WO2016047754A1 - Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal - Google Patents

Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal Download PDF

Info

Publication number
WO2016047754A1
WO2016047754A1 PCT/JP2015/077099 JP2015077099W WO2016047754A1 WO 2016047754 A1 WO2016047754 A1 WO 2016047754A1 JP 2015077099 W JP2015077099 W JP 2015077099W WO 2016047754 A1 WO2016047754 A1 WO 2016047754A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substance
data
communication terminal
camera
Prior art date
Application number
PCT/JP2015/077099
Other languages
French (fr)
Japanese (ja)
Inventor
隆 日下
佳 平尾
Original Assignee
国立大学法人 香川大学
株式会社三紅メディカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 香川大学, 株式会社三紅メディカル filed Critical 国立大学法人 香川大学
Publication of WO2016047754A1 publication Critical patent/WO2016047754A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to an inspection apparatus used for acquiring information in a human biological tissue or other desired substance to be inspected by an optical technique, and a technology related thereto.
  • Patent Document 1 A conventional example of an inspection apparatus is described in Patent Document 1.
  • the inspection apparatus described in this document uses a so-called multipoint measurement technique, and includes first and second configurations described below.
  • one light source and two light receiving units are provided.
  • the light source is for irradiating light on the surface of the substance so that the light enters the substance to be inspected.
  • the two light receiving parts receive light that has been emitted from the light source and diffused in the substance (including diffuse reflection, the same applies hereinafter) and arrived at two places different from the light irradiation part on the surface of the substance. Set to From these two light receiving sections, signals of levels corresponding to the respective amounts of received light are output.
  • two light sources and one light receiving unit are provided.
  • two light irradiation units are set on the surface of the substance to be inspected.
  • the two light sources are individually turned on.
  • the optical characteristic information of the deep part in the substance from which the optical information of the relatively shallow part in the substance is excluded can be obtained by the same method as in the case of the first configuration described above.
  • the separation distance between the light irradiation part and the light receiving part set on the surface of the substance is set to an optimum distance so that an accurate measurement value can be obtained. If the separation distance is too short, for example, there is a problem that a large amount of reflected light (interface reflected light) from the surface of the substance reaches the light receiving portion. On the other hand, if the separation distance is too long, so-called sneak light (light transmitted through the interface region in the shallower portion than the original inspection target region and light that has passed through the shallow portion) reaches a large amount of the light receiving unit. Problems such as defects and a narrow dynamic range occur. Further, the optimum separation distance between the light irradiating unit and the light receiving unit varies depending on the inspection item.
  • the light receiving part is a dot-like region, and the distance between the light receiving part and the light irradiation part is fixed. For this reason, it is difficult to obtain an optimum distance as the separation distance and adjust to the obtained distance according to the inspection item. As a result, the measurement accuracy may be inferior, and there is still room for improvement in improving the reliability of the measurement accuracy.
  • the information on the substance surface in the plurality of light irradiation units or the plurality of light receiving units is the same.
  • information on the material surface may be different between a plurality of light irradiation sections or between a plurality of light receiving sections.
  • the examination target is a living tissue
  • An object of the present invention is to provide an inspection device capable of eliminating or reducing the above-described problems, an attachment constituting the inspection device, a portable communication terminal, and a program for controlling the portable communication terminal. There is.
  • An inspection apparatus includes a light source for irradiating light on a surface of the substance so that light is incident on the substance to be inspected, and a light source emitted from the light source to pass through the substance.
  • Light receiving means for receiving light reaching a part different from the light irradiation part on the surface of the substance by diffusing, and outputting a signal of a level corresponding to the amount of light received, and signal data output from the light receiving means
  • a data processing unit that executes a process for obtaining optical characteristic information for a specific wavelength region in the substance based on the inspection device, wherein the light receiving means is a one-dimensional or two-dimensional image.
  • the data processing unit As data for determining the optical characteristic information, is characterized in that it is configured to use the captured image data.
  • the “optical characteristic information” include an extinction coefficient, a light transmission coefficient, or a transmittance.
  • the data processing unit includes data of a diffused light receiving region in which any range of the captured image data has a linear relationship between a separation distance from the light irradiation unit and a logarithmic value of the amount of received light.
  • the optical characteristic information in the substance is obtained by using the data determined to be present and determined to be within the range of the diffused light receiving region.
  • a two-dimensional image sensor is used as the image sensor, and the data processing unit includes two-dimensional captured image data of the surface of the substance acquired by imaging using the two-dimensional image sensor. From this, data corresponding to an image of a linear area on the surface of the substance is selected, and the range of the diffused light receiving area is determined for the selected data.
  • the data processing unit determines whether or not the captured image data includes abnormal data due to non-uniformity of the surface of the substance, and the abnormal data is included. If it is determined, the optical characteristic information is determined based on the captured image data from which the abnormal data is excluded.
  • the inspection apparatus includes a portable communication terminal including a light source, a camera using an image sensor, and a control unit capable of executing data processing of a signal output from the camera, and the portable communication.
  • a portable communication terminal including a light source, a camera using an image sensor, and a control unit capable of executing data processing of a signal output from the camera, and the portable communication.
  • An attachment that can be attached to and detached from a terminal, and a light source for irradiating light on the surface of the substance, as the light receiving means and the data processing unit, a light source of the portable communication terminal,
  • a camera and a control unit are used, respectively, and the attachment sets the separation distance between the surface of the substance and the camera to be an imageable distance of the camera by contacting the surface of the substance. It has a measuring probe that can.
  • the inspection apparatus includes a portable communication terminal including a camera using an image sensor and a control unit capable of executing data processing of a signal output from the camera, and the portable communication terminal. And a removable attachment, and the light receiving means and the data processing unit are configured such that a camera and a control unit of the portable communication terminal are used, respectively.
  • the light source, and a measurement probe capable of setting a separation distance between the surface of the substance and the camera to be an imageable distance of the camera by being brought into contact with the surface of the substance.
  • the light source, the light receiving unit, and the data processing unit are incorporated in a common case, and light emitted from the light source can be guided to the surface of the substance in the case.
  • a measurement probe capable of setting the separation distance between the surface of the substance and the light receiving means to be an imageable distance by being brought into contact with the surface of the substance.
  • the measurement probe has a planar tip surface having translucency capable of pressing the entire imaging target region on the surface in a planar shape when being brought into contact with the surface of the substance. ing.
  • the inspection apparatus includes a light guide for guiding the light to the surface of the substance while suppressing the divergence of the light emitted from the light source.
  • a plurality of light irradiation units positioned around the imaging target region by the image sensor and spaced apart from each other, or an annular light irradiation unit surrounding the imaging target region can be set. Has been.
  • An inspection apparatus includes a light source for irradiating light on the surface of the substance so that the light is incident on the substance to be inspected, and a light source emitted from the light source and passing through the substance.
  • Light receiving means for receiving light reaching a part different from the light irradiation part on the surface of the substance by diffusing, and outputting a signal of a level corresponding to the amount of light received, and signal data output from the light receiving means
  • a data processing unit that executes a process for obtaining optical characteristic information for a specific wavelength region in the substance based on the inspection device, wherein the light receiving means is a one-dimensional or two-dimensional image.
  • a sensor is provided, and light that passes through the surface after reaching a part of the surface of the material at a different angle from the inside of the material is applied to each part of the image sensor for each angle of arrival at the surface.
  • a light guide member that further guides the light so as to be received separately, and that receives light as a signal output from the image sensor, and indicates a light amount distribution for each arrival angle of light reaching a part of the surface of the substance.
  • the data processing unit is configured to use the received light data as data for obtaining the optical characteristic information.
  • the attachment provided by the third aspect of the present invention is used by being attached to a camera using an image sensor and a portable communication terminal having a control unit capable of executing data processing of signals output from the camera.
  • An attachment used to construct the inspection apparatus provided by the first aspect of the present invention, the light source attached to the attachment, or emitted from the light source provided in the portable communication terminal The illumination probe unit that can irradiate the surface of the material with the light, and a part of the probe surface abuts on the surface of the material, so that the distance between the surface of the material and the camera can be imaged. And an imaging probe section for setting the distance.
  • a portable communication terminal provided by the fourth aspect of the present invention includes an operation unit, a camera using an image sensor, and a control unit capable of executing data processing of a captured image signal output from the camera.
  • a portable type that constitutes an inspection apparatus capable of executing processing for obtaining optical characteristic information about a specific wavelength region in a substance to be inspected by being used in combination with the attachment provided by the third aspect of the present invention.
  • the captured image data corresponding to the amount of light that has diffused through the substance and reached the surface of the substance by acquiring a part different from the part with the camera is obtained. From the above, picked-up image data indicating the amount of light reaching each of a plurality of pick-up points with different separation distances from the light irradiating unit, and executing the process of obtaining the optical characteristic information based on the selected data It is characterized by being configured.
  • a control program for a portable communication terminal provided by the fifth aspect of the present invention includes an operation unit, a camera using an image sensor, and a control unit capable of executing data processing of a captured image signal output from the camera.
  • a control program for a portable communication terminal used to configure an inspection device that executes processing for obtaining optical characteristic information for a specific wavelength region, when a predetermined operation is performed in the operation unit A step of setting the portable communication terminal to an inspection processing mode; and a light source attached to the attachment in the inspection processing mode.
  • the portion different from the light irradiation part on the surface of the substance is imaged by the camera,
  • a step of acquiring captured image data corresponding to the amount of light that has diffused in the material and reached the surface of the material, and a plurality of images in which the separation distance from the light irradiation unit is different from the captured image data Selecting the captured image data indicating the light arrival amount for each point, and executing the process of obtaining the optical characteristic information based on the selected data, including data for causing the control unit to execute It is characterized by being.
  • FIG. 1A is a cross-sectional side view of an essential part showing an example of an inspection apparatus according to the present invention
  • FIG. 1B is an enlarged cross-sectional view of an essential part of FIG. 1A
  • FIG. 1C is an exploded perspective view of the inspection apparatus shown in FIG.
  • FIG. 2 is a block diagram showing a hardware configuration of a portable communication terminal constituting the inspection apparatus shown in FIGS. 1A to 1C.
  • FIG. 3A is an explanatory plan view showing the relationship between the light irradiation unit and the imaging target region
  • FIG. 3B is a graph showing an example of data obtained by imaging. It is explanatory drawing which shows an example in case abnormal data exists in a captured image.
  • FIGS. 1A to 1C are explanatory diagrams showing other examples when abnormal data exists in the captured image.
  • 2 is a flowchart showing an example of a data processing procedure executed by the inspection apparatus shown in FIGS. 1A to 1C.
  • FIG. 2 is a side sectional view of an essential part showing a comparison with the inspection apparatus shown in FIGS. 1A to 1C (this comparison corresponds to an embodiment of the present invention).
  • It is a disassembled perspective view which shows the other example of the test
  • 10A is a perspective view showing another example of the inspection apparatus according to the present invention, and FIG.
  • FIG. 10B is an explanatory view schematically showing the main configuration of FIG. 10A.
  • FIG. 11A is an explanatory view schematically showing another example of the inspection apparatus according to the present invention
  • FIG. 11B is an explanatory plan view showing the relationship between the light irradiation unit and the imaging target area in the inspection apparatus shown in FIG. 11A.
  • It is. 12A is an explanatory plan view showing another example of the positional relationship between the light source and the imaging target region
  • FIG. 12B is a graph showing an example of imaging data obtained by the configuration of FIG. 12A.
  • 13A and 13B are explanatory plan views illustrating another example of the positional relationship between the light source and the imaging target region.
  • FIG. 14A is an explanatory view schematically showing another example of the main structure of the inspection apparatus of the present invention
  • FIG. 14B is an explanatory plan view showing the relationship between the light irradiation part and the imaging position in the configuration of FIG. 14A
  • FIG. 14C is a graph showing an example of imaging data obtained by the configuration of FIG. 14A.
  • the inspection apparatus E1 shown in FIGS. 1A to 1C is configured by combining a portable communication terminal B and an attachment A1 that can be attached to and detached from the portable communication terminal B.
  • This inspection device E1 is used for measuring the concentration of a specific component in a human biological tissue, for example, measuring the serum total bilirubin concentration for a liver function test.
  • the description will be made on the assumption that the substance to be examined is the living tissue 9 having the skin 90 and the subcutaneous tissue 91.
  • the type of inspection object is not limited to this, and various substances can be inspected as described later.
  • the portable communication terminal B is a smartphone, and, as shown in FIG. 2, except for the point that the inspection processing program P1 is stored in the storage unit 10a of the control unit 10, the other configurations are conventionally known smartphones. It is the same. Specifically, the portable communication terminal B includes a light source 2, a camera 3 capable of color imaging, a communication circuit 11, a liquid crystal panel, an organic EL panel, and the like in addition to the control unit 10 described above. 12, a touch panel type operation unit 13 and a speaker 14 are provided.
  • the control unit 10 executes the operation processing and data processing of each unit of the portable communication terminal B, and corresponds to an example of the data processing unit referred to in the present invention. Based on the control program P1, the serum total bilirubin concentration, etc. Data processing for obtaining the concentration of the specific component is also executed. However, the specific content will be described later.
  • the light source 2 is used for illumination during imaging by the camera 3. However, the light source 2 is also used as a light source for irradiating the surface of the skin 90 with light and making the light enter the living tissue 9 as described later.
  • the light source 2 is configured using, for example, a white LED, and is in a position relatively close to the camera 3.
  • the camera 3 corresponds to an example of the light receiving means referred to in the present invention. As will be described later, the camera 3 images the surface of the skin 90 and detects the amount of light diffused in the living tissue 9 reaching each part of the surface of the skin 90. Used to do.
  • the camera 3 is configured by combining a condenser lens 30, an RGB color filter 31, and an image sensor 32.
  • the image sensor 32 is a two-dimensional image sensor (area image sensor) such as a CCD or a CMOS, for example, and has a structure in which a large number of light receiving elements having fine light receiving surfaces are arranged vertically and horizontally.
  • the RGB color filter 31 is provided corresponding to each of a large number of light receiving surfaces of the image sensor 32, and the image sensor 32 outputs an output level (voltage) corresponding to each of the received light amounts of RGB as a captured image signal. Level) is output.
  • the RGB color filter 31 can be used as a filter for selecting light in a wavelength range necessary for inspection. For example, in the case of measuring serum total bilirubin concentration, the R signal is not used and only the G and B signals are used.
  • the analog captured image signal output from the camera 3 is amplified by the amplification unit 15, converted to a digital signal by the A / D conversion unit 16, and then input to the control unit 10.
  • attachment A1 has one corner 19 close to camera 3 and light source 2 among the four corners of portable communication terminal B as an attachment target.
  • the attachment A1 has an attachment main body 4 and a measurement probe 5.
  • the attachment main body 4 is made of resin, and has an upper wall portion 40 having an L shape in plan view and a vertical wall portion 41 connected to the upper wall portion 40.
  • the measurement probe 5 is joined to the lower portion of the vertical wall portion 41, and a recess 42 for inserting the corner portion 19 of the portable communication terminal B is provided between the measurement probe 5 and the upper wall portion 40. Is formed.
  • the measurement probe 5 has probe parts 5a and 5b for illumination and imaging.
  • the light guide 50 is provided.
  • the light guide 50 is configured using, for example, an optical fiber, an image conduit, or a mirror.
  • the light guide 50 guides light to a position closer to the probe unit 5 b than a position directly below the light source 2, and reaches the skin 90 at a position as close as possible to an imaging target region by the camera 3. It is set to emit light.
  • the imaging probe unit 5b is made of a material that transmits light in a wavelength region used for concentration measurement of a specific component, and has a flat tip surface 51. By bringing the distal end surface 51 into contact with the imaging target area of the skin 90, the imaging target area is maintained in a flat shape, and the separation distance La between the imaging target area and the camera 3 is set to the imageable distance of the camera 3. It is possible to set. If the camera 3 is very close to the skin 90 and the distance is smaller than the minimum imageable distance of the camera 3, appropriate imaging becomes difficult. On the other hand, the imaging probe unit 5b plays a role of making the separation distance La between the skin 90 and the camera 3 larger than the minimum imageable distance of the camera 3 and enabling appropriate imaging without defocusing. .
  • the surface of the skin 90 is raised by an appropriate dimension Lb, and there is a possibility that a focused captured image can be obtained.
  • the probe part 5b in this embodiment is used, such a possibility is eliminated.
  • the outer surface of the probe portion 5b has a light shielding property, and disturbance light is prevented from entering the probe portion 5b.
  • a light-shielding property is also provided between the probe unit 5b and the light guide path 50, and light from the light guide path 50 is also prevented from directly entering the probe section 5b.
  • the operation mode of the portable communication terminal B is set to the inspection processing mode (S1: YES, S2).
  • the measurement probe 5 is pressed against the skin 90 such as the human sternum or the forehead and the light source 2 is driven to turn on
  • the camera 3 is turned on and the surface of the skin 90 is imaged ( S3: YES, S4).
  • this imaging for example, as shown in FIG. 3A, two-dimensional captured image data D1 obtained by imaging an area AR1 (lattice pattern portion) adjacent to the light irradiation unit 6 in the surface of the skin 90 is obtained.
  • a circle C ⁇ b> 1 illustrated in FIG. 3A is an example of a range in which light diffuses in the living tissue 9 around the light irradiation unit 6.
  • the control unit 10 selects the captured image data D10 of the linear area AR10 from the above-described two-dimensional captured image data D1 (S5).
  • the linear region AR10 is, for example, a linear or belt-shaped region (cross-hatched portion in FIG. 3A) along the straight line SL1 that passes through the light irradiation unit 6.
  • the captured image data D10 of the linear area AR10 corresponds to data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit 6.
  • G and B captured image data among the three types of RGB captured image data is used, and R captured image data is not used.
  • the picked-up image data D10 of the linear area AR10 is selected so that there is no heterogeneous portion H (see FIG. 4 and FIGS. 5A to 5C) such as a wound, mole or hair in the linear area AR10.
  • the condition is that there is no large non-uniformity on the surface of the skin 90 corresponding to AR10.
  • the heterogeneous portion H exists, the position and size can be clearly determined in the captured image data D1.
  • the captured image data of the linear area AR10 is not selected as data for obtaining the extinction coefficient. In this case, for example, as shown in FIG.
  • both or one of the linear image areas AR11 and AR12 that are offset from the straight line SL1 by an appropriate dimension Lc is selected, and the image data of the heterogeneous portion H is included. Not to be.
  • picked-up image data of a linear region AR13 extending at an appropriate angle with respect to the straight line SL1 is selected. It doesn't matter.
  • captured image data of a linear region AR14 extending in a direction orthogonal to the straight line SL1 may be selected.
  • the above-described captured image data D10 has a content as shown in FIG. 3B, for example, and overall, as the distance from the light irradiation unit 6 increases, the amount of received light (arrival light amount) tends to decrease. .
  • the control unit 10 determines the range R2 of the diffused light receiving region in which the separation distance from the light irradiation unit 6 and the logarithmic value of the amount of received light have a linear relationship, and within this range R2 Is used to obtain an extinction coefficient for a specific wavelength range from blue light to green light in the living tissue 9 (S6).
  • the range R1 close to the light irradiation unit 6 in FIG.
  • a range R3 far from the light irradiation unit 6 is a sneak light receiving region where sneak light such as subcutaneous fat conduction light arrives.
  • the data of the diffused light receiving region R2 described above is data of a region where the light diffused in the living tissue 9 has appropriately reached and does not include or hardly include the above-described interface reflected light and sneak light. It is.
  • the extinction coefficient for the specific wavelength region in the living tissue 9 When obtaining the extinction coefficient for the specific wavelength region in the living tissue 9 using the data of the diffused light receiving region R2 described above, it is optimal or close to the optimum for calculating the extinction coefficient within the range of the diffused light receiving region R2.
  • Multiple possible individual data can be selected. Specifically, for example, it is possible to select data of received light amounts a1 and a2 at two imaging points P1 and P2 in which the difference in the separation distance is close to the maximum in the diffused light receiving region R2.
  • the data to be selected is not limited to this. For example, by performing a test or the like in advance, candidates for two imaging points P1 and P2 considered to be optimal may be determined, and data corresponding to these candidates may be selected.
  • calculation processing for obtaining an extinction coefficient for the specific wavelength region in the living tissue 9 is executed based on the selected data (S7).
  • This arithmetic processing is executed using, for example, the following arithmetic expression 1.
  • D Amount of light incident on the light irradiation unit a1: Amount of light received at the first imaging point P1 a2: Amount of light received at the second imaging point P2
  • L1 First imaging point P1 from the light irradiation unit (side closer to the light irradiation unit) ) Average optical path length (average distance traveled by diffused light)
  • L2 Average optical path length from the light irradiation unit to the second imaging point P2 (on the side far from the light irradiation unit) (average value of distance traveled by diffused light) Abs 1 : Absorbance at imaging point P 1 Abs 2 : Absorbance at imaging point P 2
  • the absorbance depending on the difference in average optical path length in the light diffuser can be obtained by taking the difference in absorbance between the imaging point P1 and the imaging point P2. Since the optical path length difference in the light diffuser is known to be the largest in the deep part, the differential absorbance will contain a lot of deep part information, and the molecular species and concentration information in the deep part of the measurement object can be obtained. It becomes possible.
  • the control unit 10 After obtaining the extinction coefficient, the control unit 10 obtains the serum total bilirubin concentration in the subcutaneous tissue 91 based on the value, and displays the result on the display unit 12 (S8, S9). . Since the extinction coefficient and the serum total bilirubin concentration have a certain correspondence, the extinction coefficient can be converted to obtain the serum total bilirubin concentration.
  • the data for obtaining the extinction coefficient is optimal or close to optimal from the captured image data D10 of the skin 90 captured using the image sensor 32.
  • Data is selected and used.
  • the captured image data D10 is data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit 6, the captured image data D10 is selected from the captured image data D10 according to the inspection item.
  • the captured image data D10 data that is not affected by interface reflected light or sneak light can be selected and used.
  • the data for obtaining the extinction coefficient may not include data (abnormal data) of the heterogeneous portion H such as a wound on the skin 90, a mole, or body hair. Therefore, a more appropriate value can be obtained as the extinction coefficient. As a result, it is possible to reduce the error in the measured value of the serum total bilirubin concentration obtained based on the extinction coefficient and to increase the reliability of the measured value.
  • the inspection device E1 is configured using the portable communication terminal B
  • the portable communication terminal B is not specialized as a component device of the inspection device E1, and does not interfere with daily calls or Internet connection. It is possible to use without.
  • the inspection apparatus E1 of the present embodiment has a rational configuration that effectively uses the portable communication terminal B, and the substantial system overall. The manufacturing cost can be reduced. Since not only the control unit 10 of the portable communication terminal B but also the light source 2 and the camera 3 are effectively used as components of the inspection apparatus E1, the configuration of the attachment A1 is simplified, and the overall manufacturing cost is further increased. It is possible to make it cheaper.
  • the upper wall portion 40 of the attachment A2 is substantially U-shaped in a plan view, and a lower wall portion 43 facing the upper wall portion 40 is provided below the upper wall portion 40. Between both of the measurement probe 5 and the lower wall portion 43 and the upper wall portion 40, there is provided a recess 42a into which one end portion of the portable communication terminal B and its vicinity can be fitted.
  • the attachment A2 can be attached to the portable communication terminal B by fitting one end of the portable communication terminal B and the vicinity thereof into the recess 42a. Compared with the embodiment in which the attachment A1 is attached to one corner, the attachment state of the attachment A2 can be made more stable.
  • the specific means for attaching the attachment to the portable communication terminal is not limited to the fitting method as described above, and other methods can be adopted.
  • the light source 2A is attached to the attachment A3, and the light emitted from the light source 2A can be irradiated to the skin 90.
  • the light source 2A for example, means for mounting a small-sized battery on the attachment A3 or means for receiving power supply from an output terminal provided in the portable communication terminal B is adopted. be able to.
  • the portable communication terminal B is not provided with a light source, or even if the portable communication terminal B is provided with a light source, the relative positional relationship with the camera 3 and the like. For this reason, it is possible to appropriately cope with the case where the skin 90 is not very suitable for light irradiation.
  • the inspection apparatus E4 shown in FIGS. 10A and 10B is configured as a dedicated inspection apparatus that does not use a portable communication terminal. Specifically, the data processing unit 10 ⁇ / b> A, the display unit 12, the operation unit 13, the light source 2 ⁇ / b> A, and the camera 3 using the two-dimensional image sensor are assembled in one common case 70. The measurement probe 5 is provided at a lower portion of the case 70 so as to protrude downward.
  • the inspection apparatus E4 of the present embodiment does not use a portable communication terminal
  • the basic configuration is the same as that of the inspection apparatuses E1 to E3 described above, and the intended effect of the present invention can be obtained. Is possible.
  • a one-dimensional image sensor (line image sensor) 32A is used as means for imaging the surface of the inspection target substance.
  • the region to be imaged by the one-dimensional image sensor 32A is, for example, a linear shape along a straight line SL1 passing through the light irradiation unit 6 in the region adjacent to the light irradiation unit 6 on the surface of the skin 90, as shown in FIG. 11B.
  • This area AR15 corresponds to the linear area AR10 shown in FIG. 3A. Therefore, captured image data as shown in FIG. 3B can also be obtained by imaging with the one-dimensional image sensor 32A, and the inspection processing intended by the present invention can be appropriately performed.
  • the extinction coefficient can be obtained based on the remaining data excluding the abnormal data.
  • the two light irradiation units 6 can be set on the surface of the skin 90 so as to sandwich the imaging target area AR1 by the two-dimensional image sensor.
  • the two light irradiation units 6 are arranged symmetrically with respect to the center portion Oa of the imaging target area AR1.
  • two point light sources (not shown) are used as means for enabling the two light irradiation units 6 to be set.
  • the captured image data D2 of the region along the straight line SL1 connecting the two light irradiation units 6 has contents as shown in FIG. 12B, for example.
  • the left and right ends of the imaging target area AR1 have a larger amount of received light than the center side, and the two ranges R2 in the figure represent the imaging position (separated distance from the light irradiation unit) and the received light amount.
  • the two light irradiation units 6 are set, the amount of light received by the image sensor can be increased, and the SN ratio of the captured image signal output from the image sensor can be increased.
  • the three light irradiators 6 are set at an equiangular interval around the imaging target area AR1 and set to an arrangement having rotational symmetry centered on the central portion Oa of the imaging target area AR1.
  • Such a setting can be realized by using, for example, three point light sources.
  • it can also be set as the structure which set the number of the light irradiation parts 6 to four or more.
  • an annular light irradiation unit 6a is set around the imaging target area AR1.
  • the light irradiation unit 6a is concentric with the imaging target area AR1 and has a rotational symmetry centered on the central portion Oa of the imaging target area AR1.
  • the annular light irradiation unit 6a includes an annular light scattering plate having translucency, and a plurality of point light sources for irradiating light at appropriate positions of the light scattering plate, and the light scattering plate is used as a light emitting surface. Can be set by using a light source device.
  • the amount of light applied to the skin 90 is further increased than in the embodiment shown in FIG. 12A, and the SN ratio of the captured image signal output from the image sensor is further increased. It is possible.
  • the specific number, arrangement, shape, and the like of the light irradiation section are not limited.
  • the light source a light source other than the LED light source can be used.
  • an annular light source capable of setting an annular light irradiation unit 6a as shown in FIG. 14B on the surface of the skin 90 is used.
  • a portion corresponding to the central portion of the light irradiation unit 6a is an imaging point Pa
  • a ball lens 75 is disposed on the imaging point Pa.
  • a two-dimensional image sensor 32 is disposed above the ball lens 75.
  • the ball lens 75 corresponds to an example of a light guide member in the present invention, and enters and diffuses into the living tissue 9 from the light irradiation unit 6a, and reaches the imaging point Pa at a different angle, and then the skin 90 is removed.
  • the light passing upward is guided to be distributed and received by each part of the image sensor 32 at each arrival angle ⁇ (inclination angle with respect to the normal in this specification). More specifically, light having a small arrival angle ⁇ with respect to the imaging point Pa is guided to and received at a position closer to the center of the image sensor 32, and moves closer to the end of the image sensor 32 as the arrival angle ⁇ increases. It is configured to be guided and receive light. For this reason, the image sensor 32 outputs a light reception data signal indicating a light amount distribution for each arrival angle ⁇ of the light reaching the imaging point Pa.
  • the light reception data D4 output from a plurality of light receiving elements along a straight line passing through the center of the light receiving surface of the image sensor 32 is selected from the light reception data, the light reception data D4 is as shown in FIG. 14C. Become.
  • the received light data D4 has the same property as the captured image data indicating the relative relationship between the distance from the light irradiation unit and the amount of received light shown in FIG. 12B, for example. Therefore, based on the received light data D4 shown in FIG. 14C, an extinction coefficient for a specific wavelength region in the living tissue 9 is calculated in a data processing unit (not shown), and the serum total bilirubin concentration is obtained based on the extinction coefficient. It is possible.
  • the imaging target region by the image sensor 32 can be set to only one imaging point Pa, unlike in the case of setting a plurality of imaging points, the surface information varies for each imaging point. The resulting measurement error is eliminated. More specifically, since the color of the skin 90 is not the same everywhere and varies, when a plurality of imaging points are set, one imaging point has a whiter or blackish skin than the other imaging point. Due to the above setting, there is a possibility that a difference occurs between the captured images at the two imaging points. On the other hand, according to this embodiment, the advantage by which such a concern is eliminated suitably is acquired. In the embodiment shown in FIGS. 14A to 14C, a point light source may be used as the light source, and a one-dimensional image sensor may be used as the image sensor.
  • the present invention is not limited to the contents of the above-described embodiment.
  • the specific configuration of each part of the inspection apparatus, attachment, and portable communication terminal according to the present invention can be variously modified within the scope of the present invention.
  • the specific contents of the control program according to the present invention can be variously changed within the intended scope of the present invention.
  • the case of measuring the serum total bilirubin concentration in the subcutaneous tissue of the human body has been described as a specific example.
  • the measurement target item is not limited to this, and other items can be obtained by changing the wavelength range of light. It is also possible to configure so as to measure the concentration of the specific component (for example, dissolved carbon monoxide, carbon dioxide).
  • the substance to be examined is not limited to human and animal living tissues, and various substances such as plant tissues and foods such as fruits can be examined. Therefore, the wavelength range of light used for inspection is not limited.
  • the optical characteristic information referred to in the present invention is a concept including a light transmission coefficient, a transmittance and the like in addition to an absorption coefficient.
  • the specific number of pixels, pixel density, photoelectric conversion method, and the like of the image sensor are not limited.
  • the specific type of portable communication terminal is not limited.
  • a mobile phone or a tablet terminal can be used instead of the smartphone.

Abstract

An inspection device E1 is provided with a light receiving means 3 for receiving light, which is emitted from a light source 2, spreads in a material 9 to be inspected, and thus arrives at a part different from a light irradiation unit 6 on the surface of the material 9, and for outputting a signal having a level corresponding to the amount of received light. The light receiving means 3, which is configured by using a one- or two-dimensional image sensor 32, can capture the image of the surface of the material 9 to output a signal including captured image data which indicates a light arrival amount at each of a plurality of image capturing points having different distances of separation from the image irradiation unit 6. As data for obtaining optical property information inside the material 9, the captured image data is used.

Description

検査装置、この検査装置を構成するアタッチメント、携帯型通信端末、および携帯型通信端末制御用のプログラムInspection device, attachment constituting the inspection device, portable communication terminal, and program for controlling portable communication terminal
 本発明は、人の生体組織やその他の所望の検査対象物質内の情報を光学的手法によって取得するのに用いられる検査装置、およびこれに関連する技術に関する。 The present invention relates to an inspection apparatus used for acquiring information in a human biological tissue or other desired substance to be inspected by an optical technique, and a technology related thereto.
 検査装置の従来例として、特許文献1に記載されたものがある。同文献に記載された検査装置は、いわゆる多点測定の手法を用いたものであり、以下に述べる第1および第2の構成を包含している。 A conventional example of an inspection apparatus is described in Patent Document 1. The inspection apparatus described in this document uses a so-called multipoint measurement technique, and includes first and second configurations described below.
 第1の構成においては、1つの光源と、2つの受光部とが具備されている。光源は、検査対象の物質内に光を入射させるべく前記物質の表面に光を照射するためのものである。2つの受光部は、前記光源から発せられて前記物質内を拡散(拡散反射を含む、以下同様)することによって前記物質の表面の光照射部とは異なる2箇所に到達した光をそれぞれ受けるように設定される。これら2つの受光部からは、それぞれの受光量に対応したレベルの信号が出力される。 In the first configuration, one light source and two light receiving units are provided. The light source is for irradiating light on the surface of the substance so that the light enters the substance to be inspected. The two light receiving parts receive light that has been emitted from the light source and diffused in the substance (including diffuse reflection, the same applies hereinafter) and arrived at two places different from the light irradiation part on the surface of the substance. Set to From these two light receiving sections, signals of levels corresponding to the respective amounts of received light are output.
 このような構成によれば、2つの受光部のうち、光照射部に近い一方の受光部には、物質内の比較的浅い部分を通過した光が到達する。これに対し、光照射部から遠い他方の受光部には、物質内の比較的浅い部分に加え、物質内の比較的深い部分をも通過した光が到達する。このため、前記一方の受光部の受光量を参照データとして、前記2つの受光部のそれぞれの受光量の差分スペクトルを得ることにより、物質内の比較的浅い部分の光学的情報を排除した情報、すなわち物質内深部の光学的特性情報(たとえば、特定波長域についての吸光係数)を求めることができる。この光学的特性情報に基づき、物質内の特定成分の濃度(たとえば、血清総ビリルビンの濃度など)を非侵襲で判断することが可能である。 According to such a configuration, light that has passed through a relatively shallow portion in the substance reaches one of the two light receiving units that is close to the light irradiation unit. On the other hand, the light that has passed through the relatively deep part in the substance in addition to the relatively shallow part in the substance reaches the other light receiving part far from the light irradiation part. For this reason, by using the received light amount of the one light receiving unit as reference data, obtaining the difference spectrum of the received light amount of each of the two light receiving units, information that eliminates the optical information of a relatively shallow portion in the substance, That is, optical characteristic information (for example, an extinction coefficient for a specific wavelength region) in the deep part of the substance can be obtained. Based on this optical characteristic information, the concentration of a specific component in the substance (for example, the concentration of serum total bilirubin) can be determined non-invasively.
 一方、第2の構成においては、2つの光源と、1つの受光部とが具備されている。2つの光源が設けられていることにより、検査対象の物質の表面には、2箇所の光照射部が設定される。ただし、2つの光源は個別に点灯駆動される。 On the other hand, in the second configuration, two light sources and one light receiving unit are provided. By providing the two light sources, two light irradiation units are set on the surface of the substance to be inspected. However, the two light sources are individually turned on.
 このような構成によれば、2箇所の光照射部のうち、一方の光照射部から受光部には、物質内の比較的浅い部分を通過した光が到達する。他方の光照射部から受光部には、物質内の比較浅い部分に加え、物質内の比較深い部分をも通過した光が到達する。したがって、前記した第1の構成の場合と同様な手法により、物質内の比較的浅い部分の光学的情報が排除された物質内深部の光学的特性情報を求めることができる。 According to such a configuration, light that has passed through a relatively shallow portion in the substance reaches the light receiving unit from one of the two light irradiation units. The light that has passed through the comparatively deeper part of the substance in addition to the comparatively shallower part of the substance reaches the light receiving part from the other light irradiation part. Therefore, the optical characteristic information of the deep part in the substance from which the optical information of the relatively shallow part in the substance is excluded can be obtained by the same method as in the case of the first configuration described above.
 しかしながら、前記従来技術においては、次に述べるように、未だ改善すべき余地があった。 However, the conventional technology still has room for improvement as described below.
 第1に、物質の表面に設定される光照射部と受光部との離間距離は、正確な測定値が得られるように、最適な距離に設定することが望まれる。前記離間距離が短すぎると、たとえば物質の表面による反射光(界面反射光)が受光部に多く到達する不具合を生じる。これとは反対に、前記離間距離が長すぎると、いわゆる回り込み光(本来の検査対象領域よりも浅い部分にある界面領域を伝わる光、および浅い部分を通過した光)が受光部に多く到達する不具合や、ダイナミックレンジが狭くなるといった不具合を生じる。また、光照射部と受光部との最適な離間距離は、検査項目などによっても異なる。これに対し、前記従来技術においては、受光部が点状の領域であって、しかも受光部と光照射部との離間距離は固定されている。このため、検査項目などに応じて、前記離間距離として最適な距離を求め、かつこの求めた距離に調整することは難しい。その結果、測定精度が劣る場合があり、測定精度の信頼性を高める上で未だ改善の余地があった。 First, it is desirable to set the separation distance between the light irradiation part and the light receiving part set on the surface of the substance to an optimum distance so that an accurate measurement value can be obtained. If the separation distance is too short, for example, there is a problem that a large amount of reflected light (interface reflected light) from the surface of the substance reaches the light receiving portion. On the other hand, if the separation distance is too long, so-called sneak light (light transmitted through the interface region in the shallower portion than the original inspection target region and light that has passed through the shallow portion) reaches a large amount of the light receiving unit. Problems such as defects and a narrow dynamic range occur. Further, the optimum separation distance between the light irradiating unit and the light receiving unit varies depending on the inspection item. On the other hand, in the prior art, the light receiving part is a dot-like region, and the distance between the light receiving part and the light irradiation part is fixed. For this reason, it is difficult to obtain an optimum distance as the separation distance and adjust to the obtained distance according to the inspection item. As a result, the measurement accuracy may be inferior, and there is still room for improvement in improving the reliability of the measurement accuracy.
 第2に、前記従来技術においては、光照射部を複数設けること、または受光部を複数設けることが必須とされている。ここで、多点測定の手法においては、それら複数の光照射部または複数の受光部における物質表面についての情報は同一であると仮定される。ところが、実際には、複数の光照射部どうし、あるいは複数の受光部どうしの間では、物質表面についての情報が異なる場合がある。たとえば、検査対象が生体組織である場合、2つの光照射部あるいは受光部の一方には、皮膚の傷、ほくろ、体毛などが存在せず、かつ他方にはそれらが存在する場合がある。このような場合、検査結果の誤差が大きくなる。前記した不具合を解消するには、検査位置をずらし、再検査を行なう必要があるが、これでは手間である。また、仮に、再検査を行なったとしても、やはり前記した場合と同様に、皮膚の傷などに起因して誤差が大きい検査結果が得られる虞がある。 Secondly, in the prior art, it is essential to provide a plurality of light irradiation units or a plurality of light receiving units. Here, in the multipoint measurement method, it is assumed that the information on the substance surface in the plurality of light irradiation units or the plurality of light receiving units is the same. However, in practice, information on the material surface may be different between a plurality of light irradiation sections or between a plurality of light receiving sections. For example, when the examination target is a living tissue, there may be no skin wound, mole, body hair, etc. on one of the two light irradiating units or light receiving units and the other on the other. In such a case, the error of the inspection result becomes large. In order to eliminate the above-described problems, it is necessary to shift the inspection position and perform re-inspection, but this is troublesome. Even if re-inspection is performed, there is a possibility that an inspection result with a large error may be obtained due to a skin wound or the like, as in the case described above.
日本国特公平6-103257号公報Japanese Patent Publication No. 6-103257
 本発明の目的は、前記したような不具合を解消し、または低減することが可能な検査装置、この検査装置を構成するアタッチメント、携帯型通信端末、および携帯型通信端末制御用のプログラムを提供することにある。 An object of the present invention is to provide an inspection device capable of eliminating or reducing the above-described problems, an attachment constituting the inspection device, a portable communication terminal, and a program for controlling the portable communication terminal. There is.
 本発明においては、上述した課題を解決するため、次のような技術的手段を講じている。 In the present invention, the following technical means are taken in order to solve the above-described problems.
 本発明の第1の側面により提供される検査装置は、検査対象の物質内に光を入射させるべく前記物質の表面に光を照射するための光源と、この光源から発せられて前記物質内を拡散することにより前記物質の表面の光照射部とは異なる部分に到達した光を受け、かつその受光量に対応したレベルの信号を出力する受光手段と、この受光手段から出力される信号のデータに基づいて前記物質内の特定波長域についての光学的特性情報を求める処理を実行するデータ処理部と、を備えている、検査装置であって、前記受光手段は、1次元または2次元のイメージセンサを用いて構成され、かつ前記物質の表面を撮像することにより、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを含む信号を出力可能であり、前記データ処理部は、前記光学的特性情報を求めるためのデータとして、前記撮像画像データを用いるように構成されていることを特徴としている。
 ここで、「光学的特性情報」としては、たとえば吸光係数、光透過係数、または透過率を挙げることができる。
An inspection apparatus provided by the first aspect of the present invention includes a light source for irradiating light on a surface of the substance so that light is incident on the substance to be inspected, and a light source emitted from the light source to pass through the substance. Light receiving means for receiving light reaching a part different from the light irradiation part on the surface of the substance by diffusing, and outputting a signal of a level corresponding to the amount of light received, and signal data output from the light receiving means A data processing unit that executes a process for obtaining optical characteristic information for a specific wavelength region in the substance based on the inspection device, wherein the light receiving means is a one-dimensional or two-dimensional image. By using the sensor and imaging the surface of the substance, it is possible to output a signal including captured image data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit There, the data processing unit, as data for determining the optical characteristic information, is characterized in that it is configured to use the captured image data.
Here, examples of the “optical characteristic information” include an extinction coefficient, a light transmission coefficient, or a transmittance.
 好ましくは、前記データ処理部は、前記撮像画像データのうち、いずれの範囲のデータが、前記光照射部からの離間距離と受光量の対数値とが線形関係にある拡散光受光領域のデータであるかを判断し、かつこの拡散光受光領域の範囲にあると判断したデータを用いて前記物質内の光学的特性情報を求めるように構成されている。 Preferably, the data processing unit includes data of a diffused light receiving region in which any range of the captured image data has a linear relationship between a separation distance from the light irradiation unit and a logarithmic value of the amount of received light. The optical characteristic information in the substance is obtained by using the data determined to be present and determined to be within the range of the diffused light receiving region.
 好ましくは、前記イメージセンサとして、2次元イメージセンサが用いられており、前記データ処理部は、前記2次元イメージセンサを利用した撮像により取得された前記物質の表面の2次元の撮像画像データの中から、前記物質の表面における直線状領域の画像に相当するデータを選出し、かつこの選出されたデータを対象として、前記拡散光受光領域の範囲の判断を行なうように構成されている。 Preferably, a two-dimensional image sensor is used as the image sensor, and the data processing unit includes two-dimensional captured image data of the surface of the substance acquired by imaging using the two-dimensional image sensor. From this, data corresponding to an image of a linear area on the surface of the substance is selected, and the range of the diffused light receiving area is determined for the selected data.
 好ましくは、前記データ処理部は、前記撮像画像データ中に、前記物質の表面の不均一性に起因する異常データが含まれているか否かを判断し、かつ前記異常データが含まれていると判断した場合には、前記異常データが除外された撮像画像データに基づいて前記光学的特性情報を求める処理を実行するように構成されている。 Preferably, the data processing unit determines whether or not the captured image data includes abnormal data due to non-uniformity of the surface of the substance, and the abnormal data is included. If it is determined, the optical characteristic information is determined based on the captured image data from which the abnormal data is excluded.
 好ましくは、本発明に係る検査装置は、光源、イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部をそれぞれ備えた携帯型通信端末と、この携帯型通信端末への着脱が可能なアタッチメントと、を組み合わせて構成されており、前記物質の表面に光を照射させるための光源、前記受光手段および前記データ処理部としては、前記携帯型通信端末の光源、カメラおよび制御部がそれぞれ用いられる構成とされており、前記アタッチメントは、前記物質の表面に当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定することが可能な測定プローブを有している。 Preferably, the inspection apparatus according to the present invention includes a portable communication terminal including a light source, a camera using an image sensor, and a control unit capable of executing data processing of a signal output from the camera, and the portable communication. An attachment that can be attached to and detached from a terminal, and a light source for irradiating light on the surface of the substance, as the light receiving means and the data processing unit, a light source of the portable communication terminal, A camera and a control unit are used, respectively, and the attachment sets the separation distance between the surface of the substance and the camera to be an imageable distance of the camera by contacting the surface of the substance. It has a measuring probe that can.
 好ましくは、本発明に係る検査装置は、イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部を備えた携帯型通信端末と、この携帯型通信端末への着脱が可能なアタッチメントと、を組み合わせて構成されており、前記受光手段および前記データ処理部としては、前記携帯型通信端末のカメラおよび制御部がそれぞれ用いられる構成とされており、前記アタッチメントは、前記光源と、前記物質の表面に当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定することが可能な測定プローブと、を有している。 Preferably, the inspection apparatus according to the present invention includes a portable communication terminal including a camera using an image sensor and a control unit capable of executing data processing of a signal output from the camera, and the portable communication terminal. And a removable attachment, and the light receiving means and the data processing unit are configured such that a camera and a control unit of the portable communication terminal are used, respectively. The light source, and a measurement probe capable of setting a separation distance between the surface of the substance and the camera to be an imageable distance of the camera by being brought into contact with the surface of the substance.
 好ましくは、前記光源、前記受光手段および前記データ処理部は、1つの共通のケース内に組み込まれており、前記ケースには、前記光源から発せられた光を前記物質の表面に導くことが可能であるとともに、前記物質の表面に当接させることにより前記物質の表面と前記受光手段との離間距離を撮像可能距離に設定することが可能な測定プローブが設けられている。 Preferably, the light source, the light receiving unit, and the data processing unit are incorporated in a common case, and light emitted from the light source can be guided to the surface of the substance in the case. In addition, there is provided a measurement probe capable of setting the separation distance between the surface of the substance and the light receiving means to be an imageable distance by being brought into contact with the surface of the substance.
 好ましくは、前記測定プローブは、前記物質の表面に当接させた際に前記表面の撮像対象領域の全体を平面状に押さえ付けることが可能な透光性を有する平面状の先端面を有している。 Preferably, the measurement probe has a planar tip surface having translucency capable of pressing the entire imaging target region on the surface in a planar shape when being brought into contact with the surface of the substance. ing.
 好ましくは、本発明に係る検査装置は、前記光源から発せられた光の発散を抑制しつつこの光を前記物質の表面に導くための導光路を備えている。 Preferably, the inspection apparatus according to the present invention includes a light guide for guiding the light to the surface of the substance while suppressing the divergence of the light emitted from the light source.
 好ましくは、前記光照射部として、前記イメージセンサによる撮像対象領域の周囲に位置して互いに間隔を隔てた複数の光照射部、または前記撮像対象領域を囲む円環状の光照射部を設定可能とされている。 Preferably, as the light irradiation unit, a plurality of light irradiation units positioned around the imaging target region by the image sensor and spaced apart from each other, or an annular light irradiation unit surrounding the imaging target region can be set. Has been.
 本発明の第2の側面により提供される検査装置は、検査対象の物質内に光を入射させるべく前記物質の表面に光を照射するための光源と、この光源から発せられて前記物質内を拡散することにより前記物質の表面の光照射部とは異なる部分に到達した光を受け、かつその受光量に対応したレベルの信号を出力する受光手段と、この受光手段から出力される信号のデータに基づいて前記物質内の特定波長域についての光学的特性情報を求める処理を実行するデータ処理部と、を備えている、検査装置であって、前記受光手段は、1次元または2次元のイメージセンサを備えており、前記物質の表面の一部分に対して前記物質内から異なる角度で到達してから前記表面を通過する光を、前記表面への到達角ごとに前記イメージセンサの各部に振り分けて受光させるように導く導光部材を、さらに具備しており、前記イメージセンサから出力される信号として、前記物質の表面の一部分に到達した光の到達角ごとの光量の分布を示す受光データの信号が出力され、前記データ処理部は、前記光学的特性情報を求めるためのデータとして、前記受光データを用いるように構成されていることを特徴としている。 An inspection apparatus provided by the second aspect of the present invention includes a light source for irradiating light on the surface of the substance so that the light is incident on the substance to be inspected, and a light source emitted from the light source and passing through the substance. Light receiving means for receiving light reaching a part different from the light irradiation part on the surface of the substance by diffusing, and outputting a signal of a level corresponding to the amount of light received, and signal data output from the light receiving means A data processing unit that executes a process for obtaining optical characteristic information for a specific wavelength region in the substance based on the inspection device, wherein the light receiving means is a one-dimensional or two-dimensional image. A sensor is provided, and light that passes through the surface after reaching a part of the surface of the material at a different angle from the inside of the material is applied to each part of the image sensor for each angle of arrival at the surface. A light guide member that further guides the light so as to be received separately, and that receives light as a signal output from the image sensor, and indicates a light amount distribution for each arrival angle of light reaching a part of the surface of the substance. The data processing unit is configured to use the received light data as data for obtaining the optical characteristic information.
 本発明の第3の側面により提供されるアタッチメントは、イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部を備えた携帯型通信端末に装着して用いられ、本発明の第1の側面により提供される検査装置を構築するのに用いられる、アタッチメントであって、このアタッチメントに取り付けられた光源、または前記携帯型通信端末に具備されている光源から発せられた光を前記物質の表面に導いて照射可能とする照明用のプローブ部と、前記物質の表面に一部分を当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定するための撮像用のプローブ部と、を備えていることを特徴としている。 The attachment provided by the third aspect of the present invention is used by being attached to a camera using an image sensor and a portable communication terminal having a control unit capable of executing data processing of signals output from the camera. An attachment used to construct the inspection apparatus provided by the first aspect of the present invention, the light source attached to the attachment, or emitted from the light source provided in the portable communication terminal The illumination probe unit that can irradiate the surface of the material with the light, and a part of the probe surface abuts on the surface of the material, so that the distance between the surface of the material and the camera can be imaged. And an imaging probe section for setting the distance.
 本発明の第4の側面により提供される携帯型通信端末は、操作部、イメージセンサを利用したカメラおよびこのカメラから出力される撮像画像信号のデータ処理を実行可能な制御部を備えており、本発明の第3の側面により提供されるアタッチメントと組み合わせて用いられることにより、検査対象の物質内の特定波長域についての光学的特性情報を求める処理を実行可能な検査装置を構成する、携帯型通信端末であって、前記制御部は、前記操作部において所定の操作がなされたときに、この携帯型通信端末を検査処理モードに設定し、かつこのモード時において、前記アタッチメントに取り付けられた光源、またはこの携帯型通信端末に具備された光源から発せられた光が前記物質の表面に照射されたときには、前記物質の表面の光照射部とは異なる部分を前記カメラにより撮像させることにより、前記物質内を拡散して前記物質の表面に到達した光の量に対応する撮像画像データを取得するとともに、この取得した撮像画像データの中から、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを選択し、かつこの選択されたデータに基づいて前記光学的特性情報を求める処理を実行するように構成されていることを特徴としている。 A portable communication terminal provided by the fourth aspect of the present invention includes an operation unit, a camera using an image sensor, and a control unit capable of executing data processing of a captured image signal output from the camera. A portable type that constitutes an inspection apparatus capable of executing processing for obtaining optical characteristic information about a specific wavelength region in a substance to be inspected by being used in combination with the attachment provided by the third aspect of the present invention. A communication terminal, wherein the control unit sets the portable communication terminal to an inspection processing mode when a predetermined operation is performed on the operation unit, and a light source attached to the attachment in this mode. Or when the surface of the substance is irradiated with light emitted from a light source provided in the portable communication terminal, The captured image data corresponding to the amount of light that has diffused through the substance and reached the surface of the substance by acquiring a part different from the part with the camera is obtained. From the above, picked-up image data indicating the amount of light reaching each of a plurality of pick-up points with different separation distances from the light irradiating unit, and executing the process of obtaining the optical characteristic information based on the selected data It is characterized by being configured.
 本発明の第5の側面により提供される携帯型通信端末用の制御プログラムは、操作部、イメージセンサを利用したカメラ、およびこのカメラから出力される撮像画像信号のデータ処理を実行可能な制御部を備えている携帯型通信端末の前記制御部の記憶部に記憶され、かつ前記携帯型通信端末を、本発明の第3の側面により提供されるアタッチメントと組み合わせて用いることにより、検査対象の物質内の特定波長域についての光学的特性情報を求める処理を実行する検査装置を構成するのに用いられる携帯型通信端末用の制御プログラムであって、前記操作部において所定の操作がなされたときに、前記携帯型通信端末を検査処理モードに設定するステップと、前記検査処理モード時において、前記アタッチメントに取り付けられた光源、または前記携帯型通信端末に具備された光源から発せられた光が前記物質の表面に照射されたときに、前記物質の表面の光照射部とは異なる部分を前記カメラにより撮像させることにより、前記物質内を拡散して前記物質の表面に到達した光の量に対応する撮像画像データを取得するステップと、前記撮像画像データの中から、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを選択し、かつこの選択されたデータに基づいて前記光学的特性情報を求める処理を実行するステップと、を前記制御部に実行させるためのデータを含んでいることを特徴としている。 A control program for a portable communication terminal provided by the fifth aspect of the present invention includes an operation unit, a camera using an image sensor, and a control unit capable of executing data processing of a captured image signal output from the camera. A substance to be inspected by using the portable communication terminal in combination with the attachment provided by the third aspect of the present invention. A control program for a portable communication terminal used to configure an inspection device that executes processing for obtaining optical characteristic information for a specific wavelength region, when a predetermined operation is performed in the operation unit A step of setting the portable communication terminal to an inspection processing mode; and a light source attached to the attachment in the inspection processing mode. Alternatively, when the light emitted from the light source provided in the portable communication terminal is irradiated on the surface of the substance, the portion different from the light irradiation part on the surface of the substance is imaged by the camera, A step of acquiring captured image data corresponding to the amount of light that has diffused in the material and reached the surface of the material, and a plurality of images in which the separation distance from the light irradiation unit is different from the captured image data Selecting the captured image data indicating the light arrival amount for each point, and executing the process of obtaining the optical characteristic information based on the selected data, including data for causing the control unit to execute It is characterized by being.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行なう発明の実施の形態の説明から、より明らかになるであろう。 Other features and advantages of the present invention will become more apparent from the following description of embodiments of the invention with reference to the accompanying drawings.
図1Aは、本発明に係る検査装置の一例を示す要部断面側面図であり、図1Bは、図1Aの要部拡大断面図であり、図1Cは、図1Aに示す検査装置の分解斜視図である。1A is a cross-sectional side view of an essential part showing an example of an inspection apparatus according to the present invention, FIG. 1B is an enlarged cross-sectional view of an essential part of FIG. 1A, and FIG. 1C is an exploded perspective view of the inspection apparatus shown in FIG. FIG. 図1A~図1Cに示す検査装置を構成する携帯型通信端末のハード構成を示すブロック図である。2 is a block diagram showing a hardware configuration of a portable communication terminal constituting the inspection apparatus shown in FIGS. 1A to 1C. FIG. 図3Aは、光照射部と撮像対象領域との関係を示す平面説明図であり、図3Bは、撮像により得られるデータの一例を示すグラフである。FIG. 3A is an explanatory plan view showing the relationship between the light irradiation unit and the imaging target region, and FIG. 3B is a graph showing an example of data obtained by imaging. 撮像画像に異常データが存在する場合の一例を示す説明図である。It is explanatory drawing which shows an example in case abnormal data exists in a captured image. 図5A~図5Cは、撮像画像に異常データが存在する場合の他の例を示す説明図である。5A to 5C are explanatory diagrams showing other examples when abnormal data exists in the captured image. 図1A~図1Cに示す検査装置で実行されるデータ処理手順の一例を示すフローチャートである。2 is a flowchart showing an example of a data processing procedure executed by the inspection apparatus shown in FIGS. 1A to 1C. 図1A~図1Cに示す検査装置との対比例を示す要部側面断面図である(この対比例は、本発明の実施形態に該当する)。FIG. 2 is a side sectional view of an essential part showing a comparison with the inspection apparatus shown in FIGS. 1A to 1C (this comparison corresponds to an embodiment of the present invention). 本発明に係る検査装置の他の例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of the test | inspection apparatus which concerns on this invention. 本発明に係る検査装置の他の例を示す要部断面側面図である。It is a principal part cross-sectional side view which shows the other example of the test | inspection apparatus which concerns on this invention. 図10Aは、本発明に係る検査装置の他の例を示す斜視図であり、図10Bは、図10Aの主要構成を模式的に示す説明図である。10A is a perspective view showing another example of the inspection apparatus according to the present invention, and FIG. 10B is an explanatory view schematically showing the main configuration of FIG. 10A. 図11Aは、本発明に係る検査装置の他の例を模式的に示す説明図であり、図11Bは、図11Aに示す検査装置における光照射部と撮像対象領域との関係を示す平面説明図である。FIG. 11A is an explanatory view schematically showing another example of the inspection apparatus according to the present invention, and FIG. 11B is an explanatory plan view showing the relationship between the light irradiation unit and the imaging target area in the inspection apparatus shown in FIG. 11A. It is. 図12Aは、光源と撮像対象領域との位置関係の他の例を示す平面説明図であり、図12Bは、図12Aの構成により得られる撮像データの例を示すグラフである。12A is an explanatory plan view showing another example of the positional relationship between the light source and the imaging target region, and FIG. 12B is a graph showing an example of imaging data obtained by the configuration of FIG. 12A. 図13A,13Bは、光源と撮像対象領域との位置関係の他の例を示す平面説明図である。13A and 13B are explanatory plan views illustrating another example of the positional relationship between the light source and the imaging target region. 図14Aは、本発明の検査装置の要部構造の他の例を模式的に示す説明図であり、図14Bは、図14Aの構成における光照射部と撮像位置との関係を示す平面説明図であり、図14Cは、図14Aの構成により得られる撮像データの例を示すグラフである。FIG. 14A is an explanatory view schematically showing another example of the main structure of the inspection apparatus of the present invention, and FIG. 14B is an explanatory plan view showing the relationship between the light irradiation part and the imaging position in the configuration of FIG. 14A. FIG. 14C is a graph showing an example of imaging data obtained by the configuration of FIG. 14A.
 以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
 図1A~図1Cに示す検査装置E1は、携帯型通信端末Bと、この携帯型通信端末Bへの着脱が可能なアタッチメントA1とを組み合わせて構成されている。
 この検査装置E1は、たとえば肝機能検査のための血清総ビリルビン濃度の測定など、人の生体組織における特定成分の濃度測定に用いられる。以降においては、理解の容易のため、検査対象の物質が、皮膚90および皮下組織91を有する生体組織9である場合を前提として説明する。ただし、検査対象の種類は、これに限定されず、後述するように、種々の物質を検査対象とすることができる。
The inspection apparatus E1 shown in FIGS. 1A to 1C is configured by combining a portable communication terminal B and an attachment A1 that can be attached to and detached from the portable communication terminal B.
This inspection device E1 is used for measuring the concentration of a specific component in a human biological tissue, for example, measuring the serum total bilirubin concentration for a liver function test. Hereinafter, for ease of understanding, the description will be made on the assumption that the substance to be examined is the living tissue 9 having the skin 90 and the subcutaneous tissue 91. However, the type of inspection object is not limited to this, and various substances can be inspected as described later.
 携帯型通信端末Bは、スマートフォンであり、図2に示すように、制御部10の記憶部10aに検査処理プログラムP1が記憶されている点を除くと、それ以外の構成は、従来既知のスマートフォンと同様である。具体的には、携帯型通信端末Bは、前記した制御部10に加え、光源2、カラー撮像が可能なカメラ3、通信回路11、液晶パネルや有機ELパネルなどを用いて構成された表示部12、タッチパネル方式の操作部13、およびスピーカ14を備えている。制御部10は、携帯型通信端末Bの各部の動作処理やデータ処理を実行するものであるが、本発明でいうデータ処理部の一例に相当し、制御プログラムP1に基づき、血清総ビリルビン濃度などの特定成分の濃度を求めるデータ処理も実行する。ただし、その具体的な内容については後述する。 The portable communication terminal B is a smartphone, and, as shown in FIG. 2, except for the point that the inspection processing program P1 is stored in the storage unit 10a of the control unit 10, the other configurations are conventionally known smartphones. It is the same. Specifically, the portable communication terminal B includes a light source 2, a camera 3 capable of color imaging, a communication circuit 11, a liquid crystal panel, an organic EL panel, and the like in addition to the control unit 10 described above. 12, a touch panel type operation unit 13 and a speaker 14 are provided. The control unit 10 executes the operation processing and data processing of each unit of the portable communication terminal B, and corresponds to an example of the data processing unit referred to in the present invention. Based on the control program P1, the serum total bilirubin concentration, etc. Data processing for obtaining the concentration of the specific component is also executed. However, the specific content will be described later.
 光源2は、カメラ3による撮像時の照明用である。ただし、この光源2は、後述するように、皮膚90の表面に光を照射し、かつ生体組織9内に光を入射させるための光源としても用いられる。光源2は、たとえば白色LEDを用いて構成されており、カメラ3に比較的接近した位置にある。 The light source 2 is used for illumination during imaging by the camera 3. However, the light source 2 is also used as a light source for irradiating the surface of the skin 90 with light and making the light enter the living tissue 9 as described later. The light source 2 is configured using, for example, a white LED, and is in a position relatively close to the camera 3.
 カメラ3は、本発明でいう受光手段の一例に相当し、後述するように、皮膚90の表面を撮像し、生体組織9内を拡散した光が皮膚90の表面の各部へ到達した量を検出するのに用いられる。カメラ3は、集光レンズ30、RGBのカラーフィルタ31、およびイメージセンサ32が組み合わされて構成されている。イメージセンサ32は、たとえばCCDまたはCMOSなどの2次元イメージセンサ(エリアイメージセンサ)であり、微細な受光面を有する多数の受光素子が縦横に並んだ構造を有している。RGBのカラーフィルタ31は、イメージセンサ32の多数の受光面のそれぞれに対応して設けられており、イメージセンサ32からは、撮像画像信号として、RGBのそれぞれの受光量に対応した出力レベル(電圧レベル)の3種類の信号が出力される。RGBのカラーフィルタ31は、検査に必要な波長域の光を選択するためのフィルタとして利用することが可能である。たとえば、血清総ビリルビン濃度測定の場合には、Rの信号は使用されず、GおよびBの信号のみが利用される。カメラ3から出力されるアナログの撮像画像信号は、増幅部15によって増幅された後に、A/D変換部16によってデジタル信号に変換されてから制御部10に入力する。 The camera 3 corresponds to an example of the light receiving means referred to in the present invention. As will be described later, the camera 3 images the surface of the skin 90 and detects the amount of light diffused in the living tissue 9 reaching each part of the surface of the skin 90. Used to do. The camera 3 is configured by combining a condenser lens 30, an RGB color filter 31, and an image sensor 32. The image sensor 32 is a two-dimensional image sensor (area image sensor) such as a CCD or a CMOS, for example, and has a structure in which a large number of light receiving elements having fine light receiving surfaces are arranged vertically and horizontally. The RGB color filter 31 is provided corresponding to each of a large number of light receiving surfaces of the image sensor 32, and the image sensor 32 outputs an output level (voltage) corresponding to each of the received light amounts of RGB as a captured image signal. Level) is output. The RGB color filter 31 can be used as a filter for selecting light in a wavelength range necessary for inspection. For example, in the case of measuring serum total bilirubin concentration, the R signal is not used and only the G and B signals are used. The analog captured image signal output from the camera 3 is amplified by the amplification unit 15, converted to a digital signal by the A / D conversion unit 16, and then input to the control unit 10.
 図1Cに示すように、アタッチメントA1は、携帯型通信端末Bの四隅部分のうち、カメラ3および光源2に近い1つの隅部19を取り付け対象とする。このアタッチメントA1は、アタッチメント本体部4と、測定プローブ5とを有している。アタッチメント本体部4は、樹脂製であり、平面視L字状の上壁部40と、これに繋がった縦壁部41とを有している。測定プローブ5は、縦壁部41の下部に接合されており、この測定プローブ5と上壁部40との相互間には、携帯型通信端末Bの隅部19を嵌入させるための凹部42が形成されている。凹部42への隅部19の嵌入により、アタッチメントA1を携帯型通信端末Bに対して位置決めした状態に装着することが可能である。 As shown in FIG. 1C, attachment A1 has one corner 19 close to camera 3 and light source 2 among the four corners of portable communication terminal B as an attachment target. The attachment A1 has an attachment main body 4 and a measurement probe 5. The attachment main body 4 is made of resin, and has an upper wall portion 40 having an L shape in plan view and a vertical wall portion 41 connected to the upper wall portion 40. The measurement probe 5 is joined to the lower portion of the vertical wall portion 41, and a recess 42 for inserting the corner portion 19 of the portable communication terminal B is provided between the measurement probe 5 and the upper wall portion 40. Is formed. By fitting the corner 19 into the recess 42, the attachment A1 can be mounted in a state of being positioned with respect to the portable communication terminal B.
 測定プローブ5は、照明用および撮像用のプローブ部5a,5bを有している。
 照明用のプローブ部5aの内部には、光源2から発せられた光がプローブ部5aの外部へ発散することを防止しつつ、この光を皮膚90の表面に向けて効率よく導いて照射させるための導光路50が設けられている。導光路50は、たとえば光ファイバー、イメージコンジット、あるいはミラーを用いて構成されている。好ましくは、図1A,1Bに示すように、導光路50は、光を光源2の直下位置よりもプローブ部5b寄りの位置に導き、カメラ3による撮像対象領域にできるだけ接近した位置において皮膚90に光を照射するように設定されている。
The measurement probe 5 has probe parts 5a and 5b for illumination and imaging.
In order to efficiently guide and irradiate the light emitted from the light source 2 toward the surface of the skin 90 inside the probe unit 5a for illumination while preventing the light emitted from the light source 2 from diverging outside the probe unit 5a. The light guide 50 is provided. The light guide 50 is configured using, for example, an optical fiber, an image conduit, or a mirror. Preferably, as shown in FIGS. 1A and 1B, the light guide 50 guides light to a position closer to the probe unit 5 b than a position directly below the light source 2, and reaches the skin 90 at a position as close as possible to an imaging target region by the camera 3. It is set to emit light.
 撮像用のプローブ部5bは、特定成分の濃度測定に用いられる波長域の光を透過させる材質とされ、平面状の先端面51を有している。この先端面51を皮膚90の撮像対象領域に当接させることにより、この撮像対象領域を平面状に維持し、かつこの撮像対象領域とカメラ3との離間距離Laをカメラ3の撮像可能距離に設定することが可能である。仮に、カメラ3が皮膚90にかなり接近し、その距離がカメラ3の撮像可能最小距離よりも小さい場合には適切な撮像が困難となる。これに対し、撮像用のプローブ部5bは、皮膚90とカメラ3との離間距離Laを、カメラ3の撮像可能最小距離よりも大きくし、ピントぼけのない適切な撮像を可能とする役割を果たす。たとえば、図7に示すように、先端部が開口した筒状のプローブ部59を用いた場合には、皮膚90の表面が適当寸法Lbだけ盛り上がるため、ピントぼけした撮像画像が得られる虞がある。これに対し、本実施形態におけるプローブ部5bを用いれば、そのような虞が解消される。プローブ部5bの外側面は遮光性を備えており、プローブ部5b内への外乱光の進入は阻止されている。プローブ部5bと導光路50との間にも遮光性が備えられており、導光路50の光がプローブ部5b内に直接進入することも阻止されている。 The imaging probe unit 5b is made of a material that transmits light in a wavelength region used for concentration measurement of a specific component, and has a flat tip surface 51. By bringing the distal end surface 51 into contact with the imaging target area of the skin 90, the imaging target area is maintained in a flat shape, and the separation distance La between the imaging target area and the camera 3 is set to the imageable distance of the camera 3. It is possible to set. If the camera 3 is very close to the skin 90 and the distance is smaller than the minimum imageable distance of the camera 3, appropriate imaging becomes difficult. On the other hand, the imaging probe unit 5b plays a role of making the separation distance La between the skin 90 and the camera 3 larger than the minimum imageable distance of the camera 3 and enabling appropriate imaging without defocusing. . For example, as shown in FIG. 7, when a cylindrical probe portion 59 with an open end is used, the surface of the skin 90 is raised by an appropriate dimension Lb, and there is a possibility that a focused captured image can be obtained. . On the other hand, if the probe part 5b in this embodiment is used, such a possibility is eliminated. The outer surface of the probe portion 5b has a light shielding property, and disturbance light is prevented from entering the probe portion 5b. A light-shielding property is also provided between the probe unit 5b and the light guide path 50, and light from the light guide path 50 is also prevented from directly entering the probe section 5b.
 次に、検査装置E1の作用の一例について説明する。併せて、検査処理プログラムP1に基づく制御部10によるデータ処理手順の一例について、図6のフローチャートを参照しつつ説明する。 Next, an example of the operation of the inspection apparatus E1 will be described. In addition, an example of a data processing procedure by the control unit 10 based on the inspection processing program P1 will be described with reference to the flowchart of FIG.
 まず、携帯型通信端末Bにおいて所定のスイッチ操作がなされると、この携帯型通信端末Bの動作モードは、検査処理モードに設定される(S1:YES,S2)。このモード設定時において、測定プローブ5を人の胸骨部または前額部などの皮膚90に押し当てて光源2を点灯駆動させると、カメラ3がオンとされ、皮膚90の表面が撮像される(S3:YES,S4)。この撮像により、たとえば図3Aに示すように、皮膚90の表面のうち、光照射部6に隣接する領域AR1(格子模様部分)を撮影した2次元の撮像画像データD1が得られる。光照射部6から生体組織9内に入射した光は、生体組織9内において拡散反射して皮膚90の表面の各部(撮像点)に到達するため、撮像画像データD1は、そのような到達光量分布に対応した撮像画像データとなる。図3Aに示す円C1は、光照射部6を中心として光が生体組織9内を拡散する範囲の一例である。 First, when a predetermined switch operation is performed in the portable communication terminal B, the operation mode of the portable communication terminal B is set to the inspection processing mode (S1: YES, S2). At the time of this mode setting, when the measurement probe 5 is pressed against the skin 90 such as the human sternum or the forehead and the light source 2 is driven to turn on, the camera 3 is turned on and the surface of the skin 90 is imaged ( S3: YES, S4). By this imaging, for example, as shown in FIG. 3A, two-dimensional captured image data D1 obtained by imaging an area AR1 (lattice pattern portion) adjacent to the light irradiation unit 6 in the surface of the skin 90 is obtained. Since the light incident on the living tissue 9 from the light irradiation unit 6 diffusely reflects in the living tissue 9 and reaches each part (imaging point) on the surface of the skin 90, the captured image data D1 has such a reaching light amount. The captured image data corresponds to the distribution. A circle C <b> 1 illustrated in FIG. 3A is an example of a range in which light diffuses in the living tissue 9 around the light irradiation unit 6.
 次いで、制御部10は、前記した2次元の撮像画像データD1の中から、直線状領域AR10の撮像画像データD10を選出する(S5)。直線状領域AR10は、たとえば光照射部6を通過する直線SL1に沿った線状または帯状の領域(図3Aのクロスハッチング部分)である。この直線状領域AR10の撮像画像データD10は、光照射部6からの離間距離が相違する複数の撮像点ごとの光到達量を示すデータに相当する。ただし、撮像画像データD10としては、RGBの3種類の撮像画像データのうち、たとえばGおよびBの撮像画像データが用いられ、Rの撮像画像データは用いられない。このことにより、後述するように、撮像画像データD10に基づき、生体組織9内の青色光(中心波長450nm)から緑色光(中心波長550nm)にわたる波長域についての吸光係数を測定することが可能となる。血清総ビリルビン濃度の測定に際し、赤色光の画像データは不要である。 Next, the control unit 10 selects the captured image data D10 of the linear area AR10 from the above-described two-dimensional captured image data D1 (S5). The linear region AR10 is, for example, a linear or belt-shaped region (cross-hatched portion in FIG. 3A) along the straight line SL1 that passes through the light irradiation unit 6. The captured image data D10 of the linear area AR10 corresponds to data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit 6. However, as the captured image data D10, for example, G and B captured image data among the three types of RGB captured image data is used, and R captured image data is not used. As a result, as will be described later, it is possible to measure the extinction coefficient in the wavelength range from the blue light (center wavelength 450 nm) to the green light (center wavelength 550 nm) in the living tissue 9 based on the captured image data D10. Become. When measuring the serum total bilirubin concentration, red light image data is not required.
 一方、直線状領域AR10の撮像画像データD10の選出は、直線状領域AR10に傷、黒子、あるいは体毛などの異質部H(図4および図5A~5Cを参照)が存在せず、直線状領域AR10に相当する皮膚90の表面に大きな不均一性がないことが条件とされる。異質部Hが存在する場合、その位置やサイズは撮像画像データD1において明確に判別することが可能である。たとえば、図4に示すように、直線状領域AR10に傷などの異質部Hが存在する場合には、吸光係数を求めるためのデータとして直線状領域AR10の撮像画像データは選出されない。この場合には、たとえば図5Aに示すように、直線SL1から適当寸法Lcだけオフセットされた直線状領域AR11,AR12の双方または一方の撮像画像データが選出され、異質部Hの画像データが含まれないようにされる。異質部Hが含まれないようにするための他の手法として、たとえば図5Bに示すように、直線SL1に対して適当な角度だけ傾斜して延びる直線状領域AR13の撮像画像データを選出してもかまわない。さらには、図5Cに示すように、直線SL1に対して直交する方向に延びる直線状領域AR14の撮像画像データを選出してもかまわない。 On the other hand, the picked-up image data D10 of the linear area AR10 is selected so that there is no heterogeneous portion H (see FIG. 4 and FIGS. 5A to 5C) such as a wound, mole or hair in the linear area AR10. The condition is that there is no large non-uniformity on the surface of the skin 90 corresponding to AR10. When the heterogeneous portion H exists, the position and size can be clearly determined in the captured image data D1. For example, as shown in FIG. 4, when the heterogeneous portion H such as a flaw exists in the linear area AR10, the captured image data of the linear area AR10 is not selected as data for obtaining the extinction coefficient. In this case, for example, as shown in FIG. 5A, both or one of the linear image areas AR11 and AR12 that are offset from the straight line SL1 by an appropriate dimension Lc is selected, and the image data of the heterogeneous portion H is included. Not to be. As another method for preventing the inclusion of the heterogeneous portion H, for example, as shown in FIG. 5B, picked-up image data of a linear region AR13 extending at an appropriate angle with respect to the straight line SL1 is selected. It doesn't matter. Furthermore, as shown in FIG. 5C, captured image data of a linear region AR14 extending in a direction orthogonal to the straight line SL1 may be selected.
 前記した撮像画像データD10は、たとえば図3Bに示すような内容であり、全体的には、光照射部6からの離間距離が大きくなるほどその位置における受光量(到達光量)が少なくなる傾向がある。制御部10は、このような撮像画像データD10において、光照射部6からの離間距離と受光量の対数値とが線形関係にある拡散光受光領域の範囲R2を判断し、かつこの範囲R2内のデータを用いて生体組織9内の青色光から緑色光にわたる特定波長域についての吸光係数を求める(S6)。
 ここで、図3Bの光照射部6に近い範囲R1は、皮膚90によって反射された界面反射光が到達することに起因して受光量が過度に多くなった界面反射光受光領域である。一方、光照射部6から遠い範囲R3は、皮下脂肪伝導光などの回り込み光が到達した回り込み光受光領域である。前記した拡散光受光領域R2のデータは、生体組織9内を拡散してきた光が適切に到達してきた領域のデータであって、前記した界面反射光や回り込み光を含まない、または殆ど含まないデータである。
The above-described captured image data D10 has a content as shown in FIG. 3B, for example, and overall, as the distance from the light irradiation unit 6 increases, the amount of received light (arrival light amount) tends to decrease. . In such captured image data D10, the control unit 10 determines the range R2 of the diffused light receiving region in which the separation distance from the light irradiation unit 6 and the logarithmic value of the amount of received light have a linear relationship, and within this range R2 Is used to obtain an extinction coefficient for a specific wavelength range from blue light to green light in the living tissue 9 (S6).
Here, the range R1 close to the light irradiation unit 6 in FIG. 3B is an interface reflected light receiving region in which the amount of received light is excessively increased due to the arrival of the interface reflected light reflected by the skin 90. On the other hand, a range R3 far from the light irradiation unit 6 is a sneak light receiving region where sneak light such as subcutaneous fat conduction light arrives. The data of the diffused light receiving region R2 described above is data of a region where the light diffused in the living tissue 9 has appropriately reached and does not include or hardly include the above-described interface reflected light and sneak light. It is.
 前記した拡散光受光領域R2のデータを用いて生体組織9内の特定波長域についての吸光係数を求める場合、拡散光受光領域R2の範囲内のうち、吸光係数の算出に最適または最適に近いと考えられる複数の個別のデータを選択することができる。具体的には、たとえば、拡散光受光領域R2のうち、互いの離間距離の差が最大に近い2つの撮像点P1,P2における受光量a1,a2のデータを選択することができる。もちろん、選択されるデータは、これに限定されない。たとえば、試験などを予め行なうことにより最適と考えられる2つの撮像点P1,P2の候補を定めておき、この候補に相当するデータを選択するようにしてもよい。 When obtaining the extinction coefficient for the specific wavelength region in the living tissue 9 using the data of the diffused light receiving region R2 described above, it is optimal or close to the optimum for calculating the extinction coefficient within the range of the diffused light receiving region R2. Multiple possible individual data can be selected. Specifically, for example, it is possible to select data of received light amounts a1 and a2 at two imaging points P1 and P2 in which the difference in the separation distance is close to the maximum in the diffused light receiving region R2. Of course, the data to be selected is not limited to this. For example, by performing a test or the like in advance, candidates for two imaging points P1 and P2 considered to be optimal may be determined, and data corresponding to these candidates may be selected.
 次いで、前記選択したデータに基づいて、生体組織9内の前記特定波長域についての吸光係数を求める演算処理が実行される(S7)。この演算処理は、たとえば次のような演算式1を用いて実行される。 Next, calculation processing for obtaining an extinction coefficient for the specific wavelength region in the living tissue 9 is executed based on the selected data (S7). This arithmetic processing is executed using, for example, the following arithmetic expression 1.
 D  :光照射部に入射する光量
 a1 :第1の撮像点P1の受光量
 a2 :第2の撮像点P2の受光量
 L1 :光照射部から第1の撮像点P1(光照射部に近い側)までの平均光路長(拡散光が辿る距離の平均値)
 L2 :光照射部から第2の撮像点P2(光照射部に遠い側)までの平均光路長(拡散光が辿る距離の平均値)
 Abs1:撮像点P1の吸光度
 Abs2:撮像点P2の吸光度
 F  :測定対象物の分子吸光係数εと濃度Cの積
     1成分の場合
      F=ε・C
     n成分の場合
      F=ε1+C1+ε2+C2+・・・εn+Cn
 
 Abs1=log(D/a1)=F/L1
 Abs2=log(D/a2)=F/L2
 Abs2-Abs1=log(D/a2)-log(D/a1)
          =log((D/a2)・(a1/D))
          =log(a1/a2)
          =F・L2-F・L1
          =F(L2-L1)
 以上より、
 Abs2-Abs1=log(a1/a2)=F(L2-L1)・・・(式1)
D: Amount of light incident on the light irradiation unit a1: Amount of light received at the first imaging point P1 a2: Amount of light received at the second imaging point P2 L1: First imaging point P1 from the light irradiation unit (side closer to the light irradiation unit) ) Average optical path length (average distance traveled by diffused light)
L2: Average optical path length from the light irradiation unit to the second imaging point P2 (on the side far from the light irradiation unit) (average value of distance traveled by diffused light)
Abs 1 : Absorbance at imaging point P 1 Abs 2 : Absorbance at imaging point P 2 F: Product of molecular extinction coefficient ε and concentration C of measurement object In case of one component F = ε · C
In case of n component F = ε 1 + C 1 + ε 2 + C 2 +... ε n + C n

Abs 1 = log (D / a1) = F / L1
Abs 2 = log (D / a2) = F / L2
Abs 2 −Abs 1 = log (D / a2) −log (D / a1)
= Log ((D / a2). (A1 / D))
= Log (a1 / a2)
= F ・ L2-F ・ L1
= F (L2-L1)
From the above,
Abs 2 −Abs 1 = log (a1 / a2) = F (L2−L1) (Formula 1)
 式1から理解されるように、撮像点P1、撮像点P2の吸光度差をとることにより、光拡散体中の平均光路長差に依存した吸光度を得ることができる。
 光拡散体中での光路長差は深部で最も大きくなることが知られているため、上記差分吸光度は深部情報を多く含むことになり、測定対象物深部の分子種、濃度情報を得ることが可能となる。
As can be understood from Equation 1, the absorbance depending on the difference in average optical path length in the light diffuser can be obtained by taking the difference in absorbance between the imaging point P1 and the imaging point P2.
Since the optical path length difference in the light diffuser is known to be the largest in the deep part, the differential absorbance will contain a lot of deep part information, and the molecular species and concentration information in the deep part of the measurement object can be obtained. It becomes possible.
 制御部10は、前記吸光係数を求めた後には、その値に基づいて皮下組織91内の血清総ビリルビン濃度を求め、かつその結果を表示部12に表示させる処理を実行する(S8,S9)。前記吸光係数と血清総ビリルビン濃度とは一定の対応関係があるため、前記吸光係数を換算し、血清総ビリルビン濃度を求めることが可能である。 After obtaining the extinction coefficient, the control unit 10 obtains the serum total bilirubin concentration in the subcutaneous tissue 91 based on the value, and displays the result on the display unit 12 (S8, S9). . Since the extinction coefficient and the serum total bilirubin concentration have a certain correspondence, the extinction coefficient can be converted to obtain the serum total bilirubin concentration.
 本実施形態においては、既述したように、前記吸光係数を求めるためのデータとして、イメージセンサ32を利用して撮像された皮膚90の撮像画像データD10の中から最適または最適に近いと考えられるデータが選択して用いられている。ここで、撮像画像データD10は、光照射部6からの離間距離が相違する複数の撮像点ごとの光到達量を示すデータであるため、撮像画像データD10の中からは、検査項目に応じて、光照射部6からの離間距離が最適な距離であると考えられる撮像点の光到達量のデータを適切に選択することができる。また、撮像画像データD10の中からは、界面反射光や回り込み光の影響のないデータを選択して用いることもできる。したがって、吸光係数として適正な値を得ることが可能である。さらに、前記吸光係数を求めるためのデータとしては、皮膚90の傷、黒子、あるいは体毛などの異質部Hのデータ(異常データ)を含まないものとすることもできる。したがって、前記吸光係数としてより適正な値を得ることができる。その結果、前記吸光係数に基づいて求められる血清総ビリルビン濃度の測定値の誤差を少なくし、この測定値の信頼性を高いものとすることが可能である。 In the present embodiment, as described above, it is considered that the data for obtaining the extinction coefficient is optimal or close to optimal from the captured image data D10 of the skin 90 captured using the image sensor 32. Data is selected and used. Here, since the captured image data D10 is data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit 6, the captured image data D10 is selected from the captured image data D10 according to the inspection item. Thus, it is possible to appropriately select data on the amount of light reaching the imaging point where the separation distance from the light irradiation unit 6 is considered to be the optimum distance. In addition, from the captured image data D10, data that is not affected by interface reflected light or sneak light can be selected and used. Therefore, it is possible to obtain an appropriate value as the extinction coefficient. Further, the data for obtaining the extinction coefficient may not include data (abnormal data) of the heterogeneous portion H such as a wound on the skin 90, a mole, or body hair. Therefore, a more appropriate value can be obtained as the extinction coefficient. As a result, it is possible to reduce the error in the measured value of the serum total bilirubin concentration obtained based on the extinction coefficient and to increase the reliability of the measured value.
 検査装置E1は、携帯型通信端末Bを利用して構成されているが、携帯型通信端末Bは、検査装置E1の構成機器として特化したものではなく、日常において通話やインターネット接続などに支障なく使用することが可能である。その結果、たとえば検査装置全体を専用機器として構成した場合と比較すると、本実施形態の検査装置E1は携帯型通信端末Bを有効に利用した合理的な構成とされており、システム全体の実質的な製造コストを廉価にすることが可能である。携帯型通信端末Bの制御部10のみならず、光源2やカメラ3も検査装置E1の構成要素として有効に利用されているため、アタッチメントA1の構成の簡素化を図り、全体の製造コストをより廉価にすることが可能である。 Although the inspection device E1 is configured using the portable communication terminal B, the portable communication terminal B is not specialized as a component device of the inspection device E1, and does not interfere with daily calls or Internet connection. It is possible to use without. As a result, for example, compared with a case where the entire inspection apparatus is configured as a dedicated device, the inspection apparatus E1 of the present embodiment has a rational configuration that effectively uses the portable communication terminal B, and the substantial system overall. The manufacturing cost can be reduced. Since not only the control unit 10 of the portable communication terminal B but also the light source 2 and the camera 3 are effectively used as components of the inspection apparatus E1, the configuration of the attachment A1 is simplified, and the overall manufacturing cost is further increased. It is possible to make it cheaper.
 図8~図14は、本発明の他の実施形態を示している。これらの図において、前記実施形態と同一または類似の要素には、前記実施形態と同一の符号を付し、重複説明は省略する。 8 to 14 show other embodiments of the present invention. In these drawings, elements that are the same as or similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and redundant description is omitted.
 図8に示す検査装置E2においては、アタッチメントA2の上壁部40が平面視略コ字状とされ、上壁部40の下方には、これに対向する下壁部43が設けられている。測定プローブ5および下壁部43の両者と上壁部40との間には、携帯型通信端末Bの一端部およびその近傍部分が嵌入可能な凹部42aが設けられている。 In the inspection apparatus E2 shown in FIG. 8, the upper wall portion 40 of the attachment A2 is substantially U-shaped in a plan view, and a lower wall portion 43 facing the upper wall portion 40 is provided below the upper wall portion 40. Between both of the measurement probe 5 and the lower wall portion 43 and the upper wall portion 40, there is provided a recess 42a into which one end portion of the portable communication terminal B and its vicinity can be fitted.
 本実施形態によれば、携帯型通信端末Bの一端部およびその近傍を凹部42aに嵌入させることにより、携帯型通信端末BへのアタッチメントA2の装着が可能であり、携帯型通信端末Bの1つの隅部にアタッチメントA1を装着させていた前記実施形態と比較すると、アタッチメントA2の装着状態をより安定させることが可能である。ただし、本発明においては、携帯型通信端末に対するアタッチメントの具体的な取り付け手段は、前記したような嵌合方式に限定されず、他の方式を採用することもできる。 According to the present embodiment, the attachment A2 can be attached to the portable communication terminal B by fitting one end of the portable communication terminal B and the vicinity thereof into the recess 42a. Compared with the embodiment in which the attachment A1 is attached to one corner, the attachment state of the attachment A2 can be made more stable. However, in the present invention, the specific means for attaching the attachment to the portable communication terminal is not limited to the fitting method as described above, and other methods can be adopted.
 図9に示す検査装置E3においては、アタッチメントA3に光源2Aが取り付けられており、この光源2Aから発せられる光を皮膚90に照射可能とされている。光源2Aの点灯駆動に必要な電力供給は、たとえばアタッチメントA3に小サイズの電池を搭載する手段、あるいは携帯型通信端末Bに設けられている出力端子から電力供給を受けるようにする手段を採用することができる。 In the inspection apparatus E3 shown in FIG. 9, the light source 2A is attached to the attachment A3, and the light emitted from the light source 2A can be irradiated to the skin 90. For supplying power necessary for driving the light source 2A, for example, means for mounting a small-sized battery on the attachment A3 or means for receiving power supply from an output terminal provided in the portable communication terminal B is adopted. be able to.
 本実施形態によれば、携帯型通信端末Bに光源が設けられていない場合、あるいは仮に携帯型通信端末Bに光源が設けられている場合であってもカメラ3との相対的な位置関係などの理由から皮膚90への光の照射用途には余り適さないような場合にも、好適に対処することが可能である。 According to this embodiment, even if the portable communication terminal B is not provided with a light source, or even if the portable communication terminal B is provided with a light source, the relative positional relationship with the camera 3 and the like. For this reason, it is possible to appropriately cope with the case where the skin 90 is not very suitable for light irradiation.
 図10A,10Bに示す検査装置E4は、携帯型通信端末を利用しない検査専用の装置として構成されている。具体的には、データ処理部10A、表示部12、操作部13、光源2A、および2次元イメージセンサを用いたカメラ3が、1つの共通のケース70内に組み付けられている。ケース70の下部には、測定プローブ5が下向きに突出した状態に設けられている。 The inspection apparatus E4 shown in FIGS. 10A and 10B is configured as a dedicated inspection apparatus that does not use a portable communication terminal. Specifically, the data processing unit 10 </ b> A, the display unit 12, the operation unit 13, the light source 2 </ b> A, and the camera 3 using the two-dimensional image sensor are assembled in one common case 70. The measurement probe 5 is provided at a lower portion of the case 70 so as to protrude downward.
 本実施形態の検査装置E4は、携帯型通信端末を利用していないものの、その基本的な構成は、先に述べた検査装置E1~E3と同様であり、本発明が意図する作用を得ることが可能である。 Although the inspection apparatus E4 of the present embodiment does not use a portable communication terminal, the basic configuration is the same as that of the inspection apparatuses E1 to E3 described above, and the intended effect of the present invention can be obtained. Is possible.
 図11Aに示す検査装置E5においては、検査対象物質の表面を撮像するための手段として、1次元イメージセンサ(ラインイメージセンサ)32Aが用いられている。この1次元イメージセンサ32Aによる撮像対象領域は、図11Bに示すように、たとえば皮膚90の表面の光照射部6に隣接する領域のうち、光照射部6を通過する直線SL1に沿った線状の領域AR15である。この領域AR15は、図3Aに示した直線状領域AR10に対応する。したがって、1次元イメージセンサ32Aによる撮像によっても、図3Bに示したような撮像画像データを得ることができ、本発明が意図する検査処理を適切に行なうことが可能である。1次元イメージセンサ32Aによる撮像画像データ中に異常データが含まれている場合においては、この異常データを除いた残余のデータを基づいて吸光係数を求めることも可能である。 In the inspection apparatus E5 shown in FIG. 11A, a one-dimensional image sensor (line image sensor) 32A is used as means for imaging the surface of the inspection target substance. The region to be imaged by the one-dimensional image sensor 32A is, for example, a linear shape along a straight line SL1 passing through the light irradiation unit 6 in the region adjacent to the light irradiation unit 6 on the surface of the skin 90, as shown in FIG. 11B. This is the area AR15. This area AR15 corresponds to the linear area AR10 shown in FIG. 3A. Therefore, captured image data as shown in FIG. 3B can also be obtained by imaging with the one-dimensional image sensor 32A, and the inspection processing intended by the present invention can be appropriately performed. When abnormal data is included in the captured image data by the one-dimensional image sensor 32A, the extinction coefficient can be obtained based on the remaining data excluding the abnormal data.
 図12Aに示す実施形態においては、2次元イメージセンサによる撮像対象領域AR1を挟むようにして2つの光照射部6を皮膚90の表面に設定可能とされている。2つの光照射部6は、撮像対象領域AR1の中央部Oaを中心とする点対称の配置である。2つの光照射部6を設定可能とする手段として、たとえば2つの点状の光源(図示略)が用いられている。 In the embodiment shown in FIG. 12A, the two light irradiation units 6 can be set on the surface of the skin 90 so as to sandwich the imaging target area AR1 by the two-dimensional image sensor. The two light irradiation units 6 are arranged symmetrically with respect to the center portion Oa of the imaging target area AR1. For example, two point light sources (not shown) are used as means for enabling the two light irradiation units 6 to be set.
 本実施形態によれば、2つの光照射部6を結ぶ直線SL1に沿った領域の撮像画像データD2は、たとえば図12Bに示すような内容となる。この撮像画像データD2においては、撮像対象領域AR1の左右両端側が中央部側よりも受光量が多く、同図の2つの範囲R2が、撮像位置(光照射部からの離間距離)と受光量の対数値とが線形関係となる範囲である。したがって、2つの範囲R2のいずれか一方または双方の範囲内にあるデータを利用して吸光係数を求めることが可能である。本実施形態においては、2つの光照射部6を設定しているため、イメージセンサの受光量を多くし、イメージセンサから出力される撮像画像信号のSN比を高くすることができる。 According to the present embodiment, the captured image data D2 of the region along the straight line SL1 connecting the two light irradiation units 6 has contents as shown in FIG. 12B, for example. In the captured image data D2, the left and right ends of the imaging target area AR1 have a larger amount of received light than the center side, and the two ranges R2 in the figure represent the imaging position (separated distance from the light irradiation unit) and the received light amount. The range in which the logarithmic value is in a linear relationship. Therefore, it is possible to obtain the extinction coefficient by using data within one or both of the two ranges R2. In the present embodiment, since the two light irradiation units 6 are set, the amount of light received by the image sensor can be increased, and the SN ratio of the captured image signal output from the image sensor can be increased.
 図13Aに示す実施形態においては、3つの光照射部6が撮像対象領域AR1の周囲に等角度間隔で位置し、撮像対象領域AR1の中央部Oaを中心とする回転対称性を有する配置に設定されている。このような設定は、たとえば3つの点状光源を利用することにより実現できる。もちろん、本発明においては、光照射部6の数を4以上に設定した構成とすることもできる。 In the embodiment shown in FIG. 13A, the three light irradiators 6 are set at an equiangular interval around the imaging target area AR1 and set to an arrangement having rotational symmetry centered on the central portion Oa of the imaging target area AR1. Has been. Such a setting can be realized by using, for example, three point light sources. Of course, in this invention, it can also be set as the structure which set the number of the light irradiation parts 6 to four or more.
 図13Bに示す実施形態においては、円環状の光照射部6aが撮像対象領域AR1の周囲に設定されている。この光照射部6aは、撮像対象領域AR1と同心状であり、撮像対象領域AR1の中央部Oaを中心とする回転対称性を有する配置である。円環状の光照射部6aは、透光性を有する円環状の光散乱プレートと、この光散乱プレートの適所に光を照射する複数の点状光源とを備え、かつ前記光散乱プレートを発光面とする光源装置を用いることにより設定することができる。 In the embodiment shown in FIG. 13B, an annular light irradiation unit 6a is set around the imaging target area AR1. The light irradiation unit 6a is concentric with the imaging target area AR1 and has a rotational symmetry centered on the central portion Oa of the imaging target area AR1. The annular light irradiation unit 6a includes an annular light scattering plate having translucency, and a plurality of point light sources for irradiating light at appropriate positions of the light scattering plate, and the light scattering plate is used as a light emitting surface. Can be set by using a light source device.
 これら図13A,13Bに示した実施形態においては、皮膚90への光照射量を、図12Aに示した実施形態よりもさらに多くし、イメージセンサから出力される撮像画像信号のSN比を一層高めることが可能である。
 図12Aおよび図13A,13Bに示す実施形態から理解されるように、本発明においては、光照射部の具体的な数、配置、形状などは限定されるものではない。光源としては、LED光源以外の光源を用いることができる。
In the embodiments shown in FIGS. 13A and 13B, the amount of light applied to the skin 90 is further increased than in the embodiment shown in FIG. 12A, and the SN ratio of the captured image signal output from the image sensor is further increased. It is possible.
As understood from the embodiment shown in FIGS. 12A and 13A, 13B, in the present invention, the specific number, arrangement, shape, and the like of the light irradiation section are not limited. As the light source, a light source other than the LED light source can be used.
 図14Aに示す検査装置E6においては、光源2Bとして、図14Bに示すような円環状の光照射部6aを皮膚90の表面に設定可能な円環状の光源が用いられている。皮膚90の表面のうち、光照射部6aの中心部に相当する箇所は、撮像点Paとされ、この撮像点Pa上にボールレンズ75が配されている。ボールレンズ75の上側には、2次元のイメージセンサ32が配されている。ボールレンズ75は、本発明でいう導光部材の一例に相当し、光照射部6aから生体組織9内に入射して拡散し、かつ撮像点Paに異なる角度で到達してから皮膚90をその上方へ通過する光を、その到達角α(本明細書では法線に対する傾斜角)ごとにイメージセンサ32の各部に振り分け受光させるように導く。より詳しくは、撮像点Paに対する到達角αが小さい光は、イメージセンサ32の中央寄りの位置へ導かれて受光され、到達角αが大きくなるに連れてイメージセンサ32の端部寄りの位置へ導かれて受光されるように構成されている。このため、イメージセンサ32からは、撮像点Paに到達した光の到達角αごとの光量の分布を示す受光データの信号が出力される。この受光データのうち、イメージセンサ32の受光面の中心を通過する直線に沿った複数の受光素子から出力される受光データD4を選出すると、この受光データD4は、図14Cに示すようなものとなる。 In the inspection apparatus E6 shown in FIG. 14A, as the light source 2B, an annular light source capable of setting an annular light irradiation unit 6a as shown in FIG. 14B on the surface of the skin 90 is used. Of the surface of the skin 90, a portion corresponding to the central portion of the light irradiation unit 6a is an imaging point Pa, and a ball lens 75 is disposed on the imaging point Pa. A two-dimensional image sensor 32 is disposed above the ball lens 75. The ball lens 75 corresponds to an example of a light guide member in the present invention, and enters and diffuses into the living tissue 9 from the light irradiation unit 6a, and reaches the imaging point Pa at a different angle, and then the skin 90 is removed. The light passing upward is guided to be distributed and received by each part of the image sensor 32 at each arrival angle α (inclination angle with respect to the normal in this specification). More specifically, light having a small arrival angle α with respect to the imaging point Pa is guided to and received at a position closer to the center of the image sensor 32, and moves closer to the end of the image sensor 32 as the arrival angle α increases. It is configured to be guided and receive light. For this reason, the image sensor 32 outputs a light reception data signal indicating a light amount distribution for each arrival angle α of the light reaching the imaging point Pa. When light reception data D4 output from a plurality of light receiving elements along a straight line passing through the center of the light receiving surface of the image sensor 32 is selected from the light reception data, the light reception data D4 is as shown in FIG. 14C. Become.
 生体組織9内の浅い領域を拡散してきた光は、その到達角αが大きく、光の拡散進行深さが深くなるに連れて到達角αは徐々に小さくなる。このため、受光データD4は、たとえば図12Bに示した光照射部からの離間距離と受光量との相対関係を示す撮像画像データと同様な性質のものとなる。したがって、図14Cに示した受光データD4に基づき、生体組織9内の特定波長域についての吸光係数をデータ処理部(不図示)において演算し、かつこの吸光係数に基づいて血清総ビリルビン濃度を求めることが可能である。 The light that has diffused in the shallow region in the living tissue 9 has a large arrival angle α, and the arrival angle α gradually decreases as the diffusion depth of the light increases. For this reason, the received light data D4 has the same property as the captured image data indicating the relative relationship between the distance from the light irradiation unit and the amount of received light shown in FIG. 12B, for example. Therefore, based on the received light data D4 shown in FIG. 14C, an extinction coefficient for a specific wavelength region in the living tissue 9 is calculated in a data processing unit (not shown), and the serum total bilirubin concentration is obtained based on the extinction coefficient. It is possible.
 本実施形態によれば、イメージセンサ32による撮像対象領域を、1つの撮像点Paのみとすることができるため、複数の撮像点を設定する場合とは異なり、撮像点ごとの表面情報のバラツキに起因する測定誤差が解消される。より具体的には、皮膚90の色は各所同一ではなく、バラツキがあるため、複数の撮像点を設定した場合、1つの撮像点が他の1つの撮像点よりも白色気味あるいは黒色気味の皮膚上に設定されることに起因して、2つの撮像点における撮像画像に差を生じてしまう虞がある。これに対し、本実施形態によれば、そのような虞が適切に解消される利点が得られる。
 なお、図14A~14Cに示した実施形態において、光源としては、点状の光源を用い、かつイメージセンサとして、1次元イメージセンサを用いた構成とすることもできる。
According to the present embodiment, since the imaging target region by the image sensor 32 can be set to only one imaging point Pa, unlike in the case of setting a plurality of imaging points, the surface information varies for each imaging point. The resulting measurement error is eliminated. More specifically, since the color of the skin 90 is not the same everywhere and varies, when a plurality of imaging points are set, one imaging point has a whiter or blackish skin than the other imaging point. Due to the above setting, there is a possibility that a difference occurs between the captured images at the two imaging points. On the other hand, according to this embodiment, the advantage by which such a concern is eliminated suitably is acquired.
In the embodiment shown in FIGS. 14A to 14C, a point light source may be used as the light source, and a one-dimensional image sensor may be used as the image sensor.
 本発明は、上述した実施形態の内容に限定されない。本発明に係る検査装置、アタッチメント、および携帯型通信端末の各部の具体的な構成は、本発明の意図する範囲内において種々に設計変更可能である。本発明に係る制御プログラムの具体的な内容も、本発明の意図する範囲内において種々に変更可能である。 The present invention is not limited to the contents of the above-described embodiment. The specific configuration of each part of the inspection apparatus, attachment, and portable communication terminal according to the present invention can be variously modified within the scope of the present invention. The specific contents of the control program according to the present invention can be variously changed within the intended scope of the present invention.
 上述の実施形態においては、人体の皮下組織内の血清総ビリルビン濃度を測定する場合を具体例として説明したが、測定対象項目は、これに限定されず、光の波長域を変更することによって他の特定成分の濃度(たとえば、溶解一酸化炭素,二酸化炭素)を測定するように構成することも可能である。検査対象物質は、人および動物の生体組織に限らず、植物の組織、果実などの食品類など、種々の物質を検査対象とすることが可能である。したがって、検査に用いる光の波長域も限定されない。本発明でいう光学的特性情報は、吸光係数の他、光透過係数や透過率なども含む概念である。 In the above-described embodiment, the case of measuring the serum total bilirubin concentration in the subcutaneous tissue of the human body has been described as a specific example. However, the measurement target item is not limited to this, and other items can be obtained by changing the wavelength range of light. It is also possible to configure so as to measure the concentration of the specific component (for example, dissolved carbon monoxide, carbon dioxide). The substance to be examined is not limited to human and animal living tissues, and various substances such as plant tissues and foods such as fruits can be examined. Therefore, the wavelength range of light used for inspection is not limited. The optical characteristic information referred to in the present invention is a concept including a light transmission coefficient, a transmittance and the like in addition to an absorption coefficient.
 イメージセンサの具体的な画素数、画素密度、光電変換方式などは限定されない。
 携帯型通信端末の具体的な種類も問わない。スマートフォンに代えて、たとえば携帯電話機、あるいはタブレット型端末を用いることもできる。
The specific number of pixels, pixel density, photoelectric conversion method, and the like of the image sensor are not limited.
The specific type of portable communication terminal is not limited. For example, a mobile phone or a tablet terminal can be used instead of the smartphone.

Claims (14)

  1.  検査対象の物質内に光を入射させるべく前記物質の表面に光を照射するための光源と、
     この光源から発せられて前記物質内を拡散することにより前記物質の表面の光照射部とは異なる部分に到達した光を受け、かつその受光量に対応したレベルの信号を出力する受光手段と、
     この受光手段から出力される信号のデータに基づいて前記物質内の特定波長域についての光学的特性情報を求める処理を実行するデータ処理部と、
     を備えている、検査装置であって、
     前記受光手段は、1次元または2次元のイメージセンサを用いて構成され、かつ前記物質の表面を撮像することにより、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを含む信号を出力可能であり、
     前記データ処理部は、前記光学的特性情報を求めるためのデータとして、前記撮像画像データを用いるように構成されていることを特徴とする、検査装置。
    A light source for irradiating the surface of the substance with light so that the light enters the substance to be inspected;
    A light receiving means for emitting light emitted from this light source and diffusing in the substance to reach a portion different from the light irradiation part on the surface of the substance, and outputting a signal of a level corresponding to the amount of received light;
    A data processing unit that executes processing for obtaining optical characteristic information about a specific wavelength region in the substance based on data of a signal output from the light receiving unit;
    An inspection device comprising:
    The light receiving means is configured using a one-dimensional or two-dimensional image sensor, and the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit by imaging the surface of the substance. Can output a signal including captured image data indicating
    The data processing unit is configured to use the captured image data as data for obtaining the optical characteristic information.
  2.  請求項1に記載の検査装置であって、
     前記データ処理部は、前記撮像画像データのうち、いずれの範囲のデータが、前記光照射部からの離間距離と受光量の対数値とが線形関係にある拡散光受光領域のデータであるかを判断し、かつこの拡散光受光領域の範囲にあると判断したデータを用いて前記物質内の光学的特性情報を求めるように構成されている、検査装置。
    The inspection apparatus according to claim 1,
    The data processing unit determines which range of the captured image data is data of a diffused light receiving region in which a separation distance from the light irradiation unit and a logarithmic value of the amount of received light have a linear relationship. An inspection apparatus configured to determine optical property information in the substance using data determined and determined to be within the range of the diffused light receiving region.
  3.  請求項2に記載の検査装置であって、
     前記イメージセンサとして、2次元イメージセンサが用いられており、
     前記データ処理部は、前記2次元イメージセンサを利用した撮像により取得された前記物質の表面の2次元の撮像画像データの中から、前記物質の表面における直線状領域の画像に相当するデータを選出し、かつこの選出されたデータを対象として、前記拡散光受光領域の範囲の判断を行なうように構成されている、検査装置。
    The inspection apparatus according to claim 2,
    As the image sensor, a two-dimensional image sensor is used,
    The data processing unit selects data corresponding to an image of a linear region on the surface of the substance from two-dimensional captured image data of the surface of the substance acquired by imaging using the two-dimensional image sensor. And an inspection apparatus configured to determine the range of the diffused light receiving area for the selected data.
  4.  請求項1ないし3のいずれかに記載の検査装置であって、
     前記データ処理部は、前記撮像画像データ中に、前記物質の表面の不均一性に起因する異常データが含まれているか否かを判断し、かつ前記異常データが含まれていると判断した場合には、前記異常データが除外された撮像画像データに基づいて前記光学的特性情報を求める処理を実行するように構成されている、検査装置。
    The inspection apparatus according to any one of claims 1 to 3,
    When the data processing unit determines whether or not the captured image data includes abnormal data due to non-uniformity of the surface of the substance, and determines that the abnormal data is included The inspection apparatus is configured to execute processing for obtaining the optical characteristic information based on captured image data from which the abnormal data is excluded.
  5.  請求項1ないし4のいずれかに記載の検査装置であって、
     この検査装置は、
     光源、イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部をそれぞれ備えた携帯型通信端末と、
     この携帯型通信端末への着脱が可能なアタッチメントと、
     を組み合わせて構成されており、
     前記物質の表面に光を照射させるための光源、前記受光手段および前記データ処理部としては、前記携帯型通信端末の光源、カメラおよび制御部がそれぞれ用いられる構成とされており、
     前記アタッチメントは、前記物質の表面に当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定することが可能な測定プローブを有している、検査装置。
    The inspection apparatus according to any one of claims 1 to 4,
    This inspection device
    A portable communication terminal including a light source, a camera using an image sensor, and a control unit capable of executing data processing of a signal output from the camera;
    An attachment that can be attached to and detached from this portable communication terminal,
    Is composed of
    As the light source for irradiating light on the surface of the substance, the light receiving means and the data processing unit, the light source, camera and control unit of the portable communication terminal are used, respectively.
    The attachment includes an inspection device capable of setting a distance between the surface of the substance and the camera to be an imageable distance of the camera by bringing the attachment into contact with the surface of the substance.
  6.  請求項1ないし4のいずれかに記載の検査装置であって、
     この検査装置は、
     イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部を備えた携帯型通信端末と、
     この携帯型通信端末への着脱が可能なアタッチメントと、
     を組み合わせて構成されており、
     前記受光手段および前記データ処理部としては、前記携帯型通信端末のカメラおよび制御部がそれぞれ用いられる構成とされており、
     前記アタッチメントは、前記光源と、前記物質の表面に当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定することが可能な測定プローブと、を有している、検査装置。
    The inspection apparatus according to any one of claims 1 to 4,
    This inspection device
    A portable communication terminal including a camera using an image sensor and a control unit capable of executing data processing of a signal output from the camera;
    An attachment that can be attached to and detached from this portable communication terminal,
    Is composed of
    As the light receiving means and the data processing unit, a camera and a control unit of the portable communication terminal are used, respectively.
    The attachment includes the light source, and a measurement probe capable of setting a distance between the surface of the substance and the camera to be an imageable distance of the camera by contacting the light source and the surface of the substance. Inspection equipment.
  7.  請求項1ないし4のいずれかに記載の検査装置であって、
     前記光源、前記受光手段および前記データ処理部は、1つの共通のケース内に組み込まれており、
     前記ケースには、前記光源から発せられた光を前記物質の表面に導くことが可能であるとともに、前記物質の表面に当接させることにより前記物質の表面と前記受光手段との離間距離を撮像可能距離に設定することが可能な測定プローブが設けられている、検査装置。
    The inspection apparatus according to any one of claims 1 to 4,
    The light source, the light receiving means, and the data processing unit are incorporated in one common case,
    In the case, the light emitted from the light source can be guided to the surface of the substance, and the distance between the surface of the substance and the light receiving means is imaged by bringing the light into contact with the surface of the substance. An inspection apparatus provided with a measurement probe that can be set to a possible distance.
  8.  請求項5ないし7のいずれかに記載の検査装置であって、
     前記測定プローブは、前記物質の表面に当接させた際に前記表面の撮像対象領域の全体を平面状に押さえ付けることが可能な透光性を有する平面状の先端面を有している、検査装置。
    The inspection apparatus according to any one of claims 5 to 7,
    The measurement probe has a flat distal end surface having translucency capable of pressing the entire imaging target region on the surface in a flat shape when being brought into contact with the surface of the substance. Inspection device.
  9.  請求項1ないし8のいずれかに記載の検査装置であって、
     前記光源から発せられた光の発散を抑制しつつこの光を前記物質の表面に導くための導光路を備えている、検査装置。
    The inspection apparatus according to any one of claims 1 to 8,
    An inspection apparatus comprising a light guide for guiding the light to the surface of the substance while suppressing the divergence of the light emitted from the light source.
  10.  請求項1ないし9のいずれかに記載の検査装置であって、
     前記光照射部として、前記イメージセンサによる撮像対象領域の周囲に位置して互いに間隔を隔てた複数の光照射部、または前記撮像対象領域を囲む円環状の光照射部を設定可能とされている、検査装置。
    The inspection apparatus according to any one of claims 1 to 9,
    As the light irradiating unit, a plurality of light irradiating units positioned around the imaging target region by the image sensor and spaced apart from each other, or an annular light irradiating unit surrounding the imaging target region can be set. , Inspection equipment.
  11.  検査対象の物質内に光を入射させるべく前記物質の表面に光を照射するための光源と、
     この光源から発せられて前記物質内を拡散することにより前記物質の表面の光照射部とは異なる部分に到達した光を受け、かつその受光量に対応したレベルの信号を出力する受光手段と、
     この受光手段から出力される信号のデータに基づいて前記物質内の特定波長域についての光学的特性情報を求める処理を実行するデータ処理部と、
     を備えている、検査装置であって、
     前記受光手段は、1次元または2次元のイメージセンサを備えており、
     前記物質の表面の一部分に対して前記物質内から異なる角度で到達してから前記表面を通過する光を、前記表面への到達角ごとに前記イメージセンサの各部に振り分けて受光させるように導く導光部材を、さらに具備しており、
     前記イメージセンサから出力される信号として、前記物質の表面の一部分に到達した光の到達角ごとの光量の分布を示す受光データの信号が出力され、
     前記データ処理部は、前記光学的特性情報を求めるためのデータとして、前記受光データを用いるように構成されていることを特徴とする、検査装置。
    A light source for irradiating the surface of the substance with light so that the light enters the substance to be inspected;
    A light receiving means for emitting light emitted from this light source and diffusing in the substance to reach a portion different from the light irradiation part on the surface of the substance, and outputting a signal of a level corresponding to the amount of received light;
    A data processing unit that executes processing for obtaining optical characteristic information about a specific wavelength region in the substance based on data of a signal output from the light receiving unit;
    An inspection device comprising:
    The light receiving means includes a one-dimensional or two-dimensional image sensor,
    The light that reaches a part of the surface of the substance at a different angle from the inside of the substance and then passes through the surface is guided to be distributed to each part of the image sensor for each arrival angle to the surface. Further comprising an optical member,
    As a signal output from the image sensor, a light reception data signal indicating a light amount distribution for each arrival angle of light reaching a part of the surface of the substance is output,
    The data processing unit is configured to use the received light data as data for obtaining the optical characteristic information.
  12.  イメージセンサを用いたカメラおよびこのカメラから出力される信号のデータ処理を実行可能な制御部を備えた携帯型通信端末に装着して用いられ、請求項5または6に記載の検査装置を構築するのに用いられる、アタッチメントであって、
     このアタッチメントに取り付けられた光源、または前記携帯型通信端末に具備されている光源から発せられた光を前記物質の表面に導いて照射可能とする照明用のプローブ部と、
     前記物質の表面に一部分を当接させることによって前記物質の表面と前記カメラとの離間距離を前記カメラの撮像可能距離に設定するための撮像用のプローブ部と、
     を備えていることを特徴とする、アタッチメント。
    The inspection apparatus according to claim 5 or 6, wherein the inspection apparatus according to claim 5 or 6 is used by being mounted on a portable communication terminal including a camera using an image sensor and a control unit capable of executing data processing of a signal output from the camera. An attachment used for
    A light probe attached to the attachment, or a probe unit for illumination that can irradiate the surface of the substance with light emitted from the light source provided in the portable communication terminal; and
    An imaging probe unit for setting a separation distance between the surface of the substance and the camera to be an imageable distance of the camera by bringing a part into contact with the surface of the substance;
    An attachment characterized by comprising.
  13.  操作部、イメージセンサを利用したカメラおよびこのカメラから出力される撮像画像信号のデータ処理を実行可能な制御部を備えており、
     請求項12に記載のアタッチメントと組み合わせて用いられることにより、検査対象の物質内の特定波長域についての光学的特性情報を求める処理を実行可能な検査装置を構成する、携帯型通信端末であって、
     前記制御部は、
     前記操作部において所定の操作がなされたときに、この携帯型通信端末を検査処理モードに設定し、かつこのモード時において、前記アタッチメントに取り付けられた光源、またはこの携帯型通信端末に具備された光源から発せられた光が前記物質の表面に照射されたときには、前記物質の表面の光照射部とは異なる部分を前記カメラにより撮像させることにより、前記物質内を拡散して前記物質の表面に到達した光の量に対応する撮像画像データを取得するとともに、
     この取得した撮像画像データの中から、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを選択し、かつこの選択されたデータに基づいて前記光学的特性情報を求める処理を実行するように構成されていることを特徴とする、携帯型通信端末。
    An operation unit, a camera using an image sensor, and a control unit capable of executing data processing of a captured image signal output from the camera;
    A portable communication terminal that constitutes an inspection apparatus capable of executing processing for obtaining optical characteristic information about a specific wavelength region in a substance to be inspected by being used in combination with the attachment according to claim 12. ,
    The controller is
    When a predetermined operation is performed on the operation unit, the portable communication terminal is set to the inspection processing mode, and in this mode, the light source attached to the attachment or the portable communication terminal is provided. When the light emitted from the light source is irradiated on the surface of the substance, a part different from the light irradiation part on the surface of the substance is imaged by the camera to diffuse inside the substance and onto the surface of the substance. While obtaining captured image data corresponding to the amount of light that has reached,
    From the acquired captured image data, selected is captured image data indicating the amount of light reaching each of a plurality of imaging points with different separation distances from the light irradiation unit, and the optical is based on the selected data. A portable communication terminal configured to execute a process for obtaining characteristic information.
  14.  操作部、イメージセンサを利用したカメラ、およびこのカメラから出力される撮像画像信号のデータ処理を実行可能な制御部を備えている携帯型通信端末の前記制御部の記憶部に記憶され、かつ前記携帯型通信端末を請求項12に記載のアタッチメントと組み合わせて用いることにより、検査対象の物質内の特定波長域についての光学的特性情報を求める処理を実行する検査装置を構成するのに用いられる携帯型通信端末用の制御プログラムであって、
     前記操作部において所定の操作がなされたときに、前記携帯型通信端末を検査処理モードに設定するステップと、
     前記検査処理モード時において、前記アタッチメントに取り付けられた光源、または前記携帯型通信端末に具備された光源から発せられた光が前記物質の表面に照射されたときに、前記物質の表面の光照射部とは異なる部分を前記カメラにより撮像させることにより、前記物質内を拡散して前記物質の表面に到達した光の量に対応する撮像画像データを取得するステップと、
     前記撮像画像データの中から、前記光照射部からの離間距離が相違する複数の撮像点ごとの光到達量を示す撮像画像データを選択し、かつこの選択されたデータに基づいて前記光学的特性情報を求める処理を実行するステップと、
     を前記制御部に実行させるためのデータを含んでいることを特徴とする、携帯型通信端末用の制御プログラム。
    An operation unit, a camera using an image sensor, and a storage unit of the control unit of a portable communication terminal having a control unit capable of executing data processing of a captured image signal output from the camera, and By using a portable communication terminal in combination with the attachment according to claim 12, a portable device used for configuring an inspection apparatus that executes processing for obtaining optical characteristic information about a specific wavelength region in a substance to be inspected. Control program for type communication terminal,
    A step of setting the portable communication terminal to an inspection processing mode when a predetermined operation is performed on the operation unit;
    In the inspection processing mode, when light emitted from a light source attached to the attachment or a light source provided in the portable communication terminal is irradiated on the surface of the substance, light irradiation of the surface of the substance is performed. Acquiring captured image data corresponding to the amount of light that has diffused in the substance and reached the surface of the substance by causing the camera to image a portion different from the part;
    From the picked-up image data, picked-up image data indicating the amount of light reaching each of a plurality of pick-up points with different separation distances from the light irradiation unit, and the optical characteristics based on the selected data Executing a process for obtaining information;
    Including a data for causing the control unit to execute the control program for a portable communication terminal.
PCT/JP2015/077099 2014-09-26 2015-09-25 Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal WO2016047754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014196382A JP6474148B2 (en) 2014-09-26 2014-09-26 Inspection device
JP2014-196382 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047754A1 true WO2016047754A1 (en) 2016-03-31

Family

ID=55581270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077099 WO2016047754A1 (en) 2014-09-26 2015-09-25 Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal

Country Status (2)

Country Link
JP (1) JP6474148B2 (en)
WO (1) WO2016047754A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125760A4 (en) * 2014-04-02 2017-09-06 BiliBaby, LLC System and method for determining bilirubin levels in newborn babies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098098A (en) * 2004-09-28 2006-04-13 Sanyo Electric Co Ltd Cellular phone having moisture sensing function
JP2012125370A (en) * 2010-12-15 2012-07-05 Hitachi Ltd Biological measurement apparatus
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
JP2013121420A (en) * 2011-12-09 2013-06-20 Sony Corp Measuring apparatus, measuring method, program, and recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168302A1 (en) * 2011-08-22 2015-06-18 Northeastern University Density analysis of living organisms by magnetic levitation
US9023295B2 (en) * 2012-12-05 2015-05-05 Promega Corporation Adapter for hand-held electronic devices for use in detecting optical properties of samples

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098098A (en) * 2004-09-28 2006-04-13 Sanyo Electric Co Ltd Cellular phone having moisture sensing function
JP2012125370A (en) * 2010-12-15 2012-07-05 Hitachi Ltd Biological measurement apparatus
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
JP2013121420A (en) * 2011-12-09 2013-06-20 Sony Corp Measuring apparatus, measuring method, program, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125760A4 (en) * 2014-04-02 2017-09-06 BiliBaby, LLC System and method for determining bilirubin levels in newborn babies
US9934589B2 (en) 2014-04-02 2018-04-03 Bilibaby, Llc System and method for determining bilirubin levels in newborn babies

Also Published As

Publication number Publication date
JP2016070666A (en) 2016-05-09
JP6474148B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
KR102506587B1 (en) Camera having light emitting device, method for imaging skin and method for detecting skin conditions using the same
JP6639549B2 (en) Efficient modulation imaging
KR101799184B1 (en) Illumination system attachable to a mobile device for multispectral imaging of skin regions
US8535221B2 (en) Electronic endoscope system and method for obtaining vascular information
RU2763756C1 (en) Obtaining images for use in determining one or more properties of the subject&#39;s skin
JP6032837B2 (en) Analysis equipment
WO2015133456A1 (en) Biochemical examination system
US9531950B2 (en) Imaging system and imaging method that perform a correction of eliminating an influence of ambient light for measurement data
US20150185159A1 (en) Analysis system, auxiliary apparatus for the same, mobile terminal and control program thereof
JP2016154648A (en) Information acquisition device
WO2015102102A1 (en) Analysis system, analysis assistance device composing same, mobile communication terminal, and program for controlling mobile communication terminal
US20120092471A1 (en) Endoscopic device
WO2016047754A1 (en) Inspection device, attachment configuring said inspection device, portable communication terminal, and program for controlling portable communication terminal
WO2014065039A1 (en) Light concentration unit, light concentration method and light detection system
JP6096173B2 (en) High luminous flux collimated illumination device and method for illumination of uniform reading field
US11026581B2 (en) Optical probe for detecting biological tissue
JP2015029168A (en) Electronic mirror device
JP2006071589A (en) Color measuring instrument and light source device
JP2016150130A (en) Information acquisition device and information acquisition method
JP6948069B2 (en) Lipid measuring device and its method
JP2015150186A (en) Biophotonic measurement apparatus
JP2016106660A (en) Biological information acquisition device and biological information acquisition method
JP2009222607A (en) Illumination control method of sample analyzer, and sample analyzer
CN109991227B (en) Collagen detection method
JP2016106870A (en) Biological information acquisition device and biological information acquisition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845474

Country of ref document: EP

Kind code of ref document: A1