WO2016050024A1 - 一种聚合物粘稠液体中残留单体的分离系统及分离方法 - Google Patents

一种聚合物粘稠液体中残留单体的分离系统及分离方法 Download PDF

Info

Publication number
WO2016050024A1
WO2016050024A1 PCT/CN2015/071812 CN2015071812W WO2016050024A1 WO 2016050024 A1 WO2016050024 A1 WO 2016050024A1 CN 2015071812 W CN2015071812 W CN 2015071812W WO 2016050024 A1 WO2016050024 A1 WO 2016050024A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
viscous liquid
reaction vessel
tank
residual
Prior art date
Application number
PCT/CN2015/071812
Other languages
English (en)
French (fr)
Inventor
周建明
李本林
何绍群
Original Assignee
周建明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周建明 filed Critical 周建明
Publication of WO2016050024A1 publication Critical patent/WO2016050024A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof

Definitions

  • This invention relates to separation techniques for residual monomers in polymeric viscous liquids.
  • the thin film evaporation method is to scrape the processed prepolymer from the upper portion of the evaporator to a thin film, and the material is heated down to a few minutes, the evaporation area is large, and the residual monomer is evaporated quickly.
  • the thin film evaporation method requires expensive equipment and advanced processing technology. It takes tens of millions of yuan to purchase a set of equipment, and the process technology of using this equipment is very complicated. If it is slightly careless, the equipment will be blocked and cannot work normally. , or the amount of residual monomer treatment does not meet the design requirements. At present, there are only a few large group multinational companies in the world that can normally use thin film evaporation equipment. The domestic research on thin film evaporation method is still in the trial and trial stage.
  • Patent document CN 101948565 discloses a method for second-stage separation of residual isocyanate monomer by using a tubular evaporator and a thin film evaporator, the fractionation temperature is 120-240 ° C, the pressure is 0.1-2000 Pa, and the entrained gas is introduced from the bottom to the thin film evaporator. The entrained gas introduced in this patent simply blows the thin film evaporator.
  • Patent document CN101475680 discloses the separation of residual HDI monomer by a thin film evaporator or/and a molecular distiller at a separation temperature of 70 to 200 ° C and a pressure of 0.5 to 50000 Pa. Both of these patents disclose the application process of the thin film evaporator, which is not only expensive, but also complicated in process and high in processing cost.
  • the present invention proposes a system and a separation method for separating residual monomers in a viscous liquid of a polymer, and solves the prior art. Insufficient.
  • the solution to the technical problem of the present invention is to provide a separation system for residual monomers in a polymer viscous liquid, the separation system comprising a gas supply device, a gas heating device, a separation device, and a vacuuming device; wherein:
  • a gas heating device is connected to the outlet of the gas supply device
  • the separation device comprises a reactor/loading tank provided with a stirrer, a condenser connected to the top of the reactor/loading tank, and a storage tank connected to the outlet of the condenser; the bottom of the reactor/charge tank is equipped with a gas Dispersing tube
  • the vacuuming device is connected to the condenser and the reaction vessel/charge tank through the storage tank, and the system is evacuated;
  • the gas supplied from the gas supply device passes through the gas heating device and enters the gas dispersion pipe installed at the bottom of the reaction vessel/charge tank, and blows the polymer viscous liquid through the gas dispersion pipe to bub the viscous liquid and evaporate the residue sheet.
  • the residual monomer and evaporated gas enter the condenser together under vacuum, and the residual monomer and gas are separated by condensation, and the residual monomer enters the storage tank for storage.
  • the gas dispersion tube has a plurality of small holes therein.
  • a method for separating residual monomers in a polymer viscous liquid comprising the steps of: introducing a gas into a bottom of a reaction vessel/loading tank under vacuum and agitation; a gas dispersion pipe, which is blown from the gas dispersion pipe into the bottom of the reaction vessel/charge tank to bub the polymer viscous liquid, and the evaporated residual monomer enters the condenser connected to the reaction vessel/charge tank together with the gas.
  • the residual monomer and gas are separated by condensation; the temperature of the gas is from room temperature to 250 °C.
  • the degree of vacuum is 0.02 to 0.095 MPa.
  • the gas is one of air, nitrogen, carbon dioxide and helium.
  • the gas temperature is 60 to 160 °C.
  • the gas dispersion tube has a plurality of small holes through which gas enters the reaction vessel/charge tank for better evaporation.
  • the polymer viscous liquid refers to a viscous liquid containing a polyisocyanate prepolymer, a polyester polyol, a polyether polyol, an acrylic resin, an alkyd resin, a phenol resin, a urea resin or an epoxy resin.
  • the polyisocyanate prepolymer is a TDI adduct, a TDI trimer, a TDI-HDI mixed adduct, an HDI adduct, an HDI biuret, an HDI trimer, an MDI adduct, MDI trimer, MDI biuret, IPDI adduct, IPDI trimer or XDI adduct.
  • the invention simulates the principle that the thin film evaporation method scrapes a high-viscosity liquid into a film on the upper part of the evaporator by a rotating scraper, and then flows down slowly, the liquid has a short heating time, a large evaporation area, and a residual monomer is evaporated quickly.
  • the solution of the invention is to directly blow the liquid in the reaction kettle with hot gas to form an infinite number of microbubble thin film evaporators, and the monomer molecules encapsulated in the high viscosity liquid can be easily thinned by the evaporation of hot gases.
  • the bubble wall is released, and the higher the viscosity of the liquid, the larger the bubble, the larger the evaporation area, and the easier the monomer molecules are to escape. At the same time, blowing, also accelerates the speed of movement of the vaporized gas.
  • the invention has the following beneficial effects:
  • composition of the separation system is simple.
  • the conventional chemical reaction equipment of a general chemical plant can be combined according to the separation principle of the present invention, and an expensive tube-and-tube evaporator and a thin film evaporator are not required, which greatly reduces the cost.
  • the separation method is simple and the process is simple.
  • the invention directly vents a gas having a certain temperature from a gas dispersing tube at the bottom of the reaction vessel into the liquid, causing the liquid to tumbling and bubbling, forming numerous bubbles of large and small sizes; thereby utilizing the principle of thin film evaporation to make a single The bulk molecules escape and separate from the bubble wall under the evaporation of hot gas.
  • the present invention can carry out the chemical reaction and the removal of residual monomers in two steps in the same reactor. No need to discharge or switch equipment before processing, which greatly reduces the processing energy consumption, saves costs and improves production efficiency.
  • the present invention directly uses a gas having a certain temperature to heat the viscous liquid in the reaction vessel, has the characteristics of fast and uniform heat transfer, high thermal effect, and low heating temperature required, such as 60-160 ° C;
  • the heating temperature of a device using a thin film evaporator or the like is 70 to 240 ° C, and is generally above 160 ° C.
  • the temperature of the gas is set due to the sensitivity of the liquid in the reactor to temperature, and the hot gas charged is continuously sucked away by the vacuum, so that no local overheating of the contact point occurs.
  • the polymer or macromolecule to be treated does not undergo a chemical reaction due to excessive local temperature, and is particularly suitable for separating residual monomers in the high-viscosity heat-sensitive prepolymer.
  • the invention can be used for the separation of monomer molecules in a polymer viscous liquid in the chemical industry.
  • Figure 1 is a schematic illustration of a separation system of the present invention.
  • the present invention provides a system for the separation of residual monomers in a polymer viscous liquid.
  • the separation system includes a gas supply device, a gas heating device, a separation device, and a vacuuming device.
  • the air supply device includes an air compressor 1 and an air dryer 2 connected thereto for generating clean and dry compressed air. Also included is a gas storage tank 4 for storing other desired gases. Those skilled in the art can set the composition of the gas supply device according to the type of gas used, the pressure of the gas, and the like.
  • the gas heater 3 is connected to the outlet of the gas supply device; the gas may be heated by direct heating of the gas by using an electric heating device, or may be heated by a water bath or an oil bath of the in-line tube or coil of the gas passage. Different heating methods are selected depending on the heating gas.
  • the separation device comprises a reaction vessel 5 and a condenser 6 connected to the top of the reaction vessel 5 and a storage tank 7 connected to the outlet of the condenser; the reaction vessel 5 is provided with a stirrer 51, and a gas dispersion pipe 52 is installed at the bottom of the reaction vessel 5, preferably
  • the gas dispersion tube has a plurality of small holes for better dispersion.
  • the arrangement of the gas dispersion tube 52 at the bottom of the reaction vessel 5 is designed as needed by those skilled in the art, and the shape and array of the small holes in the gas dispersion tube 52 are not particularly required, as long as the gas is introduced into the reaction vessel 5, and the drum is uniformly distributed. Soak.
  • the vacuum pump 8 is connected to the condenser 6 and the reaction vessel 5 through the storage tank 7, and the system is evacuated.
  • the vacuum pump 8 is first used to evacuate the system, and then the air is compressed by the air compressor 1, then purified by the air dryer 2, dried, and heated by the gas heater 3; or directly purchased compressed gas, such as compressed nitrogen. , carbon dioxide or helium gas, etc., are stored in the gas storage tank 4, these gases have been dried and purified, so they are directly heated by the gas heater 3 .
  • the atmospheric pressure gas is used, purified by the air dryer 3, and dried, and then heated by the gas heater 3.
  • the agitator 51 in the reaction vessel 5 is maintained in normal operation, and the gas passing through the gas heater 3 is introduced into the gas dispersion pipe 52 installed in the bottom of the reaction vessel 5 to blow the viscous liquid, and the viscous liquid is bubbled to form a bubble. Numerous large and small bubbles, the residual monomer molecules encapsulated in the viscous liquid are removed from the bubble wall by the evaporation of hot gas, and under vacuum suction, the evaporated residual monomer molecules and gas are pumped together to the reaction kettle.
  • the residual monomer and gas are separated, and the separated residual monomer enters the storage tank 7 for recovery; thus, the gas is repeatedly charged, bubbling, and vacuuming until The monomer molecule content in the viscous liquid is detected to reach a set amount value, and no droplets exit from the outlet of the condenser 6.
  • the reactor mentioned above may also be a container such as a charging tank that can be used for holding or reacting.
  • the invention also provides a method for separating residual monomers in a polymer viscous liquid, comprising the steps of: introducing a gas into a gas dispersion pipe installed at the bottom of the reaction vessel/loading tank under vacuum and stirring conditions;
  • the gas dispersion tube enters the bottom of the reaction vessel/charge tank to bubbling the viscous liquid of the polymer, and the residual monomer evaporated together with the gas enters the condenser connected to the reaction vessel, and the residual monomer and gas are separated by condensation;
  • the temperature of the gas is from room temperature to 250 °C.
  • the degree of vacuum can be adjusted according to actual separation requirements, and preferably, the degree of vacuum is 0.02 to 0.095 MPa.
  • the temperature of the gas is determined according to the material to be treated in the reactor, and the temperature of the viscous liquid to be treated in the reactor may be room temperature or low temperature, and the heating temperature is determined based on the change of the polymer property in the reactor.
  • the gas temperature is from 60 to 160 °C.
  • heating the gas which may be direct heating of the gas by the electric heating device, or water bath or oil bath heating of the in-line tube or coil of the gas passage. Different heating methods are selected depending on the heating gas.
  • the pressure of the gas to be introduced mainly depends on whether the viscous liquid can be bubbled. If the viscosity of the liquid to be treated is low, the pressure of the gas can be small or even not pressurized, and bubbles are generated by the vacuum negative pressure; If the viscosity of the liquid to be treated is high, the pressure of the gas is high to cause the viscous liquid to bubble, and the larger the bubble, the thinner the wall, and the more favorable the escape of residual monomer molecules.
  • the gas dispersion tube has a plurality of small holes through which gas enters the reaction vessel/charge tank for better evaporation.
  • the polymer viscous liquid is a synthetic high molecular polymer viscous liquid commonly used in the chemical industry, and is not limited to a heat sensitive substance having a reactive functional group, preferably a polyisocyanate prepolymer, a polyester polyol, a polyether poly One of an alcohol, an acrylic resin, an alkyd resin, a phenol resin, a urea resin, and an epoxy resin; further preferably, the polyisocyanate prepolymer is a TDI adduct, a TDI trimer, and a TDI-HDI mixture.
  • HDI adduct One of the product, HDI adduct, HDI biuret, HDI trimer, MDI adduct, MDI trimer, MDI biuret, IPDI adduct, IPDI trimer, XDI adductkind.
  • the gas can be introduced for a long time, and the liquid in the reaction vessel can be bubbled.
  • the temperature, time, and vacuum time of the gas to be introduced are determined according to the type, viscosity, molecular weight, and residual amount of the polymer. It is determined until the monomer molecule content in the viscous liquid is detected to reach a set amount.
  • a solvent may be added to the reaction vessel as needed to obtain polymer products having different solid contents.
  • Vacuum pump is used to vacuum the system, the vacuum is 0.070-0.085Mpa; after the air is purified by the dryer, it is heated into 130 °C in the gas heater.
  • the gas with residual HDI monomer is pumped to the top of the reactor under vacuum suction, enters the condenser connected to the reactor, separates the monomer and air, and the monomer enters the storage tank for recovery; the condensation is 2 hours later. No droplets flow out at the outlet of the device, and when the residual monomer content is less than 0.66 wt%, the vacuum is stopped.
  • the product performance indicators are: non-volatile content of 75 wt%, 25 ° C viscosity At 2500 mPa.s, the residual HDI monomer content was 0.46 wt% and the NCO content was 16.1 wt%.
  • Vacuum pump is used to vacuum the system, the vacuum is 0.070-0.085Mpa; after the air is purified by the dryer, it is heated to 120 °C in the gas heater.
  • the gas with residual HDI monomer is pumped to the top of the reactor under vacuum suction, enters the condenser connected to the reactor, separates the HDI monomer and air, and the monomer enters the storage tank for recycling; 2 hours later No droplets flow out at the outlet of the condenser, and when the residual monomer content is less than 0.66 wt%, the vacuum is stopped.
  • the product performance indicators are: non-volatile content of 75wt%, 25 ° C viscosity of 820mPa
  • the residual HDI monomer content was 0.42% by weight and the NCO content was 17.2% by weight.
  • Vacuum pump is used to vacuum the system, the vacuum is 0.070-0.085Mpa; after the air is purified by the dryer, it is heated to 120 °C in the gas heater.
  • the gas with residual TDI monomer is pumped to the top of the reactor under vacuum suction, into the condenser connected to the reaction vessel, and the TDI monomer and air are separated, and the monomer enters the storage tank for recovery; 3 hours later No droplets flow out at the outlet of the condenser, and when the residual monomer content is less than 0.66 wt%, the bubbling and evacuation are stopped.
  • the product performance indicators are: non-volatile content of 75wt%, 25 ° C viscosity of 2800mPa .s, the residual TDI monomer content was 0.43 wt%, and the NCO content was 12.4 wt%.
  • Vacuum pump is used to vacuum the system, the degree of vacuum is 0.070-0.085Mpa; compressed air with a pressure of 0.15MPa is generated by air compressor, and after being purified by the dryer, it is heated to 130 °C.
  • the gas with residual phenol monomer is pumped to the top of the reactor under vacuum suction, enters the condenser connected to the reactor, separates the phenol monomer and air, and the monomer enters the storage tank for recovery; 3 hours later
  • the condenser outlet has no droplets flowing out, and when the residual monomer content is less than 1% by weight, the compressed air is stopped and the vacuum is evacuated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种聚合物粘稠液体中残留单体的分离系统及分离方法,分离系统包括供气装置、气体加热装置(3)、分离装置、抽真空装置;其中分离装置包括设有搅拌器(51)且底部安装有气体分散管(52)的反应釜/装料罐(5)、冷凝器(6)和贮存罐(7)。供气装置提供的气体经过气体加热装置(3)后进入安装在反应釜/装料罐(5)底部的气体分散管(52),通过气体分散管(52)对聚合物粘稠液体吹气,使粘稠液体鼓泡,蒸发出残留单体,蒸发出的残留单体与气体在真空作用下一起进入冷凝器(6)中,经冷凝分离出残留单体和气体,残留单体进入贮存罐(7)存放。

Description

一种聚合物粘稠液体中残留单体的分离系统及分离方法
技术领域
本发明涉及聚合物粘稠液体中残留单体的分离技术。
背景技术
在精细化工中,经常需要将聚合物粘稠液体中的溶剂分子、残留单体分子分离出去,通常采用溶剂萃取法和减压蒸馏法,但对于一些高粘度、高分子、高沸点的热敏性聚合物中的残留单体,用这类常规方法却不能很好地分离这类聚合物中的残留单体,现在国际上分离这类聚合物中残留单体的方法是薄膜蒸发法。
薄膜蒸发法是将被处理的预聚体从蒸发器上部旋转的刮板刮成薄膜徐徐流下,物料受热时间缩短到几分钟,蒸发面积大,残留单体蒸出快。但是,薄膜蒸发法需要昂贵的设备和先进的处理技术,购置一套设备要花数千万元,而使用这套设备的工艺技术很复杂,稍有不慎,将导致设备堵塞,无法正常工作,或残留单体处理量达不到设计要求。目前国际上只有少数几个大型集团跨国公司能正常使用薄膜蒸发设备,国内对薄膜蒸发法的研究还处于试验、试用阶段。
近年来,国内用薄膜蒸发法脱除热敏性聚合物中残留单体的工艺研究也取得了一些成果。专利文件CN 101948565公开了采用列管式蒸发器和薄膜蒸发器对残留异氰酸酯单体进行二级分离的方法,分馏温度为120~240℃、压力0.1~2000Pa,同时从底部向薄膜蒸发器通入夹带气,该专利通入的夹带气只是对薄膜蒸发器吹气。专利文件CN101475680公开了采用薄膜蒸发器或/和分子蒸馏器对残留HDI单体进行分离,分离温度为70~200℃,压力在0.5~50000Pa。这两项专利公开的都是薄膜蒸发器的应用工艺方法,不仅设备昂贵,而且工艺复杂,加工成本高。
聚合物粘稠液体中残留单体的处理,尤其是热敏性聚合物中残留单体的处理是困扰精细化工行业向环保型产业发展的瓶颈技术问题。
发明内容
为了解决现行的薄膜蒸发法等单体分离方法设备成本高、技术难度大等问题,本发明提出了一种分离聚合物粘稠液体中残留单体的系统及分离方法,解决了现有技术存在的不足。
本发明解决其技术问题的方案是,提供了一种聚合物粘稠液体中残留单体的分离系统,所述分离系统包括供气装置、气体加热装置、分离装置、抽真空装置;其中:
气体加热装置与供气装置的出口相连;
分离装置包括设有搅拌器的反应釜/装料罐、与反应釜/装料罐顶部相连的冷凝器和与冷凝器出口相连的贮存罐;所述反应釜/装料罐的底部安装有气体分散管;
抽真空装置通过贮存罐与冷凝器和反应釜/装料罐相连,对系统进行抽真空;
供气装置提供的气体经过气体加热装置后进入安装在反应釜/装料罐底部的气体分散管,通过气体分散管对聚合物粘稠液体吹气,使粘稠液体鼓泡,蒸发出残留单体,蒸发出的残留单体与气体在真空作用下一起进入冷凝器中,经冷凝分离出残留单体和气体,残留单体进入贮存罐存放。
为了达到更好的蒸发效果,优选地,所述气体分散管上具有多个小孔。
本发明的另一方面,还提供了一种聚合物粘稠液体中残留单体的分离方法,包括以下步骤:在真空及搅拌条件下,将气体通入安装在反应釜/装料罐底部的气体分散管,从气体分散管进入反应釜/装料罐底部吹气,使聚合物粘稠液体鼓泡,蒸发出的残留单体与气体一起进入与反应釜/装料罐相连的冷凝器中,经冷凝分离出残留单体和气体;所述气体的温度为室温~250℃。
优选地,真空度为0.02~0.095Mpa。
优选地,所述气体是空气、氮气、二氧化碳和氦气中的一种。
优选地,所述气体温度为60~160℃。
优选地,所述气体分散管上具有多个小孔,气体经这些小孔进入反应釜/装料罐,以便达到更好的蒸发效果。
优选地,所述聚合物粘稠液体是指含多异氰酸酯预聚物、聚酯多元醇、聚醚多元醇、丙烯酸树脂、醇酸树脂、酚醛树脂、脲醛树脂或环氧树脂的粘稠液体。
进一步优选地,所述多异氰酸酯预聚物是TDI加成物、TDI三聚体、TDI-HDI混合加成物、HDI加成物、HDI缩二脲、HDI三聚体、MDI加成物、MDI三聚体、MDI缩二脲、IPDI加成物、IPDI三聚体或XDI加成物。
本发明仿真了薄膜蒸发法将高粘度液体在蒸发器上部用旋转刮板刮成薄膜,再徐徐流下,液体受热时间短、蒸发面积大、残留单体蒸出快的原理。本发明的方案是直接用热气体对反应釜内液体进行吹气,形成无数个微型气泡薄膜蒸发器,包裹在高粘度液体中的单体分子在热气体的蒸发作用下很容易从变薄的气泡壁脱出,而且液体的粘度越高,鼓泡越大,蒸发面积越大、单体分子越容易脱出。同时,吹气,也加速了已蒸发气体的运动速度。
本发明和现有技术相比,具有以下有益效果:
(1)分离系统的组成结构简单。一般化工厂的常规化工反应设备即可按本发明的分离原理组合而成,无需昂贵的列管式蒸发器和薄膜蒸发器等设备,大大降低了成本。
(2)分离方法简便、工艺简单。本发明通过将具有一定温度的气体直接从反应釜底部的气体分散管通入液体中鼓泡,使液体产生翻腾、鼓泡,形成无数个大大小小的气泡;从而利用薄膜蒸发的原理使单体分子在热气的蒸发下从气泡壁逸出、分离。
(3)本发明可将化学反应和脱除残留单体两步工序在同一反应釜中进行。无需出料、倒换设备后再进行处理,大大降低了处理能耗,节约了成本,提高了生产效率。
(4)本发明直接采用具有一定温度的气体对反应釜内的粘稠液体进行加热,具有热量传递快而均匀的特点,热效应高,所需的加热温度低,如60~160℃;现有采用薄膜蒸发器等设备的方案的加热温度为70~240℃,一般都在160℃以上。
(5)本发明方案中,气体温度的高低因反应釜内液体对温度的敏感性而设定,而且所充入的热气体不断被真空吸走,因此,不会产生接触点的局部过热高温,这样被处理的高分子或大分子不会因局部温度过高而发生化学反应,特别适合分离高粘度热敏性预聚物中的残留单体。
本发明可用于化工领域高分子聚合物粘稠液体中的单体分子的分离。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。
图1是本发明的分离系统示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体的分离系统的结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
本发明提供了一种用于聚合物粘稠液体中残留单体分离的系统,参照图1,所述分离系统包括供气装置、气体加热装置、分离装置、抽真空装置。
供气装置,包括空气压缩机1和与之相连的空气干燥器2,用于产生清洁干燥的压缩空气。还包括气体储罐4,用于储存其他需要的气体。本领域技术人员,可以根据需要用到的气体种类,气体的压力等来设置供气装置的组成。
气体加热器3,与供气装置的出口相连;对气体进行加热,可以是采用电热装置对气体的直接加热,也可以是对气体通道的直列管或盘管进行水浴或油浴加热。根据加热气体的不同,选择不同的加热方式。
分离装置包括反应釜5及与反应釜5顶部相连的冷凝器6和与冷凝器出口相连的贮存罐7;反应釜5设有搅拌器51,反应釜5的底部安装有气体分散管52,优选地,所述气体分散管上具有多个小孔,以达到更好的分散效果。气体分散管52在反应釜5底部的排布由本领域技术人员根据需要进行设计,气体分散管52上小孔的形状和阵列,并无特定要求,只要能满足将气体导入反应釜5,均匀鼓泡即可。
真空泵8通过贮存罐7与冷凝器6和反应釜5相连,对系统进行抽真空。
使用时,首先采用真空泵8对系统抽真空,然后将空气经过空气压缩机1压缩,然后经空气干燥器2净化、干燥处理后,通过气体加热器3加热;或者直接购买压缩气体,如压缩氮气、二氧化碳或氦气等,存放于气体储罐4中,这些气体已经过干燥、净化处理,故直接通过气体加热器加热3。又或者,采用常压气体,经空气干燥器3净化、干燥处理后,通过气体加热器3加热。
维持反应釜5内搅拌器51正常运转,将通过气体加热器3后的气体通入装在反应釜5底部的气体分散管52,对粘稠液体进行吹气,粘稠液体会鼓泡,形成无数个大大小小的气泡,包裹在粘稠液体中的残留单体分子在热气体的蒸发作用下从气泡壁脱出,在真空吸力下,蒸发的残留单体分子和气体一起被抽到反应釜5顶部,进入与反应釜5相连的冷凝器6中,分离出残留单体和气体,分离出的残留单体进入贮存罐7回收备用;如此反复地充入气体、鼓泡、抽真空,直至检测粘稠液体中单体分子含量达到设定的数量值,且冷凝器6出口无液滴流出时为止。
以上所提到的反应釜也可以是装料罐等其他可用于盛放或反应的容器。
本发明还提供了一种聚合物粘稠液体中残留单体的分离方法,包括以下步骤:在真空及搅拌条件下,将气体通入安装在反应釜/装料罐底部的气体分散管,从气体分散管进入反应釜/装料罐底部,使聚合物粘稠液体鼓泡,蒸发出的残留单体与气体一起进入与反应釜相连的冷凝器中,经冷凝分离出残留单体和气体;所述气体的温度为室温~250℃。
真空度可以根据实际分离需要进行调整,优选地,真空度为0.02~0.095Mpa。
气体的温度依据反应釜内的待处理物料来确定,反应釜内待处理粘稠液体的温度可以是室温、低温,以不影响反应釜内聚合物性质发生变化为基准来确定加热温度的高低。优选地,气体温度为60~160℃。
气体加热方式可以有多种,可以是采用电热装置对气体的直接加热,也可以是对气体通道的直列管或盘管进行水浴或油浴加热。根据加热气体的不同,选择不同的加热方式。
通入气体的压力大小主要取决于能否使粘稠液体鼓泡,如果被处理的液体粘度较低,则气体的压力就可以很小,甚至不加压,由真空的负压来产生气泡;如果被处理的液体粘度较高,则气体的压力就要高,以使粘稠液体鼓泡,泡越大,泡壁越薄,越有利于残留单体分子的逸出。
优选地,所述气体分散管上具有多个小孔,气体经这些小孔进入反应釜/装料罐,以便达到更好的蒸发效果。
所述的聚合物粘稠液体为化工领域常见的合成的高分子聚合物粘稠液体,不限于带有活性官能团的热敏性物质,优选地为多异氰酸酯预聚物、聚酯多元醇、聚醚多元醇、丙烯酸树脂、醇酸树脂、酚醛树脂、脲醛树脂、环氧树脂中的一种;进一步优选地,所述多异氰酸酯预聚物是TDI加成物、TDI三聚体、TDI-HDI混合加成物、HDI加成物、HDI缩二脲、HDI三聚体、MDI加成物、MDI三聚体、MDI缩二脲、IPDI加成物、IPDI三聚体、XDI加成物中的一种。
本发明的分离方法,可以长时间通入气体、对反应釜内液体鼓泡,通入气体的温度、时间,以及抽真空的时间需根据聚合物的种类、粘度、分子量大小、残留量等而确定,直至检测粘稠液体中单体分子含量达到设定的数量值为止。
进一步,本发明的方法,在分离结束后,还可以根据需要在反应釜中加入溶剂,得到不同固含量的聚合物产品。
下面结合具体的实施例,进一步说明本发明的技术方案。
以下实施例中:
1)检测固含量按《GB/T 1725-2007 色漆、清漆和塑料不挥发物含量的测定》进行。
2)检测NCO含量按《HG/T 2409-92聚氨酯预聚体中异氰酸酯基含量的测定》进行。
3)检测粘度按《GB/T 2794-2013胶粘剂粘度的测定》进行。
4)检测残留单体含量按《GB/T 18446-2009色漆和清漆用漆基、异氰酸酯树脂中二异氰酸酯单体的测定》、《GB/T24411-2009摩擦材料用酚醛树脂》进行。
实施例1
1)试验样品的准备
反应釜中已有预聚反应完成的改性HDI缩二脲粗品100kg,取样,检测残留HDI单体含量为12.4wt%。
2)用本发明分离装置脱除改性HDI缩二脲中的残留HDI单体
a、采用真空泵对系统抽真空,真空度为0.070-0.085Mpa;空气经干燥器净化处理后,进入气体加热器中加热至130℃。
b、维持反应釜内搅拌器正常运转,将加热空气通入反应釜底部的气体分散管,从气体分散管上的多个小孔进入釜内,使HDI缩二脲粘稠液体鼓泡,蒸发出残留HDI单体。
c、带有残留HDI单体的气体在真空吸力下被抽到反应釜顶部,进入与反应釜相连的冷凝器中,分离出单体和空气,单体进入贮存罐回收备用;2小时后冷凝器出口无液滴流出,检测残留单体含量低于0.66wt%时,停止抽真空。
d、降温至60℃以下,加入醋酸丁酯将釜内液体稀释至固含量为75wt%的改性HDI缩二脲固化剂,检测产品性能指标为:不挥发物含量为75wt%,25℃粘度为2500mPa.s,残留HDI单体含量为0.46wt%,NCO含量为16.1wt%。
实施例2
1)试验样品的准备
反应釜中已有预聚反应完成的HDI三聚体粗品100kg,取样,检测残留HDI单体含量为19.3wt%。
2)用本发明分离装置脱除HDI三聚体中的残留HDI单体
a、采用真空泵对系统抽真空,真空度为0.070-0.085Mpa;空气经干燥器净化处理后,进入气体加热器中加热至120℃。
b、维持反应釜内搅拌器正常运转,将已加热空气通入反应釜底部的气体分散管,从气体分散管上的多个小孔进入釜内,使HDI三聚体粘稠液体鼓泡,蒸发出残留HDI单体。
c、带有残留HDI单体的气体在真空吸力下被抽到反应釜顶部,进入与反应釜相连的冷凝器中,分离出HDI单体和空气,单体进入贮存罐回收备用;2小时后冷凝器出口无液滴流出,检测残留单体含量低于0.66wt%时,停止抽真空。
d、降温至60℃以下,加入醋酸丁酯将釜内液体稀释至固含量为75wt%的HDI三聚体固化剂,检测产品性能指标为:不挥发物含量为75wt%,25℃粘度为820mPa.s,残留HDI单体含量为0.42wt%,NCO含量为17.2wt%。
实施例3
1)试验样品的准备
反应釜中已有预聚反应完成的TDI预聚物粗品100kg,取样,检测残留TDI单体含量为8.3wt%。
2)用本发明分离装置脱除TDI预聚物中的残留TDI单体
a、采用真空泵对系统抽真空,真空度为0.070-0.085Mpa;空气经干燥器净化处理后,进入气体加热器中加热至120℃。
b、维持反应釜内搅拌器正常运转,将已加热空气通入反应釜底部的气体分散管,从气体分散管上的多个小孔进入釜内,使TDI预聚物粘稠液体鼓泡,蒸发出残留TDI单体。
c、带有残留TDI单体的气体在真空吸力下被抽到反应釜顶部,进入与反应釜相连的冷凝器中,分离出TDI单体和空气,单体进入贮存罐回收备用;3小时后冷凝器出口无液滴流出,检测残留单体含量低于0.66wt%时,停止鼓泡和抽真空。
d、降温至60℃以下,加入醋酸乙酯将釜内液体稀释至固含量为75wt%的TDI预聚物固化剂,检测产品性能指标为:不挥发物含量为75wt%,25℃粘度为2800mPa.s,残留TDI单体含量为0.43wt%,NCO含量为12.4wt%。
实施例4
1)试验样品的准备
反应釜中已有预聚反应完成且已脱水的酚醛树脂粗品74kg,取样检测残留苯酚单体含量为3.4wt%。
2)用本发明分离装置分离酚醛树脂中的残留苯酚单体
a、采用真空泵对系统抽真空,真空度为0.070-0.085Mpa;用空压机产生压力为0.15MPa的压缩空气,经干燥器净化处理后,加热至130℃。
b、维持反应釜内搅拌器正常运转,将加热空气通入反应釜底部的气体分散管,从气体分散管上的多个小孔进入釜内,使酚醛树脂粘稠液体鼓泡,蒸发出残留苯酚单体。
c、带有残留苯酚单体的气体在真空吸力下被抽到反应釜顶部,进入与反应釜相连的冷凝器中,分离出苯酚单体和空气,单体进入贮存罐回收备用;3小时后,冷凝器出口无液滴流出,检测残留单体含量低于1wt%时,停止压缩空气和抽真空。
d、降温至80℃,出料,冷却后成透明固体,经检测,残留苯酚单体含量为0.96wt%。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明原理的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

  1. 一种聚合物粘稠液体中残留单体的分离系统,其特征在于,所述分离系统包括供气装置、气体加热装置、分离装置、抽真空装置;其中:
    气体加热装置与供气装置的出口相连;
    分离装置包括设有搅拌器的反应釜/装料罐、与反应釜/装料罐顶部相连的冷凝器和与冷凝器出口相连的贮存罐;所述反应釜/装料罐的底部安装有气体分散管;
    抽真空装置通过贮存罐与冷凝器和反应釜/装料罐相连,对系统进行抽真空;
    供气装置提供的气体经过气体加热装置后进入安装在反应釜/装料罐底部的气体分散管,通过气体分散管对聚合物粘稠液体吹气,使粘稠液体鼓泡,蒸发出残留单体,蒸发出的残留单体与气体在真空作用下一起进入冷凝器中,经冷凝分离出残留单体和气体,残留单体进入贮存罐存放。
  2. 根据权利要求1所述的分离系统,其特征在于:所述气体分散管上具有多个小孔。
  3. 一种聚合物粘稠液体中残留单体的分离方法,其特征在于,包括以下步骤:在真空及搅拌条件下,将气体通入安装在反应釜/装料罐底部的气体分散管,从气体分散管进入反应釜/装料罐底部吹气,使聚合物粘稠液体鼓泡,蒸发出的残留单体与气体一起进入与反应釜/装料罐相连的冷凝器中,经冷凝分离出残留单体和气体;所述气体的温度为室温~250℃。
  4. 根据权利要求3所述的分离方法,其特征在于:真空度为0.02~0.095Mpa。
  5. 根据权利要求3所述的分离方法,其特征在于:所述气体是空气、氮气、二氧化碳和氦气中的一种。
  6. 根据权利要求3所述的分离方法,其特征在于:所述气体温度为60~160℃。
  7. 根据权利要求3所述的分离方法,其特征在于:所述气体分散管上具有多个小孔,气体经所述的小孔进入反应釜/装料罐。
  8. 根据权利要求3所述的分离方法,其特征在于:所述聚合物粘稠液体是指含多异氰酸酯预聚物、聚酯多元醇、聚醚多元醇、丙烯酸树脂、醇酸树脂、酚醛树脂、脲醛树脂或环氧树脂的粘稠液体。
  9. 根据权利要求8所述的分离方法,其特征在于:所述多异氰酸酯预聚物是TDI加成物、TDI三聚体、TDI-HDI混合加成物、HDI加成物、HDI缩二脲、HDI三聚体、MDI加成物、MDI三聚体、MDI缩二脲、IPDI加成物、IPDI三聚体或XDI加成物。
PCT/CN2015/071812 2014-09-30 2015-01-29 一种聚合物粘稠液体中残留单体的分离系统及分离方法 WO2016050024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410517067.2 2014-09-30
CN201410517067.2A CN104258584B (zh) 2014-09-30 2014-09-30 一种聚合物粘稠液体中残留单体的分离系统及分离方法

Publications (1)

Publication Number Publication Date
WO2016050024A1 true WO2016050024A1 (zh) 2016-04-07

Family

ID=52150233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071812 WO2016050024A1 (zh) 2014-09-30 2015-01-29 一种聚合物粘稠液体中残留单体的分离系统及分离方法

Country Status (2)

Country Link
CN (1) CN104258584B (zh)
WO (1) WO2016050024A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832408A (zh) * 2022-04-29 2022-08-02 江苏理文化工有限公司 一种高性能阴离子表面施胶剂生产用蒸发组件
US11435514B2 (en) 2017-10-25 2022-09-06 3M Innovative Properties Company Optical retarder segements

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258584B (zh) * 2014-09-30 2017-01-25 周建明 一种聚合物粘稠液体中残留单体的分离系统及分离方法
CN105037704B (zh) * 2015-08-31 2017-01-25 句容宁武新材料发展有限公司 一种脱除聚醚中低沸物的方法
CN106902526B (zh) * 2015-12-23 2019-06-14 中国科学院上海应用物理研究所 高温熔盐鼓泡蒸发分离装置、应用及分离CsF方法
CN107398089B (zh) * 2016-09-18 2023-01-10 宁波工程学院 基于静态混合器和超声波消泡的苯丙乳液脱单装置和工艺
CN107321008A (zh) * 2017-08-03 2017-11-07 江西塑星材料有限公司 一种连续脱除氯化石蜡中氯化氢及余氯的方法
CN107353168A (zh) * 2017-09-13 2017-11-17 中化吉林长山化工有限公司 含有机质的醛类缓释复合肥料的生产方法及系统
CN115746908B (zh) * 2022-12-06 2024-07-12 潍坊春源化工有限公司 一种氯化石蜡的余氯处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073924A (zh) * 1992-09-05 1993-07-07 茂名化工纺织联合总厂有机化工厂 釜式减压热风鼓泡浓缩甲苯硝化废酸的方法和装置
US5487818A (en) * 1992-03-10 1996-01-30 Ausimont S.P.A. Process for separating phthalimido-peroxycaproic acid from solutions in organic solvents
CN1522779A (zh) * 2003-02-17 2004-08-25 辽宁东大粉体工程技术有限公司 一种以热空气为介质的蒸发浓缩方法
CN1665846A (zh) * 2002-07-03 2005-09-07 Jsr株式会社 聚合物溶液的脱溶剂方法和脱溶剂装置
JP2011136300A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd 油中異物除去装置
CN202983287U (zh) * 2012-10-30 2013-06-12 西安勤业石油设备有限责任公司 一种油水分离装置
CN203329385U (zh) * 2013-06-25 2013-12-11 王宪亮 热风溶剂回收机
CN104258584A (zh) * 2014-09-30 2015-01-07 周建明 一种聚合物粘稠液体中残留单体的分离系统及分离方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137923A (ja) * 2001-11-01 2003-05-14 Gantsu Kasei Kk ポリマー粉末の乾燥法
CN101747191B (zh) * 2008-12-08 2012-05-30 中国石油天然气股份有限公司 一种油酸月桂酯的制备方法
CN201516342U (zh) * 2009-08-14 2010-06-30 南京科思化学有限公司 鼓泡式反应釜
CN201470138U (zh) * 2009-08-14 2010-05-19 南京科思化学有限公司 蒸馏釜
CN203329397U (zh) * 2013-06-04 2013-12-11 宿迁科思化学有限公司 一种用于合成茴脑的反应精馏装置
CN103285610A (zh) * 2013-06-13 2013-09-11 宿迁科思化学有限公司 一种水汽蒸馏釜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487818A (en) * 1992-03-10 1996-01-30 Ausimont S.P.A. Process for separating phthalimido-peroxycaproic acid from solutions in organic solvents
CN1073924A (zh) * 1992-09-05 1993-07-07 茂名化工纺织联合总厂有机化工厂 釜式减压热风鼓泡浓缩甲苯硝化废酸的方法和装置
CN1665846A (zh) * 2002-07-03 2005-09-07 Jsr株式会社 聚合物溶液的脱溶剂方法和脱溶剂装置
CN1522779A (zh) * 2003-02-17 2004-08-25 辽宁东大粉体工程技术有限公司 一种以热空气为介质的蒸发浓缩方法
JP2011136300A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd 油中異物除去装置
CN202983287U (zh) * 2012-10-30 2013-06-12 西安勤业石油设备有限责任公司 一种油水分离装置
CN203329385U (zh) * 2013-06-25 2013-12-11 王宪亮 热风溶剂回收机
CN104258584A (zh) * 2014-09-30 2015-01-07 周建明 一种聚合物粘稠液体中残留单体的分离系统及分离方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435514B2 (en) 2017-10-25 2022-09-06 3M Innovative Properties Company Optical retarder segements
US11726249B2 (en) 2017-10-25 2023-08-15 3M Innovative Properties Company Optical retarder segments
CN114832408A (zh) * 2022-04-29 2022-08-02 江苏理文化工有限公司 一种高性能阴离子表面施胶剂生产用蒸发组件

Also Published As

Publication number Publication date
CN104258584B (zh) 2017-01-25
CN104258584A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2016050024A1 (zh) 一种聚合物粘稠液体中残留单体的分离系统及分离方法
US7056956B2 (en) Method for recycling a plastic material
TW559574B (en) Method and apparatus for meniscus coating with liquid carbon dioxide
JP6214754B2 (ja) Petフレーク(破砕pet)を脱色するための方法及び装置
KR900001418A (ko) 희석제로서 초임계 유체를 함유하는 피복제의 액체 분무 피복방법 및 이의 액체 분무 피복용 장치
US5446196A (en) Process for the production of isocyanates and for the continuous working-up of the residue
Karayannidis et al. Solid‐state polycondensation of poly (ethylene terephthalate) recycled from postconsumer soft‐drink bottles. II
US5780520A (en) Leaching contaminants from post-consumer for reuse in food-contact applications
US20120237704A1 (en) Controlled lowering of a polymers glass transition temperature
US3562234A (en) Production of a granulate of a given particle size from saponified ethylene-vinyl acetate copolymers
US20050096400A1 (en) Method for recycling polyurethane and a composition comprising recycled polyurethane
US2990398A (en) Hydroxyethylation of polyvinyl alcohol
CN102459495B (zh) 斥水斥油剂及斥水斥油剂组合物
US20020103266A1 (en) Chemical method of removing paint film on plastic resin using isopropyl alchohol
US5534556A (en) Process for the separation and reutilization of fabric materials from polyurethane adhesive bonded composite laminates
US2945020A (en) Method of forming fine polyethylene powders
US20050096399A1 (en) Method for recycling polyurethane and a composition comprising recycled polyurethane
US2844566A (en) Production of polythioethers
CN109180504B (zh) 一种4,4’-二氨基二苯醚升华残渣的回收处理方法
CN102918131B (zh) 拒水拒油剂和拒水拒油剂组合物
KR20190113014A (ko) 금속 또는 플라스틱용 코팅제 조성물 및 그 제조방법
KR20130108809A (ko) 리그닌-폴리에스테르 수지 혼합 분말의 제조 방법 및 이에 따라 제조되는 리그닌-폴리에스테르 수지 혼합 분말
US3442869A (en) Process for the preparation of mixed polyamides in finely grained form
JP2011207822A (ja) ポリエステルからビス(2−ヒドロキシエチル)テレフタレートを製造する方法
Patel et al. Study of Thermal Properties on UV-Curable Coatings Derived from Oleochemical Polyols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 01-09-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15846486

Country of ref document: EP

Kind code of ref document: A1