WO2016047786A1 - 可溶化装置 - Google Patents
可溶化装置 Download PDFInfo
- Publication number
- WO2016047786A1 WO2016047786A1 PCT/JP2015/077200 JP2015077200W WO2016047786A1 WO 2016047786 A1 WO2016047786 A1 WO 2016047786A1 JP 2015077200 W JP2015077200 W JP 2015077200W WO 2016047786 A1 WO2016047786 A1 WO 2016047786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solubilization
- tank
- organic waste
- tanks
- solubilization tank
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a solubilizer.
- the present invention has been made under the above circumstances, and an object thereof is to provide a solubilization apparatus capable of efficiently performing a solubilization process.
- the solubilization apparatus comprises: A solubilizer for solubilizing organic waste sent to a methane fermenter, A storage tank for storing the organic waste before being sent to the methane fermentation tank; A plurality of solubilization tanks connected in series and the organic waste charged into the uppermost solubilization tank is sequentially sent to the lower solubilization tank and sent from the lowermost solubilization tank to the storage tank.
- a solubilization tank row for solubilizing the organic waste With the height of the passage for sending the organic waste from the uppermost solubilization tank to the solubilization tank immediately before the lowermost stage is set to be higher than that of the lowermost solubilization tank and the lowermost stage. It is lower than the height of the passage for sending the organic waste to and from the solubilization tank.
- ammonia adsorption part for adsorbing and removing ammonia from the waste liquid discharged from each solubilization tank; It is good as well.
- the back surface of the lid of each solubilization tank is inclined downward from the center toward the outer edge, A groove for storing water droplets flowing along the back surface is provided on the outer periphery of the lid, A discharge port for discharging the liquid stored in the groove part and sending it to the ammonia adsorption part is provided in the groove part. It is good as well.
- a discharge section is provided to discharge sludge. It is good as well.
- It further comprises a precipitation separation tank for collecting and separating the sludge discharged from the discharge part, Returning the supernatant of the precipitation separation tank to the solubilization tank row; It is good as well.
- the organic waste sent to the methane fermentation tank is stored in the storage tank through a multi-stage solubilization process using a plurality of solubilization tanks connected in series.
- the organic waste is quickly transported to the first solubilization tank in the lowermost stage, and after being dispersively processed in each solubilization tank, it is sent to the solubilization tank in the lowermost stage and finally. It is processed.
- the solubilization process is performed stepwise by dividing the solubilization tank, the solubilization rate of the organic waste can be dramatically increased. As a result, the methane fermentation efficiency of organic waste can be significantly improved.
- Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
- FIG. 1 shows the overall configuration of the solubilizer 100.
- This solubilizer 100 solubilizes organic waste and sends it to a methane fermenter. That is, the solubilizer 100 is a pretreatment device for methane fermentation. Examples of the organic waste include sewage sludge, livestock manure, and moss.
- the solubilization apparatus 100 includes a first storage tank 10, solubilization tanks 11 ⁇ / b> A, 11 ⁇ / b> B, 11 ⁇ / b> C, solubilization tanks 12 ⁇ / b> A, 12 ⁇ / b> B, 12 ⁇ / b> C, and a second storage tank 13.
- the solubilization tanks 11A and 12A correspond to the uppermost solubilization tank
- the solubilization tanks 11B and 12B correspond to the middle solubilization tank
- the solubilization tanks 11B and 12B can be the lowermost stage.
- the solubilization tanks 11C and 12C corresponds to the solubilization tanks 11C and 12C.
- the first storage tank 10 temporarily stores organic waste.
- the organic waste stored in the first storage tank 10 is selectively supplied to the solubilization tank 11A or the solubilization tank 12A by a Mono pump or a screw pump.
- the solubilization tanks 11A, 11B, and 11C and the solubilization tanks 12A, 12B, and 12C perform the solubilization process at an ultrahigh temperature.
- the supplied organic waste is subjected to, for example, an ultra-high temperature solubilization process using a heat-resistant protease-producing bacterium that generates a high-temperature aerobic bacterium at 80 ° C. Solubilized.
- Each of the solubilization tanks 11A to 11C and 12A to 12C is provided with a heater for raising the temperature in the tank.
- a stirrer and a motor for stirring the organic waste are attached in each of the solubilization tanks 11A to 11C and 12A to 12C.
- each of the solubilization tanks 11A to 11C and 12A to 12C is provided with an air insertion port for supplying air into the organic waste.
- solubilization is promoted by stirring or aeration.
- the high-temperature aerobic property means a state in which organic waste is solubilized in a standard state (in an air atmosphere) at a temperature of 50 ° C. to 100 ° C., preferably without applying pressure.
- the solubilization step is a step of decomposing a solid or water-suspended normal polymer organic compound into a low molecular state that can be dissolved in water.
- ultra-high temperature solubilization is performed using protease-producing bacteria.
- protease-producing bacteria are bacteria that can produce and secrete proteolytic enzymes (proteases) outside the cells. Examples of protease-producing bacteria include Bacillus species, and in particular Bacillus sp. MU3 (Microbial Patent Deposit Center NITE AP-156).
- This heat-resistant protease-producing bacterium has an ultra-high temperature aerobic property that can sufficiently act even at 80 ° C.
- the enzyme produced by this bacterium has a molecular weight of about 57,000, excellent heat resistance, and high protein resolution in a wide pH range.
- the ultra-high temperature is 50 ° C. to 100 ° C., preferably 60 ° C. to 90 ° C., particularly preferably 70 ° C. to 80 ° C.
- Ultra-high temperature solubilization is carried out in an aqueous medium under an aerobic or anaerobic condition, preferably an aerobic condition, and the organic waste has an organic waste concentration of 50 wt% or less, preferably 5 to 40 wt%, particularly preferably. It is carried out in contact with a protease-producing bacterium in such an amount that it becomes 10 to 30 wt%.
- the solids concentration (DS) of the raw material can be increased to an organic waste concentration of 10 to 30 wt%, preferably at a DS of 20% or more, pH 5 to 8, preferably around 6.
- the solubilization tank atmosphere is optimally aerobic.
- the time for digestion with protease-producing bacteria is 12 to 72 hours, preferably 24 to 48 hours.
- it can be carried out under stirring and aeration conditions.
- ammonia can be removed in situ, solubilization of the raw material and ammonia removal can be performed simultaneously, and methane fermentation can be promoted.
- Bacillus sp. When MU3 is used as a protease-producing bacterium, since this bacterium is an aerobic thermostable bacterium, it can be solubilized with stirring while being aerated with air, and is optimal in terms of solubilization and ammonia removal.
- microbial cells producing various degrading enzymes such as lipase-producing bacteria, glycosidase-producing bacteria and / or cellulase-producing bacteria may be added alone or in combination. Is possible. These can be used in the same reaction tank as long as the growth and proliferation conditions are similar, but if the conditions are different, separate reaction tanks (for example, solubilization tank 11A and solubilization tank 11B). It can be used under different conditions.
- solubilize in a high-temperature solubilization tank using a protease-producing bacterium it is preferable to solubilize in a high-temperature solubilization tank using a protease-producing bacterium.
- Solubilization tanks 11A, 11B, and 11C are connected in series via passages 30A and 31A.
- the solubilization tank row 11 is configured by the solubilization tanks 11A, 11B, and 11C.
- Solubilization tanks 12A, 12B, and 12C are also connected in series via passages 30B and 31B.
- the solubilization tank row 12 is constituted by the solubilization tanks 12A, 12B, and 12C.
- the organic waste charged into the uppermost solubilization tanks 11A and 12A is sequentially sent to the middle solubilization tanks 11B and 12B through the passages 30A and 30B, and then from the lowermost solubilization tanks 11C and 12C. It is sent to the second storage tank 13.
- solubilization processing of organic waste is performed in each solubilization tank 11A, 11B, 11C, 12A, 12B, and 12C.
- solubilization tanks 11A to 11C and 12A to 12C are connected in series and the solubilization process is performed while sequentially sending the organic waste, and the solubilization process is performed using only one solubilization tank. Compare with the case.
- solubilization is performed, for example, for 16 hours in a state where organic waste is put. After 16 hours, the organic waste stored in the solubilization tanks 11A and 12A is sent to the solubilization tanks 11B and 12B in a state where the solubilization has progressed to some extent.
- solubilization tanks 11B and 12B further solubilization is performed on organic waste that has been solubilized to some extent. About the organic waste which progressed solubilization, solubilization can be performed more efficiently with respect to the organic waste which has not progressed.
- solubilization is performed, for example, for 16 hours in a state where the organic waste is put. After 16 hours, the organic waste stored in the solubilization tanks 11B and 12B is sent to the solubilization tanks 11C and 12C in a state where the solubilization has further progressed.
- solubilization tanks 11C and 12C further solubilization is performed on organic waste that has been solubilized to some extent. About the organic waste which progressed solubilization, it can solubilize more efficiently with respect to the organic waste which does not progress further than it.
- solubilization is performed, for example, for 16 hours in a state where the organic waste is put. After 16 hours, the organic waste stored in the solubilization tanks 11C and 12C is sent to the second storage tank 13 in a state where the solubilization is completed.
- solubilization efficiency in each solubilization tank is increased, and organic waste with extremely high solubilization efficiency Can finally be obtained.
- each solubilization tank sends the organic waste to the lower solubilization tank (or the second storage tank 13), and then the upper solubilization tank (or the first storage tank). Receive organic waste from tank 10) for further solubilization. In this way, it is possible to prevent a reduction in the amount of organic waste processed per unit time.
- the height of the passages 30A and 30B for sending organic waste between the uppermost solubilization tanks 11A and 12A and the middle solubilization tanks 11B and 12B is the lowest solubilization tank. It is lower than the height of the passages 31A and 31B for sending the organic waste between 11C and 12C and the solubilization tanks 11B and 12B in the middle stage. That is, between the uppermost solubilization tanks 11A and 12A and the middle solubilization tanks 11B and 12B, the heights of the passages 30A and 30B for sending the organic waste are set low, so that the organic waste can be quickly discharged. Sent.
- the heights of the passages 31A and 31B for sending the organic waste are set high. Unless the solubilization proceeds to some extent, the processed product is not sent to the bottom solubilization tanks 11C and 12C.
- a plurality of solubilization tank rows 11 and 12 are provided in parallel.
- Organic waste is sequentially sent to the second storage tank 13 from the lowermost solubilization tanks 11C and 12C of the solubilization tank rows 11 and 12 in a predetermined cycle.
- the quantity of the organic waste to solubilize can be increased by making solubilization tank row
- the second storage tank 13 stores the organic waste before being sent to the methane fermentation tank.
- the methane fermentation process is a process that utilizes the digestive action of methane bacteria that normally operate in an anaerobic atmosphere.
- the active temperature range of methane bacteria is usually 0 to 70 ° C., and in some higher temperatures, there are species that survive to about 90 ° C., but most methane bacteria die. In the low temperature region, the limit is 3 ° C to 4 ° C.
- the production rate of methane gas is greatly affected by this activation temperature. The higher the fermenter temperature, the faster the production rate of methane gas proceeds and the amount of gas generated increases.
- a low temperature region of 20 ° C. or lower (2) a medium temperature region of 25 to 35 ° C., and (3) a high temperature region of 45 ° C. or higher.
- low temperature, medium temperature, and high temperature methane fermentation can be applied, but it is preferable to perform high temperature methane fermentation at 40 ° C to 70 ° C, and more preferably at 50 ° C to 55 ° C. Methane fermentation is preferred.
- organic waste that has been solubilized at high temperature is subjected to methane fermentation treatment, it can be efficiently treated by adopting a dry process (dry process with a solids concentration of 10% or more). Processing methods can be applied.
- a dry process dry process with a solids concentration of 10% or more. Processing methods can be applied.
- organic waste is digested using methane fermentation bacteria. This temperature is preferably controlled by external heating.
- Methane gas generated from the methane fermentation tank is collected and stored in a gas holder.
- a part of the methane gas collected in the gas holder is supplied to the gas boiler and used as a heat source for the solubilization tanks 11A to 11C and 12A to 12C.
- the heat source required for the solubilization tanks 11A to 11C, 12A to 12C and the high-temperature methane fermentation tank is supplied as hot water from a gas boiler.
- the back surface 20 of the upper lid of the solubilization tank 11A is inclined downward from the center toward the outer edge. Therefore, a part of the vapor containing ammonia emitted from the organic waste due to the high temperature is condensed on the back surface 20 of the upper lid, flows along the back surface 20 of the upper lid, and flows toward the outer peripheral portion.
- a groove portion 21 for storing water droplets flowing along the back surface 20 is provided on the outer peripheral portion of the upper lid.
- the groove 21 is provided with a discharge port 22 for discharging the accumulated liquid.
- a discharge port 23 is provided on the lid of the solubilization tank 11A.
- the discharge port 23 discharges steam containing ammonia generated from organic waste.
- the configuration of the solubilization tanks 11B, 11C, and 12A to 12C is the same as that of the solubilization tank 11A shown in FIG.
- the solubilizer 100 further includes an ammonia adsorption unit 14 and a mist catcher 15.
- the ammonia adsorption unit 14 collects the waste liquid discharged from the discharge ports 22 of the solubilization tanks 11A to 11C and 12A to 12C, and adsorbs and removes the ammonia contained in the waste liquid.
- the mist catcher 15 liquefies the vapor discharged from the discharge ports 23 of the solubilization tanks 11A to 11C and 12A to 12C.
- the waste liquid containing ammonia liquefied by the mist catcher 15 is sent to the ammonia adsorption unit 14.
- the ammonia adsorption unit 14 adsorbs and removes ammonia contained in the waste liquid.
- the removed ammonia is used as a raw material for ammonium sulfate.
- each solubilization tank is further provided with a discharge unit 25 for discharging the precipitated sludge.
- the solubilizer 100 further includes a precipitation separation tank 16 that collects the sludge discharged from the discharge unit 25 and separates it by precipitation.
- the discharge part 25 is provided in the lowest part of each solubilization tank 11A, 11B, 12A, 12B.
- the sedimentation separation tank 16 collects the sludge discharged from the discharge unit 25 and separates it by precipitation.
- the supernatant liquid of the precipitation separation tank 16 is returned to the first storage tank 10.
- organic waste is introduced from the first storage tank 10 into the solubilization tank 11A.
- the solubilization tank 11A heating, stirring and aeration are performed, and solubilization is performed for a certain time.
- the organic waste in the solubilization tank 11A is sent to the solubilization tank 11B.
- the solubilization tank 11B heating, stirring and aeration are performed, and solubilization is performed for a certain time.
- the organic waste in the solubilization tank 11B is sent to the solubilization tank 11C.
- the solubilization tank 11C heating, stirring and aeration are performed, and solubilization is performed for a certain time.
- the organic waste is sent in the order of the solubilization tank 11A, the solubilization tank 11B, and the solubilization tank 11C in a certain time by such a procedure to perform solubilization.
- the organic waste solubilized in the solubilization tank 11 ⁇ / b> C is sent to the second storage tank 13.
- solubilization tank row 11 The processing of the solubilization tank row 11 is shifted from the time, and in the solubilization tank row 12, the organic waste is dissolved in a solubilization tank 12A ⁇ solubilization tank 12B ⁇ solubilization tank 12C in a certain time according to the same procedure. In order, solubilized, and sent to the second storage tank 13.
- Organic waste solubilized in the solubilization tank rows 11 and 12 is alternately stored in the second storage tank 13.
- the time until the organic waste is stored in the second storage tank 13 from the first storage tank 10 through the solubilization tank rows 11 and 12 is about 2 days.
- the temperature of the stored organic waste is lowered, and protease producing bacteria are inactivated.
- adsorption treatment of ammonia generated in each of the solubilization vessels 11A to 11C and 12A to 12C in the ammonia adsorption unit 14 and separation and extraction of the supernatant liquid in the precipitation separation vessel 16 are performed.
- the solubilization process of the organic waste thrown in one after another can be performed while maintaining the solubilization efficiency by the protease-producing bacteria.
- the solubilization step can be performed under high-temperature aerobic conditions, and the methane fermentation step can be performed under anaerobic conditions.
- the temperature of methane fermentation can be increased.
- the other microbe which prevents methane fermentation can be inactivated or killed by performing a high temperature solubilization process.
- the bacteria of a solubilization process are inactivated by a methane fermentation process (anaerobic condition) as fungal growth conditions, there exists an advantage that methane fermentation is not disturbed.
- the organic waste sent to the methane fermentation tank is multistage using a plurality of solubilization tanks 11A to 11C and 12A to 12C connected in series. After being solubilized, it is stored in a storage tank. In addition, the organic waste is quickly transported to the first previous solubilization tank 11B, 12B, and after being dispersively processed in each of the solubilization tanks 11A, 11B, 12A, 12B, the lowermost stage. The solubilization tanks 11C and 12C are finally processed.
- the solubilization process is performed in stages by dividing a plurality of solubilization tanks, the solubilization rate of organic waste can be dramatically increased. As a result, the methane fermentation efficiency of organic waste can be significantly improved.
- Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
- the solubilization tank rows 11 and 12 are connected in series with two solubilization tanks 11B and 11C and solubilization tanks 12B and 12C, respectively. It is constituted by.
- the number of solubilization tanks in the solubilization tank row may be two.
- the adsorption process in the ammonia adsorption part 14 of the ammonia generated in each of the solubilization tanks 11A to 11C and 12A to 12C, and the precipitation separation tank 16 The supernatant liquid is separated and extracted.
- line was made into 2 rows, it is not restricted to this. There may be three or more solubilization tank rows. Further, the number of solubilization tanks in one solubilization tank row may be four or more.
- the height of the path for sending organic waste from the uppermost solubilization tank to the previous solubilization tank is the same as that of the lowermost solubilization tank and the lowermost stage. What is necessary is just to become lower than the height of the channel
- the present invention is suitable for solubilizing organic waste before methane fermentation. This solubilization significantly improves the fermentation efficiency of methane fermentation.
- organic waste such as livestock manure derived from plants and animals, sewage sludge, or garbage, and using it as biomass energy From a neutral point of view, not only can it contribute greatly to the prevention of global warming and the establishment of a recycling-oriented society, but it will also be possible to produce energy (fuel, heat, electricity) from waste.
- Second storage tank 14 Ammonia adsorption part, 15 Mist catcher , 16 precipitation separation tank, 20 back surface, 21 groove part, 22 discharge port, 23 discharge port, 25 discharge unit, 30A, 30B, 31A, 31B passage, 100 solubilizer.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Sludge (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
可溶化装置(100)は、メタン発酵槽に送られる有機性廃棄物を可溶化する。第1貯蔵槽(10)は、メタン発酵槽に送られる前の有機性廃棄物を貯蔵する。可溶化槽列(11、12)は、複数の可溶化槽(11A~11C、12A~12C)が直列に接続され最上段の可溶化槽(11A、12A)に投入された有機性廃棄物が、下段の可溶化槽(11B、12B)に順次送られて最下段の可溶化槽(11C、12C)から貯蔵槽(13)に送られるうちに、各可溶化槽(11A~11C、12A~12C)において、有機性廃棄物の可溶化処理を行う。最上段の可溶化槽(11A、12A)から最下段の1つ前の可溶化槽(11B、12B)までの有機性廃棄物を送る通路(30A、30B)の高さは、最下段の可溶化槽(11C、12C)と最下段の1つ前の可溶化槽(11B、12B)との間で有機性廃棄物を送る通路(31A、31B)の高さよりも低くなっている。
Description
本発明は、可溶化装置に関する。
下水汚泥、畜産糞尿及び厨芥類などの有機性廃棄物をメタン発酵処理する前に、有機性廃棄物を可溶化する装置が開示されている(例えば、特許文献1参照)。この装置のように、有機性廃棄物に含まれる難分解性固形有機物を、微生物の基質として使用できる程度に有機性廃棄物を可溶化しておけば、メタンガスの発酵効率を向上することができる。
しかしながら、上記特許文献1に係る装置によれば、メタン発酵槽の前段には超高温可溶化槽が1つしか設けられていない。このため、十分な可溶化が行われないまま、有機性廃棄物がメタン発酵槽に送られ、メタン発酵の効率が低下するおそれがあった。
本発明は、上記実情の下になされたものであり、可溶化処理を効率的に行うことができる可溶化装置を提供することを目的とする。
上記目的を達成するためには、本発明に係る可溶化装置は、
メタン発酵槽に送られる有機性廃棄物を可溶化する可溶化装置であって、
前記メタン発酵槽に送られる前の前記有機性廃棄物を貯蔵する貯蔵槽と、
複数の可溶化槽が直列に接続され最上段の可溶化槽に投入された前記有機性廃棄物が、下段の可溶化槽に順次送られて最下段の可溶化槽から前記貯蔵槽に送られるうちに、前記各可溶化槽において、前記有機性廃棄物の可溶化処理を行う可溶化槽列と、
を備え、
前記最上段の可溶化槽から前記最下段の1つ前の可溶化槽までの前記有機性廃棄物を送る通路の高さが、前記最下段の可溶化槽と前記最下段の1つ前の可溶化槽との間で前記有機性廃棄物を送る通路の高さよりも低くなっている。
メタン発酵槽に送られる有機性廃棄物を可溶化する可溶化装置であって、
前記メタン発酵槽に送られる前の前記有機性廃棄物を貯蔵する貯蔵槽と、
複数の可溶化槽が直列に接続され最上段の可溶化槽に投入された前記有機性廃棄物が、下段の可溶化槽に順次送られて最下段の可溶化槽から前記貯蔵槽に送られるうちに、前記各可溶化槽において、前記有機性廃棄物の可溶化処理を行う可溶化槽列と、
を備え、
前記最上段の可溶化槽から前記最下段の1つ前の可溶化槽までの前記有機性廃棄物を送る通路の高さが、前記最下段の可溶化槽と前記最下段の1つ前の可溶化槽との間で前記有機性廃棄物を送る通路の高さよりも低くなっている。
前記各可溶化槽では、
プロテアーゼ生成菌を用いた超高温可溶化処理が行われる、
こととしてもよい。
プロテアーゼ生成菌を用いた超高温可溶化処理が行われる、
こととしてもよい。
前記各可溶化槽から排出された廃液からアンモニアを吸着して除去するアンモニア吸着部をさらに備える、
こととしてもよい。
こととしてもよい。
前記各可溶化槽の蓋の裏面は、中心から外縁に向かって下方に傾斜しており、
前記裏面を伝わって流れる水滴を貯める溝部が前記蓋の外周部に設けられ、
前記溝部に貯まった液を排出して、前記アンモニア吸着部に送るための排出口が前記溝部に設けられている、
こととしてもよい。
前記裏面を伝わって流れる水滴を貯める溝部が前記蓋の外周部に設けられ、
前記溝部に貯まった液を排出して、前記アンモニア吸着部に送るための排出口が前記溝部に設けられている、
こととしてもよい。
前記最下段の可溶化槽を除く前記各可溶化槽には、
汚泥を排出する排出部が設けられている、
こととしてもよい。
汚泥を排出する排出部が設けられている、
こととしてもよい。
前記排出部から排出された汚泥を回収して沈殿分離させる沈殿分離槽をさらに備え、
前記沈殿分離槽の上澄み液を前記可溶化槽列に戻す、
こととしてもよい。
前記沈殿分離槽の上澄み液を前記可溶化槽列に戻す、
こととしてもよい。
本発明によれば、メタン発酵槽に送られる有機性廃棄物は、直列に接続された複数の可溶化槽を用いて多段階の可溶化処理を経て貯留槽へ貯留される。また、有機性廃棄物は、最下段の1つの前の可溶化槽に迅速に運ばれ、各可溶化槽で分散的に処理された後、最下段の可溶化槽に送られて最終的に処理される。このように、可溶化処理を、可溶化槽を分けて、段階的に行うようにすれば、有機性廃棄物の可溶化率を飛躍的に上げることができる。この結果、有機性廃棄物のメタン発酵効率を著しく向上することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
実施の形態1.
まず、この発明の実施の形態1について説明する。
まず、この発明の実施の形態1について説明する。
図1には、可溶化装置100の全体的な構成が示されている。この可溶化装置100は、有機性廃棄物を可溶化して、メタン発酵槽に送る。すなわち、可溶化装置100は、メタン発酵の前処理装置である。有機性廃棄物は、例えば、下水汚泥、家畜糞尿、厨芥類などである。
図1に示すように、可溶化装置100は、第1貯留槽10と、可溶化槽11A、11B、11C、可溶化槽12A、12B、12Cと、第2貯留槽13と、を備える。本実施の形態では、可溶化槽11A、12Aが最上段の可溶化槽に対応し、可溶化槽11B、12Bが中段の可溶化槽に対応し、可溶化槽11B、12Bが最下段の可溶化槽11C、12Cに対応する。
第1貯留槽10は、有機性廃棄物を一時貯留する。第1貯留槽10で貯留された有機性廃棄物は、モーノポンプ又はスクリューポンプにより、可溶化槽11A又は可溶化槽12Aに選択的に供給される。
可溶化槽11A、11B、11C、可溶化槽12A、12B、12Cは、超高温下で可溶化処理を行う。各可溶化槽11A~11C、12A~11Cにおいて、供給された有機性廃棄物は、例えば、80℃で、高温好気性菌が生成する耐熱性のプロテアーゼ生成菌を用いた超高温可溶化処理により可溶化される。
各可溶化槽11A~11C、12A~12Cには、槽内を高温にするためのヒータが設けられている。各可溶化槽11A~11C、12A~12Cの槽内には、有機性廃棄物を攪拌するための攪拌機とモータとが取り付けられている。さらに、また、各可溶化槽11A~11C、12A~12Cには、有機性廃棄物内に空気を供給するための空気挿入口が設けられている。このようにして、可溶化槽11A~11C、可溶化槽12A~12Cでは、撹拌又は瀑気(ばっき)を行うことで可溶化を促進させる。上記高温好気性とは、温度を50℃~100℃として、好ましくは圧力をかけることなく標準状態(空気雰囲気下)で有機性廃棄物を可溶化する状態を意味する。
可溶化処理工程とは、固体状又は水懸濁状の通常高分子状の有機化合物を、水に溶解可能な低分子状態にまで分解する工程である。この実施の形態では、プロテアーゼ生成菌を用いて超高温可溶化が実施される。プロテアーゼ生成菌とは、タンパク質分解酵素(プロテアーゼ)を菌体外に生成分泌することができる菌である。プロテアーゼ生成菌としては、例えばBacillus種が挙げられ、特にBacillus sp.MU3(微生物特許寄託センター第NITE AP-156号)が挙げられる。この耐熱性のプロテアーゼ生成菌は、80℃でも十分に活動できる超高温好気性を有する。この菌の産生する酵素は、分子量約57,000で、優れた熱耐性を示し、広いpH範囲で、高いタンパク質分解能を有する。
超高温とは、50℃~100℃、好ましくは60℃~90℃、特に好ましくは70℃~80℃である。超高温可溶化は、水溶液媒体中、好気性又は嫌気性条件下、好ましくは好気性条件下、有機性廃棄物を有機性廃棄物濃度が50wt%以下、好ましくは5~40wt%、特に好ましくは10~30wt%になるような量で、プロテアーゼ生成菌と接触させて行われる。この実施の形態において、特に好ましい条件では有機性廃棄物濃度10~30wt%まで原料の固形物濃度(DS)を高めることができ、望ましくはDS20%以上で、pH5~8、望ましくは6付近、可溶化槽雰囲気は好気性が最適条件となる。
プロテアーゼ生成菌により消化させるための時間は12~72時間、好ましくは24~48時間である。好気性又は嫌気性条件下で実施する場合、攪拌、瀑気(ばっき)条件下で実施することができる。かかる条件下で実施すると、後述するように、アンモニアをその場で除去することが可能となり、原料の可溶化とアンモニア除去を同時に行うことができ、メタン発酵の促進が可能となる。Bacillus sp.MU3をプロテアーゼ生成菌として用いる場合、この菌は好気性耐熱性菌であるので、空気で瀑気しながら攪拌下で可溶化でき、可溶化、アンモニア除去の両面から最適である。
この実施の形態に係る可溶化工程は、プロテアーゼ生成菌の他に、リパーゼ生産菌、グリコシターゼ生成菌及び/又はセルラーゼ生成菌など、各種分解酵素を生成する菌体を単独または組み合わせて添加することが可能である。これらは生育、増殖条件が似たようなものであれば、同一の反応槽で使用することができるが、条件が異なる場合は別の反応槽(例えば、可溶化槽11Aと可溶化槽11B)で異なる条件で使用すればよい。この場合、リパーゼ生産菌、グリコシターゼ生成菌及び/又はセルラーゼ生成菌を用いる可溶化槽で可溶化を行った後、プロテアーゼ生成菌による高温可溶化槽で可溶化をすることが好ましい。
可溶化槽11A、11B、11Cは、通路30A、31Aを介して直列に接続されている。可溶化槽11A、11B、11Cにより、可溶化槽列11が構成される。可溶化槽12A、12B、12Cも、通路30B、31Bを介して直列に接続されている。可溶化槽12A、12B、12Cにより、可溶化槽列12が構成される。最上段の可溶化槽11A、12Aに投入された有機性廃棄物は、通路30A、30Bを介して、中段の可溶化槽11B、12Bに順次送られて最下段の可溶化槽11C、12Cから第2貯蔵槽13に送られる。そのうちに、各可溶化槽11A、11B、11C、12A、12B、12Cにおいて、有機性廃棄物の可溶化処理が行われる。
このように、可溶化槽11A~11C、12A~12Cを直列に接続し、有機性廃棄物を順次送りながら可溶化工程を行った場合と、1つの可溶化槽だけで可溶化工程を行った場合とを比較する。最初の可溶化槽11A、12Aでは、有機性廃棄物が入れられた状態で例えば16時間可溶化が行われる。16時間経過後、可溶化槽11A、12Aに収納された有機性廃棄物は、ある程度可溶化が進んだ状態で、可溶化槽11B、12Bに送られる。
可溶化槽11B、12Bでは、ある程度可溶化が進んだ有機性廃棄物に対してさらなる可溶化が行われる。可溶化が進んだ有機性廃棄物については、進んでない有機性廃棄物に対して、さらに効率良く可溶化を行うことができる。可溶化槽11B、12Bでは、有機性廃棄物が入れられた状態で例えば16時間可溶化が行われる。16時間経過後、可溶化槽11B、12Bに収納された有機性廃棄物は、さらに可溶化が進んだ状態で、可溶化槽11C、12Cに送られる。
可溶化槽11C、12Cでは、ある程度可溶化が進んだ有機性廃棄物に対してさらなる可溶化が行われる。可溶化が進んだ有機性廃棄物については、それよりも進んでない有機性廃棄物に対して、さらに効率良く可溶化を行うことができる。可溶化槽11C、12Cでは、有機性廃棄物が入れられた状態で例えば16時間可溶化が行われる。16時間経過後、可溶化槽11C、12Cに収納された有機性廃棄物は、可溶化が完了した状態で、第2貯留槽13に送られる。
このように、容積の小さい可溶化槽を直列につなぎ、段階的に可溶化を行うことにより、それぞれの可溶化槽での可溶化の効率を上げ、可溶化の効率が極めて高い有機性廃棄物を最終的に得ることが可能となる。
また、可溶化槽列11、12では、各可溶化槽は、下段の可溶化槽(又は第2貯留槽13)に有機性廃棄物を送った後に、上段の可溶化槽(又は第1貯留槽10)から有機性廃棄物を受け取ってさらなる可溶化を行う。このようにすれば、単位時間当たりの有機性廃棄物の処理量の低下も防ぐことができる。
図1に示すように、最上段の可溶化槽11A、12Aと中段の可溶化槽11B、12Bとの間で有機性廃棄物を送る通路30A、30Bの高さは、最下段の可溶化槽11C、12Cと中段の可溶化槽11B、12Bとの間で有機性廃棄物を送る通路31A、31Bの高さよりも低くなっている。すなわち、最上段の可溶化槽11A、12Aと中段の可溶化槽11B、12Bとの間では、有機性廃棄物を送る通路30A、30Bの高さは低く設定され、有機性廃棄物が迅速に送られる。これに対して、中段の可溶化槽11B、12Bと最下段の可溶化槽11C、12Cとの間では、有機性廃棄物を送る通路31A、31Bの高さは高く設定され、有機性廃棄物の可溶化がある程度進んだ後でなければ、処理物が最下段の可溶化槽11C、12Cに送られないようになっている。
このように、最上段の可溶化槽11A、12Aと中段の可溶化槽11B、12Bとの間では、処理を分散すべく有機性廃棄物をいち早く中段の可溶化槽11B、12Bに送るために、有機性廃棄物の通路30A、30B全体の高さを下げている。このようにすれば、有機性廃棄物の処理効率を大幅に向上することができるうえ、未処理の有機性廃棄物が、可溶化槽列11、12をすり抜けることのないようにすることができる。
図1に示すように、可溶化槽列11、12は、並列に複数列設けられている。各可溶化槽列11、12の最下段の可溶化槽11C、12Cから有機性廃棄物が所定の周期で順番に第2貯留槽13に送られる。このように可溶化槽列11、12を複数とし、処理を交互に進めることで、可溶化する有機性廃棄物の量を増やすことができる。
このように、可溶化槽の容積を小さくし、直列につないだうえ、列の数を増やすことにより、単位時間での有機性廃棄物の可溶化処理の処理量を増大させるとともに、可溶化の効率を向上することができる。可溶化された有機性廃棄物は、メタン菌による発酵効率が極めて高い状態となっている。
第2貯留槽13は、メタン発酵槽に送られる前の有機性廃棄物を貯蔵する。
メタン発酵工程は、通常嫌気性雰囲気で活動するメタン菌の消化作用を利用する工程である。メタン菌の活性温度領域は0~70℃が普通であり、これ以上の高温領域では90℃程度まで生き延びる菌種も存在するが、ほとんどのメタン菌は死滅する。低温領域では3℃から4℃までが限界とされている。メタンガスの生成速度は、この活性温度に非常に大きな影響を受ける。メタンガスの生成速度は発酵槽温度が高ければ高いほど早く進みガス発生量が増大する。
実際にメタン菌が住みやすいとされている温度領域は次の3つが確認されている。(1)20℃以下の低温領域、(2)25~35℃の中温領域、(3)45℃以上の高温領域がある。この実施の形態に係るメタン発酵の温度については低温、中温、高温のメタン発酵がいずれでも適用できるが、40℃~70℃で高温メタン発酵を行うのが好ましく、更には50℃~55℃でメタン発酵するのが好ましい。
高温可溶化された有機性廃棄物をメタン発酵処理する場合、乾式(投入固形物濃度を10%以上とする乾式)の処理方式を採用することによって効率良くメタン発酵処理することができ、乾式の処理方式を適用することができる。メタン発酵槽では、メタン発酵菌を用いて有機性廃棄物を消化処理する。この温度は外部加熱により制御するのが好ましい。このメタン発酵槽から発生したメタンガスは、ガスホルダに収集されて貯えられる。
そして、ガスホルダに回収されたメタンガスの一部は、ガスボイラに供給され可溶化槽11A~11C、12A~12Cの熱源として使用される。可溶化槽11A~11C、12A~12Cおよび高温メタン発酵槽に必要な熱源はガスボイラより温水として供給される。
図2に示すように、可溶化槽11Aの上部蓋の裏面20は、中心から外縁に向かって下方に傾斜している。したがって、高温により有機性廃棄物から出たアンモニアを含む蒸気の一部は、上部蓋の裏面20で結露して、上部蓋の裏面20を伝わって外周部の方へ流れる。
可溶化槽11Aでは、裏面20を伝わって流れる水滴を貯める溝部21が上部蓋の外周部に設けられている。この溝部21には、溜まった液を排出する排出口22が設けられている。
また、可溶化槽11Aの蓋には、排出口23が設けられている。この排出口23は、有機性廃棄物から生じるアンモニアを含む蒸気が排出される。
可溶化槽11B、11C、12A~12Cの構成も、図2に示す可溶化槽11Aの構成と同じである。
図3に示すように、可溶化装置100は、アンモニア吸着部14及びミストキャッチャー15をさらに備える。アンモニア吸着部14は、各可溶化槽11A~11C、12A~12Cの排出口22から排出された廃液を回収し、その廃液に含まれるアンモニアを吸着して除去する。
ミストキャッチャー15は、各可溶化槽11A~11C、12A~12Cの排出口23から排出された蒸気を液化する。ミストキャッチャー15で液化されたアンモニアを含む廃液は、アンモニア吸着部14に送られる。アンモニア吸着部14は、この廃液に含まれるアンモニアを吸着して除去する。除去されたアンモニアは、硫酸アンモニウムの原料として用いられる。
図4に示すように、各可溶化槽には、沈殿した汚泥を排出する排出部25がさらに設けられている。可溶化装置100は、排出部25から排出された汚泥を回収して沈殿分離させる沈殿分離槽16をさらに備えている。排出部25は、各可溶化槽11A、11B、12A、12Bの最下部に設けられている。沈殿分離槽16は、排出部25から排出された汚泥を回収して沈殿分離させる。可溶化装置100では、沈殿分離槽16の上澄み液を第1貯留槽10に戻している。
次に、この実施の形態1に係る可溶化装置100の動作について説明する。
まず、第1貯留槽10から可溶化槽11Aへ有機性廃棄物が投入される。可溶化槽11Aでは、加熱、攪拌及び曝気が行われ、可溶化が一定の時間行われる。一定の時間が経過すると、可溶化槽11A内の有機性廃棄物は、可溶化槽11Bへ送られる。可溶化槽11Bでは、加熱、攪拌及び曝気が行われ、可溶化が一定の時間行われる。さらに、一定の時間が経過すると、可溶化槽11B内の有機性廃棄物は、可溶化槽11Cへ送られる。可溶化槽11Cでは、加熱、攪拌及び曝気が行われ、可溶化が一定の時間行われる。
可溶化槽列11では、このような手順で、一定の時間で有機性廃棄物が可溶化槽11A→可溶化槽11B→可溶化槽11Cの順に送られ可溶化が行われる。可溶化槽11Cで可溶化された有機性廃棄物は、第2貯留槽13に送られる。
可溶化槽列11の処理と時間をずらして、可溶化槽列12では、同様の手順に従って、一定の時間で、有機性廃棄物が、可溶化槽12A→可溶化槽12B→可溶化槽12Cの順に送られ、可溶化が行われ、第2貯留槽13に送られる。
可溶化槽列11、12で可溶化が行われた有機性廃棄物は、交互に第2貯留槽13に貯留される。有機性廃棄物が、第1貯留槽10から可溶化槽列11、12を経て第2貯留槽13に貯留されるまでの時間は、約2日である。ここで、貯留された有機性廃棄物は温度が低下し、プロテアーゼ生成菌が不活性となる。
この可溶化処理と同時に、各可溶化槽11A~11C、12A~12Cで発生したアンモニアのアンモニア吸着部14での吸着処理や、沈殿分離槽16での上澄み液の分離抽出が行われる。これにより、プロテアーゼ生成菌により可溶化効率を維持したままで、続々と投入される有機性廃棄物の可溶化処理ができるようになる。
この実施の形態においては、可溶化工程を高温好気性の条件下で実施し、メタン発酵工程を嫌気性条件下で実施することができるので、温度においては可溶化工程の高い温度を利用してメタン発酵の温度を高くすることができる。また、高温の可溶化工程を行うことで、メタン発酵を妨げる他の菌を不活化又は死滅させることができる。また、菌増殖条件としては可溶化工程(好気性条件)の菌がメタン発酵工程(嫌気性条件)で不活性化されるためメタン発酵を邪魔しないという利点がある。
以上詳細に説明したように、この実施の形態によれば、メタン発酵槽に送られる有機性廃棄物は、直列に接続された複数の可溶化槽11A~11C、12A~12Cを用いて多段階の可溶化処理を経て貯留槽へ貯留される。また、有機性廃棄物は、最下段の1つの前の可溶化槽11B、12Bまでは迅速に運ばれ、各可溶化槽11A、11B、12A、12Bで分散的に処理された後、最下段の可溶化槽11C、12Cに送られて最終的に処理される。このように、可溶化処理を、複数の可溶化槽を分けて、段階的に行うようにすれば、有機性廃棄物の可溶化率を飛躍的に上げることができる。この結果、有機性廃棄物のメタン発酵効率を著しく向上することができる。
実施の形態2.
次に、この発明の実施の形態2について説明する。
次に、この発明の実施の形態2について説明する。
図5に示すように、この実施の形態に係る可溶化装置100は、可溶化槽列11、12が、それぞれ2つの可溶化槽11B、11C、可溶化槽12B、12Cが直列に接続されることにより構成されている。このように、可溶化槽列における可溶化槽の数は、2つでもよい。
この実施の形態に係る可溶化装置100でも、この可溶化処理と同時に、各可溶化槽11A~11C、12A~12Cで発生したアンモニアのアンモニア吸着部14での吸着処理や、沈殿分離槽16での上澄み液の分離抽出が行われる。
なお、上記各実施の形態では、可溶化槽列を2列としたが、これには限られない。可溶化槽列は3列以上であってもよい。また、1つの可溶化槽列における可溶化槽の数は4つ以上であってもよい。
この場合にも、最上段の可溶化槽から最下段の1つ前の可溶化槽まで有機性廃棄物を送る通路の高さは、最下段の可溶化槽と最下段の1つ前の可溶化槽との間で有機性廃棄物を送る通路の高さよりも低くなっていればよい。
この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
本出願は、2014年9月25日に出願された、日本国特許出願特願2014-195076号に基づく。本明細書中に日本国特許出願特願2014-195076号の明細書、特許請求の範囲、図面全体を参照して取り込むものとする。
本発明は、メタン発酵前の有機性廃棄物を可溶化するのに好適である。この可溶化により、メタン発酵の発酵効率が著しく向上する。この技術を用いて、植物や動物に由来する家畜糞尿、下水汚泥、または生ゴミ等の有機性廃棄物をメタン発酵処理することによりメタンガスを回収し、それをバイオマスエネルギーとして利用することは、カーボンニュートラルの視点より地球温暖化防止や循環型社会の構築に大きく貢献できるだけでなく、廃棄物からエネルギー(燃料、熱、電気)を生産することが可能となる。
10 第1貯留槽、11 可溶化槽列、11A、11B、11C 可溶化槽、12 可溶化槽列、12A、12B、12C 可溶化槽、13 第2貯留槽、14 アンモニア吸着部、15 ミストキャッチャー、16 沈殿分離槽、20 裏面、21溝部、22 排出口、23 排出口、25 排出部、30A、30B、31A、31B 通路、100 可溶化装置。
Claims (6)
- メタン発酵槽に送られる有機性廃棄物を可溶化する可溶化装置であって、
前記メタン発酵槽に送られる前の前記有機性廃棄物を貯蔵する貯蔵槽と、
複数の可溶化槽が直列に接続され最上段の可溶化槽に投入された前記有機性廃棄物が、下段の可溶化槽に順次送られて最下段の可溶化槽から前記貯蔵槽に送られるうちに、前記各可溶化槽において、前記有機性廃棄物の可溶化処理を行う可溶化槽列と、
を備え、
前記最上段の可溶化槽から前記最下段の1つ前の可溶化槽までの前記有機性廃棄物を送る通路の高さが、前記最下段の可溶化槽と前記最下段の1つ前の可溶化槽との間で前記有機性廃棄物を送る通路の高さよりも低くなっている、
可溶化装置。 - 前記各可溶化槽では、
プロテアーゼ生成菌を用いた超高温可溶化処理が行われる、
請求項1に記載の可溶化装置。 - 前記各可溶化槽から排出された廃液からアンモニアを吸着して除去するアンモニア吸着部をさらに備える、
請求項1又は2に記載の可溶化装置。 - 前記各可溶化槽の蓋の裏面は、中心から外縁に向かって下方に傾斜しており、
前記裏面を伝わって流れる水滴を貯める溝部が前記蓋の外周部に設けられ、
前記溝部に貯まった液を排出して、前記アンモニア吸着部に送るための排出口が前記溝部に設けられている、
請求項3に記載の可溶化装置。 - 前記最下段の可溶化槽を除く前記各可溶化槽には、
汚泥を排出する排出部が設けられている、
請求項1乃至4のいずれか一項に記載の可溶化装置。 - 前記排出部から排出された汚泥を回収して沈殿分離させる沈殿分離槽をさらに備え、
前記沈殿分離槽の上澄み液を前記可溶化槽列に戻す、
請求項5に記載の可溶化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580051989.1A CN107074600A (zh) | 2014-09-25 | 2015-09-25 | 可溶化装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014195076A JP5749846B1 (ja) | 2014-09-25 | 2014-09-25 | 可溶化装置 |
JP2014-195076 | 2014-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047786A1 true WO2016047786A1 (ja) | 2016-03-31 |
Family
ID=53718536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077200 WO2016047786A1 (ja) | 2014-09-25 | 2015-09-25 | 可溶化装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5749846B1 (ja) |
CN (1) | CN107074600A (ja) |
WO (1) | WO2016047786A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6377553B2 (ja) * | 2015-03-13 | 2018-08-22 | 株式会社東芝 | 汚泥処理システム |
JP6377552B2 (ja) * | 2015-03-13 | 2018-08-22 | 株式会社東芝 | 汚泥処理システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11138200A (ja) * | 1997-11-12 | 1999-05-25 | Ebara Corp | 有機性汚泥の処理方法及び装置 |
JP2000015293A (ja) * | 1998-06-30 | 2000-01-18 | Sumitomo Chem Co Ltd | 有機性廃棄物の減容化装置 |
JP2004008843A (ja) * | 2002-06-04 | 2004-01-15 | Mitsubishi Kakoki Kaisha Ltd | 有機性排水の処理方法 |
JP2011083761A (ja) * | 2009-10-19 | 2011-04-28 | Nagasaki Institute Of Applied Science | 有機性廃棄物のメタン発酵処理方法 |
JP2011183393A (ja) * | 2011-05-23 | 2011-09-22 | Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd | メタン発酵後処理装置、メタン発酵後処理システム及びこれらの方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4604600B2 (ja) * | 2003-09-29 | 2011-01-05 | 富士電機ホールディングス株式会社 | メタン発酵処理方法及び装置 |
JP5758110B2 (ja) * | 2010-11-24 | 2015-08-05 | 三菱重工環境・化学エンジニアリング株式会社 | メタン発酵前処理装置 |
-
2014
- 2014-09-25 JP JP2014195076A patent/JP5749846B1/ja not_active Expired - Fee Related
-
2015
- 2015-09-25 CN CN201580051989.1A patent/CN107074600A/zh active Pending
- 2015-09-25 WO PCT/JP2015/077200 patent/WO2016047786A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11138200A (ja) * | 1997-11-12 | 1999-05-25 | Ebara Corp | 有機性汚泥の処理方法及び装置 |
JP2000015293A (ja) * | 1998-06-30 | 2000-01-18 | Sumitomo Chem Co Ltd | 有機性廃棄物の減容化装置 |
JP2004008843A (ja) * | 2002-06-04 | 2004-01-15 | Mitsubishi Kakoki Kaisha Ltd | 有機性排水の処理方法 |
JP2011083761A (ja) * | 2009-10-19 | 2011-04-28 | Nagasaki Institute Of Applied Science | 有機性廃棄物のメタン発酵処理方法 |
JP2011183393A (ja) * | 2011-05-23 | 2011-09-22 | Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd | メタン発酵後処理装置、メタン発酵後処理システム及びこれらの方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016064367A (ja) | 2016-04-28 |
JP5749846B1 (ja) | 2015-07-15 |
CN107074600A (zh) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahring | Perspectives for anaerobic digestion | |
DK1757562T3 (da) | Apparat og fremgangsmåde til behandling af biogas-forgæringsrester, gylle og kloakslam | |
US10472809B2 (en) | System for disposal of waste containing food waste or livestock manure and production of energy and method therefor | |
WO2016047786A1 (ja) | 可溶化装置 | |
JP5523169B2 (ja) | メタン発酵システム | |
JP6705901B2 (ja) | 有機廃棄物の処理システム | |
CN112808738A (zh) | 一种利用餐厨垃圾制备碳源的方法 | |
CN113214857B (zh) | 一种生物质两级水热产能循环系统及方法 | |
CN113648821A (zh) | 一种铁合金尾气的处理方法及处理系统 | |
JP6026689B1 (ja) | メタン発酵システム | |
KR101993134B1 (ko) | 로터리진공증발법 및 막분리공법을 이용한 고농도 유기 폐수의 처리 장치 및 이를 이용한 처리 방법 | |
WO2017203781A1 (ja) | メタン発酵装置 | |
JP2012239972A (ja) | 有機性廃棄物の生物学的処理装置およびその方法 | |
JP2009066558A (ja) | バイオガスシステム | |
JP4907123B2 (ja) | 有機性廃棄物の処理方法及び処理システム | |
JP2005046788A (ja) | メタン発酵処理方法及び装置 | |
JP2018149514A (ja) | 油脂含有排水処理装置及び油脂含有排水処理システム | |
CA2781840C (en) | Method for treating waste | |
KR101831980B1 (ko) | 저급 바이오오일의 물리적 정제 장치 및 정제 방법 | |
JP2002177994A (ja) | 有機性汚泥の消化処理方法及び装置 | |
CN114853165B (zh) | 一种稻壳含量高的白酒酒糟和高浓度酿酒废水的联合处理方法 | |
JP7177539B2 (ja) | フルボ酸およびフミン酸の混合溶液の製造方法およびフミン酸の製造方法 | |
KR101392819B1 (ko) | 발효/촉매 복합 공정을 사용한 유기성 폐기물로부터 에탄올의 제조방법 | |
JP2005230624A (ja) | 乾式メタン発酵法 | |
US12012339B2 (en) | Systems and methods for treating biologically contaminated water streams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15843613 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15843613 Country of ref document: EP Kind code of ref document: A1 |