • a precursor of a catalytic metal such as Pd
  • the electroless metal plating layer formed by performing the plating pretreatment has poor adhesion to the base layer. Therefore, the electroless metal plating layer is easily peeled from the base layer. Moreover, if the electroless metal plating layer peels from the base layer, as a result, the electrolytic metal plating layer or the like laminated thereon also peels from the base layer. That is, the fixing member has a problem that the adhesion between the base layer and the metal plating layer is inferior. If the metal plating layer is peeled off from the base layer during use of the fixing member, the temperature rise due to electromagnetic induction heating is reduced. Usually, the fixing member is not premised on periodic replacement, but is used repeatedly, so that it is important to have durability.
  • the heating member of Patent Document 2 includes an electroless plating base layer in which a catalyst-carrying carrier carrying a catalyst metal is dispersed on the carrier surface, and the catalyst metal carrier has a portion exposed on the surface on the metal plating side.
  • the catalyst metal carrier has a portion exposed on the surface on the metal plating side.
  • palladium is preferably used as the catalyst metal constituting the carrier for supporting the catalyst because of its excellent catalytic ability and binding property to the electroless metal plating and high versatility.
  • Patent Document 2 not only in Patent Document 2, but also in the production of an electroless plating base layer using palladium, since a catalyst imparting property is excellent, a stannous chloride solution is usually used. Therefore, a waste liquid containing tin is generated, and the remaining Sn 4+ cannot be removed due to the aggregation of the carrier or insufficient cleaning, and the remaining Sn 4+ inhibits the electroless plating reaction and causes poor adhesion of the plating. It was.
  • an average particle size as small as possible (for example, about 3 nm) is desirable in order to increase the specific surface area in consideration of catalytic activity.
  • An object of the present invention is to provide an electroless plating base material having a low environmental load and excellent adhesion. Moreover, an object of this invention is to provide the plating laminated body which has little environmental impact and is excellent in adhesiveness. Furthermore, an object of the present invention is to provide a method for producing an electroless plating base material in which the particle diameter of palladium fine particles can be easily controlled.
  • the present invention includes a catalyst-supporting carrier (Y) and a binder polymer (Z), the catalyst metal fine particles supported on the catalyst-supporting carrier (Y) include palladium fine particles, and the average particle diameter (D50) of the palladium fine particles. ) Is 10 nm or more and 43 nm or less.
  • the present invention also includes a base layer formed of a base layer polymer, the electroless plating base agent, an electroless plating base layer stacked on the base layer, and a base layer formed on the plating base layer.
  • a base layer formed of a base layer polymer the electroless plating base agent, an electroless plating base layer stacked on the base layer, and a base layer formed on the plating base layer.
  • the present invention provides a step (A) of obtaining a catalyst metal fine particle-containing solution (X) by reducing the catalyst metal-containing raw material solution with a reducing agent, the catalyst metal fine particle-containing solution (X) obtained in the step, and a carrier To obtain a catalyst-carrying carrier (Y) carrying catalyst metal fine particles on the surface thereof, and the catalyst-carrying carrier (Y) obtained in the previous step and a binder polymer (Z).
  • a method for producing an electroless plating base material comprising a step (C) of mixing, wherein the catalytic metal fine particles supported on the carrier include fine palladium particles, and the average particle diameter (D50) of the fine palladium particles is 10 nm or more and 43 nm or less. I will provide a.
  • the electroless plating base material of the present invention does not produce a tin (Sn) waste liquid, can reduce the environmental burden, and has excellent adhesion. Moreover, the plating laminated body which is excellent in adhesiveness can be provided by this invention. Furthermore, the method for producing an electroless plating base material of the present invention can easily control the particle diameter of the target palladium fine particles.
  • the electroless plating base material of the present invention includes a catalyst-supporting carrier (Y) and a binder polymer (Z), and the catalyst metal fine particles supported on the surface of the catalyst-supporting carrier (Y) include fine palladium particles,
  • the average particle diameter (D50) of the palladium fine particles is from 10 nm to 43 nm.
  • the binder polymer (Z) used in the present invention is not particularly limited as long as the effects of the present invention are not hindered, and various resins or rubbers can be used. These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
  • the resin examples include polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin (for example, polytetrafluoroethylene (PTFE), Perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), polyvinylidene fluoride (PVDF), Polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), etc.); acetal resin; alkyd resin; Ester resins (for example, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene ter
  • polyamideimide resin polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin; polyester resin; polyvinyl alcohol; One or more selected from the group consisting of olefin resins are preferred.
  • the rubber examples include acrylonitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), chloroprene rubber (CR), hydrin rubber (ECO, CO), isoprene rubber ( IR), urethane rubber (U), silicone rubber (Q), ethylene-propylene-diene rubber (EPDM), natural rubber (NR) and the like.
  • NBR acrylonitrile-butadiene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • IIR chloroprene rubber
  • ECO chloroprene rubber
  • ECO hydrin rubber
  • IR isoprene rubber
  • U urethane rubber
  • EPDM ethylene-propylene-diene rubber
  • NR natural rubber
  • the carrier constituting the catalyst-supporting carrier (Y) of the present invention is not particularly limited as long as the effects of the present invention are not hindered.
  • various particles such as a spherical shape, a substantially spherical shape, a fibrous shape, a columnar shape, a massive shape, and a substantially tufted shape are used. It can be a shape.
  • the material of the carrier is not particularly limited as long as the effect of the present invention is not hindered. For example, it is easy to ensure the affinity with the binder polymer (Z), and it is easy to contribute to the improvement of adhesion.
  • One or more selected from the group consisting of a metal oxide and silica can be mentioned, and a carbon-based material is more preferable from the viewpoint of affinity with the binder polymer (Z). These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
  • the carbon-based material is not particularly limited, and examples thereof include carbon black, carbon nanotube, fullerene, and graphite. Although it does not specifically limit as said metal oxide, For example, a titanium oxide, a zinc oxide, aluminum oxide, magnesium oxide etc. are mentioned. Of the above-mentioned supports, carbon black is particularly preferable from the viewpoints of easy loading of the catalyst metal, affinity with the binder polymer (Z), economy, and the like.
  • the average particle size of the carrier is preferably about 10 nm to 10 ⁇ m, preferably 50 nm to 5.mu.m, from the viewpoints of good dispersibility in the binder polymer (Z) and easy to ensure the smoothness of the plating base layer surface. About 0 ⁇ m is more preferable, and about 100 nm to 2.0 ⁇ m is more preferable.
  • the average particle size of the support is preferably larger than the average particle size of the catalyst metal fine particles supported on the support.
  • the average particle size of the carrier in the present invention can be measured by a dynamic light scattering type particle size distribution analyzer [manufactured by Nikkiso Co., Ltd., “Microtrac UPA-EX150”, etc.].
  • the catalyst metal constituting the catalyst support (Y) used in the present invention contains at least palladium (Pd).
  • the catalyst metal is not particularly limited as long as the effect of the present invention is not hindered.
  • a metal having a catalytic ability necessary to develop an electroless metal plating reaction in the present invention, “metal” “Alloys” may be used).
  • the catalytic metal it is preferable to use only palladium.
  • the catalyst metal include, besides palladium, Pt group other than Pt and Pt (Ru, Rh, Os, Ir), Ag, Au, and alloys thereof.
  • the catalyst-carrying carrier (Y) can have a structure in which an exposed part where the carrier surface is exposed and a carrier part where a catalyst metal is carried are mixed.
  • the carrier constituting the catalyst carrier (Y) is a carbon-based material
  • the binder polymer (Z) is a polyamide-imide resin, a modified polyamide-imide resin, a polyimide resin, or a blend of these resins with a polysiloxane compound.
  • the effect can be easily obtained.
  • the modified polyamideimide resin include silane-modified polyamideimide resin; siloxane-modified polyamideimide.
  • the amount of catalyst metal used can be reduced as compared with the case where the support surface is almost covered with the catalyst metal. Therefore, it can contribute to resource saving and is advantageous in reducing the cost of the plated laminate.
  • the catalytic metal containing palladium is carried on the carrier surface as fine particles.
  • the palladium fine particles supported on the surface of the carrier have an average particle diameter (D50) of 10 nm or more and 43 nm or less, 10, 15, 16, 20, 21, 25, 26, 28, 29, 30, 31, 34, 35, It can be any value of 37, 39, 40, 41 and 43 nm, or a range of two values arbitrarily selected from these values (the values at the end points of the range may be included or excluded), and good 20 nm or more and 40 nm or less is more preferable, and 25 nm or more and 39 nm or less is more preferable.
  • the average particle diameter (D50) of the catalyst metal fine particles is a circle-equivalent diameter obtained by microscopy, and the particle size distribution of 100 Pd colloidal particles observed with a transmission microscope is obtained. (D50).
  • the catalyst-carrying carrier (Y) carrying the catalyst metal on the carrier surface is dispersed in the binder polymer (Z).
  • the binder polymer (Z) mainly has a role of holding the catalyst support in a dispersed state and forming a plating underlayer.
  • the electroless plating base material of the present invention includes, for example, a step (A) of obtaining a catalyst metal fine particle-containing solution (X) by reducing a catalyst metal-containing raw material solution with a reducing agent, and a catalyst metal fine particle-containing solution obtained in the above step (X) and a carrier are brought into contact with each other to obtain a catalyst-carrying carrier (Y) carrying catalyst metal fine particles on the surface (B), and the catalyst-carrying carrier (Y) obtained in the above step, and a binder A production method comprising a step (C) of mixing with a polymer (Z), wherein the catalyst metal fine particles supported on the carrier include palladium fine particles, and the average particle size (D50) of the palladium fine particles is 10 nm to 43 nm. Can be manufactured by.
  • step (A) (reduction step) the catalyst metal-containing raw material solution is reduced with a reducing agent to obtain catalyst metal fine particle-containing solution (X).
  • a reducing agent to obtain catalyst metal fine particle-containing solution (X).
  • the solvent for the reduction reaction is not particularly limited as long as the effect of the present invention is not hindered.
  • alcohols such as water, methanol, ethanol, n-propanol, isopropanol, and ethylene glycol
  • halogenated hydrocarbons such as methylene chloride and chloroform And the like
  • cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran
  • nitriles such as acetonitrile and butyronitrile
  • aromatic hydrocarbons such as benzene and toluene
  • mixtures of these solvents and water is preferred.
  • the catalyst metal-containing raw material solution and the solvent for dissolving the reducing agent may be different, but the same is preferable.
  • the catalyst metal-containing raw material solution is obtained by dissolving a catalyst metal-containing compound containing at least palladium in the reduction reaction solvent.
  • the catalytic metal-containing compound is not particularly limited as long as it can be dissolved in the reduction reaction solvent.
  • Palladium compounds such as palladium; silver compounds such as silver nitrate, silver fluoride, silver oxide and silver acetate; gold cyanide, gold trichloride, gold tribromide, potassium gold chloride, potassium gold cyanide, sodium gold chloride, cyanide
  • gold compounds such as gold sodium; platinum compounds such as platinum chloride and platinum sulfate; nickel compounds such as nickel chloride and nickel sulfate.
  • the content of the catalyst metal in the catalyst metal-containing raw material solution is not particularly limited, but is preferably 0.001 g / L or more, more preferably 0.01 g / L or more based on the total amount of the catalyst metal-containing raw material solution.
  • the catalyst metal content is preferably 5.0 g / L or less, more preferably 2.0 g / L or less, based on the total amount of the catalyst metal-containing raw material solution.
  • the pH of the catalyst metal-containing raw material solution is not particularly limited as long as the effect of the present invention is not hindered.
  • 1.0 to 4.5 is preferable, 1.3 to 4.0 is more preferable, and 1.5 to 3.5 is more preferable.
  • the pH can be measured by a known method.
  • the catalyst metal-containing raw material solution may be heated before the reduction reaction, and is preferably heated after the preparation to the pH range and after the reduction reaction.
  • the heating temperature depends on the solvent and is not particularly limited. However, from the viewpoint of easy control of the particle size, the boiling point of the solvent is preferably ⁇ 20 ° C. to the boiling point of the solvent + 20 ° C., and the boiling point of the solvent is ⁇ 10 ° C. A boiling point + 10 ° C. is more preferable.
  • the heating temperature is more preferably about 90 to 110 ° C., and the boiling temperature (100 ° C. ⁇ 5 ° C.) is particularly preferable.
  • the heating time is not particularly limited, but is preferably about 5 minutes to 10 hours, and more preferably about 10 minutes to 5 hours.
  • the reducing agent is not particularly limited as long as the effect of the present invention is not hindered.
  • a metal borohydride such as sodium borohydride or potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, hydrogenation
  • Aluminum hydride salts such as aluminum cesium, aluminum beryllium hydride, magnesium aluminum hydride, calcium aluminum hydride; hydrazine compounds; citric acid and its salts, gallic acid and its salts, formic acid and its salts, acetic acid and its salts, Carboxylic acids such as fumaric acid and its salt, malic acid and its salt, succinic acid and its salt, ascorbic acid and its salt; tannic acid and its salt; primary or secondary such as methanol, ethanol, isopropanol, polyol Alcohols; trimethylamine, triethyl Tertiary amines such as amine, diisopropylethylamine, diethylmethylamine, tetramethylethylenedi
  • Alkali metal salt for example, lithium, sodium, potassium etc.
  • calcium salt magnesium salt
  • citric acid and its salts preferably sodium citrate (trisodium citrate)
  • tannic acid and its salts gallic acid and its salts
  • succinic acid are highly reducible and easy to handle.
  • ascorbic acid and its salts are preferred.
  • the amount of the reducing agent used is not particularly limited as long as the effect of the present invention is not hindered.
  • the molar ratio of catalyst: reducing agent 1.0: 0 with respect to the catalyst contained in the catalyst metal fine particle-containing solution (X).
  • About 1 to 1.0: 50 is preferable, about 1.0: 0.5 to 1.0: 30 is more preferable, and about 1.0: 0.8 to 1.0: 10 is more preferable.
  • the molar ratio of palladium chloride (PdCl 2 ): reducing agent is preferably about 1.0: 0.1 to 1.0: 50, and 1.0: 0. About 5 to 1.0: 30 is more preferable, and about 1.0: 0.8 to 1.0: 10 is more preferable.
  • the conditions for the reduction reaction are not particularly limited as long as the effects of the present invention are not hindered.
  • the reaction temperature is usually from room temperature (about 20 ° C.) to the vicinity of the boiling point of the solvent ( ⁇ 10 ° C.).
  • the vicinity of the boiling point of ( ⁇ 10 ° C.) is preferred.
  • the heating temperature is more preferably about 90 to 110 ° C., and the boiling temperature (100 ° C. ⁇ 5 ° C.) is particularly preferable.
  • the reaction time is not particularly limited, but is preferably about 1 minute to 5 hours, more preferably about 5 minutes to 3 hours.
  • the temperature after cooling is not particularly limited, but is preferably about room temperature (5 to 35 ° C.).
  • ion exchange of the catalyst metal fine particle-containing solution (X) is performed with an ion exchange resin.
  • the ion exchange resin is not particularly limited as long as the effect of the present invention is not hindered, and a commercially available product can be used.
  • a reaction accelerator may be further used.
  • the reaction accelerator is not particularly limited as long as the effect of the present invention is not hindered.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide; sodium carbonate, potassium carbonate
  • alkali metal carbonates such as cesium carbonate and lithium carbonate
  • alkaline earth metal salts such as calcium hydroxide; ammonia and the like.
  • the catalyst is palladium chloride (PdCl 2 )
  • reaction accelerator 1.0: 0.001 to 1.0: 10 in molar ratio with respect to the reducing agent. Is more preferably about 1.0: 0.01 to 1.0: 5.0, and further preferably about 1.0: 0.05 to 1.0: 3.0.
  • Step (B) In the step (B) (catalyst-supported carrier production step), the catalyst-supported carrier (Y) that supports the catalyst metal fine particles on the surface by bringing the catalyst metal fine particle-containing solution (X) obtained in the above-mentioned step into contact with the carrier. Get.
  • the contact method is not particularly limited as long as the effect of the present invention is not hindered, and examples thereof include a method of adding and mixing a support to the catalyst metal fine particle-containing solution (X).
  • the carrier used in this step may be subjected to an etching treatment using a surfactant or the like, but an electroless plating base material having sufficient adhesion can be obtained without it.
  • step (B) it is preferable to further disperse the catalyst metal fine particle-containing solution (X) and the carrier after contacting them.
  • the method of the dispersion treatment is not particularly limited as long as the effect of the present invention is not hindered, and a generally used method can be adopted.
  • Examples of the dispersion processing method include ultrasonic processing.
  • the conditions for ultrasonic treatment are not particularly limited as long as the effects of the present invention are not hindered, and for example, 20 kHz or more is preferable.
  • step (B) the solution obtained after the contact or, if necessary, the solution obtained after dispersion may be subjected to solvent removal and / or drying treatment.
  • the method of solvent removal and / or drying treatment is not particularly limited, and a known method can be adopted. Moreover, you may perform a grinding
  • the method of pulverization is not particularly limited, and a known method can be adopted.
  • sintering (sintering) treatment may be performed to adjust the particle size of palladium.
  • the sintering conditions can be appropriately adjusted according to the target average particle diameter of palladium, and are not particularly limited as long as the effects of the present invention are not hindered.
  • the temperature is about 150 ° C., more preferably about 150 to 250 ° C.
  • the sintering time can be appropriately adjusted according to the target average particle diameter of palladium, and is not particularly limited as long as the effects of the present invention are not hindered. For example, about 10 minutes to 24 hours is preferable, and 30 minutes to About 20 hours is more preferable.
  • the sintering is preferably performed in a vacuum state.
  • Step (C) In the step (C) (mixing step), the catalyst support (Y) obtained in the step (B) and the binder polymer (Z) are mixed. Thereby, the electroless plating base material of the present invention can be prepared.
  • the solvent used for the mixing in the step (C) is not particularly limited as long as the effect of the present invention is not hindered.
  • water alcohols such as isopropanol; organic acids such as acetic acid; benzene, toluene, xylene, ethylbenzene, Aromatic hydrocarbons such as 1,2-dichlorobenzene; ethers such as tetrahydrofuran and diethyl ether; ketones such as acetone, ethyl methyl ketone, isobutyl methyl ketone, and cyclohexanone; chloroform, dichloromethane, 1,2-dichloroethane, and the like Halides; aliphatic hydrocarbons such as n-hexane, n-heptane and cyclohexane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methyl-2-pyrrolidone and the
  • the conditions at the time of mixing are not particularly limited as long as the effects of the present invention are not hindered.
  • it may be heated while stirring.
  • the heating temperature is not particularly limited as long as the effect of the present invention is not hindered.
  • the upper limit of the heating temperature may be about the boiling point of the solvent ⁇ 20 ° C.
  • the method for producing an electroless plating base material of the present invention does not use a binder polymer and a carrier when palladium fine particles are formed, the particle diameter of the target palladium fine particles can be easily controlled.
  • a plated laminate can be mentioned.
  • the plated laminate of the present invention will be described below.
  • FIG. 1 shows the microstructure and the laminated structure of the plating underlayer in one embodiment of the plated laminate of the present invention.
  • a plating laminate 4 shown in FIG. 1 is composed of a base layer 1 formed of a base layer polymer, the electroless plating base agent, and an electroless plating base layer 2 stacked on the base layer.
  • the carrier 22 has an exposed portion.
  • the catalyst supporting carrier 22 supporting the catalyst metal fine particles 222 on the surface of the carrier 221 is dispersed in the binder polymer 21 is preferable.
  • the base layer polymer and the binder polymer (Z), that is, the polymers are in close contact with each other. Therefore, the adhesion between the base layer and the plating base layer can be improved.
  • the method of dispersing the catalyst-supporting carrier 22 in the binder polymer 21 is to bring the above-mentioned electroless plating undercoat that has been subjected to dispersion treatment such as ultrasonic treatment into contact with the base layer (for example, immersion) , Coating and the like) method.
  • the plating underlayer has a portion where the catalyst-supporting carrier is exposed on the surface on the metal plating layer side.
  • the electroless metal plating is deposited with the catalyst metal of the catalyst carrier (Y) exposed on the surface of the plating base layer as a nucleus, the space between the catalyst metal and the electroless metal plating is , Bonded by a metal bond.
  • carrier (Y) exposed on the surface of the plating base layer is being fixed to the binder polymer (Z). Therefore, the adhesion between the plating base layer and the metal plating layer can be improved. Even when the second metal plating layer is laminated on the metal plating layer by further applying electrolytic metal plating or electroless metal plating, the plating layers are in close contact with each other. Can be secured.
  • the base layer can be formed in a cylindrical shape, for example.
  • the base layer can be formed in a roll shape on the outer periphery of the shaft body.
  • the base layer can be composed of one layer or two or more layers.
  • the base layer may be obtained by laminating a base layer polymer on a metal plate such as an aluminum plate, if necessary.
  • examples of the base layer polymer used for the base layer include polyamide imide resins, modified polyamide imide resins, polyimide resins, modified polyimide resins, polyether sulfone resins, fluorine resins, polycarbonate resins, and the like. Examples include those obtained by blending a polysiloxane compound with a resin. These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
  • the base layer polymer preferably contains at least one selected from the group consisting of a polyamideimide resin, a modified polyamideimide resin, a polyimide resin, a modified polyimide resin, and a blend of these resins with a polysiloxane compound.
  • modified polyamideimide resin examples include silane-modified polyamideimide resin; siloxane-modified polyamideimide. This is because the rigidity of the cylindrical base layer is increased, which is advantageous for improving the durability of the plated laminate.
  • a silicone oil having a repeating structure represented by the following formula (1) can be suitably used.
  • the blend amount of the polysiloxane compound is preferably about 0.01 to 10 parts by mass, and more preferably about 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin. This is because the plating laminate has an excellent balance of bending durability and toughness.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an organic group.
  • N represents a positive integer.
  • the organic group represented by R 1 and R 2 is not particularly limited, and examples thereof include alkyl groups having 1 to 15 carbon atoms such as a methyl group and an ethyl group; Examples include alkoxy groups; phenyl groups; amino groups; epoxy groups; carboxyl groups; ether groups.
  • the silicone oil is not particularly limited, but straight silicone oil or the like in which a methyl group, a phenyl group, a hydrogen atom or the like is bonded as a substituent can be suitably used from the viewpoint of cost.
  • the cylindrical base layer additives such as a flame retardant, a filler, a leveling agent, and an antifoaming agent may be included. These may be used alone or in combination of two or more.
  • the thickness of the cylindrical base layer is preferably about 20 to 200 ⁇ m, more preferably about 40 to 150 ⁇ m, and further preferably about 60 to 100 ⁇ m, from the viewpoint of improving durability and ease of manufacture.
  • the base layer polymer used for the base layer various resins and rubbers (in the present invention, rubber includes an elastomer, hereinafter omitted) can be used.
  • the resin include polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin (for example, polytetrafluoroethylene (PTFE), Perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), polyvinylidene fluoride (PVDF), Polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE),
  • PTFE polytetrafluoroethylene
  • PFA Perflu
  • polyamideimide resin polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin; polyester resin; polyvinyl alcohol; One or more selected from the group consisting of olefin resins are preferred.
  • the rubber examples include silicone rubber (Q), acrylonitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), chloroprene rubber (CR), hydrin rubber ( ECO, CO), isoprene rubber (IR), urethane rubber (U), ethylene-propylene-diene rubber (EPDM), natural rubber (NR) and the like. These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
  • additives such as a flame retardant, a filler, a crosslinking agent, a crosslinking aid, a lubricant, a plasticizer, a softening agent, and an antioxidant may be included. These may be used alone or in combination of two or more.
  • the thickness of the roll-shaped base layer is preferably about 0.5 to 3 mm, more preferably about 1 to 1.5 mm, from the viewpoint of grounding property, cost, and the like.
  • the plating underlayer has an important role for improving the adhesion between the base layer and the electroless metal plating layer.
  • the plating base layer is laminated on the base layer. Specifically, the plating base layer can be formed along the outer peripheral surface of the base layer.
  • the plating base layer is composed of the plating base agent.
  • the plating base layer has a portion where the catalyst-supporting carrier (Y) is exposed on the surface on the electroless metal plating layer side. This means that the catalyst carrier (Y) dispersed in the plating base layer and the catalyst carrier (Y) exposed on the surface can be mixed without being exposed on the surface. . Therefore, it does not mean that all the catalyst-supporting carriers dispersed in the plating base layer must be exposed.
  • the amount of the catalyst-supporting carrier exposed on the surface is not particularly limited, but the catalyst-supporting carrier (Y) exposed on the surface is scattered almost uniformly on the surface of the plating underlayer. It is preferable. This is because the electroless metal plating can be uniformly deposited starting from the catalyst metal supported on the catalyst-supporting carrier (Y), so that the adhesion between the plating base layer and the electroless metal plating layer is enhanced. Further, the exposed amount of the catalyst-supporting carrier (Y) exposed on the surface is not particularly limited as long as there is a portion where the catalyst metal supported on the carrier is outside the binder polymer (Z).
  • the content of the catalyst-supporting carrier (Y) ensures the deposition of the electroless metal plating, improves the adhesion between the plating base layer and the electroless metal plating layer, and the like. 30 parts by mass or more is preferable with respect to 100 parts by mass of the binder polymer (Z), and 50 parts by mass or more is more preferable. In addition, the content of the catalyst-supporting carrier (Y) is 300 parts by mass or less with respect to 100 parts by mass of the binder polymer (Z) from the viewpoints of excellent flexibility of the plating base layer, saturation of the additive effect, economy, and the like. Is preferable, and 200 mass parts or less is more preferable.
  • the thickness of the plating base layer is not particularly limited as long as the effect of the present invention is not hindered. However, it becomes easy to ensure sufficient adhesion between the base layer and the electroless metal plating layer, and it becomes easy to ensure layer formability. From the viewpoint of the above, 1 ⁇ m or more is preferable, and 2 ⁇ m or more is more preferable.
  • the thickness of the plating underlayer is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoints of shortening the layer formation time and economy.
  • the plating laminate is preferably such that the base layer polymer and the binder polymer (Z) contain the same type of polymer.
  • the affinity between the base layer and the plating base layer is increased, and the adhesion between the base layer and the plating base layer is easily improved.
  • the base layer polymer and the binder polymer (Z) may be the same type of polymer.
  • the “same kind” means not only the case where the polymers are exactly the same, but also the case where the polymers have the same basic skeleton. Therefore, for example, it can be said that various resins classified into a certain type of resin (polyamideimide resin or the like) are the same type of polymer.
  • a polyamideimide resin, a modified polyamideimide resin, a polyimide resin, a blend of these resins with the polysiloxane compound, or the like can be suitably used as the base layer polymer.
  • the modified polyamideimide resin include silane-modified polyamideimide resin; siloxane-modified polyamideimide. This is because there are advantages such as excellent strength, heat resistance and flexibility in the case of a cylindrical shape (belt shape).
  • a polyamide-imide resin, a modified polyamide-imide resin, a polyimide resin, or a blend of these resins with the polysiloxane compound can be suitably used as the binder polymer. This is because there are advantages such as affinity with the base layer polymer, affinity with a carrier made of a carbon-based material described later, and excellent heat resistance.
  • the electroless metal plating layer is a layer capable of functioning as a heat generating layer that generates heat by electromagnetic induction heating together with a single metal plating layer or a second metal plating layer described later. Moreover, it is a layer which can be made to function as an electrode at the time of laminating
  • the electroless metal plating layer is laminated on the plating base layer. Specifically, the electroless metal plating layer can be formed along the outer peripheral surface of the plating base layer.
  • Examples of the metal forming the electroless metal plating layer include Cu, Ni, Ag, Pd, Sn, Au, and alloys thereof.
  • the catalytic activity for the above-described catalytic metal (particularly Pd), the plating underlayer, and the like Ni and Ni alloys are particularly preferable because of their advantages such as excellent adhesion. These may be used alone or in combination of two or more.
  • the thickness of the electroless metal plating layer is to ensure adhesion with the plating base layer, from the viewpoint of easily functioning as an electrode when forming the second metal plating layer described later by electrolytic metal plating, 0.1 ⁇ m or more is preferable, and 0.2 ⁇ m or more is more preferable.
  • the thickness of an electroless metal plating layer is 2 micrometers or less from viewpoints of crack suppression at the time of a deformation
  • the thickness of the electroless metal plating layer is preferably 30 ⁇ m or less, and more preferably 25 ⁇ m or less, when a second metal plating layer described later is not laminated.
  • a second metal plating layer formed by electrolytic metal plating or electroless metal plating may be further laminated on the electroless metal plating layer.
  • the second metal plating layer is a layer that can function as a heat generation layer that generates heat mainly by electromagnetic induction heating.
  • the metal that forms the second metal plating layer include Cu, Ni, Ag, Au, Sn, Zn, and alloys thereof, and the like. Cu and Cu alloys are particularly preferable because they have advantages such as excellent economy. These may be used alone or in combination of two or more.
  • the second metal plating layer is laminated on the electroless metal plating layer.
  • the second metal plating layer can be formed along the outer peripheral surface of the electroless metal plating layer.
  • the second metal plating layer can be composed of one layer or two or more layers.
  • each layer may be formed from either electrolytic metal plating or electroless metal plating.
  • Each layer may be formed from the same metal or may be formed from different metals.
  • the thickness of each layer can also be distributed appropriately.
  • the thickness of the second metal plating layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more from the viewpoint of easily ensuring the function as the heat generating layer.
  • the thickness of the second metal plating layer is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoints of flexibility, heat generation in a short time, shortening of the layer formation time, and the like.
  • the use of the plated laminate is not particularly limited, and can be used to heat various objects to be heated.
  • the plated laminate can be used, for example, as a fixing member in an electrophotographic image forming apparatus.
  • the electroless metal plating layer or the metal plating layer may be a heat generation layer that generates heat by electromagnetic induction heating.
  • the durability of the plated laminate is excellent. Therefore, a good image can be formed over a long period of time even when used in a state of being pressed against a pressure roll or the like.
  • the image forming apparatus include a copying machine, a printer, a facsimile machine, a multifunction machine, and a POD (Print On Demand) apparatus that employ an electrophotographic system.
  • a plating base layer forming material containing a binder polymer (Z) and a catalyst-supporting carrier (Y) is applied in a layered manner on the surface of a base layer formed from a base layer polymer.
  • a step of removing the binder polymer (Z) from the surface of the formed coating layer, exposing the catalyst-supporting carrier (Y) to form a plating base layer, and electroless formation on the surface of the formed plating base layer Applying metal plating to form an electroless metal plating layer.
  • a step of forming a second metal plating layer by performing electrolytic metal plating or electroless metal plating on the electroless metal plating layer can be added.
  • the plating laminated body of the said structure can be obtained. Furthermore, it is not necessary to perform a complicated plating pretreatment process during the production. Therefore, it is possible to contribute to the downsizing of the production line, and the productivity is excellent.
  • the base layer forming material (coating agent) is applied to the outer peripheral surface of a cylindrical or columnar mold and dried. If necessary, heat treatment can be performed.
  • the coating method include a dip coating method, a dispenser coating method (nozzle coating method), a roll coating method, and a ring coating method.
  • the base layer is in the form of a roll
  • the base layer forming material (kneaded material) is injected into a roll mold and heat-treated.
  • the base layer forming material (kneaded material) can be extruded.
  • the base layer formed from the base layer polymer is prepared in consideration of the shape of the base layer and the like.
  • an electroless plating base material (coating agent) containing the catalyst-supporting carrier (Y) and the binder polymer (Z) is applied to the outer peripheral surface of the base layer and dried. Heat treatment can be performed as necessary.
  • the electroless plating base material can be manufactured by the above-described manufacturing method. The method described above can be applied to the coating method on the base layer. Specifically, a dip coating method can be selected as a coating method from the viewpoint of easy layer formation.
  • the binder polymer (Z) on the surface of the formed coating layer is removed, and the catalyst support (Y) is exposed. Thereby, a plating underlayer can be formed.
  • the binder polymer (Z) can be dissolved by various solvents, the binder polymer (Z) is selectively dissolved (etched) using an appropriate solvent. Can be done. In addition, it is possible to use removing means such as blasting and polishing.
  • the electroless metal plating layer can be formed by performing electroless metal plating on the plating base layer using a conventionally known method. For example, it can be formed using a commercially available electroless plating solution.
  • the second metal plating layer can be formed by performing electrolytic metal plating on the electroless metal plating layer using a conventionally known method. For example, it can be formed using a commercially available electrolytic plating solution.
  • the second metal plating layer can be formed on the electroless metal plating layer by performing electroless metal plating using a conventionally known method.
  • the manufacturing method of the said plating laminated body can add the process of forming a rubber elastic layer on the electroless metal plating layer surface or the 2nd metal plating layer surface as needed. Moreover, the process of forming a surface layer can also be added to the rubber elastic layer surface as needed.
  • the binder polymer (Z) for example, when water-soluble ones such as N-methoxymethylated nylon resin are used, the electroless metal plating solution is impregnated when electroless metal plating is performed. Excellent. Therefore, removal of the binder polymer (Z) can be omitted.
  • the plating base layer is an electroless metal in which the catalyst support (Y) is dispersed in the binder polymer (Z) and is deposited on the electroless metal plating layer side by impregnation with the electroless metal plating solution. It has an impregnation layer containing plating. Therefore, the electroless metal plating contained in this impregnation layer and the electroless metal plating layer outside the impregnation layer are combined. In addition, an anchor effect by electroless metal plating in the impregnated layer is also expected. As a result, the adhesion between the base layer and the electroless metal plating layer can be improved.
  • the present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • Example 1 [Preparation of catalyst metal-containing raw material solution]
  • a palladium chloride solution was prepared. After dissolving 1.68 g of palladium chloride (PdCl 2 ) (powder) in a mixed solution of 20 mL of 3.65 wt% (1 mol / L) hydrochloric acid aqueous solution and 500 mL of pure water, the volume was adjusted to 1 L with pure water. Thus, a palladium chloride solution was obtained. This was used as a 1 g / L palladium raw material solution (1 g / L-Pd raw material).
  • PdCl 2 palladium chloride
  • reducing agent solution sodium citrate (trisodium citrate) and tannic acid were used. Specifically, a sodium citrate solution in which sodium citrate was diluted to 10 wt% with pure water and a tannic acid solution in which tannic acid was diluted to 1.43 wt% with pure water were used. Potassium carbonate was used as a reaction accelerator. Specifically, a potassium carbonate solution in which potassium carbonate was diluted with pure water to 13.82 wt% (1 mol / L) was used.
  • Step (A) In a 1 L round bottom flask, 200 g of a 1 g / L palladium raw material solution and 731.61 g of pure water were mixed. At this time, a small amount of 3.65 wt% (1 mol / L) hydrochloric acid solution was added to adjust the pH to 2.3. This was boiled and refluxed for 1 hour. 15 g of the sodium citrate solution, 35 g of the tannic acid solution, and 1.25 g of the potassium carbonate solution were mixed and added thereto. After these solutions were added and boiled and refluxed for 10 minutes, the flask was placed in ice water and cooled to room temperature.
  • Pd colloid solution a Pd colloid particle dispersion
  • an ion exchange resin Amberlite MB-1 (manufactured by Organo Corporation)
  • X1 an ion exchange resin
  • D50 the average particle size of the Pd colloidal particles of this example was 10 nm.
  • Step (B) Next, after adding carbon black (trade name: Thermax N990, average particle size: 280 nm, manufactured by cancarb) to the Pd colloid solution (X1), ultrasonic waves of 45 kHz are added. Was irradiated for 90 minutes to obtain a dispersion of fine Pd particles and carbon black. Subsequently, the dispersion was dehydrated and dried with an evaporator and then pulverized with an agate mortar to obtain Pd fine particle-supported carbon black (Y1).
  • carbon black trade name: Thermax N990, average particle size: 280 nm, manufactured by cancarb
  • Step (C) Further, 2.4 g of polyamideimide resin varnish (trade name: HPC-5012, manufactured by Hitachi Chemical Co., Ltd.) and 34.9 g of N-methyl-2-pyrrolidone were added to 2.7 g of the above-mentioned Pd fine particle-supported carbon black (Y1). The mixture was stirred well to obtain a Pd-supported carbon-dispersed polyamideimide solution (electroless plating base material).
  • a plated base layer-formed aluminum plate was obtained as follows.
  • As a plating substrate an aluminum plate with a thickness of 1 mm cut to a width of 25 mm and a length of 100 mm was prepared and immersed in a polyamideimide resin varnish (trade name: HPC-5012, manufactured by Hitachi Chemical Co., Ltd.) The polyamideimide resin varnish was applied to the aluminum plate by a method of pulling up at a constant speed.
  • the aluminum plate was dried at 200 ° C. to form a plating base layer to obtain a plating base layer-formed aluminum plate.
  • the Pd-supported carbon-dispersed polyamideimide solution was applied to the aluminum plate by a method of pulling up at a constant speed.
  • the aluminum plate was dried at 200 ° C. to form a plating underlayer.
  • the formed plating underlayer was etched by immersing in a 200 g / L NaOH aqueous solution at 40 ° C. for 10 minutes, and washed with pure water for 10 minutes. Then, it dried at 80 degreeC and obtained the aluminum plate in which the plating base layer in which Pd carrying
  • the plating deposition area is 80% or more of the whole B: The plating deposition area is 50% or more and less than 80% of the whole C: The plating deposition area is 30% or more and less than 50% of the whole D: The plating deposition area is 30 %Less than
  • Example 2 In the preparation of the Pd colloid solution, the amount of pure water mixed with the palladium raw material solution was 744.94 g (pH of the solution 2.3), and the amount of sodium citrate solution used during Pd reduction was 10 g.
  • a Pd colloid solution (X2) was prepared by the same production method. When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 20 nm.
  • a Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X2) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
  • Example 3 Example 1 except that the amount of pure water mixed with the palladium raw material solution was 751.75 g (pH of the solution 2.3) and the amount of sodium citrate solution used during Pd reduction was 5 g when preparing the Pd colloidal solution.
  • a Pd colloid solution (X3) was prepared by the same production method. When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 35 nm.
  • a Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X3) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
  • Example 4 When preparing the Pd colloidal solution, the amount of pure water mixed with the palladium raw material solution was set to 733.25 g (solution pH 2.3), and 50 g of 2 wt% gallic acid solution was used instead of sodium citrate as the reducing agent during Pd reduction. Then, a Pd colloid solution (X4) was prepared by the same production method as in Example 1 except that 1.0 g of potassium carbonate solution as a reaction accelerator was used. When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
  • a Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X4) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
  • Example 5 The same manufacturing method as in Example 1 except that the Pd fine particle-supported carbon black of Example 1 was subjected to a heat treatment at 200 ° C. for 12 hours in a vacuum state, and the particle size of Pd was increased by sintering. A Pd colloid solution (X5) was prepared. When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 35 nm.
  • a Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X5) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
  • Carbon black (trade name: Thermax N990, average particle size: 280 nm, manufactured by cancarb) was prepared as a carrier. This carbon black was immersed in a 60% by mass nitric acid aqueous solution at 50 ° C. for 10 minutes. Thereby, the carbon black surface was etched. Next, this was filtered and washed with water, and then immersed in an aminocarboxylic acid surfactant [Okuno Pharmaceutical Co., Ltd., “Condizer SP”] at 50 ° C. for 10 minutes. Thereby, the surface adjustment of the carbon black surface was performed.
  • an aminocarboxylic acid surfactant [Okuno Pharmaceutical Co., Ltd., “Condizer SP”
  • Example 1 a plating base layer made of polyamideimide resin varnish was formed on an aluminum plate. Moreover, it replaced with Pd fine particle carrying
  • the electroless plating base material of the present invention is excellent in plating properties and by extension, in adhesion.
  • the electroless plating base material of the present invention is excellent in adhesion and hardly causes poor adhesion.
  • the plating laminate using the electroless plating base material of the present invention does not have Sn 4+ remaining due to carrier aggregation or insufficient cleaning, and is less likely to cause poor adhesion due to remaining Sn 4+ . It is excellent in durability and is particularly useful when used for a heating member or the like that does not require regular replacement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention provides an electroless plating base agent which exhibits excellent adhesion, while placing little burden on the environment. The present invention relates to an electroless plating base agent which is characterized by containing a catalyst carrier (Y) and a binder polymer (Z), and which is also characterized in that: catalyst metal fine particles supported on the surface of the catalyst carrier (Y) contain palladium fine particles; and the average particle diameter (D50) of the palladium fine particles is from 10 nm to 43 nm (inclusive).

Description

無電解めっき下地剤及びその製造方法並びに該無電解めっき下地剤を用いためっき積層体Electroless plating base agent, method for producing the same, and plating laminate using the electroless plating base agent
 本発明は、無電解めっき下地剤及びその製造方法並びに該無電解めっき下地剤を用いためっき積層体に関する。 The present invention relates to an electroless plating base agent, a method for producing the same, and a plating laminate using the electroless plating base agent.
 無電解めっきは、基材をめっき液に浸漬するだけで、基材の種類や形状に関係なく厚さの均一な被膜が得られ、プラスチックやセラミック、ガラス等の不導体材料にも金属めっき膜を形成できることから、自動車部品等の樹脂成形体への高級感や美観の付与といった装飾用途や、電磁遮蔽、プリント基板及び大規模集積回路等の配線技術等、種々の分野において幅広く用いられている。このような無電解めっきを用いて製造されるものの具体例として、電子写真方式を採用する複写機やプリンター等の画像形成装置の定着部材が挙げられる。 In electroless plating, a film with a uniform thickness can be obtained by simply immersing the substrate in the plating solution, regardless of the type or shape of the substrate. Metal plating films can also be applied to non-conductive materials such as plastic, ceramic, and glass. Therefore, it is widely used in various fields such as decorative applications such as imparting a sense of quality and aesthetics to resin moldings such as automobile parts, and wiring technologies such as electromagnetic shielding, printed circuit boards and large-scale integrated circuits. . A specific example of what is manufactured using such electroless plating is a fixing member of an image forming apparatus such as a copying machine or a printer that employs an electrophotographic system.
 前記定着部材としては、例えば、特許文献1には、ポリイミド樹脂製の基層上に、無電解ニッケルめっき層と、電解銅めっき層と、シリコーンゴム層とを有する定着部材が開示されている。 As the fixing member, for example, Patent Document 1 discloses a fixing member having an electroless nickel plating layer, an electrolytic copper plating layer, and a silicone rubber layer on a base layer made of polyimide resin.
 しかしながら、特許文献1の定着部材には、以下の点で問題がある。
 すなわち、前記金属めっき層を有する定着部材を形成するためには、通常、ポリマー製の基層表面に、Pd等の触媒金属の前駆体を付与した後、この前駆体を還元により金属化する活性化処理を行う。そして、このような基層へのめっき前処理工程の後、基層表面に無電解金属めっき層を形成する。さらにこれを電極として電解金属めっき層を形成することになる。
However, the fixing member disclosed in Patent Document 1 has the following problems.
That is, in order to form a fixing member having the metal plating layer, it is usually an activation in which a precursor of a catalytic metal such as Pd is applied to the surface of a polymer base layer and then the precursor is metallized by reduction. Process. Then, after such a plating pretreatment step for the base layer, an electroless metal plating layer is formed on the surface of the base layer. Furthermore, an electrolytic metal plating layer is formed using this as an electrode.
 ところが、前記めっき前処理を行って形成した無電解金属めっき層は、基層との密着性が悪い。そのため、無電解金属めっき層が基層から剥離しやすい。また、無電解金属めっき層が基層から剥離すれば、その結果として、その上に積層した電解金属めっき層等も基層から剥離してしまう。つまり、前記定着部材は、基層と金属めっき層との密着性に劣るという問題がある。定着部材の使用時に、金属めっき層が基層から剥離すると、電磁誘導加熱による昇温性の低下を招く。定着部材は、通常、定期的な交換を前提とするものではなく、繰り返し使用されるため、耐久性を有することは重要である。 However, the electroless metal plating layer formed by performing the plating pretreatment has poor adhesion to the base layer. Therefore, the electroless metal plating layer is easily peeled from the base layer. Moreover, if the electroless metal plating layer peels from the base layer, as a result, the electrolytic metal plating layer or the like laminated thereon also peels from the base layer. That is, the fixing member has a problem that the adhesion between the base layer and the metal plating layer is inferior. If the metal plating layer is peeled off from the base layer during use of the fixing member, the temperature rise due to electromagnetic induction heating is reduced. Usually, the fixing member is not premised on periodic replacement, but is used repeatedly, so that it is important to have durability.
 そこで、密着性を改善するために、特許文献2の加熱部材が提案された。特許文献2の加熱部材では、担体表面に触媒金属を担持する触媒担持担体が分散され、該触媒金属担体が金属めっき側の表面に露出した部分を有する無電解めっき下地層を備える。この無電解めっき下地層において、触媒担時担体を構成する触媒金属として、触媒能や無電解金属めっきとの結合性に優れ、汎用性が高い点から、好適にはパラジウムが挙げられている。 Therefore, in order to improve the adhesion, the heating member of Patent Document 2 was proposed. The heating member of Patent Document 2 includes an electroless plating base layer in which a catalyst-carrying carrier carrying a catalyst metal is dispersed on the carrier surface, and the catalyst metal carrier has a portion exposed on the surface on the metal plating side. In the electroless plating base layer, palladium is preferably used as the catalyst metal constituting the carrier for supporting the catalyst because of its excellent catalytic ability and binding property to the electroless metal plating and high versatility.
 特許文献2に限らず、パラジウムを用いる無電解めっき下地層の製造においては、触媒付与性に優れることから、通常、塩化第一スズ溶液が用いられる。そのため、スズを含有する廃液が発生するとともに、担体の凝集や洗浄不足によって残存するSn4+を除去しきれず、残存するSn4+が無電解めっきの反応を阻害し、めっきの密着性不良を起こす原因となっていた。 Not only in Patent Document 2, but also in the production of an electroless plating base layer using palladium, since a catalyst imparting property is excellent, a stannous chloride solution is usually used. Therefore, a waste liquid containing tin is generated, and the remaining Sn 4+ cannot be removed due to the aggregation of the carrier or insufficient cleaning, and the remaining Sn 4+ inhibits the electroless plating reaction and causes poor adhesion of the plating. It was.
 また、無電解めっき下地層にパラジウム微粒子を含める場合、触媒活性を考慮し、比表面積を大きくするために、平均粒径ができるだけ小さい(例えば、3nm程度)ものが望ましいと考えられていた。 In addition, when palladium fine particles are included in the electroless plating underlayer, it is considered that an average particle size as small as possible (for example, about 3 nm) is desirable in order to increase the specific surface area in consideration of catalytic activity.
 しかしながら、無電解めっき下地層の製造において、パラジウムの反応制御が難しいため、パラジウム微粒子の粒子径も、制御することは困難であった。 However, in the production of the electroless plating underlayer, it is difficult to control the particle size of the palladium fine particles because it is difficult to control the reaction of palladium.
特開2009-25565号公報JP 2009-25565 A 特開2013-210406号公報JP2013-210406A
 本発明は、環境負荷が少なく、密着性に優れる無電解めっき下地剤を提供することを目的とする。また、本発明は、環境負荷が少なく、密着性に優れるめっき積層体を提供することを目的とする。さらに、本発明は、パラジウム微粒子の粒子径の制御が容易な無電解めっき下地剤の製造方法を提供することを目的とする。 An object of the present invention is to provide an electroless plating base material having a low environmental load and excellent adhesion. Moreover, an object of this invention is to provide the plating laminated body which has little environmental impact and is excellent in adhesiveness. Furthermore, an object of the present invention is to provide a method for producing an electroless plating base material in which the particle diameter of palladium fine particles can be easily controlled.
 本発明は、触媒担持担体(Y)と、バインダーポリマー(Z)とを含み、前記触媒担持担体(Y)に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下である無電解めっき下地剤を提供する。 The present invention includes a catalyst-supporting carrier (Y) and a binder polymer (Z), the catalyst metal fine particles supported on the catalyst-supporting carrier (Y) include palladium fine particles, and the average particle diameter (D50) of the palladium fine particles. ) Is 10 nm or more and 43 nm or less.
 また、本発明は、基層用ポリマーより形成された基層と、前記無電解めっき下地剤から構成され、前記基層上に積層された無電解めっき下地層と、前記めっき下地層上に積層され、無電解金属めっきにより形成された無電解金属めっき層とを備え、前記無電解金属めっき層側の表面に、担体表面に触媒金属を担持する触媒担持担体が露出した部分を有するめっき積層体を提供する。 The present invention also includes a base layer formed of a base layer polymer, the electroless plating base agent, an electroless plating base layer stacked on the base layer, and a base layer formed on the plating base layer. There is provided an electroless metal plating layer formed by electrolytic metal plating, and a plating laminate having a portion on the surface of the electroless metal plating layer where a catalyst-carrying carrier carrying a catalyst metal is exposed on the carrier surface. .
 さらに、本発明は、触媒金属含有原料溶液を還元剤で還元し、触媒金属微粒子含有溶液(X)を得る工程(A)、前記工程で得られた触媒金属微粒子含有溶液(X)と、担体とを接触させて、表面に触媒金属微粒子を担持する触媒担持担体(Y)を得る工程(B)、及び、前記工程で得られた触媒担持担体(Y)と、バインダーポリマー(Z)とを混合する工程(C)を有し、前記担体に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下である無電解めっき下地剤の製造方法を提供する。 Furthermore, the present invention provides a step (A) of obtaining a catalyst metal fine particle-containing solution (X) by reducing the catalyst metal-containing raw material solution with a reducing agent, the catalyst metal fine particle-containing solution (X) obtained in the step, and a carrier To obtain a catalyst-carrying carrier (Y) carrying catalyst metal fine particles on the surface thereof, and the catalyst-carrying carrier (Y) obtained in the previous step and a binder polymer (Z). A method for producing an electroless plating base material comprising a step (C) of mixing, wherein the catalytic metal fine particles supported on the carrier include fine palladium particles, and the average particle diameter (D50) of the fine palladium particles is 10 nm or more and 43 nm or less. I will provide a.
 本発明の無電解めっき下地剤は、スズ(Sn)の廃液が生じず、環境負荷を低減でき、かつ、密着性に優れる。また、本発明によって、密着性に優れるめっき積層体を提供することができる。さらに、本発明の無電解めっき下地剤の製造方法は、目的とするパラジウム微粒子の粒子径を容易に制御することができる。 The electroless plating base material of the present invention does not produce a tin (Sn) waste liquid, can reduce the environmental burden, and has excellent adhesion. Moreover, the plating laminated body which is excellent in adhesiveness can be provided by this invention. Furthermore, the method for producing an electroless plating base material of the present invention can easily control the particle diameter of the target palladium fine particles.
本発明の一実施形態に係るめっき積層体における、めっき下地層の微構造及び積層構造を模式的に説明した図である。It is the figure which demonstrated typically the microstructure and laminated structure of a plating base layer in the plating laminated body which concerns on one Embodiment of this invention.
 本発明の無電解めっき下地剤は、触媒担持担体(Y)と、バインダーポリマー(Z)とを含み、前記触媒担持担体(Y)の表面に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下であることを特徴とする。 The electroless plating base material of the present invention includes a catalyst-supporting carrier (Y) and a binder polymer (Z), and the catalyst metal fine particles supported on the surface of the catalyst-supporting carrier (Y) include fine palladium particles, The average particle diameter (D50) of the palladium fine particles is from 10 nm to 43 nm.
 本発明に用いるバインダーポリマー(Z)としては、本発明の効果を妨げない限り特に限定されず、各種の樹脂又はゴムを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、これらは市販品を用いることができる。 The binder polymer (Z) used in the present invention is not particularly limited as long as the effects of the present invention are not hindered, and various resins or rubbers can be used. These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
 前記樹脂としては、例えば、ポリアミドイミド樹脂;ポリアミド樹脂;ポリイミド樹脂;ウレタン樹脂;ウレタンシリコーン樹脂;(メタ)アクリル樹脂;(メタ)アクリルシリコーン樹脂;フッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、テトラフルオロエチレンーパーフルオロジオキソールコポリマー(TFE/PDD)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフロオロエチレンコポリマー(ECTFE)、ポリフッ化ビニル(PVF)等);アセタール樹脂;アルキド樹脂;ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等);ポリエーテル樹脂(例えば、ポリエーテルイミド(PEI);ポリエーテルスルホン(PES);ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルケトンケトン(PEEKK)等の少なくともベンゼン環を2つ以上有する芳香族ポリエーテルケトン等);カーボネート樹脂(例えば、カーボネート骨格(-OーC(=O)-O-)を有するポリカーボネート等);ポリビニルアルコール;ポリビニルピロリドン;セルロース系樹脂(例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等);ポリアクリルアミド;ポリエチレンオキサイド;ポリエチレングリコール;ポリプロピレングリコール;ポリビニルメチルエーテル;ポリアミン(例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、スペルミジン、スペルミン、プトレスシン等のアミノ基が少なくとも2つ以上結合した脂肪族アミン類;イソホロンジアミン等の脂環式ポリアミン類);ポリエチレンイミン;オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン及び他のオレフィン系単量体(例えば、1-ブテン、2-メチル-1-ブテン、3-メチル-1-ブテン、ペンテン、ヘキセン、シクロヘキセン、4-メチル-1-ペンテン、ビニルシクロヘキサン、オクテン等の炭素数10以下の脂肪族オレフィン系単量体)との共重合樹脂等);ポリ塩化ビニル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合樹脂(SAN)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のスチレン系樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルアセタール系樹脂(例えば、ポリビニルブチラール樹脂等);ポリイソブチレン;ポリテトラヒドロフラン;ポリアニリン、ポリジエン類(例えば、ポリイソプレン、ポリブタジエン等);ポリシロキサン類(例えば、ジメチルポリシロキサン等);ポリスルホン(PSF);ポリ無水酢酸類;ポリ尿素類;ポリスルフィド類(例えば、ジイソプロピルジスルファン、ジメチルトリスルファン等の脂肪族スルフィド等);ポリホスファゼン類;脂肪族ポリケトン類;ポリハロオレフィン類;メラミン樹脂、及びこれらの誘導体若しくは変性体(変性基としては、アミノ基、エポキシ基、カルボキシ基、水酸基、ポリエーテル基、エポキシアルキル基、エポキシポリエーテル基、炭素数1~10のアルキル基、シロキサン基等)等が挙げられる。これらのうち、ポリアミドイミド樹脂;ポリアミド樹脂;ポリイミド樹脂;ウレタン樹脂;ウレタンシリコーン樹脂;(メタ)アクリル樹脂;(メタ)アクリルシリコーン樹脂;フッ素樹脂;ポリエステル樹脂;ポリビニルアルコール;ポリビニルピロリドン;セルロース系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上が好ましい。 Examples of the resin include polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin (for example, polytetrafluoroethylene (PTFE), Perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), polyvinylidene fluoride (PVDF), Polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), etc.); acetal resin; alkyd resin; Ester resins (for example, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.); polyether resins (for example, poly Etherimide (PEI); Polyethersulfone (PES); Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), Polyetheretherketoneketone (PEEKK), etc. Aromatic polyether ketone having two or more); carbonate resin (for example, polycarbonate having carbonate skeleton (—O—C (═O) —O—), etc.); polyvinyl alcohol; Cellulosic resins (for example, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.); polyacrylamide; polyethylene oxide; polyethylene glycol; polypropylene glycol; polyvinyl methyl ether; polyamine (for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine) , Spermidine, spermine, putrescine and the like, aliphatic amines having at least two amino groups bonded thereto; alicyclic polyamines such as isophoronediamine); polyethyleneimine; olefin resins (for example, polyethylene, polypropylene and other olefins) Monomers (eg 1-butene, 2-methyl-1-butene, 3-methyl-1-butene, pentene, hexene, cyclo Copolymer resins such as hexene, 4-methyl-1-pentene, vinylcyclohexane, octene and other aliphatic olefin monomers having 10 or less carbon atoms); polyvinyl chloride resin; polystyrene, acrylonitrile-styrene copolymer resin (SAN), styrene resins such as acrylonitrile-butadiene-styrene copolymer (ABS resin), vinyl chloride-vinyl acetate copolymer resin, polyvinyl acetal resin (for example, polyvinyl butyral resin); polyisobutylene; polytetrahydrofuran; Polyaniline, polydienes (eg, polyisoprene, polybutadiene, etc.); polysiloxanes (eg, dimethylpolysiloxane, etc.); polysulfones (PSF); polyacetic anhydrides; polyureas; polysulfides (eg, diisopropyldisulfane) Aliphatic sulfides such as dimethyltrisulfane); polyphosphazenes; aliphatic polyketones; polyhaloolefins; melamine resins, and derivatives or modified products thereof (modified groups include amino groups, epoxy groups, carboxy groups) Hydroxyl group, polyether group, epoxy alkyl group, epoxy polyether group, alkyl group having 1 to 10 carbon atoms, siloxane group, etc.). Among these, polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin; polyester resin; polyvinyl alcohol; One or more selected from the group consisting of olefin resins are preferred.
 前記ゴムとしては、例えば、アクリロニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、ヒドリンゴム(ECO、CO)、イソプレンゴム(IR)、ウレタンゴム(U)、シリコーンゴム(Q)、エチレン-プロピレン-ジエンゴム(EPDM)、天然ゴム(NR)等が挙げられる。 Examples of the rubber include acrylonitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), chloroprene rubber (CR), hydrin rubber (ECO, CO), isoprene rubber ( IR), urethane rubber (U), silicone rubber (Q), ethylene-propylene-diene rubber (EPDM), natural rubber (NR) and the like.
 本発明の触媒担持担体(Y)を構成する担体は、本発明の効果を妨げない限り特に限定されず、例えば、球状、略球状、繊維状、柱状、塊状、略房状等の各種の粒形状とすることができる。担体の材質としては、本発明の効果を妨げない限り特に限定されず、例えば、バインダーポリマー(Z)との親和性を確保しやすく、密着性向上に寄与しやすくなる点から、炭素系材料、金属酸化物、及びシリカからなる群から選択される1種以上が挙げられ、バインダーポリマー(Z)との親和性等の観点から、炭素系材料がより好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、これらは市販品を用いることができる。 The carrier constituting the catalyst-supporting carrier (Y) of the present invention is not particularly limited as long as the effects of the present invention are not hindered. For example, various particles such as a spherical shape, a substantially spherical shape, a fibrous shape, a columnar shape, a massive shape, and a substantially tufted shape are used. It can be a shape. The material of the carrier is not particularly limited as long as the effect of the present invention is not hindered. For example, it is easy to ensure the affinity with the binder polymer (Z), and it is easy to contribute to the improvement of adhesion. One or more selected from the group consisting of a metal oxide and silica can be mentioned, and a carbon-based material is more preferable from the viewpoint of affinity with the binder polymer (Z). These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
 前記炭素系材料としては、特に限定されないが、例えば、カーボンブラック、カーボンナノチューブ、フラーレン、グラファイト等が挙げられる。前記金属酸化物としては、特に限定されないが、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム等が挙げられる。前記した担体のうち、触媒金属の担持のしやすさ、バインダーポリマー(Z)との親和性、経済性等の観点から、カーボンブラックが特に好ましい。 The carbon-based material is not particularly limited, and examples thereof include carbon black, carbon nanotube, fullerene, and graphite. Although it does not specifically limit as said metal oxide, For example, a titanium oxide, a zinc oxide, aluminum oxide, magnesium oxide etc. are mentioned. Of the above-mentioned supports, carbon black is particularly preferable from the viewpoints of easy loading of the catalyst metal, affinity with the binder polymer (Z), economy, and the like.
 担体の平均粒径は、バインダーポリマー(Z)中での分散性が良好である、めっき下地層表面の平滑性を確保しやすくなる等の観点から、10nm~10μm程度が好ましく、50nm~5.0μm程度がより好ましく、100nm~2.0μm程度がさらに好ましい。また、担体の平均粒径は、担体に担持される触媒金属微粒子の平均粒径よりも大きいことが好ましい。本発明における前記担体の平均粒径は、動的光散乱式粒度分布測定装置[日機装(株)製、「マイクロトラックUPA-EX150」等]により測定することができる。 The average particle size of the carrier is preferably about 10 nm to 10 μm, preferably 50 nm to 5.mu.m, from the viewpoints of good dispersibility in the binder polymer (Z) and easy to ensure the smoothness of the plating base layer surface. About 0 μm is more preferable, and about 100 nm to 2.0 μm is more preferable. The average particle size of the support is preferably larger than the average particle size of the catalyst metal fine particles supported on the support. The average particle size of the carrier in the present invention can be measured by a dynamic light scattering type particle size distribution analyzer [manufactured by Nikkiso Co., Ltd., “Microtrac UPA-EX150”, etc.].
 本発明に用いる触媒担持担体(Y)を構成する触媒金属は、少なくともパラジウム(Pd)を含む。前記触媒金属としては、本発明の効果を妨げない限り特に限定されず、パラジウム以外に、無電解金属めっき反応を発現させるのに必要な触媒能を有する金属(本発明において、「金属」には「合金」が含まれる)を使用してもよい。触媒金属としては、パラジウムのみを用いるのが好ましい。前記触媒金属としては、パラジウム以外に、例えば、Pt、Pt以外のPt族(Ru、Rh、Os、Ir)、Ag、Au、これらの合金等が挙げられる。 The catalyst metal constituting the catalyst support (Y) used in the present invention contains at least palladium (Pd). The catalyst metal is not particularly limited as long as the effect of the present invention is not hindered. In addition to palladium, a metal having a catalytic ability necessary to develop an electroless metal plating reaction (in the present invention, “metal” “Alloys” may be used). As the catalytic metal, it is preferable to use only palladium. Examples of the catalyst metal include, besides palladium, Pt group other than Pt and Pt (Ru, Rh, Os, Ir), Ag, Au, and alloys thereof.
 前記触媒担持担体(Y)は、具体的には、担体表面が露出した露出部分と、触媒金属が担持された担持部分とが混在した構造を有することができる。この場合には、担体表面とバインダーポリマー(Z)との親和性を利用して、触媒担持担体(Y)をバインダーポリマー(Z)に固定しやすくなる。そのため、めっき積層体とした場合に、めっき下地層と無電解金属めっき層との間の密着性向上に有利である。とりわけ、触媒担持担体(Y)を構成する担体が炭素系材料であり、バインダーポリマー(Z)が、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、ポリイミド樹脂、又はこれら樹脂にポリシロキサン化合物をブレンドしたものである場合には、前記効果を得やすくなる。前記変性ポリアミドイミド樹脂としては、例えば、シラン変性ポリアミドイミド樹脂;シロキサン変性ポリアミドイミド等が挙げられる。 Specifically, the catalyst-carrying carrier (Y) can have a structure in which an exposed part where the carrier surface is exposed and a carrier part where a catalyst metal is carried are mixed. In this case, it becomes easy to fix the catalyst-supporting support (Y) to the binder polymer (Z) by utilizing the affinity between the support surface and the binder polymer (Z). Therefore, when it is set as a plating laminated body, it is advantageous for the adhesive improvement between a plating base layer and an electroless metal plating layer. In particular, the carrier constituting the catalyst carrier (Y) is a carbon-based material, and the binder polymer (Z) is a polyamide-imide resin, a modified polyamide-imide resin, a polyimide resin, or a blend of these resins with a polysiloxane compound. In some cases, the effect can be easily obtained. Examples of the modified polyamideimide resin include silane-modified polyamideimide resin; siloxane-modified polyamideimide.
 また、担体表面を触媒金属によってほとんど覆ってしまう場合に比べ、触媒金属の使用量を低減することができる。そのため、省資源化に寄与できるとともに、めっき積層体の低コスト化にも有利である。 Also, the amount of catalyst metal used can be reduced as compared with the case where the support surface is almost covered with the catalyst metal. Therefore, it can contribute to resource saving and is advantageous in reducing the cost of the plated laminate.
 本発明の触媒担持担体(Y)において、パラジウムを含む触媒金属は微粒子として担体表面に担持される。担体表面に担持されたパラジウム微粒子は、平均粒径(D50)が10nm以上43nm以下であり、10、15、16、20、21、25、26、28、29、30、31、34、35、37、39、40、41及び43nmのいずれかの値、又はこれらから任意に選択した2つの値の範囲(範囲の端点の値は含めても除いていてもよい)とすることができ、良好なめっき性を得ることができることから、20nm以上40nm以下がより好ましく、25nm以上39nm以下がさらに好ましい。 In the catalyst-carrying carrier (Y) of the present invention, the catalytic metal containing palladium is carried on the carrier surface as fine particles. The palladium fine particles supported on the surface of the carrier have an average particle diameter (D50) of 10 nm or more and 43 nm or less, 10, 15, 16, 20, 21, 25, 26, 28, 29, 30, 31, 34, 35, It can be any value of 37, 39, 40, 41 and 43 nm, or a range of two values arbitrarily selected from these values (the values at the end points of the range may be included or excluded), and good 20 nm or more and 40 nm or less is more preferable, and 25 nm or more and 39 nm or less is more preferable.
 前記触媒金属微粒子の平均粒径(D50)は顕微鏡法による円相当径であり、透過型顕微鏡で観察したPdコロイド粒子100個の粒度分布を求めて、その体積累積50%の位置を平均粒径(D50)とした。 The average particle diameter (D50) of the catalyst metal fine particles is a circle-equivalent diameter obtained by microscopy, and the particle size distribution of 100 Pd colloidal particles observed with a transmission microscope is obtained. (D50).
 本発明の無電解めっき下地剤では、担体表面に触媒金属を担持する触媒担持担体(Y)が、バインダーポリマー(Z)中に分散されてなることが好ましい。バインダーポリマー(Z)は、主に、触媒担持担体を分散した状態で保持し、めっき下地層を形づくる役割を有している。 In the electroless plating base material of the present invention, it is preferable that the catalyst-carrying carrier (Y) carrying the catalyst metal on the carrier surface is dispersed in the binder polymer (Z). The binder polymer (Z) mainly has a role of holding the catalyst support in a dispersed state and forming a plating underlayer.
 本発明の無電解めっき下地剤は、例えば、触媒金属含有原料溶液を還元剤で還元し、触媒金属微粒子含有溶液(X)を得る工程(A)、前記工程で得られた触媒金属微粒子含有溶液(X)と、担体とを接触させて、表面に触媒金属微粒子を担持する触媒担持担体(Y)を得る工程(B)、及び、前記工程で得られた触媒担持担体(Y)と、バインダーポリマー(Z)とを混合する工程(C)を有し、前記担体に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下である製造方法によって製造することができる。 The electroless plating base material of the present invention includes, for example, a step (A) of obtaining a catalyst metal fine particle-containing solution (X) by reducing a catalyst metal-containing raw material solution with a reducing agent, and a catalyst metal fine particle-containing solution obtained in the above step (X) and a carrier are brought into contact with each other to obtain a catalyst-carrying carrier (Y) carrying catalyst metal fine particles on the surface (B), and the catalyst-carrying carrier (Y) obtained in the above step, and a binder A production method comprising a step (C) of mixing with a polymer (Z), wherein the catalyst metal fine particles supported on the carrier include palladium fine particles, and the average particle size (D50) of the palladium fine particles is 10 nm to 43 nm. Can be manufactured by.
 [工程(A)]
 工程(A)(還元工程)では、触媒金属含有原料溶液を還元剤で還元し、触媒金属微粒子含有溶液(X)を得る。当該工程の反応条件を調整することによって、粒子径の制御が容易になる。また、当該工程を、触媒金属と担体の接触の前に行うことも、粒子径の制御が容易になる一因である。
[Step (A)]
In step (A) (reduction step), the catalyst metal-containing raw material solution is reduced with a reducing agent to obtain catalyst metal fine particle-containing solution (X). By adjusting the reaction conditions in this step, the particle size can be easily controlled. Further, performing this step before the contact between the catalyst metal and the carrier is one factor that makes it easy to control the particle size.
 還元反応用溶媒は、本発明の効果を妨げない限り特に限定されないが、例えば、水、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類;ベンゼン、トルエン等の芳香族炭化水素類等及びこれらの溶媒の混合液が挙げられ、水が好ましい。触媒金属含有原料溶液と還元剤を溶解させる溶媒は、異なっていてもよいが、同一のものが好ましい。 The solvent for the reduction reaction is not particularly limited as long as the effect of the present invention is not hindered. For example, alcohols such as water, methanol, ethanol, n-propanol, isopropanol, and ethylene glycol; halogenated hydrocarbons such as methylene chloride and chloroform And the like; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; aromatic hydrocarbons such as benzene and toluene; and mixtures of these solvents, and water is preferred. . The catalyst metal-containing raw material solution and the solvent for dissolving the reducing agent may be different, but the same is preferable.
 触媒金属含有原料溶液は、前記還元反応用溶媒に、少なくともパラジウムを含む触媒金属含有化合物を溶解させることによって得られる。触媒金属含有化合物は、前記還元反応用溶媒に溶解させることができる限り特に限定されないが、例えば、塩化パラジウム、フッ化パラジウム、臭化パラジウム、ヨウ化パラジウム、硝酸パラジウム、硫酸パラジウム、酸化パラジウム、硫化パラジウム等のパラジウム化合物;硝酸銀、フッ化銀、酸化銀、酢酸銀等の銀化合物;シアン化金、三塩化金、三臭化金、塩化金カリウム、シアン化金カリウム、塩化金ナトリウム、シアン化金ナトリウム等の金化合物;塩化白金、硫酸白金等の白金化合物;塩化ニッケル、硫酸ニッケルム等のニッケル化合物等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用して用いてもよい。触媒金属含有原料溶液における触媒金属の含有量は、特に限定されないが、触媒金属含有原料溶液全体の量を基準として好ましくは0.001g/L以上、より好ましくは0.01g/L以上である。また、触媒金属の含有量は、触媒金属含有原料溶液全体の量を基準として好ましくは5.0g/L以下、さらに好ましくは2.0g/L以下である。 The catalyst metal-containing raw material solution is obtained by dissolving a catalyst metal-containing compound containing at least palladium in the reduction reaction solvent. The catalytic metal-containing compound is not particularly limited as long as it can be dissolved in the reduction reaction solvent. For example, palladium chloride, palladium fluoride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium oxide, sulfide Palladium compounds such as palladium; silver compounds such as silver nitrate, silver fluoride, silver oxide and silver acetate; gold cyanide, gold trichloride, gold tribromide, potassium gold chloride, potassium gold cyanide, sodium gold chloride, cyanide Examples thereof include gold compounds such as gold sodium; platinum compounds such as platinum chloride and platinum sulfate; nickel compounds such as nickel chloride and nickel sulfate. These may be used alone or in combination of two or more. The content of the catalyst metal in the catalyst metal-containing raw material solution is not particularly limited, but is preferably 0.001 g / L or more, more preferably 0.01 g / L or more based on the total amount of the catalyst metal-containing raw material solution. The catalyst metal content is preferably 5.0 g / L or less, more preferably 2.0 g / L or less, based on the total amount of the catalyst metal-containing raw material solution.
 前記触媒金属含有原料溶液のpHは、本発明の効果を妨げない限り特に限定されないが、例えば、1.0~4.5が好ましく、1.3~4.0がより好ましく、1.5~3.5がさらに好ましい。pHは、公知の方法によって測定できる。 The pH of the catalyst metal-containing raw material solution is not particularly limited as long as the effect of the present invention is not hindered. For example, 1.0 to 4.5 is preferable, 1.3 to 4.0 is more preferable, and 1.5 to 3.5 is more preferable. The pH can be measured by a known method.
 また、前記触媒金属含有原料溶液を、還元反応前に加熱してもよく、前記pHの範囲に調製後還元反応前に加熱するのが好ましい。加熱温度は、溶媒にもよるため、特に限定されないが、粒子径の制御が容易になる点から、溶媒の沸点-20℃~溶媒の沸点+20℃が好ましく、溶媒の沸点-10℃~溶媒の沸点+10℃がより好ましい。例えば、溶媒が水の場合、加熱温度は、90~110℃程度がより好ましく、煮沸温度(100℃±5℃)が特に好ましい。加熱時間は、特に限定されないが、5分~10時間程度が好ましく、10分~5時間程度がより好ましい。 The catalyst metal-containing raw material solution may be heated before the reduction reaction, and is preferably heated after the preparation to the pH range and after the reduction reaction. The heating temperature depends on the solvent and is not particularly limited. However, from the viewpoint of easy control of the particle size, the boiling point of the solvent is preferably −20 ° C. to the boiling point of the solvent + 20 ° C., and the boiling point of the solvent is −10 ° C. A boiling point + 10 ° C. is more preferable. For example, when the solvent is water, the heating temperature is more preferably about 90 to 110 ° C., and the boiling temperature (100 ° C. ± 5 ° C.) is particularly preferable. The heating time is not particularly limited, but is preferably about 5 minutes to 10 hours, and more preferably about 10 minutes to 5 hours.
 前記還元剤としては、本発明の効果を妨げない限り特に限定されず、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;ヒドラジン化合物;クエン酸及びその塩、没食子酸及びその塩、ぎ酸及びその塩、酢酸及びその塩、フマル酸及びその塩、リンゴ酸及びその塩、コハク酸及びその塩、アスコルビン酸及びその塩等のカルボン酸類;タンニン酸及びその塩;メタノール、エタノール、イソプロパノール、ポリオール等の第一級又は第二級アルコール類;トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジエチルメチルアミン、テトラメチルエチレンジアミン[TMEDA]、エチレンジアミン四酢酸[EDTA]等の第三級アミン類;ヒドロキシルアミン;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル等のエーテル類;ホルムアルデヒド、アセトアルデヒド等のアルデヒド類;ぎ酸メチル、酢酸メチル、酢酸エチル等のエステル類;トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、トリシクロヘキシルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリエトキシホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン[DPPE]、1,3-ビス(ジフェニルホスフィノ)プロパン[DPPP]、1,1’-ビス(ジフェニルホスフィノ)フェロセン[DPPF]、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル[BINAP]等のホスフィン類等が挙げられる。これらは1種を用いてもよいし、2種以上を混合して用いてもよい。前記塩としては、特に限定されないが、アルカリ金属塩(例えば、リチウム、ナトリウム、カリウム等)、カルシウム塩、マグネシウム塩、アンモニウム塩等が挙げられる。これらのうち、還元性が高く、取り扱いも容易な点から、クエン酸及びその塩(好適にはクエン酸ナトリウム(クエン酸三ナトリウム))、タンニン酸及びその塩、没食子酸及びその塩、コハク酸及びその塩;アスコルビン酸及びその塩等が好ましい。 The reducing agent is not particularly limited as long as the effect of the present invention is not hindered. For example, a metal borohydride such as sodium borohydride or potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, hydrogenation Aluminum hydride salts such as aluminum cesium, aluminum beryllium hydride, magnesium aluminum hydride, calcium aluminum hydride; hydrazine compounds; citric acid and its salts, gallic acid and its salts, formic acid and its salts, acetic acid and its salts, Carboxylic acids such as fumaric acid and its salt, malic acid and its salt, succinic acid and its salt, ascorbic acid and its salt; tannic acid and its salt; primary or secondary such as methanol, ethanol, isopropanol, polyol Alcohols; trimethylamine, triethyl Tertiary amines such as amine, diisopropylethylamine, diethylmethylamine, tetramethylethylenediamine [TMEDA], ethylenediaminetetraacetic acid [EDTA]; hydroxylamine; ketones such as acetone and methylethylketone; ethers such as diethylether; formaldehyde, Aldehydes such as acetaldehyde; esters such as methyl formate, methyl acetate, ethyl acetate; tri-n-propylphosphine, tri-n-butylphosphine, tricyclohexylphosphine, tribenzylphosphine, triphenylphosphine, triethoxyphosphine, 1,2-bis (diphenylphosphino) ethane [DPPE], 1,3-bis (diphenylphosphino) propane [DPPP], 1,1′-bis (diphenylphosphino) Erosen [DPPF], 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl [BINAP] phosphines such as and the like. These may be used alone or in combination of two or more. Although it does not specifically limit as said salt, Alkali metal salt (For example, lithium, sodium, potassium etc.), calcium salt, magnesium salt, ammonium salt etc. are mentioned. Of these, citric acid and its salts (preferably sodium citrate (trisodium citrate)), tannic acid and its salts, gallic acid and its salts, and succinic acid are highly reducible and easy to handle. And ascorbic acid and its salts are preferred.
 還元剤の使用量は、本発明の効果を妨げない限り特に限定されないが、触媒金属微粒子含有溶液(X)に含まれる触媒に対して、モル比で、触媒:還元剤=1.0:0.1~1.0:50程度が好ましく、1.0:0.5~1.0:30程度がより好ましく、1.0:0.8~1.0:10程度がさらに好ましい。例えば、触媒が塩化パラジウム(PdCl2)の場合、モル比で、塩化パラジウム(PdCl2):還元剤=1.0:0.1~1.0:50程度が好ましく、1.0:0.5~1.0:30程度がより好ましく、1.0:0.8~1.0:10程度がさらに好ましい。 The amount of the reducing agent used is not particularly limited as long as the effect of the present invention is not hindered. However, the molar ratio of catalyst: reducing agent = 1.0: 0 with respect to the catalyst contained in the catalyst metal fine particle-containing solution (X). About 1 to 1.0: 50 is preferable, about 1.0: 0.5 to 1.0: 30 is more preferable, and about 1.0: 0.8 to 1.0: 10 is more preferable. For example, when the catalyst is palladium chloride (PdCl 2 ), the molar ratio of palladium chloride (PdCl 2 ): reducing agent is preferably about 1.0: 0.1 to 1.0: 50, and 1.0: 0. About 5 to 1.0: 30 is more preferable, and about 1.0: 0.8 to 1.0: 10 is more preferable.
 還元反応時の条件としては、本発明の効果を妨げない限り特に限定されないが、例えば、反応温度は、通常、室温(20℃程度)~溶媒の沸点の近傍(±10℃)であり、溶媒の沸点の近傍(±10℃)が好ましい。例えば、水を溶媒とする場合、溶媒が水の場合、加熱温度は、90~110℃程度がより好ましく、煮沸温度(100℃±5℃)が特に好ましい。反応時間は、特に限定されないが、1分~5時間程度が好ましく、5分~3時間程度がより好ましい。 The conditions for the reduction reaction are not particularly limited as long as the effects of the present invention are not hindered. For example, the reaction temperature is usually from room temperature (about 20 ° C.) to the vicinity of the boiling point of the solvent (± 10 ° C.). The vicinity of the boiling point of (± 10 ° C.) is preferred. For example, when water is used as the solvent, when the solvent is water, the heating temperature is more preferably about 90 to 110 ° C., and the boiling temperature (100 ° C. ± 5 ° C.) is particularly preferable. The reaction time is not particularly limited, but is preferably about 1 minute to 5 hours, more preferably about 5 minutes to 3 hours.
 還元反応後、加熱した場合は、冷却する。冷却後の温度は、特に限定されないが、室温程度(5~35℃)が好ましい。その後、得られた触媒金属微粒子含有溶液(X)から不純物を除去するために、イオン交換樹脂で触媒金属微粒子含有溶液(X)のイオン交換を行う。イオン交換樹脂は、本発明の効果を妨げない限り特に限定されず、市販品を用いることができる。 Refrigerate if heated after the reduction reaction. The temperature after cooling is not particularly limited, but is preferably about room temperature (5 to 35 ° C.). Thereafter, in order to remove impurities from the obtained catalyst metal fine particle-containing solution (X), ion exchange of the catalyst metal fine particle-containing solution (X) is performed with an ion exchange resin. The ion exchange resin is not particularly limited as long as the effect of the present invention is not hindered, and a commercially available product can be used.
 工程(A)では、さらに反応促進剤を用いてもよい。反応促進剤としては、本発明の効果を妨げない限り特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム等のアルカリ金属炭酸塩;水酸化カルシウム等のアルカリ土類金属塩;アンモニア等が挙げられる。これらは1種を用いてもよいし、2種以上を混合して用いてもよい。 In the step (A), a reaction accelerator may be further used. The reaction accelerator is not particularly limited as long as the effect of the present invention is not hindered. For example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide; sodium carbonate, potassium carbonate, Examples include alkali metal carbonates such as cesium carbonate and lithium carbonate; alkaline earth metal salts such as calcium hydroxide; ammonia and the like. These may be used alone or in combination of two or more.
 反応促進剤の使用量は、本発明の効果を妨げない限り特に限定されないが、触媒金属微粒子含有溶液(X)に含まれる触媒に対して、モル比で、触媒:反応促進剤=1.0:0.01~1.0:10程度が好ましく、粒子径の制御がより容易になる点から、1.0:0.1~1.0:5.0程度がより好ましく、1.0:0.5~1.0:3.0程度がさらに好ましい。例えば、触媒が塩化パラジウム(PdCl2)の場合、モル比で、塩化パラジウム(PdCl2):反応促進剤=1.0:0.01~1.0:10程度が好ましく、1.0:0.1~1.0:5.0程度がより好ましく、1.0:0.5~1.0:3.0程度がさらに好ましい。また、反応促進剤の使用量は、例えば、還元剤に対して、モル比で、還元剤:反応促進剤=1.0:0.001~1.0:10程度が好ましく、粒子径の制御がより容易になる点から、1.0:0.01~1.0:5.0程度がより好ましく、1.0:0.05~1.0:3.0程度がさらに好ましい。 The amount of the reaction accelerator used is not particularly limited as long as the effect of the present invention is not hindered, but the catalyst: reaction accelerator = 1.0 in terms of molar ratio with respect to the catalyst contained in the catalyst metal fine particle-containing solution (X). Is preferably about 0.01 to 1.0: 10, and more preferably about 1.0: 0.1 to 1.0: 5.0 from the viewpoint of easier control of the particle size. More preferably, it is about 0.5 to 1.0: 3.0. For example, when the catalyst is palladium chloride (PdCl 2 ), the molar ratio is preferably palladium chloride (PdCl 2 ): reaction accelerator = 1.0: 0.01 to 1.0: 10, preferably 1.0: 0. About 1 to 1.0: 5.0 is more preferable, and about 1.0: 0.5 to 1.0: 3.0 is more preferable. The amount of the reaction accelerator used is, for example, preferably about reducing agent: reaction accelerator = 1.0: 0.001 to 1.0: 10 in molar ratio with respect to the reducing agent. Is more preferably about 1.0: 0.01 to 1.0: 5.0, and further preferably about 1.0: 0.05 to 1.0: 3.0.
 [工程(B)]
 工程(B)(触媒担持担体製造工程)では、前記工程で得られた触媒金属微粒子含有溶液(X)と、担体とを接触させて、表面に触媒金属微粒子を担持する触媒担持担体(Y)を得る。接触方法は、本発明の効果を妨げない限り特に限定されず、例えば、触媒金属微粒子含有溶液(X)に担体を添加、混合させる方法が挙げられる。
[Step (B)]
In the step (B) (catalyst-supported carrier production step), the catalyst-supported carrier (Y) that supports the catalyst metal fine particles on the surface by bringing the catalyst metal fine particle-containing solution (X) obtained in the above-mentioned step into contact with the carrier. Get. The contact method is not particularly limited as long as the effect of the present invention is not hindered, and examples thereof include a method of adding and mixing a support to the catalyst metal fine particle-containing solution (X).
 本工程に用いる担体は、界面活性剤等を用いたエッチング処理をしてもよいが、しなくても十分な密着性を有する無電解めっき下地剤が得られる。 The carrier used in this step may be subjected to an etching treatment using a surfactant or the like, but an electroless plating base material having sufficient adhesion can be obtained without it.
 工程(B)では、触媒金属微粒子含有溶液(X)と担体とを接触させた後、さらに分散処理を行うのが好ましい。分散処理の方法は、本発明の効果を妨げない限り特に限定されず、一般的に用いられる方法を採用することができる。分散処理の方法としては、例えば、超音波処理が挙げられる。超音波処理の条件は、本発明の効果を妨げない限り特に限定されず、例えば、20kHz以上が好ましい。 In step (B), it is preferable to further disperse the catalyst metal fine particle-containing solution (X) and the carrier after contacting them. The method of the dispersion treatment is not particularly limited as long as the effect of the present invention is not hindered, and a generally used method can be adopted. Examples of the dispersion processing method include ultrasonic processing. The conditions for ultrasonic treatment are not particularly limited as long as the effects of the present invention are not hindered, and for example, 20 kHz or more is preferable.
 工程(B)では、前記接触後に得られる溶液又は必要に応じて分散後に得られる溶液を、脱溶媒及び/又は乾燥処理してもよい。脱溶媒及び/又は乾燥処理の方法は、特に限定されず、公知の方法を採用できる。また、前記脱溶媒及び/又は乾燥処理に続いて、粉砕処理を行ってもよい。粉砕の方法は、特に限定されず、公知の方法を採用できる。 In step (B), the solution obtained after the contact or, if necessary, the solution obtained after dispersion may be subjected to solvent removal and / or drying treatment. The method of solvent removal and / or drying treatment is not particularly limited, and a known method can be adopted. Moreover, you may perform a grinding | pulverization process following the said solvent removal and / or a drying process. The method of pulverization is not particularly limited, and a known method can be adopted.
 さらに、必要に応じて、パラジウムの粒子径を調整するために、焼結(シンタリング)処理を行ってもよい。焼結の条件は、目的とするパラジウムの平均粒子径に応じて適宜調整することができ、本発明の効果を妨げない限り特に限定されないが、例えば、100~500℃程度が好ましく、120~300℃程度がより好ましく、150~250℃程度がさらに好ましい。焼結時間は、目的とするパラジウムの平均粒子径に応じて適宜調整することができ、本発明の効果を妨げない限り特に限定されないが、例えば、10分~24時間程度が好ましく、30分~20時間程度がより好ましい。また、焼結は、真空状態で行うことが好ましい。 Furthermore, if necessary, sintering (sintering) treatment may be performed to adjust the particle size of palladium. The sintering conditions can be appropriately adjusted according to the target average particle diameter of palladium, and are not particularly limited as long as the effects of the present invention are not hindered. For example, about 100 to 500 ° C. is preferable, and 120 to 300 is preferable. More preferably, the temperature is about 150 ° C., more preferably about 150 to 250 ° C. The sintering time can be appropriately adjusted according to the target average particle diameter of palladium, and is not particularly limited as long as the effects of the present invention are not hindered. For example, about 10 minutes to 24 hours is preferable, and 30 minutes to About 20 hours is more preferable. Further, the sintering is preferably performed in a vacuum state.
 [工程(C)]
 工程(C)(混合工程)では、前記工程(B)で得られた触媒担持担体(Y)と、バインダーポリマー(Z)とを混合する。これにより本発明の無電解めっき下地剤を調製することができる。
[Step (C)]
In the step (C) (mixing step), the catalyst support (Y) obtained in the step (B) and the binder polymer (Z) are mixed. Thereby, the electroless plating base material of the present invention can be prepared.
 工程(C)の混合に用いる前記溶媒としては、本発明の効果を妨げない限り特に限定されず、例えば、水;イソプロパノール等のアルコール類;酢酸等の有機酸類;ベンゼン、トルエン、キシレン、エチルベンゼン、1,2-ジクロロベンゼン等の芳香族炭化水素類;テトラヒドロフラン、ジエチルエーテル等のエーテル類;アセトン、エチルメチルケトン、イソブチルメチルケトン、シクロヘキサノン等のケトン類;クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン化物;n-ヘキサン、n-ヘプタン、シクロヘキサン等の脂肪族炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N-メチル-2-ピロリドン等が使用できる。これらの溶媒は1種を用いてもよいし、2種以上を混合して用いてもよい。 The solvent used for the mixing in the step (C) is not particularly limited as long as the effect of the present invention is not hindered. For example, water; alcohols such as isopropanol; organic acids such as acetic acid; benzene, toluene, xylene, ethylbenzene, Aromatic hydrocarbons such as 1,2-dichlorobenzene; ethers such as tetrahydrofuran and diethyl ether; ketones such as acetone, ethyl methyl ketone, isobutyl methyl ketone, and cyclohexanone; chloroform, dichloromethane, 1,2-dichloroethane, and the like Halides; aliphatic hydrocarbons such as n-hexane, n-heptane and cyclohexane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methyl-2-pyrrolidone and the like can be used. These solvents may be used alone or in combination of two or more.
 混合時の条件は、本発明の効果を妨げない限り特に限定されない。バインダーポリマー(Z)の種類に応じて、必要であれば、撹拌しつつ、加熱してもよい。加熱温度は、本発明の効果を妨げない限り特に限定されない。加熱温度の上限値は、溶媒の沸点-20℃程度であってもよい。 The conditions at the time of mixing are not particularly limited as long as the effects of the present invention are not hindered. Depending on the type of the binder polymer (Z), if necessary, it may be heated while stirring. The heating temperature is not particularly limited as long as the effect of the present invention is not hindered. The upper limit of the heating temperature may be about the boiling point of the solvent −20 ° C.
 本発明の無電解めっき下地剤の製造方法は、パラジウム微粒子ができる際にバインダーポリマー及び担体を用いないため、目的とするパラジウム微粒子の粒子径を容易に制御することができる。 Since the method for producing an electroless plating base material of the present invention does not use a binder polymer and a carrier when palladium fine particles are formed, the particle diameter of the target palladium fine particles can be easily controlled.
 また、本発明の他の実施態様として、めっき積層体が挙げられる。本発明のめっき積層体について、以下に説明する。 Further, as another embodiment of the present invention, a plated laminate can be mentioned. The plated laminate of the present invention will be described below.
 本発明のめっき積層体の一実施態様における、めっき下地層の微構造及び積層構造を図1に示す。図1に示されるめっき積層体4は、基層用ポリマーより形成された基層1と、前記無電解めっき下地剤から構成され、前記基層上に積層された無電解めっき下地層2と、前記めっき下地層上に積層され、無電解金属めっきにより形成された無電解金属めっき層3とを備え、前記無電解金属めっき層3側の表面に、担体221の表面に触媒金属微粒子222を担持する触媒担持担体22が露出した部分を有する。 FIG. 1 shows the microstructure and the laminated structure of the plating underlayer in one embodiment of the plated laminate of the present invention. A plating laminate 4 shown in FIG. 1 is composed of a base layer 1 formed of a base layer polymer, the electroless plating base agent, and an electroless plating base layer 2 stacked on the base layer. An electroless metal plating layer 3 laminated on the base layer and formed by electroless metal plating, and a catalyst support for supporting catalyst metal fine particles 222 on the surface of the carrier 221 on the surface of the electroless metal plating layer 3 side. The carrier 22 has an exposed portion.
 本発明のめっき積層体4のめっき下地層において、担体221の表面に触媒金属微粒子222を担持する触媒担持担体22がバインダーポリマー21中に分散されてなる態様が好ましい。この場合、基層1とめっき下地層2との間は、基層用ポリマーとバインダーポリマー(Z)、つまり、ポリマー同士の密着になる。それ故、基層とめっき下地層との間の密着性を向上させることができる。前記めっき下地層において、触媒担持担体22をバインダーポリマー21中に分散させる方法は、上述の無電解めっき下地剤において、超音波処理等の分散処理をしたものを、基層と接触させる(例えば、浸漬、塗布等)方法が好適に挙げられる。 In the plating base layer of the plating laminate 4 of the present invention, an embodiment in which the catalyst supporting carrier 22 supporting the catalyst metal fine particles 222 on the surface of the carrier 221 is dispersed in the binder polymer 21 is preferable. In this case, between the base layer 1 and the plating base layer 2, the base layer polymer and the binder polymer (Z), that is, the polymers are in close contact with each other. Therefore, the adhesion between the base layer and the plating base layer can be improved. In the plating underlayer, the method of dispersing the catalyst-supporting carrier 22 in the binder polymer 21 is to bring the above-mentioned electroless plating undercoat that has been subjected to dispersion treatment such as ultrasonic treatment into contact with the base layer (for example, immersion) , Coating and the like) method.
 また、前記めっき積層体において、めっき下地層は、金属めっき層側の表面に触媒担持担体が露出した部分を有している。そして、金属めっき層のめっき形成時には、めっき下地層の表面に露出する触媒担持担体(Y)の触媒金属を核として無電解金属めっきが析出するため、触媒金属と無電解金属めっきとの間は、金属結合により結合される。また、めっき下地層の表面に露出した触媒担持担体(Y)のうち、表面に露出していない部分は、バインダーポリマー(Z)に固定されている。それ故、めっき下地層と金属めっき層との間における密着性を向上させることができる。なお、前記金属めっき層上に、さらに電解金属めっきや無電解金属めっきを施し、第2の金属めっき層を積層した場合であっても、めっき層同士の密着になるので、良好な密着性を確保することができる。 In the plating laminate, the plating underlayer has a portion where the catalyst-supporting carrier is exposed on the surface on the metal plating layer side. And at the time of plating formation of the metal plating layer, since the electroless metal plating is deposited with the catalyst metal of the catalyst carrier (Y) exposed on the surface of the plating base layer as a nucleus, the space between the catalyst metal and the electroless metal plating is , Bonded by a metal bond. Moreover, the part which is not exposed on the surface among the catalyst support | carrier (Y) exposed on the surface of the plating base layer is being fixed to the binder polymer (Z). Therefore, the adhesion between the plating base layer and the metal plating layer can be improved. Even when the second metal plating layer is laminated on the metal plating layer by further applying electrolytic metal plating or electroless metal plating, the plating layers are in close contact with each other. Can be secured.
 前記めっき積層体において、基層は、例えば、筒状に形成することができる。他にも例えば、基層は、軸体の外周にロール状に形成することもできる。基層は、1層又は2層以上から構成することができる。基層は、必要に応じて、アルミ板等の金属板に、基層用ポリマーを積層したものを使用してもよい。 In the plated laminate, the base layer can be formed in a cylindrical shape, for example. In addition, for example, the base layer can be formed in a roll shape on the outer periphery of the shaft body. The base layer can be composed of one layer or two or more layers. The base layer may be obtained by laminating a base layer polymer on a metal plate such as an aluminum plate, if necessary.
 筒状の基層を有する場合、基層に用いられる基層用ポリマーとしては、例えば、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、ポリイミド樹脂、変性ポリイミド樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリカーボネート樹脂、これらの樹脂にポリシロキサン化合物をブレンドしたもの等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、これらは市販品を用いることができる。前記基層用ポリマーとしては、好ましくは、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、ポリイミド樹脂、変性ポリイミド樹脂及びこれら樹脂にポリシロキサン化合物をブレンドしたものからなる群から選択される1種以上を含んでいるのが好ましい。前記変性ポリアミドイミド樹脂としては、例えば、シラン変性ポリアミドイミド樹脂;シロキサン変性ポリアミドイミド等が挙げられる。筒状の基層の剛性が高くなるため、めっき積層体の耐久性を向上させるのに有利だからである。 In the case of having a cylindrical base layer, examples of the base layer polymer used for the base layer include polyamide imide resins, modified polyamide imide resins, polyimide resins, modified polyimide resins, polyether sulfone resins, fluorine resins, polycarbonate resins, and the like. Examples include those obtained by blending a polysiloxane compound with a resin. These may be used alone or in combination of two or more. Moreover, these can use a commercial item. The base layer polymer preferably contains at least one selected from the group consisting of a polyamideimide resin, a modified polyamideimide resin, a polyimide resin, a modified polyimide resin, and a blend of these resins with a polysiloxane compound. Is preferred. Examples of the modified polyamideimide resin include silane-modified polyamideimide resin; siloxane-modified polyamideimide. This is because the rigidity of the cylindrical base layer is increased, which is advantageous for improving the durability of the plated laminate.
 前記ポリシロキサン化合物としては、下記式(1)で表される繰り返し構造を有するシリコーンオイルを好適に用いることができる。この場合には、めっき積層体の屈曲耐久性や靱性を向上させやすくなるからである。これは、前記ポリアミドイミド樹脂等の樹脂からなる海相中に、ポリシロキサン化合物からなる島相がミクロ分散し、海-島構造を形成しやすくなり、ポリシロキサン化合物からなる島相により、応力が緩和されるためであると考えられる。前記ポリシロキサン化合物のブレンド量は、前記樹脂100質量部に対し、好ましくは、0.01~10質量部程度、より好ましくは、0.1~5質量部程度とすることができる。めっき積層体の屈曲耐久性、靱性のバランスに優れるためである。 As the polysiloxane compound, a silicone oil having a repeating structure represented by the following formula (1) can be suitably used. In this case, it is easy to improve the bending durability and toughness of the plated laminate. This is because an island phase made of a polysiloxane compound is micro-dispersed in a sea phase made of a resin such as the polyamide-imide resin, so that a sea-island structure is easily formed. This is thought to be mitigated. The blend amount of the polysiloxane compound is preferably about 0.01 to 10 parts by mass, and more preferably about 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin. This is because the plating laminate has an excellent balance of bending durability and toughness.
Figure JPOXMLDOC01-appb-C000001
 (式中、R及びRは、同一又は異なって、水素原子又は有機基を示す。nは正の整数を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom or an organic group. N represents a positive integer.)
 前記式(1)において、R、Rで表される有機基としては、特に限定はなく、例えば、メチル基、エチル基等の炭素数1~15のアルキル基;炭素数1~15のアルコキシ基;フェニル基;アミノ基;エポキシ基;カルボキシル基;エーテル基等が挙げられる。また、前記式1における繰り返し単位nは、正の整数であれば特に限定はないが、好ましくはn=10~1,000であり、特に好ましくはn=20~300である。前記シリコーンオイルとしては、特に限定はないが、コストの点から、メチル基、フェニル基、水素原子等を置換基として結合したストレートシリコーンオイル等を好適に用いることができる。 In the formula (1), the organic group represented by R 1 and R 2 is not particularly limited, and examples thereof include alkyl groups having 1 to 15 carbon atoms such as a methyl group and an ethyl group; Examples include alkoxy groups; phenyl groups; amino groups; epoxy groups; carboxyl groups; ether groups. The repeating unit n in the formula 1 is not particularly limited as long as it is a positive integer, but preferably n = 10 to 1,000, and particularly preferably n = 20 to 300. The silicone oil is not particularly limited, but straight silicone oil or the like in which a methyl group, a phenyl group, a hydrogen atom or the like is bonded as a substituent can be suitably used from the viewpoint of cost.
 筒状の基層中には、難燃剤、充填剤、レべリング剤、消泡剤等の添加剤を含めてもよい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。また、筒状の基層の厚みは、耐久性の向上、製造容易性等の観点から、20~200μm程度が好ましく、40~150μm程度がより好ましく、60~100μm程度がさらに好ましい。 In the cylindrical base layer, additives such as a flame retardant, a filler, a leveling agent, and an antifoaming agent may be included. These may be used alone or in combination of two or more. The thickness of the cylindrical base layer is preferably about 20 to 200 μm, more preferably about 40 to 150 μm, and further preferably about 60 to 100 μm, from the viewpoint of improving durability and ease of manufacture.
 一方、ロール状の基層を有する場合、基層に用いられる基層用ポリマーとしては、種々の樹脂やゴム(本発明において、ゴムにはエラストマーも含まれる、以下省略)を用いることができる。前記樹脂としては、例えば、ポリアミドイミド樹脂;ポリアミド樹脂;ポリイミド樹脂;ウレタン樹脂;ウレタンシリコーン樹脂;(メタ)アクリル樹脂;(メタ)アクリルシリコーン樹脂;フッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、テトラフルオロエチレンーパーフルオロジオキソールコポリマー(TFE/PDD)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフロオロエチレンコポリマー(ECTFE)、ポリフッ化ビニル(PVF)等);アセタール樹脂;アルキド樹脂;ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等);ポリエーテル樹脂(例えば、ポリエーテルイミド(PEI);ポリエーテルスルホン(PES);ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルケトンケトン(PEEKK)等の少なくともベンゼン環を2つ以上有する芳香族ポリエーテルケトン等);カーボネート樹脂(例えば、カーボネート骨格(-OーC(=O)-O-)を有するポリカーボネート等);ポリビニルアルコール;ポリビニルピロリドン;セルロース系樹脂(例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等);ポリアクリルアミド;ポリエチレンオキサイド;ポリエチレングリコール;ポリプロピレングリコール;ポリビニルメチルエーテル;ポリアミン(例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、スペルミジン、スペルミン、プトレスシン等のアミノ基が少なくとも2つ以上結合した脂肪族アミン類;イソホロンジアミン等の脂環式ポリアミン類);ポリエチレンイミン;オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン及び他のオレフィン系単量体(例えば、1-ブテン、2-メチル-1-ブテン、3-メチル-1-ブテン、ペンテン、ヘキセン、シクロヘキセン、4-メチル-1-ペンテン、ビニルシクロヘキサン、オクテン等の炭素数10以下の脂肪族オレフィン系単量体)との共重合樹脂等);ポリ塩化ビニル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合樹脂(SAN)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のスチレン系樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルアセタール系樹脂(例えば、ポリビニルブチラール樹脂等);ポリイソブチレン;ポリテトラヒドロフラン;ポリアニリン、ポリジエン類(例えば、ポリイソプレン、ポリブタジエン等);ポリシロキサン類(例えば、ジメチルポリシロキサン等);ポリスルホン(PSF);ポリ無水酢酸類;ポリ尿素類;ポリスルフィド類(例えば、ジイソプロピルジスルファン、ジメチルトリスルファン等の脂肪族スルフィド等);ポリホスファゼン類;脂肪族ポリケトン類;ポリハロオレフィン類;メラミン樹脂、及びこれらの誘導体若しくは変性体(変性基としては、アミノ基、エポキシ基、カルボキシ基、水酸基、ポリエーテル基、エポキシアルキル基、エポキシポリエーテル基、炭素数1~6のアルキル基、シロキサン基等)等が挙げられる。これらのうち、ポリアミドイミド樹脂;ポリアミド樹脂;ポリイミド樹脂;ウレタン樹脂;ウレタンシリコーン樹脂;(メタ)アクリル樹脂;(メタ)アクリルシリコーン樹脂;フッ素樹脂;ポリエステル樹脂;ポリビニルアルコール;ポリビニルピロリドン;セルロース系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上が好ましい。また、前記ゴムとしては、例えば、シリコーンゴム(Q)、アクリロニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、ヒドリンゴム(ECO、CO)、イソプレンゴム(IR)、ウレタンゴム(U)、エチレン-プロピレン-ジエンゴム(EPDM)、天然ゴム(NR)等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、これらは市販品を用いることができる。 On the other hand, in the case of having a roll-shaped base layer, as the base layer polymer used for the base layer, various resins and rubbers (in the present invention, rubber includes an elastomer, hereinafter omitted) can be used. Examples of the resin include polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin (for example, polytetrafluoroethylene (PTFE), Perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), polyvinylidene fluoride (PVDF), Polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), etc.); acetal resin; alkyd resin; Stell resin (eg, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.); polyether resin (eg, poly Etherimide (PEI); Polyethersulfone (PES); Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), Polyetheretherketoneketone (PEEKK), etc. Aromatic polyether ketone having two or more); carbonate resin (for example, polycarbonate having carbonate skeleton (—O—C (═O) —O—), etc.); polyvinyl alcohol; polyvinyl pyrrolide Cellulosic resins (eg, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, etc.); polyacrylamide; polyethylene oxide; polyethylene glycol; polypropylene glycol; polyvinylmethyl ether; polyamines (eg, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, Aliphatic amines having at least two amino groups bonded thereto such as spermidine, spermine, putrescine; alicyclic polyamines such as isophoronediamine; polyethyleneimine; olefin resins (eg, polyethylene, polypropylene and other olefinic monomers) Isomers (eg 1-butene, 2-methyl-1-butene, 3-methyl-1-butene, pentene, hexene, cyclohexane Copolymers such as xene, 4-methyl-1-pentene, vinylcyclohexane, octene and other aliphatic olefin monomers having 10 or less carbon atoms)); polyvinyl chloride resin; polystyrene, acrylonitrile-styrene copolymer resin (SAN), styrene resins such as acrylonitrile-butadiene-styrene copolymer (ABS resin), vinyl chloride-vinyl acetate copolymer resin, polyvinyl acetal resin (for example, polyvinyl butyral resin); polyisobutylene; polytetrahydrofuran; Polyaniline, polydienes (eg, polyisoprene, polybutadiene, etc.); polysiloxanes (eg, dimethylpolysiloxane, etc.); polysulfones (PSF); polyacetic anhydrides; polyureas; polysulfides (eg, diisopropyldisulfane, Aliphatic sulfides such as methyltrisulfane); polyphosphazenes; aliphatic polyketones; polyhaloolefins; melamine resins, and derivatives or modified products thereof (modified groups include amino groups, epoxy groups, carboxy groups) Hydroxyl group, polyether group, epoxy alkyl group, epoxy polyether group, alkyl group having 1 to 6 carbon atoms, siloxane group, etc.). Among these, polyamideimide resin; polyamide resin; polyimide resin; urethane resin; urethane silicone resin; (meth) acrylic resin; (meth) acrylic silicone resin; fluororesin; polyester resin; polyvinyl alcohol; One or more selected from the group consisting of olefin resins are preferred. Examples of the rubber include silicone rubber (Q), acrylonitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), chloroprene rubber (CR), hydrin rubber ( ECO, CO), isoprene rubber (IR), urethane rubber (U), ethylene-propylene-diene rubber (EPDM), natural rubber (NR) and the like. These may be used alone or in combination of two or more. Moreover, these can use a commercial item.
 ロール状の基層中には、難燃剤、充填剤、架橋剤、架橋助剤、滑剤、可塑剤、軟化剤、酸化防止剤等の添加剤を含めてもよい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。ロール状の基層の厚みは、接地性、コスト等の観点から、0.5~3mm程度が好ましく、1~1.5mm程度がより好ましい。 In the roll-shaped base layer, additives such as a flame retardant, a filler, a crosslinking agent, a crosslinking aid, a lubricant, a plasticizer, a softening agent, and an antioxidant may be included. These may be used alone or in combination of two or more. The thickness of the roll-shaped base layer is preferably about 0.5 to 3 mm, more preferably about 1 to 1.5 mm, from the viewpoint of grounding property, cost, and the like.
 前記めっき積層体において、めっき下地層は、基層と無電解金属めっき層との密着性の改善を図るために重要な役割を有する。めっき下地層は、基層上に積層されている。具体的には、めっき下地層は、基層の外周面に沿って形成することができる。めっき下地層は、前記めっき下地剤によって構成される。 In the plating laminate, the plating underlayer has an important role for improving the adhesion between the base layer and the electroless metal plating layer. The plating base layer is laminated on the base layer. Specifically, the plating base layer can be formed along the outer peripheral surface of the base layer. The plating base layer is composed of the plating base agent.
 前記めっき下地層は、無電解金属めっき層側の表面に、触媒担持担体(Y)が露出した部分を有している。これは、前記表面に露出することなく、めっき下地層中に分散されている触媒担持担体(Y)と、前記表面に露出している触媒担持担体(Y)とが混在しうることを意味する。したがって、めっき下地層中に分散された全ての触媒担持担体が露出していなければならないという意味ではない。 The plating base layer has a portion where the catalyst-supporting carrier (Y) is exposed on the surface on the electroless metal plating layer side. This means that the catalyst carrier (Y) dispersed in the plating base layer and the catalyst carrier (Y) exposed on the surface can be mixed without being exposed on the surface. . Therefore, it does not mean that all the catalyst-supporting carriers dispersed in the plating base layer must be exposed.
 前記表面に露出している触媒担持担体の量は、特に限定されるものではないが、前記表面に露出している触媒担持担体(Y)は、めっき下地層の表面にほぼ一様に点在していることが好ましい。これら触媒担持担体(Y)に担持される触媒金属を起点に無電解金属めっきが一様に析出できるので、めっき下地層と無電解金属めっき層との密着性が高くなるからである。また、前記表面に露出する触媒担持担体(Y)の露出量は、担体に担持された触媒金属がバインダーポリマー(Z)の外に出ている部分があれば、特に限定されるものではない。 The amount of the catalyst-supporting carrier exposed on the surface is not particularly limited, but the catalyst-supporting carrier (Y) exposed on the surface is scattered almost uniformly on the surface of the plating underlayer. It is preferable. This is because the electroless metal plating can be uniformly deposited starting from the catalyst metal supported on the catalyst-supporting carrier (Y), so that the adhesion between the plating base layer and the electroless metal plating layer is enhanced. Further, the exposed amount of the catalyst-supporting carrier (Y) exposed on the surface is not particularly limited as long as there is a portion where the catalyst metal supported on the carrier is outside the binder polymer (Z).
 前記めっき下地層において、触媒担持担体(Y)の含有量は、無電解金属めっきの析出を確実なものとする、めっき下地層と無電解金属めっき層との密着性を向上させる等の点から、バインダーポリマー(Z)100質量部に対し、30質量部以上が好ましく、50質量部以上がより好ましい。また、触媒担持担体(Y)の含有量は、めっき下地層の柔軟性に優れる、添加効果が飽和する、経済性等の観点から、バインダーポリマー(Z)100質量部に対し、300質量部以下が好ましく、200質量部以下がより好ましい。 In the plating base layer, the content of the catalyst-supporting carrier (Y) ensures the deposition of the electroless metal plating, improves the adhesion between the plating base layer and the electroless metal plating layer, and the like. 30 parts by mass or more is preferable with respect to 100 parts by mass of the binder polymer (Z), and 50 parts by mass or more is more preferable. In addition, the content of the catalyst-supporting carrier (Y) is 300 parts by mass or less with respect to 100 parts by mass of the binder polymer (Z) from the viewpoints of excellent flexibility of the plating base layer, saturation of the additive effect, economy, and the like. Is preferable, and 200 mass parts or less is more preferable.
 また、前記めっき下地層の厚みは、本発明の効果を妨げない限り特に限定されないが、基層と無電解金属めっき層との十分な密着性を確保しやすくなる、層形成性を確保しやすくなる等の観点から、1μm以上が好ましく、2μm以上がより好ましい。また、めっき下地層の厚みは、層形成時間の短縮、経済性等の観点から、30μm以下が好ましく、20μm以下がより好ましい。 Further, the thickness of the plating base layer is not particularly limited as long as the effect of the present invention is not hindered. However, it becomes easy to ensure sufficient adhesion between the base layer and the electroless metal plating layer, and it becomes easy to ensure layer formability. From the viewpoint of the above, 1 μm or more is preferable, and 2 μm or more is more preferable. In addition, the thickness of the plating underlayer is preferably 30 μm or less, more preferably 20 μm or less, from the viewpoints of shortening the layer formation time and economy.
 前記めっき積層体は、基層用ポリマー及びバインダーポリマー(Z)が、同種のポリマーを含む態様が好ましい。この場合には、基層とめっき下地層との親和性が高まり、基層とめっき下地層との間の密着性を向上させやすくなる。好ましくは、基層用ポリマー及びバインダーポリマー(Z)が、同種のポリマーであるとよい。なお、前記「同種」とは、ポリマー同士が全く同一である場合だけでなく、ポリマー同士が基本骨格を同じくする場合を含む意味である。したがって、例えば、ある種類の樹脂(ポリアミドイミド樹脂等)に分類される各種樹脂は、それぞれ同種のポリマーであるといえる。ある種類のゴム(シリコーンゴム等)に分類される各種ゴムは、それぞれ同種ポリマーであるといえる。また、未変性ポリマーと変性ポリマー同士、分子量が異なるポリマー同士、重合単位が共通であるポリマー同士等も、同種のポリマーの概念に含まれる。 The plating laminate is preferably such that the base layer polymer and the binder polymer (Z) contain the same type of polymer. In this case, the affinity between the base layer and the plating base layer is increased, and the adhesion between the base layer and the plating base layer is easily improved. Preferably, the base layer polymer and the binder polymer (Z) may be the same type of polymer. The “same kind” means not only the case where the polymers are exactly the same, but also the case where the polymers have the same basic skeleton. Therefore, for example, it can be said that various resins classified into a certain type of resin (polyamideimide resin or the like) are the same type of polymer. Various rubbers classified into a certain type of rubber (silicone rubber, etc.) can be said to be the same polymer. In addition, unmodified polymer and modified polymer, polymers having different molecular weights, polymers having a common polymerization unit, and the like are also included in the concept of the same type of polymer.
 前記同種のポリマーを用いる場合、前記基層用ポリマーとしては、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、ポリイミド樹脂、これら樹脂に前記ポリシロキサン化合物をブレンドしたもの等を好適に用いることができる。前記変性ポリアミドイミド樹脂としては、例えば、シラン変性ポリアミドイミド樹脂;シロキサン変性ポリアミドイミド等が挙げられる。筒状(ベルト状)にした場合の強度、耐熱性、柔軟性に優れる等の利点があるからである。一方、バインダーポリマーとしては、ポリアミドイミド樹脂、変性ポリアミドイミド樹脂、ポリイミド樹脂、これら樹脂に前記ポリシロキサン化合物をブレンドしたもの等を好適に用いることができる。前記基層用ポリマーとの親和性、後述する炭素系材料よりなる担体との親和性、耐熱性に優れる等の利点があるからである。 When the same kind of polymer is used, as the base layer polymer, a polyamideimide resin, a modified polyamideimide resin, a polyimide resin, a blend of these resins with the polysiloxane compound, or the like can be suitably used. Examples of the modified polyamideimide resin include silane-modified polyamideimide resin; siloxane-modified polyamideimide. This is because there are advantages such as excellent strength, heat resistance and flexibility in the case of a cylindrical shape (belt shape). On the other hand, as the binder polymer, a polyamide-imide resin, a modified polyamide-imide resin, a polyimide resin, or a blend of these resins with the polysiloxane compound can be suitably used. This is because there are advantages such as affinity with the base layer polymer, affinity with a carrier made of a carbon-based material described later, and excellent heat resistance.
 前記めっき積層体において、無電解金属めっき層は、単体又は後述する第2の金属めっき層とともに、電磁誘導加熱によって発熱する発熱層として機能させることが可能な層である。また、後述する第2の金属めっき層を積層する際の電極として機能させることも可能な層である。無電解金属めっき層は、めっき下地層上に積層されている。具体的には、無電解金属めっき層は、めっき下地層の外周面に沿って形成することができる。 In the plating laminate, the electroless metal plating layer is a layer capable of functioning as a heat generating layer that generates heat by electromagnetic induction heating together with a single metal plating layer or a second metal plating layer described later. Moreover, it is a layer which can be made to function as an electrode at the time of laminating | stacking the 2nd metal plating layer mentioned later. The electroless metal plating layer is laminated on the plating base layer. Specifically, the electroless metal plating layer can be formed along the outer peripheral surface of the plating base layer.
 無電解金属めっき層を形成する金属としては、例えば、Cu、Ni、Ag、Pd、Sn、Au及びこれらの合金等が挙げられ、前記した触媒金属(とりわけPd)に対する触媒活性、めっき下地層との密着性に優れる等の利点があるため、Ni及びNi合金が特に好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the metal forming the electroless metal plating layer include Cu, Ni, Ag, Pd, Sn, Au, and alloys thereof. The catalytic activity for the above-described catalytic metal (particularly Pd), the plating underlayer, and the like Ni and Ni alloys are particularly preferable because of their advantages such as excellent adhesion. These may be used alone or in combination of two or more.
 無電解金属めっき層の厚みは、めっき下地層との密着性を確実なものとする、後述する第2の金属めっき層を電解金属めっきにより形成する際に電極として機能させやすい等の観点から、0.1μm以上が好ましく、0.2μm以上がより好ましい。また、無電解金属めっき層の厚みは、後述する第2の金属めっき層を積層する場合には、めっき積層体の変形時における割れ抑制、層形成時間の短縮等の観点から、2μm以下が好ましく、1μm以下がより好ましい。また、無電解金属めっき層の厚みは、後述する第2の金属めっき層を積層しない場合は、30μm以下が好ましく、25μm以下がより好ましい。 The thickness of the electroless metal plating layer is to ensure adhesion with the plating base layer, from the viewpoint of easily functioning as an electrode when forming the second metal plating layer described later by electrolytic metal plating, 0.1 μm or more is preferable, and 0.2 μm or more is more preferable. Moreover, when laminating the 2nd metal plating layer mentioned later, the thickness of an electroless metal plating layer is 2 micrometers or less from viewpoints of crack suppression at the time of a deformation | transformation of a plating laminated body, shortening of layer formation time, etc. 1 μm or less is more preferable. Further, the thickness of the electroless metal plating layer is preferably 30 μm or less, and more preferably 25 μm or less, when a second metal plating layer described later is not laminated.
 前記めっき積層体において、無電解金属めっき層の上に、さらに、電解金属めっき又は無電解金属めっきより形成された第2の金属めっき層が積層されていてもよい。この第2の金属めっき層は、主に、電磁誘導加熱によって発熱する発熱層として機能させることが可能な層である。第2の金属めっき層を形成する金属としては、例えば、Cu、Ni、Ag、Au、Sn、Zn及びこれらの合金等が挙げられ、電磁誘導加熱による昇温性、めっき積層体の柔軟性向上、経済性に優れる等の利点があるため、Cu及びCu合金が特に好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。 In the plating laminate, a second metal plating layer formed by electrolytic metal plating or electroless metal plating may be further laminated on the electroless metal plating layer. The second metal plating layer is a layer that can function as a heat generation layer that generates heat mainly by electromagnetic induction heating. Examples of the metal that forms the second metal plating layer include Cu, Ni, Ag, Au, Sn, Zn, and alloys thereof, and the like. Cu and Cu alloys are particularly preferable because they have advantages such as excellent economy. These may be used alone or in combination of two or more.
 第2の金属めっき層を有する場合には、無電解金属めっき層を形成する金属と異なる金属種を選択したり、無電解金属めっき層と異なる厚みを選択したりしやすくなる。そのため、めっき積層体における金属めっき層の構成の自由度が向上する。それ故、例えば、無電解金属めっき層よりも低電気抵抗な金属を選択すること等により、電磁誘導加熱により発熱させやすくなる等の利点がある。また、無電解金属めっき層の厚みよりも第2の金属めっき層の厚みを厚く形成すること等により、電磁誘導加熱により発熱させやすくなる等の利点がある。なお、無電解金属めっき層と第2の金属めっき層との間は、めっき層同士の密着になるので、良好な密着性を確保することができる。そのため、基層と無電解金属めっき層との密着性が確保されておれば、基層から第2の金属めっき層が剥離することはほとんどない。 When it has a 2nd metal plating layer, it becomes easy to select the metal seed | species different from the metal which forms an electroless metal plating layer, or to select thickness different from an electroless metal plating layer. Therefore, the freedom degree of the structure of the metal plating layer in a plating laminated body improves. Therefore, for example, by selecting a metal having a lower electrical resistance than the electroless metal plating layer, there is an advantage that heat is easily generated by electromagnetic induction heating. Further, by forming the second metal plating layer to be thicker than the electroless metal plating layer, there is an advantage that heat is easily generated by electromagnetic induction heating. In addition, since it becomes adhesion | attachment of plating layers between an electroless metal plating layer and a 2nd metal plating layer, favorable adhesiveness is securable. Therefore, if the adhesion between the base layer and the electroless metal plating layer is ensured, the second metal plating layer hardly peels from the base layer.
 第2の金属めっき層は、無電解金属めっき層上に積層されている。具体的には、第2の金属めっき層は、無電解金属めっき層の外周面に沿って形成することができる。第2の金属めっき層は、1層又は2層以上から構成することができる。第2の金属めっき層が複数層から構成されている場合、各層は、電解金属めっき、無電解金属めっきのいずれから形成されていてもよい。また、各層は、同じ金属から形成されていてもよいし、異なる金属から形成されていてもよい。また、各層の厚みも適宜配分することができる。 The second metal plating layer is laminated on the electroless metal plating layer. Specifically, the second metal plating layer can be formed along the outer peripheral surface of the electroless metal plating layer. The second metal plating layer can be composed of one layer or two or more layers. When the second metal plating layer is composed of a plurality of layers, each layer may be formed from either electrolytic metal plating or electroless metal plating. Each layer may be formed from the same metal or may be formed from different metals. Moreover, the thickness of each layer can also be distributed appropriately.
 第2の金属めっき層の厚みは、前記発熱層としての機能を確保しやすくする等の観点から、3μm以上が好ましく、5μm以上がより好ましい。また、第2の金属めっき層の厚みは、柔軟性、短時間での発熱性、層形成時間の短縮等の観点から、30μm以下が好ましく、20μm以下がより好ましい。 The thickness of the second metal plating layer is preferably 3 μm or more, more preferably 5 μm or more from the viewpoint of easily ensuring the function as the heat generating layer. In addition, the thickness of the second metal plating layer is preferably 30 μm or less, more preferably 20 μm or less, from the viewpoints of flexibility, heat generation in a short time, shortening of the layer formation time, and the like.
 前記めっき積層体は、その用途が特に限定されるものではなく、種々の被加熱体を加熱するために用いることができる。前記めっき積層体は、例えば、電子写真方式の画像形成装置における定着部材として用いることができる。この際、前記無電解金属めっき層又は金属めっき層は、電磁誘導加熱によって発熱する発熱層とすることができる。この場合には、発熱層の密着性に優れ、剥離等が生じ難いため、めっき積層体の耐久性に優れる。そのため、加圧ロール等と圧接させた状態で使用した場合でも、長期にわたって良好な画像を形成することができる。前記画像形成装置としては、例えば、電子写真方式を採用する複写機、プリンター、ファクシミリ、複合機、POD(Print On Demand)装置等が挙げられる。 The use of the plated laminate is not particularly limited, and can be used to heat various objects to be heated. The plated laminate can be used, for example, as a fixing member in an electrophotographic image forming apparatus. At this time, the electroless metal plating layer or the metal plating layer may be a heat generation layer that generates heat by electromagnetic induction heating. In this case, since the adhesiveness of the heat generating layer is excellent and peeling or the like hardly occurs, the durability of the plated laminate is excellent. Therefore, a good image can be formed over a long period of time even when used in a state of being pressed against a pressure roll or the like. Examples of the image forming apparatus include a copying machine, a printer, a facsimile machine, a multifunction machine, and a POD (Print On Demand) apparatus that employ an electrophotographic system.
 本発明のめっき積層体の製造方法は、例えば、基層用ポリマーより形成された基層表面に、バインダーポリマー(Z)と触媒担持担体(Y)とを含むめっき下地層形成用材料を層状に塗工する工程と、形成された塗工層表面のバインダーポリマー(Z)を除去し、触媒担持担体(Y)を露出させてめっき下地層を形成する工程と、形成されためっき下地層表面に無電解金属めっきを施し、無電解金属めっき層を形成する工程とを有することができる。さらに、必要に応じて、無電解金属めっき層上に電解金属めっき又は無電解金属めっきを施し、第2の金属めっき層を形成する工程を追加することができる。前記製造方法によれば、上記構成のめっき積層体を得ることができる。さらに、その製造時に煩雑なめっき前処理工程を行う必要がない。そのため、製造ラインの小型化に寄与することが可能となり、製造性にも優れている。 In the method for producing a plated laminate of the present invention, for example, a plating base layer forming material containing a binder polymer (Z) and a catalyst-supporting carrier (Y) is applied in a layered manner on the surface of a base layer formed from a base layer polymer. A step of removing the binder polymer (Z) from the surface of the formed coating layer, exposing the catalyst-supporting carrier (Y) to form a plating base layer, and electroless formation on the surface of the formed plating base layer Applying metal plating to form an electroless metal plating layer. Furthermore, if necessary, a step of forming a second metal plating layer by performing electrolytic metal plating or electroless metal plating on the electroless metal plating layer can be added. According to the said manufacturing method, the plating laminated body of the said structure can be obtained. Furthermore, it is not necessary to perform a complicated plating pretreatment process during the production. Therefore, it is possible to contribute to the downsizing of the production line, and the productivity is excellent.
 前記めっき積層体の製造方法について、より具体的に説明する。基層が筒状である場合、基層形成用材料(塗工剤)を、円筒状又は円柱状の金型の外周面に塗工し、乾燥させる。必要に応じて、熱処理することができる。塗工方法としては、例えば、ディップコート法、ディスペンサーコート法(ノズルコート法)、ロールコート法、リングコート法等が挙げられる。一方、基層がロール状である場合、基層形成用材料(混練物)を、ロール成形金型内に注入して熱処理する。あるいは、基層形成用材料(混練物)を押出成形することもできる。このように、基層の形状等を考慮し、基層用ポリマーより形成された基層を準備する。 The method for manufacturing the plated laminate will be described more specifically. When the base layer is cylindrical, the base layer forming material (coating agent) is applied to the outer peripheral surface of a cylindrical or columnar mold and dried. If necessary, heat treatment can be performed. Examples of the coating method include a dip coating method, a dispenser coating method (nozzle coating method), a roll coating method, and a ring coating method. On the other hand, when the base layer is in the form of a roll, the base layer forming material (kneaded material) is injected into a roll mold and heat-treated. Alternatively, the base layer forming material (kneaded material) can be extruded. Thus, the base layer formed from the base layer polymer is prepared in consideration of the shape of the base layer and the like.
 次に、触媒担持担体(Y)とバインダーポリマー(Z)とを含む無電解めっき下地剤(塗工剤)を、基層の外周面に塗工し、乾燥させる。必要に応じて熱処理することができる。無電解めっき下地剤は、上述した製造方法で製造することができる。前記基層への塗工方法には、上述した方法を適用することができる。具体的には、層形成が容易である等の観点から、塗工方法としてディップコート法を選択することができる。 Next, an electroless plating base material (coating agent) containing the catalyst-supporting carrier (Y) and the binder polymer (Z) is applied to the outer peripheral surface of the base layer and dried. Heat treatment can be performed as necessary. The electroless plating base material can be manufactured by the above-described manufacturing method. The method described above can be applied to the coating method on the base layer. Specifically, a dip coating method can be selected as a coating method from the viewpoint of easy layer formation.
 次いで、形成された塗工層表面におけるバインダーポリマー(Z)を除去し、触媒担持担体(Y)を露出させる。これによりめっき下地層を形成することができる。バインダーポリマー(Z)の除去は、バインダーポリマー(Z)を各種溶媒により溶解させることが可能である場合には、適当な溶媒を用いてバインダーポリマー(Z)を選択的に溶解させる(エッチングする)ことにより行うことができる。他にも、ブラスト処理、研磨処理等の除去手段を用いることも可能である。 Next, the binder polymer (Z) on the surface of the formed coating layer is removed, and the catalyst support (Y) is exposed. Thereby, a plating underlayer can be formed. When the binder polymer (Z) can be dissolved by various solvents, the binder polymer (Z) is selectively dissolved (etched) using an appropriate solvent. Can be done. In addition, it is possible to use removing means such as blasting and polishing.
 めっき下地層を形成した後は、めっき下地層上に、従来公知の方法を用いて無電解金属めっきを施すことにより、無電解金属めっき層を形成することができる。例えば、市販品の無電解めっき液を用いて形成できる。さらに、必要に応じて、無電解金属めっき層上に、従来公知の方法を用いて電解金属めっきを施すことにより、第2の金属めっき層を形成することができる。例えば、市販品の電解めっき液を用いて形成できる。あるいは、無電解金属めっき層上に、従来公知の方法を用いて無電解金属めっきを施すことにより、第2の金属めっき層を形成することができる。さらに、前記めっき積層体の製造方法は、必要に応じて、無電解金属めっき層表面、あるいは、第2の金属めっき層表面に、ゴム弾性層を形成する工程を追加することができる。また、必要に応じて、ゴム弾性層表面に、表層を形成する工程を追加することもできる。 After forming the plating base layer, the electroless metal plating layer can be formed by performing electroless metal plating on the plating base layer using a conventionally known method. For example, it can be formed using a commercially available electroless plating solution. Furthermore, if necessary, the second metal plating layer can be formed by performing electrolytic metal plating on the electroless metal plating layer using a conventionally known method. For example, it can be formed using a commercially available electrolytic plating solution. Alternatively, the second metal plating layer can be formed on the electroless metal plating layer by performing electroless metal plating using a conventionally known method. Furthermore, the manufacturing method of the said plating laminated body can add the process of forming a rubber elastic layer on the electroless metal plating layer surface or the 2nd metal plating layer surface as needed. Moreover, the process of forming a surface layer can also be added to the rubber elastic layer surface as needed.
 前記バインダーポリマー(Z)として、例えば、N-メトキシメチル化ナイロン樹脂等の水溶性を有するものを用いた場合には、無電解金属めっきを施したときに、無電解金属めっき液の含浸性に優れる。そのため、前記バインダーポリマー(Z)の除去を省略することが可能となる。この場合、めっき下地層は、バインダーポリマー(Z)中に触媒担持担体(Y)が分散されてなり、かつ、無電解金属めっき層側に、無電解金属めっき液の含浸により析出した無電解金属めっきを含む含浸層を有している。そのため、この含浸層中に含まれる無電解金属めっきと含浸層の外側にある無電解金属めっき層とが結合している。また、含浸層中の無電解金属めっきによるアンカー効果等も期待される。その結果、基層と無電解金属めっき層との密着性を向上させることができる。 As the binder polymer (Z), for example, when water-soluble ones such as N-methoxymethylated nylon resin are used, the electroless metal plating solution is impregnated when electroless metal plating is performed. Excellent. Therefore, removal of the binder polymer (Z) can be omitted. In this case, the plating base layer is an electroless metal in which the catalyst support (Y) is dispersed in the binder polymer (Z) and is deposited on the electroless metal plating layer side by impregnation with the electroless metal plating solution. It has an impregnation layer containing plating. Therefore, the electroless metal plating contained in this impregnation layer and the electroless metal plating layer outside the impregnation layer are combined. In addition, an anchor effect by electroless metal plating in the impregnated layer is also expected. As a result, the adhesion between the base layer and the electroless metal plating layer can be improved.
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。 The present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples at all, and many variations are within the technical idea of the present invention. This is possible by those with ordinary knowledge.
[実施例1]
[触媒金属含有原料溶液の作製]
 まず、塩化パラジウム溶液を作製した。塩化パラジウム(PdCl2)(粉末)1.68gを3.65wt%(1mol/L)の塩酸水溶液20mLと純水500mLとの混合液に溶解した後、1Lになるように純水でメスアップして、塩化パラジウム溶液を得た。これを、1g/Lのパラジウム原料溶液(1g/L-Pd原料)として使用した。
[Example 1]
[Preparation of catalyst metal-containing raw material solution]
First, a palladium chloride solution was prepared. After dissolving 1.68 g of palladium chloride (PdCl 2 ) (powder) in a mixed solution of 20 mL of 3.65 wt% (1 mol / L) hydrochloric acid aqueous solution and 500 mL of pure water, the volume was adjusted to 1 L with pure water. Thus, a palladium chloride solution was obtained. This was used as a 1 g / L palladium raw material solution (1 g / L-Pd raw material).
[還元剤溶液の作製]
 還元剤としては、クエン酸ナトリウム(クエン酸三ナトリウム)とタンニン酸を用いた。具体的には、クエン酸ナトリウムを純水で10wt%に希釈したクエン酸ナトリウム溶液と、タンニン酸を純水で1.43wt%に希釈したタンニン酸溶液とを用いた。反応促進剤として、炭酸カリウムを用いた。具体的には、炭酸カリウムを純水で13.82wt%(1mol/L)に希釈した炭酸カリウム溶液を用いた。
[Preparation of reducing agent solution]
As the reducing agent, sodium citrate (trisodium citrate) and tannic acid were used. Specifically, a sodium citrate solution in which sodium citrate was diluted to 10 wt% with pure water and a tannic acid solution in which tannic acid was diluted to 1.43 wt% with pure water were used. Potassium carbonate was used as a reaction accelerator. Specifically, a potassium carbonate solution in which potassium carbonate was diluted with pure water to 13.82 wt% (1 mol / L) was used.
[工程(A)]
 1Lの丸底フラスコに1g/Lのパラジウム原料溶液200gと純水731.61gとを混合した。このとき、3.65wt%(1mol/L)塩酸溶液を少量添加して、pHが2.3になるように調整した。これを1時間煮沸還流した。ここに前記クエン酸ナトリウム溶液15g、前記タンニン酸溶液35g、前記炭酸カリウム溶液1.25gを混合して投入した。これらの溶液を投入して10分間煮沸還流した後、フラスコを氷水中に入れ、室温まで冷却した。その後、不純物を除去するためにイオン交換樹脂(アンバーライトMB-1(オルガノ株式会社製))70gでイオン交換することで、Pdコロイド粒子の分散液(以下、「Pdコロイド溶液」と称する)(X1)を調製した。得られたPdコロイド粒子について、透過型顕微鏡で観察したPdコロイド粒子100個の粒度分布を求めて、その体積累積50%の位置を平均粒径(D50)とした。本実施例のPdコロイド粒子の平均粒径は、10nmであった。
[Step (A)]
In a 1 L round bottom flask, 200 g of a 1 g / L palladium raw material solution and 731.61 g of pure water were mixed. At this time, a small amount of 3.65 wt% (1 mol / L) hydrochloric acid solution was added to adjust the pH to 2.3. This was boiled and refluxed for 1 hour. 15 g of the sodium citrate solution, 35 g of the tannic acid solution, and 1.25 g of the potassium carbonate solution were mixed and added thereto. After these solutions were added and boiled and refluxed for 10 minutes, the flask was placed in ice water and cooled to room temperature. Thereafter, a Pd colloid particle dispersion (hereinafter referred to as “Pd colloid solution”) is obtained by ion exchange with 70 g of an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corporation)) in order to remove impurities. X1) was prepared. With respect to the obtained Pd colloidal particles, the particle size distribution of 100 Pd colloidal particles observed with a transmission microscope was obtained, and the position where the volume accumulation was 50% was defined as the average particle size (D50). The average particle size of the Pd colloidal particles of this example was 10 nm.
[工程(B)]
 次に、前記Pdコロイド溶液(X1)に、担体のカーボンブラック(商品名:サーマックス(Thermax)N990、平均粒径:280nm、キャンカーブ(cancarb)社製)を加えた後、45kHzの超音波を90分照射して、Pd微粒子とカーボンブラックの分散液を得た。続いて、前記分散液をエバポレータで脱水乾燥したのち、メノウ乳鉢で粉砕し、Pd微粒子担持カーボンブラック(Y1)を得た。
[Step (B)]
Next, after adding carbon black (trade name: Thermax N990, average particle size: 280 nm, manufactured by cancarb) to the Pd colloid solution (X1), ultrasonic waves of 45 kHz are added. Was irradiated for 90 minutes to obtain a dispersion of fine Pd particles and carbon black. Subsequently, the dispersion was dehydrated and dried with an evaporator and then pulverized with an agate mortar to obtain Pd fine particle-supported carbon black (Y1).
[工程(C)]
 さらに、前記Pd微粒子担持カーボンブラック(Y1)2.7gにポリアミドイミド樹脂ワニス(商品名:HPC-5012、日立化成(株)製)2.4g及びN-メチル-2-ピロリドン34.9gを加え、よく撹拌し、Pd担持カーボン分散ポリアミドイミド液(無電解めっき下地剤)を得た。
[Step (C)]
Further, 2.4 g of polyamideimide resin varnish (trade name: HPC-5012, manufactured by Hitachi Chemical Co., Ltd.) and 34.9 g of N-methyl-2-pyrrolidone were added to 2.7 g of the above-mentioned Pd fine particle-supported carbon black (Y1). The mixture was stirred well to obtain a Pd-supported carbon-dispersed polyamideimide solution (electroless plating base material).
 次に、以下のようにして、めっき基層形成アルミ板を得た。めっき基材として、幅25mm、長さ100mmに裁断した厚さ1mmのアルミ板を用意し、これをポリアミドイミド樹脂ワニス(商品名:HPC-5012、日立化成(株)製)に浸漬した後、一定速度で引き上げる方法により該アルミ板に前記ポリアミドイミド樹脂ワニスを塗布した。次いで、該アルミ板を200℃で乾燥させ、めっき基層を形成し、めっき基層形成アルミ板を得た。 Next, a plated base layer-formed aluminum plate was obtained as follows. As a plating substrate, an aluminum plate with a thickness of 1 mm cut to a width of 25 mm and a length of 100 mm was prepared and immersed in a polyamideimide resin varnish (trade name: HPC-5012, manufactured by Hitachi Chemical Co., Ltd.) The polyamideimide resin varnish was applied to the aluminum plate by a method of pulling up at a constant speed. Next, the aluminum plate was dried at 200 ° C. to form a plating base layer to obtain a plating base layer-formed aluminum plate.
 前記Pd担持カーボン分散ポリアミドイミド液に、得られためっき基層形成アルミ板を浸漬した後、一定速度で引き上げる方法により、該アルミ板にPd担持カーボン分散ポリアミドイミド液を塗布した。次いで、該アルミ板を200℃で乾燥させ、めっき下地層を形成した。形成しためっき下地層を40℃の200g/LのNaOH水溶液に10分間浸漬させることでエッチングし、純水で10分間水洗した。続いて、80℃で乾燥させ、Pd担持カーボンが析出しためっき下地層を形成したアルミ板を得た。 After immersing the obtained plating base layer-formed aluminum plate in the Pd-supported carbon-dispersed polyamideimide solution, the Pd-supported carbon-dispersed polyamideimide solution was applied to the aluminum plate by a method of pulling up at a constant speed. Next, the aluminum plate was dried at 200 ° C. to form a plating underlayer. The formed plating underlayer was etched by immersing in a 200 g / L NaOH aqueous solution at 40 ° C. for 10 minutes, and washed with pure water for 10 minutes. Then, it dried at 80 degreeC and obtained the aluminum plate in which the plating base layer in which Pd carrying | support carbon precipitated was formed.
 ニッケルめっきは、無電解めっき液(商品名:トップピエナ650ニッケル、奥野製薬工業(株)製)を用い、前記めっき下地層を形成したアルミ板を60分浸漬させ、ニッケルめっきを析出させた。ニッケルめっきの析出の度合いを目視で確認し、下記評価基準で評価した。結果を下記表1に示す。
<めっき性評価基準>
A:めっきの析出面積が全体の80%以上
B:めっきの析出面積が全体の50%以上80%未満
C:めっきの析出面積が全体の30%以上50%未満
D:めっきの析出面積が30%未満
For the nickel plating, an electroless plating solution (trade name: Top Piena 650 Nickel, manufactured by Okuno Pharmaceutical Co., Ltd.) was used, and the aluminum plate on which the plating base layer was formed was immersed for 60 minutes to deposit nickel plating. The degree of precipitation of nickel plating was visually confirmed and evaluated according to the following evaluation criteria. The results are shown in Table 1 below.
<Plating quality evaluation criteria>
A: The plating deposition area is 80% or more of the whole B: The plating deposition area is 50% or more and less than 80% of the whole C: The plating deposition area is 30% or more and less than 50% of the whole D: The plating deposition area is 30 %Less than
[実施例2]
 Pdコロイド溶液調製時において、パラジウム原料溶液と混合する純水量を744.94gとし(溶液のpH2.3)、Pd還元時のクエン酸ナトリウム溶液の使用量を10gとした以外は、実施例1と同じ製法でPdコロイド溶液(X2)を調製した。
 Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は、20nmであった。
 実施例1のPdコロイド溶液(X1)に代えて、前記Pdコロイド溶液(X2)を用いた以外は実施例1と同じ方法で、Pd担持カーボン分散ポリアミドイミド液を得て、該ポリアミドイミド液を用いて、めっき下地層を形成した後、ニッケルめっきを析出させた。得られたニッケルめっきについて、実施例1と同じ評価方法及び基準で析出の度合いを評価した。結果を下記表1に示す。
[Example 2]
In the preparation of the Pd colloid solution, the amount of pure water mixed with the palladium raw material solution was 744.94 g (pH of the solution 2.3), and the amount of sodium citrate solution used during Pd reduction was 10 g. A Pd colloid solution (X2) was prepared by the same production method.
When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 20 nm.
A Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X2) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
[実施例3]
 Pdコロイド溶液調製時において、パラジウム原料溶液と混合する純水量を751.75gとし(溶液のpH2.3)、Pd還元時のクエン酸ナトリウム溶液の使用量を5gとした以外は、実施例1と同じ製法でPdコロイド溶液(X3)を調製した。
 Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は、35nmであった。
 実施例1のPdコロイド溶液(X1)に代えて、前記Pdコロイド溶液(X3)を用いた以外は実施例1と同じ方法で、Pd担持カーボン分散ポリアミドイミド液を得て、該ポリアミドイミド液を用いて、めっき下地層を形成した後、ニッケルめっきを析出させた。得られたニッケルめっきについて、実施例1と同じ評価方法及び基準で析出の度合いを評価した。結果を下記表1に示す。
[Example 3]
Example 1 except that the amount of pure water mixed with the palladium raw material solution was 751.75 g (pH of the solution 2.3) and the amount of sodium citrate solution used during Pd reduction was 5 g when preparing the Pd colloidal solution. A Pd colloid solution (X3) was prepared by the same production method.
When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 35 nm.
A Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X3) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
[実施例4]
 Pdコロイド溶液調製時において、パラジウム原料溶液と混合する純水量を733.25gとし(溶液のpH2.3)、Pd還元時の還元剤として、クエン酸ナトリウムに代えて2wt%没食子酸溶液を50g使用し、反応促進剤としての炭酸カリウム溶液を1.0g使用した以外は、実施例1と同じ製法でPdコロイド溶液(X4)を調製した。
 Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は、10nmであった。
 実施例1のPdコロイド溶液(X1)に代えて、前記Pdコロイド溶液(X4)を用いた以外は実施例1と同じ方法で、Pd担持カーボン分散ポリアミドイミド液を得て、該ポリアミドイミド液を用いて、めっき下地層を形成した後、ニッケルめっきを析出させた。得られたニッケルめっきについて、実施例1と同じ評価方法及び基準で析出の度合いを評価した。結果を下記表1に示す。
[Example 4]
When preparing the Pd colloidal solution, the amount of pure water mixed with the palladium raw material solution was set to 733.25 g (solution pH 2.3), and 50 g of 2 wt% gallic acid solution was used instead of sodium citrate as the reducing agent during Pd reduction. Then, a Pd colloid solution (X4) was prepared by the same production method as in Example 1 except that 1.0 g of potassium carbonate solution as a reaction accelerator was used.
When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
A Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X4) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
[実施例5]
 実施例1のPd微粒子担持カーボンブラックに、真空状態で200℃、12時間の加熱処理を実施し、シンタリング(焼結)によりPdの粒径を大きくした以外は、実施例1と同じ製法でPdコロイド溶液(X5)を調製した。
 Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は、35nmであった。
 実施例1のPdコロイド溶液(X1)に代えて、前記Pdコロイド溶液(X5)を用いた以外は実施例1と同じ方法で、Pd担持カーボン分散ポリアミドイミド液を得て、該ポリアミドイミド液を用いて、めっき下地層を形成した後、ニッケルめっきを析出させた。得られたニッケルめっきについて、実施例1と同じ評価方法及び基準で析出の度合いを評価した。結果を下記表1に示す。
[Example 5]
The same manufacturing method as in Example 1 except that the Pd fine particle-supported carbon black of Example 1 was subjected to a heat treatment at 200 ° C. for 12 hours in a vacuum state, and the particle size of Pd was increased by sintering. A Pd colloid solution (X5) was prepared.
When the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 35 nm.
A Pd-supported carbon-dispersed polyamideimide solution was obtained in the same manner as in Example 1 except that the Pd colloid solution (X5) was used instead of the Pd colloid solution (X1) of Example 1, and the polyamideimide solution was Using, after forming a plating foundation layer, nickel plating was deposited. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
[比較例1]
 担体として、炭素系材料であるカーボンブラック(商品名:サーマックス(Thermax)N990、平均粒径:280nm、キャンカーブ(cancarb)社製)30gを準備した。このカーボンブラックを、60質量%の硝酸水溶液に50℃で10分間浸漬させた。これにより、カーボンブラック表面をエッチング処理した。次いで、これをろ過、水洗した後、アミノカルボン酸系界面活性剤[奥野製薬工業(株)製、「コンディライザーSP」]に50℃で10分間浸漬させた。これにより、カーボンブラック表面の表面調整を行った。次いで、これをろ過、水洗した後、Pd-Sn錯体コロイド溶液[奥野製薬工業(株)製、「OPC-80キャタリスト」]に25℃で10分間浸漬させた。これにより、カーボンブラック表面にPd-Sn錯体を吸着させた。次いで、これをろ過、水洗した後、10質量%の塩酸水溶液に25℃で10分間浸漬させた。これにより、カーボンブラック表面に金属Pdを生成させた。次いで、これをろ過、水洗、乾燥することにより、粉末状のPd微粒子担持カーボンブラック(CY1)を得た。Pd粒子の平均粒径は、実施例1と同様の方法で求めた。本比較例のPdコロイド粒子の平均粒径は、45nmであった。
[Comparative Example 1]
As a carrier, 30 g of carbon black (trade name: Thermax N990, average particle size: 280 nm, manufactured by cancarb) was prepared as a carrier. This carbon black was immersed in a 60% by mass nitric acid aqueous solution at 50 ° C. for 10 minutes. Thereby, the carbon black surface was etched. Next, this was filtered and washed with water, and then immersed in an aminocarboxylic acid surfactant [Okuno Pharmaceutical Co., Ltd., “Condizer SP”] at 50 ° C. for 10 minutes. Thereby, the surface adjustment of the carbon black surface was performed. Next, this was filtered and washed with water, and then immersed in a Pd—Sn complex colloidal solution [OPC-80 Catalyst, manufactured by Okuno Pharmaceutical Co., Ltd.] at 25 ° C. for 10 minutes. As a result, the Pd—Sn complex was adsorbed on the carbon black surface. Subsequently, after filtering and washing with water, it was immersed in 10 mass% hydrochloric acid aqueous solution at 25 degreeC for 10 minute (s). This produced metal Pd on the surface of carbon black. Next, this was filtered, washed with water, and dried to obtain powdered Pd fine particle-supported carbon black (CY1). The average particle diameter of the Pd particles was determined by the same method as in Example 1. The average particle size of the Pd colloidal particles of this comparative example was 45 nm.
 次に、実施例1と同様に、アルミ板にポリアミドイミド樹脂ワニスによるめっき基層を形成した。また、実施例1のPd微粒子担持カーボンブラック(Y1)に代えて、前記粉末状のPd微粒子担持カーボンブラック(CY1)を用いて工程(C)を行った以外は、実施例1と同じ方法でPd担持カーボン分散ポリアミドイミド液を得た。前記Pd担持カーボン分散ポリアミドイミド液を、実施例1のPd担持カーボン分散ポリアミドイミド液の代わりに用いた以外は、実施例1と同じ方法で、めっき下地層を形成した後、ニッケルめっきを析出させた。得られたニッケルめっきについて、実施例1と同じ評価方法及び基準で析出の度合いを評価した。結果を下記表1に示す。 Next, in the same manner as in Example 1, a plating base layer made of polyamideimide resin varnish was formed on an aluminum plate. Moreover, it replaced with Pd fine particle carrying | support carbon black (Y1) of Example 1, and performed the same method as Example 1 except having performed the process (C) using the said powdery Pd fine particle carrying | support carbon black (CY1). A Pd-supported carbon-dispersed polyamideimide solution was obtained. Except that the Pd-supported carbon-dispersed polyamideimide solution was used in place of the Pd-supported carbon-dispersed polyamideimide solution of Example 1, a plating underlayer was formed by the same method as in Example 1, and then nickel plating was deposited. It was. About the obtained nickel plating, the degree of precipitation was evaluated by the same evaluation method and standard as Example 1. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のように、本発明の無電解めっき下地剤は、めっき性に優れ、ひいては密着性に優れる。 As described above, the electroless plating base material of the present invention is excellent in plating properties and by extension, in adhesion.
 本発明の無電解めっき下地剤は、密着性に優れ、密着不良を起こしにくい。また、本発明の無電解めっき下地剤を用いためっき積層体は、担体の凝集や洗浄不足によって残存するSn4+が存在せず、残存するSn4+に起因する密着不良を起こしにくいため、耐久性にも優れ、定期的な交換を前提としない加熱部材等に使用する場合に特に有用である。
 
The electroless plating base material of the present invention is excellent in adhesion and hardly causes poor adhesion. In addition, the plating laminate using the electroless plating base material of the present invention does not have Sn 4+ remaining due to carrier aggregation or insufficient cleaning, and is less likely to cause poor adhesion due to remaining Sn 4+ . It is excellent in durability and is particularly useful when used for a heating member or the like that does not require regular replacement.

Claims (12)

  1.  触媒担持担体(Y)と、バインダーポリマー(Z)とを含み、前記触媒担持担体(Y)の表面に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下であることを特徴とする無電解めっき下地剤。 The catalyst-supporting carrier (Y) and the binder polymer (Z) are included. The catalyst metal fine particles supported on the surface of the catalyst-supporting support (Y) include palladium fine particles, and the average particle diameter (D50) of the palladium fine particles is An electroless plating base material having a thickness of 10 nm to 43 nm.
  2.  前記触媒担持担体(Y)が、バインダーポリマー(Z)中に分散されてなることを特徴とする請求項1に記載の無電解めっき下地剤。 The electroless plating base material according to claim 1, wherein the catalyst-supporting carrier (Y) is dispersed in a binder polymer (Z).
  3.  前記パラジウム微粒子の平均粒径(D50)が、20nm以上40nm以下であることを特徴とする請求項1又は2に記載の無電解めっき下地剤。 The electroless plating base material according to claim 1 or 2, wherein the palladium fine particles have an average particle diameter (D50) of 20 nm or more and 40 nm or less.
  4.  前記触媒担持担体(Y)を構成する担体は、炭素系材料、金属酸化物、及びシリカからなる群から選択される1種以上であることを特徴とする請求項1~3のいずれか1項に記載の無電解めっき下地剤。 The carrier constituting the catalyst-carrying carrier (Y) is one or more selected from the group consisting of a carbon-based material, a metal oxide, and silica. The electroless plating base material described in 1.
  5.  基層用ポリマーより形成された基層と、請求項1~4のいずれか1項に記載の無電解めっき下地剤から構成され、前記基層上に積層された無電解めっき下地層と、前記めっき下地層上に積層され、無電解金属めっきにより形成された無電解金属めっき層とを備え、前記無電解金属めっき層側の表面に、担体表面に触媒金属を担持する触媒担持担体が露出した部分を有することを特徴とするめっき積層体。 A base layer formed of a base layer polymer, the electroless plating base layer according to any one of claims 1 to 4 and laminated on the base layer, and the plating base layer An electroless metal plating layer formed by electroless metal plating, and having a portion on the surface of the electroless metal plating layer where a catalyst-supporting carrier for supporting a catalyst metal is exposed on the surface of the carrier The plating laminated body characterized by the above-mentioned.
  6.  前記無電解金属めっき層上に、さらに、電解金属めっき又は無電解金属めっきより形成された第2の金属めっき層が積層されていることを特徴とする請求項5に記載のめっき積層体。 6. The plated laminate according to claim 5, wherein a second metal plating layer formed by electrolytic metal plating or electroless metal plating is further laminated on the electroless metal plating layer.
  7.  前記無電解金属めっき層を形成する金属は、Cu、Ni、Ag、及びこれらの合金から選択される1種又は2種以上であることを特徴とする請求項5又は6に記載のめっき積層体。 The plating laminate according to claim 5 or 6, wherein the metal forming the electroless metal plating layer is one or more selected from Cu, Ni, Ag, and alloys thereof. .
  8.  触媒金属含有原料溶液を還元剤で還元し、触媒金属微粒子含有溶液(X)を得る工程(A)、
     前記工程で得られた触媒金属微粒子含有溶液(X)と、担体とを接触させて、表面に触媒金属微粒子を担持する触媒担持担体(Y)を得る工程(B)、及び、
     前記工程で得られた触媒担持担体(Y)と、バインダーポリマー(Z)とを混合する工程(C)を有し、
     前記担体に担持された触媒金属微粒子がパラジウム微粒子を含み、前記パラジウム微粒子の平均粒径(D50)が10nm以上43nm以下であることを特徴とする請求項1~4のいずれか1項に記載された無電解めっき下地剤の製造方法。
    Step (A) of reducing the catalyst metal-containing raw material solution with a reducing agent to obtain a catalyst metal fine particle-containing solution (X),
    A step (B) of obtaining a catalyst-carrying carrier (Y) carrying catalyst metal fine particles on its surface by bringing the catalyst metal fine particle-containing solution (X) obtained in the step into contact with a carrier; and
    A step (C) of mixing the catalyst-carrying support (Y) obtained in the step and the binder polymer (Z),
    The catalyst metal fine particles supported on the carrier include palladium fine particles, and the palladium fine particles have an average particle diameter (D50) of 10 nm or more and 43 nm or less. A method for producing an electroless plating base material.
  9.  前記触媒金属含有原料溶液のpHが、1.0~4.5であることを特徴とする請求項8に記載の無電解めっき下地剤の製造方法。 The method for producing an electroless plating base agent according to claim 8, wherein the catalyst metal-containing raw material solution has a pH of 1.0 to 4.5.
  10.  前記還元において、さらに反応促進剤を用いることを特徴とする請求項8又は9に記載の無電解めっき下地剤の製造方法。 10. The method for producing an electroless plating base material according to claim 8 or 9, wherein a reaction accelerator is further used in the reduction.
  11.  前記工程(B)において、さらに分散処理を行うことを特徴とする請求項8~10のいずれか1項に記載の無電解めっき下地剤の製造方法。 The method for producing an electroless plating base agent according to any one of claims 8 to 10, wherein a dispersion treatment is further performed in the step (B).
  12.  前記パラジウム微粒子の平均粒径(D50)が、20nm以上40nm以下であることを特徴とする請求項8~11のいずれか1項に記載の無電解めっき下地剤の製造方法。 The method for producing an electroless plating base material according to any one of claims 8 to 11, wherein the palladium fine particles have an average particle diameter (D50) of 20 nm or more and 40 nm or less.
PCT/JP2015/004472 2014-10-02 2015-09-03 Electroless plating base agent, method for producing same and plating laminate using electroless plating base agent WO2016051667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203839A JP2017210630A (en) 2014-10-02 2014-10-02 Electroless plating substrate agent, production method thereof, and plated laminate using electroless plating substrate agent
JP2014-203839 2014-10-02

Publications (1)

Publication Number Publication Date
WO2016051667A1 true WO2016051667A1 (en) 2016-04-07

Family

ID=55629746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004472 WO2016051667A1 (en) 2014-10-02 2015-09-03 Electroless plating base agent, method for producing same and plating laminate using electroless plating base agent

Country Status (2)

Country Link
JP (1) JP2017210630A (en)
WO (1) WO2016051667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026937A (en) * 2017-07-27 2019-02-21 Tdk株式会社 Sheet material, metal mesh, wiring board and display unit, and manufacturing methods thereof
CN110114507A (en) * 2016-12-27 2019-08-09 关东化学株式会社 Without cyanogen immersion gold plating liquid composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458237B1 (en) * 2018-09-27 2022-10-25 한국전기연구원 Catalyst Ink For Plating And Electroless Plating Pattern Forming Methods Using The Same
KR102458238B1 (en) * 2018-10-05 2022-10-25 한국전기연구원 Catalyst Ink For 3D structure, And Manufacturing Methods of 3D Structure Using The Same
JP7478447B2 (en) 2019-08-06 2024-05-07 ユニチカ株式会社 Plating undercoat and laminate using same
JP6745560B1 (en) * 2020-03-25 2020-08-26 株式会社イオックス Plating product having a pattern-shaped electroless plating layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052101A (en) * 2004-08-10 2006-02-23 Mitsuboshi Belting Ltd Method of forming metal coating film on ceramic base material surface and metallized ceramic base material
JP2007134422A (en) * 2005-11-09 2007-05-31 Toshiba Corp Resin particle containing catalyst particulate liquid toner, electronic circuit board and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052101A (en) * 2004-08-10 2006-02-23 Mitsuboshi Belting Ltd Method of forming metal coating film on ceramic base material surface and metallized ceramic base material
JP2007134422A (en) * 2005-11-09 2007-05-31 Toshiba Corp Resin particle containing catalyst particulate liquid toner, electronic circuit board and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114507A (en) * 2016-12-27 2019-08-09 关东化学株式会社 Without cyanogen immersion gold plating liquid composition
JPWO2018122989A1 (en) * 2016-12-27 2019-12-26 関東化学株式会社 Cyan-free substituted gold plating solution composition
EP3564407A4 (en) * 2016-12-27 2020-10-21 Kanto Kagaku Kabushiki Kaisha Cyanide-free substitution gold plating solution composition
JP2019026937A (en) * 2017-07-27 2019-02-21 Tdk株式会社 Sheet material, metal mesh, wiring board and display unit, and manufacturing methods thereof
JP7243065B2 (en) 2017-07-27 2023-03-22 Tdk株式会社 Sheet material, metal mesh, wiring board, display device, and manufacturing method thereof
US11668008B2 (en) 2017-07-27 2023-06-06 Tdk Corporation Sheet material, metal mesh, wiring substrate, display device and manufacturing methods therefor

Also Published As

Publication number Publication date
JP2017210630A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016051667A1 (en) Electroless plating base agent, method for producing same and plating laminate using electroless plating base agent
US9093192B2 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP5648232B1 (en) Electroless plating catalyst, metal film using the same, and method for producing the same
JP5422812B2 (en) Coating composition for electroless plating
CN1572903A (en) Catalyst composition and deposition method
WO2014042215A1 (en) Electroless plating base agent
JP6250903B2 (en) Manufacturing method of three-dimensional conductive pattern structure and three-dimensional molding material used therefor
JP2014196556A (en) Method for manufacturing conductive material, and conductive material
JP4812834B2 (en) Conductive fine particles comprising a composite metal layer having a density gradient, a method for producing the conductive fine particles, and an anisotropic conductive adhesive composition comprising the conductive fine particles
JPWO2016121749A1 (en) Metal powder, ink, sintered body, substrate for printed wiring board, and method for producing metal powder
TWI419996B (en) Conductive electroless plating powder and its manufacturing method
TW201223639A (en) A composition of nanoparticles
JP6340876B2 (en) Conductive particles
JP6466110B2 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
JP5629641B2 (en) Conductive fine particles and method for producing the same
KR101416579B1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JP5780635B2 (en) Plating
JP2010138484A (en) Body with magnetic film attached and manufacturing method therefor
JP5907775B2 (en) Heating member
JP6029047B2 (en) Manufacturing method of conductive material
JP5505156B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP2011208174A (en) Plated article having polycarbonate resin as base material
KR20140049632A (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JP5505149B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP