WO2016047511A1 - 電力管理装置、電力管理方法及び電力管理システム - Google Patents

電力管理装置、電力管理方法及び電力管理システム Download PDF

Info

Publication number
WO2016047511A1
WO2016047511A1 PCT/JP2015/076222 JP2015076222W WO2016047511A1 WO 2016047511 A1 WO2016047511 A1 WO 2016047511A1 JP 2015076222 W JP2015076222 W JP 2015076222W WO 2016047511 A1 WO2016047511 A1 WO 2016047511A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
integrated value
power management
customer facility
Prior art date
Application number
PCT/JP2015/076222
Other languages
English (en)
French (fr)
Inventor
教志 篠▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP15844196.4A priority Critical patent/EP3200315B1/en
Priority to US15/511,604 priority patent/US20170307665A1/en
Priority to JP2016550124A priority patent/JP6386064B2/ja
Publication of WO2016047511A1 publication Critical patent/WO2016047511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/34Smart metering supporting the carbon neutral operation of end-user applications in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a power management apparatus, a power management method, and a power management system for managing power information indicating power supplied from a power system to a customer facility.
  • EMS Energy Management System
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • FEMS Vectory Energy Management
  • factories Fecility Energy Management Stores.
  • Etc. Patent Document 1
  • a smart meter having a communication function is being considered as a meter for measuring the power supplied from the power system to the customer facility.
  • the smart meter has a function of transmitting an integrated value, which is a value obtained by collecting the power supplied from the power system to the customer facility for each predetermined period, to the power management apparatus.
  • An object of the present invention is to provide a power management apparatus, a power management method, and a power management system that can improve convenience for consumers.
  • the power management apparatus includes a power that flows within a certain period between the power system and the customer facility from a smart meter that measures the amount of power flowing between the power system and the customer facility.
  • a first receiving unit that receives an integrated value that is a value obtained by summing up at predetermined intervals for each predetermined period, and a power sensor provided separately from the smart meter, and a measured value of the power flowing in the customer facility
  • a second receiving unit that receives at an interval shorter than the predetermined interval, and a control unit that calculates complementary information that complements the integrated value based on the measured value.
  • the power management method is a method of measuring power flowing between a power meter and a customer facility within a certain period from a smart meter that measures the amount of power flowing between the power system and the customer facility.
  • An integrated value which is a value obtained by summing up, is received at predetermined intervals for each predetermined period, and a measured value of the electric power flowing in the customer facility is received from the power sensor provided separately from the smart meter from the predetermined interval.
  • Complement information is received at short intervals and complements the integrated value based on the measured value.
  • the power management system includes a power management device and a power sensor provided separately from the smart meter that measures the amount of power flowing between the power system and the customer facility.
  • the power management device receives, from the smart meter, an integrated value that is a value obtained by summing up the electric power that has flowed between the power system and the customer facility within a predetermined period at predetermined intervals for each predetermined period.
  • a first receiving unit, a second receiving unit that receives a measured value of power flowing in the customer facility from the power sensor at an interval shorter than the predetermined interval, and complements the integrated value based on the measured value
  • a control unit for calculating complementary information is a control unit for calculating complementary information.
  • FIG. 1 is a diagram illustrating a customer facility 10 according to the first embodiment.
  • FIG. 2 is a diagram illustrating the smart meter 300 according to the first embodiment.
  • FIG. 3 is a diagram illustrating the EMS 200 according to the first embodiment.
  • FIG. 4 is a diagram illustrating information displayed by the EMS 200 according to the first embodiment.
  • FIG. 5 is a diagram illustrating information displayed by the EMS 200 according to the first embodiment.
  • FIG. 6 is a diagram illustrating a management method according to the first embodiment.
  • FIG. 7 is a diagram illustrating a management method according to the first embodiment.
  • FIG. 8 is a diagram for explaining correction according to the first modification.
  • FIG. 9 is a diagram for explaining the correction according to the first modification.
  • FIG. 10 is a diagram for explaining the display of complementary information according to the second modification.
  • the power management apparatus totals the power that flows between the power system and the customer facility within a certain period from the smart meter that measures the amount of power flowing between the power system and the customer facility.
  • a measured value of the power flowing in the customer facility from the first receiving unit that receives the integrated value that is the value obtained at predetermined intervals for each predetermined period and the power sensor provided separately from the smart meter.
  • a second receiving unit that receives at intervals shorter than the interval, and a control unit that calculates complementary information that complements the integrated value based on the measurement value.
  • the power management apparatus further includes a display unit that displays the fixed information indicating the integrated value received at regular intervals and the complementary information.
  • the display unit displays the confirmed information and the complementary information in different modes.
  • the second receiving unit receives the measured value from the power sensor after the nth (n is an integer equal to or greater than 0) time integrated value until the n + 1th integrated value is determined. Receive.
  • the display unit displays the complementary information based on the measurement value during a period from when the nth integrated value is determined until the n + 1th integrated value is determined.
  • the second receiving unit periodically receives the measurement value.
  • the power management apparatus includes a correction unit that corrects the complementary information based on the integrated value when the first receiving unit receives the (n + 1) th integrated value.
  • the display unit displays the complementary information based on the measurement value in a certain period in which the integrated value cannot be acquired.
  • the power management apparatus includes a third reception unit that receives a power command message for requesting suppression of a tidal flow rate from the power system to the customer facility or a reverse tidal flow rate from the customer facility to the power system. .
  • the control unit instructs the second receiving unit to change the interval for receiving the measurement value after receiving a signal indicating that the power command message has been received from the third receiving unit.
  • the second receiving unit changes an interval for receiving the measurement value during a period of executing the content of the power command message.
  • the power management device includes a distributed power source connected to the power system via the smart meter, a second power sensor installed on the side of the distributed power source with respect to the power sensor, and the second power sensor. And a fourth receiver for receiving the second measurement value at predetermined intervals.
  • the fourth reception unit receives the second measurement value at the same interval as the interval at which the second reception unit receives the measurement value.
  • the power management method totals the power that flows between the power system and the customer facility within a certain period from the smart meter that measures the amount of power flowing between the power system and the customer facility.
  • the integrated value that is the value obtained is received at predetermined intervals for each predetermined period, and the measured value of the electric power flowing in the customer facility from the power sensor provided separately from the smart meter is shorter than the predetermined interval. And calculating supplementary information that supplements the integrated value based on the measured value.
  • the power management system includes a power management device and a power sensor provided separately from a smart meter that measures the amount of power flowing between the power system and the customer facility.
  • the power management device receives, from the smart meter, an integrated value that is a value obtained by summing up the electric power that has flowed between the power system and the customer facility within a predetermined period at predetermined intervals for each predetermined period.
  • a first receiving unit, a second receiving unit that receives a measured value of power flowing in the customer facility from the power sensor at an interval shorter than the predetermined interval, and complements the integrated value based on the measured value
  • a control unit for calculating complementary information.
  • a power sensor that measures power similar to that of a smart meter is intentionally provided where a smart meter alone is sufficient.
  • the customer facility 10 includes a distribution board 110, a load 120, a PV unit 130, a storage battery unit 140, a fuel cell unit 150, and a hot water storage unit 160.
  • the customer facility 10 includes an EMS 200 and a smart meter 300.
  • the smart meter 300 and the EMS 200 do not need to be provided in the building of the customer facility 10.
  • Distribution board 110 is connected to power system 400. Distribution board 110 is connected to load 120, PV unit 130, storage battery unit 140, and fuel cell unit 150 via a power line.
  • the distribution board 110 includes a CT (Current Transformer) sensor 110A that measures the power supplied from the power system 400 to the customer facility 10.
  • the CT sensor 110 ⁇ / b> A is provided separately from the smart meter 300 for charging the power supplied from the power system 400 to the customer facility 10.
  • the CT sensor 110 ⁇ / b> A is an example of a power sensor that measures power supplied from the power system to the customer facility 10.
  • the value of electric power (that is, the measured value) measured by the CT sensor 110 ⁇ / b> A may be an integrated value of electric power supplied to the customer facility 10 in unit time, and is supplied to the customer facility 10. It may be an instantaneous value of power.
  • the load 120 is a device that consumes power supplied through the power line.
  • the load 120 includes devices such as a refrigerator, lighting, an air conditioner, and a television.
  • the load 120 may be a single device or may include a plurality of devices.
  • the PV unit 130 has a PV 131 and a PCS 132.
  • the PV 131 is a device that generates power in response to the reception of sunlight.
  • the PV 131 outputs the generated DC power.
  • the amount of power generated by the PV 131 changes according to the amount of solar radiation applied to the PV 131.
  • the PCS 132 is a device (Power Conditioning System) that converts DC power output from the PV 131 into AC power.
  • the PCS 132 outputs AC power to the distribution board 110 via the power line.
  • the PV unit 130 may have a pyranometer that measures the amount of solar radiation irradiated on the PV 131.
  • the PV unit 130 is controlled by the MPPT (Maximum Power Point Tracking) method. Specifically, the PV unit 130 optimizes the operating point (a point determined by the operating point voltage value and the power value, or a point determined by the operating point voltage value and the current value) of the PV 131.
  • MPPT Maximum Power Point Tracking
  • the storage battery unit 140 includes a storage battery 141 and a PCS 142.
  • the storage battery 141 is a device that stores electric power.
  • the PCS 142 is a device (Power Conditioning System) that converts DC power output from the storage battery 141 into AC power.
  • the fuel cell unit 150 includes a fuel cell 151 and a PCS 152.
  • the fuel cell 151 is a device that generates electric power using fuel gas.
  • the PCS 152 is a device (Power Conditioning System) that converts DC power output from the fuel cell 151 into AC power.
  • the PCS 152 may be a multi-PCS integrated with at least one function of the PCS 132 of the PV unit 130 and the PCS 142 of the storage battery unit 140.
  • the fuel cell unit 150 operates by load following control. Specifically, the fuel cell unit 150 controls the fuel cell 151 so that the power output from the fuel cell 151 follows the power consumption of the load 120, for example.
  • the hot water storage unit 160 converts electric power into heat and accumulates heat.
  • the hot water storage unit 160 has a hot water storage tank, and warms water supplied from the hot water storage tank by exhaust heat generated by the operation (power generation) of the fuel cell 151.
  • the hot water storage unit 160 warms the water supplied from the hot water storage tank and returns the warmed hot water to the hot water storage tank.
  • the EMS 200 is an example of a power management apparatus that manages power information indicating power supplied from the power system 400 to the customer facility 10.
  • the EMS 200 is connected to the load 120, the PV unit 130, the storage battery unit 140, the fuel cell unit 150, and the hot water storage unit 160 via signal lines, and the load 120, the PV unit 130, the storage battery unit 140, the fuel The battery unit 150 and the hot water storage unit 160 are controlled.
  • the EMS 200 may control the power consumption of the load 120 by controlling the operation mode of the load 120.
  • the signal line that connects the EMS 200 and the device may be wireless or wired.
  • the PV unit 130, the storage battery unit 140, and the fuel cell unit 150 may be collectively referred to as a distributed power source.
  • the EMS 200 is connected to the CT sensor 110A and the smart meter 300 via signal lines, and communicates with the CT sensor 110A and the smart meter 300.
  • the signal line connecting the EMS 200 and the CT sensor 110A and the signal line connecting the EMS 200 and the smart meter 300 may be wireless or wired.
  • the smart meter 300 measures the power supplied from the power system 400 to the customer facility 10 and the power flowing backward from the customer facility 10.
  • the smart meter 300 is connected to the power line on the power system 400 side of the distribution board 110 and measures the amount of power flowing through the power line.
  • the smart meter 300 is a device for calculating the incentive for charging the power supplied from the power system 400 to the customer facility 10 and for the reversely flowing power.
  • the smart meter 300 transmits, to the EMS 200, an integrated value that is a value obtained by counting the power supplied from the power system 400 to the customer facility 10 every certain period (for example, 30 minutes).
  • the smart meter 300 may transmit the total time indicating the time when the total value is totaled to the EMS 200 together with the total value.
  • the smart meter 300 includes a communication unit 310, a measurement unit 320, a time counter 330, and a control unit 340.
  • the communication unit 310 is composed of a communication module and communicates with the EMS 200. Specifically, the communication unit 310 transmits the integrated value described above to the EMS 200. The communication unit 310 may transmit the aggregation time to the EMS 200 together with the integrated value described above.
  • the measuring unit 320 measures the power supplied from the power system 400 to the customer facility 10.
  • the time counter 330 is constituted by a clock transmitter or the like, and counts time by counting up or counting down. It should be noted that the total time described above is a time specified with reference to the time counted by the smart meter 300 (time counter 330).
  • the control unit 340 includes a CPU (Central Processing Unit) and a memory, and controls the smart meter 300. Specifically, the control unit 340 adds up the electric power measured by the measurement unit 320 every certain period (for example, 30 minutes). The control unit 340 instructs the communication unit 310 to transmit the integrated value when the integrated value is aggregated. The control unit 340 may instruct the communication unit 310 to transmit the integrated value and the total time.
  • a CPU Central Processing Unit
  • the EMS 200 includes a communication unit 210, a display unit 220, a time counter 230, and a control unit 240.
  • the communication unit 210 is constituted by a communication module, and communicates with a device connected via a signal line. Similarly, the communication unit 210 communicates with the CT sensor 110A and the smart meter 300 that are connected via a signal line.
  • the communication unit 210 calculates an integrated value, which is a value obtained by counting the power supplied from the power system 400 to the customer facility 10 every certain period (for example, 30 minutes) at a predetermined interval (for example, 30 minutes). ) From the smart meter 300.
  • the communication unit 210 determines the amount of electric power supplied from the power system 400 to the customer facility 10 after the nth (n is an integer equal to or greater than 0) time integrated value and until the n + 1th integrated value is determined.
  • the measurement value is received from the CT sensor 110A.
  • the communication unit 210 is set so as to periodically receive measurement values at intervals shorter than a predetermined interval (for example, 30 minutes).
  • the intervals at which the measurement values are received from the CT sensor 110A may be constant intervals or different intervals.
  • the display unit 220 includes a display and displays various information. Specifically, the display unit 220 constitutes a display unit that displays fixed information indicating an integrated value received at regular intervals. The display unit 220 displays complementary information that complements the integrated value based on the measured value during the period from the determination of the nth integrated value to the determination of the (n + 1) th integrated value.
  • the display unit 220 displays the integrated value received from the smart meter 300 (that is, the confirmed integrated value) as confirmed information.
  • 4 and 5 are cases where n is 3 or more.
  • the display unit 220 displays the integrated value calculated based on the measured value received from the CT sensor 110A (that is, the indeterminate integrated value) as complementary information.
  • the indeterminate integrated value is calculated by integrating the measurement value interval and the measurement value.
  • the indeterminate integrated value may be displayed so as to increase each time a measured value is received (if it is a bar graph, it is stacked).
  • the measurement value may change the mode (for example, color) depending on the time zone to which the received period belongs.
  • the integrated value provided by the display unit 220 may be in units of 30 minutes or in units of 1 hour.
  • the integrated value is displayed in units of 30 minutes.
  • the time counter 230 is constituted by a clock transmitter or the like, and counts time by counting up or counting down.
  • the control unit 240 includes a CPU and a memory, and controls the EMS 200. Specifically, the control unit 240 manages the integrated value received from the smart meter 300. Further, the control unit 240 calculates an undetermined integrated value based on the measurement value received from the CT sensor 110A.
  • step S ⁇ b> 10 the EMS 200 obtains an integrated value, which is a value obtained by totaling the power supplied from the power system 400 to the customer facility 10 every certain period (for example, 30 minutes) Receive at predetermined intervals.
  • Step S10 is repeated for a certain period.
  • the subscript (subscript) of the step number indicates the number of times the integrated value is received.
  • step S20 the EMS 200 receives the measured value of the power supplied from the power system 400 to the customer facility 10 from the CT sensor 110A. Step S20 is repeated at a predetermined interval.
  • the subscript (subscript) of the step number indicates the number of times the integrated value is received.
  • step S110 the EMS 200 determines whether or not a graph display request has been received by a user operation. If the determination result is YES, the EMS 200 proceeds to the process of step S120. On the other hand, when the determination result is NO, the EMS 200 maintains a standby state for a user operation.
  • step S120 the EMS 200 determines whether a display request for an indeterminate period has been received by a user operation. If the determination result is YES, the EMS 200 proceeds to the process of step S130. On the other hand, if the determination result is NO, the EMS 200 proceeds to the process of step S150.
  • step S130 the EMS 200 displays the integrated value received from the smart meter 300 (that is, the determined integrated value) as fixed information (see FIG. 4).
  • step S140 the EMS 200 displays the integrated value calculated based on the measured value received from the CT sensor 110A (that is, the indeterminate integrated value) as complementary information in addition to the determined integrated value displayed in step S130. (See FIG. 5).
  • step S130 and step S140 have been described as separate processes, but step S130 and step S140 may be performed simultaneously.
  • step S150 the EMS 200 displays the integrated value received from the smart meter 300 (that is, the determined integrated value) as fixed information (see FIG. 4).
  • the EMS 200 (display unit 220) is provided separately from the smart meter 300 after the nth integrated value is determined and until the (n + 1) th integrated value is determined.
  • Complement information for complementing the integrated value is displayed based on the measured value received from the received CT sensor 110A. Therefore, even if the smart meter 300 is not requested to transmit an instantaneous value, the integrated value determined every certain period can be supplemented.
  • the EMS 200 (control unit 240) is displayed based on the measurement value received from the CT sensor 110A based on the integrated value received from the smart meter 300. Complementary information is corrected. For example, when the EMS 200 (control unit 240) receives the (n + 1) th integrated value, the n + 1th integrated value is determined after the nth integrated value is determined based on the (n + 1) th integrated value (confirmed integrated value). The supplementary information displayed is corrected based on the measurement value received from the CT sensor 110A until it is fixed.
  • the EMS 200 compares the integrated value calculated based on the measured value received from the CT sensor 110A with the integrated value received from the smart meter 300.
  • the integrated value calculated based on the measured value received from the CT sensor 110A is also It should be noted that this is an estimate over a certain period (eg, 30 minutes).
  • EMS200 calculates the correction coefficient of the measured value received from CT sensor 110A based on such a comparison result. For example, as shown in FIG. 8, when the integrated value received from the smart meter 300 is larger than the integrated value calculated based on the measured value received from the CT sensor 110A, the correction coefficient is a value larger than 1. is there.
  • EMS200 corrects the measured value received from CT sensor 110A by multiplying the measured value received from CT sensor 110A by a correction coefficient, as shown in FIG.
  • the EMS 200 displays complementary information based on the measurement value in a certain period in which the integrated value cannot be acquired from the smart meter 300 at a predetermined interval. .
  • the EMS 200 (control unit 240) manages the integrated value received from the smart meter 300 and calculates the integrated value calculated based on the measured value received from the CT sensor 110A. to manage.
  • the (n + 1) th integrated value is missing from the integrated values received from the smart meter 300.
  • the EMS 200 displays the integrated value calculated based on the measurement value received from the CT sensor 110A as the supplementary information for the (n + 1) th period.
  • the EMS 200 receives a tidal current suppression message (for example, DR: Demand Response) that requests suppression of tidal flow (power supply amount) to the customer facility 10 from the power system.
  • a tidal current suppression message for example, DR: Demand Response
  • the EMS 200 transmits a reverse flow suppression message requesting suppression of the reverse flow rate to the power system from the customer facility 10.
  • the power flow suppression message and the reverse power flow suppression message are collectively referred to as a power command message.
  • the tidal current suppression message includes information indicating the suppression degree of the amount of power (tidal flow rate) supplied from the power system to the customer facility 10.
  • the reverse power flow suppression message includes information indicating the degree of suppression of the amount of power (reverse power flow) output from the customer facility 10 to the power system.
  • the degree of suppression may be expressed as an absolute value of electric energy (for example, OO kW).
  • the suppression degree may be represented by a relative value of the electric energy (for example, a decrease in OO kW).
  • the suppression degree may be expressed as a power consumption suppression ratio (for example, OO%).
  • the tidal current suppression message may include information indicating a power purchase price that is a price of tidal current from the power system.
  • the suppression ratio of reverse power flow suppression is a ratio with respect to the output (hereinafter referred to as equipment approval output) certified as the output capability of the PCS that controls the distributed power supply when installing the distributed power supply in the customer facility 10. May be.
  • equipment approval output certified as the output capability of the PCS that controls the distributed power supply when installing the distributed power supply in the customer facility 10. May be.
  • the facility certified output is the smaller output capability of these output capabilities.
  • the facility authorization output is the sum of the output capacities of the plurality of PCSs.
  • a format compliant with an automatic demand response can be used as a format of the power flow suppression message and the reverse power flow suppression message.
  • ADR automatic demand response
  • a method conforming to this standard for example, a method conforming to the Open ADR standard can be used.
  • the interval at which the measured value is received from the CT sensor 110A may be changed around the time when the power command message is started. More specifically, the interval at which the measurement value is received from the CT sensor 110A may be shortened from a predetermined time (for example, 10 minutes) before the content of the power command message is started. For example, normally, when the measurement value is periodically received from the CT sensor 110A at the first interval, a second interval (for example, 1) shorter than the first interval from a predetermined time before the power command message is started. The measured value may be received every minute).
  • the interval at which the measured value is received within the execution period of the power command message may be changed. More specifically, when the power command message is a demand response, a shorter interval is obtained when the indeterminate integrated value calculated based on the measured value approaches the threshold set according to the suppression amount. The measured value may be received at.
  • a distributed power source such as the PV unit 130 is connected to the power system 400 via the smart meter 300.
  • “Through the smart meter 300” means that they may be connected in series, or may be connected in parallel as shown in FIG.
  • a second CT sensor (second power sensor) different from the CT sensor 110A is installed closer to the distributed power source than the CT sensor 110A. More specifically, the second CT sensor is installed between the branch point and the distributed power supply in order to measure the input / output power of the distributed power supply branched from the power line.
  • the communication unit 310 receives the second measurement value from the second CT sensor at a predetermined interval.
  • the second measured value is a value indicating the input / output power of the distributed power supply.
  • the predetermined interval for receiving the second measurement value may be set as appropriate. For example, it may be set to the same interval as the measurement value received from the CT sensor 110A. Note that the predetermined interval for receiving the second measurement value may be set shorter than the interval for receiving the measurement value, or may be set longer than the interval for receiving the measurement value.
  • the EMS 200 may display a breakdown of the complementary information on the display unit 220 based on the second measurement value.
  • the breakdown of the supplementary information By displaying the breakdown of the supplementary information, the power status can be grasped more finely, so that the convenience for the consumer can be improved.
  • the second measurement value may be corrected according to the correction of the measurement value.
  • the CT sensor 110 ⁇ / b> A is provided in the distribution board 110.
  • the CT sensor 110 ⁇ / b> A only needs to be provided at a position where the power supplied from the power system 400 to the customer facility 10 can be measured.
  • the EMS 200 may display the complementary information in a mode different from the confirmed information.
  • the color for displaying the complementary information may be different from the color for displaying the fixed information.
  • the display mode of complementary information may be blinking, and the display mode of fixed information may be lit.
  • the communication between the EMS 200 and the CT sensor 110A and the communication between the EMS 200 and the smart meter 300 conform to the ECHONET Lite system.
  • the communication between the EMS 200 and the CT sensor 110A and the communication between the EMS 200 and the smart meter 300 may conform to other communication protocols.
  • the EMS 200 may be a home server provided in the customer facility 10.
  • the EMS 200 may be a user terminal represented by a smartphone.
  • the power management device may be installed in BEMS (Building Energy Management System), may be installed in FEMS (Factor Energy Management System), or may be installed in SEMS (Store Energy Management).
  • BEMS Building Energy Management System
  • FEMS Vector Energy Management System
  • SEMS Store Energy Management
  • the present invention is useful for power management technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 電力管理装置は、電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信し、前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信し、前記計測値に基づいて前記積算値を補完する補完情報を算出する。

Description

電力管理装置、電力管理方法及び電力管理システム
 本発明は、電力系統から需要家施設に供給される電力を示す電力情報を管理する電力管理装置、電力管理方法及び電力管理システムに関する。
 近年、需要家施設に設けられる機器の電力を管理する電力管理システム(EMS:Energy Management System)が注目を浴びている。このような電力管理システムでは、機器の電力を管理する電力管理装置が設けられる。
 電力管理装置としては、住宅に設けられるHEMS(Home Energy Management System)、ビルに設けられるBEMS(Building Energy Management System)、工場に設けられるFEMS(Factory Energy Management System)、店舗にSEMS(Store Energy Management System)等が挙げられる(例えば、特許文献1)。
 このようなケースにおいて、電力系統から需要家施設に供給される電力を測定するメータとして、通信機能を有するスマートメータの導入が検討されている。スマートメータは、電力系統から需要家施設に供給された電力を一定期間毎に集計した値である積算値を電力管理装置に送信する機能を有する。
国際公開第2011/058761号
 このようなケースにおいて、電力管理装置、電力管理方法及び電力管理システムの利便性を向上させることが求められている。
 本発明は、需要家の利便性を向上させることを可能とする電力管理装置、電力管理方法及び電力管理システムを提供することを目的とする。
 第1の特徴に係る電力管理装置は、電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える。
 第2の特徴に係る電力管理方法は、電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信し、前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信し、前記計測値に基づいて前記積算値を補完する補完情報を算出する。
 第3の特徴に係る電力管理システムは、電力管理装置と、電力系統と需要家施設との間に流れる電力量を計測するスマートメータとは別に設けられた電力センサとを備える。前記電力管理装置は、前記スマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、前記電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える。
図1は、第1実施形態に係る需要家施設10を示す図である。 図2は、第1実施形態に係るスマートメータ300を示す図である。 図3は、第1実施形態に係るEMS200を示す図である。 図4は、第1実施形態に係るEMS200によって表示される情報を示す図である。 図5は、第1実施形態に係るEMS200によって表示される情報を示す図である。 図6は、第1実施形態に係る管理方法を示す図である。 図7は、第1実施形態に係る管理方法を示す図である。 図8は、変更例1に係る補正を説明するための図である。 図9は、変更例1に係る補正を説明するための図である。 図10は、変更例2に係る補完情報の表示を説明するための図である。
 以下において、本発明の実施形態に係る電力管理装置について、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 実施形態に係る電力管理装置は、電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える。
 実施形態では、電力管理装置は、前記一定期間毎に受信する前記積算値を示す確定情報、及び前記補完情報を表示する表示部をさらに備える。
 実施形態では、前記表示部は、前記確定情報と前記補完情報とを異なる態様で表示する。
 実施形態では、前記第2受信部は、n(nは0以上の整数)回目の積算値が確定してからn+1回目の積算値が確定するまでの間において、前記電力センサから前記計測値を受信する。
 実施形態では、前記表示部は、前記n回目の積算値が確定してから前記n+1回目の積算値が確定するまでの間において、前記計測値に基づいて前記補完情報を表示する。
 実施形態では、前記第2受信部は、周期的に前記計測値を受信する。
 実施形態では、電力管理装置は、前記第1受信部が前記n+1回目の積算値を受信すると、当該積算値に基づいて前記補完情報を補正する補正部を備える。
 実施形態では、前記表示部は、前記積算値を取得できなかった一定期間において、前記計測値に基づいて前記補完情報を表示する。
 実施形態では、電力管理装置は、前記電力系統から前記需要家施設に対する潮流量又は前記需要家施設から前記電力系統に対する逆潮流量の抑制を要求する電力指令メッセージを受信する第3受信部を有する。前記制御部は、前記第3受信部から前記電力指令メッセージを受信した旨の信号を受信した後、前記第2受信部に前記計測値を受信する間隔を変更するように指示する。
 実施形態では、前記第2受信部は、前記電力指令メッセージの内容を実行する期間中に前記計測値を受信する間隔を変更する。
 実施形態では、電力管理装置は、前記電力系統に前記スマートメータを介して接続された分散電源と、前記電力センサよりも前記分散電源側に設置された第2電力センサと、前記第2電力センサから第2計測値を所定の間隔で受信する第4受信部とをさらに有する。
 実施形態では、前記第4受信部は、前記第2計測値を、前記第2受信部が前記計測値を受信する間隔と同じ間隔で受信する。
 実施形態に係る電力管理方法は、電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信し、前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信し、前記計測値に基づいて前記積算値を補完する補完情報を算出することを含む。
 実施形態に係る電力管理システムは、電力管理装置と、電力系統と需要家施設との間に流れる電力量を計測するスマートメータとは別に設けられた電力センサとを備える。前記電力管理装置は、前記スマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、前記電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える。
 実施形態では、本来であればスマートメータのみで十分であるところ、スマートメータと同様の電力を計測する電力センサを敢えて設けていることに留意すべきである。
 [第1実施形態]
 (需要家施設)
 以下において、第1実施形態に係る需要家施設について説明する。
 図1に示すように、需要家施設10は、分電盤110と、負荷120と、PVユニット130と、蓄電池ユニット140と、燃料電池ユニット150と、貯湯ユニット160とを有する。需要家施設10は、これらに加えて、EMS200と、スマートメータ300とを有する。但し、スマートメータ300及びEMS200は、需要家施設10の建物内に設けられる必要はないことに留意すべきである。
 分電盤110は、電力系統400に接続されている。分電盤110は、電力線を介して、負荷120、PVユニット130、蓄電池ユニット140及び燃料電池ユニット150に接続されている。
 第1実施形態において、分電盤110は、電力系統400から需要家施設10に供給される電力を計測するCT(Current Transformer:変流器)センサ110Aを有する。CTセンサ110Aは、電力系統400から需要家施設10に供給される電力に対する課金を行うためのスマートメータ300とは別に設けられる。CTセンサ110Aは、電力系統から需要家施設10に供給される電力を計測する電力センサの一例である。ここで、CTセンサ110Aによって計測される電力の値(すなわち、計測値)は、単位時間において需要家施設10に供給される電力の積算値であってもよく、需要家施設10に供給される電力の瞬時値であってもよい。
 負荷120は、電力線を介して供給される電力を消費する装置である。例えば、負荷120は、冷蔵庫、照明、エアコン、テレビなどの装置を含む。負荷120は、単数の装置であってもよく、複数の装置を含んでもよい。
 PVユニット130は、PV131と、PCS132とを有する。PV131は、太陽光の受光に応じて発電を行う装置である。PV131は、発電されたDC電力を出力する。PV131の発電量は、PV131に照射される日射量に応じて変化する。PCS132は、PV131から出力されたDC電力をAC電力に変換する装置(Power Conditioning System)である。PCS132は、電力線を介してAC電力を分電盤110に出力する。PVユニット130は、PV131に照射される日射量を測定する日射計を有していてもよい。
 PVユニット130は、MPPT(Maximum Power Point Tracking)法によって制御される。詳細には、PVユニット130は、PV131の動作点(動作点電圧値及び電力値によって定まる点、又は、動作点電圧値と電流値とによって定まる点)を最適化する。
 蓄電池ユニット140は、蓄電池141と、PCS142とを有する。蓄電池141は、電力を蓄積する装置である。PCS142は、蓄電池141から出力されたDC電力をAC電力に変換する装置(Power Conditioning System)である。
 燃料電池ユニット150は、燃料電池151と、PCS152とを有する。燃料電池151は、燃料ガスを利用して電力を生成する装置である。PCS152は、燃料電池151から出力されたDC電力をAC電力に変換する装置(Power Conditioning System)である。PCS152は、PVユニット130のPCS132、及び蓄電池ユニット140のPCS142の少なくとも1つの機能と一体化されたマルチPCSであってもよい。
 燃料電池ユニット150は、負荷追従制御によって動作する。詳細には、燃料電池ユニット150は、燃料電池151から出力される電力が、例えば負荷120の消費電力に追従するように燃料電池151を制御する。
 貯湯ユニット160は、電力を熱に変換して、熱を蓄積する。具体的には、貯湯ユニット160は、貯湯槽を有しており、燃料電池151の運転(発電)によって生じる排熱によって、貯湯槽から供給される水を温める。詳細には、貯湯ユニット160は、貯湯槽から供給される水を温めて、温められた湯を貯湯槽に還流する。
 EMS200は、電力系統400から需要家施設10に供給される電力を示す電力情報を管理する電力管理装置の一例である。
 具体的には、EMS200は、負荷120、PVユニット130、蓄電池ユニット140、燃料電池ユニット150及び貯湯ユニット160に信号線を介して接続されており、負荷120、PVユニット130、蓄電池ユニット140、燃料電池ユニット150及び貯湯ユニット160を制御する。EMS200は、負荷120の動作モードを制御することによって、負荷120の消費電力を制御してもよい。EMS200と機器とを接続する信号線は、無線であってもよく、有線であってもよい。なお、以下の説明において、PVユニット130、蓄電池ユニット140及び燃料電池ユニット150を総称して分散電源と称することがある。
 第1実施形態において、EMS200は、CTセンサ110A及びスマートメータ300に信号線を介して接続されており、CTセンサ110A及びスマートメータ300と通信を行う。EMS200とCTセンサ110Aとを接続する信号線及びEMS200とスマートメータ300とを接続する信号線は、無線であってもよく、有線であってもよい。
 スマートメータ300は、電力系統400から需要家施設10に供給される電力及び需要家施設10から逆潮流される電力を測定する。例えば、スマートメータ300は、分電盤110よりも電力系統400側において電力線に接続されており、電力線を流れる電力の量を測定する。ここで、スマートメータ300は、電力系統400から需要家施設10に供給される電力に対する課金及び逆潮流される電力に対するインセンティブを算出するための機器であることに留意すべきである。
 第1実施形態において、スマートメータ300は、電力系統400から需要家施設10に供給された電力を一定期間(例えば、30分)毎に集計した値である積算値をEMS200に送信する。スマートメータ300は、積算値が集計された時刻を示す集計時刻を積算値とともにEMS200に送信してもよい。
 (スマートメータ)
 以下において、第1実施形態に係るスマートメータについて説明する。
 図2に示すように、スマートメータ300は、通信部310と、計測部320と、時刻カウンタ330と、制御部340とを有する。
 通信部310は、通信モジュールによって構成されており、EMS200と通信を行う。具体的には、通信部310は、上述した積算値をEMS200に送信する。通信部310は、上述した積算値とともに集計時刻をEMS200に送信してもよい。
 計測部320は、電力系統400から需要家施設10に供給される電力を測定する。時刻カウンタ330は、クロック発信器等によって構成されており、カウントアップ又はカウントダウンによって時刻をカウントする。上述した集計時刻は、スマートメータ300(時刻カウンタ330)でカウントされる時刻を基準として特定される時刻であることに留意すべきである。
 制御部340は、CPU(Central Processing Unit:中央処理装置)及びメモリによって構成されており、スマートメータ300を制御する。具体的には、制御部340は、計測部320によって計測された電力を一定期間(例えば、30分)毎に集計する。制御部340は、積算値が集計された場合に、積算値の送信を通信部310に指示する。制御部340は、積算値及び集計時刻の送信を通信部310に指示してもよい。
 (電力管理装置)
 以下において、第1実施形態に係る電力管理装置について説明する。
 図3に示すように、EMS200は、通信部210と、表示部220と、時刻カウンタ230と、制御部240とを有する。
 通信部210は、通信モジュールによって構成されており、信号線を介して接続された機器と通信を行う。同様に、通信部210は、信号線を介して接続されたCTセンサ110A及びスマートメータ300と通信を行う。
 第1実施形態において、通信部210は、電力系統400から需要家施設10に供給された電力を一定期間(例えば、30分)毎に集計した値である積算値を所定間隔(例えば、30分)でスマートメータ300から受信する。通信部210は、n(nは0以上の整数)回目の積算値が確定してからn+1回目の積算値が確定するまでの間において、電力系統400から需要家施設10に供給された電力の計測値をCTセンサ110Aから受信する。通信部210は、例えば、所定間隔(例えば、30分)よりも短い間隔で周期的に計測値を受信するように設定される。CTセンサ110Aから計測値を受信する間隔は、一定間隔であってもよいし、異なる間隔であってもよい。
 表示部220は、ディスプレイによって構成されており、各種情報を表示する。具体的には、表示部220は、一定期間毎に受信する積算値を示す確定情報を表示する表示部を構成する。表示部220は、n回目の積算値が確定してからn+1回目の積算値が確定するまでの間において、計測値に基づいて積算値を補完する補完情報を表示する。
 例えば、n回目の積算値が確定しており、n+1回目の積算値が確定していないケースについて考える。このようなケースにおいて、表示部220は、図4に示すように、スマートメータ300から受信する積算値(すなわち、確定済み積算値)を確定情報として表示する。なお、図4、5は、nが3以上の場合である。
 さらに、表示部220は、図5に示すように、CTセンサ110Aから受信する計測値に基づいて算出された積算値(すなわち、未確定積算値)を補完情報として表示する。未確定積算値は、計測値を受信する間隔と計測値との積算によって算出されることに留意すべきである。未確定積算値は、計測値を受信するごとに増えるように(棒グラフであれば、積み上げて)表示してもよい。また、計測値は受信した期間の属する時間帯によって態様(例えば色)を変化させてもよい。
 ここで、図4及び図5において、表示部220によって提供される積算値は、30分単位であってもよく、1時間単位であってもよい。ここでは、説明の便宜上、積算値が30分単位で表示されるケースを例示している。
 時刻カウンタ230は、クロック発信器等によって構成されており、カウントアップ又はカウントダウンによって時刻をカウントする。
 制御部240は、CPU及びメモリによって構成されており、EMS200を制御する。具体的には、制御部240は、スマートメータ300から受信する積算値を管理する。さらに、制御部240は、CTセンサ110Aから受信する計測値に基づいて未確定積算値を算出する。
 (管理方法)
 以下において、第1実施形態に係る管理方法について説明する。
 図6に示すように、ステップS10において、EMS200は、電力系統400から需要家施設10に供給された電力を一定期間(例えば、30分)毎に集計した値である積算値をスマートメータ300から所定間隔で受信する。ステップS10は一定期間で繰り返される。ステップ番号の添え字(下付文字)は、積算値を受信する回数を示している。
 ステップS20において、EMS200は、電力系統400から需要家施設10に供給された電力の計測値をCTセンサ110Aから受信する。ステップS20は所定の間隔で繰り返される。ステップ番号の添え字(下付文字)は、積算値を受信する回数を示している。
 このような前提下において、図7に示すように、ステップS110において、EMS200は、ユーザ操作によってグラフ表示要求を受け付けたか否かを判定する。EMS200は、判定結果がYESである場合には、ステップS120の処理に移る。一方で、EMS200は、判定結果がNOである場合には、ユーザ操作の待ち受け状態を維持する。
 ステップS120において、EMS200は、ユーザ操作によって未確定期間の表示要求を受け付けたか否かを判定する。EMS200は、判定結果がYESである場合には、ステップS130の処理に移る。一方で、EMS200は、判定結果がNOである場合には、ステップS150の処理に移る。
 ステップS130において、EMS200は、スマートメータ300から受信する積算値(すなわち、確定済み積算値)を確定情報として表示する(図4を参照)。
 ステップS140において、EMS200は、ステップS130で表示した確定済み積算値に加えて、CTセンサ110Aから受信する計測値に基づいて算出された積算値(すなわち、未確定積算値)を補完情報として表示する(図5を参照)。
 ここでは、説明の便宜上、ステップS130及びステップS140を別々な処理として説明したが、ステップS130及びステップS140は同時に行われてもよい。
 ステップS150において、EMS200は、スマートメータ300から受信する積算値(すなわち、確定済み積算値)を確定情報として表示する(図4を参照)。
 以上説明したように、第1実施形態では、EMS200(表示部220)は、n回目の積算値が確定してからn+1回目の積算値が確定するまでの間において、スマートメータ300とは別に設けられたCTセンサ110Aから受信する計測値に基づいて積算値を補完する補完情報を表示する。従って、スマートメータ300に対して瞬時値の送信を要求しなくても、一定期間毎に確定する積算値を補完することができる。
 ところで、積算値は一定期間を経過しなければ更新されないため、一定期間内において積算値の変動を把握することができない。一方で、スマートメータの仕様によっては、瞬時値の送信要求を頻繁に受信すると、スマートメータが瞬時値の送信要求を不正な信号(例えば、DOS攻撃)と判断することが想定される。従って、積算値の補完精度を上げるために、スマートメータに対して瞬時値の送信を頻繁に要求することは好ましくないが、上述のようにCTセンサで補完することによって需要家の利便性を向上させることができる。
 [変更例1]
 以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 第1実施形態では特に触れていないが、変更例1では、EMS200(制御部240)は、スマートメータ300から受信する積算値に基づいて、CTセンサ110Aから受信する計測値に基づいて表示される補完情報を補正する。例えば、EMS200(制御部240)は、n+1回目の積算値を受信すると、n+1回目の積算値(確定済み積算値)に基づいて、n回目の積算値が確定してからn+1回目の積算値が確定するまでの間においてCTセンサ110Aから受信する計測値に基づいて表示される補完情報を補正する。
 具体的には、EMS200は、図8に示すように、CTセンサ110Aから受信する計測値に基づいて算出される積算値をスマートメータ300から受信する積算値と比較する。但し、スマートメータ300から所定間隔で受信する積算値は、一定期間(例えば、30分)における電力の集計結果であるため、CTセンサ110Aから受信する計測値に基づいて算出される積算値も、一定期間(例えば、30分)における推定値であることに留意すべきである。
 EMS200は、このような比較結果に基づいて、CTセンサ110Aから受信する計測値の補正係数を算出する。例えば、図8に示すように、スマートメータ300から受信する積算値がCTセンサ110Aから受信する計測値に基づいて算出される積算値よりも大きい場合には、補正係数は1よりも大きな値である。
 EMS200は、図9に示すように、CTセンサ110Aから受信する計測値に補正係数を乗算することによって、CTセンサ110Aから受信する計測値を補正する。
 これによって、電力系統400から需要家施設10に供給される電力に対する課金を行うためのスマートメータ300とは別に設けられるCTセンサ110Aから受信する計測値に基づいて積算値を補完する場合であっても、課金状況を示す情報として適切な補完情報を表示することができる。
 [変更例2]
 以下において、第1実施形態の変更例2について説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 実施形態では特に触れていないが、変更例2では、EMS200(表示部220)は、スマートメータ300から所定間隔に積算値を取得できなかった一定期間において、計測値に基づいて補完情報を表示する。
 具体的には、図10に示すように、EMS200(制御部240)は、スマートメータ300から受信する積算値を管理するとともに、CTセンサ110Aから受信する計測値に基づいて算出される積算値を管理する。ここで、スマートメータ300から受信する積算値のうち、n+1回目の積算値が欠落しているケースを想定する。
 このようなケースにおいて、図10に示すように、EMS200(表示部220)は、n+1回目の期間について、CTセンサ110Aから受信する計測値に基づいて算出される積算値を補完情報として表示する。
 [変形例3]
 以下において、第1実施形態の変更例3について説明する。以下においては、第1実施形態又は第2実施形態に対する相違点について主として説明する。
 実施形態では、EMS200は、電力系統から需要家施設10に対する潮流量(電力の供給量)の抑制を要求する潮流抑制メッセージ(例えば、DR:Demand Response)を受信する。また、EMS200は、需要家施設10から電力系統に対する逆潮流量の抑制を要求する逆潮流抑制メッセージを送信する。実施形態では、潮流抑制メッセージ及び逆潮流抑制メッセージを電力指令メッセージと総称する。
 ここで、潮流抑制メッセージは、電力系統から需要家施設10に供給される電力量(潮流量)の抑制度合いを示す情報を含む。逆潮流抑制メッセージは、需要家施設10から電力系統に出力される電力量(逆潮流量)の抑制度合いを示す情報を含む。
 抑制度合いは、電力量の絶対値(例えば、○○kW)で表されてもよい。或いは、抑制度合いは、電力量の相対値(例えば、○○kWの減少)で表されてもよい。或いは、抑制度合いは、電力量の抑制割合(例えば、○○%)で表されてもよい。或いは、潮流抑制メッセージは、電力系統からの潮流の対価である買電価格を示す情報を含んでもよい。
 なお、逆潮流抑制の抑制割合とは、需要家施設10に分散電源を設置する際に、分散電源を制御するPCSの出力能力として認定を受けた出力(以下、設備認定出力)に対する割合であってもよい。分散電源の出力能力とPCSの出力能力とが異なる場合には、設備認定出力は、これらの出力能力のうち、小さい方の出力能力である。複数のPCSが設置されるケースにおいては、設備認定出力は、複数のPCSの出力能力の合計である。
 ここで、潮流抑制メッセージ及び逆潮流抑制メッセージのフォーマットとして、自動デマンドレスポンス(ADR:Automated Demand Response)に準拠したフォーマットを用いることができる。この規格に準拠する方式としては、例えばOpen ADR規格に準拠する方式を用いることができる。
 EMS200が電力指令メッセージを受信した後、電力指令メッセージが開始される時間前後で、CTセンサ110Aから計測値を受信する間隔を変更してもよい。より具体的に、電力指令メッセージの内容が開始される所定時間(例えば、10分)前から、CTセンサ110Aから計測値を受信する間隔を短くしてもよい。例えば、通常はCTセンサ110Aから第1間隔で計測値を周期的に受信していた場合には、電力指令メッセージが開始される所定時間前から第1間隔よりも短い第2間隔(例えば、1分間)で計測値を受信するようにしてもよい。
 このように電力指令メッセージが開始される前後で計測値の間隔をより短くすることによって、需要家施設の電力状況をより細かく把握することができ、需要家の利便性を向上させることができる。
 また、電力指令メッセージの抑制度合いに応じて、電力指令メッセージの実行期間内で計測値を受信する間隔を変化させてもよい。より具体的には、電力指令メッセージがデマンドレスポンスであった場合に、計測値に基づいて算出された未確定積算値が抑制量に応じて設定された閾値に近づいてきたときに、より短い間隔で計測値を受信してもよい。
 [変形例4]
 以下において、第1実施形態の変更例3について説明する。以下においては、第1実施形態又は第2実施形態に対する相違点について主として説明する。
 実施形態では、PVユニット130などの分散電源が、電力系統400にスマートメータ300を介して接続されている。「スマートメータ300を介して」は、直列的に接続されていてもよいし、図1に示すように並列的に接続されていてもよいことを指す。このような分散電源の入出力電力を計測するために、CTセンサ110Aとは別の第2CTセンサ(第2電力センサ)が、CTセンサ110Aよりも分散電源側に設置されている。より詳細には、第2CTセンサは、電力線から分岐する分散電源の入出力電力を計測するために、分岐点と分散電源の間に設置される。
 EMS200は、通信部310が、第2CTセンサから第2計測値を所定の間隔で受信する。第2計測値は、分散電源の入出力電力を示す値である。第2計測値を受信する所定の間隔は、適宜設定すればよいが、例えば、CTセンサ110Aから受信する計測値の間隔と同じ間隔に設定することができる。なお、第2計測値を受信する所定の間隔は、計測値を受信する間隔よりも短く設定してもよいし、計測値を受信する間隔よりも長く設定してもよい。
 EMS200は、第2計測値に基づいて、補完情報の内訳を表示部220に表示するようにしてもよい。補完情報の内訳を表示することによって、より細かく電力状況を把握することができるので、需要家の利便性を向上させることができる。なお、第2計測値に対して、計測値の補正に応じて補正を行なってもよい。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、CTセンサ110Aは、分電盤110に設けられている。しかしながら、実施形態はこれに限定されるものではない。CTセンサ110Aは、電力系統400から需要家施設10に供給された電力を計測可能な位置に設けられていればよい。
 実施形態では特に触れていないが、EMS200(表示部220)は、確定情報とは異なる態様で補完情報を表示してもよい。例えば、補完情報を表示する色が確定情報を表示する色と異なっていてもよい。或いは、補完情報の表示態様が点滅であり、確定情報の表示態様が点灯であってもよい。
 実施形態では特に触れていないが、EMS200とCTセンサ110Aとの間の通信及びEMS200とスマートメータ300との間の通信は、ECHONET Lite方式に準拠することが好ましい。但し、EMS200とCTセンサ110Aとの間の通信及びEMS200とスマートメータ300との間の通信は、他の通信プロトコルに準拠していてもよい。
 実施形態では特に触れていないが、EMS200は、需要家施設10に設けられるホームサーバであってもよい。或いは、EMS200は、スマートフォンに代表されるユーザ端末であってもよい。
 実施形態では、電力管理装置がEMS200であるケースを例示した。しかしながら、実施形態は、これに限定されるものではない。電力管理装置は、BEMS(Building Energy Management System)に設けられていてもよく、FEMS(Factory Energy Management System)に設けられていてもよく、SEMS(Store Energy Management System)に設けられていてもよい。
 日本国特許出願第2014-197612号(2014年9月26日出願)の全内容が、参照により本願明細書に組み込まれている。
 本発明は、電力を管理する技術に有用である。

Claims (14)

  1.  電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、
     前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、
     前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える電力管理装置。
  2.  前記一定期間毎に受信する前記積算値を示す確定情報、及び前記補完情報を表示する表示部をさらに備える請求項1に記載の電力管理装置。
  3.  前記表示部は、前記確定情報と前記補完情報とを異なる態様で表示する請求項2に記載の電力管理装置。
  4.  前記第2受信部は、n(nは0以上の整数)回目の積算値が確定してからn+1回目の積算値が確定するまでの間において、前記電力センサから前記計測値を受信する請求項1乃至請求項3のいずれか1項に記載の電力管理装置。
  5.  前記表示部は、前記n回目の積算値が確定してから前記n+1回目の積算値が確定するまでの間において、前記計測値に基づいて前記補完情報を表示する請求項4に記載の電力管理装置。
  6.  前記第2受信部は、周期的に前記計測値を受信する請求項1乃至請求項4のいずれか1項に記載の電力管理装置。
  7.  前記第1受信部が前記n+1回目の積算値を受信すると、当該積算値に基づいて前記補完情報を補正する補正部を備える請求項1に記載の電力管理装置。
  8.  前記表示部は、前記積算値を取得できなかった一定期間において、前記計測値に基づいて前記補完情報を表示する請求項2に記載の電力管理装置。
  9.  前記電力系統から前記需要家施設に対する潮流量又は前記需要家施設から前記電力系統に対する逆潮流量の抑制を要求する電力指令メッセージを受信する第3受信部を有し、
     前記制御部は、前記第3受信部から前記電力指令メッセージを受信した旨の信号を受信した後、前記第2受信部に前記計測値を受信する間隔を変更するように指示する請求項1乃至請求項8のいずれか1項に記載の電力管理装置。
  10.  前記第2受信部は、前記電力指令メッセージの内容を実行する期間中に前記計測値を受信する間隔を変更する請求項9に記載の電力管理装置。
  11.  前記電力系統に前記スマートメータを介して接続された分散電源と、
     前記電力センサよりも前記分散電源側に設置された第2電力センサと、
     前記第2電力センサから第2計測値を所定の間隔で受信する第4受信部とをさらに有する請求項1乃至請求項10のいずれか1項に記載の電力管理装置。
  12.  前記第4受信部は、前記第2計測値を、前記第2受信部が前記計測値を受信する間隔と同じ間隔で受信する請求項11に記載の電力管理装置。
  13.  電力系統と需要家施設との間に流れる電力量を計測するスマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信し、
     前記スマートメータとは別に設けられた電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信し、
     前記計測値に基づいて前記積算値を補完する補完情報を算出する電力管理方法。
  14.  電力管理装置と、
     電力系統と需要家施設との間に流れる電力量を計測するスマートメータとは別に設けられた電力センサとを備え、
     前記電力管理装置は、
     前記スマートメータから、前記電力系統と前記需要家施設との間に一定期間内に流れた電力を集計した値である積算値を前記一定期間毎に所定間隔で受信する第1受信部と、
     前記電力センサから、前記需要家施設内に流れる電力の計測値を前記所定間隔よりも短い間隔で受信する第2受信部と、
     前記計測値に基づいて前記積算値を補完する補完情報を算出する制御部とを備える電力管理システム。
PCT/JP2015/076222 2014-09-26 2015-09-16 電力管理装置、電力管理方法及び電力管理システム WO2016047511A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15844196.4A EP3200315B1 (en) 2014-09-26 2015-09-16 Power management device, power management method, and power management system
US15/511,604 US20170307665A1 (en) 2014-09-26 2015-09-16 Power management apparatus, power management method, and power management system
JP2016550124A JP6386064B2 (ja) 2014-09-26 2015-09-16 電力管理装置、電力管理方法及び電力管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197612 2014-09-26
JP2014-197612 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047511A1 true WO2016047511A1 (ja) 2016-03-31

Family

ID=55581038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076222 WO2016047511A1 (ja) 2014-09-26 2015-09-16 電力管理装置、電力管理方法及び電力管理システム

Country Status (4)

Country Link
US (1) US20170307665A1 (ja)
EP (1) EP3200315B1 (ja)
JP (1) JP6386064B2 (ja)
WO (1) WO2016047511A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212861A (ja) * 2016-05-27 2017-11-30 日本電気株式会社 電力調整システム、情報処理装置、情報処理方法、およびプログラム
JP2021164201A (ja) * 2020-03-30 2021-10-11 東京瓦斯株式会社 電力監視制御装置、電力監視制御プログラム
JP2021192576A (ja) * 2020-06-05 2021-12-16 東京瓦斯株式会社 電力監視制御装置、及び電力監視制御プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586076B2 (ja) * 2013-03-15 2019-10-02 フルークコーポレイションFluke Corporation 分離した無線モバイル装置を用いて赤外線画像に可視的な視聴覚の注釈付け
JP6699557B2 (ja) * 2014-11-07 2020-05-27 日本電気株式会社 通信システム、通信装置、その制御方法、およびプログラム
US11217995B2 (en) * 2015-11-26 2022-01-04 Mitsubishi Electric Corporation Power-distribution-system management apparatus, power-distribution-system management system, and power-generation-amount estimating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021616A (ja) * 2012-07-13 2014-02-03 Kyocera Corp 管理装置、表示装置、表示処理方法、および画像作成プログラム
JP2014153337A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 電力量算出装置および電力量算出システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406937B2 (en) * 2008-03-27 2013-03-26 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility
US9130402B2 (en) * 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
MY152360A (en) * 2007-11-12 2014-09-15 Eon Consulting Proprietary Ltd Method, apparatus and system for demand side electrical load management
EP2359456A2 (en) * 2008-12-04 2011-08-24 American Power Conversion Corporation Energy savings aggregation
US9383222B2 (en) * 2012-06-29 2016-07-05 General Electric Company Methods and systems for prevention of data corruption
US9563215B2 (en) * 2012-07-14 2017-02-07 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US8849715B2 (en) * 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US20140277800A1 (en) * 2013-03-15 2014-09-18 Tom E. Hughes Power Management System For A Structure
US20140266154A1 (en) * 2013-03-15 2014-09-18 General Electric Company Systems and methods for storing energy usage data based on temperature
JPWO2014185035A1 (ja) * 2013-05-17 2017-02-23 日本電気株式会社 電力ネットワークシステム並びに電力調整装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021616A (ja) * 2012-07-13 2014-02-03 Kyocera Corp 管理装置、表示装置、表示処理方法、および画像作成プログラム
JP2014153337A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 電力量算出装置および電力量算出システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212861A (ja) * 2016-05-27 2017-11-30 日本電気株式会社 電力調整システム、情報処理装置、情報処理方法、およびプログラム
JP2021164201A (ja) * 2020-03-30 2021-10-11 東京瓦斯株式会社 電力監視制御装置、電力監視制御プログラム
JP7356946B2 (ja) 2020-03-30 2023-10-05 東京瓦斯株式会社 電力監視制御装置、電力監視制御プログラム
JP2021192576A (ja) * 2020-06-05 2021-12-16 東京瓦斯株式会社 電力監視制御装置、及び電力監視制御プログラム
JP7350693B2 (ja) 2020-06-05 2023-09-26 東京瓦斯株式会社 電力監視制御装置、及び電力監視制御プログラム

Also Published As

Publication number Publication date
EP3200315B1 (en) 2020-05-27
US20170307665A1 (en) 2017-10-26
JP6386064B2 (ja) 2018-09-05
JPWO2016047511A1 (ja) 2017-08-03
EP3200315A4 (en) 2018-06-27
EP3200315A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6386064B2 (ja) 電力管理装置、電力管理方法及び電力管理システム
US10559046B2 (en) Power supply management system
JP5372724B2 (ja) 自然エネルギを用いた発電システム
US8990114B2 (en) Electric power interchange system
KR101132948B1 (ko) 전기자동차 충방전 시스템, 충방전 장치, 충방전 방법
US9153963B2 (en) Electric power control apparatus and grid connection system having same
US10298056B2 (en) Power control system, power control method, and recording medium
US20160006245A1 (en) Passive peak reduction systems and methods
US10700524B2 (en) Management device and control method
JP2008182851A (ja) 電力貯蔵装置及びシステム
JP6121816B2 (ja) 電力表示装置
US9804212B2 (en) Energy management system
EP2849302B1 (en) Energy management device, energy management method and program
US11277026B2 (en) Power management server, power management method, and power management system
JP2016073003A (ja) 電力制御システム、方法及び遮断制御装置
US20150326017A1 (en) Power management apparatus and power management method
WO2015001701A1 (ja) 電力管理システム及び制御装置
US20180226804A1 (en) Power coordination control system, power coordination control method, and non-transitory storage medium
JP6328508B2 (ja) 集合住宅節電システム
WO2014034007A1 (ja) 電力制御装置、およびそれを用いた電力供給システム
EP2851690B1 (en) Display device, display system, and display method
WO2017145459A1 (ja) 電力系統接続制御システム、電力系統接続制御方法および電力系統接続制御プログラム
JP2016144234A (ja) 電力管理装置、表示装置及び電力管理方法
JP2016138855A (ja) 電力管理装置、表示装置及び電力管理方法
JP6487265B2 (ja) 電力管理装置及び電力管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550124

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015844196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844196

Country of ref document: EP

Ref document number: 15511604

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE