WO2016051003A1 - Heating cell, heater using same, heating system and use thereof - Google Patents
Heating cell, heater using same, heating system and use thereof Download PDFInfo
- Publication number
- WO2016051003A1 WO2016051003A1 PCT/ES2015/070712 ES2015070712W WO2016051003A1 WO 2016051003 A1 WO2016051003 A1 WO 2016051003A1 ES 2015070712 W ES2015070712 W ES 2015070712W WO 2016051003 A1 WO2016051003 A1 WO 2016051003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- ceramic material
- microwave
- heating cell
- high dielectric
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/02—Stoves or ranges heated by electric energy using microwaves
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/647—Aspects related to microwave heating combined with other heating techniques
- H05B6/6491—Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/702—Feed lines using coaxial cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/72—Radiators or antennas
Definitions
- the present invention pertains to the field of heat generation systems, in particular to a heating system that uses ceramic pieces as heat emitting elements that are heated by microwave radiation distributed by planar technology.
- the present invention is directed to the heating element that employs ceramic compositions adapted as transducers containing microwave radiation susceptors capable of absorbing microwave radiation and transforming it into heat.
- Thermal radiation or heat radiation is the radiation emitted by a body due to its temperature.
- a radiator is a type of heat emitter whose function is to exchange heat from the heating system to yield it to the environment, and generally it is a device without moving parts or heat production. Radiators are discrete elements that are part of centralized heating installations. Originally, the first heating systems used steam and the high surface temperature of the radiators produced heat exchange by radiation. The replacement of water vapor radiators reduced operating temperatures and, given the small surface area of the radiators, causes most of the heat to be exchanged by convection. The heat emission or dissipation of a radiator depends on the difference in temperatures between its surface and the surrounding environment and the amount of surface in contact with that environment. The greater the exchange surface and the greater the temperature difference, the greater the exchange. In air conditioning installations and especially in heating installations, an emitter is a device that emits heat, giving it to the environment inhabited
- a heater incorporates heat generating elements and a thermal radiator or thermal emitter.
- An example would be an apparatus that is heated by an electrical resistor incorporated inside the thermal emitter.
- the term electric radiator is used, although the difference between a radiator and a heater is that the radiator does not produce energy, it is limited to being a heat sink that reaches the radiator usually through a network of pipes through a carrier fluid circulating that has been heated in a heat producing device located elsewhere.
- An electric heater is generally a unit element that uses an electrical resistor to produce heat.
- the electrical resistors have a high energy consumption that requires an important electrical power.
- a unit element consumes around 2 kW / h.
- thermal comfort is defined as "That condition of the mind in which satisfaction with the thermal environment is expressed”. This parameter is not easy to calculate since many factors are taken into account from location, orientation and ventilation of the house to activities carried out in it and clothing of its inhabitants. For usual conditions of use, it is estimated that the optimum comfort temperature is 22 ° C.
- a heating system requires a set of heating elements that implies an important electric power supplied.
- the radiation efficiency depends fundamentally on the thermal inertia of the heat exchanger material. Normally this material is metallic, which makes it necessary a continuous power supply to maintain its high temperature, since the metallic materials have a very low specific heat.
- Portable heaters that incorporate a ceramic element have greater thermal inertia.
- a heater with ceramic element will need between 80-100 W per m 2 , depending on the average insulation quality.
- a type house of 80 m 2 would require at least 6 to 8 kW / h of minimum electrical power contracted to meet the demand of the heating system.
- heat accumulators are incorporated for their sustained and prolonged release for a certain time.
- One of the elements used as heat accumulators are ceramic blocks with high thermal inertia due to their low thermal conductivity and high density.
- An application of heaters with thermal accumulator is related to accumulating heat in hours of excess production of electric energy and releasing this without consumption of electric energy in hours of increased demand.
- Heating systems with ceramic accumulators have limitations related to the use of electrical resistors and their low efficiency, since due to the effect of the same thermal inertia that allows these ceramic materials to release their heat very slowly, one of the limitations of the state of The technique is related to the fact that ceramic materials require a very long time for heating when electrical resistors are used. Therefore, the state of the art requires new solutions that solve the aforementioned problems. Among the possible solutions, the use of microwave radiation as a heat generation system has been considered.
- the electromagnetic waves defined in a given frequency range are called microwaves; generally between 300 MHz and 300 GHz, which implies an oscillation period of 3x 10 "9 s to 3x 10 " 12 s and a wavelength in the range of 1 m to 1 mm.
- Other definitions for example those of the IEC 60050 and IEEE 100 standards, place their frequency range between 1 GHz and 300 GHz, that is, wavelengths between 30 centimeters and 1 millimeters.
- microwaves can propagate through dielectric means and be transmitted or reflected in the interfaces formed by discontinuities between different media. Since the mid-twentieth century, some applications have appeared in which microwave energy has been used as a means to transfer energy to materials, taking advantage of their interaction with them.
- microwave oven which uses a magnetron to produce waves at a frequency of approximately 2.45 GHz. These waves make the water molecules vibrate or rotate generating heat. Because most foods contain a significant percentage of water, they can be easily cooked in this way. Water, fats and other substances present in food absorb microwave energy in a process called dielectric heating. Many molecules are electric dipoles, that is, they have a partial positive charge at one end and a partial negative charge at the other, and therefore, rotate in their attempt to align with the alternating electric field of microwaves. When rotating, the molecules collide with others and set them in motion, thus dispersing the energy. This energy, when dispersed as molecular vibration in solids and liquids, is transformed into heat.
- Microwave applicators are usually multimodal cavities, and the interaction between the various electromagnetic modes that propagate in them and their multiple reflections encourage a very irregular field distribution that results in uneven heating, with the appearance of hot and cold spots.
- these techniques based on multimodal cavities are usually maladaptive techniques, an aspect that implies that a substantial part of the energy delivered to the load is reflected back to the source, thus reducing the efficiency of these methods.
- radiators with liquids are used, for example in document DE19949013 or ceramic elements such as in document R0117643 or in document US20060639602 to preferably absorb microwave radiation and store said energy in the form of heat in order to maintain the temperature of a more prolonged material.
- the problem not solved in the state of the art is that the transmission of microwaves to a dielectric medium even if this is a potential susceptor is not so immediate.
- the solutions used to transform microwave energy into heat are limited by the efficiency of the assembly formed by the microwave emitter and the dielectric medium that absorbs the microwaves.
- the problem is that the lack of adapted systems reduces efficiency, also generating problems of electric shocks at a first level that are also sources of uncontrolled microwave radiation.
- document EP2090869 is also known, which details a microwave heating element that makes use of an electric transmission line in the microwave band, a transmission line that is arranged on a dielectric material.
- This invention addresses a novel solution to the problem of transferring microwave energy in heat with high efficiency by means of heating units in the form of low-power heating cells that allow the propagation of microwave energy by means of electric transmission lines from electromagnetic transverse modes to ceramic materials. with high dielectric losses in the microwave region.
- This heat transduction is carried out in an adapted way in regions of high efficiency.
- These Low power heating cells are integrated in a unit heater that has autonomous operation and is characterized by generating heat in a non-reciprocal manner, that is, the heating time is clearly shorter than the heat release.
- the unit heater assembly forms a heating system in which they are fed sequentially with microwave energy between the unit heaters.
- the heating system thus constituted employs a line of low electrical power that allows considerably reducing the power supply requirements related to conventional high power heating systems.
- heating cell means a minimum structural unit of heat generation comprising an electric transmission line of electromagnetic transverse modes and a ceramic material with high dielectric losses.
- microstrip based heating cell means a heating cell based on microwave signal transmission that has a conduction strip separated from the mass strip by a dielectric substrate layer; said microstrip based heating cell and corresponds to an electric transmission line of electromagnetic transverse modes formed by a flat conductor placed on a thin substrate which in turn rests on a plane of mass capable of radiating electromagnetic waves to the high loss ceramic material that is interposes, thus transferring energy to it in an adapted and resonant way.
- stripline heating cell means a heating cell based on the type of transmission line for TEM (Electro-Magnetic Transverse) modes called stripline and corresponds to an electric transmission line of electromagnetic transverse modes formed by an embedded conductor in a high-loss ceramic material that absorbs the electromagnetic energy that propagates through said transmission line as it progresses.
- unit heater means the heating device that integrates several heating cells of any of the classes described above and which is the minimum autonomous functional unit.
- heating system means the set of unit heaters controlled by a computer system.
- the term "power divider” means a device that distributes the power it receives at its input between n outputs, usually equally.
- the power dividers are used in radiofrequency and microwaves, optical communications, etc., to send to several devices the power received by a single door, keeping the impedances adapted to have a low level of reflected power.
- microwave susceptor means a material that has the capacity to absorb electromagnetic radiation in the microwave band and convert it into heat that is generally re-emitted in the form of infrared radiation.
- high loss ceramic material means an inorganic, non-metallic and shaped material that has the capacity to absorb electromagnetic radiation and convert it into heat that is generally re-emitted in the form of infrared radiation.
- a first aspect of the present invention relates to a heating cell comprising an electric transmission line of single mode transverse electromagnetic modes, a power divider of single mode transverse electromagnetic modes and an electric charge in the form of high loss ceramic material that is coupled to said electric transmission line and characterized by presenting absorption of electromagnetic waves in the microwave frequency.
- the heating cells of the heating system are characterized by transforming electromagnetic radiation at the microwave frequency into thermal energy by heat generation.
- the electric transmission line of single mode transverse electromagnetic modes can be chosen from:
- microstrip defined as a printed circuit board comprising a conductive metal sheet separated from a metal mass sheet by a dielectric sheet. This transmission line is terminated in a ground plane microstrip antenna designed to radiate energy directly to the high loss ceramic material in order to transfer the energy carrying the line.
- - stripline defined as a metallic central conductor between two mass planes equidistant to it.
- the space between the ground planes and the conductor is filled with high loss ceramic material, so that the propagation of energy through the transmission line is transferred directly to said high loss ceramic material.
- the microstrip heating cell is characterized by presenting an electric transmission in single mode and resonant electromagnetic modes, based on the radiation of a microstrip antenna on a thick layer of microwave susceptor material or electric charge .
- the microwave susceptor material is placed in the reactive near-field zone of the antenna, which extends from the source of the excitation to a distance of approximately ⁇ / (2 ⁇ ) where ⁇ is the wavelength of microwave radiation and ⁇ is the constant pi with a value of 3.1416.
- the microstrip heating cell includes in the same metal structure, for example aluminum, a microstrip plane groove antenna supported on a dielectric substrate plate, fed by a transmission line and connected to an N-type input connector.
- the heating cell comprises a reflective metal structure at its base which directs the radiation towards the load in the form of high loss ceramic material.
- the microstrip cell is shielded with electrical conductors on all its side walls and also on the free surface of the ceramic material with high losses to heat.
- any material placed in the near field of an antenna is susceptible to mismatch because the electromagnetic field radiated to this region, if reflected in some way, induces currents in the antenna with a determined phase relationship with the original excitation.
- This effect leads to a storage of energy in the free electrons of the antenna during a certain part of the oscillation cycle, followed by the consequent release of the antenna and creating the reactive effect that gives name to this region.
- the dissipated power can be calculated using the following expression:
- Pd w / 2 JV (3 ⁇ 4 ⁇ "
- P d is the power dissipated in the material
- ⁇ the angular frequency of the excitation
- ⁇ 0 the dielectric permittivity of the vacuum
- ⁇ the complex component of the relative permittivity of the material
- ⁇ 0 the magnetic permeability of the vacuum
- ⁇ the complex component of the relative permeability of the material
- the dissipated power can be determined by the following relationship.
- ⁇ is the loss coefficient or the real part of the complex propagation constant ⁇ , which includes the dependence of the frequency of the excitation f and on the loss factor of the material struck; h is the thickness of the material sample; ⁇ is the reflection factor of the antenna; and ⁇ ⁇ is the radiation efficiency of the antenna.
- the radiation efficiency and the reflection factor can be easily optimized by the design of the antenna, therefore having no effect on efficiency.
- the efficiency of energy absorption depends on the relationship between the depth of penetration (1 / a) and the thickness of the sample, in which the frequency of excitation is of key importance. The dissipated power will then depend on the frequency and the loss factor.
- the electric charge in the form of a high loss ceramic material is coupled to the electric transmission line and is characterized by electromagnetic wave absorption at the microwave frequency.
- the absorption of microwaves in the ceramic material occurs due to the existence of dielectric losses in the same as, for example, a sintered ceramic of SiC or by the presence of susceptor particles such as, for example, SiC particles embedded in a matrix ceramics.
- the microwave radiation absorbing elements transform said microwave radiation into heat that will be transferred to the rest of the ceramic matrix by conduction and will be released into the environment by radiation with the thermal inertia corresponding to a ceramic material. Consequently, this new material behaves in a non-reciprocal manner as far as the heating time is concerned. And as will be seen later, the heating time is faster than the cooling time resulting in an advantage to obtain high efficiency heat generators.
- the high loss ceramic material is characterized by a microwave frequency loss factor of at least 0.10.
- the efficiency of the heating cell of the present invention depends only on the adaptation of the microstrip antenna and its radiation efficiency. In order to maximize radiation efficiencies and since near-field calculations in a material medium with losses can be very complex, a reasonable solution can be obtained by electromagnetic simulation.
- a high efficiency value is a clear advantage for the state of the art by enabling the transformation of electrical energy into heat with energy losses significantly lower than other systems available in the state of the art of heating systems.
- the high-density ceramic material of dense SiC of 50 grams of mass is characterized by increasing its temperature by 150 ° C when it is subjected to microwave radiation of 2.45 GHz for 30 seconds inside a conventional microwave oven of 1000 W. of power supplied per unit of mass to produce a ⁇ -50 ° C required to act as a heater the sample consumes 55.6 kWh.Kg "1.
- the time required to decrease its temperature from the maximum temperature reached in 1/3 is 300 seconds
- the cooling rate in the temperature range of interest that is, from 90 to 70 ° C to maintain the ⁇ > 50 ° C required to heat is 0.08 ° Cs "1 .
- the heating rates of the ceramic plate register values between 4.85 ° C / s and 6 ° C / s, while the cooling rates of said ceramic plate are lower by more than an order of magnitude with values below 0.267 ° C / s.
- the heating rates generated by microwave absorption and heat radiation cooling are different.
- the high loss ceramic material acts as a reciprocal heat generator since it absorbs microwave energy generating heat in a time significantly less than that required to transfer said heat to the medium.
- the difference between heating and cooling rates can be optimized by the composition of the high loss ceramic material. According to the determined temperature increase, the power transfer is not total due to the uneven distribution of the fields in the high loss ceramic material and in the microwave due to the small size of the ceramic compared to the size of the multimodal cavity.
- the high loss ceramic material used in the microstrip heating cell is a composite material comprising at least 50% by weight of SiC particles and the rest is constituted by porosity and a compound silica-aluminous to keep the silicon carbide grains consolidated.
- the method of obtaining followed is to mix 50% by weight of SiC particles with 32.5% by weight of kaolinitic clay and 17.5% by weight of a talc mineral.
- the mixture is homogenized following known processes in the field of ceramic materials processing and the mixture is optimized to achieve a paste suitable for dry pressing, for example by wetting. Pressing is carried out by uniaxial pressure at a pressure of 250 kg / cm 2 and the pieces obtained are dried for 24 hours in an oven at 80 ° C.
- the high loss ceramic material used in the microstrip heating cell consists of a porcelain ceramic plate of a composite material of the previously described composition of 8x3 cm 2 of surface and a thickness of 0.7 cm , which comprises 50% by weight of SiC particles with an average particle size greater than 3 ⁇ and with a density of 85% with respect to theoretical density, relative permittivity and high loss factor ( ⁇ ' ⁇ 13, tan5 ⁇ 0.16 ).
- the high loss ceramic material used in the microstrip heating cell consists of a porcelain ceramic plate of a composite material of the previously described composition of 14.8 x 14.8 cm 2 of surface and a thickness 1.1 cm thick.
- the high-loss porcelain ceramic material of the above-described composition of 1300 grams of mass is characterized by increasing its temperature by 120 ° C when subjected to microwave radiation of 2.45 GHz for 90 seconds in the inside a conventional microwave oven of 1600 W.
- the sample consumes 3.9 kWh.Kg "1.
- the time required to decrease its temperature from The maximum temperature reached in 1/3 is 1260 seconds
- the cooling rate in the range of temperatures of interest, that is, from 90 to 70 ° C to maintain the AT> 50 ° C required to heat is 0.025 ° Cs "1 .
- the high loss ceramic material formed as a composite material comprising SiC particles has an advantage for microwave energy absorption by requiring power consumption per unit mass significantly lower than those used for a dense SiC plate and the speed of cooling is also slower. Additionally, the composite materials are conformable according to procedures known in the ceramic industry thus providing high availability of shapes and dimensions within the limits of the technique that are advantageous to provide elements for the high loss ceramic material.
- the microstrip heating cell was modified by incorporating a conductive plane in the free face of the high loss ceramic material so that the surpluses of power absorption are not lost in free space by being reflected back to the sample and the antenna, and finally being absorbed after various reflections between the electrical walls of the cell.
- the conductive plane is constituted for example by a metallic material such as aluminum, brass, stainless steel or by a coating that has a metallic conduit such as a silver paint coating. In this way, the percentage of energy absorption of the material thickness is independent.
- a conductive plane is incorporated, which also has the advantage of improving the safety of the device by preventing microwave radiation from leaving the heating unit.
- Another advantage of the present invention by incorporating an electric charge in the form of a high loss ceramic material is that non-uniformity of the electric field is avoided given its small size with respect to the source and thermal conductivity of said ceramic charge.
- the conductive plane on the free face of the high loss ceramic material of the heating cell incorporates metal channels to increase its surface and more efficiently transfer heat to air. The increase of the heat exchange surface in the conductive plane allows the upward flow of heated air and thus acting as a heat sink and radiator element.
- the metallic conductor plane with a high surface has an advantage in acting as a heat sink element.
- the stripline heating cell is characterized by presenting an electric transmission of high-loss and very wide-band single mode electromagnetic modes.
- the stripline cell comprises a conductor housed inside a ceramic material of high dielectric losses that acts as a microwave or electric load susceptor, thus forming a very high loss transmission line that is absorbent in a frequency band comprising the region of microwave frequencies, including the 2.45 GHz ISM band.
- the ceramic load used in the stripline cell is physically coupled to the electromagnetic energy transmission antenna to maximize energy absorption in the form of microwave radiation and its effective conversion into heat.
- This physical coupling is characteristic of the type of transmission line used in the present invention. Additionally, the dimensions and properties of the electric charge in the form of high loss ceramic material need to be adapted to the parameters of the electromagnetic energy transmission line.
- the heating cell where it is of the stripline type is characterized in that the central conductor is a metallic material whose resistance to the passage of electricity is very low.
- the best electrical conductors are metals, such as copper, gold, iron and aluminum, and their alloys, although there are other non-metallic materials that can also fulfill that function.
- the shape of the central conductor is chosen from the usual forms that are presented for metallic conductors such as circular section wires obtained by drawing techniques or rectangular section sheets obtained by rolling. The shape of the central conductor of the stripline is reproduced in negative inside the high loss ceramic material.
- the high-loss ceramic material used in the stripline heating cell is a ceramic material such as the one described previously that comprises 50% by weight of SiC particles and the rest is constituted by porosity and a silica-aluminous compound to keep the grains of consolidated silicon carbide.
- the ceramic material has a hole in its interior of sufficient dimensions to accommodate the central conductor. This hole is made prior to the sintering process of the material or is practiced on the sintered ceramic material by machining the ceramic pieces following methodologies known in the state of the art.
- the high loss ceramic material used in the stripline heating cell comprises two pieces of high loss ceramic material so that a hollow or negative of dimensions corresponding to the length of the conductor has been made on one of the respective faces central and half of its section. The two pieces are joined so that the stripline is crimped inside.
- the ceramic pieces can be joined using for example an adhesive.
- the use of ceramic adhesives that withstand high temperatures results in an advantage for the correct operation of the device.
- the use of pieces of ceramic material that reproduce the stripline in a negative way results in a clear advantage for the manufacture of stripline heating cells, since it allows efficient and economical production of pieces of suitable dimensions based on the wide flexibility of forms of ceramic processes .
- the shape of the central conductor and its thickness depends on the cross section of the stripline transmission line, being chosen according to it to obtain the desired propagation characteristics.
- the stripline heating cell becomes a transducer of electromagnetic radiation in heat with the ability to convert the power of the wave that propagates into heat by a minimum transmission line length.
- the stripline is short-circuited and has sufficient length to transduce all accepted power in a large bandwidth.
- the loss of power in a transmission line loaded with a short circuit can be determined by the following formula:
- Pioss being the power loss in the material filling the transmission line, the value Vd wave incident on said line voltage,% and the characteristic impedance of the line, the coefficient defined above and loss length stripline transmission line.
- the heating cell of the first aspect of the present invention based heating system may have a power divider of single mode transverse electromagnetic modes comprising n outputs, n being a positive natural number greater than 1.
- a non-standardized power splitter distributes the power in at least two transmission lines equally maintaining the impedances adapted to have a low level of reflected power.
- a particular case is the use of Wilkinson type power dividers that provide an even number of output elements.
- the use of power dividers has the advantage of uniformly distributing the power in the different transmission lines of electromagnetic modes.
- the incorporation of a number of at least two microstrip heating cells or stripline heating cells allows the use of a magnetron-type microwave radiation source with powers of up to 1000 W.
- Microwave radiation is conducted through a coaxial guide, and the coupling between the microwave radiation generated by the magnetron and said distribution network is carried out by means of the use of a coupler, such as a guide-coaxial transition WR340.
- the use of power dividers allows it to be divided so that, for example, from a magnetron that produces 800 W of radiation Microwave and through 7 power dividers can be fed 8 heating units that can dissipate a maximum power in each of them of 100 W.
- the use of 15 Dividers also provide a microwave power supply for the supply of 16 heating units that can dissipate a maximum power, each of them, of 50 W.
- the high loss ceramic material used It corresponds to a single piece whose surface is sufficient to house the microstrip antennas in a number such that the power supplied by the magnetron can be dissipated.
- This aspect results in a clear advantage for the generation of heating units for heating systems since it allows the use of ceramic surfaces of a size larger than that described in the preferred embodiments of the first aspect of the present invention.
- another advantage is that of heating in a homogeneous and efficient way a ceramic piece absorbing electromagnetic radiation in the microwave range of a surface of dimensions greater than that required for a unit cell.
- the high loss ceramic material used corresponds to two pieces in whose surface a gap or negative of dimensions corresponding to the length of the central conductor and half of its section has been made in such a way. that the stripline lines are housed in a number such that the power supplied by the magnetron can be dissipated.
- the high loss ceramic material used corresponds to a piece in which the stripline lines are housed in a number such that the power supplied by the magnetron can be dissipated.
- a heating system comprising heaters which in turn comprise the heating cells of the first aspect of the invention comprising an electric transmission line of transverse electromagnetic modes and a ceramic load coupled with dielectric losses.
- Each unit heating system comprises a control system that allows synchronizing the electricity supply time so that only one of the heating systems is consuming electricity unitary and limited to the maximum power of the magnetron, for example 800 W.
- Each unit heating system uses a time to heat up by absorption of microwave energy which is a time significantly less than that required to dissipate the heat energy stored by said load. In this way, heating times of the heating cells sufficient to have a set of them at the temperature required to be used as a heating system can be available.
- this embodiment results in a clear advantage over the state of the art in heating systems because it allows to have a high efficiency heating system limiting the power supplied by the electrical installation.
- the synchronization system between the different heating cells is carried out, for example, by means of a Wi-Fi or wired wireless system such as PLC, resulting in a clear advantage, as it allows different unit heating systems to be coupled without the need for them to be physically connected to each other.
- the heating system also includes a temperature data collection system, a programming system and an algorithm for efficiently distributing the heating times between the different heating unit systems so that the electric energy is used efficiently .
- the heating system thus designed has the advantage of being flexible in its configuration.
- the heating system comprising heating cells comprising an electric transmission line of transverse electromagnetic modes and a ceramic load coupled with dielectric losses is used to provide thermal comfort in the form of space heating. such as: domestic rooms, offices, commercial premises, industrial premises and in general inhabited spaces.
- the thermal heaters may have an operating control to be integrated into a network of radiators that form a heating system with a marked improvement in the energy efficiency over a network of radiators of any other technology.
- a fourth aspect of the invention relates to the use of the heating system using microwave radiation of the third aspect of the invention for thermal comfort in the form of heating for spaces such as domestic rooms, offices, commercial premises, industrial premises and in general inhabited spaces.
- Figure 1 It shows a scheme of the microstrip heating cell comprising an N-type input connector, a metal transmission line, a slot antenna in a microstrip mass plane, a microwave-insulating thermal insulating material, a ceramic material of high dielectric losses, a metal structure that completely encloses the cell whose base forms the reflector plane, and the dielectric substrate plate that supports the microstrip line).
- Figure 2 It shows a graph called Smith's chart that represents the reflection factor of the stripline heating cell in both module and phase depending on the electrical length of the cell. From the figure it follows that both module and phase are decreasing with the electrical length, considering the responses contained within the dashed line are sufficient.
- Figure 3 Shows a graph representing the Su parameter as the ratio between the reflected microwave signal with respect to the input signal or the efficiency parameter as a function of the microwave frequency for a microstrip heating cell when designed for space radiation free, loaded with a microwave susceptor and finally redesigned to be adapted using a high loss ceramic material.
- Figure 4a-4c It shows graphs of heating of high loss ceramic materials in a multimodal microwave oven depending on the time of exposure to microwave radiation.
- Figure 5. shows a scheme of the stripline heating cell comprising mass planes, high loss ceramic material and a transmission line formed by a central conductor.
- Figure 6 Shows a graph representing the Su parameter as the ratio between the reflected microwave signal with respect to the input signal or the efficiency parameter as a function of the microwave frequency for a stripline heating cell for different lengths of the line transmission.
- Figure 7 It shows a scheme of the stripline heating cell comprising transmission lines in a single piece comprising mass plane, high loss ceramic material and transmission lines formed by central conductors.
- Figure 8 It shows a scheme of a cluster of microstrip heating cells for uniform heating over a larger piece of high-loss ceramic material, using microstrip lines in Wilkinson's splitter configuration, and groove antennas in the mass plane.
- Figure 9 Shows a scheme of the components that make up a unit heater, namely the heating cells, Wilkilson power dividers, non-standardized power divider, coaxial guide transition, magnetron and relevant connections using coaxial cable.
- Figure 10 It shows a diagram of the components that make up a heating system, namely different unit heaters, a control unit and a data connection for the control that could be PLC or PLC.
- Figure 11 It shows a table that relates the diameter of the central conductor of the stripline cell with the characteristic impedance of the line seen from the excitation plane.
- said heating cell comprises in a metal structure (6) provided with a base at least one input connector (1), a transmission line electrical (2) of single-mode transverse electromagnetic modes acting as an antenna (3) and which is made of at least metal and / or ceramic material, a ceramic material with high dielectric losses (5.9) to which the antenna is fixed ( 3), and a reflector plane defined by the base of the metal structure (6) and located a of the electric transmission line (2), ⁇ being the wavelength of the radiation incident in the cell, directing the said reflector plane microwave radiation to the ceramic material with high dielectric losses (5.9).
- the heating cell can be equipped with a single mode transverse electromagnetic mode splitter.
- the heating cell from microwave radiation can have the electric transmission line (2) defined by a conductive metal sheet separated from a metal mass sheet by a dielectric sheet and fixed a groove of the ceramic material of high dielectric losses (5) and supported by a dielectric substrate plate (7).
- the heating cell additionally comprises a microwave-insulating thermal insulating material (4), located between the high dielectric loss ceramic material (5,9) and the antenna (3) when the electric transmission line (2) is a conductive metal sheet separated from a metal mass sheet by a dielectric sheet.
- the heating cell from microwave radiation can have the electric transmission line (2) defined by a metallic central conductor (10) which is located inside the ceramic material of high dielectric losses (9) an area comprised in an axis of symmetry of the ceramic material of high dielectric losses (9) between two planes of mass equidistant from the metallic central conductor (10).
- the metallic central conductor (10) is located in an area comprised in an axis of vertical symmetry of the ceramic material of high dielectric losses (9) which preferably divides the ceramic material of two equal parts high dielectric losses (9).
- the central conductor (10) is preferably located in a hollow of the ceramic material of high dielectric losses (9), which more preferably has dimensions respectively corresponding to the length of the central conductor, which is preferably greater than 10 cm and half of the central conductor section, the central conductor (10) being able to present, in any of the aforementioned examples, a circular, square or rectangular cross section.
- Figure 4a shows a graph referring to the heating-cooling of a ceramic SiC plate of 5x5 cm 2 of surface and a thickness 0.7 cm, with a density of 99% with respect to the theoretical density; heating is carried out in a 1000 W microwave oven;
- Figure 4b shows a graph referring to the heating-cooling of the high loss ceramic material (5.9) with 50% by weight of SiC particles and the rest is constituted by porosity and a silica-aluminous compound to maintain the grains of consolidated silicon carbide;
- the plate of 14.8x14.8 cm 2 of surface and a thickness of 1.1 cm thick has 1300 grams of mass; the heating is done in a 1600 W microwave oven; and
- Figure 4c shows a graph referring to the heating-cooling cycle curves consecutive.
- ceramic material with high dielectric losses has a conductive plane, preferably of a material comprising aluminum, on at least one of its faces, preferably on a face where the line is not coupled. ..
- Example 1 Heating cell with the groove antenna in the ground plane (3) microstrip using said ceramic material of high dielectric losses (5) of Figure 1 comprising SiC, preferably more than 50% by weight of SiC.
- the antenna (3) is of the groove type in the mass plane, that is to say microstrip type fed by the transmission line (2) and connected to the input connector (1) type N.
- the groove antenna (3) is maintained in the ground plane, fixed by adhesive to an alumina fiber sheet that acts as a microwave-insulated thermal insulating material (4) at temperatures working of the heating cell and then the high loss ceramic material (5) which may preferably be a 100% SiC plate.
- the power that can be supported by the groove antenna (3) in the ground plane fed by a microstrip line or a stripline transmission line can reach 300 W at this frequency.
- the power must be limited to 100 W on a surface of 5x5 cm 2 assuming it is fully adapted (VSWR ⁇ 20 dB).
- m ⁇ gr 3.153 / diligent matter, 3 ⁇ 5 ⁇ 5 ⁇ 0.6 cnr * s?
- nt (jr) 3.153 ⁇ cm3 ⁇ 5 ⁇ 5 ⁇ 0.6 cm a 3 ⁇ 4 Sojr
- Fig. 3 shows the measured responses of the antenna when it is designed for free space radiation, then loaded with a microwave susceptor and finally redesigned and reprinted for adaptation in the presence of high loss ceramic material (5).
- Example 2 Stripline heating cell using high loss ceramic material (9) of Figure 5, high loss ceramic material (9) of porcelain with 50% by weight of SiC.
- a stripline heating cell comprising the said central conductor of a metallic material (10), preferably of 1 mm diameter copper that was machined from a copper sheet.
- the shape of the metallic central conductor (10) of the stripline line was reproduced negatively inside the high loss ceramic material (9) consisting of a porcelain type compound comprising 50% by weight of SiC particles and the rest is constituted porosity and a silica-aluminous compound to keep the carbide grains of consolidated silicon.
- Fig. 7 shows the reflection factor versus frequency in this figure a metallic central conductor (10) can be observed.
- the stripline heating cell behaved like a broadband device.
- the energy transfer had an efficiency greater than 99%, since all the energy absorbed by the device is converted into heat without any leaks or reflections.
- the heater can be equipped with a communication unit and a control unit. If required according to installation, a heating system using microwave radiation can be defined by interconnecting a series of microwave radiation heaters as described in the previous paragraph. For this optimal operation, a control algorithm as well as an intelligent control system could be implemented.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
The present invention details a solution to the problem of transforming, with high efficiency, microwave energy into heat by means of heating units in the form of low-power heating cells that allow microwave energy to be propagated along transverse electromagnetic mode transmission lines to ceramic materials having high dielectric loss in the microwave region. Said low-power heating cells are integrated into a unit heater. A group of unit heaters forms a microwave-energy heating system that uses a low-electric-power line.
Description
CÉLULA CALEFACTORA, CALEFACTOR QUE HACE USO DE LA MISMA, SISTEMA DE CALEFACCIÓN Y USO DEL MISMO HEATING CELL, HEATER THAT MAKES SAME USE, HEATING SYSTEM AND USE OF IT
D E S C R I P C I Ó N D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención pertenece al campo de los sistemas de generación de calor, en particular a un sistema de calefacción que emplea como elementos emisores de calor piezas de cerámica que se calientan mediante radiación de microondas distribuida por tecnología planar. The present invention pertains to the field of heat generation systems, in particular to a heating system that uses ceramic pieces as heat emitting elements that are heated by microwave radiation distributed by planar technology.
Más concretamente, la presente invención va dirigida al elemento calefactor que emplea composiciones cerámicas adaptadas como transductores que contienen susceptores de radiación microondas capaces de absorber la radiación microondas y transformarla en calor. More specifically, the present invention is directed to the heating element that employs ceramic compositions adapted as transducers containing microwave radiation susceptors capable of absorbing microwave radiation and transforming it into heat.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La radiación térmica o radiación calorífica es la radiación emitida por un cuerpo debido a su temperatura. Un radiador es un tipo de emisor de calor cuya función es intercambiar calor del sistema de calefacción para cederlo al ambiente, y generalmente se trata de un dispositivo sin partes móviles ni producción de calor. Los radiadores son elementos discretos que forman parte de las instalaciones centralizadas de calefacción. En su origen los primeros sistemas de calefacción empleaban vapor y la alta temperatura superficial de los radiadores producían el intercambio de calor mediante radiación. La sustitución en los radiadores de vapor por agua redujo las temperaturas de funcionamiento y, dada la escasa superficie que presentan los radiadores, hace que la mayor parte del calor se intercambie por convección. La emisión o disipación de calor de un radiador depende de la diferencia de temperaturas entre su superficie y el ambiente que lo rodea y de la cantidad de superficie en contacto con ese ambiente. A mayor superficie de intercambio y mayor diferencia de temperatura, mayor es el intercambio. En las instalaciones de climatización y especialmente en las de calefacción, un emisor es un dispositivo que emite calor, cediéndolo al ambiente
habitado. Thermal radiation or heat radiation is the radiation emitted by a body due to its temperature. A radiator is a type of heat emitter whose function is to exchange heat from the heating system to yield it to the environment, and generally it is a device without moving parts or heat production. Radiators are discrete elements that are part of centralized heating installations. Originally, the first heating systems used steam and the high surface temperature of the radiators produced heat exchange by radiation. The replacement of water vapor radiators reduced operating temperatures and, given the small surface area of the radiators, causes most of the heat to be exchanged by convection. The heat emission or dissipation of a radiator depends on the difference in temperatures between its surface and the surrounding environment and the amount of surface in contact with that environment. The greater the exchange surface and the greater the temperature difference, the greater the exchange. In air conditioning installations and especially in heating installations, an emitter is a device that emits heat, giving it to the environment inhabited
Un calefactor incorpora elementos de generación de calor y un radiador térmico o emisor térmico. Un ejemplo consistiría en un aparato que se calienta por una resistencia eléctrica incorporada en el interior del emisor térmico. En este ejemplo se emplea el término de radiador eléctrico, si bien la diferencia entre un radiador y un calefactor radica en que el radiador no produce energía, se limita a ser un disipador del calor que llega al radiador generalmente por una red de tuberías por las que circula un fluido portador que se ha calentado en un dispositivo productor de calor situado en otro lugar. A heater incorporates heat generating elements and a thermal radiator or thermal emitter. An example would be an apparatus that is heated by an electrical resistor incorporated inside the thermal emitter. In this example the term electric radiator is used, although the difference between a radiator and a heater is that the radiator does not produce energy, it is limited to being a heat sink that reaches the radiator usually through a network of pipes through a carrier fluid circulating that has been heated in a heat producing device located elsewhere.
Un calefactor eléctrico generalmente es un elemento unitario que emplea una resistencia eléctrica para producir calor. Las resistencias eléctricas presentan un consumo elevado de energía que requiere una potencia eléctrica importante. Típicamente un elemento unitario consume entorno a 2 kW/h. Según la norma ISO 7730 se define confort térmico como "Esa condición de la mente en la que se expresa la satisfacción con el ambiente térmico". Este parámetro no es sencillo de calcular ya que se tienen en cuenta para ello numerosos factores desde ubicación, orientación y ventilación de la vivienda hasta actividades realizadas en ella e indumentaria de sus habitantes. Para unas condiciones habituales de uso, se estima que la temperatura óptima de confort es 22 °C. An electric heater is generally a unit element that uses an electrical resistor to produce heat. The electrical resistors have a high energy consumption that requires an important electrical power. Typically a unit element consumes around 2 kW / h. According to ISO 7730, thermal comfort is defined as "That condition of the mind in which satisfaction with the thermal environment is expressed". This parameter is not easy to calculate since many factors are taken into account from location, orientation and ventilation of the house to activities carried out in it and clothing of its inhabitants. For usual conditions of use, it is estimated that the optimum comfort temperature is 22 ° C.
Un sistema de calefacción requiere de un conjunto de elementos calefactores que implica una potencia eléctrica suministrada importante. La eficiencia de la radiación depende fundamentalmente de la inercia térmica del material intercambiador de calor. Normalmente éste material es metálico, lo que hace que sea necesaria una alimentación eléctrica continua para mantener su temperatura elevada, ya que los materiales metálicos poseen un bajísimo calor específico. Los calefactores portátiles que incorporan un elemento cerámico presentan una mayor inercia térmica. Un calefactor con elemento cerámico necesitará entre 80-100 W por cada m2, dependiendo de la calidad media de aislamiento. Una vivienda tipo de 80 m2 requeriría al menos entre 6 a 8 kW/h de potencia eléctrica mínima contratada para satisfacer la demanda del sistema calefacción. A heating system requires a set of heating elements that implies an important electric power supplied. The radiation efficiency depends fundamentally on the thermal inertia of the heat exchanger material. Normally this material is metallic, which makes it necessary a continuous power supply to maintain its high temperature, since the metallic materials have a very low specific heat. Portable heaters that incorporate a ceramic element have greater thermal inertia. A heater with ceramic element will need between 80-100 W per m 2 , depending on the average insulation quality. A type house of 80 m 2 would require at least 6 to 8 kW / h of minimum electrical power contracted to meet the demand of the heating system.
Las ventajas de los calefactores eléctricos están relacionadas con la ausencia de emisiones de gases o residuos en el lugar de producción de calor, esto es en el calefactor.
Con el objeto de aumentar la eficiencia de los sistemas de calefacción se incorporan acumuladores de calor para su liberación de forma sostenida y prolongada durante un tiempo determinado. Uno de los elementos empleados como acumuladores de calor son los bloques cerámicos con alta inercia térmica debido a su baja conductividad térmica y alta densidad. Una aplicación de los calefactores con acumulador térmico está relacionada con acumular calor en horas de exceso de producción de energía eléctrica y liberar este sin consumo de energía eléctrica en horas de mayor demanda. Los sistemas calefactores con acumuladores cerámicos presentan las limitaciones relacionadas con el empleo de resistencias eléctricas y su baja eficiencia, ya que por el efecto de la misma inercia térmica que permite que éstos materiales cerámicos liberen su calor muy lentamente, una de las limitaciones de estado de la técnica está relacionada con que los materiales cerámicos requieren de un tiempo muy prolongado para su calentamiento cuando se utilizan resistencias eléctricas. Por tanto el estado de la técnica requiere nuevas soluciones que solventen los problemas mencionados. Entre las soluciones posibles se ha considerado el empleo de la radicación microondas como sistema de generación de calor. The advantages of electric heaters are related to the absence of emissions of gases or waste at the place of heat production, that is in the heater. In order to increase the efficiency of heating systems, heat accumulators are incorporated for their sustained and prolonged release for a certain time. One of the elements used as heat accumulators are ceramic blocks with high thermal inertia due to their low thermal conductivity and high density. An application of heaters with thermal accumulator is related to accumulating heat in hours of excess production of electric energy and releasing this without consumption of electric energy in hours of increased demand. Heating systems with ceramic accumulators have limitations related to the use of electrical resistors and their low efficiency, since due to the effect of the same thermal inertia that allows these ceramic materials to release their heat very slowly, one of the limitations of the state of The technique is related to the fact that ceramic materials require a very long time for heating when electrical resistors are used. Therefore, the state of the art requires new solutions that solve the aforementioned problems. Among the possible solutions, the use of microwave radiation as a heat generation system has been considered.
Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3x 10"9 s a 3x 10"12 s y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro. The electromagnetic waves defined in a given frequency range are called microwaves; generally between 300 MHz and 300 GHz, which implies an oscillation period of 3x 10 "9 s to 3x 10 " 12 s and a wavelength in the range of 1 m to 1 mm. Other definitions, for example those of the IEC 60050 and IEEE 100 standards, place their frequency range between 1 GHz and 300 GHz, that is, wavelengths between 30 centimeters and 1 millimeters.
Al igual que en el caso de otros tipos de ondas electromagnéticas, las microondas pueden propagarse a través de medios dieléctricos y ser transmitidas o reflejadas en las interfaces formadas por las discontinuidades entre distintos medios. Desde mediados del siglo XX, han aparecido algunas aplicaciones en las que se ha utilizado la energía de microondas como medio para transferir energía a materiales aprovechando su interacción con los mismos. As in the case of other types of electromagnetic waves, microwaves can propagate through dielectric means and be transmitted or reflected in the interfaces formed by discontinuities between different media. Since the mid-twentieth century, some applications have appeared in which microwave energy has been used as a means to transfer energy to materials, taking advantage of their interaction with them.
Una de las aplicaciones más conocidas de las microondas es el horno de microondas, que emplea un magnetrón para producir ondas a una frecuencia de aproximadamente
2.45 GHz. Estas ondas hacen vibrar o rotar las moléculas de agua generando de esta forma calor. Debido a que la mayor parte de los alimentos contienen un importante porcentaje de agua, pueden ser fácilmente cocinados de esta manera. El agua, grasas y otras sustancias presentes en los alimentos absorben la energía de las microondas en un proceso llamado calentamiento dieléctrico. Muchas moléculas son dipolos eléctricos, es decir, tienen una carga positiva parcial en un extremo y una carga negativa parcial en el otro, y, por tanto, giran en su intento de alinearse con el campo eléctrico alterno de las microondas. Al rotar, las moléculas chocan con otras y las ponen en movimiento, dispersando así la energía. Esta energía, cuando se dispersa como vibración molecular en sólidos y líquidos, se transforma en calor. One of the best known applications of microwaves is the microwave oven, which uses a magnetron to produce waves at a frequency of approximately 2.45 GHz. These waves make the water molecules vibrate or rotate generating heat. Because most foods contain a significant percentage of water, they can be easily cooked in this way. Water, fats and other substances present in food absorb microwave energy in a process called dielectric heating. Many molecules are electric dipoles, that is, they have a partial positive charge at one end and a partial negative charge at the other, and therefore, rotate in their attempt to align with the alternating electric field of microwaves. When rotating, the molecules collide with others and set them in motion, thus dispersing the energy. This energy, when dispersed as molecular vibration in solids and liquids, is transformed into heat.
Los aplicadores de microondas son habitualmente cavidades multimodales, y la interacción entre los diversos modos electromagnéticos que en ellas se propagan y sus múltiples reflexiones fomentan una distribución de campo muy irregular que da lugar a calentamientos poco homogéneos, con aparición de puntos fríos y calientes. Además, estas técnicas basadas en cavidades multimodales son usualmente técnicas en desadaptación, aspecto que implica que una parte sustancial de la energía entregada a la carga es reflejada de nuevo hacia la fuente, reduciendo así la eficiencia de éstos métodos. Microwave applicators are usually multimodal cavities, and the interaction between the various electromagnetic modes that propagate in them and their multiple reflections encourage a very irregular field distribution that results in uneven heating, with the appearance of hot and cold spots. In addition, these techniques based on multimodal cavities are usually maladaptive techniques, an aspect that implies that a substantial part of the energy delivered to the load is reflected back to the source, thus reducing the efficiency of these methods.
La energía de microondas no puede calentar todos los materiales: sólo los que, por su composición, son capaces de absorber la energía electromagnética y generar calor como el agua. Otros materiales, como los metales, reflejan las microondas de igual modo que un espejo refleja la luz visible. Finalmente, hay materiales dieléctricos como las cerámicas con composiciones como por ejemplo la alúmina que no es capaz de absorber la energía de microondas, dejándola pasar de la misma forma que la luz atraviesa un cristal transparente. Microwave energy cannot heat all materials: only those that, by their composition, are capable of absorbing electromagnetic energy and generating heat like water. Other materials, such as metals, reflect microwaves in the same way that a mirror reflects visible light. Finally, there are dielectric materials such as ceramics with compositions such as alumina that is not able to absorb microwave energy, letting it pass in the same way that light passes through a transparent crystal.
Asimismo, existe un conjunto de materiales llamados "susceptores" por su gran capacidad para absorber energía electromagnética y convertirla en calor ver M. Gupta, Microwaves and metáis. John Wiley & Sons, Singapore 2007. Suele tratarse de metales conductivos como el grafito aunque alternativamente pueden ser utilizados acero inoxidable, molibdeno, carburo de silicio, aluminio u otros materiales conductivos, que se encuentran embebidos en una matriz dieléctrica.
En el estado de la técnica se describen ampliamente diferentes soluciones para calentar un material absorbedor de radiación microondas. En algunos casos se emplean radiadores con líquidos como por ejemplo en el documento DE19949013 o elementos cerámicos como en el documento R0117643 o en el documento US20060639602 para absorber preferentemente la radiación microondas y almacenar dicha energía en forma de calor con el objeto de mantener la temperatura de un material de forma más prolongada. El problema no resuelto en el estado de la técnica radica en que la transmisión de microondas a un medio dieléctrico incluso si este es un susceptor potencial no es tan inmediata. Un problema en el estado de la técnica consiste en que en muchos casos la interfaz entre el aire y el susceptor de microondas es prácticamente una Pared Magnética, dado que dichos materiales presentan normalmente una muy alta constante dieléctrica (por ejemplo el agua - ε =76, tejido hepático - ε =44 o carburo de silicio (SiC) - ε =10) mientras que el aire presenta ε =1. Las soluciones empleadas para transformar energía microondas en calor están limitadas por la eficiencia del conjunto formado por el emisor de microondas y el medio dieléctrico que absorbe las microondas. El problema consiste en que la falta de sistemas adaptados reduce la eficacia generando además problemas de descargas eléctricas en un primer nivel que además son fuentes de radiación microondas no controlada. En este campo técnico también se conoce el documento EP2090869, donde se detalla un elemento de calefacción mediante microondas que hace uso de una línea de transmisión eléctrica en la banda de las microondas, línea de transmisión que se encuentra dispuesta sobre un material dieléctrico. There is also a set of materials called "susceptors" because of its great capacity to absorb electromagnetic energy and convert it into heat see M. Gupta, Microwaves and metais. John Wiley & Sons, Singapore 2007. These are usually conductive metals such as graphite but alternatively stainless steel, molybdenum, silicon carbide, aluminum or other conductive materials can be used, which are embedded in a dielectric matrix. Different solutions for heating a microwave radiation absorbing material are widely described in the state of the art. In some cases, radiators with liquids are used, for example in document DE19949013 or ceramic elements such as in document R0117643 or in document US20060639602 to preferably absorb microwave radiation and store said energy in the form of heat in order to maintain the temperature of a more prolonged material. The problem not solved in the state of the art is that the transmission of microwaves to a dielectric medium even if this is a potential susceptor is not so immediate. A problem in the state of the art is that in many cases the interface between the air and the microwave susceptor is practically a Magnetic Wall, since these materials normally have a very high dielectric constant (for example water - ε = 76 , liver tissue - ε = 44 or silicon carbide (SiC) - ε = 10) while the air has ε = 1. The solutions used to transform microwave energy into heat are limited by the efficiency of the assembly formed by the microwave emitter and the dielectric medium that absorbs the microwaves. The problem is that the lack of adapted systems reduces efficiency, also generating problems of electric shocks at a first level that are also sources of uncontrolled microwave radiation. In this technical field, document EP2090869 is also known, which details a microwave heating element that makes use of an electric transmission line in the microwave band, a transmission line that is arranged on a dielectric material.
En el estado de la técnica existen además soluciones para homogeneizar la temperatura mediante el empleo de agitadores de modos y elementos móviles. Sin embargo, dichas soluciones requieren de métodos que son aparatosos, introducen elementos mecánicos y son en todo caso indeseables en un sistema de calefacción doméstico. In the state of the art there are also solutions to homogenize the temperature by using stirrers of movable modes and elements. However, such solutions require methods that are appalling, introduce mechanical elements and are in any case undesirable in a domestic heating system.
En esta invención se aborda una solución novedosa al problema de transferir con alta eficiencia la energía microondas en calor mediante unidades calefactoras en forma de células calefactoras de baja potencia que permiten propagar la energía de microondas mediante líneas de transmisión eléctrica de modos transversales electromagnéticos a materiales cerámicos con altas pérdidas dieléctricas en la región de microondas. Esta transducción de calor se realiza de forma adaptada en regiones de alta eficiencia. Dichas
células calefactoras de baja potencia se integran en un calefactor unitario que presenta funcionamiento autónomo y está caracterizado por generar calor de forma no recíproca, esto es, el tiempo de calentamiento es netamente inferior al de liberación del calor. El conjunto de calefactores unitarios conforman un sistema de calefacción en el que se alimentan de forma secuencial con energía microondas entre los calefactores unitarios. El sistema de calefacción así constituido emplea una línea de baja potencia eléctrica que permite reducir considerablemente los requerimientos de suministro eléctrico relacionados con sistemas convencionales de calefacción de alta potencia. DESCRIPCIÓN DE LA INVENCIÓN This invention addresses a novel solution to the problem of transferring microwave energy in heat with high efficiency by means of heating units in the form of low-power heating cells that allow the propagation of microwave energy by means of electric transmission lines from electromagnetic transverse modes to ceramic materials. with high dielectric losses in the microwave region. This heat transduction is carried out in an adapted way in regions of high efficiency. These Low power heating cells are integrated in a unit heater that has autonomous operation and is characterized by generating heat in a non-reciprocal manner, that is, the heating time is clearly shorter than the heat release. The unit heater assembly forms a heating system in which they are fed sequentially with microwave energy between the unit heaters. The heating system thus constituted employs a line of low electrical power that allows considerably reducing the power supply requirements related to conventional high power heating systems. DESCRIPTION OF THE INVENTION
Para un mejor entendimiento de la invención se aporta primeramente un listado con las correspondientes definiciones de los términos usados a lo largo de este documento. · Por el término "célula calefactora" se entiende una unidad estructural mínima de generación de calor que comprende una línea de transmisión eléctrica de modos transversales electromagnéticos y un material cerámico de altas pérdidas dieléctricas. For a better understanding of the invention, a list is provided first with the corresponding definitions of the terms used throughout this document. · The term "heating cell" means a minimum structural unit of heat generation comprising an electric transmission line of electromagnetic transverse modes and a ceramic material with high dielectric losses.
• Por el término "célula calefactora basada microstrip" se entiende una célula calefactora basada en transmisión de señales de microondas que presenta una franja de conducción separada de la franja de masa por una capa de sustrato dieléctrico; dicha célula calefactora basada microstrip y corresponde a una línea de transmisión eléctrica de modos transversales electromagnéticos formada por un conductor plano colocado sobre un sustrato fino que a su vez descansa sobre un plano de masa capaz de radiar ondas electromagnéticas al material cerámico de altas pérdidas que se le interpone, transfiriendo así la energía al mismo de forma adaptada y resonante. • The term "microstrip based heating cell" means a heating cell based on microwave signal transmission that has a conduction strip separated from the mass strip by a dielectric substrate layer; said microstrip based heating cell and corresponds to an electric transmission line of electromagnetic transverse modes formed by a flat conductor placed on a thin substrate which in turn rests on a plane of mass capable of radiating electromagnetic waves to the high loss ceramic material that is interposes, thus transferring energy to it in an adapted and resonant way.
• Por el término "célula calefactora stripline" se entiende una célula calefactora basada en el tipo de línea de transmisión para modos TEM (Transversal Electro- Magnéticos) denominado stripline y corresponde a una línea de transmisión eléctrica de modos transversales electromagnéticos formada por un conductor embebido en un material cerámico de altas pérdidas y que absorbe la energía electromagnética que se propaga por dicha línea de transmisión a medida que avanza.
• Por el término "calefactor unitario" se entiende el aparato calefactor que integra varias células calefactoras de cualquiera de las clases descritas anteriormente y que supone la unidad autónoma funcional mínima. • The term "stripline heating cell" means a heating cell based on the type of transmission line for TEM (Electro-Magnetic Transverse) modes called stripline and corresponds to an electric transmission line of electromagnetic transverse modes formed by an embedded conductor in a high-loss ceramic material that absorbs the electromagnetic energy that propagates through said transmission line as it progresses. • The term "unit heater" means the heating device that integrates several heating cells of any of the classes described above and which is the minimum autonomous functional unit.
• Por el término "sistema calefactor" se entiende el conjunto de calefactores unitarios controlados por un sistema informático. • The term "heating system" means the set of unit heaters controlled by a computer system.
• Por el término "divisor de potencia" se entiende un dispositivo que reparte la potencia que recibe a su entrada entre n salidas, habitualmente de forma igualitaria. Los divisores de potencia se emplean en radiofrecuencia y microondas, comunicaciones ópticas, etc, para enviar a varios dispositivos la potencia recibida por una sola puerta, manteniendo las impedancias adaptadas para tener un bajo nivel de potencia reflejada. • The term "power divider" means a device that distributes the power it receives at its input between n outputs, usually equally. The power dividers are used in radiofrequency and microwaves, optical communications, etc., to send to several devices the power received by a single door, keeping the impedances adapted to have a low level of reflected power.
• Por el término "susceptor de microondas" se entiende un material que posee capacidad de absorber la radiación electromagnética en la banda de microondas y convertirlo en calor que generalmente se reemite en forma de radiación infrarroja. • The term "microwave susceptor" means a material that has the capacity to absorb electromagnetic radiation in the microwave band and convert it into heat that is generally re-emitted in the form of infrared radiation.
• Por el término "material cerámico de altas pérdidas" se entiende un material inorgánico, no metálico y conformado que posee capacidad de absorber la radiación electromagnética y convertirlo en calor que generalmente se reemite en forma de radiación infrarroja. • The term "high loss ceramic material" means an inorganic, non-metallic and shaped material that has the capacity to absorb electromagnetic radiation and convert it into heat that is generally re-emitted in the form of infrared radiation.
Un primer aspecto de la presente invención se refiere a una célula calefactora que comprende una línea de transmisión eléctrica de modos electromagnéticos transversales monomodales, un divisor de potencia de modos electromagnéticos transversales monomodales y una carga eléctrica en forma de material cerámico de altas pérdidas que está acoplada a dicha línea de transmisión eléctrica y caracterizada por presentar absorción de ondas electromagnéticas en la frecuencia de microondas. Las células calefactoras del sistema de calefacción están caracterizadas por transformar la radiación electromagnética a la frecuencia de microondas en energía térmica por generación de calor. A first aspect of the present invention relates to a heating cell comprising an electric transmission line of single mode transverse electromagnetic modes, a power divider of single mode transverse electromagnetic modes and an electric charge in the form of high loss ceramic material that is coupled to said electric transmission line and characterized by presenting absorption of electromagnetic waves in the microwave frequency. The heating cells of the heating system are characterized by transforming electromagnetic radiation at the microwave frequency into thermal energy by heat generation.
En una realización preferida del primer aspecto de la presente invención, la línea de transmisión eléctrica de modos electromagnéticos transversales monomodales puede ser elegida entre: In a preferred embodiment of the first aspect of the present invention, the electric transmission line of single mode transverse electromagnetic modes can be chosen from:
microstrip definida como una placa de circuito impreso que comprende una
lámina metálica conductora separada de una lámina metálica de masa por una lámina dieléctrica. Ésta línea de transmisión se termina en una antena microstrip de ranura en plano de masa diseñada para radiar energía directamente al material cerámico de altas pérdidas con objeto de transferirle la energía que transporta la línea. microstrip defined as a printed circuit board comprising a conductive metal sheet separated from a metal mass sheet by a dielectric sheet. This transmission line is terminated in a ground plane microstrip antenna designed to radiate energy directly to the high loss ceramic material in order to transfer the energy carrying the line.
- stripline definida como un conductor central metálico entre dos planos de masa equidistantes al mismo. El espacio entre los planos de masa y el conductor está relleno por material cerámico de altas pérdidas, de forma que la propagación de la energía por la línea de transmisión se transfiere directamente a dicho material cerámico de altas pérdidas. - stripline defined as a metallic central conductor between two mass planes equidistant to it. The space between the ground planes and the conductor is filled with high loss ceramic material, so that the propagation of energy through the transmission line is transferred directly to said high loss ceramic material.
En una realización preferida del primer aspecto de la presente invención, la célula calefactora microstrip está caracterizada por presentar una transmisión eléctrica de modos electromagnéticos monomodal y resonante, basada en la radiación de una antena microstrip sobre una capa gruesa de material susceptor de microondas o carga eléctrica. El material susceptor de microondas se coloca en la zona de campo cercano reactivo de la antena, que se extiende desde la fuente de la excitación hasta una distancia de aproximadamente λ/(2π) donde λ es la longitud de onda de la radiación microondas y π es la constante pi con un valor de 3.1416. La célula calefactora microstrip incluye en una misma estructura metálica, por ejemplo de aluminio, una antena de ranura en plano de masa microstrip soportada en una placa de sustrato dieléctrico, alimentada por una línea de transmisión y conectada a un conector de entrada tipo N. Se mantiene unida a la ranura la carga en forma de material cerámico de altas pérdidas a calentar y entre ambas se coloca un material aislante térmico transparente a las microondas. La célula calefactora comprende una estructura metálica reflectora en su base la cual que dirige la radiación hacia la carga en forma de material cerámico de altas pérdidas. La célula microstrip está blindada con conductores eléctricos en todas sus paredes laterales y también en la superficie libre del material cerámico de altas pérdidas a calentar. In a preferred embodiment of the first aspect of the present invention, the microstrip heating cell is characterized by presenting an electric transmission in single mode and resonant electromagnetic modes, based on the radiation of a microstrip antenna on a thick layer of microwave susceptor material or electric charge . The microwave susceptor material is placed in the reactive near-field zone of the antenna, which extends from the source of the excitation to a distance of approximately λ / (2π) where λ is the wavelength of microwave radiation and π is the constant pi with a value of 3.1416. The microstrip heating cell includes in the same metal structure, for example aluminum, a microstrip plane groove antenna supported on a dielectric substrate plate, fed by a transmission line and connected to an N-type input connector. keeps the load attached to the groove in the form of ceramic material with high losses to heat and between them a microwave-insulating thermal insulating material is placed. The heating cell comprises a reflective metal structure at its base which directs the radiation towards the load in the form of high loss ceramic material. The microstrip cell is shielded with electrical conductors on all its side walls and also on the free surface of the ceramic material with high losses to heat.
Como es bien conocido de la teoría básica de antenas, cualquier material colocado en el campo cercano de una antena es susceptible de desadaptarla debido a que el campo electromagnético radiado a ésta región, si es reflejado de alguna manera, induce corrientes en la antena con una relación de fase determinada con la excitación original.
Dicho efecto lleva a un almacenamiento de energía en los electrones libres de la antena durante una determinada parte del ciclo de oscilación, seguido por la consecuente liberación de la misma y creando el efecto reactivo que le da nombre a ésta región. Esto obliga a la adaptación de impedancias para la condición de contorno presentada, confiriéndole a la célula calefactora microstrip su carácter resonante. As is well known from the basic theory of antennas, any material placed in the near field of an antenna is susceptible to mismatch because the electromagnetic field radiated to this region, if reflected in some way, induces currents in the antenna with a determined phase relationship with the original excitation. This effect leads to a storage of energy in the free electrons of the antenna during a certain part of the oscillation cycle, followed by the consequent release of the antenna and creating the reactive effect that gives name to this region. This forces the impedance adaptation for the boundary condition presented, giving the microstrip heating cell its resonant character.
Cuando se toma el caso de una onda plana viajando en un medio con pérdidas, lineal, homogéneo e isótropo, toda la información relativa al flujo de potencia en el medio puede ser obtenida del teorema de Poyinting. En un medio dieléctrico sin fuentes eléctricas o magnéticas internas, la potencia disipada puede ser calculada utilizando la siguiente expresión: When the case of a flat wave is taken traveling in a medium with losses, linear, homogeneous and isotropic, all the information related to the power flow in the medium can be obtained from the Poyinting theorem. In a dielectric medium without internal electrical or magnetic sources, the dissipated power can be calculated using the following expression:
Pd=w/2 JV (¾ ε" |E→ |2-μ0 μ" |H→ |2 )dV [1 ] Siendo Pd la potencia disipada en el material, ω la frecuencia angular de la excitación, ε0 la permitividad dieléctrica del vacío, ε" la componente compleja de la permitividad relativa del material, μ0 la permeabilidad magnética del vacío, μ" la componente compleja de la permeabilidad relativa del material, E → el vector campo eléctrico y H → el vector campo magnético. Pd = w / 2 JV (¾ ε "| E → | 2 -μ 0 μ" | H → | 2 ) dV [1] Where P d is the power dissipated in the material, ω the angular frequency of the excitation, ε 0 the dielectric permittivity of the vacuum, ε "the complex component of the relative permittivity of the material, μ 0 the magnetic permeability of the vacuum, μ" the complex component of the relative permeability of the material, E → the electric field vector and H → the vector field magnetic.
La ecuación [1] es adecuada para calcular la disipación de potencia para una onda plana propagándose en el interior de un material, una vez dentro del mismo. Suponiendo que el material no presenta pérdidas magnéticas (i¿f" = 0 ), y tomando la excitación como una aproximación, se puede calcular la integral de la potencia disipada. Para hacerlo, la excitación se tomará como uniforme en el plano XY (el plano coincidente con la cara de la muestra más próxima a la antena) y aproximada por una onda plana propagándose en la dirección del eje Z. Si bien el problema electromagnético es mucho más complejo que ésta aproximación, las dimensiones de la muestra son pequeñas comparadas con su alta Equation [1] is suitable for calculating the power dissipation for a flat wave propagating inside a material, once inside it. Assuming that the material does not show magnetic losses (i? F "= 0 ), and taking the excitation as an approximation, the integral of the dissipated power can be calculated. To do so, the excitation will be taken as uniform in the XY plane (the plane coinciding with the face of the sample closest to the antenna) and approximated by a flat wave propagating in the direction of the Z axis. Although the electromagnetic problem is much more complex than this approximation, the dimensions of the sample are small compared to its high
W W
£* ¾ 400 K £ * ¾ 400 K
conductividad térmica ( ' 1 m ), que hace el error de aproximación despreciable para el resultado térmico. En este sentido la potencia disipada se puede determinar mediante la siguiente relación. thermal conductivity ( '1 m), which makes the approximation error negligible for the thermal result. In this sense the dissipated power can be determined by the following relationship.
Pd-Pent (1-e (-2ah) ) (1-r2)nr [2]
Donde α es el coeficiente de pérdidas o la parte real de la constante de propagación compleja γ, que incluye la dependencia de la frecuencia de la excitación f y con el factor de pérdidas del material tañó; h es el espesor de la muestra del material; Γ es el factor de reflexión de la antena; y ηΓ es la eficiencia de radiación de la antena. La eficiencia de radiación y el factor de reflexión pueden ser fácilmente optimizables mediante el diseño de la antena, teniendo por lo tanto efecto nulo en la eficiencia. La eficiencia de la absorción de energía depende de la relación entre la profundidad de penetración (1/a) y el espesor de la muestra, relación en la cual la frecuencia de la excitación tiene una importancia clave. La potencia disipada dependerá entonces de la frecuencia y del factor de pérdidas. Estos cálculos permiten establecer un rango de características del material cerámico de altas pérdidas requerido para su adaptación a regímenes de alta eficacia. P d -P ent (1-e ( - 2ah) ) (1-r 2 ) n r [2] Where α is the loss coefficient or the real part of the complex propagation constant γ, which includes the dependence of the frequency of the excitation f and on the loss factor of the material struck; h is the thickness of the material sample; Γ is the reflection factor of the antenna; and η Γ is the radiation efficiency of the antenna. The radiation efficiency and the reflection factor can be easily optimized by the design of the antenna, therefore having no effect on efficiency. The efficiency of energy absorption depends on the relationship between the depth of penetration (1 / a) and the thickness of the sample, in which the frequency of excitation is of key importance. The dissipated power will then depend on the frequency and the loss factor. These calculations allow to establish a range of characteristics of the high loss ceramic material required for its adaptation to high efficiency regimes.
En una realización preferida del primer aspecto de la presente invención la carga eléctrica en forma de material cerámico de altas pérdidas está acoplada a la línea de transmisión eléctrica y está caracterizada por presentar absorción de ondas electromagnéticas en la frecuencia de microondas. La absorción de microondas en el material cerámico se produce debido a la existencia de pérdidas dieléctricas en el mismo como, por ejemplo, una cerámica sinterizada de SiC o bien por la presencia de partículas susceptoras como, por ejemplo, partículas de SiC embebidas en una matriz cerámica. Los elementos absorbedores de radiación microondas transforman dicha radicación microondas en calor que se transferirá al resto de la matriz cerámica por conducción y será liberado al ambiente por radiación con la inercia térmica correspondiente a un material cerámico. Por consiguiente, este nuevo material se comporta de forma no recíproca en cuanto al tiempo de calentamiento se refiere. Y como se verá más adelante el tiempo de calentamiento es más rápido que el tiempo de enfriamiento resultando en una ventaja para obtener generadores de calor de alta eficiencia. In a preferred embodiment of the first aspect of the present invention, the electric charge in the form of a high loss ceramic material is coupled to the electric transmission line and is characterized by electromagnetic wave absorption at the microwave frequency. The absorption of microwaves in the ceramic material occurs due to the existence of dielectric losses in the same as, for example, a sintered ceramic of SiC or by the presence of susceptor particles such as, for example, SiC particles embedded in a matrix ceramics. The microwave radiation absorbing elements transform said microwave radiation into heat that will be transferred to the rest of the ceramic matrix by conduction and will be released into the environment by radiation with the thermal inertia corresponding to a ceramic material. Consequently, this new material behaves in a non-reciprocal manner as far as the heating time is concerned. And as will be seen later, the heating time is faster than the cooling time resulting in an advantage to obtain high efficiency heat generators.
En una realización preferida del primer aspecto de la presente invención el material cerámico de altas pérdidas está caracterizado por un factor de pérdidas en la frecuencia de microondas de al menos 0.10. In a preferred embodiment of the first aspect of the present invention the high loss ceramic material is characterized by a microwave frequency loss factor of at least 0.10.
En otra realización preferida del primer aspecto de la presente invención el material cerámico de altas pérdidas empleado en la célula calefactora microstrip consiste en una placa cerámica de SiC de 5x5 cm2 de superficie y un espesor de 0.7 cm, con una
densidad del 99% respecto de la densidad teórica, permitividad relativa y factor de pérdidas altos (ε =10, tan5≤0.16). En el escenario propuesto y para este material cerámico de altas pérdidas de SiC denso, la eficiencia de la célula calefactora de la presente invención sólo depende de la adaptación de la antena microstrip y su eficiencia de radiación. Con el objeto de maximizar las eficiencias de radiación y dado que los cálculos en campo cercano en un medio material con pérdidas pueden ser muy complejos, se puede obtener una solución razonable mediante la simulación electromagnética. Los cálculo de simulación muestran una eficiencia de radiación de ηΓ=99.8% con una adaptación de impedancias mejor que Sn=-20 dB, consiguiendo una eficiencia total cercana al 99%. Un valor tan elevado de eficiencia es una clara ventaja para el estado de la técnica al posibilitar la transformación de energía eléctrica en calor con unas pérdidas energéticas sensiblemente inferiores a otros sistemas disponibles en el estado de la técnica de sistemas de calefacción. El material cerámico de altas pérdidas de SiC denso de 50 gramos de masa está caracterizado por incrementar su temperatura en 150°C cuando se somete durante 30 segundos a radiación microondas de 2.45 GHz en el interior de un horno microondas convencional de 1000 W. En términos de potencia suministrada por unidad de masa para producir un ΔΤ-50 °C requerido para actuar como calefactor la muestra consume 55.6 kWh.Kg"1. El tiempo requerido para disminuir su temperatura desde la máxima temperatura alcanzada en 1/3 es de 300 segundos. La velocidad de enfriamiento en el rango de temperaturas de interés, esto es, desde 90 a 70°C para mantener el ΔΤ>50 °C requerido para calefactar es de 0.08 °C.s"1. Donde se determina que las velocidades de calentamiento de la placa cerámica registran valores entre 4.85 °C/s y 6 °C/s, mientras que las velocidades de enfriamiento de dicha placa cerámica son inferiores en más de un orden de magnitud con valores inferiores a 0.267 °C/s. Las velocidades de calentamiento generado por la absorción de microondas y la de enfriamiento por radiación de calor son diferentes. El material cerámico de altas pérdidas actúa como un generador de calor recíproco ya que absorbe la energía de microondas generando calor en un tiempo notamente inferior al requerido para ceder dicho calor al medio. La diferencia entre las velocidades de calentamiento y enfriamiento puede ser optimizada mediante la composición del material cerámico de altas pérdidas. De acuerdo con el incremento de temperatura determinado la transferencia de potencia no es total debido a la distribución no uniforme de los campos en el material cerámico de altas pérdidas y en el microondas
debido al reducido tamaño de la cerámica en comparación con el tamaño de la cavidad multimodal. In another preferred embodiment of the first aspect of the present invention, the high loss ceramic material used in the microstrip heating cell consists of a SiC ceramic plate with a surface area of 5x5 cm 2 and a thickness of 0.7 cm, with a thickness of 0.7 cm. 99% density with respect to theoretical density, relative permittivity and high loss factor (ε = 10, tan5≤0.16). In the proposed scenario and for this dense SiC high loss ceramic material, the efficiency of the heating cell of the present invention depends only on the adaptation of the microstrip antenna and its radiation efficiency. In order to maximize radiation efficiencies and since near-field calculations in a material medium with losses can be very complex, a reasonable solution can be obtained by electromagnetic simulation. The simulation calculations show a radiation efficiency of η Γ = 99.8% with an impedance adaptation better than Sn = -20 dB, achieving a total efficiency close to 99%. Such a high efficiency value is a clear advantage for the state of the art by enabling the transformation of electrical energy into heat with energy losses significantly lower than other systems available in the state of the art of heating systems. The high-density ceramic material of dense SiC of 50 grams of mass is characterized by increasing its temperature by 150 ° C when it is subjected to microwave radiation of 2.45 GHz for 30 seconds inside a conventional microwave oven of 1000 W. of power supplied per unit of mass to produce a ΔΤ-50 ° C required to act as a heater the sample consumes 55.6 kWh.Kg "1. The time required to decrease its temperature from the maximum temperature reached in 1/3 is 300 seconds The cooling rate in the temperature range of interest, that is, from 90 to 70 ° C to maintain the ΔΤ> 50 ° C required to heat is 0.08 ° Cs "1 . Where it is determined that the heating rates of the ceramic plate register values between 4.85 ° C / s and 6 ° C / s, while the cooling rates of said ceramic plate are lower by more than an order of magnitude with values below 0.267 ° C / s. The heating rates generated by microwave absorption and heat radiation cooling are different. The high loss ceramic material acts as a reciprocal heat generator since it absorbs microwave energy generating heat in a time significantly less than that required to transfer said heat to the medium. The difference between heating and cooling rates can be optimized by the composition of the high loss ceramic material. According to the determined temperature increase, the power transfer is not total due to the uneven distribution of the fields in the high loss ceramic material and in the microwave due to the small size of the ceramic compared to the size of the multimodal cavity.
En otra realización preferida del primer aspecto de la presente invención el material cerámico de altas pérdidas empleado en la célula calefactora microstrip es un material compuesto que comprende al menos un 50% en peso de partículas de SiC y el resto está constituido por porosidad y un compuesto sílico-aluminoso para mantener los granos de carburo de silicio consolidados. El procedimiento de obtención seguido es mezclar 50% en peso de partículas de SiC con 32.5% en peso de arcilla kaolinítica y 17.5% en peso de un mineral de talco. La mezcla se homogeneiza siguiendo procesos conocidos en el campo del procesado de materiales cerámicos y la mezcla se optimiza para para conseguir una pasta adecuada para prensar en seco, por ejemplo mediante humectación. El prensado se realiza mediante presión uniaxial a una presión de 250Kg/cm2 y las piezas obtenidas secan durante 24 horas en estufa a 80°C. Posteriormente las placas cerámicas se someten a un tratamiento térmico en atmósfera de aire entre 1100 y 1250°C manteniendo al menos 30 minutos la temperatura máxima de calentamiento. Las velocidades de calentamiento son superiores a 3°C por minuto y el enfriamiento natural, aunque no restringido a este ciclo térmico. En otra realización preferida del primer aspecto de la presente el material cerámico de altas pérdidas empleado en la célula calefactora microstrip consiste en una placa cerámica de porcelana de un material compuesto de la composición anteriormente descrita de 8x3 cm2 de superficie y un espesor de 0.7 cm, que comprende 50% en peso de partículas de SiC con un tamaño promedio de partícula superior a 3 μηι y con una densidad del 85% respecto de la densidad teórica, permitividad relativa y factor de pérdidas altos (ε'≥13, tan5≥0.16). In another preferred embodiment of the first aspect of the present invention the high loss ceramic material used in the microstrip heating cell is a composite material comprising at least 50% by weight of SiC particles and the rest is constituted by porosity and a compound silica-aluminous to keep the silicon carbide grains consolidated. The method of obtaining followed is to mix 50% by weight of SiC particles with 32.5% by weight of kaolinitic clay and 17.5% by weight of a talc mineral. The mixture is homogenized following known processes in the field of ceramic materials processing and the mixture is optimized to achieve a paste suitable for dry pressing, for example by wetting. Pressing is carried out by uniaxial pressure at a pressure of 250 kg / cm 2 and the pieces obtained are dried for 24 hours in an oven at 80 ° C. Subsequently the ceramic plates are subjected to a heat treatment in an air atmosphere between 1100 and 1250 ° C, maintaining the maximum heating temperature for at least 30 minutes. Heating rates are higher than 3 ° C per minute and natural cooling, although not restricted to this thermal cycle. In another preferred embodiment of the first aspect of the present, the high loss ceramic material used in the microstrip heating cell consists of a porcelain ceramic plate of a composite material of the previously described composition of 8x3 cm 2 of surface and a thickness of 0.7 cm , which comprises 50% by weight of SiC particles with an average particle size greater than 3 μηι and with a density of 85% with respect to theoretical density, relative permittivity and high loss factor (ε'≥13, tan5≥0.16 ).
En una realización alternativa del primer aspecto de la presente el material cerámico de altas pérdidas empleado en la célula calefactora microstrip consiste en una placa cerámica de porcelana de un material compuesto de la composición anteriormente descrita de 14.8x14.8 cm2 de superficie y un espesor de 1.1 cm de espesor. El material cerámico de altas pérdidas de porcelana de la composición anteriormente descrita de 1300 gramos de masa está caracterizado por incrementar su temperatura en 120°C cuando se somete durante 90 segundos a radiación microondas de 2.45 GHz en el
interior de un horno microondas convencional de 1600 W. En términos de potencia suministrada por unidad de masa para producir un AT~50°C requerido para actuar como calefactor la muestra consume 3.9 kWh.Kg"1. El tiempo requerido para disminuir su temperatura desde la máxima temperatura alcanzada en 1/3 es de 1260 segundos. La velocidad de enfriamiento en el rango de temperaturas de interés, esto es, desde 90 a 70°C para mantener el AT>50°C requerido para calefactar es de 0.025°C.s"1. In an alternative embodiment of the first aspect of the present, the high loss ceramic material used in the microstrip heating cell consists of a porcelain ceramic plate of a composite material of the previously described composition of 14.8 x 14.8 cm 2 of surface and a thickness 1.1 cm thick. The high-loss porcelain ceramic material of the above-described composition of 1300 grams of mass is characterized by increasing its temperature by 120 ° C when subjected to microwave radiation of 2.45 GHz for 90 seconds in the inside a conventional microwave oven of 1600 W. In terms of power supplied per unit mass to produce an AT ~ 50 ° C required to act as a heater the sample consumes 3.9 kWh.Kg "1. The time required to decrease its temperature from The maximum temperature reached in 1/3 is 1260 seconds The cooling rate in the range of temperatures of interest, that is, from 90 to 70 ° C to maintain the AT> 50 ° C required to heat is 0.025 ° Cs "1 .
El material cerámico de altas pérdidas conformado como un material compuesto que comprende partículas de SiC presenta una ventaja para la absorción de energía de microondas al requerir consumos de potencia por unidad de masa sensiblemente inferiores a los empleados para una placa densa de SiC y la velocidad de enfriamiento es así mismo más lenta. Adicionalmente los materiales compuestos son conformables de acuerdo a procedimientos conocidos en la industria cerámica proporcionando así una gran disponibilidad de formas y dimensiones dentro de los límites de la técnica que resultan ventajosas para proporcionar elementos para el material cerámico de altas pérdidas. The high loss ceramic material formed as a composite material comprising SiC particles has an advantage for microwave energy absorption by requiring power consumption per unit mass significantly lower than those used for a dense SiC plate and the speed of cooling is also slower. Additionally, the composite materials are conformable according to procedures known in the ceramic industry thus providing high availability of shapes and dimensions within the limits of the technique that are advantageous to provide elements for the high loss ceramic material.
En otra realización alternativa del primer aspecto de la presente invención, la célula calefactora microstrip se modificó incorporando un plano conductor en la cara libre del material cerámico de altas pérdidas de manera que los excedentes de la absorción de potencia no se pierden en espacio libre al ser reflejados de nuevo a la muestra y la antena, y siendo finalmente absorbidos tras diversas reflexiones entre las paredes eléctricas de la célula. El plano conductor está constituido por ejemplo por un material metálico como puede ser el aluminio, latón, acero inoxidable o por un recubrimiento que presente conducción metálica como por ejemplo un recubrimiento de pintura de plata. De ésta forma se consigue independizar el porcentaje de absorción de energía del espesor del material. Este nuevo diseño presenta una ventaja notable ya que para evitar la ineficiencia de la unidad calefactora se incorpora un plano conductor que además presenta la ventaja de mejorar la seguridad del dispositivo al impedir la salida de radiación de microondas fuera de la unidad calefactora. Otra ventaja de la presente invención al incorporar una carga eléctrica en forma de material cerámico de altas pérdidas es que se evita la no-uniformidad de campo eléctrico dado su reducido tamaño con respecto a la fuente y la conductividad térmica de dicha carga cerámica.
En una realización todavía más preferida del primer aspecto de la presente invención el plano conductor en la cara libre del material cerámico de altas pérdidas de la célula calefactora incorporar canales metálicos para aumentar su superficie y transferir más eficientemente el calor al aire. El aumento de la superficie de intercambio de calor en el plano conductor permiten el flujo ascendente de aire calentado y actuando así como elemento disipador y radiador de energía calorífica. El plano de conductor metálico con elevada superficie presenta una ventaja al actuar como elemento disipador de calor. In another alternative embodiment of the first aspect of the present invention, the microstrip heating cell was modified by incorporating a conductive plane in the free face of the high loss ceramic material so that the surpluses of power absorption are not lost in free space by being reflected back to the sample and the antenna, and finally being absorbed after various reflections between the electrical walls of the cell. The conductive plane is constituted for example by a metallic material such as aluminum, brass, stainless steel or by a coating that has a metallic conduit such as a silver paint coating. In this way, the percentage of energy absorption of the material thickness is independent. This new design has a notable advantage since to avoid the inefficiency of the heating unit, a conductive plane is incorporated, which also has the advantage of improving the safety of the device by preventing microwave radiation from leaving the heating unit. Another advantage of the present invention by incorporating an electric charge in the form of a high loss ceramic material is that non-uniformity of the electric field is avoided given its small size with respect to the source and thermal conductivity of said ceramic charge. In an even more preferred embodiment of the first aspect of the present invention the conductive plane on the free face of the high loss ceramic material of the heating cell incorporates metal channels to increase its surface and more efficiently transfer heat to air. The increase of the heat exchange surface in the conductive plane allows the upward flow of heated air and thus acting as a heat sink and radiator element. The metallic conductor plane with a high surface has an advantage in acting as a heat sink element.
En otra realización todavía más alternativa del primer aspecto de la presente invención la célula calefactora stripline está caracterizada por presentar una transmisión eléctrica de modos electromagnéticos monomodal de altas pérdidas y de banda muy ancha. La célula stripline comprende un conductor alojado en el interior de un material cerámicos de altas perdidas dieléctricas que actúa como susceptor de microondas o carga eléctrica, conformando así una línea de transmisión de muy altas pérdidas que es absorbente en una banda de frecuencias que comprende la región de frecuencias de microondas entre las que se incluye la banda ISM de 2.45 GHz. In a still more alternative embodiment of the first aspect of the present invention, the stripline heating cell is characterized by presenting an electric transmission of high-loss and very wide-band single mode electromagnetic modes. The stripline cell comprises a conductor housed inside a ceramic material of high dielectric losses that acts as a microwave or electric load susceptor, thus forming a very high loss transmission line that is absorbent in a frequency band comprising the region of microwave frequencies, including the 2.45 GHz ISM band.
La carga cerámica empleada en la célula stripline se acopla físicamente a la antena de transmisión de energía electromagnética para maximizar la absorción de energía en forma de radiación por microondas y su conversión efectiva en calor. Este acoplamiento físico es característico del tipo de línea de transmisión empleado en la presente invención. De forma adicional, las dimensiones y propiedades de la carga eléctrica en forma de material cerámico de altas pérdidas necesitan estar adaptadas a los parámetros de la línea de transmisión de energía electromagnética. The ceramic load used in the stripline cell is physically coupled to the electromagnetic energy transmission antenna to maximize energy absorption in the form of microwave radiation and its effective conversion into heat. This physical coupling is characteristic of the type of transmission line used in the present invention. Additionally, the dimensions and properties of the electric charge in the form of high loss ceramic material need to be adapted to the parameters of the electromagnetic energy transmission line.
En cualquiera de las posibles realizaciones del primer aspecto de la invención la célula calefactora donde es del tipo stripline, está caracterizada por que el conductor central es un material metálico cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también pueden cumplir esa función. La forma del conductor central se elige entre las formas habituales que se presentan para conductores metálicos como son hilos de sección circular obtenidos por técnicas de trefilado o láminas de sección rectangular obtenidas por laminado. La forma del conductor central de la línea stripline se reproduce en negativo en el interior del
material cerámico de altas perdidas. Mientras que el material cerámico de altas pérdidas empleado en la célula calefactora stripline es un material cerámicos como el descrito previamente que comprende un 50% en peso de partículas de SiC y el resto está constituido por porosidad y un compuesto sílico-aluminoso para mantener los granos de carburo de silicio consolidados. In any of the possible embodiments of the first aspect of the invention, the heating cell where it is of the stripline type is characterized in that the central conductor is a metallic material whose resistance to the passage of electricity is very low. The best electrical conductors are metals, such as copper, gold, iron and aluminum, and their alloys, although there are other non-metallic materials that can also fulfill that function. The shape of the central conductor is chosen from the usual forms that are presented for metallic conductors such as circular section wires obtained by drawing techniques or rectangular section sheets obtained by rolling. The shape of the central conductor of the stripline is reproduced in negative inside the high loss ceramic material. While the high-loss ceramic material used in the stripline heating cell is a ceramic material such as the one described previously that comprises 50% by weight of SiC particles and the rest is constituted by porosity and a silica-aluminous compound to keep the grains of consolidated silicon carbide.
El material cerámico dispone de un hueco en su interior de dimensiones suficiente para alojar el conductor central. Este hueco se realiza de forma previa a al proceso de sinterización del material o se practica sobre el material cerámicos sinterizado por mecanizado de las piezas cerámicas siguiendo metodologías conocidas en el estado de la técnica. Cabe la posibilidad de que el material cerámico de altas pérdidas empleado en la célula calefactora stripline comprenda dos piezas de material cerámico de altas pérdidas de forma que en una de las caras respectivas se ha realizado un hueco o negativo de dimensiones correspondientes a la longitud del conductor central y a la mitad de su sección. Las dos piezas se unen de forma que la línea stripline quede engarzada en su interior. Las piezas cerámicas se pueden unir empleando por ejemplo un adhesivo. El empleo de adhesivos cerámicos que soporten altas temperaturas resulta en una ventaja para el correcto funcionamiento del dispositivo. El empleo de piezas de material cerámicos que reproduzcan en negativo la línea stripline resulta en una clara ventaja para la fabricación de las células calefactoras stripline pues permite producir de forma eficiente y económica piezas de dimensiones adecuadas basadas en la amplia flexibilidad de formas de los procesos cerámicos. The ceramic material has a hole in its interior of sufficient dimensions to accommodate the central conductor. This hole is made prior to the sintering process of the material or is practiced on the sintered ceramic material by machining the ceramic pieces following methodologies known in the state of the art. It is possible that the high loss ceramic material used in the stripline heating cell comprises two pieces of high loss ceramic material so that a hollow or negative of dimensions corresponding to the length of the conductor has been made on one of the respective faces central and half of its section. The two pieces are joined so that the stripline is crimped inside. The ceramic pieces can be joined using for example an adhesive. The use of ceramic adhesives that withstand high temperatures results in an advantage for the correct operation of the device. The use of pieces of ceramic material that reproduce the stripline in a negative way results in a clear advantage for the manufacture of stripline heating cells, since it allows efficient and economical production of pieces of suitable dimensions based on the wide flexibility of forms of ceramic processes .
En aquellas realizaciones donde la célula calefactora es tipo stripline, la forma del conductor central y su grosor depende de la sección transversal de la línea de transmisión stripline, eligiéndose según ésta para obtener las características de propagación deseadas. La célula calefactora stripline se convierte en un transductor de radiación electromagnética en calor con la capacidad de convertir la potencia de la onda que se propaga en calor mediante una longitud de línea de transmisión mínima. La línea stripline se termina en cortocircuito y posee una longitud suficiente para transducir toda la potencia aceptada en un gran ancho de banda. Como es conocido de la teoría de líneas de transmisión, la pérdida de potencia en una línea de transmisión cargada con un cortocircuito se puede determinar mediante la siguiente fórmula:
In those embodiments where the heating cell is stripline type, the shape of the central conductor and its thickness depends on the cross section of the stripline transmission line, being chosen according to it to obtain the desired propagation characteristics. The stripline heating cell becomes a transducer of electromagnetic radiation in heat with the ability to convert the power of the wave that propagates into heat by a minimum transmission line length. The stripline is short-circuited and has sufficient length to transduce all accepted power in a large bandwidth. As is known from the theory of transmission lines, the loss of power in a transmission line loaded with a short circuit can be determined by the following formula:
Siendo Pioss la potencia perdida en el material que rellena la línea de transmisión, V¿ el valor de la onda de tensión incidente en dicha línea, %e la impedancia característica de la línea, a el coeficiente de pérdidas definido anteriormente y la longitud de la línea de transmisión stripline. Pioss being the power loss in the material filling the transmission line, the value Vd wave incident on said line voltage,% and the characteristic impedance of the line, the coefficient defined above and loss length stripline transmission line.
Tanto la onda progresiva como la regresiva producida por la carga reflectiva contribuyen a la pérdida de potencia siguiendo una ley exponencial que sólo depende de la longitud de la línea (I) y el coeficiente de pérdidas (<½). Tomando una posible forma del conductor central cilindrica, la figura 11 muestra la impedancia característica de la línea para diferentes diámetros de la línea central (D) a la frecuencia de 2.45 GHz. Both the progressive and the regressive wave produced by the reflective load contribute to the loss of power following an exponential law that only depends on the length of the line (I) and the coefficient of losses (<½). Taking a possible form of the cylindrical central conductor, Figure 11 shows the characteristic impedance of the line for different diameters of the center line (D) at the frequency of 2.45 GHz.
La célula calefactora del primer aspecto de la presente invención el sistema de calefacción basado puede presentar un divisor de potencia de modos electromagnéticos trasversales monomodales que comprende n salidas, siendo n un número natural positivo mayor de 1. Un divisor de potencia no normalizado reparte la potencia en al menos dos líneas de transmisión de forma igualitaria manteniendo las impedancias adaptadas para tener un bajo nivel de potencia reflejada. Un caso particular consiste en el empleo de divisores de potencia tipo Wilkinson que proveen un número par de elementos de salida. The heating cell of the first aspect of the present invention based heating system may have a power divider of single mode transverse electromagnetic modes comprising n outputs, n being a positive natural number greater than 1. A non-standardized power splitter distributes the power in at least two transmission lines equally maintaining the impedances adapted to have a low level of reflected power. A particular case is the use of Wilkinson type power dividers that provide an even number of output elements.
El empleo de divisores de potencia presenta la ventaja de repartir de forma uniforme la potencia en las diferentes líneas de transmisión de modos electromagnéticos. La incorporación de un número de al menos dos células calefactoras microstrip o células calefactoras stripline permite el empleo de una fuente de radiación microondas de tipo magnetrón con potencias de hasta 1000 W. La radiación microondas se conduce a través de una guía coaxial, y el acoplamiento entre la radiación microondas generada por el magnetrón y dicha red de distribución se realiza mediante el empleo de un acoplador, como por ejemplo una transición guía-coaxial WR340. Dado que la potencia de un magnetrón es netamente superior a la potencia que puede disiparse mediante una única célula calefactora, el empleo de divisores de potencia permite dividir la misma de modo que, por ejemplo, a partir de un magnetrón que produzca 800 W de radiación microondas y mediante 7 divisores de potencia se pueden alimentar 8 unidades calefactoras que pueden disipar una potencia máxima en cada una de ellas de 100 W. El empleo de 15
divisores proporciona así mismo una alimentación de energía de microondas para la alimentación de 16 unidades calefactoras que pueden disipar una potencia máxima, cada una de ellas, de 50 W. En una realización preferida del segundo aspecto de presente invención el material cerámico de altas pérdidas empleado se corresponde con una pieza única cuya superficie es suficiente para albergar las antenas microstrip en un número tal que la potencia suministrada por el magnetrón pueda ser disipada. Este aspecto resulta en una clara ventaja para la generación de unidades calefactoras para sistemas de calefacción dado que permite el empleo de superficies cerámicas de un tamaño mayor al descrito en las realizaciones preferidas del primer aspecto de la presente invención. Asimismo, otra ventaja es la de calentar de forma homogénea y eficiente una pieza cerámica absorbedora de radiación electromagnética en el rango de microondas de una superficie de dimensiones superiores a la requerida para una célula unitaria. The use of power dividers has the advantage of uniformly distributing the power in the different transmission lines of electromagnetic modes. The incorporation of a number of at least two microstrip heating cells or stripline heating cells allows the use of a magnetron-type microwave radiation source with powers of up to 1000 W. Microwave radiation is conducted through a coaxial guide, and the coupling between the microwave radiation generated by the magnetron and said distribution network is carried out by means of the use of a coupler, such as a guide-coaxial transition WR340. Since the power of a magnetron is clearly greater than the power that can be dissipated by a single heating cell, the use of power dividers allows it to be divided so that, for example, from a magnetron that produces 800 W of radiation Microwave and through 7 power dividers can be fed 8 heating units that can dissipate a maximum power in each of them of 100 W. The use of 15 Dividers also provide a microwave power supply for the supply of 16 heating units that can dissipate a maximum power, each of them, of 50 W. In a preferred embodiment of the second aspect of the present invention the high loss ceramic material used It corresponds to a single piece whose surface is sufficient to house the microstrip antennas in a number such that the power supplied by the magnetron can be dissipated. This aspect results in a clear advantage for the generation of heating units for heating systems since it allows the use of ceramic surfaces of a size larger than that described in the preferred embodiments of the first aspect of the present invention. Likewise, another advantage is that of heating in a homogeneous and efficient way a ceramic piece absorbing electromagnetic radiation in the microwave range of a surface of dimensions greater than that required for a unit cell.
En otra realización preferida del segundo aspecto de presente invención el material cerámico de altas pérdidas empleado se corresponde con dos piezas en cuya superficie se ha realizado un hueco o negativo de dimensiones correspondientes a la longitud del conductor central y a la mitad de su sección de forma tal que se albergan las líneas stripline en un número tal que la potencia suministrada por el magnetrón pueda ser disipada. In another preferred embodiment of the second aspect of the present invention, the high loss ceramic material used corresponds to two pieces in whose surface a gap or negative of dimensions corresponding to the length of the central conductor and half of its section has been made in such a way. that the stripline lines are housed in a number such that the power supplied by the magnetron can be dissipated.
En otra realización preferida del segundo aspecto de presente invención el material cerámico de altas pérdidas empleado se corresponde con una pieza en cuyo interior se albergar las líneas stripline en un número tal que la potencia suministrada por el magnetrón pueda ser disipada. In another preferred embodiment of the second aspect of the present invention, the high loss ceramic material used corresponds to a piece in which the stripline lines are housed in a number such that the power supplied by the magnetron can be dissipated.
En un tercer aspecto de la presente invención consiste en un sistema de calefacción que comprende calefactores que a su vez comprenden las células calefactoras del primer aspecto de la invención que comprenden una línea de transmisión eléctrica de modos electromagnéticos transversales y una carga cerámica acoplada con pérdidas dieléctricas. Cada sistema calefactor unitario comprende un sistema de control que permite sincronizar los tiempo de suministro de energía eléctrica de forma tal que solamente se encuentre consumiendo energía eléctrica uno de las sistemas calefactores
unitarios y limitados a la potencia máxima del magnetrón, por ejemplo 800 W. Cada sistema calefactor unitario emplea un tiempo en calentarse por absorción de la energía microondas que es un tiempo sensiblemente menor que el requerido para disipar la energía calorífica almacenada por dicha carga. De esta forma se puede disponer de tiempos de calentamiento de las células calefactoras suficientes para tener un conjunto de las mismas a la temperatura requerida para poder ser empleada como sistema de calefacción. Por ejemplo, 6 sistemas calefactores que requieran de 1 minuto para ser calentados desde 20 °C a 80 °C consumiendo 800 W pueden actuar de forma sincronizada mediante el correspondiente sistema de control para ser calentadas con una potencia máxima total de 800 W. De esta forma, esta realización resulta en una clara ventaja respecto al estado de la técnica en sistemas de calefacción porque permite disponer de un sistema de calefacción de alta eficiencia limitando la potencia suministrada por la instalación eléctrica. El sistema de sincronización entre las diferentes células calefactoras se realiza por ejemplo mediante un sistema inalámbrico tipo wifi o cableado como tipo PLC, resultando en una clara ventaja, pues permite acoplar diferentes sistemas calefactores unitarios sin necesidad de que se encuentren conectados entre sí físicamente. El sistema de calefacción comprende así mismo un sistema de captación de datos de temperatura, un sistema de programación y un algoritmo para distribuir de forma eficiente los tiempos de calentamiento entre los diferentes sistemas unitarios de calefacción de forma que se emplee la energía eléctrica de forma eficiente. El sistema de calefacción así diseñado presenta la ventaja de ser flexible en su configuración. En otra realización preferida del tercer aspecto de la presente invención el sistema de calefacción que comprende células calefactoras que comprenden una línea de transmisión eléctrica de modos electromagnéticos transversales y una carga cerámica acoplada con pérdidas dieléctricas se emplea para proporcionar confort térmico en forma de calefacción para espacios como son: habitaciones domésticas, oficinas, locales comerciales, locales industriales y en general espacios habitados. In a third aspect of the present invention it consists of a heating system comprising heaters which in turn comprise the heating cells of the first aspect of the invention comprising an electric transmission line of transverse electromagnetic modes and a ceramic load coupled with dielectric losses. . Each unit heating system comprises a control system that allows synchronizing the electricity supply time so that only one of the heating systems is consuming electricity unitary and limited to the maximum power of the magnetron, for example 800 W. Each unit heating system uses a time to heat up by absorption of microwave energy which is a time significantly less than that required to dissipate the heat energy stored by said load. In this way, heating times of the heating cells sufficient to have a set of them at the temperature required to be used as a heating system can be available. For example, 6 heating systems that require 1 minute to be heated from 20 ° C to 80 ° C consuming 800 W can act synchronously by means of the corresponding control system to be heated with a total maximum power of 800 W. In this way, this embodiment results in a clear advantage over the state of the art in heating systems because it allows to have a high efficiency heating system limiting the power supplied by the electrical installation. The synchronization system between the different heating cells is carried out, for example, by means of a Wi-Fi or wired wireless system such as PLC, resulting in a clear advantage, as it allows different unit heating systems to be coupled without the need for them to be physically connected to each other. The heating system also includes a temperature data collection system, a programming system and an algorithm for efficiently distributing the heating times between the different heating unit systems so that the electric energy is used efficiently . The heating system thus designed has the advantage of being flexible in its configuration. In another preferred embodiment of the third aspect of the present invention the heating system comprising heating cells comprising an electric transmission line of transverse electromagnetic modes and a ceramic load coupled with dielectric losses is used to provide thermal comfort in the form of space heating. such as: domestic rooms, offices, commercial premises, industrial premises and in general inhabited spaces.
En cualquiera de los distintos aspectos de la invención aquí descrita los calefactores térmicos pueden disponer de un control de funcionamiento para ser integrado en una red de radiadores que conformen un sistema de calefacción con una notable mejora de la
eficiencia energética sobre una red de radiadores de cualquier otra tecnología. In any of the different aspects of the invention described herein, the thermal heaters may have an operating control to be integrated into a network of radiators that form a heating system with a marked improvement in the energy efficiency over a network of radiators of any other technology.
Un cuarto aspecto de la invención va referido al uso del sistema de calefacción empleando radiación microondas del tercer aspecto de la invención para confort térmico en forma de calefacción para espacios como habitaciones domésticas, oficinas, locales comerciales, locales industriales y en general espacios habitados. A fourth aspect of the invention relates to the use of the heating system using microwave radiation of the third aspect of the invention for thermal comfort in the form of heating for spaces such as domestic rooms, offices, commercial premises, industrial premises and in general inhabited spaces.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: DESCRIPTION OF THE DRAWINGS To complement the description that is being made and in order to help a better understanding of the features of the invention, according to a preferred example of practical realization thereof, it is accompanied as an integral part of said description, a set of drawings in which, with an illustrative and non-limiting nature, the following has been represented:
Figura 1. Muestra un esquema de la célula calefactora microstrip que comprende un conector de entrada tipo N, una línea de transmisión metálica, una antena de ranura en plano de masa microstrip, un material aislante térmico transparente a las microondas, un material cerámico de altas pérdidas dieléctricas, una estructura metálica que encierra completamente la célula cuya base conforma el plano reflector, y la placa de sustrato dieléctrico que sustenta la línea microstrip). Figure 1. It shows a scheme of the microstrip heating cell comprising an N-type input connector, a metal transmission line, a slot antenna in a microstrip mass plane, a microwave-insulating thermal insulating material, a ceramic material of high dielectric losses, a metal structure that completely encloses the cell whose base forms the reflector plane, and the dielectric substrate plate that supports the microstrip line).
Figura 2. Muestra una gráfica denominada carta de Smith que representa el factor de reflexión de la célula de calentamiento stripline tanto en módulo como en fase en función de la longitud eléctrica de la célula. De la figura se deduce que tanto módulo como fase son decrecientes con la longitud eléctrica, considerando suficientes las respuestas contenidas en el interior de la línea discontinua. Figure 2. It shows a graph called Smith's chart that represents the reflection factor of the stripline heating cell in both module and phase depending on the electrical length of the cell. From the figure it follows that both module and phase are decreasing with the electrical length, considering the responses contained within the dashed line are sufficient.
Figura 3. Muestra una gráfica que representa el parámetro Su como la relación entre la señal de microonda reflejada respecto a la señal de entrada o el parámetro de eficiencia en función de la frecuencia de microondas para una célula calefactora microstrip cuando está diseñada para radiación en espacio libre, cargada con un susceptor de microondas y finalmente rediseñada para estar adaptada empleando un material cerámico de altas perdidas.
Figura 4a-4c. Muestra unas gráficas de calentamiento de materiales cerámicos de altas pérdidas en un horno de microondas multimodal en función del tiempo de exposición a la radiación microondas. Figura 5. Muestra un esquema de la célula calefactora stripline que comprende planos de masa, material cerámico de altas pérdidas y una línea de transmisión formada por un conductor central. Figure 3. Shows a graph representing the Su parameter as the ratio between the reflected microwave signal with respect to the input signal or the efficiency parameter as a function of the microwave frequency for a microstrip heating cell when designed for space radiation free, loaded with a microwave susceptor and finally redesigned to be adapted using a high loss ceramic material. Figure 4a-4c. It shows graphs of heating of high loss ceramic materials in a multimodal microwave oven depending on the time of exposure to microwave radiation. Figure 5. It shows a scheme of the stripline heating cell comprising mass planes, high loss ceramic material and a transmission line formed by a central conductor.
Figura 6. Muestra una gráfica que representa el parámetro Su como la relación entre la señal de microonda reflejada respecto a la señal de entrada o el parámetro de eficiencia en función de la frecuencia de microondas para una célula calefactora stripline para diferentes longitudes de la línea de transmisión. Figure 6. Shows a graph representing the Su parameter as the ratio between the reflected microwave signal with respect to the input signal or the efficiency parameter as a function of the microwave frequency for a stripline heating cell for different lengths of the line transmission.
Figura 7. Muestra un esquema de la célula calefactora stripline comprendiendo líneas de transmisión en una única pieza que comprende plano de masa, material cerámico de altas pérdidas y líneas de transmisión formadas por conductores centrales. Figure 7. It shows a scheme of the stripline heating cell comprising transmission lines in a single piece comprising mass plane, high loss ceramic material and transmission lines formed by central conductors.
Figura 8. Muestra un esquema de una agrupación de células calefactoras microstrip para el calentamiento uniforme sobre una pieza más grande de material cerámico de altas pérdidas, mediante el empleo líneas microstrip en configuración de divisores de Wilkinson, y antenas de ranura en plano de masa. Figure 8. It shows a scheme of a cluster of microstrip heating cells for uniform heating over a larger piece of high-loss ceramic material, using microstrip lines in Wilkinson's splitter configuration, and groove antennas in the mass plane.
Figura 9. Muestra un esquema de los componentes que integran un calefactor unitario, a saber las células calefactoras, los divisores de potencia de Wilkilson , divisor de potencia no normalizado, la transición guía coaxial, el magnetrón y las conexiones pertinentes utilizando cable coaxial. Figure 9. Shows a scheme of the components that make up a unit heater, namely the heating cells, Wilkilson power dividers, non-standardized power divider, coaxial guide transition, magnetron and relevant connections using coaxial cable.
Figura 10. Muestra un esquema de los componentes que integran un sistema calefactor, a saber distintos calefactores unitarios, una unidad de control y una conexión de datos para el control que pudiera serwifi o PLC. Figure 10. It shows a diagram of the components that make up a heating system, namely different unit heaters, a control unit and a data connection for the control that could be PLC or PLC.
Figura 11. Muestra una tabla que relaciona el diámetro del conductor central de la célula stripline con la impedancia característica de la línea vista desde el plano de excitación.
Figura 12. Muestra una tabla donde se muestra el valor del parámetro de dispersión S_11 y el correspondiente porcentaje de potencia absorbida a la frecuencia de 2.45 GHz para diferentes longitudes de la línea de transmisión, una vez fijado el diámetro del conductor central de la línea en D=1 mm. Figure 11. It shows a table that relates the diameter of the central conductor of the stripline cell with the characteristic impedance of the line seen from the excitation plane. Figure 12. It shows a table showing the value of the dispersion parameter S_11 and the corresponding percentage of power absorbed at the frequency of 2.45 GHz for different lengths of the transmission line, once the diameter of the center conductor of the line is set to D = 1 mm
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
Como caso práctico de realización de la invención, y sin carácter limitativo de la misma, se describen a continuación varios ejemplos de realización de las células calefactoras, alimentada por una línea microstrip o por una línea de transmisión stripline, de uno de los aspectos de la invención que implementan de forma simple los principales conceptos objeto de esta invención. As a practical case of realization of the invention, and without limitation thereof, several examples of embodiment of the heating cells, fed by a microstrip line or by a stripline transmission line, of one of the aspects of the invention are described below. invention that simply implement the main concepts object of this invention.
En el primer aspecto de la invención referido a una célula calefactora a partir de radiación de microondas, tenemos que dicha célula calefactora comprende en una estructura metálica (6) dotada de una base al menos un conector de entrada (1), una línea de transmisión eléctrica (2) de modos electromagnéticos transversales monomodales actuando como una antena (3) y que está hecha al menos de metal y/o material cerámico, un material cerámico de altas pérdidas dieléctricas (5,9) al cual se encuentra fijada la antena (3), y un plano reflector definido por la base de la estructura metálica (6) y situado a de la línea de transmisión eléctrica (2), siendo λ la longitud de onda de la radiación incidente en la célula, dirigiendo el plano reflector dicha radiación de microondas al material cerámico de altas pérdidas dieléctricas (5,9). Adicionalmente se puede equipar la célula calefactora con un divisor de modos electromagnéticos transversales monomodales In the first aspect of the invention referred to a heating cell from microwave radiation, we have that said heating cell comprises in a metal structure (6) provided with a base at least one input connector (1), a transmission line electrical (2) of single-mode transverse electromagnetic modes acting as an antenna (3) and which is made of at least metal and / or ceramic material, a ceramic material with high dielectric losses (5.9) to which the antenna is fixed ( 3), and a reflector plane defined by the base of the metal structure (6) and located a of the electric transmission line (2), λ being the wavelength of the radiation incident in the cell, directing the said reflector plane microwave radiation to the ceramic material with high dielectric losses (5.9). Additionally, the heating cell can be equipped with a single mode transverse electromagnetic mode splitter.
En una posible primera realización, la célula calefactora a partir de radiación de microondas puede tener la línea de transmisión eléctrica (2) definida por una lámina metálica conductora separada de una lámina metálica de masa por una lámina dieléctrica y fijada una ranura del material cerámico de altas pérdidas dieléctricas (5) y sustentada por una placa de sustrato dieléctrico (7). En esta posible realización la célula calefactora adicionalmente comprende un material aislante térmico transparente a las microondas (4), ubicado entre el material cerámico de altas pérdidas dieléctricas (5,9) y la antena (3)
cuando la línea de transmisión eléctrica (2) es una lámina metálica conductora separada de una lámina metálica de masa por una lámina dieléctrica. In a possible first embodiment, the heating cell from microwave radiation can have the electric transmission line (2) defined by a conductive metal sheet separated from a metal mass sheet by a dielectric sheet and fixed a groove of the ceramic material of high dielectric losses (5) and supported by a dielectric substrate plate (7). In this possible embodiment, the heating cell additionally comprises a microwave-insulating thermal insulating material (4), located between the high dielectric loss ceramic material (5,9) and the antenna (3) when the electric transmission line (2) is a conductive metal sheet separated from a metal mass sheet by a dielectric sheet.
En una posible segunda realización la célula calefactora a partir de radiación de microondas puede tener la línea de transmisión eléctrica (2) definida por un conductor central metálico (10) que se encuentra ubicado en el interior del material cerámico de altas pérdidas dieléctricas (9) una zona comprendida en un eje de simetría del material cerámico de altas pérdidas dieléctricas (9) entre dos planos de masa equidistantes al conductor central metálico (10). In a possible second embodiment the heating cell from microwave radiation can have the electric transmission line (2) defined by a metallic central conductor (10) which is located inside the ceramic material of high dielectric losses (9) an area comprised in an axis of symmetry of the ceramic material of high dielectric losses (9) between two planes of mass equidistant from the metallic central conductor (10).
En el caso de elegir la segunda opción, el conductor central metálico (10) se encuentra ubicado en una zona comprendida en un eje de simetría vertical del material cerámico de altas pérdidas dieléctricas (9) que preferentemente divide en dos partes iguales el material cerámico de altas pérdidas dieléctricas (9). In the case of choosing the second option, the metallic central conductor (10) is located in an area comprised in an axis of vertical symmetry of the ceramic material of high dielectric losses (9) which preferably divides the ceramic material of two equal parts high dielectric losses (9).
Asimismo, el conductor central (10) se encuentra preferentemente ubicado en un hueco del material cerámico de altas pérdidas dieléctricas (9), hueco que más preferentemente tiene unas dimensiones respectivamente correspondientes a la longitud del conductor central, que es preferentemente superior a 10 cm y a la mitad de la sección del conductor central, pudiendo el conductor central (10) presentar, en cualquiera de los ejemplos referidos, una sección transversal circular, cuadrada o rectangular. Likewise, the central conductor (10) is preferably located in a hollow of the ceramic material of high dielectric losses (9), which more preferably has dimensions respectively corresponding to the length of the central conductor, which is preferably greater than 10 cm and half of the central conductor section, the central conductor (10) being able to present, in any of the aforementioned examples, a circular, square or rectangular cross section.
El funcionamiento de uno de los aspectos de la invención se puede observar a la vista de las figuras 4a-4c donde en la figura 4a muestra una gráfica referida al calentamiento- enfriamiento de una placa cerámica de SiC de 5x5 cm2 de superficie y un espesor de 0.7 cm, con una densidad del 99% respecto de la densidad teórica; el calentamiento se realiza en un horno microondas de 1000 W; la figura 4b muestra una gráfica referida al calentamiento-enfriamiento del material cerámico de altas pérdidas (5,9) con un 50% en peso de partículas de SiC y el resto está constituido por porosidad y un compuesto sílico- aluminoso para mantener los granos de carburo de silicio consolidados; la placa de 14.8x14.8 cm2 de superficie y un espesor de 1.1 cm de espesor posee 1300 gramos de masa; el calentamiento se realiza en un horno microondas de 1600 W; y la Figura 4c muestra una gráfica referida a las curvas de calentamiento-enfriamiento de ciclos
consecutivos. The operation of one of the aspects of the invention can be seen in view of Figures 4a-4c where in Figure 4a it shows a graph referring to the heating-cooling of a ceramic SiC plate of 5x5 cm 2 of surface and a thickness 0.7 cm, with a density of 99% with respect to the theoretical density; heating is carried out in a 1000 W microwave oven; Figure 4b shows a graph referring to the heating-cooling of the high loss ceramic material (5.9) with 50% by weight of SiC particles and the rest is constituted by porosity and a silica-aluminous compound to maintain the grains of consolidated silicon carbide; The plate of 14.8x14.8 cm 2 of surface and a thickness of 1.1 cm thick has 1300 grams of mass; the heating is done in a 1600 W microwave oven; and Figure 4c shows a graph referring to the heating-cooling cycle curves consecutive.
Asimismo se prevé la posibilidad de que material cerámico de altas pérdidas dieléctricas (5,9) tenga un plano conductor, preferiblemente de un material que comprende aluminio, en al menos una de sus cara, preferiblemente en una cara donde no se encuentra acoplada la línea.. The possibility is also provided that ceramic material with high dielectric losses (5.9) has a conductive plane, preferably of a material comprising aluminum, on at least one of its faces, preferably on a face where the line is not coupled. ..
Ejemplo 1. Célula calefactora con la la antena de ranura en plano de masa (3) microstrip empleando el citado material cerámico de altas pérdidas dieléctricas (5) de la figura 1 que comprende SiC, preferiblemente más de un 50% en peso de SiC. Example 1. Heating cell with the groove antenna in the ground plane (3) microstrip using said ceramic material of high dielectric losses (5) of Figure 1 comprising SiC, preferably more than 50% by weight of SiC.
Se refiere a una célula calefactora tipo microstrip envuelta en la misma estructura metálica (6), preferentemente aluminio, la antena (3) es de tipo de ranura en plano de masa es decir tipo microstrip alimentada por la línea de transmisión (2) y conectada al conector de entrada (1) tipo N. Se mantiene la antena (3) de ranura en plano de masa, fijada mediante adhesivo a una lámina de fibra de alúmina que actúa como material aislante térmico transparente a las microondas (4) a las temperaturas de trabajo de la célula calefactora y, a continuación de ésta el material cerámico de altas pérdidas (5) que puede ser preferiblemente una placa de SiC 100%. La estructura metálica (6) It refers to a microstrip type heating cell wrapped in the same metal structure (6), preferably aluminum, the antenna (3) is of the groove type in the mass plane, that is to say microstrip type fed by the transmission line (2) and connected to the input connector (1) type N. The groove antenna (3) is maintained in the ground plane, fixed by adhesive to an alumina fiber sheet that acts as a microwave-insulated thermal insulating material (4) at temperatures working of the heating cell and then the high loss ceramic material (5) which may preferably be a 100% SiC plate. The metal structure (6)
Á TO
define en su base un plano reflector de aluminio situado a i de la antena (3) por tanto dado que esta se encuentra en la citada ranura del material cerámico de altas pérdidas (5) a la misma distancia de la ranura del material cerámico de altas pérdidas (5). Estando el plano reflector destinado a dirigir una radiación de longitud de onda λ incidente en la célula hacia el material cerámico de altas pérdidas dieléctricas (5). La disposición de los elementos que conforman la célula se esquematiza en la Figura 1. It defines at its base an aluminum reflector plane located ai of the antenna (3), since it is in the aforementioned slot of the high loss ceramic material (5) at the same distance from the slot of the high loss ceramic material (5). The reflector plane is intended to direct a radiation of wavelength λ incident in the cell towards the ceramic material of high dielectric losses (5). The arrangement of the elements that make up the cell is schematized in Figure 1.
La potencia que puede soportar la antena (3) de ranura en plano de masa alimentada por una línea microstrip o una línea de transmisión stripline puede llegar a 300 W a esta frecuencia. Por cuestiones de seguridad la potencia debe limitarse a 100 W en una superficie de 5x5 cm2 suponiendo que esté completamente adaptada (VSWR≥ 20 dB). Para la placa densa de SiC del 100% de 6 mm de espesor y superficie de 5x5 cm2 la masa total sería:
m ígr) = 3.153 /„„ ,3 · 5 · 5 · 0.6 cnr* s? Seor The power that can be supported by the groove antenna (3) in the ground plane fed by a microstrip line or a stripline transmission line can reach 300 W at this frequency. For safety reasons the power must be limited to 100 W on a surface of 5x5 cm 2 assuming it is fully adapted (VSWR≥ 20 dB). For the dense SiC plate of 100% 6 mm thick and 5x5 cm 2 surface the total mass would be: m ígr) = 3.153 / „„, 3 · 5 · 5 · 0.6 cnr * s? Lord
nt (jr) = 3.153 ¡cm3■ 5 · 5■ 0.6 cma ¾ Sojr nt (jr) = 3.153 ¡ cm3 ■ 5 · 5 ■ 0.6 cm a ¾ Sojr
Para aumentar la temperatura de esta pieza desde 20 °C hasta 80 °C, es decir, un incremento de temperatura ΔΤ = 60 °C en un tiempo de 1 min = 60 s se requiere: To increase the temperature of this piece from 20 ° C to 80 ° C, that is, an increase in temperature ΔΤ = 60 ° C in a time of 1 min = 60 s is required:
50 · 60 · 0.7 5060
Potencia = : = 35 W < 100 W (limite de potencia) Power =: = 35 W <100 W (power limit)
6o 6th
50■ 60 « 0.7 50 ■ 60 « 0.7
Potencia = : = 35 W < 100 W (limite de potencia} Power =: = 35 W <100 W (power limit}
6o 6th
Por lo tanto se conseguiría un calentamiento de la placa adecuado para que dicha unidad calefactora actúe como elemento generador de calor. Therefore, adequate heating of the plate would be achieved so that said heating unit acts as a heat generating element.
La Fig. 3 muestra las respuestas medidas de la antena cuando la misma está diseñada para radiación en espacio libre, después cargada con un susceptor de microondas y finalmente rediseñada y reimpresa para la adaptación en presencia del material cerámico de altas pérdidas (5). Las simulaciones muestran una eficiencia de radiación de ¾ = !99,8% como se esperaba dadas las bajas pérdidas del sustrato, y las medidas muestran una adaptación de impedancias mejor que S = -2Q dB t consiguiendo una eficiencia total cercana al 99%. Fig. 3 shows the measured responses of the antenna when it is designed for free space radiation, then loaded with a microwave susceptor and finally redesigned and reprinted for adaptation in the presence of high loss ceramic material (5). The simulations show a radiation efficiency of ¾ =! 99 , 8% as expected given the low losses of the substrate, and the measurements show an impedance adaptation better than S = -2Q dB t achieving a total efficiency close to 99%.
Ejemplo 2. Célula calefactora stripline empleando material cerámico de altas perdidas (9) de la figura 5, material cerámico de altas perdidas (9) de porcelana con 50% en peso de SiC. Example 2. Stripline heating cell using high loss ceramic material (9) of Figure 5, high loss ceramic material (9) of porcelain with 50% by weight of SiC.
En este caso tenemos una célula calefactora tipo stripline que comprende el citado conductor central de un material metálico (10), preferiblemente de cobre de 1 mm de diámetro que se mecanizó a partir de una lámina de cobre. La forma del conductor central metálico (10) de la línea stripline se reprodujo en negativo en el interior del material cerámico de altas perdidas (9) consistente en un compuesto tipo porcelana que comprende 50% en peso de partículas de SiC y el resto está constituido por porosidad y un compuesto sílico-aluminoso para mantener los granos de carburo de
silicio consolidados. In this case we have a stripline heating cell comprising the said central conductor of a metallic material (10), preferably of 1 mm diameter copper that was machined from a copper sheet. The shape of the metallic central conductor (10) of the stripline line was reproduced negatively inside the high loss ceramic material (9) consisting of a porcelain type compound comprising 50% by weight of SiC particles and the rest is constituted porosity and a silica-aluminous compound to keep the carbide grains of consolidated silicon.
La Fig. 7 muestra el factor de reflexión frente a la frecuencia en esta figura se puede observar un conductor central metálico (10). La célula calefactora stripline se comportó como un dispositivo de banda ancha. La transferencia energética tuvo una eficiencia superior al 99%, ya que toda la energía absorbida por el dispositivo es convertida en calor sin ninguna clase de fugas o reflexiones. Fig. 7 shows the reflection factor versus frequency in this figure a metallic central conductor (10) can be observed. The stripline heating cell behaved like a broadband device. The energy transfer had an efficiency greater than 99%, since all the energy absorbed by the device is converted into heat without any leaks or reflections.
Con cualquiera de las posibles configuraciones de célula calefactora, y añadiendo divisores de potencia, y al menos un magnetrón, tenemos un calefactor de radiación microondas, ya que el magnetrón se encargaría de generar la radiación de microondas que requiere la célula calefactora. Adicionalmente se puede equipar el calefactor con una unidad de comunicación y una unidad de control. Si se requiere según instalación, se puede definir un sistema de calefacción empleando radiación microondas mediante la interconexión de una serie de calefactores de radiación microondas como el descrito en el párrafo anterior. A este sistema, para su óptimo funcionamiento, se le podría implementar tanto un algoritmo de control como un sistema inteligente de control.
With any of the possible heating cell configurations, and adding power dividers, and at least one magnetron, we have a microwave radiation heater, since the magnetron would be responsible for generating the microwave radiation required by the heating cell. Additionally, the heater can be equipped with a communication unit and a control unit. If required according to installation, a heating system using microwave radiation can be defined by interconnecting a series of microwave radiation heaters as described in the previous paragraph. For this optimal operation, a control algorithm as well as an intelligent control system could be implemented.
Claims
1. Célula calefactora a partir de radiación de microondas caracterizada por que comprende, encerrados en una estructura metálica (6) dotada de una base: 1. Heating cell from microwave radiation characterized by comprising, enclosed in a metal structure (6) equipped with a base:
« al menos un conector de entrada (1), "At least one input connector (1),
• una línea de transmisión eléctrica (2) de modos electromagnéticos transversales monomodales actuando como una antena (3), • an electric transmission line (2) of single mode transverse electromagnetic modes acting as an antenna (3),
• un material cerámico de altas pérdidas dieléctricas (5,9) al cual se encuentra fijada la antena (3), y • a ceramic material with high dielectric losses (5.9) to which the antenna (3) is attached, and
« un plano reflector definido por la base de la estructura metálica (6) y situado a λ «A reflecting plane defined by the base of the metal structure (6) and located at λ
ϊ de la línea de transmisión eléctrica (2), siendo λ la longitud de onda de la radiación incidente en la célula, dirigiendo el plano reflector dicha radiación de microondas al material cerámico de altas pérdidas dieléctricas (5,9). ϊ of the electric transmission line (2), where λ is the wavelength of the radiation incident in the cell, said reflector plane directing said microwave radiation to the ceramic material of high dielectric losses (5.9).
2. Célula calefactora a partir de radiación de microondas según la reivindicación 1 caracterizada por que adicionalmente comprende un divisor de modos electromagnéticos transversales monomodales.. 2. Heating cell from microwave radiation according to claim 1 characterized in that it additionally comprises a divider of single-mode transverse electromagnetic modes.
3. Célula calefactora según reivindicación 2 caracterizada por que la línea de transmisión eléctrica (2) de modos electromagnéticos transversales monomodales se selecciona de entre: 3. Heating cell according to claim 2, characterized in that the electric transmission line (2) of single-mode transverse electromagnetic modes is selected from:
una lámina metálica conductora separada de una lámina metálica de masa por una lámina dieléctrica y fijada a una ranura del material cerámico de altas pérdidas dieléctricas (5) y sustentada por una placa de sustrato dieléctrico (7), y a conductive metal sheet separated from a mass metal sheet by a dielectric sheet and fixed to a groove of the high dielectric loss ceramic material (5) and supported by a dielectric substrate plate (7), and
- un conductor central metálico (10) que se encuentra ubicado en el interior del material cerámico (9) entre dos planos de masa equidistantes al conductor central metálico (10); y - a metallic central conductor (10) which is located inside the ceramic material (9) between two mass planes equidistant from the metallic central conductor (10); Y
porque la célula calefactora adicionalmente comprende un material aislante térmico transparente a las microondas (4), ubicado entre el material cerámico de altas pérdidas dieléctricas (5) y la antena (3) cuando la línea de transmisión eléctrica (2) es una lámina metálica conductora separada de una lámina metálica de masa por una lámina dieléctrica.
because the heating cell additionally comprises a microwave-insulating thermal insulating material (4), located between the ceramic material with high dielectric losses (5) and the antenna (3) when the electric transmission line (2) is a conductive metal sheet separated from a metal sheet of dough by a dielectric sheet.
4. Célula calefactora según una cualquiera de las reivindicaciones 1 a 3 caracterizada por que el material cerámico de altas pérdidas dieléctricas (5,9) tiene un valor de pérdidas dieléctricas en la región de radiación electromagnética de microondas≥ 0.10. 4. Heating cell according to any one of claims 1 to 3 characterized in that the ceramic material with high dielectric losses (5.9) has a value of dielectric losses in the microwave electromagnetic radiation region ≥ 0.10.
5. Célula calefactora según una cualquiera de las reivindicaciones 1 a 4 caracterizada por que el material cerámico de altas pérdidas dieléctricas (5) comprende una proporción de al menos 50% en peso de SiC. 5. Heating cell according to any one of claims 1 to 4 characterized in that the ceramic material with high dielectric losses (5) comprises a proportion of at least 50% by weight of SiC.
6. Célula calefactora según una cualquiera de las reivindicaciones 1 a 5 caracterizada por que el material cerámico de altas pérdidas dieléctricas (5) comprende un plano conductor en al menos una de sus caras. 6. Heating cell according to any one of claims 1 to 5 characterized in that the ceramic material with high dielectric losses (5) comprises a conductive plane in at least one of its faces.
7. Célula calefactora según reivindicación 5 caracterizada por que el plano conductor es de un material que comprende aluminio. 7. Heating cell according to claim 5 characterized in that the conductive plane is made of a material comprising aluminum.
8. Célula calefactora según reivindicación 3 caracterizada por que el conductor central metálico (10) se encuentra ubicado en una zona comprendida en un eje de simetría del material cerámico de altas pérdidas dieléctricas (9). 8. Heating cell according to claim 3 characterized in that the metallic central conductor (10) is located in an area comprised in an axis of symmetry of the ceramic material of high dielectric losses (9).
9. Célula calefactora según reivindicación 8 caracterizada por que el eje de simetría es un eje de simetría vertical que divide en dos partes iguales el material cerámico de altas pérdidas dieléctricas (9). 9. Heating cell according to claim 8 characterized in that the axis of symmetry is a vertical axis of symmetry that divides the ceramic material of high dielectric losses (9) into two equal parts.
10. Célula calefactora según reivindicación 3 caracterizada por que el conductor central metálico (10) se encuentra ubicado en un hueco del material cerámico de altas pérdidas dieléctricas (9), hueco que tiene unas dimensiones respectivamente correspondientes a la longitud del conductor central metálico (10) y a la mitad de la sección del conductor centra metálico (10). 10. Heating cell according to claim 3 characterized in that the metallic central conductor (10) is located in a hollow of the ceramic material of high dielectric losses (9), a hollow having dimensions respectively corresponding to the length of the metallic central conductor (10 ) and in the middle of the conductor section metal center (10).
11. Célula calefactora según reivindicación 3 o una cualquiera de 8 a 10 caracterizada por que el conductor central metálico (10) tiene una longitud superior a 10 cm.
11. Heating cell according to claim 3 or any one of 8 to 10 characterized in that the metallic central conductor (10) has a length greater than 10 cm.
12. Célula calefactora según reivindicación 3 o una cualquiera de 8 a 11 caracterizada por que el conductor central metálico (10) tiene una sección transversal que se selecciona de entre el grupo consistente en: 12. Heating cell according to claim 3 or any one of 8 to 11 characterized in that the metallic central conductor (10) has a cross-section that is selected from the group consisting of:
circular, circular,
cuadrada, y square, and
rectangular. rectangular.
13. Calefactor de radiación microondas caracterizado por que comprende al menos un célula calefactora como la descrita en las reivindicaciones 1 a 12, divisores de potencia, y al menos un magnetrón. 13. Microwave radiation heater characterized in that it comprises at least one heating cell as described in claims 1 to 12, power dividers, and at least one magnetron.
14. Calefactor de radiación microondas según reivindicación 13 caracterizado por que adicionalmente comprende una unidad de comunicación y una unidad de control. 14. Microwave radiation heater according to claim 13 characterized in that it additionally comprises a communication unit and a control unit.
15. Sistema de calefacción empleando radiación microondas caracterizado por que comprende interconectados una serie de calefactores de radiación microondas según una cualquiera de las reivindicaciones 13 o 14, un algoritmo de control y un sistema inteligente de control. 15. Heating system using microwave radiation characterized in that it comprises interconnected a series of microwave radiation heaters according to any one of claims 13 or 14, a control algorithm and an intelligent control system.
16. Uso del sistema de calefacción empleando radiación microondas según la reivindicación 16 para confort térmico en forma de calefacción para espacios como habitaciones domésticas, oficinas, locales comerciales, locales industriales y en general espacios habitados.
16. Use of the heating system using microwave radiation according to claim 16 for thermal comfort in the form of heating for spaces such as domestic rooms, offices, commercial premises, industrial premises and in general inhabited spaces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15846187.1A EP3133348B1 (en) | 2014-10-01 | 2015-09-30 | Heating cell, heater using same, heating system and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201431449 | 2014-10-01 | ||
ES201431449A ES2568749B1 (en) | 2014-10-01 | 2014-10-01 | HEATING CELL, HEATER THAT MAKES SAME USE, HEATING SYSTEM AND USE OF IT |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051003A1 true WO2016051003A1 (en) | 2016-04-07 |
Family
ID=55629464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070712 WO2016051003A1 (en) | 2014-10-01 | 2015-09-30 | Heating cell, heater using same, heating system and use thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3133348B1 (en) |
ES (1) | ES2568749B1 (en) |
WO (1) | WO2016051003A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020207029A1 (en) * | 2019-04-12 | 2020-10-15 | 广东美的厨房电器制造有限公司 | Cooking appliance |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11638344B1 (en) | 2020-03-25 | 2023-04-25 | Rockwell Collins, Inc. | Embedded electronic heater controller |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179595A (en) * | 1976-08-19 | 1979-12-18 | Saint-Gobain Industries | Multimodal resonant cavity for very high frequency heating |
GB2081559A (en) * | 1980-08-06 | 1982-02-17 | Sanyo Electric Co | Microwave heating apparatus |
US5293171A (en) * | 1993-04-09 | 1994-03-08 | Cherrette Alan R | Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power |
US5337065A (en) * | 1990-11-23 | 1994-08-09 | Thomson-Csf | Slot hyperfrequency antenna with a structure of small thickness |
EP2090869A1 (en) * | 2008-02-14 | 2009-08-19 | Surpass Industry Co., Ltd. | Flow rate measuring method and device |
US20100050619A1 (en) * | 2008-09-03 | 2010-03-04 | Houston Advanced Research Center | Nanotechnology Based Heat Generation and Usage |
WO2014133845A1 (en) * | 2013-02-28 | 2014-09-04 | Wki Holding Company, Inc. | Microwavable heating element and composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9013937U1 (en) * | 1990-10-06 | 1992-02-06 | Röhm GmbH, 64293 Darmstadt | Microwave emitters |
US6093921A (en) * | 1999-03-04 | 2000-07-25 | Mt Systems, Llc | Microwave heating apparatus for gas chromatographic columns |
WO2013085116A1 (en) * | 2011-12-07 | 2013-06-13 | 한국철도기술연구원 | Heating form heated by microwaves and construction method of concrete structure |
ITMI20120087U1 (en) * | 2012-03-06 | 2013-09-07 | Rotfil Srl | DRY RADIATOR WITH THERMAL ACCUMULATION |
-
2014
- 2014-10-01 ES ES201431449A patent/ES2568749B1/en active Active
-
2015
- 2015-09-30 WO PCT/ES2015/070712 patent/WO2016051003A1/en active Application Filing
- 2015-09-30 EP EP15846187.1A patent/EP3133348B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179595A (en) * | 1976-08-19 | 1979-12-18 | Saint-Gobain Industries | Multimodal resonant cavity for very high frequency heating |
GB2081559A (en) * | 1980-08-06 | 1982-02-17 | Sanyo Electric Co | Microwave heating apparatus |
US5337065A (en) * | 1990-11-23 | 1994-08-09 | Thomson-Csf | Slot hyperfrequency antenna with a structure of small thickness |
US5293171A (en) * | 1993-04-09 | 1994-03-08 | Cherrette Alan R | Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power |
EP2090869A1 (en) * | 2008-02-14 | 2009-08-19 | Surpass Industry Co., Ltd. | Flow rate measuring method and device |
US20100050619A1 (en) * | 2008-09-03 | 2010-03-04 | Houston Advanced Research Center | Nanotechnology Based Heat Generation and Usage |
WO2014133845A1 (en) * | 2013-02-28 | 2014-09-04 | Wki Holding Company, Inc. | Microwavable heating element and composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020207029A1 (en) * | 2019-04-12 | 2020-10-15 | 广东美的厨房电器制造有限公司 | Cooking appliance |
Also Published As
Publication number | Publication date |
---|---|
ES2568749A1 (en) | 2016-05-04 |
EP3133348A4 (en) | 2018-01-10 |
ES2568749B1 (en) | 2017-02-07 |
EP3133348B1 (en) | 2020-01-29 |
EP3133348A1 (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asaadi et al. | High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications | |
Sandeep et al. | Design and simulation of microstrip patch array antenna for wireless communications at 2.4 GHz | |
Borrell et al. | Advanced ceramic materials sintered by microwave technology | |
Paulides et al. | A patch antenna design for application in a phased-array head and neck hyperthermia applicator | |
CN105562307A (en) | Radiant panel, preparation process thereof and infrared standard radiation device | |
CN108886838A (en) | Infrared heating unit | |
Boyuan et al. | Conformal bent dielectric resonator antennas with curving ground plane | |
ES2568749B1 (en) | HEATING CELL, HEATER THAT MAKES SAME USE, HEATING SYSTEM AND USE OF IT | |
Weiguo et al. | A miniaturized dual-orbital-angular-momentum (OAM)–mode helix antenna | |
Zhao et al. | Experimental characteristics of 2.45 GHz microwave reconfigurable plasma antennas | |
CN113094955B (en) | Microwave heating simulation analysis method | |
Xia et al. | High-efficiency and compact microwave heating system for liquid in a mug | |
Oliveira et al. | Design and simulation of Na2Nb4O11 dielectric resonator antenna added with Bi2O3 for microwave applications | |
Jiang et al. | A study on the effect of metal skeleton auxiliary heating device on microwave heating efficiency of batch Al2O3 ceramics | |
Ramzan et al. | A microstrip probe based on electromagnetic energy tunneling for extremely small and arbitrarily shaped dielectric samples | |
Nesterenko et al. | Electromagnetic waves scattering and radiation by vibrator-slot structure in a rectangular waveguide | |
Kumar et al. | Study of monopole plasma antenna parameters | |
Chen et al. | Multiphysics analysis of RF pyramidal absorbers | |
Panahi et al. | An efficient high power RF dummy-load | |
KR20120100237A (en) | Heater system for electric heater | |
JP3925281B2 (en) | High frequency heating device | |
GS et al. | Microwave energy transduction using planar technology | |
Zhang et al. | 5G Base Station Antenna Array with Heatsink Radome | |
Kumar et al. | Four-Element Triangular Wideband Dielectric Resonator Antenna excited by a Coaxial Probe | |
CN215345102U (en) | Small-sized heat radiation incubator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846187 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015846187 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015846187 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |