WO2016047504A1 - Steam reforming catalyst composition and steam reforming catalyst - Google Patents

Steam reforming catalyst composition and steam reforming catalyst Download PDF

Info

Publication number
WO2016047504A1
WO2016047504A1 PCT/JP2015/076168 JP2015076168W WO2016047504A1 WO 2016047504 A1 WO2016047504 A1 WO 2016047504A1 JP 2015076168 W JP2015076168 W JP 2015076168W WO 2016047504 A1 WO2016047504 A1 WO 2016047504A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam reforming
reforming catalyst
catalyst
particles
catalyst composition
Prior art date
Application number
PCT/JP2015/076168
Other languages
French (fr)
Japanese (ja)
Inventor
憲之 高橋
林 克彦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2016550119A priority Critical patent/JP6442519B2/en
Publication of WO2016047504A1 publication Critical patent/WO2016047504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a steam reforming catalyst composition and a steam reforming catalyst composition comprising a steam reforming catalyst active component having a function capable of promoting a steam reforming reaction to obtain hydrogen by reforming a fuel gas containing hydrocarbon. It relates to a reforming catalyst.
  • a fuel cell is a cell that converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and as the hydrogen source, hydrogen obtained by reforming city gas, hydrocarbons, etc. It's being used.
  • the city gas is a gaseous fuel mainly composed of natural gas, and typically contains 87 vol% or more of methane.
  • a nickel-based catalyst having a transition metal element represented by nickel as a catalytically active component is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-74396
  • Cu, Co, Fe, Ni, Mn, Zn, Sn, Cd, Pd Cu, Co, Fe, Ni, Mn, Zn, Sn, Cd, Pd, and the like as metal particle dispersed oxides that can function as catalysts for steam reforming.
  • “Reducible metal oxides” that can be reduced to metal under hydrogen atmosphere from room temperature to 1500 ° C., such as oxides of Ag, Ru, Rh, Mo, W and In; Al, Mg, Si, Zr, Ti, Hf And oxide particles such as oxides of Ce, etc., which are composed of a solid phase with a “non-reducible metal oxide” that is not reduced to metal under a hydrogen atmosphere at room temperature to 1500 ° C.
  • a metal particle dispersed oxide is disclosed, in which metal particles are deposited and internal metal particles are deposited inside the oxide particles.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-144402 discloses, as a steam reforming catalyst capable of suppressing coking (carbon deposition), a catalyst activity comprising fine particles of a metal selected from iron group metals such as nickel.
  • a steam reforming catalyst having a core-shell type structure in which the component is a core and the core is surrounded by a shell comprising a catalyst support component selected from silica, alumina, zirconia and titania.
  • transition metal-based catalyst in which a transition metal element represented by nickel is used as a steam reforming catalyst active component, it has been necessary to further improve the steam reforming performance.
  • this kind of transition metal catalyst in order to use this kind of transition metal catalyst as a steam reforming catalyst, it is necessary to reduce and activate it before using it.
  • this type of catalyst is reduced at a temperature of 500 ° C. or higher, the phase transition of the oxide to the metal phase causes sintering (sintering), so the activity of the active component of the steam reforming catalyst decreases.
  • sintering sintering
  • the present invention is superior in steam reforming performance to conventionally proposed transition metal catalysts comprising a transition metal element as a steam reforming catalyst active component, and further, reduction treatment at a temperature of 500 ° C. or higher And, in the reforming reaction, it is intended to propose a new steam reforming catalyst composition in which the catalyst performance does not decrease.
  • the present invention proposes a steam reforming catalyst composition containing catalytically active particles containing a steam reforming catalyst active component and vanadium.
  • the steam reforming catalyst composition proposed by the present invention is superior in steam reforming performance to the conventionally proposed transition metal catalysts by containing vanadium and is reduced at a temperature of 500 ° C. or more. It is also possible to suppress the deterioration of the catalyst performance by suppressing the sintering during the treatment or the reforming reaction.
  • FIG. 2 It is the block diagram which showed the outline of the fuel-reforming evaluation apparatus used by the gas-reforming evaluation test of the Example. It is a FE-SEM / EDX image of the steam reforming catalyst composition (sample) obtained in Example 2-1, (a) is an enlarged photograph (SEM image) of catalytically active particles, (b) in the particles It is an enlarged photograph showing the distribution of oxygen (O), (c) an enlarged photograph showing the distribution of vanadium (V) in the particle, and (d) shows the distribution of nickel in the particle It is an enlarged picture. Note that “Grey”, “K” and “L” at the upper left of FIG. 2 relate to the observation conditions and are not related to the present invention.
  • K and L are symbols of characteristic X-rays used for element detection, and indicate the orbits (energy levels) of the excited electrons. It is a XRD pattern of the steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in Example 1, Examples 2-1 to 2-3 and Comparative Example 1. It is a XRD pattern of the steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in Examples 2-4 to 2-7. It is a XRD pattern of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged”) obtained in Example 1, Examples 2-1 to 2-3 and Comparative Example 1.
  • Example 2-7 It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged”) obtained in Example 2-3. It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 2-4. It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 2-5. It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 2-6. It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 2-7.
  • a steam reforming catalyst composition (hereinafter referred to as “the present catalyst composition") as an example of an embodiment of the present invention comprises catalytically active particles (hereinafter referred to as “the present catalyst particles”) containing a steam reforming catalyst active component and vanadium. And a steam reforming catalyst composition comprising
  • the form of the present catalyst composition may be any form such as powder, slurry, pellet, layered product and the like.
  • the present catalyst particles are catalytically active particles containing a steam reforming catalytically active component and vanadium. Vanadium reacts with the steam reforming catalyst active component to form a composite oxide. This complex oxide is gradually reduced by the reduction treatment for catalyst activation to express activity. The reduced active component is eventually deactivated by heat sintering, but due to hydrogen in the reforming reaction, the remaining complex oxide is newly reduced to exhibit activity. By repeating this cycle, the active ingredient can be supplied and as a result, the life of the catalyst can be extended.
  • vanadium in the catalyst particles containing the steam reforming catalytic active component such as nickel, reduction of the specific surface area after reduction activation is suppressed and the steam reforming performance is improved as compared to the case where vanadium is not contained. It is possible to further suppress the deterioration of the performance due to the sintering in the reduction activation treatment or the reforming reaction at a temperature of 500 ° C. or more.
  • the catalyst particles may be aggregated particles in which primary particles are aggregated, or particles in which the primary particles are monodispersed.
  • steam reforming catalyst active ingredient an element known to have an effect of promoting a steam reforming reaction can be used.
  • the steam reforming catalyst active component an element known to have an effect of promoting a steam reforming reaction.
  • at least one element of Fe, Ni, Co, Ru, Rh, Pt, Pd and Ir can be mentioned. Two or more of these may be used.
  • Ru or Rh is preferable in that it can further promote the steam reforming reaction and the conditions for reduction activation of the present catalyst composition can be relaxed.
  • the steam reforming catalytically active component may be present in the form of a metal (including an alloy), an oxide (including a complex oxide), or a mixture thereof, or a solid solution thereof, in particular in the form of an oxide or metal. Preferably it is present. That is, it is preferable to exist as an oxide in the state before the reduction activation treatment, and to exist in a state in which a part of the oxide is reduced, for example, a mixed state of metal and oxide after the reduction treatment.
  • vanadium In the catalyst particles, vanadium is preferably present in the form of an oxide, a metal, or a mixture thereof, or a solid solution thereof. That is, it exists as an oxide in the state before the reduction activation treatment, and after the reduction activation treatment, at least a part of vanadium is in a state in which the oxide is reduced, for example, a steam reforming catalyst active component such as Ni. It is preferable to form an alloy, to form a solid solution, or to exist in the form of a mixture of these.
  • the vanadium is preferably present on the surface of the catalytically active particles in order to efficiently act on the steam reforming catalytically active component. In particular, it is preferable to be present more on the surface than inside the catalytically active particles. Further, it is more preferable that the vanadium is present in a dispersed state on the surface of the catalytically active particles, without being unevenly distributed.
  • nickel hydroxide (Ni (OH) 2 ) is added in an aqueous solution containing a water-soluble vanadium compound, for example, vanadium such as ammonium vanadate (NH 4 VO 3 ).
  • the catalyst active particle powder such as particle powder may be put in, impregnated and fired. However, it is not limited to such a method.
  • the catalyst particles contain vanadium, sintering can be effectively suppressed.
  • vanadium in a proportion of 1 mol% or more with respect to 100 mol% of the steam reforming catalyst active component.
  • vanadium pentoxide is formed when producing the catalyst particles. Since there is a possibility of melting at the time of catalyst calcination, it is not preferable that the content of vanadium is too high.
  • the vanadium content is preferably contained in a proportion of 1 mol% or more with respect to 100 mol% of the steam reforming catalyst active component, more preferably 200 mol% or less, among them 2 mol% or more or 100 mol% or less Among them, it is particularly preferable to contain at a ratio of 3 mol% or more or 45 mol% or less.
  • the catalyst particles may have silicon oxide or zirconium oxide or both on the particle surface.
  • the catalyst particles are formed by the presence of a suitable amount of silicon oxide or zirconium oxide or both (also referred to as "surface oxide") on the surface of the present catalyst particles (also referred to as "core particles”) containing vanadium.
  • surface oxide silicon oxide or zirconium oxide or both
  • core particles silicon oxide or zirconium oxide or both
  • reduction activation treatment or reforming reaction is performed at a temperature of 500 ° C. or more without lowering the catalytic performance inherent to the present catalyst particles. It is possible to further suppress the sintering at the time. In particular, it is possible to further maintain the steam reforming catalyst performance after being exposed to a reducing environment or a high temperature environment of 550 ° C. or more for a long time.
  • examples of the silicon oxide include silicon suboxide (Si 3 O 2 ) and the like.
  • zirconium dioxide (ZrO 2 ) can be mentioned as the zirconium oxide.
  • At least one of Ca, Ba, Mg, Ti, Al, Ce, Hf, La, and V is provided on the surface of the present catalyst particles.
  • An element (referred to as "element A”) may be present. Two or more of these may be included. The presence of such an element A on the surface of the present catalyst particles can further enhance the steam reforming catalyst performance. Under the present circumstances, it is preferable that the said element A is disperse
  • silicon oxide, zirconium oxide and two or more of the elements A may be present in a mixed state, or silicon oxide, zirconium oxide, and the element A May exist separately.
  • the surface oxide may be present so as to cover the entire surface of the present catalyst particles, may be present in a layer having a certain thickness, or may be partially present on the surface of the core particles. There may be portions where the surface oxide is not present.
  • the surface coverage of silicon oxide or zirconium oxide (the ratio of 100% when silicon oxide or zirconium oxide is present on the entire surface of the catalyst particle) is 10% or more. It is preferable from the viewpoint of achieving sufficient steam reforming catalyst performance, and in particular, 20% or more or 100% or less from the viewpoint of the balance between steam reforming performance and heat resistance, among them 35% or more or 75% or less preferable.
  • the surface coverage of the silicon oxide or zirconium oxide and the surface coverage of the silicon compound or zirconium compound (when the silicon compound or zirconium compound is present on the entire surface of the catalyst particle is 100%,
  • the ratio of presence of the silicon compound or the zirconium compound is the same value. Therefore, in the examples described later, the surface coverage of the silicon compound or zirconium compound is calculated to be the surface coverage of the silicon oxide or zirconium oxide. Thus, even in the case of 100% coating, the gas flows through the micro cracks.
  • the ratio of the content of silicon oxide or zirconium oxide or both to 100 wt% of the core particles is preferably 2 to 15 wt% in the oxide state before reduction activation.
  • the ratio of the content of silicon oxide or zirconium oxide or both of them to 100 wt% of core particles is 2 wt% or more, the heat resistance effect can be exhibited, and if it is 15 wt% or less, A homogeneous product can be obtained.
  • 2 wt% or more or 5 wt% or less is particularly preferable.
  • the core particle powder is put in a solution containing silicon or zirconium or both and impregnated, and optionally dried and It can be formed by firing.
  • the silicon oxide or the zirconium compound can be oxidized to the silicon oxide or the zirconium oxide by surface-treating the core particle with a solution containing silicon or zirconium or both of them and then firing in the air. it can.
  • after surface-treating core particles using a silane coupling agent etc. they are dried if necessary, and then heat-treated at 300 ° C. or higher, preferably 400 to 600 ° C., to form the surface of the present catalyst particles.
  • the core particle powder is impregnated in a solution containing silicon or zirconium, for example, an ethanol solution of silicon alkoxide or zirconium alkoxide, dried as necessary, and then in a solution containing the element A as necessary.
  • the present catalyst particles may be impregnated with the catalyst particles, dried if necessary, and then fired to allow surface oxides to be present on the surfaces of the catalyst particles.
  • components other than the above may exist on the surface of the present catalyst particles.
  • an amount of 1 wt% or less based on Si or Zr present on the surface of the present catalyst particles does not affect the effect of the present catalyst composition, and allows any component to be contained. be able to.
  • the present catalyst composition may contain other components in addition to the present catalyst particles.
  • the oxide particle containing metal oxides such as an alumina, can be mentioned, for example. By containing such oxide particles, the present catalyst particles can be separated from each other, so that sintering can be prevented and the catalyst activity can be adjusted to a suitable level.
  • an oxide particle containing oxides such as Al, Ti, Si, Zr, and Ce, can be mentioned, for example.
  • a state in which the steam reforming catalyst active component is reduced by subjecting the present catalyst composition to a reduction treatment in is preferably from 0.1m 2 / g ⁇ 100m 2 / g, among others 0.5 m 2 / g or more or 75 m 2 / g or less, the at 5 m 2 / g or more or 65 m 2 / g or less among them Is particularly preferred.
  • a hydroxide of a steam reforming catalyst active component such as nickel hydroxide and an aqueous solution containing vanadium are mixed, and an appropriate time is obtained under appropriate conditions.
  • the mixture is allowed to stand so that the particles of the hydroxide are impregnated and adsorbed with the particles of the hydroxide, dried by evaporation to dryness, or filtered and dried, and then calcined at 300 to 600 ° C. (product temperature) in the air atmosphere (calcination)
  • the specific surface area of the steam reforming catalyst active component can be adjusted by adjusting the calcination temperature, the specific surface area of the nickel hydroxide and the like. However, it is not limited to such a method.
  • the catalyst composition can be prepared as follows. However, the manufacturing method described below is merely an example.
  • An aqueous solution containing vanadium (for example, an aqueous solution of ammonium vanadate) is mixed with a hydroxide powder or an oxide powder of at least one element selected from Fe, Ni, Co, Ru, Rh, Pt, Pd and Ir, Stir for 15 minutes to 12 hours at room temperature to 50 ° C. to impregnate and adsorb the vanadium on the hydroxide powder particles, heat to evaporate to dryness, or filter and dry, if necessary
  • the catalyst particles can be obtained by grinding accordingly.
  • the present catalyst particles thus obtained are impregnated as a core particle in a solution containing silicon or zirconium or both of them, if necessary
  • the material is calcined so as to maintain a temperature of 300 to 600 ° C. (material temperature) for 30 minutes to 6 hours in the air atmosphere, and then press-molded if necessary, and then 300 to 900 in the air atmosphere.
  • the catalyst composition can be obtained by calcining so as to maintain a temperature of 30 ° C. (material temperature) for 30 minutes to 6 hours, and pulverizing and sieving as required.
  • a steam reforming catalyst (hereinafter, referred to as "the present catalyst") as an example of an embodiment of the present invention is a catalyst formed using the present catalyst composition.
  • the present catalyst can be formed into an appropriate shape such as a pellet, and can be used alone as a catalyst, or can be used as a form supported on a substrate made of a ceramic or a metal material.
  • the material of the base examples include refractory materials such as ceramics and metal materials such as ferritic stainless steel.
  • the material of the ceramic base material is refractory ceramic material such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, Mention may be made of petalite, alpha alumina and aluminosilicates.
  • Examples of the material of the metal base include a refractory metal, such as stainless steel or a corrosion-resistant alloy containing iron as a main component.
  • the shape of the substrate may be honeycomb, pellet, or spherical.
  • the present catalyst is prepared by mixing and stirring the present catalyst composition, a binder and water to obtain a slurry, and applying the obtained slurry to a base material such as a ceramic honeycomb body, and calcining the obtained slurry on the base material surface.
  • a base material such as a ceramic honeycomb body
  • the catalyst layer may be a single layer or a multilayer of two or more layers.
  • Comparative Example 1 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder. To 8 g of the catalyst powder, 1.6 g of a 5 wt% PVA (polyvinyl alcohol) aqueous solution was added, dispersed uniformly in a mortar, placed in a 30 30 mm mold, and pressed into a disc at a pressure of 90 kN. The obtained disk-like molded product is calcined at 750 ° C.
  • PVA polyvinyl alcohol
  • Example 1 0.19 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 17.5 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to this aqueous solution of ammonium vanadate, and the mixture was stirred for 3 hours with a stirrer. Next, the resultant was heated to evaporate the water content, and the obtained solid was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder.
  • NH 4 VO 3 ammonium vanadate
  • Example 2-1 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 0.39 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 36 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-2 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 0.66 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 65 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-3 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 1.25 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 115 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-4 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 2.23 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 205 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-5 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 5.4 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 500 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-6 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 8.5 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 770 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 2-7 In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 12.6 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 1160 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
  • Example 3 An aqueous solution of ammonium vanadate was prepared by dissolving 0.66 g of ammonium vanadate (NH 4 VO 3 ) in 65 mL of pure water at 50 ° C. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to this aqueous solution of ammonium vanadate, and the mixture was stirred for 3 hours with a stirrer. Next, the water was evaporated by heating, and the obtained solid was crushed in a mortar to obtain a powder sample.
  • NH 4 VO 3 ammonium vanadate
  • nickel hydroxide particle powder specific surface area 120 m 2 / g
  • a silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., molecular weight 221.4) was added to 10 mL of water, and the precursor aqueous solution was uniformly stirred In addition, after stirring with a stirrer for 3 hours to uniformly coat the powder, the water was evaporated by heating to dry the sample. The obtained solid sample was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder.
  • a silane coupling agent 3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., molecular weight 221.4
  • Example 4 In the preparation of the aqueous precursor solution of Example 3, the procedure of Example 3 was repeated, except that 0.74 g of zirconium acetate (molecular weight: 327.4) was added to 10 mL of water instead of 0.78 g of the silane coupling agent.
  • a steam reforming catalyst composition (sample) was obtained comprising “V-added nickel-based catalytically active particle powder having zirconium oxide on the surface”.
  • Example 5 In preparation of the aqueous precursor solution of Example 3, instead of adding 0.78 g of a silane coupling agent (3-aminopropyltriethoxysilane, “KBE-903” manufactured by Shin-Etsu Silicone Co., Ltd.) to 10 mL of water, a silane coupling agent ( “Silicon oxide” in the same manner as in Example 3, except that 0.78 g of “KBE-903” manufactured by Shin-Etsu Silicone Co., Ltd., molecular weight 221.4 and 0.74 g of zirconium acetate (molecular weight 327.4) were added to 10 mL of water And a steam reforming catalyst composition (sample) comprising “V-added nickel-based catalyst active particle powder having zirconium oxide on the surface”.
  • a silane coupling agent 3-aminopropyltriethoxysilane, “KBE-903” manufactured by Shin-Etsu Silicone Co., Ltd.
  • Example 6 An aqueous solution of ammonium vanadate was prepared by dissolving 0.66 g of ammonium vanadate (NH 4 VO 3 ) in 65 mL of pure water at 50 ° C. After adding 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) to this ammonium vanadate aqueous solution and stirring with a stirrer for 3 hours, 0.1 mL of a ruthenium nitrate solution of Ru 50 g / L is added and stirring is further performed for 1 hour. The vanadium and ruthenium were sufficiently adsorbed on the surface of the nickel hydroxide particles.
  • the resultant was heated and evaporated to dryness to evaporate the water content, and the obtained solid was ground in a mortar to obtain a powder sample.
  • a silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd.) is added to 10 mL of water, and 0.74 g of zirconium acetate (molecular weight 327.4) is further added.
  • a uniformly stirred precursor aqueous solution was added, and stirred with a stirrer for 3 hours to uniformly coat the powder, and then the water was evaporated by heating and dried to obtain a solid sample sample.
  • the obtained solid sample was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder.
  • 1.6 g of a 5 wt% PVA aqueous solution was added to 8 g of the catalyst powder, dispersed uniformly in a mortar, placed in a ⁇ 30 mm mold, and pressed into a disc at a pressure of 90 kN.
  • the obtained disk-like molded body is fired at 750 ° C.
  • a steam reforming catalyst composition (sample) was obtained, which was composed of “V ⁇ Ru-added nickel-based catalytically active particle powder in which silicon oxide and zirconium oxide are present on the surface” having a size of 0.5 mm to 4.0 mm.
  • Example 7 In Example 5, the mixing ratio of the aqueous precursor solution was adjusted to change the amount of silicon oxide present on the particle surface. That is, the silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., “molecular weight 221.4”) was changed to 1.56 g, and further to zirconium acetate (molecular weight 327.4) 1.48 g . In the same manner as in Example 5 except this point, a steam reforming catalyst composition (sample) comprising "V-doped nickel-based catalyst active particle powder having silicon oxide and zirconium oxide present on the surface" was obtained.
  • the silane coupling agent 3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., "molecular weight 221.4”
  • zirconium acetate molecular weight 327.4
  • this fuel reforming evaluation system is a city gas supplied from a cylinder as the gaseous fuel 1 (methane 89 to 90 vol%, ethane 4 to 6 vol%, propane 4 to 5 vol%, butane less than 1 vol%
  • pure water in the pure water tank 3 can be adjusted in flow rate by the gas mass flow controller 2 and the liquid mass flow controller 4, respectively.
  • the pure water passes through the vaporizer 6 in the electric furnace 5 to become water vapor, is mixed with the gaseous fuel in the fuel gas / steam mixing section 7, and is sent to the reforming catalyst 9 sealed in the stainless steel container in the electric furnace 8.
  • the gas reformed by the reforming catalyst 9 is exhausted through the bubbler 11. A part of the exhaust gas is sucked by a pump incorporated in a gas chromatograph (hereinafter referred to as “GC”) 13, and the reformed gas which has passed through the water removing unit 12 is quantified by the GC 13.
  • GC gas chromatograph
  • the S / C ratio was raised to 4.0 and the temperature was raised to 750 ° C. and maintained at 750 ° C. for 90 minutes.
  • the hydrogen content was returned to an A / C ratio of 2.5, lowered to 550 ° C., and then 10 minutes elapsed (Aged value).
  • the steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in the above examples and comparative examples, and after the above gas reforming evaluation test, that is, reduction activation treatment, measurement of hydrogen generation amount X-ray diffraction analyzer (Rigaku Co., Ltd.) for each of the steam reforming catalyst compositions (referred to as “Aged after”) collected by heating the samples that had undergone the accelerated deterioration test and the hydrogen generation amount to room temperature in a nitrogen atmosphere X-ray diffraction (XRD) measurement was carried out using RINT TTRIII)) (see FIGS. 3 to 6).
  • pre sample before gas evaluation test
  • Minimum covering area (m 2 / g) 6.02 x 10 23 x 13 x 10 -20 / surface treating agent molecular weight
  • Surface treating agent added amount (g) Ni (OH) 2 weight (g) x Ni (OH) 2 Specific surface area (m 2 / g) / minimum coverage area (m 2 / g)
  • the surface treatment agent indicates the silane coupling agent and zirconium acetate used in the above examples.
  • Table 2 the surface coverage of silicon oxide (silane coupling agent) or zirconium oxide (zirconium acetate) or a mixture of silicon oxide and zirconium oxide is shown as "coverage”.
  • Example 1 Each of the steam reforming catalyst compositions (samples) obtained in the above Example 1, Examples 2-1 to 2-2 and Examples 3 to 7 was used as an EDX of FE-SEM (manufactured by JSM-7001F / JEOL). It was confirmed that in any steam reforming catalyst composition, vanadium is present more on the surface than inside the catalytically active particles, and is not scattered on the surface of the catalytically active particles but on the surface. It could be confirmed that it exists in a dispersed state.
  • the thermal deterioration can be suppressed by the presence of the silicon oxide or the zirconium oxide or both of them on the surface of the catalytically active particles as described above, on the other hand, the silicon oxide or the zirconium oxide or these It was also found that the thermal characteristics can be improved and the thermal deterioration can be similarly suppressed by increasing the content of vanadium by a specific amount without both being present on the surface of the catalytically active particles.
  • the content of vanadium is increased by a specific amount without silicon oxide or zirconium oxide or both being present on the particle surface, a large amount of expensive vanadium must be contained, and the vanadium component is segregated And tend to be uneven. Therefore, in view of workability and cost, it can be considered preferable to have silicon oxide or zirconium oxide or both present on the surface of the catalytically active particles.

Abstract

The purpose of the present invention is to provide a novel steam reforming catalyst composition in which catalyst performance does not decrease even in reforming reactions and reduction treatments at temperatures of 500 °C or more. Provided is a steam reforming catalyst composition comprising catalytically active particles that contain: a steam reforming catalytically active component that has the effect of promoting the steam reforming reaction; and vanadium. Adding vanadium makes it possible to minimize sintering during a reforming reaction or a reduction treatment at temperatures of 500 °C or more and thereby minimize the deterioration of catalyst performance without decreasing the original catalyst performance of the steam reforming catalytically active component.

Description

水蒸気改質触媒組成物及び水蒸気改質触媒Steam reforming catalyst composition and steam reforming catalyst
 本発明は、炭化水素を含有する燃料ガスを改質して水素を得る水蒸気改質反応を促進させることができる機能を備えた水蒸気改質触媒活性成分を含む、水蒸気改質触媒組成物及び水蒸気改質触媒に関する。 The present invention relates to a steam reforming catalyst composition and a steam reforming catalyst composition comprising a steam reforming catalyst active component having a function capable of promoting a steam reforming reaction to obtain hydrogen by reforming a fuel gas containing hydrocarbon. It relates to a reforming catalyst.
 燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換する電池であり、その水素源としては、都市ガス、炭化水素などを改質して得られる水素が利用されている。都市ガスとは、天然ガスを主成分とした気体燃料であり、典型的にはメタンを87vol%以上含むものである。 A fuel cell is a cell that converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and as the hydrogen source, hydrogen obtained by reforming city gas, hydrocarbons, etc. It's being used. The city gas is a gaseous fuel mainly composed of natural gas, and typically contains 87 vol% or more of methane.
 都市ガスなどを改質して水素を得る水蒸気改質反応では、都市ガスの主成分である炭化水素(CnHm)に水蒸気を加え、燃料改質触媒を用いて、次の式(1)のように化学反応させて水素(H2)を生成する反応が主反応として進行することになる。また、式(1)の反応で得られた一酸化炭素(CO)は多くの水蒸気と結合するため、水性ガスシフト反応によってさらに水素を生成する反応が進行することになる(式(2)参照)。 In the steam reforming reaction for reforming city gas etc. to obtain hydrogen, steam is added to hydrocarbon (CnHm) which is the main component of city gas, and a fuel reforming catalyst is used, as shown in the following formula (1) The reaction to form hydrogen (H 2 ) by the chemical reaction to proceed as the main reaction. Further, since carbon monoxide (CO) obtained by the reaction of the formula (1) combines with a large amount of water vapor, a reaction to generate hydrogen further proceeds by the water gas shift reaction (see the formula (2)) .
(1)・・・Cnm+nH2O→nCO+(m/2+n)H2
(2)・・・CO +H2O→CO2+H2
(1) ... C n H m + n H 2 O → n CO + (m / 2 + n) H 2
(2) ... CO + H 2 O → CO 2 + H 2
 このような水蒸気改質反応に用いる改質触媒として、従来から、ニッケルに代表される遷移金属元素を触媒活性成分としてなるニッケル系触媒が知られている。 Conventionally, as a reforming catalyst used for such a steam reforming reaction, a nickel-based catalyst having a transition metal element represented by nickel as a catalytically active component is known.
 例えば特許文献1(特開2005-74396号公報)には、水蒸気改質用触媒として機能し得る金属粒子分散酸化物として、Cu、Co、Fe、Ni、Mn、Zn、Sn、Cd、Pd、Ag、Ru、Rh、Mo、WおよびInの酸化物など、室温~1500℃の水素雰囲気下で金属へ還元され得る「還元性金属酸化物」と、Al、Mg、Si、Zr、Ti、HfおよびCeの酸化物など、室温~1500℃の水素雰囲気下で金属へ還元されない「難還元性金属酸化物」との固溶相からなる酸化物粒子を具備し、該酸化物粒子の表面に表面金属粒子が析出すると共に、前記酸化物粒子の内部に内部金属粒子が析出してなる金属粒子分散酸化物が開示されている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-74396), Cu, Co, Fe, Ni, Mn, Zn, Sn, Cd, Pd, Cu, Co, Fe, Ni, Mn, Zn, Sn, Cd, Pd, and the like as metal particle dispersed oxides that can function as catalysts for steam reforming. “Reducible metal oxides” that can be reduced to metal under hydrogen atmosphere from room temperature to 1500 ° C., such as oxides of Ag, Ru, Rh, Mo, W and In; Al, Mg, Si, Zr, Ti, Hf And oxide particles such as oxides of Ce, etc., which are composed of a solid phase with a “non-reducible metal oxide” that is not reduced to metal under a hydrogen atmosphere at room temperature to 1500 ° C. A metal particle dispersed oxide is disclosed, in which metal particles are deposited and internal metal particles are deposited inside the oxide particles.
 また、特許文献2(特開2005-144402号公報)には、コーキング(炭素析出)を抑制することができる水蒸気改質触媒として、ニッケルなどの鉄族金属から選ばれる金属の微粒子からなる触媒活性成分をコア部とし、該コア部の周囲がシリカ、アルミナ、ジルコニア及びチタニアから選ばれる触媒担体成分からなるシェル部で被覆されたコア・シェル型構造を有する水蒸気改質触媒が開示されている。 Further, Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-144402) discloses, as a steam reforming catalyst capable of suppressing coking (carbon deposition), a catalyst activity comprising fine particles of a metal selected from iron group metals such as nickel. There is disclosed a steam reforming catalyst having a core-shell type structure in which the component is a core and the core is surrounded by a shell comprising a catalyst support component selected from silica, alumina, zirconia and titania.
特開2005-74396号公報JP 2005-74396 A 特開2005-144402号公報JP, 2005-144402, A
 ところで、ニッケルに代表される遷移金属元素を水蒸気改質触媒活性成分とした、従来提案されている遷移金属系触媒に関しては、さらに水蒸気改質性能を高める必要があった。
 また、この種の遷移金属系触媒を実際に水蒸気改質触媒として使用するには、還元処理して活性化させた上で使用する必要がある。しかしながら、この種の触媒は、500℃以上の温度で還元処理した際、酸化物が金属相に相転移してシンタリング(焼結)を起こすため、前記水蒸気改質触媒活性成分の活性が低下して、該水蒸気改質触媒活性成分が本来有している触媒性能を発揮することができないという課題を抱えていた。
By the way, regarding the conventionally proposed transition metal-based catalyst in which a transition metal element represented by nickel is used as a steam reforming catalyst active component, it has been necessary to further improve the steam reforming performance.
In addition, in order to use this kind of transition metal catalyst as a steam reforming catalyst, it is necessary to reduce and activate it before using it. However, when this type of catalyst is reduced at a temperature of 500 ° C. or higher, the phase transition of the oxide to the metal phase causes sintering (sintering), so the activity of the active component of the steam reforming catalyst decreases. The problem is that the catalyst performance that the steam reforming catalyst active component originally has can not be exhibited.
 そこで本発明は、遷移金属元素を水蒸気改質触媒活性成分としてなる、従来提案されている遷移金属系触媒に比べて水蒸気改質性能に優れており、しかも、500℃以上の温度での還元処理及び改質反応において、触媒性能が低下しない、新たな水蒸気改質触媒組成物を提案せんとするものである。 Therefore, the present invention is superior in steam reforming performance to conventionally proposed transition metal catalysts comprising a transition metal element as a steam reforming catalyst active component, and further, reduction treatment at a temperature of 500 ° C. or higher And, in the reforming reaction, it is intended to propose a new steam reforming catalyst composition in which the catalyst performance does not decrease.
 本発明は、水蒸気改質触媒活性成分とバナジウムとを含有する触媒活性粒子を含有する水蒸気改質触媒組成物を提案する。 The present invention proposes a steam reforming catalyst composition containing catalytically active particles containing a steam reforming catalyst active component and vanadium.
 本発明が提案する水蒸気改質触媒組成物は、バナジウムを含有することにより、従来提案されている遷移金属系触媒に比べて水蒸気改質性能に優れており、且つ、500℃以上の温度で還元処理された際や改質反応の際のシンタリングを抑制して、触媒性能の劣化を抑制することもできる。 The steam reforming catalyst composition proposed by the present invention is superior in steam reforming performance to the conventionally proposed transition metal catalysts by containing vanadium and is reduced at a temperature of 500 ° C. or more. It is also possible to suppress the deterioration of the catalyst performance by suppressing the sintering during the treatment or the reforming reaction.
実施例のガス改質評価試験で用いた燃料改質評価装置の概略を示した構成図である。It is the block diagram which showed the outline of the fuel-reforming evaluation apparatus used by the gas-reforming evaluation test of the Example. 実施例2-1で得た水蒸気改質触媒組成物(サンプル)のFE-SEM/EDX像であり、(a)は触媒活性粒子の拡大写真(SEM像)であり、(b)その粒子における酸素(O)の分布状態を示した拡大写真であり、(c)その粒子におけるバナジウム(V)の分布状態を示した拡大写真であり、(d)はその粒子におけるニッケルの分布状態を示した拡大写真である。なお、図2左上の「Grey」「K」及び「L」は、観察条件に関するものであり、本発明とは関係ない。これら「K」「L」は元素検出に用いた特性X線の記号であり、励起された電子の軌道(エネルギー準位)を示している。It is a FE-SEM / EDX image of the steam reforming catalyst composition (sample) obtained in Example 2-1, (a) is an enlarged photograph (SEM image) of catalytically active particles, (b) in the particles It is an enlarged photograph showing the distribution of oxygen (O), (c) an enlarged photograph showing the distribution of vanadium (V) in the particle, and (d) shows the distribution of nickel in the particle It is an enlarged picture. Note that “Grey”, “K” and “L” at the upper left of FIG. 2 relate to the observation conditions and are not related to the present invention. These “K” and “L” are symbols of characteristic X-rays used for element detection, and indicate the orbits (energy levels) of the excited electrons. 実施例1、実施例2-1~2-3及び比較例1で得た水蒸気改質触媒組成物(ガス評価試験前サンプル、「pre」と称する)のXRDパターンである。It is a XRD pattern of the steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in Example 1, Examples 2-1 to 2-3 and Comparative Example 1. 実施例2-4~2-7で得た水蒸気改質触媒組成物(ガス評価試験前サンプル、「pre」と称する)のXRDパターンである。It is a XRD pattern of the steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in Examples 2-4 to 2-7. 実施例1、実施例2-1~2-3及び比較例1で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のXRDパターンである。It is a XRD pattern of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 1, Examples 2-1 to 2-3 and Comparative Example 1. 実施例2-4~2-7で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のXRDパターンである。It is a XRD pattern of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Examples 2-4 to 2-7. 比較例1で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Comparative Example 1. 実施例1で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 1. 実施例2-1で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-1. 実施例2-2で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-2. 実施例2-3で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-3. 実施例2-4で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-4. 実施例2-5で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-5. 実施例2-6で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as “aged”) obtained in Example 2-6. 実施例2-7で得た水蒸気改質触媒組成物(ガス評価試験後サンプル、「aged」と称する)のSEM像である。It is a SEM image of the steam reforming catalyst composition (sample after gas evaluation test, referred to as "aged") obtained in Example 2-7.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an embodiment. However, the present invention is not limited to the embodiments described below.
<本触媒組成物>
 本発明の実施形態の一例としての水蒸気改質触媒組成物(以下「本触媒組成物」と称する)は、水蒸気改質触媒活性成分と、バナジウムとを含有する触媒活性粒子(以下「本触媒粒子」と称する)を含有する水蒸気改質触媒組成物である。
<The present catalyst composition>
A steam reforming catalyst composition (hereinafter referred to as "the present catalyst composition") as an example of an embodiment of the present invention comprises catalytically active particles (hereinafter referred to as "the present catalyst particles") containing a steam reforming catalyst active component and vanadium. And a steam reforming catalyst composition comprising
 本触媒組成物の形態としては、粉体、スラリー、ペレット、層状物など、任意の形態をとることができる。 The form of the present catalyst composition may be any form such as powder, slurry, pellet, layered product and the like.
(本触媒粒子)
 本触媒粒子は、水蒸気改質触媒活性成分と、バナジウムとを含有する触媒活性粒子である。
 バナジウムは前記水蒸気改質触媒活性成分と反応して複合酸化物を生成する。この複合酸化物は、触媒活性化のための還元処理によって徐々に還元されて活性を発現する。還元された活性成分はやがて熱によるシンタリングにより失活するが、改質反応中の水素により、残りの複合酸化物が新たに還元され活性を発現する。このサイクルが繰り返されることにより、活性成分が供給され結果として触媒の寿命を延ばすことができる。
 この際、ニッケルなどの水蒸気改質触媒活性成分を含有する触媒粒子にバナジウムを含有させることにより、バナジウムを含有しない場合と比べ、還元活性化後の比表面積の低下を抑えて水蒸気改質性能を高めることができ、さらには500℃以上の温度での還元活性化処理や改質反応におけるシンタリングによる性能の低下を効果的に抑制することもできる。
(This catalyst particle)
The present catalyst particles are catalytically active particles containing a steam reforming catalytically active component and vanadium.
Vanadium reacts with the steam reforming catalyst active component to form a composite oxide. This complex oxide is gradually reduced by the reduction treatment for catalyst activation to express activity. The reduced active component is eventually deactivated by heat sintering, but due to hydrogen in the reforming reaction, the remaining complex oxide is newly reduced to exhibit activity. By repeating this cycle, the active ingredient can be supplied and as a result, the life of the catalyst can be extended.
At this time, by incorporating vanadium in the catalyst particles containing the steam reforming catalytic active component such as nickel, reduction of the specific surface area after reduction activation is suppressed and the steam reforming performance is improved as compared to the case where vanadium is not contained. It is possible to further suppress the deterioration of the performance due to the sintering in the reduction activation treatment or the reforming reaction at a temperature of 500 ° C. or more.
 本触媒粒子は、一次粒子が凝集してなる凝集粒子でもよいし、また、当該一次粒子が単分散してなる粒子であってもよい。一例として、粒状又は針状の一次粒子が凝集して凝集粒子を形成し、後述するように、該一次粒子の表面にケイ素酸化物やジルコニウム酸化物が存在してなる構成の粒子を挙げることができる。 The catalyst particles may be aggregated particles in which primary particles are aggregated, or particles in which the primary particles are monodispersed. As an example, mention may be made of particles having a structure in which silicon oxide or zirconium oxide is present on the surface of the primary particles, as described later, in which granular or needle-like primary particles aggregate to form aggregated particles. it can.
(水蒸気改質触媒活性成分)
 水蒸気改質触媒活性成分としては、水蒸気改質反応を促進させる作用を有することが知られている元素を使用することができる。例えばFe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を挙げることができる。これらのうちの2種以上であってもよい。中でもFe、Ni、Coなどの鉄族元素を含むことが好ましく、その中でもNi、或いは、NiとRu又はRhとを含むのが好ましい。このようにNiとRu又はRhとを含む場合、Ru又はRhが水蒸気改質反応をより促進し、本触媒組成物の還元活性化の条件を緩やかにすることができる点で好ましい。
(Steam reforming catalyst active ingredient)
As the steam reforming catalyst active component, an element known to have an effect of promoting a steam reforming reaction can be used. For example, at least one element of Fe, Ni, Co, Ru, Rh, Pt, Pd and Ir can be mentioned. Two or more of these may be used. Among them, it is preferable to contain an iron group element such as Fe, Ni, or Co, and among them, it is preferable to contain Ni, or Ni and Ru or Rh. As described above, when Ni and Ru or Rh are contained, Ru or Rh is preferable in that it can further promote the steam reforming reaction and the conditions for reduction activation of the present catalyst composition can be relaxed.
 水蒸気改質触媒活性成分は、金属(合金を含む)、酸化物(複合酸化物を含む)、又はこれらの混合物、又は、これらの固溶体で存在すればよく、中でも、酸化物又は金属の状態で存在するのが好ましい。すなわち、還元活性化処理前の状態では酸化物として存在し、還元処理後は、前記酸化物の一部が還元された状態、例えば金属と酸化物とが混在する状態で存在するのが好ましい。 The steam reforming catalytically active component may be present in the form of a metal (including an alloy), an oxide (including a complex oxide), or a mixture thereof, or a solid solution thereof, in particular in the form of an oxide or metal. Preferably it is present. That is, it is preferable to exist as an oxide in the state before the reduction activation treatment, and to exist in a state in which a part of the oxide is reduced, for example, a mixed state of metal and oxide after the reduction treatment.
(バナジウム)
 本触媒粒子において、バナジウムは、酸化物、金属、又はこれらの混合物、又はこれらの固溶体の状態で存在するのが好ましい。すなわち、還元活性化処理前の状態では酸化物として存在し、還元活性化処理後は、バナジウムの少なくとも一部が、前記酸化物が還元された状態、例えばNiなどの水蒸気改質触媒活性成分と合金を生成したり、固溶したり、これらの混合物の状態で存在するのが好ましい。
(vanadium)
In the catalyst particles, vanadium is preferably present in the form of an oxide, a metal, or a mixture thereof, or a solid solution thereof. That is, it exists as an oxide in the state before the reduction activation treatment, and after the reduction activation treatment, at least a part of vanadium is in a state in which the oxide is reduced, for example, a steam reforming catalyst active component such as Ni. It is preferable to form an alloy, to form a solid solution, or to exist in the form of a mixture of these.
 また、前記バナジウムは、水蒸気改質触媒活性成分に対し効率よく作用するために、触媒活性粒子の表面に存在するのが好ましい。特に、触媒活性粒子の内部よりも表面に多く存在するのが好ましい。
 また、前記バナジウムは、触媒活性粒子の表面に偏って点在することなく、表面に分散した状態で存在することがより好ましい。
 バナジウムを触媒活性粒子の表面に存在させるためには、水溶性のバナジウム化合物、例えば、バナジン酸アンモニウム(NH4VO3)などのバナジウムを含有する水溶液中に、水酸化ニッケル(Ni(OH))粒子粉末などの触媒活性粒子粉末を入れて含浸させ、焼成するようにすればよい。但し、そのような方法に限定するものではない。
The vanadium is preferably present on the surface of the catalytically active particles in order to efficiently act on the steam reforming catalytically active component. In particular, it is preferable to be present more on the surface than inside the catalytically active particles.
Further, it is more preferable that the vanadium is present in a dispersed state on the surface of the catalytically active particles, without being unevenly distributed.
In order to allow vanadium to be present on the surface of catalytically active particles, nickel hydroxide (Ni (OH) 2 ) is added in an aqueous solution containing a water-soluble vanadium compound, for example, vanadium such as ammonium vanadate (NH 4 VO 3 ). The catalyst active particle powder such as particle powder may be put in, impregnated and fired. However, it is not limited to such a method.
 本触媒粒子がバナジウムを含有することで、シンタリングを効果的に抑制することができる。水蒸気改質触媒活性成分であるニッケルの活性を劣化させないため、バナジウムは、水蒸気改質触媒活性成分100mol%に対して1mol%以上の割合で含有するのが好ましい。
 但し、バナジウムの含有量が多過ぎると、上記の如くバナジウムを含有する水溶液を用いる場合、作業性が低下する可能性があるばかりか、本触媒粒子を製造する際に五酸化バナジウムが生成して触媒焼成時に溶融してしまう可能性があるため、バナジウムの含有量が多過ぎることは好ましくない。
 かかる観点から、バナジウム含有量は、前記水蒸気改質触媒活性成分100mol%に対して、1mol%以上の割合で含有するのが好ましく、中でも200mol%以下、その中でも2mol%以上或いは100mol%以下、その中でも3mol%以上或いは45mol%以下の割合で含有するのが特に好ましい。
When the catalyst particles contain vanadium, sintering can be effectively suppressed. In order not to degrade the activity of nickel which is a steam reforming catalyst active component, it is preferable to contain vanadium in a proportion of 1 mol% or more with respect to 100 mol% of the steam reforming catalyst active component.
However, when the vanadium content is too high, when using the aqueous solution containing vanadium as described above, not only there is a possibility that the workability may be reduced, but vanadium pentoxide is formed when producing the catalyst particles. Since there is a possibility of melting at the time of catalyst calcination, it is not preferable that the content of vanadium is too high.
From this point of view, the vanadium content is preferably contained in a proportion of 1 mol% or more with respect to 100 mol% of the steam reforming catalyst active component, more preferably 200 mol% or less, among them 2 mol% or more or 100 mol% or less Among them, it is particularly preferable to contain at a ratio of 3 mol% or more or 45 mol% or less.
(表面状態)
 本触媒粒子は、粒子表面に、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が存在していてもよい。
 バナジウムを含有する本触媒粒子(「コア粒子」とも称する)の表面に、ケイ素酸化物又はジルコニウム酸化物又はこれら両方(「表面酸化物」とも称する)が適度な量存在することにより、触媒粒子を構成する物質の移動を当該表面酸化物が制限するアンカー効果を発揮するため、本触媒粒子が本来有する触媒性能を低下させることなく、且つ、500℃以上の温度で還元活性化処理や改質反応時のシンタリングをより一層抑制することができる。特に、還元環境下や550℃以上の高温環境下に長時間晒された後での水蒸気改質触媒性能をより一層維持することができる。
(Surface condition)
The catalyst particles may have silicon oxide or zirconium oxide or both on the particle surface.
The catalyst particles are formed by the presence of a suitable amount of silicon oxide or zirconium oxide or both (also referred to as "surface oxide") on the surface of the present catalyst particles (also referred to as "core particles") containing vanadium. In order to exert the anchor effect that the surface oxide restricts the movement of the constituent material, reduction activation treatment or reforming reaction is performed at a temperature of 500 ° C. or more without lowering the catalytic performance inherent to the present catalyst particles. It is possible to further suppress the sintering at the time. In particular, it is possible to further maintain the steam reforming catalyst performance after being exposed to a reducing environment or a high temperature environment of 550 ° C. or more for a long time.
 ここで、当該ケイ素酸化物としては、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)のほか、例えば亜酸化ケイ素(Si32)などを挙げることができる。
 他方、ジルコニウム酸化物としては、二酸化ジルコニウム(ZrO2)を挙げることができる。
Here, in addition to silicon monoxide (SiO) and silicon dioxide (SiO 2 ), examples of the silicon oxide include silicon suboxide (Si 3 O 2 ) and the like.
On the other hand, zirconium dioxide (ZrO 2 ) can be mentioned as the zirconium oxide.
 本触媒粒子の表面には、ケイ素酸化物のSi及びOや、ジルコニウム酸化物のZr及びOのほかに、Ca、Ba、Mg、Ti、Al、Ce、Hf、La、Vのうち少なくとも一種の元素(「元素A」と称する)が存在してもよい。これらのうちの2種類以上を含んでいてもよい。
 本触媒粒子の表面にこのような元素Aが存在することにより、水蒸気改質触媒性能をさらに高めることができる。
 この際、前記元素Aは、本触媒粒子の表面全体に均一に分散していることが好ましい。
In addition to Si and O of silicon oxide and Zr and O of zirconium oxide, at least one of Ca, Ba, Mg, Ti, Al, Ce, Hf, La, and V is provided on the surface of the present catalyst particles. An element (referred to as "element A") may be present. Two or more of these may be included.
The presence of such an element A on the surface of the present catalyst particles can further enhance the steam reforming catalyst performance.
Under the present circumstances, it is preferable that the said element A is disperse | distributed uniformly over the whole surface of this catalyst particle.
 本触媒粒子の表面において、ケイ素酸化物、ジルコニウム酸化物及び前記元素Aのうちの二種以上が混在した状態で存在してもよいし、ケイ素酸化物と、ジルコニウム酸化物と、前記元素Aとが分離して存在してもよい。 In the surface of the present catalyst particles, silicon oxide, zirconium oxide and two or more of the elements A may be present in a mixed state, or silicon oxide, zirconium oxide, and the element A May exist separately.
 表面酸化物は、本触媒粒子の表面全面を被覆するように存在してもよいし、或る程度の厚みを有する層をなして存在していてもよいし、又、コア粒子表面に部分的に存在し、表面酸化物が存在しない部分があってもよい。 The surface oxide may be present so as to cover the entire surface of the present catalyst particles, may be present in a layer having a certain thickness, or may be partially present on the surface of the core particles. There may be portions where the surface oxide is not present.
 ケイ素酸化物又はジルコニウム酸化物の表面被覆率(本触媒粒子の表面全面にケイ素酸化物又はジルコニウム酸化物が存在する場合を100%とした場合の存在割合)は、10%以上であるのが、水蒸気改質触媒性能を十分なものとする観点から好ましく、中でも水蒸気改質性能と耐熱性とのバランスの観点から20%以上或いは100%以下、その中でも35%以上或いは75%以下であるのが好ましい。
 なお、上記ケイ素酸化物又はジルコニウム酸化物の表面被覆率と、ケイ素化合物又はジルコニウム化合物の表面被覆率(本触媒粒子の表面全面にケイ素化合物又はジルコニウム化合物が存在する場合を100%とした場合の、ケイ素化合物又はジルコニウム化合物の存在割合)とは同じ値になる。そのため、後述する実施例では、ケイ素化合物又はジルコニウム化合物の表面被覆率を算出して、ケイ素酸化物又はジルコニウム酸化物の表面被覆率としている。このように100%被覆の場合であっても、微小クラックを介してガスは流通する。
The surface coverage of silicon oxide or zirconium oxide (the ratio of 100% when silicon oxide or zirconium oxide is present on the entire surface of the catalyst particle) is 10% or more. It is preferable from the viewpoint of achieving sufficient steam reforming catalyst performance, and in particular, 20% or more or 100% or less from the viewpoint of the balance between steam reforming performance and heat resistance, among them 35% or more or 75% or less preferable.
The surface coverage of the silicon oxide or zirconium oxide and the surface coverage of the silicon compound or zirconium compound (when the silicon compound or zirconium compound is present on the entire surface of the catalyst particle is 100%, The ratio of presence of the silicon compound or the zirconium compound is the same value. Therefore, in the examples described later, the surface coverage of the silicon compound or zirconium compound is calculated to be the surface coverage of the silicon oxide or zirconium oxide. Thus, even in the case of 100% coating, the gas flows through the micro cracks.
 本触媒粒子において、コア粒子100wt%に対する、ケイ素酸化物又はジルコニウム酸化物又はこれら両方の含有量の割合は、還元活性化前の酸化物の状態で、2~15wt%であるのが好ましい。
 本触媒粒子において、コア粒子100wt%に対する、ケイ素酸化物又はジルコニウム酸化物又はこれら両方の含有量の割合が2wt%以上であれば、耐熱効果を発現することができ、15wt%以下であれば、均質な製品を得ることができる。中でも2wt%以上或いは5wt%以下であるのが特に好ましい。
In the catalyst particles, the ratio of the content of silicon oxide or zirconium oxide or both to 100 wt% of the core particles is preferably 2 to 15 wt% in the oxide state before reduction activation.
In the catalyst particles, when the ratio of the content of silicon oxide or zirconium oxide or both of them to 100 wt% of core particles is 2 wt% or more, the heat resistance effect can be exhibited, and if it is 15 wt% or less, A homogeneous product can be obtained. Among these, 2 wt% or more or 5 wt% or less is particularly preferable.
 このような割合で、本触媒粒子の表面に表面酸化物を存在させる方法としては、例えばケイ素又はジルコニウム又はこれら両方を含む溶液中に、コア粒子粉末を入れて含浸させ、必要に応じて乾燥及び焼成を行うことによって形成することができる。このように、ケイ素又はジルコニウム又はこれら両方を含む溶液を用いてコア粒子を表面処理した後、大気中で焼成することにより、ケイ素化合物又はジルコニウム化合物をケイ素酸化物又はジルコニウム酸化物に酸化することができる。例えばシランカップリング剤などを用いてコア粒子を表面処理した後、必要に応じて乾燥させ、その後、300℃以上、好ましくは400~600℃で加熱処理することにより、本触媒粒子の表面に表面酸化物を存在させるようにすればよい。
 また、ケイ素又はジルコニウムを含む溶液、例えばシリコンアルコキシド又はジルコニウムアルコキシドのエタノール溶液中にコア粒子粉末を入れて含浸させ、必要に応じて乾燥を行った後、必要に応じて前記A元素を含む溶液中に前記本触媒粒子を入れて含浸させ、必要に応じて乾燥を行い、その後、焼成を行うことによって、本触媒粒子の表面に表面酸化物を存在させるようにしてもよい。
As a method of causing surface oxides to exist on the surface of the present catalyst particles in such a ratio, for example, the core particle powder is put in a solution containing silicon or zirconium or both and impregnated, and optionally dried and It can be formed by firing. Thus, the silicon oxide or the zirconium compound can be oxidized to the silicon oxide or the zirconium oxide by surface-treating the core particle with a solution containing silicon or zirconium or both of them and then firing in the air. it can. For example, after surface-treating core particles using a silane coupling agent etc., they are dried if necessary, and then heat-treated at 300 ° C. or higher, preferably 400 to 600 ° C., to form the surface of the present catalyst particles. An oxide may be present.
In addition, the core particle powder is impregnated in a solution containing silicon or zirconium, for example, an ethanol solution of silicon alkoxide or zirconium alkoxide, dried as necessary, and then in a solution containing the element A as necessary. The present catalyst particles may be impregnated with the catalyst particles, dried if necessary, and then fired to allow surface oxides to be present on the surfaces of the catalyst particles.
 なお、本触媒粒子の表面には、上記以外の成分が存在してもよい。特に本触媒粒子の表面に存在するSi又はZrに対して1wt%以下の量であれば、本触媒組成物の効果に影響を及ぼさず、どのような成分であっても含有することを許容することができる。 In addition, components other than the above may exist on the surface of the present catalyst particles. In particular, an amount of 1 wt% or less based on Si or Zr present on the surface of the present catalyst particles does not affect the effect of the present catalyst composition, and allows any component to be contained. be able to.
(本触媒粒子以外の成分)
 本触媒組成物は、前記本触媒粒子以外に他の成分を含有していてもよい。
 他の成分としては、例えばアルミナなどの金属酸化物を含有する酸化物粒子を挙げることができる。このような酸化物粒子を含有することにより、本触媒粒子間を離して存在させることができるため、互いに焼結するのを防ぐと共に、触媒活性を好適な程度に調整することができる。
(Components other than this catalyst particle)
The present catalyst composition may contain other components in addition to the present catalyst particles.
As another component, the oxide particle containing metal oxides, such as an alumina, can be mentioned, for example. By containing such oxide particles, the present catalyst particles can be separated from each other, so that sintering can be prevented and the catalyst activity can be adjusted to a suitable level.
 このような酸化物粒子としては、例えばAl、Ti、Si、Zr、Ceなどの酸化物を含む酸化物粒子を挙げることができる。 As such an oxide particle, an oxide particle containing oxides, such as Al, Ti, Si, Zr, and Ce, can be mentioned, for example.
(BET比表面積)
 本触媒組成物のBET比表面積は、単位触媒質量あたりの水蒸気改質触媒活性を向上させることができるという観点から、本触媒組成物を還元処理して水蒸気改質触媒活性成分が還元された状態において、0.1m2/g~100m2/gであるのが好ましく、中でも0.5m2/g以上或いは75m2/g以下、その中でも5m2/g以上或いは65m2/g以下であるのが特に好ましい。
(BET specific surface area)
From the viewpoint that the BET specific surface area of the present catalyst composition can improve the steam reforming catalyst activity per unit catalyst mass, a state in which the steam reforming catalyst active component is reduced by subjecting the present catalyst composition to a reduction treatment in is preferably from 0.1m 2 / g ~ 100m 2 / g, among others 0.5 m 2 / g or more or 75 m 2 / g or less, the at 5 m 2 / g or more or 65 m 2 / g or less among them Is particularly preferred.
 本触媒組成物の比表面積を前記範囲に調整するには、水酸化ニッケルなどの水蒸気改質触媒活性成分の水酸化物と、バナジウムを含有する水溶液とを混合し、適当な条件で適当な時間静置して前記水酸化物の粒子に前記バナジウムを含浸吸着させ、蒸発乾固による乾燥、若しくは、ろ過及び乾燥を行った後、大気雰囲気下300~600℃(品温)で焼成(仮焼)すればよく、この際、焼成温度、水酸化ニッケルの比表面積などを調整することで水蒸気改質触媒活性成分の比表面積を調整することができる。但し、そのような方法に限定されるものではない。 In order to adjust the specific surface area of the present catalyst composition to the above range, a hydroxide of a steam reforming catalyst active component such as nickel hydroxide and an aqueous solution containing vanadium are mixed, and an appropriate time is obtained under appropriate conditions. The mixture is allowed to stand so that the particles of the hydroxide are impregnated and adsorbed with the particles of the hydroxide, dried by evaporation to dryness, or filtered and dried, and then calcined at 300 to 600 ° C. (product temperature) in the air atmosphere (calcination) In this case, the specific surface area of the steam reforming catalyst active component can be adjusted by adjusting the calcination temperature, the specific surface area of the nickel hydroxide and the like. However, it is not limited to such a method.
(本触媒組成物の製造方法)
 本触媒組成物は次のようにして製造することができる。但し、次に説明する製造方法はあくまでも一例である。
(Method of producing the present catalyst composition)
The catalyst composition can be prepared as follows. However, the manufacturing method described below is merely an example.
 Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素の水酸化物粉又は酸化物粉に対し、バナジウムを含有する水溶液(例えばバナジン酸アンモニウム水溶液)を混合し、室温~50℃で15分~12時間撹拌して、該水酸化粉末粒子に前記バナジウムを含浸吸着させた後、加熱して蒸発乾固するか、若しくは、ろ過及び乾燥するかして、必要に応じて粉砕して、本触媒粒子を得ることができる。 An aqueous solution containing vanadium (for example, an aqueous solution of ammonium vanadate) is mixed with a hydroxide powder or an oxide powder of at least one element selected from Fe, Ni, Co, Ru, Rh, Pt, Pd and Ir, Stir for 15 minutes to 12 hours at room temperature to 50 ° C. to impregnate and adsorb the vanadium on the hydroxide powder particles, heat to evaporate to dryness, or filter and dry, if necessary The catalyst particles can be obtained by grinding accordingly.
 次に、本触媒粒子の表面に表面酸化物を存在させる場合には、こうして得られた本触媒粒子をコア粒子として、ケイ素又はジルコニウム又はこれら両方を含む溶液中に入れて含浸させ、必要に応じて乾燥させた後、大気雰囲気下、300~600℃(品温)を30分~6時間維持するように仮焼を行った後、必要に応じてプレス成形し、大気雰囲気下、300~900℃(品温)を30分~6時間維持するように焼成を行い、必要に応じて粉砕及び篩分けして、本触媒組成物(粉体もしくは粒状物)を得ることができる。 Next, when a surface oxide is present on the surface of the present catalyst particles, the present catalyst particles thus obtained are impregnated as a core particle in a solution containing silicon or zirconium or both of them, if necessary After drying, the material is calcined so as to maintain a temperature of 300 to 600 ° C. (material temperature) for 30 minutes to 6 hours in the air atmosphere, and then press-molded if necessary, and then 300 to 900 in the air atmosphere. The catalyst composition (powder or particles) can be obtained by calcining so as to maintain a temperature of 30 ° C. (material temperature) for 30 minutes to 6 hours, and pulverizing and sieving as required.
<本触媒>
 本発明の実施形態の一例としての水蒸気改質触媒(以下「本触媒」と称する)は、本触媒組成物を用いてなる触媒である。
 本触媒は、ペレット状などの適宜形状に成形され、単独で触媒として用いることもできるし、また、セラミックス又は金属材料からなる基材に担持された形態として用いることもできる。
<This catalyst>
A steam reforming catalyst (hereinafter, referred to as "the present catalyst") as an example of an embodiment of the present invention is a catalyst formed using the present catalyst composition.
The present catalyst can be formed into an appropriate shape such as a pellet, and can be used alone as a catalyst, or can be used as a form supported on a substrate made of a ceramic or a metal material.
(基材)
 基材の材質としては、セラミックス等の耐火性材料やフェライト系ステンレス等の金属材料を挙げることができる。
 セラミックス製基材の材質としては、耐火性セラミックス材料、例えばコージライト、コージライト-アルファアルミナ、窒化ケイ素、ジルコンムライト、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
 金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を主成分とした耐食性合金などを挙げることができる。
 基材の形状は、ハニカム状、ペレット状、球状を挙げることができる。
(Base material)
Examples of the material of the base include refractory materials such as ceramics and metal materials such as ferritic stainless steel.
The material of the ceramic base material is refractory ceramic material such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, Mention may be made of petalite, alpha alumina and aluminosilicates.
Examples of the material of the metal base include a refractory metal, such as stainless steel or a corrosion-resistant alloy containing iron as a main component.
The shape of the substrate may be honeycomb, pellet, or spherical.
(本触媒の製法)
 本触媒は、本触媒組成物と、バインダー及び水を混合・撹拌してスラリーとし、得られたスラリーを、例えばセラミックスハニカム体などの基材に塗布し、これを焼成して、基材表面に触媒層を形成する方法などを挙げることができる。
(Manufacturing method of this catalyst)
The present catalyst is prepared by mixing and stirring the present catalyst composition, a binder and water to obtain a slurry, and applying the obtained slurry to a base material such as a ceramic honeycomb body, and calcining the obtained slurry on the base material surface. The method etc. which form a catalyst layer can be mentioned.
 また、本触媒組成物と、バインダー及び水を混合・撹拌してスラリーとし、得られたスラリーを基材に塗布し、これを焼成して基材表面に触媒層を形成する方法を挙げることもできる。
 なお、本触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
In addition, a method of mixing the present catalyst composition, a binder and water with stirring to form a slurry, applying the obtained slurry to a substrate, and calcining this to form a catalyst layer on the surface of the substrate is also mentioned. it can.
In addition, it is possible to employ | adopt all well-known methods for the method for manufacturing this catalyst, and it is not limited to the said example.
 いずれの製法においても、触媒層は、単層であっても、二層以上の多層であってもよい。 In any of the production methods, the catalyst layer may be a single layer or a multilayer of two or more layers.
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of the phrase>
In the present specification, when expressing as “X to Y” (where X and Y are arbitrary numbers), “preferably more than X” or “preferably Y” with the meaning of “X or more and Y or less” unless otherwise stated. Also includes the meaning of "smaller".
Also, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), “greater than X is preferable” or “preferably less than Y” It also includes the intention.
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be further described in detail based on examples and comparative examples.
<比較例1> 
 水酸化ニッケル粒子粉末(比表面積120m2/g)10gを、大気中550℃で3時間仮焼して触媒粉を得た。該触媒粉8gに5wt%PVA(ポリビニルアルコール)水溶液1.6gを添加し、乳鉢で均一に分散させ、φ30mmの金型に入れて90kNの圧力で円板状にプレス成型した。
 得られた円板状成型体を、大気中750℃で3時間焼成し、寸法・重量を測定した後、粉砕し、篩に通して0.5mmメッシュ以上4mmメッシュ以下の触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を得た。
Comparative Example 1
10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder. To 8 g of the catalyst powder, 1.6 g of a 5 wt% PVA (polyvinyl alcohol) aqueous solution was added, dispersed uniformly in a mortar, placed in a 30 30 mm mold, and pressed into a disc at a pressure of 90 kN.
The obtained disk-like molded product is calcined at 750 ° C. in the atmosphere for 3 hours, and after measuring its size and weight, it is crushed and passed through a sieve and is composed of catalytic active particle powder of 0.5 mm mesh or more and 4 mm mesh or less A steam reforming catalyst composition (sample) was obtained.
<実施例1> 
 バナジン酸アンモニウム(NH4VO3)0.19gを、50℃の純水17.5mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加し、スターラーで3時間撹拌した。次に、加熱して水分を蒸発させ、得られた固形物を乳鉢で粉砕した後、大気中550℃で3時間仮焼して触媒粉を得た。該触媒粉8gに5wt%PVA水溶液1.6gを添加し、乳鉢で均一に分散させ、φ30mmの金型に入れて90kNの圧力で円板状にプレス成型した。
 得られた円板状成型体を、大気中750℃で3時間焼成し、寸法・重量を測定した後、粉砕し、4mmメッシュの篩と0.5mmメッシュの篩を使用して分級して、0.5mm~4.0mmの大きさのV添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 1
0.19 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 17.5 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to this aqueous solution of ammonium vanadate, and the mixture was stirred for 3 hours with a stirrer. Next, the resultant was heated to evaporate the water content, and the obtained solid was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder. 1.6 g of a 5 wt% PVA aqueous solution was added to 8 g of the catalyst powder, dispersed uniformly in a mortar, placed in a 金 30 mm mold, and pressed into a disc at a pressure of 90 kN.
The obtained disk-like molded body is fired at 750 ° C. in the atmosphere for 3 hours to measure its size and weight, then crushed and classified using a 4 mm mesh sieve and a 0.5 mm mesh sieve, A steam reforming catalyst composition (sample) consisting of V-added nickel-based catalyst active particles having a size of 0.5 mm to 4.0 mm was obtained.
<実施例2-1> 
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)0.39gを、50℃の純水36mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-1
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 0.39 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 36 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-2>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)0.66gを、50℃の純水65mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-2
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 0.66 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 65 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-3>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)1.25gを、50℃の純水115mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-3
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 1.25 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 115 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-4>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)2.23gを、50℃の純水205mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-4
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 2.23 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 205 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-5>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)5.4gを、50℃の純水500mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-5
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 5.4 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 500 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-6>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)8.5gを、50℃の純水770mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-6
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 8.5 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 770 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例2-7>
 実施例1において、バナジン酸アンモニウム(NH4VO3)と水酸化ニッケル粒子粉末(比表面積120m2/g)との混合割合を変更した。すなわち、バナジン酸アンモニウム(NH4VO3)12.6gを、50℃の純水1160mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加した。これ以外の点は、実施例1と同様に、V添加ニッケル系触媒活性粒子粉末からなる水蒸気改質触媒組成物(サンプル)を調製した。
Example 2-7
In Example 1, the mixing ratio of ammonium vanadate (NH 4 VO 3 ) and nickel hydroxide particle powder (specific surface area 120 m 2 / g) was changed. That is, 12.6 g of ammonium vanadate (NH 4 VO 3 ) was dissolved in 1160 mL of pure water at 50 ° C. to prepare an aqueous ammonium vanadate solution. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to the ammonium vanadate aqueous solution. A steam reforming catalyst composition (sample) comprising a V-added nickel-based catalyst active particle powder was prepared in the same manner as in Example 1 except for this point.
<実施例3> 
 バナジン酸アンモニウム(NH4VO3)0.66gを、50℃の純水65mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加し、スターラーで3時間撹拌した。次に、加熱により水分を蒸発させ、得られた固形物を乳鉢で粉砕し粉体試料を得た。この粉体試料にシランカップリング剤(3-アミノプロピルトリエトキシシラン、信越シリコーン社製「KBE-903」、分子量221.4)0.78gを水10mLに加え、均一に撹拌した前駆体水溶液を加え、スターラーで3時間撹拌し粉体に均一にコートした後、加熱により水分を蒸発させ試料を乾燥した。
 得られた固形サンプルを乳鉢で粉砕した後、大気中550℃で3時間仮焼して触媒粉を得た。該触媒粉8gに5wt%PVA水溶液1.6gを添加し、乳鉢で均一に分散させ、φ30mmの金型に入れて90kNの圧力で円板状にプレス成型した。
 得られた円板状成型体を、大気中750℃で3時間焼成し、寸法・重量を測定した後、粉砕し、4mmメッシュの篩と0.5mmメッシュの篩を使用して分級して、0.5mm~4.0mmの大きさの「ケイ素酸化物が表面に存在するV添加ニッケル系触媒活性粒子粉末」からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 3
An aqueous solution of ammonium vanadate was prepared by dissolving 0.66 g of ammonium vanadate (NH 4 VO 3 ) in 65 mL of pure water at 50 ° C. 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) was added to this aqueous solution of ammonium vanadate, and the mixture was stirred for 3 hours with a stirrer. Next, the water was evaporated by heating, and the obtained solid was crushed in a mortar to obtain a powder sample. To this powder sample, 0.78 g of a silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., molecular weight 221.4) was added to 10 mL of water, and the precursor aqueous solution was uniformly stirred In addition, after stirring with a stirrer for 3 hours to uniformly coat the powder, the water was evaporated by heating to dry the sample.
The obtained solid sample was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder. 1.6 g of a 5 wt% PVA aqueous solution was added to 8 g of the catalyst powder, dispersed uniformly in a mortar, placed in a 金 30 mm mold, and pressed into a disc at a pressure of 90 kN.
The obtained disk-like molded body is fired at 750 ° C. in the atmosphere for 3 hours to measure its size and weight, then crushed and classified using a 4 mm mesh sieve and a 0.5 mm mesh sieve, A steam reforming catalyst composition (sample) composed of “V-added nickel-based catalyst active particle powder having silicon oxide on the surface” having a size of 0.5 mm to 4.0 mm was obtained.
<実施例4>
 実施例3の前駆体水溶液の調製において、シランカップリング剤0.78gの代わりに、酢酸ジルコニウム(分子量327.4)0.74gを水10mLに加えた以外、実施例3と同様にして、「ジルコニウム酸化物が表面に存在するV添加ニッケル系触媒活性粒子粉末」からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 4
In the preparation of the aqueous precursor solution of Example 3, the procedure of Example 3 was repeated, except that 0.74 g of zirconium acetate (molecular weight: 327.4) was added to 10 mL of water instead of 0.78 g of the silane coupling agent. A steam reforming catalyst composition (sample) was obtained comprising “V-added nickel-based catalytically active particle powder having zirconium oxide on the surface”.
<実施例5>
 実施例3の前駆体水溶液の調製において、シランカップリング剤(3-アミノプロピルトリエトキシシラン、信越シリコーン社製「KBE-903」)0.78gを水10mLに加える代わりに、シランカップリング剤(信越シリコーン社製「KBE-903」、分子量221.4)0.78g及び酢酸ジルコニウム(分子量327.4)0.74gを水10mLに加えた以外、実施例3と同様にして、「ケイ素酸化物及びジルコニウム酸化物が表面に存在するV添加ニッケル系触媒活性粒子粉末」からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 5
In preparation of the aqueous precursor solution of Example 3, instead of adding 0.78 g of a silane coupling agent (3-aminopropyltriethoxysilane, “KBE-903” manufactured by Shin-Etsu Silicone Co., Ltd.) to 10 mL of water, a silane coupling agent ( “Silicon oxide” in the same manner as in Example 3, except that 0.78 g of “KBE-903” manufactured by Shin-Etsu Silicone Co., Ltd., molecular weight 221.4 and 0.74 g of zirconium acetate (molecular weight 327.4) were added to 10 mL of water And a steam reforming catalyst composition (sample) comprising “V-added nickel-based catalyst active particle powder having zirconium oxide on the surface”.
<実施例6>
 バナジン酸アンモニウム(NH4VO3)0.66gを、50℃の純水65mLに溶解して、バナジン酸アンモニウム水溶液を作製した。このバナジン酸アンモニウム水溶液に水酸化ニッケル粒子粉末(比表面積120m2/g)10gを添加し、スターラーで3時間撹拌した後、Ru50g/Lの硝酸ルテニウム溶液0.1mLを加え、さらに1時間撹拌し、水酸化ニッケル粒子表面にバナジウム及びルテニウムを十分吸着させた。次に、加熱して蒸発乾固により水分を蒸発させ、得られた固形物を乳鉢で粉砕し粉体試料を得た。この粉体試料にシランカップリング剤(3-アミノプロピルトリエトキシシラン、信越シリコーン社製「KBE-903」)0.78gを水10mLに加え、さらに酢酸ジルコニウム(分子量327.4)0.74gを加えて均一に撹拌した前駆体水溶液を加え、スターラーで3時間撹拌し粉体に均一にコートした後、加熱により水分を蒸発させて乾燥して固形サンプル試料を得た。
 得られた固形サンプルを乳鉢で粉砕した後、大気中550℃で3時間仮焼して触媒粉を得た。該触媒粉8gに5wt%PVA水溶液1.6gを添加し、乳鉢で均一に分散させ、φ30mmの金型に入れて90kNの圧力で円板状にプレス成型した。
 得られた円板状成型体を、大気中750℃で3時間焼成し、寸法・重量を測定した後、粉砕し、4mmメッシュの篩と0.5mmメッシュの篩を使用して分級して、0.5mm~4.0mmの大きさの「ケイ素酸化物及びジルコニウム酸化物が表面に存在するV・Ru添加ニッケル系触媒活性粒子粉末」からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 6
An aqueous solution of ammonium vanadate was prepared by dissolving 0.66 g of ammonium vanadate (NH 4 VO 3 ) in 65 mL of pure water at 50 ° C. After adding 10 g of nickel hydroxide particle powder (specific surface area 120 m 2 / g) to this ammonium vanadate aqueous solution and stirring with a stirrer for 3 hours, 0.1 mL of a ruthenium nitrate solution of Ru 50 g / L is added and stirring is further performed for 1 hour. The vanadium and ruthenium were sufficiently adsorbed on the surface of the nickel hydroxide particles. Next, the resultant was heated and evaporated to dryness to evaporate the water content, and the obtained solid was ground in a mortar to obtain a powder sample. To this powder sample, 0.78 g of a silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd.) is added to 10 mL of water, and 0.74 g of zirconium acetate (molecular weight 327.4) is further added In addition, a uniformly stirred precursor aqueous solution was added, and stirred with a stirrer for 3 hours to uniformly coat the powder, and then the water was evaporated by heating and dried to obtain a solid sample sample.
The obtained solid sample was pulverized in a mortar and calcined at 550 ° C. in the atmosphere for 3 hours to obtain a catalyst powder. 1.6 g of a 5 wt% PVA aqueous solution was added to 8 g of the catalyst powder, dispersed uniformly in a mortar, placed in a 金 30 mm mold, and pressed into a disc at a pressure of 90 kN.
The obtained disk-like molded body is fired at 750 ° C. in the atmosphere for 3 hours to measure its size and weight, then crushed and classified using a 4 mm mesh sieve and a 0.5 mm mesh sieve, A steam reforming catalyst composition (sample) was obtained, which was composed of “V · Ru-added nickel-based catalytically active particle powder in which silicon oxide and zirconium oxide are present on the surface” having a size of 0.5 mm to 4.0 mm.
<実施例7>
 実施例5において、前記前駆体水溶液の混合割合を調整して、粒子表面に存在するケイ素酸化物の量を変更した。すなわち、シランカップリング剤(3-アミノプロピルトリエトキシシラン、信越シリコーン社製「KBE-903」、分子量221.4)1.56gに、さらに酢酸ジルコニウム(分子量327.4)1.48gに変更した。この点以外は、実施例5と同様にして、「ケイ素酸化物及びジルコニウム酸化物が表面に存在するV添加ニッケル系触媒活性粒子粉末」からなる水蒸気改質触媒組成物(サンプル)を得た。
Example 7
In Example 5, the mixing ratio of the aqueous precursor solution was adjusted to change the amount of silicon oxide present on the particle surface. That is, the silane coupling agent (3-aminopropyltriethoxysilane, "KBE-903" manufactured by Shin-Etsu Silicone Co., Ltd., "molecular weight 221.4") was changed to 1.56 g, and further to zirconium acetate (molecular weight 327.4) 1.48 g . In the same manner as in Example 5 except this point, a steam reforming catalyst composition (sample) comprising "V-doped nickel-based catalyst active particle powder having silicon oxide and zirconium oxide present on the surface" was obtained.
<水蒸気改質性能の評価>
 図1に示す燃料改質評価装置を用いて、各実施例・比較例で得られた水蒸気改質触媒組成物(サンプル)が水蒸気改質反応で発生した水素量(H%)を測定することで、水蒸気改質性能を評価した。
 この燃料改質評価装置は、図1に示されるように、気体燃料1としてボンベより供給される都市ガス(メタン89~90vol%、エタン4~6vol%、プロパン4~5vol%、ブタン1vol%未満)と、純水タンク3に入った純水を、それぞれ気体マスフローコントローラー2と、液体マスフローコントローラー4により流量を調整することができるものである。純水は電気炉5内の気化器6を通り水蒸気となって、燃料ガス/水蒸気混合部7にて気体燃料と混合され、電気炉8内のステンレス容器に封じられた改質触媒9へ送られ、改質触媒9にて改質されたガスはバブラー11を経て排気される。
 この排気の一部をガスクロマトグラフ(以下「GC」と称する)13内蔵のポンプにて吸引し、水分除去器12を通過した改質ガスはGC13によって定量される。この時、全ガス量に対する水素量(H%)を測定して評価した。
<Evaluation of steam reforming performance>
Using the fuel reforming evaluation apparatus shown in FIG. 1, the amount of hydrogen (H 2 %) generated by the steam reforming reaction from the steam reforming catalyst composition (sample) obtained in each example and comparative example is measured. Thus, the steam reforming performance was evaluated.
As shown in FIG. 1, this fuel reforming evaluation system is a city gas supplied from a cylinder as the gaseous fuel 1 (methane 89 to 90 vol%, ethane 4 to 6 vol%, propane 4 to 5 vol%, butane less than 1 vol% And pure water in the pure water tank 3 can be adjusted in flow rate by the gas mass flow controller 2 and the liquid mass flow controller 4, respectively. The pure water passes through the vaporizer 6 in the electric furnace 5 to become water vapor, is mixed with the gaseous fuel in the fuel gas / steam mixing section 7, and is sent to the reforming catalyst 9 sealed in the stainless steel container in the electric furnace 8. The gas reformed by the reforming catalyst 9 is exhausted through the bubbler 11.
A part of the exhaust gas is sucked by a pump incorporated in a gas chromatograph (hereinafter referred to as “GC”) 13, and the reformed gas which has passed through the water removing unit 12 is quantified by the GC 13. At this time, the amount of hydrogen (H 2 %) relative to the total amount of gas was measured and evaluated.
(ガス改質評価試験)
 各実施例・比較例で得られた水蒸気改質触媒組成物(サンプル)5gを改質器内に配置し、改質器内を窒素ガスで置換した。次に、触媒を活性化させるため電気炉8にて燃料改質部を加熱し、触媒温度が500℃に達したところで都市ガスと水蒸気の供給を開始し還元活性化処理を開始した。この時の燃料ガスの流量は空間速度(SV)9000h-1となるようにし、都市ガスと水蒸気の比率(S/C)は2.5となるように設定した。
 さらに温度を上げ、触媒温度が550℃に達したところで30分間保持した後、再び温度を上げ750℃で1分間加熱して還元活性化処理を完了した。
 その後、温度を下げ550℃で15分間キープした後、ガスクロマトグラフで水素発生量を測定した(Fresh値)。
(Gas reforming evaluation test)
5 g of the steam reforming catalyst composition (sample) obtained in each Example and Comparative Example was placed in a reformer, and the inside of the reformer was replaced with nitrogen gas. Next, the fuel reformer was heated in the electric furnace 8 to activate the catalyst, and when the catalyst temperature reached 500 ° C., the supply of city gas and water vapor was started to start the reduction activation process. The flow rate of the fuel gas at this time was set to be the space velocity (SV) 9000 h −1, and the ratio (S / C) of the city gas to the water vapor was set to be 2.5.
The temperature was further raised and held for 30 minutes when the catalyst temperature reached 550 ° C. Then, the temperature was raised again and heating was performed at 750 ° C. for 1 minute to complete the reduction activation treatment.
Thereafter, the temperature was lowered and kept at 550 ° C. for 15 minutes, and then the amount of hydrogen generation was measured by a gas chromatograph (Fresh value).
 触媒性能の劣化加速試験のため、前記のようにFresh値を測定した後、S/C比を4.0に上昇させ、750℃まで昇温させて750℃を90分維持した後、再びS/C比2.5へ戻し、550℃まで降温させた後、10分間経過したときの水素量を測定した(Aged値)とした。 After the Fresh value was measured as described above for the accelerated deterioration test of the catalyst performance, the S / C ratio was raised to 4.0 and the temperature was raised to 750 ° C. and maintained at 750 ° C. for 90 minutes. The hydrogen content was returned to an A / C ratio of 2.5, lowered to 550 ° C., and then 10 minutes elapsed (Aged value).
<焼結密度>
 各実施例において説明したように、酸化物状態(還元活性化処理前)の円板状の触媒ペレット焼結体の直径、高さ、重量を測定し、焼結密度(g/cm3)を計算した。
<Sintered density>
As described in each example, the diameter, height, and weight of the disk-shaped catalyst pellet sintered body in the oxide state (before reduction activation treatment) are measured, and the sintered density (g / cm 3 ) is determined. Calculated.
<BET>
 各実施例・比較例で得られた水蒸気改質触媒組成物(サンプル)について、比表面積細孔分布測定装置(BECKMAN COULTER株式会社製「SA3100」)を使用し、N2ガス吸着法により、燃料改質評価装置による水蒸気改質性能(劣化加速試験を含む)の評価後に測定したBET比表面積(m2/g)をAged後の値とした。
<BET>
With respect to the steam reforming catalyst composition (sample) obtained in each Example and Comparative Example, using a specific surface area pore distribution measuring apparatus (“SA3100” manufactured by BECKMAN COULTER Co., Ltd.), using a fuel gas adsorption method, N 2 gas adsorption method The BET specific surface area (m 2 / g) measured after the evaluation of the steam reforming performance (including the accelerated deterioration test) by the reforming evaluation apparatus was taken as the value after aging.
<ニッケルバナジウムの複合酸化物相の存在確認>
 上記実施例・比較例で得られた水蒸気改質触媒組成物(ガス評価試験前サンプル、「pre」と称する)と、上記ガス改質評価試験後、すなわち還元活性化処理、水素発生量の測定、劣化加速試験、水素発生量の測定を経たサンプルを窒素雰囲気中で室温まで高温し回収した水蒸気改質触媒組成物(「Aged後」と称する)のそれぞれについて、X線回折分析装置(リガク社製・RINT TTRIII))を用いてX線回折(XRD)測定を行った(図3~図6参照)。
 そして、得られたX線回折パターン(図から、Ni(VO)O、(V1.34Ni0.66)O等に帰属されるニッケルバナジウムの複合酸化物相が存在したか否かを確認した。なお、表には、ニッケルバナジウムの複合酸化物相を単に「複合酸化物」として示し、存在が確認された場合「あり」、確認されなかった場合「なし」と評価した。
<Confirmation of existence of complex oxide phase of nickel vanadium>
The steam reforming catalyst composition (sample before gas evaluation test, referred to as "pre") obtained in the above examples and comparative examples, and after the above gas reforming evaluation test, that is, reduction activation treatment, measurement of hydrogen generation amount X-ray diffraction analyzer (Rigaku Co., Ltd.) for each of the steam reforming catalyst compositions (referred to as “Aged after”) collected by heating the samples that had undergone the accelerated deterioration test and the hydrogen generation amount to room temperature in a nitrogen atmosphere X-ray diffraction (XRD) measurement was carried out using RINT TTRIII)) (see FIGS. 3 to 6).
Then, was there a composite oxide phase of nickel vanadium belonging to the obtained X-ray diffraction pattern (from the figure, Ni 3 (VO 4 ) O 2 , (V 1.34 Ni 0.66 ) O 3 etc. In the table, the complex oxide phase of nickel vanadium is simply shown as "complex oxide", and evaluated as "yes" when the presence was confirmed and "none" when the presence was not confirmed. .
<走査型電子顕微鏡(SEM)観察>
 上記実施例・比較例で得られた水蒸気改質触媒組成物の上記ガス改質評価試験後の触媒活性粒子(Aged後)を走査型電子顕微鏡(SEM・FEICOMPANY社製XL30-SFEG)で観察した(図7~図15参照)。
<Scanning electron microscope (SEM) observation>
The catalytically active particles (after age) after the above gas reforming evaluation test of the steam reforming catalyst composition obtained in the above examples and comparative examples were observed with a scanning electron microscope (XL30-SFEG manufactured by SEM / FEICOMPANY) (See FIGS. 7-15).
<表面被覆率>
 表面被覆率(=下記表面処理剤添加量(g)×100)は、次の2式から算出することができる。
 最小被覆面積(m2/g)=6.02×1023×13×10-20/表面処理剤分子量
 表面処理剤添加量(g)=Ni(OH)2重量(g)×Ni(OH)2の比表面積(m2/g)/上記最小被覆面積(m2/g) 
 ここで、表面処理剤とは、上記実施例で用いたシランカップリング剤及び酢酸ジルコニウムを示す。
 シランカップリング剤及び酢酸ジルコニウムの2種類の表面処理剤を用いた実施例6、7については、両者のmol比に応じた平均分子量を表面処理剤分子量として算出した。
 なお、表2には、ケイ素酸化物(シランカップリング剤)又はジルコニウム酸化物(酢酸ジルコニウム)又はケイ素酸化物とジルコニウム酸化物の混合物の表面被覆率を「被覆率」として示した。
<Surface coverage>
The surface coverage (= following addition amount of surface treatment agent (g) x 100) can be calculated from the following two formulas.
Minimum covering area (m 2 / g) = 6.02 x 10 23 x 13 x 10 -20 / surface treating agent molecular weight Surface treating agent added amount (g) = Ni (OH) 2 weight (g) x Ni (OH) 2 Specific surface area (m 2 / g) / minimum coverage area (m 2 / g)
Here, the surface treatment agent indicates the silane coupling agent and zirconium acetate used in the above examples.
In Examples 6 and 7 in which two types of surface treatment agents, a silane coupling agent and zirconium acetate, were used, the average molecular weight according to the molar ratio of the two was calculated as the surface treatment agent molecular weight.
In Table 2, the surface coverage of silicon oxide (silane coupling agent) or zirconium oxide (zirconium acetate) or a mixture of silicon oxide and zirconium oxide is shown as "coverage".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例1、実施例2-1~2-2及び実施例3~7で得られた各水蒸気改質触媒組成物(サンプル)をFE-SEMのEDX(JSM-7001F/JEOL社製)にて確認したところ、いずれの水蒸気改質触媒組成物においても、バナジウムは、触媒活性粒子の内部よりも表面に多く存在しており、触媒活性粒子の表面に偏って点在することなく、表面に分散した状態で存在していることを確認することができた。
 また、上記実施例及びこれまで発明者が行ってきた試験結果より、比較例1のように、バナジウムを加えないニッケル系触媒活性粒子粉末は、550℃での還元活性化処理の段階からシンタリングが進行するために、触媒活性が低下することが確認された。
Each of the steam reforming catalyst compositions (samples) obtained in the above Example 1, Examples 2-1 to 2-2 and Examples 3 to 7 was used as an EDX of FE-SEM (manufactured by JSM-7001F / JEOL). It was confirmed that in any steam reforming catalyst composition, vanadium is present more on the surface than inside the catalytically active particles, and is not scattered on the surface of the catalytically active particles but on the surface. It could be confirmed that it exists in a dispersed state.
In addition, according to the above-described example and the test results that the inventor has conducted, as in Comparative Example 1, the nickel-based catalytically active particle powder to which vanadium is not added is sintered from the stage of reduction activation treatment at 550 ° C. It is confirmed that the catalyst activity is reduced because
 上記実施例・比較例で得られた水蒸気改質触媒組成物の上記ガス改質評価試験後の触媒活性粒子(Aged後)を走査型電子顕微鏡で観察した(図7~図15参照)結果、比較例1については、還元雰囲気によりメタル化し溶融したことが分かった(図7)。
 これに対し、実施例1では、バナジウム(V)を添加した効果により、焼結による粒子径の増大が抑制され(図8)、実施例2-1では、焼結が抑制され、粒界に隙間が存在していることが分かった(図9)。実施例2-2~2-4についてはいずれも、Vの添加の効果で粒成長が抑制されたことが分かった(図10~12)。実施例2-5~2-7についてはいずれも、さらにVを添加しても、粒成長を抑える効果は持続し、触媒性能の低下を防ぐことができることが分かった(図13~15)。
The catalytically active particles (after Aged) after the above gas reforming evaluation test of the steam reforming catalyst composition obtained in the above Examples and Comparative Examples were observed with a scanning electron microscope (see FIGS. 7 to 15), About comparative example 1, it turned out that it metal-ized by the reducing atmosphere and it fuse | melted (FIG. 7).
On the other hand, in Example 1, the increase in particle diameter due to sintering is suppressed by the effect of adding vanadium (V) (FIG. 8), and in Example 2-1, sintering is suppressed and the grain boundaries are It was found that a gap was present (FIG. 9). In all of Examples 2-2 to 2-4, it was found that the grain growth was suppressed by the effect of the addition of V (FIGS. 10 to 12). In all of Examples 2-5 to 2-7, it was found that even when V was further added, the effect of suppressing the grain growth could be sustained and the deterioration of the catalyst performance could be prevented (FIGS. 13 to 15).
 比較例1の触媒性能劣化加速試験後のサンプルを回収したところ、灰色にメタル化して硬く焼結しており、乳鉢での粉砕が困難であった。
 これに対し、バナジウムを加えることにより、550℃での還元活性化処理の際のみならず、改質反応中もシンタリングを抑制して、触媒活性の低下を抑制できることが分かった。また、触媒性能劣化加速試験後の実施例の各サンプルはいずれも、黒色で、乳鉢にて容易に粉砕されたため、シンタリングが進行していないことが分かった。
When the sample after the catalyst performance deterioration accelerated test of Comparative Example 1 was recovered, it was metallized in gray and was hard sintered, and it was difficult to grind in a mortar.
On the other hand, it was found that by adding vanadium, sintering can be suppressed not only at the time of the reductive activation treatment at 550 ° C. but also during the reforming reaction, and the decrease of the catalyst activity can be suppressed. In addition, each sample of the example after the catalyst performance deterioration accelerated test was black, and it was found that sintering was not progressing because it was easily ground in a mortar.
 また、実施例3~7で得られた各水蒸気改質触媒組成物(サンプル)を一部回収し、FE-SEMのEDX(JSM-7001F/JEOL社製)により、ニッケル粒子表面での分布状態を観察したところ、ニッケル粒子すなわち触媒活性粒子の表面に、ケイ素及び酸素、又は、ジルコニウム及び酸素、又は、ケイ素、ジルコニウム及び酸素が遍在することなく均一に分布していたが確認された。
 このように、触媒活性粒子の表面に、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が適度な量存在することにより、550℃での還元処理、さらには改質反応の際にシンタリングをより一層抑制することができ、触媒活性の低下をより一層抑制できることが分かった。特に、還元かつ550℃以上の高温環境下に長時間晒された後での触媒性能が維持され、熱劣化を抑制できることが判明した。このような効果は、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が触媒活性粒子表面に適度な量存在することにより、触媒粒子を構成する物質の移動を当該表面酸化物が制限するアンカー効果に加え、Ni成分とV成分が比表面積の高い化合物を形成するため、シンタリングが抑制されるものと推察することができる。
In addition, a portion of each of the steam reforming catalyst compositions (samples) obtained in Examples 3 to 7 was recovered, and distributed on the surface of the nickel particles by EDX of FE-SEM (manufactured by JSM-7001F / JEOL). It was confirmed that silicon and oxygen, or zirconium and oxygen, or silicon, zirconium and oxygen were uniformly distributed on the surface of the nickel particles, ie, catalytically active particles, without being ubiquitous.
Thus, the presence of a suitable amount of silicon oxide or zirconium oxide or both on the surface of the catalytically active particles further enhances sintering during the reduction treatment at 550 ° C. and further the reforming reaction. It has been found that this can be suppressed, and the reduction in catalyst activity can be further suppressed. In particular, it has been found that the catalyst performance is maintained after reduction and exposure to a high temperature environment of 550 ° C. or more for a long time, and thermal degradation can be suppressed. Such an effect is due to the presence of a suitable amount of silicon oxide or zirconium oxide or both on the surface of the catalytically active particles, in addition to the anchor effect that the surface oxide restricts the movement of the substance constituting the catalyst particles. Since the Ni component and the V component form a compound having a high specific surface area, it can be inferred that sintering is suppressed.
 なお、上述のようにケイ素酸化物又はジルコニウム酸化物又はこれら両方が触媒活性粒子表面に存在することで、熱劣化を抑制することができるが、その一方で、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が触媒活性粒子表面に存在することなく、バナジウムの含有量を特定量増やすことで、熱特性が向上し、同様に熱劣化を抑制できることも分かった。しかし、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が粒子表面に存在することなく、バナジウムの含有量を特定量増やす場合には、高価なバナジウムを多量に含有させなければならず、バナジウム成分が偏析し、不均一になりやすい。そのため、作業性及びコストの観点を考慮すると、触媒活性粒子表面に、ケイ素酸化物又はジルコニウム酸化物又はこれら両方を存在させる方が好ましいと考えることができる。 Although the thermal deterioration can be suppressed by the presence of the silicon oxide or the zirconium oxide or both of them on the surface of the catalytically active particles as described above, on the other hand, the silicon oxide or the zirconium oxide or these It was also found that the thermal characteristics can be improved and the thermal deterioration can be similarly suppressed by increasing the content of vanadium by a specific amount without both being present on the surface of the catalytically active particles. However, in the case where the content of vanadium is increased by a specific amount without silicon oxide or zirconium oxide or both being present on the particle surface, a large amount of expensive vanadium must be contained, and the vanadium component is segregated And tend to be uneven. Therefore, in view of workability and cost, it can be considered preferable to have silicon oxide or zirconium oxide or both present on the surface of the catalytically active particles.
1 気体燃料(都市ガス)
2 気体マスフローコントローラー
3 純水タンク
4 液体マスフローコントローラー
5 電気炉(300℃固定)
6 気化器
7 燃料ガス/水蒸気混合部
8 電気炉
9 改質触媒
10 改質触媒温度測定熱電対
11 バブラー
12 水分除去器
13 ガスクロマトグラフ
1 Gas fuel (city gas)
2 Gas mass flow controller 3 Pure water tank 4 Liquid mass flow controller 5 Electric furnace (fixed at 300 ° C)
6 vaporizer 7 fuel gas / steam mixing section 8 electric furnace 9 reforming catalyst 10 reforming catalyst temperature measurement thermocouple 11 bubbler 12 water remover 13 gas chromatograph

Claims (8)

  1.  水蒸気改質触媒活性成分と、バナジウムとを含有する触媒活性粒子を含有する水蒸気改質触媒組成物。 A steam reforming catalyst composition comprising catalytically active particles containing a steam reforming catalytically active component and vanadium.
  2.  水蒸気改質触媒活性成分100mol%に対してバナジウムを1mol%以上の割合で含有することを特徴とする請求項1に記載の水蒸気改質触媒組成物。 The steam reforming catalyst composition according to claim 1, which contains vanadium in a ratio of 1 mol% or more to 100 mol% of the steam reforming catalyst active component.
  3.  前記水蒸気改質触媒活性成分として、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を含むことを特徴とする請求項1又は2に記載の水蒸気改質触媒組成物。 The steam reforming catalyst according to claim 1 or 2, wherein the steam reforming catalyst active component includes at least one element of Fe, Ni, Co, Ru, Rh, Pt, Pd, and Ir. Composition.
  4.  前記水蒸気改質触媒活性成分として、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を、金属、酸化物又はこれらの混合物又はこれらの固溶体として含むことを特徴とする請求項1~3の何れかに記載の水蒸気改質触媒組成物。 At least one element of Fe, Ni, Co, Ru, Rh, Pt, Pd and Ir is contained as a metal, an oxide or a mixture thereof or a solid solution thereof as the steam reforming catalyst active component. The steam reforming catalyst composition according to any one of claims 1 to 3, wherein
  5.  バナジウムは、触媒活性粒子の表面に存在することを特徴とする請求項1~4の何れかに記載の水蒸気改質触媒組成物。 5. The steam reforming catalyst composition according to claim 1, wherein vanadium is present on the surface of the catalytically active particles.
  6.  前記触媒活性粒子の表面に、ケイ素酸化物又はジルコニウム酸化物又はこれら両方が存在することを特徴とする請求項1~5の何れかに記載の水蒸気改質触媒組成物。 The steam reforming catalyst composition according to any one of claims 1 to 5, wherein a silicon oxide or a zirconium oxide or both are present on the surface of the catalytically active particles.
  7.  請求項1~6の何れかに記載の水蒸気改質触媒組成物を、ペレット状に成型してなる水蒸気改質触媒。 A steam reforming catalyst formed by forming the steam reforming catalyst composition according to any one of claims 1 to 6 into pellets.
  8.  請求項1~6の何れかに記載の水蒸気改質触媒組成物を、基材に担持してなる構成を備えた水蒸気改質触媒。 A steam reforming catalyst comprising a structure in which a steam reforming catalyst composition according to any one of claims 1 to 6 is supported on a substrate.
PCT/JP2015/076168 2014-09-24 2015-09-15 Steam reforming catalyst composition and steam reforming catalyst WO2016047504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550119A JP6442519B2 (en) 2014-09-24 2015-09-15 Steam reforming catalyst composition and steam reforming catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-194427 2014-09-24
JP2014194427 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047504A1 true WO2016047504A1 (en) 2016-03-31

Family

ID=55581031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076168 WO2016047504A1 (en) 2014-09-24 2015-09-15 Steam reforming catalyst composition and steam reforming catalyst

Country Status (2)

Country Link
JP (1) JP6442519B2 (en)
WO (1) WO2016047504A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742412A (en) * 2021-01-20 2021-05-04 成都理工大学 Mullite loaded W-promoted Co-based catalyst for autothermal reforming of acetic acid
JP7391683B2 (en) 2019-01-31 2023-12-05 大阪瓦斯株式会社 Fuel reforming catalyst, fuel cell system and fuel cell structure

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924202A (en) * 1972-06-29 1974-03-04
JPS508716B1 (en) * 1970-02-02 1975-04-07
JPS58163441A (en) * 1982-03-25 1983-09-28 Toyota Central Res & Dev Lab Inc Steam-reforming catalyst
JPS6096504A (en) * 1983-10-31 1985-05-30 Mitsubishi Kakoki Kaisha Ltd Steam reforming of methanol
JPS60220143A (en) * 1984-04-16 1985-11-02 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JPS61234941A (en) * 1985-04-08 1986-10-20 Mitsubishi Heavy Ind Ltd Catalyst for producing h2-enriched gas
JPH07265704A (en) * 1994-03-29 1995-10-17 Takeshi Masumoto Production of steam reforming catalyst of methanol
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2010530878A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to methanol using methane or natural gas reforming.
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
JP2011212603A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing reforming catalyst and method for reforming tar-containing gas
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
JP2012528007A (en) * 2009-05-26 2012-11-12 ビー・エイ・エス・エフ、コーポレーション Methanol steam reforming catalyst

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508716B1 (en) * 1970-02-02 1975-04-07
JPS4924202A (en) * 1972-06-29 1974-03-04
JPS58163441A (en) * 1982-03-25 1983-09-28 Toyota Central Res & Dev Lab Inc Steam-reforming catalyst
JPS6096504A (en) * 1983-10-31 1985-05-30 Mitsubishi Kakoki Kaisha Ltd Steam reforming of methanol
JPS60220143A (en) * 1984-04-16 1985-11-02 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JPS61234941A (en) * 1985-04-08 1986-10-20 Mitsubishi Heavy Ind Ltd Catalyst for producing h2-enriched gas
JPH07265704A (en) * 1994-03-29 1995-10-17 Takeshi Masumoto Production of steam reforming catalyst of methanol
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2008018414A (en) * 2005-08-11 2008-01-31 Toda Kogyo Corp Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
JP2010530878A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to methanol using methane or natural gas reforming.
JP2012528007A (en) * 2009-05-26 2012-11-12 ビー・エイ・エス・エフ、コーポレーション Methanol steam reforming catalyst
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
JP2011212603A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing reforming catalyst and method for reforming tar-containing gas
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391683B2 (en) 2019-01-31 2023-12-05 大阪瓦斯株式会社 Fuel reforming catalyst, fuel cell system and fuel cell structure
CN112742412A (en) * 2021-01-20 2021-05-04 成都理工大学 Mullite loaded W-promoted Co-based catalyst for autothermal reforming of acetic acid
CN112742412B (en) * 2021-01-20 2022-11-08 成都理工大学 Mullite loaded W-promoted Co-based catalyst for autothermal reforming of acetic acid

Also Published As

Publication number Publication date
JP6442519B2 (en) 2018-12-19
JPWO2016047504A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5127380B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
JP3265534B2 (en) Exhaust gas purification catalyst
JP4296908B2 (en) Catalyst body and method for producing the same
WO2016158656A1 (en) Exhaust purification catalyst
JP6442519B2 (en) Steam reforming catalyst composition and steam reforming catalyst
JP2005272290A (en) Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing the same
JP2007136339A (en) Catalytic particle and its manufacturing method
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
JP6759298B2 (en) Oxygen storage material and its manufacturing method
JP2011093756A (en) Noble metal supporting silicon carbide particle and method for producing the same, catalyst containing the same and method for producing the same
JP7045942B2 (en) Core-shell type oxygen absorption / release material, its manufacturing method, exhaust gas purification catalyst using it, and exhaust gas purification method
JP4552098B2 (en) Exhaust gas purification catalyst carrier, production method thereof and catalyst
JP6442518B2 (en) Steam reforming catalyst composition and steam reforming catalyst
JP5690372B2 (en) Iron oxide-zirconia composite oxide and method for producing the same
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP6322218B2 (en) Oxygen storage material and method for producing the same
JP6625150B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6466330B2 (en) Carbon monoxide methanation catalyst composition and carbon monoxide methanation catalyst
JP3944142B2 (en) Method for producing metal particle dispersed oxide
JP2007054685A (en) Catalyst for water gas shift reaction
JP2013184143A (en) Exhaust gas purification catalyst carrier and method of producing the same, and exhaust gas purification catalyst
JP2013203640A (en) Method for producing complex oxide powder
JP7425416B2 (en) catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844099

Country of ref document: EP

Kind code of ref document: A1