WO2016047682A1 - Resin film and laminated film - Google Patents

Resin film and laminated film Download PDF

Info

Publication number
WO2016047682A1
WO2016047682A1 PCT/JP2015/076914 JP2015076914W WO2016047682A1 WO 2016047682 A1 WO2016047682 A1 WO 2016047682A1 JP 2015076914 W JP2015076914 W JP 2015076914W WO 2016047682 A1 WO2016047682 A1 WO 2016047682A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin film
compound
film
cured
Prior art date
Application number
PCT/JP2015/076914
Other languages
French (fr)
Japanese (ja)
Inventor
達史 林
貴至 西村
俊章 田中
白波瀬 和孝
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016550357A priority Critical patent/JPWO2016047682A1/en
Publication of WO2016047682A1 publication Critical patent/WO2016047682A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a resin film containing an epoxy resin and a cyanate ester compound. Moreover, this invention relates to a laminated film provided with the said resin film.
  • the cured product of the cyanate ester compound exhibits high heat resistance, low thermal expansion, and low dielectric loss tangent. For this reason, the said cyanate ester compound is used as a hardening
  • a resin composition containing an epoxy resin and a cyanate ester compound is used as a material for a resin film for a printed wiring board including a build-up film.
  • Patent Document 1 A resin composition containing an epoxy resin and a cyanate ester compound is disclosed in Patent Document 1 below.
  • the curing reaction of the epoxy resin by the cyanate ester compound is different from the curing reaction of the epoxy resin by a general phenol resin. It is known that the curing reaction of an epoxy resin with a cyanate ester compound has a very large reaction path and is complicated. Therefore, the properties of the resulting cured product may vary depending on the environment to be cured.
  • a resin film containing an epoxy resin and a cyanate ester compound a resin film cured at 140 ° C. for 5 minutes, and a resin film cured at 140 ° C. for 10 minutes. And each of the four resin films cured at 140 ° C.
  • the surface FT-IR spectrum was measured, and the peak value derived from the triazine structure of each of the four resin films and Obtain the maximum value of the peak derived from the oxazoline structure of each of the four resin films, calculate the slope when linearly approximated by the least square method using the obtained maximum value, and form the calculated slope as the triazine structure
  • the ratio of the triazine structure formation rate to the oxazoline structure formation rate is 0.15 or more. Is 0.4 or less, the resin film is provided.
  • the resin film preferably contains a compound having an alcoholic hydroxyl group as the epoxy resin or as a compound other than the epoxy resin.
  • the resin film preferably contains a curing accelerator.
  • the resin film is preferably an imidazole compound as the curing accelerator.
  • an epoxy resin, a cyanate ester compound, and an imidazole compound are included, and the epoxy resin or a compound other than the epoxy resin includes a compound having an alcoholic hydroxyl group,
  • the ratio of the number of epoxy groups in the epoxy resin to the number of cyanato groups is from 1 to 3, and the number of epoxy groups in the epoxy resin relative to the number of alcoholic hydroxyl groups in the compound containing the alcoholic hydroxyl group
  • the ratio of the content of the imidazole compound in 100% by weight of the resin film to the content of the cyanate ester compound in 100% by weight of the resin film is 0.03 or more and 0.06.
  • the following resin film is provided.
  • the resin film a resin film that has been cured at 140 ° C. for 5 minutes, a resin film that has been cured at 140 ° C. for 10 minutes, and a resin film that has been cured at 140 ° C.
  • the surface FT-IR spectrum was measured, and the maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films And using the obtained maximum value to calculate the slope when linearly approximated by the least squares method, and using the calculated slope as the formation rate of the triazine structure and the formation rate of the oxazoline structure, the oxazoline structure
  • the ratio of the formation rate of the triazine structure to the formation rate of is preferably 0.15 or more and 0.4 or less.
  • the resin film preferably contains a phenoxy resin as the compound having an alcoholic hydroxyl group.
  • the resin film preferably contains an inorganic filler.
  • the inorganic filler is preferably silica.
  • the resin film is a build-up film used for a build-up method.
  • a laminated film comprising the above-described resin film and a base material or a metal foil, wherein the resin film is laminated on the surface of the base material or the metal foil.
  • the resin film according to the present invention contains an epoxy resin and a cyanate ester compound, and the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is 0.15 or more and 0.4 or less. Even when cured in the environment, in the obtained cured product, the dielectric loss tangent can be lowered and the adhesion of the metal wiring can be enhanced.
  • the resin film according to the present invention includes an epoxy resin, a cyanate ester compound, and an imidazole compound, includes a compound having an alcoholic hydroxyl group as the epoxy resin or a compound other than the epoxy resin, and a ratio (number of epoxy groups). / Number of cyanato groups) is 1 or more and 3 or less, ratio (number of epoxy groups / number of alcoholic hydroxyl groups) is 3 or more and 7 or less, ratio (content of imidazole compound (wt%) / cyanate) Since the content (% by weight) of the ester compound is 0.03 or more and 0.06 or less, even when cured in various curing environments, the resulting cured product has a low dielectric loss tangent and metal wiring. It is possible to improve the adhesion.
  • the resin film according to the present invention preferably contains an epoxy resin and a cyanate ester compound.
  • the ratio of the triazine structure formation rate to the oxazoline structure formation rate is preferably 0.15 or more and 0.4 or less.
  • triazine structure formation rate / triazine structure formation rate and oxazoline structure formation rate is as follows: resin film (0 minutes at 140 ° C., no cure at 140 ° C.) and 5 minutes at 140 ° C.
  • FT-IR spectrum of each of four resin films a resin film that has been cured for 10 minutes at 140 ° C., and a resin film that has been cured for 15 minutes at 140 ° C.
  • the maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films were obtained, and by the least square method using the maximum values obtained.
  • the slope at the time of linear approximation is calculated, and the calculated slope is obtained as the formation rate of the triazine structure and the formation rate of the oxazoline structure.
  • a resin film cured at 140 ° C. for 5 minutes a resin film cured at 140 ° C. for 10 minutes, and at 140 ° C.
  • the resin film which has been cured for 15 minutes can be obtained by curing the resin film on which the FT-IR spectrum is measured in a state where it is in contact with the atmosphere.
  • the above-described configuration (1) in the resin film according to the present invention it is possible to lower the dielectric loss tangent and improve the adhesion of the metal wiring in the obtained cured product even when cured in various curing environments. it can.
  • the above effects are effectively exhibited by controlling the generation rate of the triazine structure and the oxazoline structure generated by the reaction between the epoxy resin and the cyanate ester compound within a certain range.
  • the resin film according to the present invention includes an epoxy resin, a cyanate ester compound, and an imidazole compound, and a compound having an alcoholic hydroxyl group as the epoxy resin or a compound other than the epoxy resin. It is preferable to include.
  • the ratio of the number of epoxy groups in the epoxy resin to the number of cyanato groups in the cyanate ester compound (the number of epoxy groups / the number of cyanato groups) is preferably 1 or more and 3 or less.
  • the ratio of the number of epoxy groups in the epoxy resin to the number of alcoholic hydroxyl groups in the compound containing an alcoholic hydroxyl group is preferably 3 or more and 7 or less.
  • Ratio of content of imidazole compound in 100% by weight of resin film to content of cyanate ester compound in 100% by weight of resin film (content of imidazole compound (% by weight) / content of cyanate ester compound (weight) %)) Is preferably 0.03 or more and 0.06 or less.
  • the dielectric loss tangent is lowered and the adhesion of the metal wiring is increased. Can do.
  • generated by reaction with an epoxy resin and a cyanate ester compound can be controlled to a fixed range, said effect is exhibited effectively.
  • a resin film satisfying the above configuration (1) can be easily obtained by a resin film satisfying the above configuration (2).
  • the resin film that satisfies the above configuration (2) satisfies the above configuration (1) from the viewpoint of effectively lowering the dielectric tangent and effectively improving the adhesion of the metal wiring. It is preferable to do.
  • the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is 0.15 or more and 0.4 or less.
  • the resin film has an alcoholic hydroxyl group.
  • the resin film contains a curing accelerator, and the resin film is preferably an imidazole compound as the curing accelerator.
  • the tangent can be lowered and the adhesion of the metal wiring can be increased. Even if the surface of the resin film is covered, the surface roughness of the surface is reduced, and the adhesion between the cured product and the metal wiring is increased. Even if the surface of the resin film is covered, the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is not less than the lower limit as long as the configuration (1) or the configuration (2) is satisfied. If so, the dielectric loss tangent is effectively reduced.
  • the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is not less than the lower limit as long as the configuration (1) or the configuration (2) is satisfied. If it exists, after moisture absorption arises in the state in which the metal wiring was formed on the hardened
  • the above ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is preferably 0. .20 or more, preferably 0.35 or less.
  • the surface FT-IR spectrum is measured under the following conditions.
  • the surface FT-IR spectrum is measured in the ATR measurement mode of a Fourier transform infrared spectrophotometer “NICOLET 380” (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • the resulting peaks after normalization by the maximum peak value between 1490cm -1 ⁇ 1520cm -1 (allyl-derived peak), the maximum peak value between 1550cm -1 ⁇ 1580cm -1 (derived from triazine structure Peak) and a maximum peak value between 1660 cm ⁇ 1 and 1690 cm ⁇ 1 (peak derived from the oxazoline structure).
  • the epoxy group in the epoxy resin relative to the number of cyanate groups in the cyanate ester compound.
  • the number ratio (number of epoxy groups / number of cyanato groups) is preferably 1 or more, more preferably 1.5 or more, preferably 3 or less, more preferably 2.5 or less.
  • the ratio (number of epoxy groups / number of cyanato groups) is not less than the above lower limit, the generation rate of the triazine structure does not become too fast, the decrease in wet heat resistance of the resulting cured product is suppressed, and the wiring adhesion is There is a tendency to improve.
  • the ratio (number of epoxy groups / number of cyanato groups) is less than or equal to the above upper limit, the generation rate of the oxazoline structure does not become too fast, the deterioration of dielectric properties is prevented, and excessive etching occurs in the desmear process. It becomes difficult to improve the adhesion of the wiring.
  • the epoxy resin in the epoxy resin relative to the number of alcoholic hydroxyl groups in the compound containing the alcoholic hydroxyl group.
  • the ratio of the number of epoxy groups is preferably 3 or more, more preferably 5 or more, and preferably 7 or less.
  • the resin film relative to the content of the cyanate ester compound in 100% by weight of the resin film from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring.
  • the ratio of the content of the imidazole compound in 100% by weight is preferably 0.03 or more, more preferably 0.035 or more. , Preferably 0.06 or less, more preferably 0.055 or less.
  • the ratio content of imidazole compound (% by weight) / cyanate ester compound (% by weight)
  • the rate of formation of the triazine structure relative to the rate of formation of the oxazoline structure It becomes easy to keep the ratio within the preferred range described above. As a result, the dielectric characteristics are improved and the adhesion of the wiring is increased.
  • Epoxy resin The epoxy resin (epoxy compound) contained in the resin film is not particularly limited. A conventionally well-known epoxy resin can be used as this epoxy resin.
  • the epoxy resin refers to an organic compound having at least one epoxy group. As for an epoxy resin, only 1 type may be used and 2 or more types may be used together.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • Examples thereof include an epoxy resin having a skeleton.
  • the epoxy resin may not have a triazine structure.
  • the epoxy resin preferably has a biphenyl skeleton, and is preferably a biphenyl type epoxy resin.
  • the epoxy resin has a biphenyl skeleton, the adhesion between the cured product and the metal wiring is further enhanced.
  • the epoxy equivalent of the epoxy resin is preferably 90 or more, more preferably 100 or more. , Preferably 1000 or less, more preferably 800 or less.
  • the molecular weight of the epoxy resin is preferably 200 or more, more preferably 350 or more, preferably 3000 or less, more preferably 1000 or less.
  • the molecular weight of the epoxy resin is more preferably 1000 or less. In this case, even if the content of the inorganic filler in the resin film is 50% by weight or more, a resin film that flows appropriately can be obtained. When the resin film is laminated on the substrate, the inorganic filler can be uniformly present.
  • the resin film may contain a compound having an alcoholic hydroxyl group (an epoxy resin having an alcoholic hydroxyl group) as the epoxy resin.
  • the resin film may contain a compound having an alcoholic hydroxyl group that is an epoxy resin and a compound having an alcoholic hydroxyl group that is not an epoxy resin.
  • the epoxy resin having an alcoholic hydroxyl group include epoxy resins (multimers of bisphenol type epoxy compounds) obtained by reacting two or more monomers of a bisphenol type epoxy compound.
  • the epoxy resin having an alcoholic hydroxyl group inhibits the formation of the triazine structure by the self-polymerization of the cyanate ester compound, it is easy to keep the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure below the above-mentioned preferable upper limit. To do. For this reason, an epoxy resin having an alcoholic hydroxyl group is preferably used.
  • Examples of commercially available epoxy resins having an alcoholic hydroxyl group include “1004” and “1007” manufactured by Mitsubishi Chemical Corporation.
  • the molecular weight of the epoxy resin and the molecular weight of the cyanate ester compound described below can be obtained from the structural formula when the epoxy resin or cyanate ester compound is not a polymer and when the structural formula of the epoxy resin or cyanate ester compound can be specified. It means the molecular weight that can be calculated. Moreover, when the said epoxy resin or cyanate ester compound is a polymer, a weight average molecular weight is meant.
  • the resin film contains a curing agent in order to cure the epoxy resin.
  • cyanate ester compound cyanate ester curing agent
  • phenol compound phenol curing agent
  • amine compound amine curing agent
  • thiol compound thiol curing agent
  • imidazole compound phosphine compound
  • acid anhydride examples include active ester compounds and dicyandiamide.
  • a cyanate ester compound is used as the curing agent.
  • a cyanate ester compound is used as the curing agent, a cured product in which the dimensional change due to heat is further smaller than when other curing agents are used is obtained.
  • the surface roughness of the surface of the cured product is further reduced as compared with the case of using another curing agent, and the adhesion between the cured product and the metal wiring is improved.
  • the wiring becomes higher and finer wiring is formed on the surface of the cured product.
  • the handling property of the resin film containing a large amount of the inorganic filler is improved, and the glass transition temperature of the cured product is further increased.
  • the cyanate ester compound is not particularly limited.
  • a conventionally known cyanate ester compound can be used as the cyanate ester compound.
  • As for the said cyanate ester compound only 1 type may be used and 2 or more types may be used together.
  • Examples of the cyanate ester compound include novolak-type cyanate ester compounds, bisphenol-type cyanate ester compounds, and prepolymers in which these are partially trimerized.
  • As said novolak-type cyanate ester compound a phenol novolak-type cyanate ester compound, an alkylphenol-type cyanate ester compound, etc. are mentioned.
  • Examples of the bisphenol type cyanate ester compound include bisphenol A type cyanate ester compounds, bisphenol E type cyanate ester compounds, and tetramethylbisphenol F type cyanate ester compounds.
  • cyanate ester compounds Commercially available products of the above cyanate ester compounds include phenol novolac-type cyanate ester compounds (“Lonza Japan” “PT-30” and “PT-60”) and prepolymers (Lonza Japan) in which bisphenol-type cyanate ester compounds are trimerized. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • the molecular weight of the cyanate ester compound is preferably 3000 or less.
  • the content of the inorganic filler in the resin film can be increased, and even if the content of the inorganic filler is large, a resin film that flows appropriately can be obtained.
  • the molecular weight of the cyanate ester compound is preferably 1000 or less. In this case, even if the content of the inorganic filler in the resin film is 50% by weight or more, a resin film that flows appropriately can be obtained.
  • the surface roughness of the cured product is further reduced, the adhesiveness between the cured product and the metal wiring is further increased, finer wiring is formed on the surface of the cured product, and the cyanate ester compound is excellent.
  • the cyanate ester group equivalent of the cyanate ester compound is preferably 250 or less.
  • the content of the cyanate ester compound with respect to 100 parts by weight of the epoxy resin is preferably 20 parts by weight or more, more preferably 30 parts by weight or more, preferably 100 parts by weight or less, more preferably 60 parts by weight or less. .
  • the content of the cyanate ester compound is not less than the above lower limit and not more than the above upper limit, a resin film more excellent in storage stability can be obtained.
  • the resin film does not contain or contains a phenoxy resin.
  • the resin film can suppress deterioration in embedding property of the resin film with respect to holes or irregularities in the circuit board and unevenness of the inorganic filler.
  • the melt viscosity can be adjusted by using a phenoxy resin, the dispersibility of the inorganic filler is improved, and the resin film is difficult to wet and spread in an unintended region during the curing process.
  • the phenoxy resin is not particularly limited.
  • a conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
  • the phenoxy resin contains an alcoholic hydroxyl group, the use of the phenoxy resin makes it easy to keep the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure below the above-described preferable upper limit. For this reason, the said phenoxy resin is used suitably.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 “,” YX6954BH30 “,” YX8100BH30 “, and the like.
  • the weight average molecular weight of the phenoxy resin is preferably 5000 or more, more preferably 10,000 or more, preferably 100,000 or less, more preferably 50000 or less.
  • the weight average molecular weight of the phenoxy resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the phenoxy resin is not particularly limited. In 100% by weight of the resin film, the content of the phenoxy resin is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the content of the phenoxy resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin film with respect to the holes or irregularities of the circuit board becomes good.
  • the content of the phenoxy resin is not less than the above lower limit, the resin composition can be more easily formed into a film, and a better insulating layer can be obtained.
  • the content of the phenoxy resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. The surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced.
  • the resin film does not contain or contains an inorganic filler.
  • the resin film preferably contains an inorganic filler.
  • Use of the inorganic filler further reduces the dimensional change due to heat of the cured product. Furthermore, the surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced.
  • examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • silica the coefficient of thermal expansion of the cured product is further reduced, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion between the cured product and the metal wiring is effectively increased.
  • the shape of silica is preferably substantially spherical.
  • the average particle size of the inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, further preferably 150 nm or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less. is there.
  • the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the size of the holes formed by the roughening treatment or the like becomes fine, and the number of holes increases. As a result, the adhesion between the cured product and the metal wiring is further enhanced.
  • the median diameter (d50) value of 50% is adopted as the average particle diameter of the inorganic filler.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion between the cured product and the metal wiring is effectively increased.
  • the aspect ratio of each of the inorganic fillers is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, and more preferably surface-treated with a silane coupling agent. Thereby, the surface roughness of the surface of the roughened cured product is further reduced, the adhesion between the cured product and the metal wiring is further increased, and finer wiring is formed on the surface of the cured product, and more Better inter-wiring insulation reliability and interlayer insulation reliability can be imparted to the cured product.
  • Examples of the coupling agent include silane coupling agents, titanate coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the inorganic filler is preferably 25% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, particularly preferably 50% by weight or more, preferably 99%.
  • % By weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less.
  • the total content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced.
  • finer wiring is formed on the surface of the cured product, and at the same time, with this amount of inorganic filler, it is possible to lower the thermal expansion coefficient of the cured product as well as metal copper.
  • the resin film does not contain or contains a curing accelerator.
  • the resin film preferably contains a curing accelerator.
  • the curing rate is further increased.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phenol compounds, compounds having secondary hydroxyl groups, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
  • phenol compounds examples include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 “and” LA3018-50P "manufactured by DIC).
  • the phenolic compound contains a phenolic hydroxyl group.
  • the phenolic hydroxyl group is not an alcoholic hydroxyl group. Since the phenolic hydroxyl group contained in the phenol compound promotes the formation of the triazine structure, the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure is kept above the preferable lower limit by using the phenol compound. It becomes easy. For this reason, the said phenol compound is used suitably.
  • the resin film preferably contains the phenol compound as the curing accelerator.
  • the content of the phenoxy resin is 10 parts by weight or less with respect to 100 parts by weight of the cyanate ester compound. If the content of the phenoxy resin is not more than the above upper limit, it is possible to control the reaction rate ratio while maintaining good storage stability.
  • Examples of the compound having a secondary hydroxyl group include an epoxy resin obtained by reacting two or more monomers of a bisphenol type epoxy resin, a phenoxy resin, and the like.
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III). Since the organometallic compound adversely affects the insulation reliability, it may not be substantially contained.
  • the content of the curing accelerator is not particularly limited. In 100% by weight of the resin film, the content of the curing accelerator and the content of the imidazole compound are each preferably 0.01% by weight or more, more preferably 0.9% by weight or more, preferably 3.0% by weight. Below, more preferably 1.8% by weight or less.
  • hardens efficiently that content of the said hardening accelerator and the said imidazole compound is more than the said minimum and below the said upper limit. If content of the said hardening accelerator and the said imidazole compound is a more preferable range, the storage stability of a resin composition will become still higher and a much better hardened
  • the resin film does not contain or contains a solvent.
  • the solvent may be used to obtain a slurry containing the inorganic filler.
  • the said solvent only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coating property of the resin composition.
  • the resin composition includes a leveling agent, a flame retardant, a coupling agent, a colorant, an antioxidant, an ultraviolet degradation inhibitor, An antifoaming agent, a thickener, a thixotropic agent, a thermosetting resin other than the above-described epoxy resin, a thermoplastic resin other than the phenoxy resin, and the like may be added.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • thermosetting resins examples include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimide resins, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.
  • thermoplastic resins examples include polyvinyl acetal resins, rubber components, and organic fillers.
  • the resin film can be obtained by molding the resin composition into a film.
  • the thickness of the resin film is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • an extrusion molding method is used in which the resin composition is melt-kneaded using an extruder, extruded, and then formed into a film using a T-die or a circular die.
  • a casting molding method in which a resin composition containing a solvent is cast to form a film, and other conventionally known film molding methods.
  • the extrusion molding method or the casting molding method is preferable.
  • the film includes a sheet.
  • a resin film that is a B-stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 90 to 200 ° C. for 1 to 180 minutes so that curing by heat does not proceed excessively. .
  • the film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film.
  • the B-stage film is a semi-cured product in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the resin film may not be a prepreg.
  • the resin film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or precuring the resin film, the surface is not uneven due to the glass cloth. Moreover, by setting it as the resin film which does not contain a prepreg, the dimensional change by the heat
  • the resin film can be suitably used for forming a laminated film including a base material and a resin film laminated on one surface of the base material.
  • Examples of the substrate of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin film.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the resin film can also be suitably used to form a laminated film including a metal foil and a resin film laminated on one surface of the metal foil. Therefore, the resin film includes a resin film and a base material or a metal foil, and is preferably used for forming a laminated film in which the resin film is laminated on the surface of the base material or the metal foil. it can.
  • the metal foil is preferably a copper foil.
  • the resin film is preferably a build-up film used in the build-up method.
  • the resin film is preferably used to obtain a cured product that is roughened or desmeared.
  • the cured product includes a precured product that can be further cured.
  • the cured product is preferably roughened.
  • the cured product Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the cured product is not necessarily subjected to the swelling treatment.
  • the swelling treatment method for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesion between the cured product and the metal wiring tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the method for the roughening treatment is not particularly limited.
  • As the roughening treatment method for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes.
  • a method of treating a cured product under conditions is preferable.
  • the temperature of the roughening treatment is preferably in the range of 50 to 85 ° C.
  • the number of times of the roughening treatment is preferably once or twice.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 50 nm or more, preferably 350 nm or less, more preferably less than 200 nm, still more preferably less than 100 nm.
  • the adhesiveness between the cured product and the metal wiring is increased, and further finer wiring is formed on the surface of the insulating layer.
  • a through-hole may be formed in the hardened
  • a via or a through hole is formed as a through hole.
  • the via can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 to 80 ⁇ m. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmeared.
  • the desmear process may also serve as a roughening process.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the above desmear treatment method is not particularly limited.
  • the desmear treatment method for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes And the method of processing hardened
  • the temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
  • the surface roughness of the surface of the desmeared cured product is sufficiently reduced by using the resin film.
  • Example 1 7 parts by weight of cyanate ester curing agent-containing liquid (“BA-3000S” manufactured by Lonza Japan Co., Ltd.) (5.25 parts by weight in solid content) and bisphenol A type epoxy resin (“850-S” manufactured by DIC) 7 .2 parts by weight, 7.2 parts by weight of a biphenyl type epoxy resin (“NC-3000-H” manufactured by Nippon Kayaku Co., Ltd.), 0.2 parts by weight of an imidazole compound (“2P4MZ” manufactured by Shikoku Kasei Engineering Co., Ltd.)
  • a liquid containing a compound having an alcoholic hydroxyl group 10.3 parts by weight (3.09 parts by weight in solid content) of a phenoxy resin-containing liquid (“YX6954BH30” manufactured by Mitsubishi Chemical Corporation) and a phenol compound (“MEH7851 ⁇ manufactured by Meiwa Kasei Co., Ltd.) H ") 0.5 parts by weight and a surface treated with a silane coupling agent having an N-phenyl
  • Examples 2 to 7 and Comparative Examples 1 to 3 A resin composition varnish and a resin film were produced in the same manner as in Example 1 except that the types and amounts (parts by weight) of the components were changed as shown in Table 1 below.
  • the PET film was peeled from the resin film, and the resin film was cured under curing conditions of 140 ° C. and 90 minutes to obtain a cured laminated sample.
  • the cured laminated sample is put in a swelling solution at 60 ° C. (an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and “Sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd. Rock at 20 ° C. for 20 minutes. Thereafter, it was washed with pure water.
  • a swelling solution at 60 ° C. an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.
  • Sodium hydroxide manufactured by Wako Pure Chemical Industries, Ltd. Rock at 20 ° C. for 20 minutes. Thereafter, it was washed with pure water.
  • the arithmetic average roughness Ra of the surface of the roughened cured product was measured using a non-contact type surface roughness meter (“WYKO” manufactured by Beiko).
  • the arithmetic average roughness Ra was in accordance with JIS B0601-1994.
  • Ra is less than 100 nm ⁇ : Ra is 100 nm or more and less than 200 nm ⁇ : Ra is 200 nm or more and less than 300 nm ⁇ : Ra is 300 nm or more
  • the surface of the roughened cured product was treated with an alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
  • the cured product is placed in a chemical copper solution (all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”).
  • a chemical copper solution all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”.
  • annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and while the cured product was swung.
  • electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 ⁇ m.
  • a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler capaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m.
  • the cured product was heated at 190 ° C. for 2 hours to further cure the cured product.
  • stacked on the upper surface was obtained.
  • the adhesive strength (peel strength) between the cured product and the copper plating layer was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min.
  • Adhesion decrease due to moisture absorption is less than 50%
  • Adhesion decrease due to moisture absorption is 50% or more and less than 60%
  • Adhesion decrease due to moisture absorption is 60% or more
  • Condition 0 Peeling of PET film and curing under normal environment Above (1) Obtained by evaluation of surface roughness Under the curing conditions in the uncured laminated sample A, the PET film was peeled off, and the resin film was cured in the atmosphere at 140 ° C. for 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • Condition 1 Non-silicone-treated PET is cured in a normal environment without being peeled (1) The PET film is peeled from the resin film under the curing conditions in the uncured laminated sample A obtained by the evaluation of the surface roughness. First, the resin film was cured under curing conditions of 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • Silicone-treated PET does not peel off and is cured in a normal environment. Instead of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 ⁇ m, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 ⁇ m, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • Condition 3 Cured in a normal environment without peeling off the copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. . Without peeling off the copper foil, the resin film was cured under the curing conditions of 140 ° C. and 90 minutes, and then the copper foil was peeled off by etching with an acid to obtain a laminated sample.
  • PET film was peeled and cured in a nitrogen environment.
  • the PET film was peeled from the resin film, and the resin film was cured under a nitrogen environment at 140 ° C. for 90 minutes to obtain a laminated sample.
  • the PET film was peeled from the resin film. Next, it was heated at 140 ° C. for 90 minutes, and then further heated at 180 ° C. for 90 minutes to obtain a cured product. Thereafter, the copper foil was peeled off by etching with an acid to obtain a cured product. The obtained cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were overlapped to obtain a laminate having a thickness of 400 ⁇ m. Using the obtained laminate, and using the “cavity resonance perturbation method dielectric constant measuring device CP521” manufactured by Kanto Electronics Application Development Co., Ltd.
  • the dielectric loss tangent was measured at a measurement frequency of 1 GHz.
  • the dielectric loss tangent was determined according to the following criteria.
  • Condition 1 In place of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation, thickness 25 ⁇ m) was used, and the PET film was not peeled off at 140 ° C. The resin film was cured under curing conditions of 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • a silicone-treated PET film (“5011” manufactured by Lintec Corporation, thickness 25 ⁇ m) was used, and the PET film was not peeled off at 140 ° C.
  • the resin film was cured under curing conditions of 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • Silicone-treated PET does not peel off and is cured in a normal environment. Instead of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 ⁇ m, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 ⁇ m, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
  • Condition 3 Cured in a normal environment without peeling off the copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. . Without peeling off the copper foil, the resin film was cured under the curing conditions of 140 ° C. and 90 minutes, and then the copper foil was peeled off by etching with an acid to obtain a laminated sample.
  • PET film was peeled and cured in a nitrogen environment.
  • the PET film was peeled from the resin film, and the resin film was cured under a nitrogen environment at 140 ° C. for 90 minutes to obtain a laminated sample.
  • Dielectric tangent is less than 0.007 ⁇ : Dielectric tangent is 0.007 or more and less than 0.008 ⁇ : Dielectric tangent is 0.008 or more and less than 0.010 ⁇ : Dielectric tangent is 0.010 or more
  • Lamination was performed on both surfaces of the glass epoxy substrate to obtain an uncured laminated sample B. Lamination was performed by reducing the pressure for 20 seconds to a pressure of 13 hPa or less, and then pressing for 20 seconds at 100 ° C. and a pressure of 0.8 MPa. In the uncured laminated sample B, the PET film was peeled from the resin film. Next, a resin film, a resin film cured for 5 minutes at 140 ° C. in the air, a resin film cured for 10 minutes at 140 ° C. in the air, and cured at 140 ° C.
  • Condition 1 Non-silicone-treated PET is not peeled and cured in a normal environment
  • the PET film is not peeled and the laminated sample is subjected to the same curing conditions.
  • the PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.
  • Silicone-treated PET is not peeled off and cured in a normal environment
  • a silicone-treated PET film (“2511” manufactured by Lintec Corporation, thickness 25 ⁇ m) is used to peel off the PET film.
  • a laminated sample was obtained under the same curing conditions. The PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.
  • Condition 3 Hardening under normal environment without peeling copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. A laminated sample was obtained under the same curing conditions without peeling off the copper foil. After the copper foil was peeled off by etching with acid, the same evaluation was performed using FT-IR.
  • PET film was peeled and cured in a nitrogen environment.
  • the uncured laminated sample B obtained in (6) above was cured in a nitrogen environment to obtain a laminated sample.
  • the PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.

Abstract

Provided is a resin film which, even when cured in various curing environments, gives a cured film that has a reduced dielectric dissipation factor and that can enhance the adhesion of metal wiring. This resin film includes an epoxy resin and a cyanate ester compound, wherein the ratio of the rate of triazine structure formation to the rate of oxazoline structure formation is 0.15-0.4.

Description

樹脂フィルム及び積層フィルムResin film and laminated film
 本発明は、エポキシ樹脂とシアネートエステル化合物とを含む樹脂フィルムに関する。また、本発明は、上記樹脂フィルムを備える積層フィルムに関する。 The present invention relates to a resin film containing an epoxy resin and a cyanate ester compound. Moreover, this invention relates to a laminated film provided with the said resin film.
 シアネートエステル化合物の硬化物は、高い耐熱性、低い熱膨張性、及び低い誘電正接を示す。このため、エポキシ樹脂に上記の性能を付与する目的で、上記シアネートエステル化合物は、エポキシ樹脂の硬化剤として用いられている。エポキシ樹脂とシアネートエステル化合物とを含む樹脂組成物は、ビルドアップフィルムを含むプリント配線板用の樹脂フィルムの材料として用いられている。 The cured product of the cyanate ester compound exhibits high heat resistance, low thermal expansion, and low dielectric loss tangent. For this reason, the said cyanate ester compound is used as a hardening | curing agent of an epoxy resin in order to provide said performance to an epoxy resin. A resin composition containing an epoxy resin and a cyanate ester compound is used as a material for a resin film for a printed wiring board including a build-up film.
 エポキシ樹脂とシアネートエステル化合物とを含む樹脂組成物は、下記の特許文献1に開示されている。 A resin composition containing an epoxy resin and a cyanate ester compound is disclosed in Patent Document 1 below.
WO2003/099952A1WO2003 / 099952A1
 シアネートエステル化合物によるエポキシ樹脂の硬化反応は、一般的なフェノール樹脂によるエポキシ樹脂の硬化反応と異なる。シアネートエステル化合物によるエポキシ樹脂の硬化反応は、反応経路が非常に多く複雑であることが知られている。従って、硬化される環境により、得られる硬化物の性質が異なることがある。 The curing reaction of the epoxy resin by the cyanate ester compound is different from the curing reaction of the epoxy resin by a general phenol resin. It is known that the curing reaction of an epoxy resin with a cyanate ester compound has a very large reaction path and is complicated. Therefore, the properties of the resulting cured product may vary depending on the environment to be cured.
 近年、ビルドアップフィルムが様々な加工法で使用されている。シアネートエステル化合物を用いた場合には、硬化環境によって誘電特性や、配線密着性について、安定した性能が発揮されないことがある。 In recent years, build-up films have been used in various processing methods. When a cyanate ester compound is used, stable performance may not be exhibited in terms of dielectric properties and wiring adhesion depending on the curing environment.
 本発明者らの検討の結果、特に樹脂フィルムの表面が封止された環境において、樹脂フィルムが硬化された場合に、反応経路が大きく変化し、シアネートエステル化合物の自己重合によるトリアジン構造の形成が抑制され、オキサゾリン構造が多く形成されやすいことが見出された。この結果、誘電特性が悪化したり、デスミア工程にて過剰なエッチングが発生して、配線の密着性が発揮されなかったりする。一方、トリアジン構造の形成を促進させすぎると、トリアジン構造の加水分解により、硬化物の耐湿熱性が大幅に低下し、配線密着性が低下する傾向がある。 As a result of the study by the present inventors, particularly in an environment where the surface of the resin film is sealed, when the resin film is cured, the reaction path changes greatly, and the triazine structure is formed by the self-polymerization of the cyanate ester compound. It was found that many oxazoline structures were easily formed. As a result, the dielectric characteristics are deteriorated or excessive etching occurs in the desmear process, and the adhesion of the wiring is not exhibited. On the other hand, if the formation of the triazine structure is promoted too much, hydrolysis and heat resistance of the cured product tends to be significantly reduced due to hydrolysis of the triazine structure, and wiring adhesion tends to be lowered.
 本発明の目的は、様々な硬化環境で硬化されても、得られる硬化物において、誘電正接を低くし、かつ、金属配線の密着性を高めることができる樹脂フィルムを提供することである。また、本発明は、上記樹脂フィルムを備える積層フィルムを提供することも目的とする。 An object of the present invention is to provide a resin film that can lower the dielectric loss tangent and increase the adhesion of metal wiring in the obtained cured product even when cured in various curing environments. Another object of the present invention is to provide a laminated film including the above resin film.
 本発明の広い局面によれば、エポキシ樹脂と、シアネートエステル化合物とを含み、樹脂フィルムと、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出して、算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度としたときに、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比が0.15以上、0.4以下である、樹脂フィルムが提供される。 According to a wide aspect of the present invention, a resin film containing an epoxy resin and a cyanate ester compound, a resin film cured at 140 ° C. for 5 minutes, and a resin film cured at 140 ° C. for 10 minutes. And each of the four resin films cured at 140 ° C. for 15 minutes, the surface FT-IR spectrum was measured, and the peak value derived from the triazine structure of each of the four resin films and Obtain the maximum value of the peak derived from the oxazoline structure of each of the four resin films, calculate the slope when linearly approximated by the least square method using the obtained maximum value, and form the calculated slope as the triazine structure The ratio of the triazine structure formation rate to the oxazoline structure formation rate is 0.15 or more. Is 0.4 or less, the resin film is provided.
 前記樹脂フィルムは、前記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含むことが好ましい。前記樹脂フィルムは、硬化促進剤を含むことが好ましい。前記樹脂フィルムは、前記硬化促進剤として、イミダゾール化合物であることが好ましい。 The resin film preferably contains a compound having an alcoholic hydroxyl group as the epoxy resin or as a compound other than the epoxy resin. The resin film preferably contains a curing accelerator. The resin film is preferably an imidazole compound as the curing accelerator.
 本発明の広い局面によれば、エポキシ樹脂と、シアネートエステル化合物と、イミダゾール化合物とを含み、前記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含み、前記シアネートエステル化合物中のシアナト基の数に対する前記エポキシ樹脂中のエポキシ基の数の比が1以上、3以下であり、前記アルコール性水酸基を含む化合物中のアルコール性水酸基の数に対する前記エポキシ樹脂中のエポキシ基の数の比が3以上、7以下であり、樹脂フィルム100重量%中の前記シアネートエステル化合物の含有量に対する樹脂フィルム100重量%中の前記イミダゾール化合物の含有量の比が0.03以上、0.06以下である、樹脂フィルムが提供される。この樹脂フィルムに関して、該樹脂フィルムと、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出して、算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度としたときに、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比が0.15以上、0.4以下であることが好ましい。 According to a wide aspect of the present invention, an epoxy resin, a cyanate ester compound, and an imidazole compound are included, and the epoxy resin or a compound other than the epoxy resin includes a compound having an alcoholic hydroxyl group, The ratio of the number of epoxy groups in the epoxy resin to the number of cyanato groups is from 1 to 3, and the number of epoxy groups in the epoxy resin relative to the number of alcoholic hydroxyl groups in the compound containing the alcoholic hydroxyl group The ratio of the content of the imidazole compound in 100% by weight of the resin film to the content of the cyanate ester compound in 100% by weight of the resin film is 0.03 or more and 0.06. The following resin film is provided. Regarding this resin film, the resin film, a resin film that has been cured at 140 ° C. for 5 minutes, a resin film that has been cured at 140 ° C. for 10 minutes, and a resin film that has been cured at 140 ° C. for 15 minutes For each of the four resin films, the surface FT-IR spectrum was measured, and the maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films And using the obtained maximum value to calculate the slope when linearly approximated by the least squares method, and using the calculated slope as the formation rate of the triazine structure and the formation rate of the oxazoline structure, the oxazoline structure The ratio of the formation rate of the triazine structure to the formation rate of is preferably 0.15 or more and 0.4 or less.
 前記樹脂フィルムは、前記アルコール性水酸基を有する化合物として、フェノキシ樹脂を含むことが好ましい。前記樹脂フィルムは、無機充填材を含むことが好ましい。前記無機充填材がシリカであることが好ましい。 The resin film preferably contains a phenoxy resin as the compound having an alcoholic hydroxyl group. The resin film preferably contains an inorganic filler. The inorganic filler is preferably silica.
 本発明に係る樹脂フィルムのある特定の局面では、前記樹脂フィルムは、ビルドアップ法に用いられるビルドアップフィルムである。 In a specific aspect of the resin film according to the present invention, the resin film is a build-up film used for a build-up method.
 本発明の広い局面によれば、上述した樹脂フィルムと、基材又は金属箔とを備え、前記基材又は金属箔の表面に、前記樹脂フィルムが積層されている、積層フィルムが提供される。 According to a wide aspect of the present invention, there is provided a laminated film comprising the above-described resin film and a base material or a metal foil, wherein the resin film is laminated on the surface of the base material or the metal foil.
 本発明に係る樹脂フィルムは、エポキシ樹脂と、シアネートエステル化合物とを含み、比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)が0.15以上、0.4以下であるので、様々な硬化環境で硬化されても、得られる硬化物において、誘電正接を低くし、かつ、金属配線の密着性を高めることができる。 The resin film according to the present invention contains an epoxy resin and a cyanate ester compound, and the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is 0.15 or more and 0.4 or less. Even when cured in the environment, in the obtained cured product, the dielectric loss tangent can be lowered and the adhesion of the metal wiring can be enhanced.
 本発明に係る樹脂フィルムは、エポキシ樹脂と、シアネートエステル化合物と、イミダゾール化合物とを含み、上記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含み、比(エポキシ基の数/シアナト基の数)が1以上、3以下であり、比(エポキシ基の数/アルコール性水酸基の数)が3以上、7以下であり、比(イミダゾール化合物の含有量(重量%)/シアネートエステル化合物の含有量(重量%))が0.03以上、0.06以下であるので、様々な硬化環境で硬化されても、得られる硬化物において、誘電正接を低くし、かつ、金属配線の密着性を高めることができる。 The resin film according to the present invention includes an epoxy resin, a cyanate ester compound, and an imidazole compound, includes a compound having an alcoholic hydroxyl group as the epoxy resin or a compound other than the epoxy resin, and a ratio (number of epoxy groups). / Number of cyanato groups) is 1 or more and 3 or less, ratio (number of epoxy groups / number of alcoholic hydroxyl groups) is 3 or more and 7 or less, ratio (content of imidazole compound (wt%) / cyanate) Since the content (% by weight) of the ester compound is 0.03 or more and 0.06 or less, even when cured in various curing environments, the resulting cured product has a low dielectric loss tangent and metal wiring. It is possible to improve the adhesion.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (樹脂フィルム)
 (構成(1))本発明に係る樹脂フィルムは、エポキシ樹脂と、シアネートエステル化合物とを含むことが好ましい。本発明では、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)が0.15以上、0.4以下であることが好ましい。
(Resin film)
(Configuration (1)) The resin film according to the present invention preferably contains an epoxy resin and a cyanate ester compound. In the present invention, the ratio of the triazine structure formation rate to the oxazoline structure formation rate (triazine structure formation rate / oxazoline structure formation rate) is preferably 0.15 or more and 0.4 or less.
 上記比(トリアジン構造の形成速度/トリアジン構造の形成速度とオキサゾリン構造の形成速度)は、樹脂フィルム(140℃で0分、140℃で硬化を進行させていない)と、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出して、算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度として求められる。上記比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)の測定において、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとは、FT-IRスペクトルの測定が行われる樹脂フィルムの表面が大気と接した状態で硬化させることで得られる。 The above ratio (triazine structure formation rate / triazine structure formation rate and oxazoline structure formation rate) is as follows: resin film (0 minutes at 140 ° C., no cure at 140 ° C.) and 5 minutes at 140 ° C. FT-IR spectrum of each of four resin films: a resin film that has been cured for 10 minutes at 140 ° C., and a resin film that has been cured for 15 minutes at 140 ° C. The maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films were obtained, and by the least square method using the maximum values obtained. The slope at the time of linear approximation is calculated, and the calculated slope is obtained as the formation rate of the triazine structure and the formation rate of the oxazoline structure. In measurement of the above ratio (formation rate of triazine structure / formation rate of oxazoline structure), a resin film cured at 140 ° C. for 5 minutes, a resin film cured at 140 ° C. for 10 minutes, and at 140 ° C. The resin film which has been cured for 15 minutes can be obtained by curing the resin film on which the FT-IR spectrum is measured in a state where it is in contact with the atmosphere.
 本発明に係る樹脂フィルムにおける上述した構成(1)の採用によって、様々な硬化環境で硬化されても、得られる硬化物において、誘電正接を低くし、かつ、金属配線の密着性を高めることができる。本発明では、エポキシ樹脂とシアネートエステル化合物との反応により生成されるトリアジン構造及びオキサゾリン構造の生成速度を一定の範囲に制御することにより、上記の効果が効果的に発揮される。 By adopting the above-described configuration (1) in the resin film according to the present invention, it is possible to lower the dielectric loss tangent and improve the adhesion of the metal wiring in the obtained cured product even when cured in various curing environments. it can. In the present invention, the above effects are effectively exhibited by controlling the generation rate of the triazine structure and the oxazoline structure generated by the reaction between the epoxy resin and the cyanate ester compound within a certain range.
 (構成(2))本発明に係る樹脂フィルムは、エポキシ樹脂と、シアネートエステル化合物と、イミダゾール化合物とを含み、かつ、上記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含むことが好ましい。上記シアネートエステル化合物中のシアナト基の数に対する上記エポキシ樹脂中のエポキシ基の数の比(エポキシ基の数/シアナト基の数)が1以上、3以下であることが好ましい。上記アルコール性水酸基を含む化合物中のアルコール性水酸基の数に対する上記エポキシ樹脂中のエポキシ基の数の比(エポキシ基の数/アルコール性水酸基の数)が3以上、7以下であることが好ましい。上記樹脂フィルム100重量%中の上記シアネートエステル化合物の含有量に対する樹脂フィルム100重量%中の上記イミダゾール化合物の含有量の比(イミダゾール化合物の含有量(重量%)/シアネートエステル化合物の含有量(重量%))が0.03以上、0.06以下であることが好ましい。 (Configuration (2)) The resin film according to the present invention includes an epoxy resin, a cyanate ester compound, and an imidazole compound, and a compound having an alcoholic hydroxyl group as the epoxy resin or a compound other than the epoxy resin. It is preferable to include. The ratio of the number of epoxy groups in the epoxy resin to the number of cyanato groups in the cyanate ester compound (the number of epoxy groups / the number of cyanato groups) is preferably 1 or more and 3 or less. The ratio of the number of epoxy groups in the epoxy resin to the number of alcoholic hydroxyl groups in the compound containing an alcoholic hydroxyl group (number of epoxy groups / number of alcoholic hydroxyl groups) is preferably 3 or more and 7 or less. Ratio of content of imidazole compound in 100% by weight of resin film to content of cyanate ester compound in 100% by weight of resin film (content of imidazole compound (% by weight) / content of cyanate ester compound (weight) %)) Is preferably 0.03 or more and 0.06 or less.
 本発明に係る樹脂フィルムにおける上述した構成(2)の採用によっても、様々な硬化環境で硬化されても、得られる硬化物において、誘電正接を低くし、かつ、金属配線の密着性を高めることができる。本発明では、エポキシ樹脂とシアネートエステル化合物との反応により生成されるトリアジン構造及びオキサゾリン構造の生成速度を一定の範囲に制御することができるので、上記の効果が効果的に発揮される。 In the cured film obtained by adopting the above-described configuration (2) in the resin film according to the present invention or being cured in various curing environments, the dielectric loss tangent is lowered and the adhesion of the metal wiring is increased. Can do. In this invention, since the production | generation speed | rate of the triazine structure and oxazoline structure which are produced | generated by reaction with an epoxy resin and a cyanate ester compound can be controlled to a fixed range, said effect is exhibited effectively.
 上記構成(1)を満足する樹脂フィルムは、上記構成(2)を満足する樹脂フィルムによって得ることが容易である。 A resin film satisfying the above configuration (1) can be easily obtained by a resin film satisfying the above configuration (2).
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記構成(2)を満足する樹脂フィルムは、上記構成(1)を満足することが好ましい。上記構成(2)を満足する樹脂フィルムでは、上記比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)が0.15以上、0.4以下であることが好ましい。 Regardless of the curing environment, the resin film that satisfies the above configuration (2) satisfies the above configuration (1) from the viewpoint of effectively lowering the dielectric tangent and effectively improving the adhesion of the metal wiring. It is preferable to do. In the resin film satisfying the configuration (2), it is preferable that the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is 0.15 or more and 0.4 or less.
 また、硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記構成(1)において、上記樹脂フィルムは、アルコール性水酸基を有する化合物を含むことが好ましく、上記樹脂フィルムは、硬化促進剤を含むことが好ましく、上記樹脂フィルムは、上記硬化促進剤として、イミダゾール化合物であることが好ましい。 In addition, from the viewpoint of effectively lowering the dielectric loss tangent and effectively improving the adhesion of the metal wiring, regardless of the curing environment, in the configuration (1), the resin film has an alcoholic hydroxyl group. Preferably, the resin film contains a curing accelerator, and the resin film is preferably an imidazole compound as the curing accelerator.
 本発明では、例えば、樹脂フィルムの表面が露出していても、覆われていても、更に樹脂フィルムの表面が大気に接触していても、酸素濃度が低い気体に接触していても、誘電正接を低くし、かつ、金属配線の密着性を高めることができる。樹脂フィルムの表面が覆われていても、表面の表面粗さが小さくなり、硬化物と金属配線との密着性が高くなる。樹脂フィルムの表面が覆われていても、上記構成(1)又は上記構成(2)を満足していれば、又は上記比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)が上記下限以上であれば、誘電正接が効果的に低くなる。樹脂フィルムの表面が覆われていても、上記構成(1)又は上記構成(2)を満足していれば、又は上記比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)が上記下限以上であれば、硬化物上に金属配線が形成された状態で吸湿が生じた後に、密着性が低下し難い。本発明では、吸湿後の硬化物と金属配線との密着性を高めることができる。 In the present invention, for example, even if the surface of the resin film is exposed, covered, or even if the surface of the resin film is in contact with the atmosphere or in contact with a gas having a low oxygen concentration, The tangent can be lowered and the adhesion of the metal wiring can be increased. Even if the surface of the resin film is covered, the surface roughness of the surface is reduced, and the adhesion between the cured product and the metal wiring is increased. Even if the surface of the resin film is covered, the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is not less than the lower limit as long as the configuration (1) or the configuration (2) is satisfied. If so, the dielectric loss tangent is effectively reduced. Even if the surface of the resin film is covered, the ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is not less than the lower limit as long as the configuration (1) or the configuration (2) is satisfied. If it exists, after moisture absorption arises in the state in which the metal wiring was formed on the hardened | cured material, adhesiveness does not fall easily. In this invention, the adhesiveness of the hardened | cured material and metal wiring after moisture absorption can be improved.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)は好ましくは0.20以上、好ましくは0.35以下である。 Regardless of the curing environment, from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring, the above ratio (the formation rate of the triazine structure / the formation rate of the oxazoline structure) is preferably 0. .20 or more, preferably 0.35 or less.
 表面のFT-IRスペクトルの測定は、具体的には、以下の条件にて行われる。フーリエ変換赤外分光光度計「NICOLET380」(FT-IR)のATR測定モードにて、表面のFT-IRスペクトルを測定する。得られたピークを、1490cm-1~1520cm-1間の最大ピーク値(アリル基由来ピーク)にて規格化を行った後、1550cm-1~1580cm-1間の最大ピーク値(トリアジン構造由来のピーク)と1660cm-1~1690cm-1間の最大ピーク値(オキサゾリン構造由来のピーク)との計測を行う。 Specifically, the surface FT-IR spectrum is measured under the following conditions. The surface FT-IR spectrum is measured in the ATR measurement mode of a Fourier transform infrared spectrophotometer “NICOLET 380” (FT-IR). The resulting peaks, after normalization by the maximum peak value between 1490cm -1 ~ 1520cm -1 (allyl-derived peak), the maximum peak value between 1550cm -1 ~ 1580cm -1 (derived from triazine structure Peak) and a maximum peak value between 1660 cm −1 and 1690 cm −1 (peak derived from the oxazoline structure).
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記シアネートエステル化合物中のシアナト基の数に対する上記エポキシ樹脂中のエポキシ基の数の比(エポキシ基の数/シアナト基の数)は好ましくは1以上、より好ましくは1.5以上、好ましくは3以下、より好ましくは2.5以下である。上記比(エポキシ基の数/シアナト基の数)が上記下限以上であると、トリアジン構造の生成速度が速くなりすぎず、得られた硬化物の耐湿熱性の低下が抑えられ、配線密着性が向上する傾向がある。上記比(エポキシ基の数/シアナト基の数)が上記上限以下であると、オキサゾリン構造の生成速度が速くなりすぎず、誘電特性の悪化が防がれ、デスミア工程にて過剰なエッチングが発生し難くなり、配線の密着性が向上しやくなる。 Regardless of the curing environment, from the viewpoint of effectively lowering the dielectric loss tangent and effectively improving the adhesion of the metal wiring, the epoxy group in the epoxy resin relative to the number of cyanate groups in the cyanate ester compound. The number ratio (number of epoxy groups / number of cyanato groups) is preferably 1 or more, more preferably 1.5 or more, preferably 3 or less, more preferably 2.5 or less. When the ratio (number of epoxy groups / number of cyanato groups) is not less than the above lower limit, the generation rate of the triazine structure does not become too fast, the decrease in wet heat resistance of the resulting cured product is suppressed, and the wiring adhesion is There is a tendency to improve. If the ratio (number of epoxy groups / number of cyanato groups) is less than or equal to the above upper limit, the generation rate of the oxazoline structure does not become too fast, the deterioration of dielectric properties is prevented, and excessive etching occurs in the desmear process. It becomes difficult to improve the adhesion of the wiring.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記アルコール性水酸基を含む化合物中のアルコール性水酸基の数に対する上記エポキシ樹脂中のエポキシ基の数の比(エポキシ基の数/アルコール性水酸基の数)は好ましくは3以上、より好ましくは5以上、好ましくは7以下である。 Regardless of the curing environment, from the viewpoint of effectively lowering the dielectric loss tangent and effectively improving the adhesion of the metal wiring, the epoxy resin in the epoxy resin relative to the number of alcoholic hydroxyl groups in the compound containing the alcoholic hydroxyl group. The ratio of the number of epoxy groups (number of epoxy groups / number of alcoholic hydroxyl groups) is preferably 3 or more, more preferably 5 or more, and preferably 7 or less.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記樹脂フィルム100重量%中の上記シアネートエステル化合物の含有量に対する上記樹脂フィルム100重量%中の上記イミダゾール化合物の含有量の比(イミダゾール化合物の含有量(重量%)/シアネートエステル化合物の含有量(重量%))は好ましくは0.03以上、より好ましくは0.035以上、好ましくは0.06以下、より好ましくは0.055以下である。また、上記比(イミダゾール化合物の含有量(重量%)/シアネートエステル化合物の含有量(重量%))が上記下限以上及び上記上限以下であると、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比を上述した好ましい範囲内に保つことが容易になる。結果として、誘電特性が良好になり、かつ、配線の密着性が高くなる。 Regardless of the curing environment, the resin film relative to the content of the cyanate ester compound in 100% by weight of the resin film from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring. The ratio of the content of the imidazole compound in 100% by weight (content of imidazole compound (% by weight) / content of cyanate ester compound (% by weight)) is preferably 0.03 or more, more preferably 0.035 or more. , Preferably 0.06 or less, more preferably 0.055 or less. Further, when the ratio (content of imidazole compound (% by weight) / cyanate ester compound (% by weight)) is not less than the above lower limit and not more than the above upper limit, the rate of formation of the triazine structure relative to the rate of formation of the oxazoline structure It becomes easy to keep the ratio within the preferred range described above. As a result, the dielectric characteristics are improved and the adhesion of the wiring is increased.
 以下、本発明に係る樹脂フィルムに用いられる各成分の詳細を説明する。 Hereinafter, details of each component used for the resin film according to the present invention will be described.
 [エポキシ樹脂]
 上記樹脂フィルムに含まれているエポキシ樹脂(エポキシ化合物)は特に限定されない。該エポキシ樹脂として、従来公知のエポキシ樹脂を使用可能である。該エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物をいう。エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Epoxy resin]
The epoxy resin (epoxy compound) contained in the resin film is not particularly limited. A conventionally well-known epoxy resin can be used as this epoxy resin. The epoxy resin refers to an organic compound having at least one epoxy group. As for an epoxy resin, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。上記エポキシ樹脂は、トリアジン構造を有していなくてもよい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin. Fluorene type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and triazine nucleus Examples thereof include an epoxy resin having a skeleton. The epoxy resin may not have a triazine structure.
 上記エポキシ樹脂は、ビフェニル骨格を有することが好ましく、ビフェニル型エポキシ樹脂であることが好ましい。上記エポキシ樹脂がビフェニル骨格を有することで、硬化物と金属配線との密着性がより一層高くなる。 The epoxy resin preferably has a biphenyl skeleton, and is preferably a biphenyl type epoxy resin. When the epoxy resin has a biphenyl skeleton, the adhesion between the cured product and the metal wiring is further enhanced.
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属配線との密着性をより一層高くする観点からは、上記エポキシ樹脂のエポキシ当量は、好ましくは90以上、より好ましくは100以上、好ましくは1000以下、より好ましくは800以下である。 From the viewpoint of further reducing the surface roughness of the cured product and further improving the adhesion between the cured product and the metal wiring, the epoxy equivalent of the epoxy resin is preferably 90 or more, more preferably 100 or more. , Preferably 1000 or less, more preferably 800 or less.
 保存安定性により一層優れた樹脂フィルムを得る観点からは、上記エポキシ樹脂の分子量は、好ましくは200以上、より好ましくは350以上、好ましくは3000以下、より好ましくは1000以下である。 From the viewpoint of obtaining a resin film that is more excellent in storage stability, the molecular weight of the epoxy resin is preferably 200 or more, more preferably 350 or more, preferably 3000 or less, more preferably 1000 or less.
 上記エポキシ樹脂の分子量は1000以下であることがより好ましい。この場合には、樹脂フィルムにおける無機充填材の含有量が50重量%以上であっても、適度に流動する樹脂フィルムが得られる。樹脂フィルムを基板上にラミネートした場合に、無機充填材を均一に存在させることができる。 The molecular weight of the epoxy resin is more preferably 1000 or less. In this case, even if the content of the inorganic filler in the resin film is 50% by weight or more, a resin film that flows appropriately can be obtained. When the resin film is laminated on the substrate, the inorganic filler can be uniformly present.
 上記樹脂フィルムは、上記エポキシ樹脂として、アルコール性水酸基を有する化合物(アルコール性水酸基を有するエポキシ樹脂)を含んでいてもよい。上記樹脂フィルムは、エポキシ樹脂であるアルコール性水酸基を有する化合物と、エポキシ樹脂ではないアルコール性水酸基を有する化合物とを含んでいてもよい。アルコール性水酸基を有するエポキシ樹脂としては、例えば、ビスフェノール型のエポキシ化合物のモノマーが2つ以上反応して得られるエポキシ樹脂(ビスフェノール型エポキシ化合物の多量体)等が挙げられる。アルコール性水酸基を有するエポキシ樹脂は、シアネートエステル化合物の自己重合によるトリアジン構造の形成を阻害するため、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比を上述した好ましい上限以下に保つことを容易にする。このため、アルコール性水酸基を有するエポキシ樹脂が好適に用いられる。 The resin film may contain a compound having an alcoholic hydroxyl group (an epoxy resin having an alcoholic hydroxyl group) as the epoxy resin. The resin film may contain a compound having an alcoholic hydroxyl group that is an epoxy resin and a compound having an alcoholic hydroxyl group that is not an epoxy resin. Examples of the epoxy resin having an alcoholic hydroxyl group include epoxy resins (multimers of bisphenol type epoxy compounds) obtained by reacting two or more monomers of a bisphenol type epoxy compound. Since the epoxy resin having an alcoholic hydroxyl group inhibits the formation of the triazine structure by the self-polymerization of the cyanate ester compound, it is easy to keep the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure below the above-mentioned preferable upper limit. To do. For this reason, an epoxy resin having an alcoholic hydroxyl group is preferably used.
 上記アルコール性水酸基を有するエポキシ樹脂の市販品としては、三菱化学社製「1004」及び「1007」等が挙げられる。 Examples of commercially available epoxy resins having an alcoholic hydroxyl group include “1004” and “1007” manufactured by Mitsubishi Chemical Corporation.
 上記エポキシ樹脂の分子量及び後述するシアネートエステル化合物の分子量は、上記エポキシ樹脂又はシアネートエステル化合物が重合体ではない場合、及び上記エポキシ樹脂又はシアネートエステル化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ樹脂又はシアネートエステル化合物が重合体である場合は、重量平均分子量を意味する。 The molecular weight of the epoxy resin and the molecular weight of the cyanate ester compound described below can be obtained from the structural formula when the epoxy resin or cyanate ester compound is not a polymer and when the structural formula of the epoxy resin or cyanate ester compound can be specified. It means the molecular weight that can be calculated. Moreover, when the said epoxy resin or cyanate ester compound is a polymer, a weight average molecular weight is meant.
 [シアネートエステル化合物]
 上記樹脂フィルムは、上記エポキシ樹脂を硬化させるために、硬化剤を含む。
[Cyanate ester compounds]
The resin film contains a curing agent in order to cure the epoxy resin.
 上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物及びジシアンジアミド等が挙げられる。 As the curing agent, cyanate ester compound (cyanate ester curing agent), phenol compound (phenol curing agent), amine compound (amine curing agent), thiol compound (thiol curing agent), imidazole compound, phosphine compound, acid anhydride, Examples include active ester compounds and dicyandiamide.
 本発明では、上記硬化剤として、シアネートエステル化合物を用いる。上記硬化剤として、シアネートエステル化合物を用いると、他の硬化剤を用いた場合と比べて、熱による寸法変化がより一層小さい硬化物が得られる。また、上記硬化剤として、シアネートエステル化合物を用いると、他の硬化剤を用いた場合と比べて、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属配線との密着性がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成される。また、上記シアネートエステル化合物の使用により、無機充填材を多く含む樹脂フィルムのハンドリング性が良好になり、硬化物のガラス転移温度がより一層高くなる。 In the present invention, a cyanate ester compound is used as the curing agent. When a cyanate ester compound is used as the curing agent, a cured product in which the dimensional change due to heat is further smaller than when other curing agents are used is obtained. Further, when a cyanate ester compound is used as the curing agent, the surface roughness of the surface of the cured product is further reduced as compared with the case of using another curing agent, and the adhesion between the cured product and the metal wiring is improved. The wiring becomes higher and finer wiring is formed on the surface of the cured product. Moreover, by using the cyanate ester compound, the handling property of the resin film containing a large amount of the inorganic filler is improved, and the glass transition temperature of the cured product is further increased.
 上記シアネートエステル化合物は特に限定されない。該シアネートエステル化合物として、従来公知のシアネートエステル化合物を使用可能である。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The cyanate ester compound is not particularly limited. A conventionally known cyanate ester compound can be used as the cyanate ester compound. As for the said cyanate ester compound, only 1 type may be used and 2 or more types may be used together.
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル化合物、ビスフェノール型シアネートエステル化合物、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル化合物としては、フェノールノボラック型シアネートエステル化合物及びアルキルフェノール型シアネートエステル化合物等が挙げられる。上記ビスフェノール型シアネートエステル化合物としては、ビスフェノールA型シアネートエステル化合物、ビスフェノールE型シアネートエステル化合物及びテトラメチルビスフェノールF型シアネートエステル化合物等が挙げられる。 Examples of the cyanate ester compound include novolak-type cyanate ester compounds, bisphenol-type cyanate ester compounds, and prepolymers in which these are partially trimerized. As said novolak-type cyanate ester compound, a phenol novolak-type cyanate ester compound, an alkylphenol-type cyanate ester compound, etc. are mentioned. Examples of the bisphenol type cyanate ester compound include bisphenol A type cyanate ester compounds, bisphenol E type cyanate ester compounds, and tetramethylbisphenol F type cyanate ester compounds.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル化合物(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル化合物が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above cyanate ester compounds include phenol novolac-type cyanate ester compounds (“Lonza Japan” “PT-30” and “PT-60”) and prepolymers (Lonza Japan) in which bisphenol-type cyanate ester compounds are trimerized. "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S") manufactured by the company.
 上記シアネートエステル化合物の分子量は、3000以下であることが好ましい。この場合には、樹脂フィルムにおける無機充填材の含有量を多くすることができ、無機充填材の含有量が多くても、適度に流動する樹脂フィルムが得られる。 The molecular weight of the cyanate ester compound is preferably 3000 or less. In this case, the content of the inorganic filler in the resin film can be increased, and even if the content of the inorganic filler is large, a resin film that flows appropriately can be obtained.
 上記シアネートエステル化合物の分子量は1000以下であることが好ましい。この場合には、樹脂フィルムにおける無機充填材の含有量が50重量%以上であっても、適度に流動する樹脂フィルムが得られる。 The molecular weight of the cyanate ester compound is preferably 1000 or less. In this case, even if the content of the inorganic filler in the resin film is 50% by weight or more, a resin film that flows appropriately can be obtained.
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属配線との密着性をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつシアネートエステル化合物によって良好な絶縁信頼性を付与する観点からは、上記シアネートエステル化合物のシアネートエステル基当量は250以下であることが好ましい。 The surface roughness of the cured product is further reduced, the adhesiveness between the cured product and the metal wiring is further increased, finer wiring is formed on the surface of the cured product, and the cyanate ester compound is excellent. From the viewpoint of imparting insulation reliability, the cyanate ester group equivalent of the cyanate ester compound is preferably 250 or less.
 上記エポキシ樹脂100重量部に対して、上記シアネートエステル化合物の含有量は、好ましくは20重量部以上、より好ましくは30重量部以上、好ましくは100重量部以下、より好ましくは60重量部以下である。上記シアネートエステル化合物の含有量が上記下限以上及び上記上限以下であると、保存安定性により一層優れた樹脂フィルムが得られる。 The content of the cyanate ester compound with respect to 100 parts by weight of the epoxy resin is preferably 20 parts by weight or more, more preferably 30 parts by weight or more, preferably 100 parts by weight or less, more preferably 60 parts by weight or less. . When the content of the cyanate ester compound is not less than the above lower limit and not more than the above upper limit, a resin film more excellent in storage stability can be obtained.
 [フェノキシ樹脂]
 上記樹脂フィルムは、フェノキシ樹脂を含まないか又は含む。上記樹脂フィルムは、フェノキシ樹脂を含むことが好ましいフェノキシ樹脂の使用により、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂フィルムが濡れ拡がり難くなる。上記フェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Phenoxy resin]
The resin film does not contain or contains a phenoxy resin. By using the phenoxy resin, which preferably contains a phenoxy resin, the resin film can suppress deterioration in embedding property of the resin film with respect to holes or irregularities in the circuit board and unevenness of the inorganic filler. In addition, since the melt viscosity can be adjusted by using a phenoxy resin, the dispersibility of the inorganic filler is improved, and the resin film is difficult to wet and spread in an unintended region during the curing process. The phenoxy resin is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.
 上記フェノキシ樹脂中にはアルコール性水酸基が含まれるため、上記フェノキシ樹脂を用いることで、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比を上述した好ましい上限以下に保つことが容易になる。このため、上記フェノキシ樹脂が好適に用いられる。 Since the phenoxy resin contains an alcoholic hydroxyl group, the use of the phenoxy resin makes it easy to keep the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure below the above-described preferable upper limit. For this reason, the said phenoxy resin is used suitably.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Examples of commercially available phenoxy resins include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 "," YX6954BH30 "," YX8100BH30 ", and the like.
 保存安定性により一層優れた樹脂フィルムを得る観点からは、上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining a resin film having better storage stability, the weight average molecular weight of the phenoxy resin is preferably 5000 or more, more preferably 10,000 or more, preferably 100,000 or less, more preferably 50000 or less.
 上記フェノキシ樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the phenoxy resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記フェノキシ樹脂の含有量は特に限定されない。樹脂フィルム100重量%中、上記フェノキシ樹脂の含有量は好ましくは2重量%以上、より好ましくは4重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下である。上記フェノキシ樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記フェノキシ樹脂の含有量が上記下限以上であると、樹脂組成物のフィルム化がより一層容易になり、より一層良好な絶縁層が得られる。上記フェノキシ樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属配線との密着性がより一層高くなる。 The content of the phenoxy resin is not particularly limited. In 100% by weight of the resin film, the content of the phenoxy resin is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less. When the content of the phenoxy resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin film with respect to the holes or irregularities of the circuit board becomes good. When the content of the phenoxy resin is not less than the above lower limit, the resin composition can be more easily formed into a film, and a better insulating layer can be obtained. When the content of the phenoxy resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. The surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced.
 [無機充填材]
 上記樹脂フィルムは、無機充填材を含まないか又は含む。上記樹脂フィルムは、無機充填材を含むことが好ましい。無機充填材の使用により、硬化物の熱による寸法変化がより一層小さくなる。さらに、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属配線との密着性がより一層高くなる。
[Inorganic filler]
The resin film does not contain or contains an inorganic filler. The resin film preferably contains an inorganic filler. Use of the inorganic filler further reduces the dimensional change due to heat of the cured product. Furthermore, the surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced.
 上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム及び窒化ホウ素等が挙げられる。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
 硬化物の表面の表面粗さを小さくし、硬化物と金属配線との密着性をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、かつ硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属配線との密着性が効果的に高くなる。シリカの形状は略球状であることが好ましい。 The surface roughness of the cured product is reduced, the adhesion between the cured product and the metal wiring is further increased, finer wiring is formed on the surface of the cured product, and better insulation reliability is achieved by the cured product. From the viewpoint of imparting the above, the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica. By using silica, the coefficient of thermal expansion of the cured product is further reduced, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion between the cured product and the metal wiring is effectively increased. The shape of silica is preferably substantially spherical.
 上記無機充填材の平均粒径は、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは150nm以上、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは1μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、粗化処理などにより形成される孔の大きさが微細になり、孔の数が多くなる。この結果、硬化物と金属配線との密着性がより一層高くなる。 The average particle size of the inorganic filler is preferably 10 nm or more, more preferably 50 nm or more, further preferably 150 nm or more, preferably 20 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less, and particularly preferably 1 μm or less. is there. When the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the size of the holes formed by the roughening treatment or the like becomes fine, and the number of holes increases. As a result, the adhesion between the cured product and the metal wiring is further enhanced.
 上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 The median diameter (d50) value of 50% is adopted as the average particle diameter of the inorganic filler. The average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
 上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属配線との密着性が効果的に高くなる。上記無機充填材がそれぞれ球状である場合には、上記無機充填材それぞれのアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesion between the cured product and the metal wiring is effectively increased. When each of the inorganic fillers is spherical, the aspect ratio of each of the inorganic fillers is preferably 2 or less, more preferably 1.5 or less.
 上記無機充填材は、表面処理されていることが好ましく、シランカップリング剤により表面処理されていることがより好ましい。これにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属配線との密着性がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, and more preferably surface-treated with a silane coupling agent. Thereby, the surface roughness of the surface of the roughened cured product is further reduced, the adhesion between the cured product and the metal wiring is further increased, and finer wiring is formed on the surface of the cured product, and more Better inter-wiring insulation reliability and interlayer insulation reliability can be imparted to the cured product.
 上記カップリング剤としては、シランカップリング剤、チタネートカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanate coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
 上記樹脂フィルム100重量%中、上記無機充填材の含有量は好ましくは25重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、特に好ましくは50重量%以上、好ましくは99重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記無機充填材の合計の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属配線との密着性がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成されると同時に、この無機充填材量であれば金属銅並に硬化物の熱膨張率を低くすることも可能である。 In 100% by weight of the resin film, the content of the inorganic filler is preferably 25% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, particularly preferably 50% by weight or more, preferably 99%. % By weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less. When the total content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesion between the cured product and the metal wiring is further enhanced. In addition, finer wiring is formed on the surface of the cured product, and at the same time, with this amount of inorganic filler, it is possible to lower the thermal expansion coefficient of the cured product as well as metal copper.
 [硬化促進剤]
 上記樹脂フィルムは、硬化促進剤を含まないか又は含む。上記樹脂フィルムは、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂フィルムを速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The resin film does not contain or contains a curing accelerator. The resin film preferably contains a curing accelerator. By using the curing accelerator, the curing rate is further increased. By rapidly curing the resin film, the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases. The said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
 上記硬化促進剤としては、例えば、イミダゾール化合物、フェノール化合物、2級水酸基を有する化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。 Examples of the curing accelerator include imidazole compounds, phenol compounds, compounds having secondary hydroxyl groups, phosphorus compounds, amine compounds, and organometallic compounds.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。 Examples of the phenol compound include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。 Examples of commercially available phenol compounds include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 "and" LA3018-50P "manufactured by DIC).
 また、上記フェノール化合物中にはフェノール性水酸基が含まれる。上記フェノール性水酸基は、アルコール性水酸基ではない。上記フェノール化合物に含まれるフェノール性の水酸基は、トリアジン構造の形成を促進させるため、上記フェノール化合物を用いることで、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比を上述した好ましい下限以上に保つことが容易になる。このため、上記フェノール化合物が好適に用いられる。上記樹脂フィルムは、上記硬化促進剤として、上記フェノール化合物を含むことが好ましい。 Moreover, the phenolic compound contains a phenolic hydroxyl group. The phenolic hydroxyl group is not an alcoholic hydroxyl group. Since the phenolic hydroxyl group contained in the phenol compound promotes the formation of the triazine structure, the ratio of the formation rate of the triazine structure to the formation rate of the oxazoline structure is kept above the preferable lower limit by using the phenol compound. It becomes easy. For this reason, the said phenol compound is used suitably. The resin film preferably contains the phenol compound as the curing accelerator.
 上記シアネートエステル化合物100重量部に対し、上記フェノキシ樹脂の含有量は10重量部以下である。上記フェノキシ樹脂の含有量が上記上限以下であれば、保存安定性を良好に保ちながら、反応速度比をコントロールすることが可能である。 The content of the phenoxy resin is 10 parts by weight or less with respect to 100 parts by weight of the cyanate ester compound. If the content of the phenoxy resin is not more than the above upper limit, it is possible to control the reaction rate ratio while maintaining good storage stability.
 上記2級水酸基を有する化合物としては、ビスフェノール型のエポキシ樹脂のモノマーが2つ以上反応して得られるエポキシ樹脂、及びフェノキシ樹脂等が挙げられる。 Examples of the compound having a secondary hydroxyl group include an epoxy resin obtained by reacting two or more monomers of a bisphenol type epoxy resin, a phenoxy resin, and the like.
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。有機金属化合物は、絶縁信頼性に悪影響を与えるため、実質的に含まれていなくてもよい。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III). Since the organometallic compound adversely affects the insulation reliability, it may not be substantially contained.
 上記硬化促進剤の含有量は特に限定されない。上記樹脂フィルム100重量%中、上記硬化促進剤の含有量及び上記イミダゾール化合物の含有量はそれぞれ好ましくは0.01重量%以上、より好ましくは0.9重量%以上、好ましくは3.0重量%以下、より好ましくは1.8重量%以下である。上記硬化促進剤及び上記イミダゾール化合物の含有量が上記下限以上及び上記上限以下であると、樹脂フィルムが効率的に硬化する。上記硬化促進剤及び上記イミダゾール化合物の含有量がより好ましい範囲であれば、樹脂組成物の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. In 100% by weight of the resin film, the content of the curing accelerator and the content of the imidazole compound are each preferably 0.01% by weight or more, more preferably 0.9% by weight or more, preferably 3.0% by weight. Below, more preferably 1.8% by weight or less. A resin film cure | hardens efficiently that content of the said hardening accelerator and the said imidazole compound is more than the said minimum and below the said upper limit. If content of the said hardening accelerator and the said imidazole compound is a more preferable range, the storage stability of a resin composition will become still higher and a much better hardened | cured material will be obtained.
 [溶剤]
 上記樹脂フィルムは、溶剤を含まないか又は含む。上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin film does not contain or contains a solvent. The solvent may be used to obtain a slurry containing the inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
 上記溶剤の多くは、樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂組成物における上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 Most of the above solvent is preferably removed when the resin composition is formed into a film. Therefore, the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coating property of the resin composition.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂組成物には、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上述したエポキシ樹脂以外の他の熱硬化性樹脂、上記フェノキシ樹脂以外の熱可塑性樹脂等を添加してもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility, workability, etc., the resin composition includes a leveling agent, a flame retardant, a coupling agent, a colorant, an antioxidant, an ultraviolet degradation inhibitor, An antifoaming agent, a thickener, a thixotropic agent, a thermosetting resin other than the above-described epoxy resin, a thermoplastic resin other than the phenoxy resin, and the like may be added.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
 上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。 Examples of the other thermosetting resins include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, polyimide resins, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.
 上記他の熱可塑性樹脂としては、ポリビニルアセタール樹脂、ゴム成分及び有機フィラー等が挙げられる。 Examples of the other thermoplastic resins include polyvinyl acetal resins, rubber components, and organic fillers.
 (樹脂フィルム及び積層フィルム)
 樹脂フィルムは、樹脂組成物をフィルム状に成形することにより得ることができる。
(Resin film and laminated film)
The resin film can be obtained by molding the resin composition into a film.
 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚みは好ましくは5μm以上、好ましくは200μm以下である。 From the viewpoint of more uniformly controlling the degree of cure of the resin film, the thickness of the resin film is preferably 5 μm or more, and preferably 200 μm or less.
 上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。なかでも、薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 As a method for forming the resin composition into a film, for example, an extrusion molding method is used in which the resin composition is melt-kneaded using an extruder, extruded, and then formed into a film using a T-die or a circular die. And a casting molding method in which a resin composition containing a solvent is cast to form a film, and other conventionally known film molding methods. Especially, since it can respond to thickness reduction, the extrusion molding method or the casting molding method is preferable. The film includes a sheet.
 上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば90~200℃で1~180分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 A resin film that is a B-stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 90 to 200 ° C. for 1 to 180 minutes so that curing by heat does not proceed excessively. .
 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある半硬化物である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film. The B-stage film is a semi-cured product in a semi-cured state. The semi-cured product is not completely cured and curing can proceed further.
 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロスなどに沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。また、プリプレグを含まない樹脂フィルムとすることで、硬化物の熱による寸法変化が小さくなり、形状保持性が高くなる。 The resin film may not be a prepreg. When the resin film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or precuring the resin film, the surface is not uneven due to the glass cloth. Moreover, by setting it as the resin film which does not contain a prepreg, the dimensional change by the heat | fever of hardened | cured material becomes small and shape retainability becomes high.
 上記樹脂フィルムは、基材と、該基材の一方の表面に積層された樹脂フィルムとを備える積層フィルムを形成するために好適に用いることができる。 The resin film can be suitably used for forming a laminated film including a base material and a resin film laminated on one surface of the base material.
 上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、及びポリイミド樹脂フィルム等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。 Examples of the substrate of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin film. The surface of the base material may be subjected to a release treatment as necessary.
 上記樹脂フィルムは、金属箔と、該金属箔の一方の表面に積層された樹脂フィルムとを備える積層フィルムを形成するためにも好適に用いることができる。従って、上記樹脂フィルムは、樹脂フィルムと、基材又は金属箔とを備え、上記基材又は金属箔の表面に、上記樹脂フィルムが積層されている積層フィルムを形成するために好適に用いることができる。上記金属箔は銅箔であることが好ましい。 The resin film can also be suitably used to form a laminated film including a metal foil and a resin film laminated on one surface of the metal foil. Therefore, the resin film includes a resin film and a base material or a metal foil, and is preferably used for forming a laminated film in which the resin film is laminated on the surface of the base material or the metal foil. it can. The metal foil is preferably a copper foil.
 樹脂フィルムは、ビルドアップ法に用いられるビルドアップフィルムであることが好ましい。 The resin film is preferably a build-up film used in the build-up method.
 (粗化処理及び膨潤処理)
 上記樹脂フィルムは、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
(Roughening treatment and swelling treatment)
The resin film is preferably used to obtain a cured product that is roughened or desmeared. The cured product includes a precured product that can be further cured.
 上記樹脂フィルムを予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 In order to form fine irregularities on the surface of the cured product obtained by pre-curing the resin film, the cured product is preferably roughened. Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment. The cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment. However, the cured product is not necessarily subjected to the swelling treatment.
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属配線との密着性が低くなる傾向がある。 As the swelling treatment method, for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes. The swelling treatment temperature is preferably in the range of 50 to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesion between the cured product and the metal wiring tends to be low.
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening solution preferably contains sodium hydroxide.
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
 上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、硬化物を処理する方法が好適である。上記粗化処理の温度は50~85℃の範囲内であることが好ましい。上記粗化処理の回数は1回又は2回であることが好ましい。 The method for the roughening treatment is not particularly limited. As the roughening treatment method, for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes. A method of treating a cured product under conditions is preferable. The temperature of the roughening treatment is preferably in the range of 50 to 85 ° C. The number of times of the roughening treatment is preferably once or twice.
 硬化物の表面の算術平均粗さRaは好ましくは50nm以上、好ましくは350nm以下、より好ましくは200nm未満、更に好ましくは100nm未満である。この場合には、硬化物と金属配線との密着性が高くなり、更に絶縁層の表面により一層微細な配線が形成される。 The arithmetic average roughness Ra of the surface of the cured product is preferably 50 nm or more, preferably 350 nm or less, more preferably less than 200 nm, still more preferably less than 100 nm. In this case, the adhesiveness between the cured product and the metal wiring is increased, and further finer wiring is formed on the surface of the insulating layer.
 (デスミア処理)
 上記樹脂フィルムを予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
(Desmear treatment)
A through-hole may be formed in the hardened | cured material obtained by precuring the said resin film. In the multilayer substrate or the like, a via or a through hole is formed as a through hole. For example, the via can be formed by irradiation with a laser such as a CO 2 laser. The diameter of the via is not particularly limited, but is about 60 to 80 μm. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。 In order to remove the smear, the surface of the cured product is preferably desmeared. The desmear process may also serve as a roughening process.
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 In the desmear treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The desmear treatment liquid used for the desmear treatment generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.
 上記デスミア処理の方法は特に限定されない。上記デスミア処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、1回又は2回、硬化物を処理する方法が好適である。上記デスミア処理の温度は50~85℃の範囲内であることが好ましい。 The above desmear treatment method is not particularly limited. As the desmear treatment method, for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes And the method of processing hardened | cured material once or twice is suitable. The temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
 上記樹脂フィルムの使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。 The surface roughness of the surface of the desmeared cured product is sufficiently reduced by using the resin film.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described by giving examples and comparative examples. The present invention is not limited to the following examples.
 (実施例1)
 シアネートエステル硬化剤含有液(ロンザジャパン社製「BA-3000S」)7.0重量部(固形分で5.25重量部)に、ビスフェノールA型エポキシ樹脂(DIC社製「850-S」)7.2重量部と、ビフェニル型エポキシ樹脂(日本化薬社製「NC-3000-H」)7.2重量部と、イミダゾール化合物(四国化成工学社製「2P4MZ」)0.2重量部と、アルコール性水酸基を有する化合物を含む液としてフェノキシ樹脂含有液(三菱化学社製「YX6954BH30」)10.3重量部(固形分で3.09重量部)と、フェノール化合物(明和化成社製「MEH7851-H」)0.5重量部と、N-フェニル-3-アミノプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理された球状シリカを含むスラリー(アドマテックス社製「SC4050-HOA」)46.3重量部(固形分で34.725重量部)と、3-グリシドキシプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-403」で表面処理された球状シリカを含むスラリー(アドマテックス社製「SC4050-HND」)21.3重量部(固形分で14.91重量部)とを混合し、均一な溶液となるまで常温で攪拌し、樹脂組成物ワニスを得た。
(Example 1)
7 parts by weight of cyanate ester curing agent-containing liquid (“BA-3000S” manufactured by Lonza Japan Co., Ltd.) (5.25 parts by weight in solid content) and bisphenol A type epoxy resin (“850-S” manufactured by DIC) 7 .2 parts by weight, 7.2 parts by weight of a biphenyl type epoxy resin (“NC-3000-H” manufactured by Nippon Kayaku Co., Ltd.), 0.2 parts by weight of an imidazole compound (“2P4MZ” manufactured by Shikoku Kasei Engineering Co., Ltd.) As a liquid containing a compound having an alcoholic hydroxyl group, 10.3 parts by weight (3.09 parts by weight in solid content) of a phenoxy resin-containing liquid (“YX6954BH30” manufactured by Mitsubishi Chemical Corporation) and a phenol compound (“MEH7851− manufactured by Meiwa Kasei Co., Ltd.) H ") 0.5 parts by weight and a surface treated with a silane coupling agent having an N-phenyl-3-aminopropyl group (" KBM-573 "manufactured by Shin-Etsu Chemical Co., Ltd.) 46.3 parts by weight (34.725 parts by weight in solid content) of a slurry containing spherical silica (admatex “SC4050-HOA”) and a silane coupling agent having a 3-glycidoxypropyl group (Shin-Etsu Chemical) 21.3 parts by weight (solid content 14.91 parts by weight) of a slurry containing spherical silica surface-treated with “KBM-403” manufactured by Kogyo Co., Ltd. (“Advertex” SC4050-HND ”) was mixed uniformly. The resin composition varnish was obtained by stirring at room temperature until a simple solution was obtained.
 アプリケーターを用いて、非シリコーン離型処理されたPETフィルム(リンテック社製「25X」、厚み25μm)の離型処理面上に得られた樹脂組成物ワニスを塗工した後、100℃のギアオーブン内で2分間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmであり、溶剤の残量が1.0重量%以上、4.0重量%以下である樹脂フィルムを得た。 After applying the resin composition varnish obtained on the release treated surface of a non-silicone release treated PET film ("25X" manufactured by Lintec, thickness 25 µm) using an applicator, a gear oven at 100 ° C And dried for 2 minutes to evaporate the solvent. In this manner, a resin film having a thickness of 40 μm and a solvent remaining amount of 1.0 wt% or more and 4.0 wt% or less was obtained on the PET film.
 (実施例2~7及び比較例1~3)
 配合成分の種類及び配合量(重量部)を下記の表1に示すように変更したこと以外は実施例1と同様にして、樹脂組成物ワニス及び樹脂フィルムを作製した。
(Examples 2 to 7 and Comparative Examples 1 to 3)
A resin composition varnish and a resin film were produced in the same manner as in Example 1 except that the types and amounts (parts by weight) of the components were changed as shown in Table 1 below.
 (1)表面粗さの評価
 エッチングにより内層回路を形成したガラスエポキシ基板(利昌工業社製「CS-3665」)の両面を銅表面粗化剤(メック社製「メックエッチボンド CZ-8100」)に浸漬して、銅表面を粗化処理した。得られたPETフィルムと樹脂フィルムとの積層体を、樹脂フィルム側から上記ガラスエポキシ基板の両面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製「MVLP-500」)を用いて、上記ガラスエポキシ基板の両面にラミネートし、未硬化積層サンプルAを得た。ラミネートは、20秒減圧して気圧を13hPa以下とし、その後20秒間を100℃、圧力0.8MPaでプレスすることにより行った。
(1) Evaluation of surface roughness Copper surface roughening agent (“MEC etch bond CZ-8100” manufactured by MEC) on both surfaces of a glass epoxy substrate (“CS-3665” manufactured by Risho Kogyo Co., Ltd.) on which an inner layer circuit was formed by etching The copper surface was roughened by immersion in The obtained laminate of PET film and resin film was set on both sides of the glass epoxy substrate from the resin film side, and a diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) was used. Lamination was performed on both sides of the glass epoxy substrate to obtain an uncured laminated sample A. Lamination was performed by reducing the pressure for 20 seconds to a pressure of 13 hPa or less, and then pressing for 20 seconds at 100 ° C. and a pressure of 0.8 MPa.
 未硬化積層サンプルAにおいて、樹脂フィルムからPETフィルムを剥離し、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、硬化積層サンプルを得た。 In the uncured laminated sample A, the PET film was peeled from the resin film, and the resin film was cured under curing conditions of 140 ° C. and 90 minutes to obtain a cured laminated sample.
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」と和光純薬工業社製「水酸化ナトリウム」とから調製された水溶液)に、上記硬化積層サンプルを入れて、膨潤温度60℃で20分間揺動させた。その後、純水で洗浄した。 The cured laminated sample is put in a swelling solution at 60 ° C. (an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and “Sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd. Rock at 20 ° C. for 20 minutes. Thereafter, it was washed with pure water.
 80℃の過マンガン酸ナトリウム粗化水溶液(アトテックジャパン社製「コンセントレートコンパクトCP」、和光純薬工業社製「水酸化ナトリウム」)に、膨潤処理された上記積層サンプルを入れて、粗化温度80℃で20分間揺動させた。その後、40℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」、和光純薬工業社製「硫酸」)により10分間洗浄した後、純水でさらに洗浄した。このようにして、エッチングにより内層回路を形成したガラスエポキシ基板上に、粗化処理された硬化物を形成した。 Put the above laminated sample swollen into 80 ° C sodium permanganate roughening aqueous solution ("Concentrate Compact CP" manufactured by Atotech Japan, "Sodium hydroxide" manufactured by Wako Pure Chemical Industries, Ltd.), and roughening temperature Rocked at 80 ° C. for 20 minutes. Then, after washing | cleaning for 10 minutes with a 40 degreeC washing | cleaning liquid ("Reduction securigant P" by the Atotech Japan company, "Sulfuric acid" by Wako Pure Chemical Industries Ltd.), it wash | cleaned further with the pure water. In this way, a roughened cured product was formed on the glass epoxy substrate on which the inner layer circuit was formed by etching.
 粗化処理された硬化物の表面の算術平均粗さRaを、非接触式の表面粗さ計(ビーコ社製「WYKO」)を用いて測定した。算術平均粗さRaは、JIS B0601-1994に準拠した。 The arithmetic average roughness Ra of the surface of the roughened cured product was measured using a non-contact type surface roughness meter (“WYKO” manufactured by Beiko). The arithmetic average roughness Ra was in accordance with JIS B0601-1994.
 [硬化物の表面の表面粗さの判定基準]
 ○:Raが100nm未満
 △:Raが100nm以上、200nm未満
 △△:Raが200nm以上、300nm未満
 ×:Raが300nm以上
[Criteria for surface roughness of cured product]
○: Ra is less than 100 nm Δ: Ra is 100 nm or more and less than 200 nm ΔΔ: Ra is 200 nm or more and less than 300 nm ×: Ra is 300 nm or more
 (2)接着強度(ピール強度)の評価
 上記(1)表面粗さの評価で得られた粗化処理された硬化物を用意した。
(2) Evaluation of adhesive strength (peel strength) A cured product subjected to the roughening treatment obtained in the above (1) evaluation of surface roughness was prepared.
 上記粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。 The surface of the roughened cured product was treated with an alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
 次に、上記硬化物を化学銅液(全てアトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。 Next, the cured product is placed in a chemical copper solution (all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”). Was carried out until the plating thickness reached about 0.5 μm. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and while the cured product was swung.
 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流しめっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を190℃で2時間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。 Next, electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 μm. As an electrolytic copper plating, a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler capaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m. After the copper plating treatment, the cured product was heated at 190 ° C. for 2 hours to further cure the cured product. Thus, the hardened | cured material with which the copper plating layer was laminated | stacked on the upper surface was obtained.
 得られた銅めっき層が積層された硬化物において、銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物と銅めっき層との接着強度(ピール強度)を測定した。 In the cured product obtained by laminating the obtained copper plating layer, a 10 mm wide cutout was made on the surface of the copper plating layer. Thereafter, the adhesive strength (peel strength) between the cured product and the copper plating layer was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min.
 [接着強度の判定基準]
 ○:5.9N/cm以上
 △:4.9N/cm以上、5.9N/cm未満
 △△:3.9N/cm以上、4.9N/cm未満
 ×:3.9N/cm未満
[Criteria for adhesive strength]
○: 5.9 N / cm or more Δ: 4.9 N / cm or more and less than 5.9 N / cm ΔΔ: 3.9 N / cm or more and less than 4.9 N / cm ×: less than 3.9 N / cm
 (3)吸湿による密着性低下度の評価
 上記(2)で得られた銅めっき層が積層された硬化物を用意した。この硬化物に対し、恒温恒湿槽を用いて、130℃及び湿度85%で100時間吸湿処理を行った。吸湿処理後のサンプルについて、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物と銅箔との接着強度(ピール強度)を測定した。吸湿前後の接着強度(ピール強度)の値より、吸湿による密着性低下度(式:(吸湿後の接着強度の値/吸湿後の接着強度の値)×100(%))の評価を行った。
(3) Evaluation of degree of adhesion reduction due to moisture absorption A cured product in which the copper plating layer obtained in (2) above was laminated was prepared. The cured product was subjected to a moisture absorption treatment at 130 ° C. and a humidity of 85% for 100 hours using a constant temperature and humidity chamber. Using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) for the sample after moisture absorption treatment, the adhesive strength (peel strength) between the cured product and the copper foil is measured at a crosshead speed of 5 mm / min. did. From the value of the adhesive strength before and after moisture absorption (peel strength), the degree of adhesion reduction due to moisture absorption (formula: (value of adhesive strength after moisture absorption / value of adhesive strength after moisture absorption) x 100 (%)) was evaluated. .
 [密着性低下度の評価基準]
 ○:吸湿による密着性低下度が50%未満
 △:吸湿による密着性低下度が50%以上、60%未満
 ×:吸湿による密着性低下度が60%以上
[Evaluation Criteria for Degree of Adhesion]
○: Adhesion decrease due to moisture absorption is less than 50% Δ: Adhesion decrease due to moisture absorption is 50% or more and less than 60% ×: Adhesion decrease due to moisture absorption is 60% or more
 (4)通常硬化による硬化物の作製方法、並びに、硬化環境を変更した硬化物の作製方法
 条件0:PETフィルム剥離して通常環境下にて硬化
 上記(1)表面粗さの評価で得られた未硬化積層サンプルAにおける硬化条件において、PETフィルム剥離して、大気中で140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後PETフィルムを剥離して積層サンプルを得た。
 条件1:非シリコーン処理されたPETを剥離せず通常環境下にて硬化
 上記(1)表面粗さの評価で得られた未硬化積層サンプルAにおける硬化条件において、樹脂フィルムからPETフィルムを剥離せず、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後PETフィルムを剥離して積層サンプルを得た。
(4) Method for producing a cured product by normal curing, and method for producing a cured product with a changed curing environment Condition 0: Peeling of PET film and curing under normal environment Above (1) Obtained by evaluation of surface roughness Under the curing conditions in the uncured laminated sample A, the PET film was peeled off, and the resin film was cured in the atmosphere at 140 ° C. for 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
Condition 1: Non-silicone-treated PET is cured in a normal environment without being peeled (1) The PET film is peeled from the resin film under the curing conditions in the uncured laminated sample A obtained by the evaluation of the surface roughness. First, the resin film was cured under curing conditions of 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
 条件2:シリコーン処理されたPETを剥離せず通常環境下にて硬化
 樹脂フィルムに使用している非シリコーン処理されたPETフィルムの代わりに、シリコーン処理されたPETフィルム(リンテック社製「5011」、厚み25μm)を用い、PETフィルムを剥離せず、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後PETフィルムを剥離して積層サンプルを得た。
Condition 2: Silicone-treated PET does not peel off and is cured in a normal environment. Instead of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 μm, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
 条件3:銅箔を剥離せず通常環境下にて硬化
 上記PETフィルム上に成形された樹脂フィルムの代わりに、銅箔のシャイニー面上に樹脂フィルムが成形された樹脂フィルムを作製して用いた。銅箔を剥離せずに、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後銅箔を酸によるエッチングにより剥離して積層サンプルを得た。
Condition 3: Cured in a normal environment without peeling off the copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. . Without peeling off the copper foil, the resin film was cured under the curing conditions of 140 ° C. and 90 minutes, and then the copper foil was peeled off by etching with an acid to obtain a laminated sample.
 条件4:PETフィルム剥離して窒素環境下での硬化
 樹脂フィルムからPETフィルムを剥離し、窒素環境下で140℃及び90分の硬化条件で樹脂フィルムを硬化させ、積層サンプルを得た。
Condition 4: PET film was peeled and cured in a nitrogen environment. The PET film was peeled from the resin film, and the resin film was cured under a nitrogen environment at 140 ° C. for 90 minutes to obtain a laminated sample.
 (5)誘電正接の評価
 条件0:銅表面粗化剤(メック社製「メックエッチボンド CZ-8100」)に浸漬して、銅表面が粗化処理された銅箔に対し、得られたPETフィルムと樹脂フィルムとの積層体を、樹脂フィルム側から上記銅箔の片面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製「MVLP-500」)を用いて、上記銅箔の片面にラミネートし、未硬化積層サンプルを得た。ラミネートは、20秒減圧して気圧を13hPa以下とし、その後20秒間を100℃、圧力0.8MPaでプレスすることにより行った。上記、未硬化積層サンプルにおいて、樹脂フィルムからPETフィルムを剥離した。次に、140℃で90分加熱し、その後更に180℃で90分加熱し、硬化物を得た。その後銅箔を酸によるエッチングにより剥離して硬化物を得た。得られた硬化物を幅2mm、長さ80mmの大きさに裁断して10枚を重ね合わせて、厚み400μmの積層体を得た。得られた積層体を用いて、かつ、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びアジレントテクノロジー社製「ネットワークアナライザーE8362B」を用いて、空洞共振法で常温(23℃)で測定周波数1GHzにて、誘電正接を測定した。また、誘電正接を下記の基準で判定した。
(5) Evaluation of dielectric loss tangent Condition 0: PET obtained by dipping in a copper surface roughening agent (“MEC Etch Bond CZ-8100” manufactured by MEC) and roughening the copper surface. A laminate of a film and a resin film is set on one side of the copper foil from the resin film side, and a diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) is used on one side of the copper foil. Lamination was performed to obtain an uncured laminated sample. Lamination was performed by reducing the pressure for 20 seconds to a pressure of 13 hPa or less, and then pressing for 20 seconds at 100 ° C. and a pressure of 0.8 MPa. In the uncured laminated sample, the PET film was peeled from the resin film. Next, it was heated at 140 ° C. for 90 minutes, and then further heated at 180 ° C. for 90 minutes to obtain a cured product. Thereafter, the copper foil was peeled off by etching with an acid to obtain a cured product. The obtained cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were overlapped to obtain a laminate having a thickness of 400 μm. Using the obtained laminate, and using the “cavity resonance perturbation method dielectric constant measuring device CP521” manufactured by Kanto Electronics Application Development Co., Ltd. and the “network analyzer E8362B” manufactured by Agilent Technologies Inc., at room temperature (23 ° C. The dielectric loss tangent was measured at a measurement frequency of 1 GHz. The dielectric loss tangent was determined according to the following criteria.
 条件1:樹脂フィルムに使用している非シリコーン処理されたPETフィルムの代わりに、シリコーン処理されたPETフィルム(リンテック社製「5011」、厚み25μm)を用い、PETフィルムを剥離せず、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後PETフィルムを剥離して積層サンプルを得た。 Condition 1: In place of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation, thickness 25 μm) was used, and the PET film was not peeled off at 140 ° C. The resin film was cured under curing conditions of 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
 条件2:シリコーン処理されたPETを剥離せず通常環境下にて硬化
 樹脂フィルムに使用している非シリコーン処理されたPETフィルムの代わりに、シリコーン処理されたPETフィルム(リンテック社製「5011」、厚み25μm)を用い、PETフィルムを剥離せず、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後PETフィルムを剥離して積層サンプルを得た。
Condition 2: Silicone-treated PET does not peel off and is cured in a normal environment. Instead of the non-silicone-treated PET film used for the resin film, a silicone-treated PET film (“5011” manufactured by Lintec Corporation) Using a thickness of 25 μm, the PET film was not peeled off, the resin film was cured under curing conditions at 140 ° C. and 90 minutes, and then the PET film was peeled off to obtain a laminated sample.
 条件3:銅箔を剥離せず通常環境下にて硬化
 上記PETフィルム上に成形された樹脂フィルムの代わりに、銅箔のシャイニー面上に樹脂フィルムが成形された樹脂フィルムを作製して用いた。銅箔を剥離せずに、140℃及び90分の硬化条件で樹脂フィルムを硬化させ、その後銅箔を酸によるエッチングにより剥離して積層サンプルを得た。
Condition 3: Cured in a normal environment without peeling off the copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. . Without peeling off the copper foil, the resin film was cured under the curing conditions of 140 ° C. and 90 minutes, and then the copper foil was peeled off by etching with an acid to obtain a laminated sample.
 条件4:PETフィルム剥離して窒素環境下での硬化
 樹脂フィルムからPETフィルムを剥離し、窒素環境下で140℃及び90分の硬化条件で樹脂フィルムを硬化させ、積層サンプルを得た。
Condition 4: PET film was peeled and cured in a nitrogen environment. The PET film was peeled from the resin film, and the resin film was cured under a nitrogen environment at 140 ° C. for 90 minutes to obtain a laminated sample.
 [誘電正接の判定基準]
 ○:誘電正接が0.007未満
 △:誘電正接が0.007以上、0.008未満
 △△:誘電正接が0.008以上、0.010未満
 ×:誘電正接が0.010以上
[Criteria for dielectric loss tangent]
○: Dielectric tangent is less than 0.007 Δ: Dielectric tangent is 0.007 or more and less than 0.008 ΔΔ: Dielectric tangent is 0.008 or more and less than 0.010 ×: Dielectric tangent is 0.010 or more
 (6)樹脂反応速度比(トリアジン構造の形成速度/オキサゾリン構造の形成速度)の評価方法
 条件0:PETフィルム剥離して通常環境下にて硬化
 シアネートエステル樹脂を含む樹脂フィルムの反応速度比を評価するために、各実施例及び各比較例の樹脂フィルムにおける球状シリカのみを除いたワニスの作製を行った。アプリケーターを用いて、非シリコーン離型処理されたPETフィルム(リンテック社製「25X」、厚み25μm)の離型処理面上に得られた樹脂組成物ワニスを塗工した後、100℃のギアオーブン内で3分間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmであり、溶剤の残量が1.0重量%以上、4.0重量%以下である樹脂フィルムを得た。次にエッチングにより内層回路を形成したガラスエポキシ基板(利昌工業社製「CS-3665」)の両面を銅表面粗化剤(メック社製「メックエッチボンド CZ-8100」)に浸漬して、銅表面を粗化処理した。得られたPETフィルムと樹脂フィルムとの積層体を、樹脂フィルム側から上記ガラスエポキシ基板の両面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製「MVLP-500」)を用いて、上記ガラスエポキシ基板の両面にラミネートし、未硬化積層サンプルBを得た。ラミネートは、20秒減圧して気圧を13hPa以下とし、その後20秒間を100℃、圧力0.8MPaでプレスすることにより行った。未硬化積層サンプルBにおいて、樹脂フィルムからPETフィルムを剥離した。次に、樹脂フィルムと、大気中で140℃で5分硬化を進行させた樹脂フィルムと、大気中で140℃で10分硬化を進行させた樹脂フィルムと、大気中で140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、Thermo ELECTRON社製のフーリエ変換赤外分光光度計「NICOLET380」(FT-IR)のATR測定モードにて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出した。算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度とした。
(6) Evaluation Method of Resin Reaction Rate Ratio (Triazine Structure Formation Rate / Oxazoline Structure Formation Rate) Condition 0: PET film peeled and cured under normal environment Evaluation of reaction rate ratio of resin film containing cyanate ester resin In order to do this, a varnish was prepared by removing only the spherical silica in the resin films of the examples and comparative examples. After applying the resin composition varnish obtained on the release treated surface of a non-silicone release treated PET film ("25X" manufactured by Lintec, thickness 25 µm) using an applicator, a gear oven at 100 ° C And dried for 3 minutes to evaporate the solvent. In this manner, a resin film having a thickness of 40 μm and a solvent remaining amount of 1.0 wt% or more and 4.0 wt% or less was obtained on the PET film. Next, both sides of a glass epoxy substrate (“CS-3665” manufactured by Risho Kogyo Co., Ltd.) on which an inner layer circuit has been formed by etching are immersed in a copper surface roughening agent (“MEC Etch Bond CZ-8100” manufactured by MEC). The surface was roughened. The obtained laminate of PET film and resin film was set on both sides of the glass epoxy substrate from the resin film side, and a diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) was used. Lamination was performed on both surfaces of the glass epoxy substrate to obtain an uncured laminated sample B. Lamination was performed by reducing the pressure for 20 seconds to a pressure of 13 hPa or less, and then pressing for 20 seconds at 100 ° C. and a pressure of 0.8 MPa. In the uncured laminated sample B, the PET film was peeled from the resin film. Next, a resin film, a resin film cured for 5 minutes at 140 ° C. in the air, a resin film cured for 10 minutes at 140 ° C. in the air, and cured at 140 ° C. for 15 minutes in the air The FT-IR spectrum of the surface of each of the four resin films and the resin film that has been processed in the ATR measurement mode of the Fourier transform infrared spectrophotometer “NICOLET 380” (FT-IR) manufactured by Thermo ELECTRON The maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films were obtained, and linearity was obtained by the least square method using the obtained maximum values. The slope when approximated was calculated. The calculated slope was defined as the triazine structure formation rate and the oxazoline structure formation rate.
 硬化環境の変更した際の樹脂反応速度比の評価:
 条件1:非シリコーン処理されたPETを剥離せず通常環境下にて硬化
 上記(6)で得られた未硬化積層サンプルBにおいて、PETフィルムを剥離せず、同様の硬化条件にて、積層サンプルを得た。得られたサンプルより、PETフィルムを剥離し、FT-IRを用いて同様の評価を行った。
Evaluation of resin reaction rate ratio when the curing environment is changed:
Condition 1: Non-silicone-treated PET is not peeled and cured in a normal environment In the uncured laminated sample B obtained in (6) above, the PET film is not peeled and the laminated sample is subjected to the same curing conditions. Got. The PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.
 条件2:シリコーン処理されたPETを剥離せず通常環境下にて硬化
 PETフィルムの代わりに、シリコーン処理されたPETフィルム(リンテック社製「2511」、厚み25μm)を用いて、PETフィルムを剥離せず、同様の硬化条件にて、積層サンプルを得た。得られたサンプルより、PETフィルムを剥離し、FT-IRを用いて同様の評価を行った。
Condition 2: Silicone-treated PET is not peeled off and cured in a normal environment Instead of a PET film, a silicone-treated PET film (“2511” manufactured by Lintec Corporation, thickness 25 μm) is used to peel off the PET film. First, a laminated sample was obtained under the same curing conditions. The PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.
 条件3:銅箔を剥離せず通常環境下にて硬化
 PETフィルム上に成形された樹脂フィルムの代わりに、銅箔のシャイニー面上に樹脂フィルムが成形された樹脂フィルムを作製して用いた。銅箔を剥離せずに、同様の硬化条件にて、積層サンプルを得た。銅箔を酸によるエッチングにより剥離した後、FT-IRを用いて同様の評価を行った。
Condition 3: Hardening under normal environment without peeling copper foil Instead of the resin film formed on the PET film, a resin film having a resin film formed on the shiny surface of the copper foil was prepared and used. A laminated sample was obtained under the same curing conditions without peeling off the copper foil. After the copper foil was peeled off by etching with acid, the same evaluation was performed using FT-IR.
 条件4:PETフィルム剥離して窒素環境下での硬化
 上記(6)で得られた未硬化積層サンプルBにおいて、窒素環境下で硬化させて、積層サンプルを得た。得られたサンプルより、PETフィルムを剥離し、FT-IRを用いて同様の評価を行った。
Condition 4: PET film was peeled and cured in a nitrogen environment. The uncured laminated sample B obtained in (6) above was cured in a nitrogen environment to obtain a laminated sample. The PET film was peeled from the obtained sample, and the same evaluation was performed using FT-IR.
 結果を下記の表2に示す。 The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  エポキシ樹脂と、シアネートエステル化合物とを含み、
     樹脂フィルムと、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出して、算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度としたときに、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比が0.15以上、0.4以下である、樹脂フィルム。
    Including an epoxy resin and a cyanate ester compound,
    Four resin films: a resin film, a resin film cured for 5 minutes at 140 ° C., a resin film cured for 10 minutes at 140 ° C., and a resin film cured for 15 minutes at 140 ° C. The surface FT-IR spectrum was measured to obtain the maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films. The triazine structure with respect to the formation rate of the oxazoline structure is calculated by calculating the slope of the linear approximation by the least square method using the obtained maximum value and taking the calculated slope as the formation rate of the triazine structure and the formation rate of the oxazoline structure. The resin film whose formation rate ratio is 0.15 or more and 0.4 or less.
  2.  前記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含む、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, comprising a compound having an alcoholic hydroxyl group as the epoxy resin or a compound other than the epoxy resin.
  3.  硬化促進剤を含む、請求項1又は2に記載の樹脂フィルム。 The resin film of Claim 1 or 2 containing a hardening accelerator.
  4.  前記硬化促進剤として、イミダゾール化合物を含む、請求項3に記載の樹脂フィルム。 The resin film according to claim 3, comprising an imidazole compound as the curing accelerator.
  5.  エポキシ樹脂と、シアネートエステル化合物と、イミダゾール化合物とを含み、
     前記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含み、
     前記シアネートエステル化合物中のシアナト基の数に対する前記エポキシ樹脂中のエポキシ基の数の比が1以上、3以下であり、
     前記アルコール性水酸基を含む化合物中のアルコール性水酸基の数に対する前記エポキシ樹脂中のエポキシ基の数の比が3以上、7以下であり、
     樹脂フィルム100重量%中の前記シアネートエステル化合物の含有量に対する樹脂フィルム100重量%中の前記イミダゾール化合物の含有量の比が0.03以上、0.06以下である、樹脂フィルム。
    Including an epoxy resin, a cyanate ester compound, and an imidazole compound,
    As a compound other than the epoxy resin or the epoxy resin, including a compound having an alcoholic hydroxyl group,
    The ratio of the number of epoxy groups in the epoxy resin to the number of cyanate groups in the cyanate ester compound is 1 or more and 3 or less,
    The ratio of the number of epoxy groups in the epoxy resin to the number of alcoholic hydroxyl groups in the compound containing the alcoholic hydroxyl group is 3 or more and 7 or less,
    The resin film whose ratio of content of the said imidazole compound in 100 weight% of resin films with respect to content of the said cyanate ester compound in 100 weight% of resin films is 0.03 or more and 0.06 or less.
  6.  樹脂フィルムと、140℃で5分硬化を進行させた樹脂フィルムと、140℃で10分硬化を進行させた樹脂フィルムと、140℃で15分硬化を進行させた樹脂フィルムとの4つの樹脂フィルムのそれぞれについて、表面のFT-IRスペクトルを測定して、4つの各樹脂フィルムのトリアジン構造由来のピークの最大値及び4つの各樹脂フィルムのオキサゾリン構造由来のピークの最大値を得て、得られた最大値を用いて最小二乗法により線形近似した際の傾きを算出して、算出された傾きをトリアジン構造の形成速度及びオキサゾリン構造の形成速度としたときに、オキサゾリン構造の形成速度に対するトリアジン構造の形成速度の比が0.15以上、0.4以下である、請求項5に記載の樹脂フィルム。 Four resin films: a resin film, a resin film cured for 5 minutes at 140 ° C., a resin film cured for 10 minutes at 140 ° C., and a resin film cured for 15 minutes at 140 ° C. The surface FT-IR spectrum was measured to obtain the maximum value of the peak derived from the triazine structure of each of the four resin films and the maximum value of the peak derived from the oxazoline structure of each of the four resin films. The triazine structure with respect to the formation rate of the oxazoline structure is calculated by calculating the slope of the linear approximation by the least square method using the obtained maximum value and taking the calculated slope as the formation rate of the triazine structure and the formation rate of the oxazoline structure. The resin film according to claim 5, wherein the ratio of the formation rate is 0.15 or more and 0.4 or less.
  7.  前記エポキシ樹脂として又はエポキシ樹脂以外の化合物として、アルコール性水酸基を有する化合物を含み、
     前記アルコール性水酸基を有する化合物として、フェノキシ樹脂を含む、請求項2~6のいずれか1項に記載の樹脂フィルム。
    As a compound other than the epoxy resin or the epoxy resin, including a compound having an alcoholic hydroxyl group,
    The resin film according to any one of claims 2 to 6, comprising a phenoxy resin as the compound having an alcoholic hydroxyl group.
  8.  無機充填材を含む、請求項1~7のいずれか1項に記載の樹脂フィルム。 The resin film according to any one of claims 1 to 7, comprising an inorganic filler.
  9.  前記無機充填材がシリカである、請求項8に記載の樹脂フィルム。 The resin film according to claim 8, wherein the inorganic filler is silica.
  10.  ビルドアップ法に用いられるビルドアップフィルムである、請求項1~9のいずれか1項に記載の樹脂フィルム。 The resin film according to any one of claims 1 to 9, which is a build-up film used in a build-up method.
  11.  請求項1~10のいずれか1項に記載の樹脂フィルムと、
     基材又は金属箔とを備え、
     前記基材又は金属箔の表面に、前記樹脂フィルムが積層されている、積層フィルム。
    A resin film according to any one of claims 1 to 10;
    Comprising a substrate or metal foil,
    A laminated film in which the resin film is laminated on the surface of the substrate or metal foil.
PCT/JP2015/076914 2014-09-25 2015-09-24 Resin film and laminated film WO2016047682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550357A JPWO2016047682A1 (en) 2014-09-25 2015-09-24 Resin film and laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-195017 2014-09-25
JP2014195017 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047682A1 true WO2016047682A1 (en) 2016-03-31

Family

ID=55581205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076914 WO2016047682A1 (en) 2014-09-25 2015-09-24 Resin film and laminated film

Country Status (3)

Country Link
JP (1) JPWO2016047682A1 (en)
TW (1) TW201619282A (en)
WO (1) WO2016047682A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141143A (en) * 2017-02-27 2018-09-13 株式会社Adeka Resin composition for fiber-reinforced plastic, and cured product thereof, and fiber-reinforced plastic containing the cured product
WO2019187588A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured object, and electronic component
CN113675529A (en) * 2021-08-19 2021-11-19 杭州君杭科技有限公司 Lithium ion battery diaphragm material for new energy automobile and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092945A1 (en) * 2004-03-29 2005-10-06 Sumitomo Bakelite Co., Ltd. Resin composition, metal foil with resin, insulating sheet with base material and multilayer printed wiring board
WO2008087972A1 (en) * 2007-01-16 2008-07-24 Sumitomo Bakelite Co., Ltd. Insulating resin sheet multilayer body, multilayer printed wiring board obtained by laminating the insulating resin sheet multilayer bodies
WO2009119598A1 (en) * 2008-03-25 2009-10-01 住友ベークライト株式会社 Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device
JP2011032330A (en) * 2009-07-30 2011-02-17 Sekisui Chem Co Ltd Resin composition, b-stage film, laminated film, copper-clad laminate, and multilayer substrate
JP2012019240A (en) * 2011-10-12 2012-01-26 Sumitomo Bakelite Co Ltd Resin composite, insulation sheet with substrate and multilayer printed wiring board
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
WO2012131971A1 (en) * 2011-03-31 2012-10-04 積水化学工業株式会社 Preliminarily cured product, roughened preliminarily cured product, and laminate
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2013040298A (en) * 2011-08-18 2013-02-28 Sekisui Chem Co Ltd Epoxy resin material and multilayer board
JP2013181132A (en) * 2012-03-02 2013-09-12 Sekisui Chem Co Ltd Epoxy resin material and multilayer board

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092945A1 (en) * 2004-03-29 2005-10-06 Sumitomo Bakelite Co., Ltd. Resin composition, metal foil with resin, insulating sheet with base material and multilayer printed wiring board
JP2010235949A (en) * 2004-03-29 2010-10-21 Sumitomo Bakelite Co Ltd Resin composition, metal foil with resin, insulating sheet with base material, and multilayer printed wiring board
WO2008087972A1 (en) * 2007-01-16 2008-07-24 Sumitomo Bakelite Co., Ltd. Insulating resin sheet multilayer body, multilayer printed wiring board obtained by laminating the insulating resin sheet multilayer bodies
WO2009119598A1 (en) * 2008-03-25 2009-10-01 住友ベークライト株式会社 Epoxy resin composition, resin sheet, prepreg, multilayer printed wiring board, and semiconductor device
JP2011032330A (en) * 2009-07-30 2011-02-17 Sekisui Chem Co Ltd Resin composition, b-stage film, laminated film, copper-clad laminate, and multilayer substrate
WO2012131971A1 (en) * 2011-03-31 2012-10-04 積水化学工業株式会社 Preliminarily cured product, roughened preliminarily cured product, and laminate
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP2013040298A (en) * 2011-08-18 2013-02-28 Sekisui Chem Co Ltd Epoxy resin material and multilayer board
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP2012019240A (en) * 2011-10-12 2012-01-26 Sumitomo Bakelite Co Ltd Resin composite, insulation sheet with substrate and multilayer printed wiring board
JP2013181132A (en) * 2012-03-02 2013-09-12 Sekisui Chem Co Ltd Epoxy resin material and multilayer board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141143A (en) * 2017-02-27 2018-09-13 株式会社Adeka Resin composition for fiber-reinforced plastic, and cured product thereof, and fiber-reinforced plastic containing the cured product
JP7082496B2 (en) 2017-02-27 2022-06-08 株式会社Adeka A resin composition for fiber reinforced plastics, a cured product thereof, and a fiber reinforced plastic containing the cured product.
WO2019187588A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured object, and electronic component
JP2019178308A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component
CN111936575A (en) * 2018-03-30 2020-11-13 太阳油墨制造株式会社 Curable resin composition, dry film, cured product, and electronic component
JP7076263B2 (en) 2018-03-30 2022-05-27 太陽インキ製造株式会社 Curable resin compositions, dry films, cured products, and electronic components
CN113675529A (en) * 2021-08-19 2021-11-19 杭州君杭科技有限公司 Lithium ion battery diaphragm material for new energy automobile and preparation method thereof

Also Published As

Publication number Publication date
TW201619282A (en) 2016-06-01
JPWO2016047682A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5629407B2 (en) Insulating resin material and multilayer substrate
JP6391851B2 (en) Interlayer insulating material and multilayer printed wiring board
JP6461194B2 (en) Resin composition for multilayer printed wiring board and multilayer printed wiring board
JP6993324B2 (en) Resin material, laminated film and multilayer printed wiring board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
WO2017170521A1 (en) Resin composition and multilayer substrate
JP2024009109A (en) Resin material and multilayer printed wiring board
JP2013040298A (en) Epoxy resin material and multilayer board
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
JP2014208764A (en) Epoxy resin material and multilayer substrate
JP5752071B2 (en) B-stage film and multilayer substrate
JP2013075948A (en) Production method of cured product, cured product, and multilayer board
WO2016047682A1 (en) Resin film and laminated film
JPWO2018062405A1 (en) Cured body and multilayer substrate
JP6867131B2 (en) Laminated body and manufacturing method of laminated body
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
JP2019006980A (en) Resin composition for insulation film, insulation film, and multilayer printed board
JP5662858B2 (en) B-stage film and multilayer substrate
JP6159627B2 (en) Resin composition, resin film and multilayer substrate
JP7027382B2 (en) Resin film and multi-layer printed wiring board
JP6559520B2 (en) Resin composition, resin film, laminated film and multilayer substrate
JPWO2019117261A1 (en) Combined members for laminated films and printed wiring boards
JP2013199635A (en) Epoxy resin material, and multilayer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843717

Country of ref document: EP

Kind code of ref document: A1