JPH07265704A - Production of steam reforming catalyst of methanol - Google Patents

Production of steam reforming catalyst of methanol

Info

Publication number
JPH07265704A
JPH07265704A JP6082510A JP8251094A JPH07265704A JP H07265704 A JPH07265704 A JP H07265704A JP 6082510 A JP6082510 A JP 6082510A JP 8251094 A JP8251094 A JP 8251094A JP H07265704 A JPH07265704 A JP H07265704A
Authority
JP
Japan
Prior art keywords
catalyst
ultrafine particles
activity
steam reforming
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6082510A
Other languages
Japanese (ja)
Other versions
JP3382343B2 (en
Inventor
Katsutoshi Nozaki
勝敏 野崎
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hideo Fukui
英夫 福井
Masami Uzawa
正美 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Taiheiyo Cement Corp
YKK Corp
Original Assignee
Honda Motor Co Ltd
Chichibu Onoda Cement Corp
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Chichibu Onoda Cement Corp, YKK Corp, Yoshida Kogyo KK filed Critical Honda Motor Co Ltd
Priority to JP08251094A priority Critical patent/JP3382343B2/en
Publication of JPH07265704A publication Critical patent/JPH07265704A/en
Application granted granted Critical
Publication of JP3382343B2 publication Critical patent/JP3382343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a steam reforming catalyst of methanol having high activity and excellent durability. CONSTITUTION:A process preparing a molten bath of an Al alloy compsn. wherein Cu content is 5-20atom% and the content of at least one kind of an alloying element AE selected from rare earth elements, Fe, Mn, Pd, Co, V, Ag and Pt is 4-18atom%, a process applying quenching coagulation treatment to the molten bath to obtain a catalyst material and a process applying Al elution treatment to the catalyst material to obtain a powdery catalyst 1 wherein the surface layer 3 on a catalyst nucleus 2 is a mixed layer wherein numberless Cu ultrafine particles and numberless AE ultrafine particles 5 are mutually mixed and dispersed uniformly are used. The Cu ultrafine particles 4 have high activity and the growth of the particles 4 due to high temp. sintering can be obstructed by the AE ultrafine particles 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタノールの水蒸気改
質用触媒の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a catalyst for steam reforming of methanol.

【0002】[0002]

【従来の技術】従来、この種触媒の製造方法としては、
混練法、共沈法、Cuメッキ法、Cu溶射法等が知られ
ているが、これらの方法では触媒の最小粒径に限界があ
った。そこで、混練法等では得られない高活性な触媒を
得るために、Cuの含有量が10原子%であるAl−C
u合金組成の溶湯を調製する工程と、その溶湯に急冷凝
固処理を施して触媒素材を得る工程と、触媒素材にAl
溶出処理を施して、その触媒素材の表層を、無数のCu
超微粒子および無数のCu2 O超微粒子よりなる混在層
に形成する工程とを用いる方法が開発されている。
2. Description of the Related Art Conventionally, as a method for producing this type of catalyst,
Known methods include a kneading method, a coprecipitation method, a Cu plating method, and a Cu spraying method, but these methods have limitations on the minimum particle size of the catalyst. Therefore, in order to obtain a highly active catalyst that cannot be obtained by the kneading method or the like, Al-C containing 10 atomic% of Cu is used.
a step of preparing a molten alloy having a u alloy composition, a step of subjecting the molten alloy to a rapid solidification treatment to obtain a catalyst material, and
After elution treatment, the surface layer of the catalyst material was
And a step of forming a mixed layer of ultrafine particles and innumerable Cu 2 O ultrafine particles have been developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来法に
よる触媒は、急冷凝固処理を経ていることから、当初比
較的大きな比表面積を有し、例えば300℃程度の温度
環境下では優れた初期活性を示すが、その温度環境下に
長時間保持すると、前記超微粒子相互間に焼結現象が発
生して、それら超微粒子が粗大化するため活性が著しく
低下する、という問題があった。
However, since the catalyst according to the conventional method has undergone the rapid solidification treatment, it initially has a relatively large specific surface area and exhibits excellent initial activity in a temperature environment of, for example, about 300 ° C. However, there is a problem in that, if the ultrafine particles are kept for a long time in the temperature environment, a sintering phenomenon occurs between the ultrafine particles and the ultrafine particles become coarse, so that the activity is remarkably reduced.

【0004】本発明は前記に鑑み、Al合金組成を変え
ることによって、大きな比表面積を有し、したがって高
活性であると共に、その高活性を長期に亘って維持し得
る耐久性の優れた前記触媒を得ることのできる前記製造
方法を提供することを目的とする。
In view of the above, the present invention has a large specific surface area by changing the Al alloy composition, and therefore has high activity, and also has excellent durability which can maintain the high activity for a long period of time. It is an object of the present invention to provide the above-mentioned manufacturing method capable of obtaining the above.

【0005】[0005]

【課題を解決するための手段】本発明は、メタノールの
水蒸気改質用触媒を製造するに当り、Cuの含有量が5
原子%≦Cu≦20原子%であり、また希土類元素、F
e、Mn、Pd、Co、V、AgおよびPtから選択さ
れる少なくとも一種の合金元素AEの含有量が4原子%
≦AE≦18原子%であるAl系合金組成の溶湯を調製
する工程と、前記溶湯に急冷凝固処理を施して触媒素材
を得る工程と、前記触媒素材にAl溶出処理を施して、
表層が、無数のCu系超微粒子と無数の合金元素AE系
超微粒子とが相互に均一に混じり合って分散する混在層
である触媒を得る工程と、を用いることを特徴とする。
According to the present invention, when a catalyst for steam reforming of methanol is produced, a Cu content of 5 is used.
Atomic% ≤ Cu ≤ 20 atomic%, and rare earth element, F
The content of at least one alloying element AE selected from e, Mn, Pd, Co, V, Ag and Pt is 4 atomic%.
A step of preparing a molten metal having an Al-based alloy composition of ≦ AE ≦ 18 atomic%; a step of subjecting the molten metal to a rapid solidification treatment to obtain a catalyst material;
And a step of obtaining a catalyst in which the surface layer is a mixed layer in which a myriad of Cu-based ultrafine particles and a myriad of alloying element AE-based ultrafine particles are uniformly mixed and dispersed with each other.

【0006】[0006]

【作用】前記のような手段によって得られた触媒は、そ
の表層が触媒能を有する無数のCu系超微粒子を備えて
いることから、大きな比表面積を有し、したがって高活
性である。
The catalyst obtained by the above-mentioned means has a large specific surface area and therefore is highly active, because the surface layer thereof has numerous Cu-based ultrafine particles having catalytic ability.

【0007】また高温環境下においては、Cu系超微粒
子相互間の焼結が合金元素AE系超微粒子により妨げら
れるので、触媒の高活性は長期に亘って維持され、した
がって触媒は優れた耐久性を有する。
Further, in a high temperature environment, the sintering of Cu-based ultrafine particles is prevented by the alloying element AE-based ultrafine particles, so that the high activity of the catalyst is maintained for a long period of time, and therefore the catalyst has excellent durability. Have.

【0008】なお、Cu含有量および合金元素AE含有
量が前記範囲を逸脱すると、前記のような特性を有する
触媒を得ることができない。
If the Cu content and the alloying element AE content deviate from the above ranges, a catalyst having the above characteristics cannot be obtained.

【0009】[0009]

【実施例】メタノールの水蒸気改質は、触媒の存在下、
CH3 OH+H2 O→CO2 +3H2 の化学反応に基づ
く。この場合、H2 OとCH3 OHとの比H2 O/CH
3OHは0〜3に設定される。
[Example] Steam reforming of methanol was conducted in the presence of a catalyst.
Based on a chemical reaction of CH 3 OH + H 2 O → CO 2 + 3H 2 . In this case, the ratio of H 2 O and CH 3 OH H 2 O / CH
3 OH is set to 0-3.

【0010】前記水蒸気改質用触媒の製造に当っては、
Cuの含有量が5原子%≦Cu≦20原子%であり、ま
た希土類元素、Fe、Mn、Pd、Co、V、Agおよ
びPtから選択される少なくとも一種の合金元素AEの
含有量が4原子%≦AE≦18原子%であるAl系合金
組成の溶湯を調製する工程と、その溶湯に急冷凝固処理
を施して触媒素材を得る工程と、その触媒素材にAl溶
出処理を施して、表層が、無数のCu系超微粒子と無数
の合金元素AE系超微粒子とが相互に均一に混じり合っ
て分散する混在層である触媒を得る工程と、が用いられ
る。合金元素AEとして、二種以上のものを選択した場
合には、それら合金元素AEの合計量が前記含有量とな
る。
In the production of the steam reforming catalyst,
The content of Cu is 5 atomic% ≦ Cu ≦ 20 atomic%, and the content of at least one alloying element AE selected from rare earth elements, Fe, Mn, Pd, Co, V, Ag and Pt is 4 atomic%. % AE ≤ 18 atomic%, a step of preparing a molten metal having an Al-based alloy composition, a step of subjecting the molten metal to a rapid solidification treatment to obtain a catalyst material, and a step of subjecting the catalyst material to an aluminum elution treatment to form a surface layer A step of obtaining a catalyst which is a mixed layer in which a myriad of Cu-based ultrafine particles and a myriad of alloying element AE-based ultrafine particles are uniformly mixed and dispersed with each other. When two or more kinds of alloying elements AE are selected, the total amount of the alloying elements AE is the above content.

【0011】急冷凝固処理としては単ロール法が適用さ
れ、その条理条件は、Cu製冷却ロールの直径200〜
300mm、冷却ロールの回転数2000〜4000rpm
、石英ノズルの噴出口寸法 直径0.5mm以下、また
はスリット状の場合、縦 0.5mm以下、横 500mm
以下、溶湯の噴出圧0.3〜1kgf/cm2 、チャンバ内
圧力100〜300Torrである。この単ロール法の適用
下で得られる触媒素材はリボン状をなす。
As the rapid solidification treatment, a single roll method is applied, and the condition is that the diameter of the cooling roll made of Cu is 200 to 200 mm.
300 mm, chill roll speed 2000-4000 rpm
, Quartz nozzle ejection diameter 0.5 mm or less, or 0.5 mm or less vertically, 500 mm horizontally in case of slit shape
Hereafter, the molten metal jet pressure is 0.3 to 1 kgf / cm 2 and the chamber internal pressure is 100 to 300 Torr. The catalyst material obtained by applying this single roll method has a ribbon shape.

【0012】リボン状触媒素材の金属組織は、例えば、
Al過飽和固溶体単相組織、準結晶単相組織、微細Al
結晶相と準結晶相との混相組織、微細Al結晶相と微細
Al系金属間化合物相との混相組織、非晶質単相組織、
非晶質相と微細Al結晶相との混相組織、非晶質相と微
細Al結晶相と微細Al系金属間化合物相との混相組織
から選択される一種である。
The metallic structure of the ribbon-shaped catalyst material is, for example,
Al supersaturated solid solution single phase structure, quasicrystalline single phase structure, fine Al
Mixed phase structure of crystalline phase and quasi crystalline phase, mixed phase structure of fine Al crystalline phase and fine Al-based intermetallic compound phase, amorphous single phase structure,
It is a kind selected from a mixed phase structure of an amorphous phase and a fine Al crystal phase, and a mixed phase structure of an amorphous phase, a fine Al crystal phase and a fine Al-based intermetallic compound phase.

【0013】Al溶出処理は、酸またはアルカリの一方
よりなる水溶液にリボン状触媒素材を浸漬することによ
って行われる。アルカリ水溶液として、例えばNaOH
を用いる場合には、NaOHの濃度は20〜30重量%
に、また液温は50〜80℃に、さらに浸漬時間は1〜
30分間にそれぞれ設定される。この場合、Na量はA
l量に対してNa:Al=5:1〜50:1に設定さ
れ、これは、例えば100mlの20〜30重量%NaO
H水溶液に、前記組成を持つリボン状触媒素材1g程度
を投入することを意味する。
The Al elution treatment is carried out by immersing the ribbon-shaped catalyst material in an aqueous solution containing either acid or alkali. As an alkaline aqueous solution, for example, NaOH
When using, the concentration of NaOH is 20-30% by weight
The liquid temperature is 50 to 80 ° C, and the immersion time is 1 to
Each is set for 30 minutes. In this case, the amount of Na is A
It is set to Na: Al = 5: 1 to 50: 1 for 1 volume, which is, for example, 100 ml of 20 to 30% by weight NaO.
This means that about 1 g of the ribbon-shaped catalyst material having the above composition is added to the H aqueous solution.

【0014】このAl溶出処理により、通常、リボン状
触媒素材は粉末状に分解され、したがって触媒は粉末状
をなし、その表層がCu系超微粒子および合金元素AE
系超微粒子の混在層となる。この粉末状触媒には、イオ
ン交換水による洗浄処理を、濾液中にNaイオンが検出
されなくなるまで施し、次いで乾燥処理を施す。前記A
l溶出処理において、浸漬時間を調節することにより、
触媒をリボン状または薄片状にすることが可能である。
By this Al elution treatment, the ribbon-shaped catalyst material is usually decomposed into powder, and therefore the catalyst is in powder form, and the surface layer thereof is Cu-based ultrafine particles and alloy element AE.
It becomes a mixed layer of ultrafine particles. This powdery catalyst is washed with ion-exchanged water until Na ions are no longer detected in the filtrate, and then dried. The A
l In the elution process, by adjusting the immersion time,
It is possible for the catalyst to be ribbon-shaped or flaky.

【0015】Cu系超微粒子および合金元素AE系超微
粒子は、組成によって形状が異なり、例えば多角形状、
針状、薄片状、球状、といった形状を有し、その最長部
分の長さは約200nm以下である。この場合、触媒素材
の金属組織が非晶質単相組織であるとき、Cu系、合金
元素AE系超微粒子は最も微細となるので、触媒の活性
を高めるためには触媒素材の金属組織を非晶質単相組織
に形成するのが望ましい。
The Cu-based ultrafine particles and the alloying element AE-based ultrafine particles have different shapes depending on the composition.
It has a needle-like shape, a flaky shape, or a spherical shape, and the length of the longest part thereof is about 200 nm or less. In this case, when the metal structure of the catalyst material is an amorphous single-phase structure, the Cu-based and alloying element AE-based ultrafine particles are the finest. Therefore, in order to enhance the activity of the catalyst, the metal structure of the catalyst material is not It is desirable to form a crystalline single-phase structure.

【0016】Cu系超微粒子には、例えば、Cu単体よ
りなるCu超微粒子、酸化物であるCu2 OよりなるC
2 O超微粒子が含まれ、これらは単独か、または混じ
り合って存在する。また合金元素AE系超微粒子には、
例えば、合金元素AE単体よりなるAE超微粒子、合金
元素AEの酸化物であるAE酸化物超微粒子が含まれ、
これらは単独か、または混じり合って存在する。NaO
H水溶液を用いた場合、合金元素AE系超微粒子は水酸
化物の形態をとることもある。
The Cu-based ultrafine particles include, for example, Cu ultrafine particles composed of simple Cu and C composed of Cu 2 O which is an oxide.
u 2 O ultrafine particles are included, and these are present alone or in a mixture. In addition, for the alloy element AE-based ultrafine particles,
For example, it includes AE ultrafine particles composed of a simple alloy element AE and AE oxide ultrafine particles which is an oxide of the alloy element AE,
These exist alone or in a mixture. NaO
When an H aqueous solution is used, the alloy element AE-based ultrafine particles may take the form of a hydroxide.

【0017】図1において、粉末状触媒1はAl系合金
組成の触媒主体2と表層3とよりなり、その表層3が、
無数のCu系超微粒子4と無数の合金元素AE系超微粒
子5とが均一に混じり合っている混在層となる。したが
って粉末状触媒1は、表層3が触媒能を有する無数のC
u系超微粒子4を備えていることから、大きな比表面積
を有し、したがって高活性である。
In FIG. 1, a powdery catalyst 1 is composed of a catalyst main body 2 having an Al alloy composition and a surface layer 3, and the surface layer 3 is
It becomes a mixed layer in which innumerable Cu-based ultrafine particles 4 and innumerable alloy element AE-based ultrafine particles 5 are uniformly mixed. Therefore, in the powdery catalyst 1, the surface layer 3 has innumerable C
Since it has the u-based ultrafine particles 4, it has a large specific surface area and is therefore highly active.

【0018】また高温環境下においては、Cu系超微粒
子4相互間の焼結が合金元素AE系超微粒子5により妨
げられるので、粉末状触媒1の高活性は長期に亘って維
持され、したがって触媒1は優れた耐久性を有する。
Further, in a high temperature environment, the sintering between the Cu-based ultrafine particles 4 is hindered by the alloying element AE-based ultrafine particles 5, so that the high activity of the powdery catalyst 1 is maintained for a long time, and thus the catalyst is 1 has excellent durability.

【0019】〔実施例1〕 (a)触媒の製造 Cuと、Laと、Fe、Co、V、Mn、Pd、Agま
たはPtから選択される一種とを含むAl系合金組成の
各種溶湯を調製し、次いで各溶湯に単ロール法を適用し
た急冷凝固処理を施して各種リボン状触媒素材を作製し
た。
Example 1 (a) Production of Catalyst Various molten metals having an Al-based alloy composition containing Cu, La, and one selected from Fe, Co, V, Mn, Pd, Ag, or Pt are prepared. Then, each melt was subjected to a rapid solidification treatment applying a single roll method to prepare various ribbon-shaped catalyst materials.

【0020】単ロール法の条理条件は、冷却ロールの直
径200mm、冷却ロールの回転数4000rpm 、石英ノ
ズルの噴出口寸法 直径0.3mm、溶湯の噴出圧 0.
4kgf/cm2 、チャンバ内圧力 100Torrである。
The conditions of the single roll method are as follows: cooling roll diameter 200 mm, cooling roll rotation speed 4000 rpm, quartz nozzle spout size diameter 0.3 mm, molten metal spout pressure.
The pressure is 4 kgf / cm 2 , and the chamber internal pressure is 100 Torr.

【0021】次いで、0.5gのリボン状触媒素材を、
60℃で50mlの20重量%NaOH水溶液に30分間
浸漬してAl溶出処理を行い、これにより各種粉末状触
媒の例1〜7を得た。
Next, 0.5 g of ribbon-shaped catalyst material was added.
Al elution treatment was carried out by immersing in 50 ml of 20 wt% NaOH aqueous solution for 30 minutes at 60 ° C., whereby various powdery catalyst examples 1 to 7 were obtained.

【0022】また比較のためAl90Cu10(数値は原子
%、これは、後述の各化学式において同じ)で表わされ
るAl系合金組成の溶湯を用い、前記と同一条件にて単
ロール法、それに次ぐAl溶出処理を行って、粉末状触
媒の比較例Aを得た。
For comparison, a melt having an Al-based alloy composition represented by Al 90 Cu 10 (numerical value is atomic%, which is the same in each chemical formula described later) is used, and a single roll method is conducted under the same conditions as described above. Then, Al elution treatment was performed to obtain a powdery catalyst of Comparative Example A.

【0023】表1,2は、触媒の例1〜7および比較例
Aに関する溶湯の組成、触媒素材の金属組織、Cu系、
合金元素AE系超微粒子の種類および比表面積を示す。
Tables 1 and 2 show the compositions of the melts for the catalyst examples 1 to 7 and comparative example A, the metal structure of the catalyst material, the Cu system,
The type and specific surface area of the alloy element AE-based ultrafine particles are shown.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 表1,2より、触媒の例1〜7は比較例Aと同等若しく
はそれを上回る比表面積を有することが判る。
[Table 2] From Tables 1 and 2, it can be seen that Examples 1 to 7 of the catalyst have a specific surface area equal to or larger than that of Comparative Example A.

【0026】図2は、触媒の例4表面の金属組織を示す
顕微鏡写真であり、図2より触媒主体上に最長部分の長
さが約200nm以下の無数の超微粒子が分散しているこ
とが明らかである。 (b)温度と触媒の活性 触媒の例1を0.1g秤量し、それを定圧固定床流通式
反応装置内に設置して触媒層を形成した。そして、触媒
層の温度を活性評価温度として、125、149、19
3、240、286、334、383、432、482
℃に設定すると共にその触媒層にH2 O:CH3 OH=
1:1の混合液を流通させて、メタノールの水蒸気改質
を行った。
FIG. 2 is a photomicrograph showing the metallographic structure of the surface of Example 4 of the catalyst. As shown in FIG. 2, innumerable ultrafine particles having a longest length of about 200 nm or less are dispersed on the main body of the catalyst. it is obvious. (B) Temperature and Activity of Catalyst 0.1 g of the catalyst of Example 1 was weighed and placed in a constant pressure fixed bed flow reactor to form a catalyst layer. Then, using the temperature of the catalyst layer as the activity evaluation temperature, 125, 149, 19
3,240,286,334,383,432,482
The temperature is set to 0 ° C., and H 2 O: CH 3 OH =
A 1: 1 mixed solution was circulated to perform steam reforming of methanol.

【0027】触媒の例1の活性は、発生ガスをガスクロ
マトグラフにより分析して、水素ガス発生速度にて評価
した。水素ガス発生速度は、1kgの触媒によって1分間
に発生する水素ガス量、したがってリットル/kg・min
で表わされる。同様のテストを触媒の例2〜4および比
較例Aについて行った。
The activity of Example 1 of the catalyst was evaluated by analyzing the generated gas with a gas chromatograph and evaluating the hydrogen gas generation rate. Hydrogen gas generation rate is the amount of hydrogen gas generated in 1 minute by 1 kg of catalyst, therefore, liter / kg · min
Is represented by Similar tests were performed on Catalyst Examples 2-4 and Comparative Example A.

【0028】図3はテスト結果を示す。図中、点(1)
〜(4)および(A)は触媒の例1〜4および比較例A
にそれぞれ対応する。図3から明らかなように、活性評
価温度300〜400℃において、触媒の例1,2は比
較例Aに比べて高活性であり、これは水素ガスを中温用
燃料電池の燃料として用いる場合に最適である。触媒の
例3,4は、前記活性評価温度において、比較例Aと略
同等の活性を示す。 (c)触媒の耐久性 触媒の例1を0.1g秤量し、それを前記定圧固定床流
通式反応装置内に設置して触媒層を形成した。そして、
触媒層の温度を活性評価温度である300℃に設定する
と共にその触媒層にH2 O:CH3 OH=1:1の混合
液を流通させて、メタノールの水蒸気改質を行い、触媒
の例1の初期活性(図3の活性評価温度300℃におけ
る水素ガスの発生速度)、24時間経過後の活性および
48時間経過後の活性を調べた。また同様のテストを触
媒の例2〜5および比較例Aについて行った。
FIG. 3 shows the test results. Point (1) in the figure
-(4) and (A) are catalyst examples 1-4 and comparative example A
Respectively correspond to. As is clear from FIG. 3, at the activity evaluation temperature of 300 to 400 ° C., the catalyst examples 1 and 2 have higher activity than the comparative example A, which means that when hydrogen gas is used as the fuel for the intermediate temperature fuel cell. Optimal. The catalysts of Examples 3 and 4 exhibit an activity substantially equal to that of Comparative Example A at the activity evaluation temperature. (C) Durability of catalyst 0.1 g of Catalyst Example 1 was weighed and placed in the constant pressure fixed bed flow reactor to form a catalyst layer. And
The temperature of the catalyst layer is set to 300 ° C., which is the activity evaluation temperature, and a mixed solution of H 2 O: CH 3 OH = 1: 1 is circulated in the catalyst layer to perform steam reforming of methanol. The initial activity of 1 (the generation rate of hydrogen gas at the activity evaluation temperature of 300 ° C. in FIG. 3), the activity after 24 hours and the activity after 48 hours were examined. Further, the same test was performed for catalyst examples 2 to 5 and comparative example A.

【0029】表3はテスト結果を示す。Table 3 shows the test results.

【0030】[0030]

【表3】 表3から明らかなように、触媒の例1〜5は、初期活性
が高い上に、その活性が48時間経過後においても略変
化がなく、したがって高活性であると共に優れた耐久性
を有することが判る。比較例Aは高い初期活性を有する
が、その活性は経時的に極端に低下し、したがって耐久
性が極めて低いものである。
[Table 3] As is clear from Table 3, Examples 1 to 5 of the catalysts have high initial activity, and the activity thereof does not change substantially even after 48 hours, so that they have high activity and excellent durability. I understand. Comparative Example A has a high initial activity, but its activity drops significantly over time and is therefore extremely poor in durability.

【0031】〔実施例2〕 (a)触媒の製造 CuとLaを含むAl系合金組成の各種溶湯を調製し、
次いで各溶湯に単ロール法を適用した急冷凝固処理を施
して各種リボン状触媒素材を作製した。
Example 2 (a) Manufacture of Catalyst Various melts having an Al-based alloy composition containing Cu and La were prepared,
Next, various ribbon-shaped catalyst materials were produced by subjecting each molten metal to a rapid solidification treatment applying a single roll method.

【0032】単ロール法の条理条件は、実施例1同様
に、冷却ロールの直径200mm、冷却ロールの回転数4
000rpm 、石英ノズルの噴出口寸法 直径0.3mm、
溶湯の噴出圧 0.4kgf/cm2 、チャンバ内圧力10
0Torrである。
The condition of the single roll method is the same as in Example 1 except that the diameter of the cooling roll is 200 mm and the number of rotations of the cooling roll is 4
000 rpm, size of jet nozzle of quartz nozzle, diameter 0.3 mm,
Molten metal jet pressure 0.4 kgf / cm 2 , chamber pressure 10
It is 0 Torr.

【0033】次いで、実施例1同様に、0.5gのリボ
ン状触媒素材を、60℃で50mlの20重量%NaOH
水溶液に30分間浸漬してAl溶出処理を行い、これに
より各種粉末状触媒の例1〜5を得た。
Then, as in Example 1, 0.5 g of ribbon-shaped catalyst material was added at 60 ° C. to 50 ml of 20 wt% NaOH.
It was immersed in an aqueous solution for 30 minutes to perform Al elution treatment, and thereby Examples 1 to 5 of various powdery catalysts were obtained.

【0034】表4は、触媒の例1〜5および前記比較例
Aに関する溶湯の組成、触媒素材の金属組織、Cu系、
合金元素AE系超微粒子の種類および比表面積を示す。
Table 4 shows the composition of the molten metal for the catalyst examples 1 to 5 and the comparative example A, the metal structure of the catalyst material, the Cu system,
The type and specific surface area of the alloy element AE-based ultrafine particles are shown.

【0035】[0035]

【表4】 表4より、触媒の例1〜5は比較例Aを上回る比表面積
を有することが判る。 (b)温度と触媒の活性 実施例1同様に、触媒の例1を0.1g秤量し、それを
定圧固定床流通式反応装置内に設置して触媒層を形成し
た。そして、触媒層の温度を活性評価温度として、12
5、149、193、240、286、334、38
3、432、482℃に設定すると共にその触媒層にH
2 O:CH3 OH=1:1の混合液を流通させて、メタ
ノールの水蒸気改質を行った。
[Table 4] From Table 4, it can be seen that Examples 1 to 5 of the catalyst have a specific surface area larger than that of Comparative Example A. (B) Temperature and Activity of Catalyst As in Example 1, 0.1 g of the catalyst of Example 1 was weighed and placed in a constant pressure fixed bed flow reactor to form a catalyst layer. Then, using the temperature of the catalyst layer as the activity evaluation temperature, 12
5, 149, 193, 240, 286, 334, 38
Set the temperature to 3,432,482 ° C and add H to the catalyst layer.
A mixed solution of 2 O: CH 3 OH = 1: 1 was circulated to perform steam reforming of methanol.

【0036】触媒の例1の活性は、実施例1同様に、発
生ガスをガスクロマトグラフにより分析して、水素ガス
発生速度(リットル/kg・min )にて評価した。また同
様のテストを触媒の例2,4,5について行った。
The activity of the catalyst of Example 1 was evaluated in the same manner as in Example 1 by analyzing the generated gas with a gas chromatograph and measuring the hydrogen gas generation rate (liter / kg · min). Similar tests were also conducted on catalyst examples 2, 4 and 5.

【0037】図4はテスト結果を示す。図中、点
(1),(2),(4),(5)および(A)は触媒の
例1,2,4,5および前記比較例Aにそれぞれ対応す
る。図4から明らかなように、活性評価温度300〜4
00℃において、触媒の例1,2,4,5は比較例Aに
比べて高活性であり、これは、実施例1同様に水素ガス
を中温用燃料電池の燃料として用いる場合に最適であ
る。 (c)触媒の耐久性 実施例1同様に、触媒の例4を0.1g秤量し、それを
前記定圧固定床流通式反応装置内に設置して触媒層を形
成した。そして、触媒層の温度を活性評価温度である3
00℃に設定すると共にその触媒層にH2 O:CH3
H=1:1の混合液を流通させて、メタノールの水蒸気
改質を行い、触媒の例4の初期活性(図4の活性評価温
度300℃における水素ガス発生速度)、24時間経過
後の活性および48時間経過後の活性を調べたところ、
表5の結果を得た。
FIG. 4 shows the test results. In the figure, points (1), (2), (4), (5) and (A) correspond to catalyst examples 1, 2, 4, 5 and comparative example A, respectively. As is clear from FIG. 4, activity evaluation temperatures of 300 to 4
At 00 ° C., catalyst examples 1, 2, 4, 5 are more active than comparative example A, which is optimal when hydrogen gas is used as the fuel for the medium temperature fuel cell as in example 1. . (C) Durability of catalyst As in Example 1, 0.1 g of the catalyst of Example 4 was weighed and placed in the constant pressure fixed bed flow reactor to form a catalyst layer. Then, the temperature of the catalyst layer is 3 which is the activity evaluation temperature.
The catalyst layer was set to 00 ° C. and H 2 O: CH 3 O was added to the catalyst layer.
The initial activity of the catalyst of Example 4 (hydrogen gas generation rate at an activity evaluation temperature of 300 ° C. in FIG. 4) and the activity after 24 hours were passed by performing steam reforming of methanol by circulating a mixed solution of H = 1: 1. And when the activity after 48 hours was examined,
The results shown in Table 5 were obtained.

【0038】[0038]

【表5】 表5から明らかなように、触媒の例4は、初期活性が高
い上に、その活性が48時間経過後においても略変化が
なく、したがって高活性であると共に優れた耐久性を有
することが判る。
[Table 5] As is clear from Table 5, Example 4 of the catalyst has a high initial activity, and its activity does not change substantially even after 48 hours, so that it has a high activity and an excellent durability. .

【0039】〔実施例3〕 (a)触媒の製造 Cuと、Fe、Co、V、Mn、Pd、PtまたはY
(希土類元素)から選択される一種とを含むAl系合金
組成の各種溶湯を調製し、次いで各溶湯に単ロール法を
適用した急冷凝固処理を施して各種リボン状触媒素材を
作製した。
Example 3 (a) Production of catalyst Cu and Fe, Co, V, Mn, Pd, Pt or Y
Various melts having an Al-based alloy composition containing one kind selected from (rare earth elements) were prepared, and then each melt was subjected to a rapid solidification treatment by applying a single roll method to prepare various ribbon-shaped catalyst materials.

【0040】単ロール法の条理条件は、実施例1同様
に、冷却ロールの直径200mm、冷却ロールの回転数4
000rpm 、石英ノズルの噴出口寸法 直径0.3mm、
溶湯の噴出圧 0.4kgf/cm2 、チャンバ内圧力 1
00Torrである。
As in Example 1, the condition of the single roll method is that the diameter of the cooling roll is 200 mm and the number of rotations of the cooling roll is 4
000 rpm, size of jet nozzle of quartz nozzle, diameter 0.3 mm,
Molten metal jet pressure 0.4kgf / cm 2 , chamber pressure 1
00 Torr.

【0041】次いで、実施例1同様に、0.5gのリボ
ン状触媒素材を、60℃で50mlの20重量%NaOH
水溶液に30分間に浸漬してAl溶出処理を行い、これ
により各種粉末状触媒の例1〜7を得た。
Then, as in Example 1, 0.5 g of ribbon-shaped catalyst material was added at 60 ° C. to 50 ml of 20 wt% NaOH.
It was dipped in an aqueous solution for 30 minutes and subjected to Al elution treatment, thereby obtaining Examples 1 to 7 of various powdery catalysts.

【0042】表6は、触媒の例1〜7および前記比較例
Aに関する溶湯の組成、触媒素材の金属組織、Cu系、
合金元素AE系超微粒子の種類および比表面積を示す。
Table 6 shows the compositions of the melts for the catalyst examples 1 to 7 and the comparative example A, the metal structure of the catalyst material, the Cu system,
The type and specific surface area of the alloy element AE-based ultrafine particles are shown.

【0043】[0043]

【表6】 表6より、触媒の例1〜5は比較例Aを上回る比表面積
を有することが判る。触媒の例6、7は比較例Aに比べ
て比表面積が小さい。 (b)温度と触媒の活性 実施例1同様に触媒の例1を0.1g秤量し、それを定
圧固定床流通式反応装置内に設置して触媒層を形成し
た。そして、触媒層の温度を活性評価温度として、12
5、149、193、240、286、334、38
3、432、482℃に設定すると共にその触媒層にH
2 O:CH3 OH=1:1の混合液を流通させて、メタ
ノールの水蒸気改質を行った。
[Table 6] From Table 6 it can be seen that catalyst examples 1-5 have a specific surface area greater than comparative example A. Catalysts 6 and 7 have smaller specific surface areas than Comparative Example A. (B) Temperature and Activity of Catalyst As in Example 1, 0.1 g of the catalyst of Example 1 was weighed and placed in a constant pressure fixed bed flow reactor to form a catalyst layer. Then, using the temperature of the catalyst layer as the activity evaluation temperature, 12
5, 149, 193, 240, 286, 334, 38
Set the temperature to 3,432,482 ° C and add H to the catalyst layer.
A mixed solution of 2 O: CH 3 OH = 1: 1 was circulated to perform steam reforming of methanol.

【0044】触媒の例1の活性は、実施例1同様に、発
生ガスをガスクロマトグラフにより分析して、水素ガス
発生速度(リットル/kg・min )にて評価した。また同
様のテストを触媒の例2〜5について行った。
The activity of the catalyst of Example 1 was evaluated in the same manner as in Example 1 by analyzing the generated gas with a gas chromatograph and measuring the hydrogen gas generation rate (liter / kg · min). Also, the same test was performed on Examples 2 to 5 of the catalyst.

【0045】図5はテスト結果を示す。図中、点(1)
〜(5)および(A)は触媒の例1〜5および前記比較
例Aにそれぞれ対応する。図5から明らかなように、活
性評価温度300〜400℃において、触媒の例1,
2,5は比較例Aに比べて高活性であり、これは、実施
例1同様に、水素ガスを中温用燃料電池の燃料として用
いる場合に最適である。触媒の例3,4は、前記活性評
価温度において、比較例Aと略同等の活性を示す。 (c)触媒の耐久性 実施例1同様に触媒の例1を0.1g秤量し、それを前
記定圧固定床流通式反応装置内に設置して触媒層を形成
した。そして、触媒層の温度を活性評価温度である30
0℃に設定すると共にその触媒層にH2 O:CH3 OH
=1:1の混合液を流通させて、メタノールの水蒸気改
質を行い、触媒の例1の初期活性(図5の活性評価温度
300℃における水素ガス発生速度)、24時間経過後
の活性および48時間経過後の活性を調べた。また同様
のテストを触媒の例2〜5について行った。
FIG. 5 shows the test results. Point (1) in the figure
-(5) and (A) correspond to Examples 1-5 of the catalyst and Comparative Example A, respectively. As is clear from FIG. 5, at the activity evaluation temperature of 300 to 400 ° C.
Nos. 2 and 5 have higher activities than Comparative Example A, which is optimal when hydrogen gas is used as the fuel for the intermediate temperature fuel cell, as in Example 1. The catalysts of Examples 3 and 4 exhibit an activity substantially equal to that of Comparative Example A at the activity evaluation temperature. (C) Durability of catalyst In the same manner as in Example 1, 0.1 g of the catalyst of Example 1 was weighed and placed in the constant pressure fixed bed flow reactor to form a catalyst layer. Then, the temperature of the catalyst layer is 30 which is the activity evaluation temperature.
The catalyst layer was set to 0 ° C. and H 2 O: CH 3 OH was added to the catalyst layer.
= 1: 1 mixed solution was passed through to perform steam reforming of methanol, and the initial activity of the catalyst of Example 1 (hydrogen gas generation rate at an activity evaluation temperature of 300 ° C. in FIG. 5), activity after 24 hours, and The activity was examined after 48 hours. Also, the same test was performed on Examples 2 to 5 of the catalyst.

【0046】表7は、テスト結果を示す。Table 7 shows the test results.

【0047】[0047]

【表7】 表7から明らかなように、触媒の例1〜5は、初期活性
が高い上に、その活性が48時間経過後においても略変
化がなく、したがって高活性であると共に優れた耐久性
を有することが判る。
[Table 7] As is clear from Table 7, Examples 1 to 5 of the catalysts have high initial activity, and their activity does not change substantially even after 48 hours, so that they have high activity and excellent durability. I understand.

【0048】〔実施例4〕 (a)触媒の製造 Cu、LaおよびFeを含むAl系合金組成の溶湯を調
製し、次いでその溶湯に単ロール法を適用した急冷凝固
処理を施してリボン状非晶質触媒素材を作製した。
Example 4 (a) Production of Catalyst A molten metal having an Al-based alloy composition containing Cu, La and Fe was prepared, and then the molten metal was subjected to rapid solidification treatment by applying a single roll method to form a ribbon A crystalline catalyst material was prepared.

【0049】単ロール法の条理条件は、実施例1同様
に、冷却ロールの直径200mm、冷却ロールの回転数4
000rpm 、石英ノズルの噴出口寸法 直径0.3mm、
溶湯の噴出圧 0.4kgf/cm2 、チャンバ内圧力 1
00Torrである。
The condition of the single roll method is the same as in Example 1 except that the diameter of the cooling roll is 200 mm and the number of rotations of the cooling roll is 4
000 rpm, size of jet nozzle of quartz nozzle, diameter 0.3 mm,
Molten metal jet pressure 0.4kgf / cm 2 , chamber pressure 1
00 Torr.

【0050】次いで、実施例1同様に、0.5gのリボ
ン状非晶質触媒素材を、60℃で50mlの20重量%N
aOH水溶液に30分間浸漬してAl溶出処理を行い、
これにより粉末状触媒の例1を得た。
Then, as in Example 1, 0.5 g of the ribbon-shaped amorphous catalyst material was added at 60 ° C. to 50 ml of 20 wt% N.
Immerse in an aOH aqueous solution for 30 minutes to perform Al elution treatment,
This obtained Example 1 of a powdery catalyst.

【0051】比較のため、前記リボン状非晶質触媒素材
に、真空中、450℃、24時間の熱処理を施してリボ
ン状結晶質触媒素材を作製し、その後結晶質触媒素材に
前記同様のAl溶出処理を施して粉末状触媒の比較例B
を得た。
For comparison, the ribbon-shaped amorphous catalyst material was heat-treated in vacuum at 450 ° C. for 24 hours to prepare a ribbon-shaped crystalline catalyst material, and then the crystalline catalyst material was made of Al similar to the above. Comparative example B of powdered catalyst after elution treatment
I got

【0052】また、前記Al系合金組成の溶湯を徐冷し
てインゴットを作製し、次いでそのインゴットに粉砕処
理を施して粒径50μm以下の粉末状触媒素材を作製
し、その後粉末状触媒素材に前記同様のAl溶出処理を
施して粉末状触媒の比較例Cを得た。
Further, the molten metal having the Al-based alloy composition is gradually cooled to prepare an ingot, and then the ingot is subjected to a pulverization treatment to prepare a powdery catalyst material having a particle size of 50 μm or less, and then the powdery catalyst material. Al elution treatment similar to the above was performed to obtain a powdery catalyst comparative example C.

【0053】表8は、触媒の例1、比較例Bおよび比較
例Cに関する溶湯の組成、触媒素材の金属組織、Cu
系、合金元素AE系超微粒子の種類および比表面積を示
す。
Table 8 shows the composition of the molten metal for the catalyst of Example 1, Comparative Examples B and C, the metal structure of the catalyst material, and Cu.
The type and specific surface area of AE type ultrafine particles of alloy type and alloying elements are shown.

【0054】[0054]

【表8】 表8より、触媒の例1は比較例B,Cと同等若しくはそ
れ以上の比表面積を有することが判る。 (b)温度と触媒の活性 実施例1同様に、触媒の例1を0.1g秤量し、それを
定圧固定床流通式反応装置内に設置して触媒層を形成し
た。そして、触媒層の温度を活性評価温度として、12
5、149、193、240、286、334、38
3、432、482℃に設定すると共にその触媒層にH
2 O:CH3 OH=1:1の混合液を流通させて、メタ
ノールの水蒸気改質を行った。
[Table 8] It can be seen from Table 8 that catalyst example 1 has a specific surface area equal to or greater than that of comparative examples B and C. (B) Temperature and Activity of Catalyst As in Example 1, 0.1 g of the catalyst of Example 1 was weighed and placed in a constant pressure fixed bed flow reactor to form a catalyst layer. Then, using the temperature of the catalyst layer as the activity evaluation temperature, 12
5, 149, 193, 240, 286, 334, 38
Set the temperature to 3,432,482 ° C and add H to the catalyst layer.
A mixed solution of 2 O: CH 3 OH = 1: 1 was circulated to perform steam reforming of methanol.

【0055】触媒の例1の活性は、実施例1同様に、発
生ガスをガスクロマトグラフにより分析して、水素ガス
発生速度(リットル/kg・min )にて評価した。また同
様のテストを比較例B,Cについて行った。
The activity of the catalyst of Example 1 was evaluated in the same manner as in Example 1 by analyzing the generated gas with a gas chromatograph and evaluating the hydrogen gas generation rate (liter / kg · min). Further, the same test was performed on Comparative Examples B and C.

【0056】図6はテスト結果を示す。図中、点
(1),(B)および(C)は触媒の例1、比較例Bお
よび比較例Cにそれぞれ対応する。図5から明らかなよ
うに、活性評価温度が150℃を上回る温度領域におい
て、触媒の例1は比較例B,Cに比べて高活性であるこ
とが判る。これは、触媒の例1における触媒素材の金属
組織が非晶質単相組織であることから、Cu2 O超微粒
子およびLa(OH)3 超微粒子が極微細化されている
ことに起因する。 (c)触媒の耐久性 実施例1同様に、触媒の例1を0.1g秤量し、それを
前記定圧固定床流通式反応装置内に設置して触媒層を形
成した。そして、触媒層の温度を活性評価温度である3
00℃に設定すると共にその触媒層にH2 O:CH3
H=1:1の混合液を流通させて、メタノールの水蒸気
改質を行い、触媒の例1の初期活性(図6の活性評価温
度300℃における水素ガス発生速度)、24時間経過
後の活性および48時間経過後の活性を調べた。また同
様のテストを比較例B,Cについて行った。
FIG. 6 shows the test results. In the figure, points (1), (B) and (C) correspond to Example 1 of the catalyst, Comparative Example B and Comparative Example C, respectively. As is clear from FIG. 5, in the temperature range where the activity evaluation temperature is higher than 150 ° C., it is understood that the catalyst example 1 has higher activity than the comparative examples B and C. This is because the metal structure of the catalyst material in Example 1 of the catalyst is an amorphous single-phase structure, and therefore, the Cu 2 O ultrafine particles and the La (OH) 3 ultrafine particles are extremely miniaturized. (C) Durability of catalyst In the same manner as in Example 1, 0.1 g of the catalyst of Example 1 was weighed and placed in the constant pressure fixed bed flow reactor to form a catalyst layer. Then, the temperature of the catalyst layer is 3 which is the activity evaluation temperature.
The catalyst layer was set to 00 ° C. and H 2 O: CH 3 O was added to the catalyst layer.
The initial activity of Example 1 of the catalyst (hydrogen gas generation rate at an activity evaluation temperature of 300 ° C. in FIG. 6), the activity after 24 hours have passed, by carrying out steam reforming of methanol by circulating a mixed solution of H = 1: 1. The activity was examined after 48 hours. Further, the same test was performed on Comparative Examples B and C.

【0057】表9はテスト結果を示す。Table 9 shows the test results.

【0058】[0058]

【表9】 表9から明らかなように、触媒の例1は、初期活性が高
い上に、その活性が48時間経過後においても略変化が
なく、したがって高活性であると共に優れた耐久性を有
することが判る。比較例B,Cは初期活性が低く、また
その活性は経時的に極端に低下し、したがって活性およ
び耐久性が共に極めて低いものである。
[Table 9] As is clear from Table 9, Example 1 of the catalyst has a high initial activity, and its activity does not change substantially even after 48 hours, so that it is highly active and has excellent durability. . Comparative Examples B and C have low initial activity, and their activity extremely decreases with time, and therefore, both activity and durability are extremely low.

【0059】[0059]

【発明の効果】本発明によれば、前記のように特定され
た手段を採用することによって、高活性であると共に優
れた耐久性を有する、メタノールの水蒸気改質用触媒を
得ることができる。
According to the present invention, by adopting the means specified above, it is possible to obtain a catalyst for steam reforming of methanol which is highly active and has excellent durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉末状触媒の要部概略断面図である。FIG. 1 is a schematic sectional view of a main part of a powdery catalyst.

【図2】触媒表面の金属組織を示す顕微鏡写真である。FIG. 2 is a micrograph showing the metal structure of the catalyst surface.

【図3】活性評価温度と水素ガス発生速度との関係を示
す第1例のグラフである。
FIG. 3 is a graph of a first example showing the relationship between the activity evaluation temperature and the hydrogen gas generation rate.

【図4】活性評価温度と水素ガス発生速度との関係を示
す第2例のグラフである。
FIG. 4 is a graph of a second example showing the relationship between the activity evaluation temperature and the hydrogen gas generation rate.

【図5】活性評価温度と水素ガス発生速度との関係を示
す第3例のグラフである。
FIG. 5 is a graph of a third example showing the relationship between the activity evaluation temperature and the hydrogen gas generation rate.

【図6】活性評価温度と水素ガス発生速度との関係を示
す第4例のグラフである。
FIG. 6 is a graph of a fourth example showing the relationship between the activity evaluation temperature and the hydrogen gas generation rate.

【符号の説明】[Explanation of symbols]

1 触媒 2 触媒主体 3 表層 4 Cu系超微粒子 5 合金元素AE系超微粒子 DESCRIPTION OF SYMBOLS 1 catalyst 2 catalyst main body 3 surface layer 4 Cu-based ultrafine particles 5 alloying element AE-based ultrafine particles

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000000240 秩父小野田株式会社 東京都港区西新橋二丁目14番1号 (71)出願人 000005326 本田技研工業株式会社 東京都港区南青山二丁目1番1号 (72)発明者 野崎 勝敏 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8−22 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 福井 英夫 宮城県仙台市若林区若林3−15−15 (72)発明者 鵜澤 正美 千葉県成田市本三里塚189−3−B−201 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000000240 Chichibu Onoda Co., Ltd. 2-14-1, Nishishimbashi, Minato-ku, Tokyo (71) Applicant 000005326 Honda Motor Co., Ltd. 1-1-1, Minami-Aoyama, Minato-ku, Tokyo No. (72) Inventor Katsutoshi Nozaki 1-4-1 Chuo, Wako-shi, Saitama, Ltd., Honda R & D Co., Ltd. (72) Inventor Ken Masumoto 3-8-22, Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Akihisa Inoue Kawauchi Mubanen, Aoba-ku, Sendai-shi, Miyagi Kawauchi Housing 11-806 (72) Inventor Hideo Fukui 3-15-15 Wakabayashi, Wakabayashi-ku, Sendai-shi, Miyagi Inventor Masami Uzawa 189, Honsanrizuka, Narita-shi, Chiba -3-B-201

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cuの含有量が5原子%≦Cu≦20原
子%であり、また希土類元素、Fe、Mn、Pd、C
o、V、AgおよびPtから選択される少なくとも一種
の合金元素AEの含有量が4原子%≦AE≦18原子%
であるAl系合金組成の溶湯を調製する工程と、前記溶
湯に急冷凝固処理を施して触媒素材を得る工程と、前記
触媒素材にAl溶出処理を施して、表層が、無数のCu
系超微粒子と無数の合金元素AE系超微粒子とが相互に
均一に混じり合って分散する混在層である触媒を得る工
程と、を用いることを特徴とするメタノールの水蒸気改
質用触媒の製造方法。
1. The content of Cu is 5 atomic% ≦ Cu ≦ 20 atomic%, and rare earth elements, Fe, Mn, Pd, and C are used.
The content of at least one alloying element AE selected from o, V, Ag and Pt is 4 atom% ≦ AE ≦ 18 atom%
A step of preparing a molten metal having an Al-based alloy composition, a step of subjecting the molten metal to a rapid solidification treatment to obtain a catalyst material, and a step of subjecting the catalytic material to an aluminum elution treatment to form a Cu layer having an infinite number of surface layers.
A method for producing a catalyst for steam reforming of methanol, which comprises: a step of obtaining a catalyst, which is a mixed layer in which ultrafine particles of a system and numerous ultrafine particles of an alloying element AE are uniformly mixed and dispersed with each other. .
【請求項2】 前記Al溶出処理は、酸またはアルカリ
の一方よりなる水溶液に前記触媒素材を浸漬することに
よって行われる、請求項1記載のメタノールの水蒸気改
質用触媒の製造方法。
2. The method for producing a steam reforming catalyst for methanol according to claim 1, wherein the Al elution treatment is performed by immersing the catalyst material in an aqueous solution containing one of acid and alkali.
【請求項3】 前記触媒素材の金属組織は非晶質単相組
織である、請求項1または2記載のメタノールの水蒸気
改質用触媒の製造方法。
3. The method for producing a catalyst for steam reforming of methanol according to claim 1, wherein the metal structure of the catalyst material is an amorphous single phase structure.
JP08251094A 1994-03-29 1994-03-29 Method for producing catalyst for steam reforming of methanol Expired - Fee Related JP3382343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08251094A JP3382343B2 (en) 1994-03-29 1994-03-29 Method for producing catalyst for steam reforming of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08251094A JP3382343B2 (en) 1994-03-29 1994-03-29 Method for producing catalyst for steam reforming of methanol

Publications (2)

Publication Number Publication Date
JPH07265704A true JPH07265704A (en) 1995-10-17
JP3382343B2 JP3382343B2 (en) 2003-03-04

Family

ID=13776524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08251094A Expired - Fee Related JP3382343B2 (en) 1994-03-29 1994-03-29 Method for producing catalyst for steam reforming of methanol

Country Status (1)

Country Link
JP (1) JP3382343B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138378A1 (en) * 2000-03-31 2001-10-04 Japan as Represented by Director General of Ministry of Education, Culture, Sports, Science and Technology N.R.I. for Metals Process for producing catalyst for steam reforming of methanol
US6583084B2 (en) 2000-07-18 2003-06-24 Mitsui Chemicals, Inc. Catalyst for steam reforming of methanol and method for producing hydrogen therewith
WO2005009612A1 (en) 2003-07-29 2005-02-03 Japan Science And Technology Agency Catalyst for use in reforming methanol with steam and method for preparation thereof
EP2237911A1 (en) * 2007-12-21 2010-10-13 Cima Nano Tech Israel Ltd. Process of making metal nanoparticles
JP2015029974A (en) * 2013-08-06 2015-02-16 国立大学法人東北大学 Production method of noble metal catalyst, and noble metal catalyst
WO2016047504A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
CN112234216A (en) * 2020-09-08 2021-01-15 广东工业大学 Foamed ceramic supported nano metal catalyst for methanol reforming and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138378A1 (en) * 2000-03-31 2001-10-04 Japan as Represented by Director General of Ministry of Education, Culture, Sports, Science and Technology N.R.I. for Metals Process for producing catalyst for steam reforming of methanol
US6583084B2 (en) 2000-07-18 2003-06-24 Mitsui Chemicals, Inc. Catalyst for steam reforming of methanol and method for producing hydrogen therewith
WO2005009612A1 (en) 2003-07-29 2005-02-03 Japan Science And Technology Agency Catalyst for use in reforming methanol with steam and method for preparation thereof
US7592292B2 (en) 2003-07-29 2009-09-22 Japan Science Technology Agency Catalyst for use in reforming methanol with steam and method for preparation thereof
EP2237911A1 (en) * 2007-12-21 2010-10-13 Cima Nano Tech Israel Ltd. Process of making metal nanoparticles
EP2237911A4 (en) * 2007-12-21 2013-10-16 Cima Nano Tech Israel Ltd Process of making metal nanoparticles
JP2015029974A (en) * 2013-08-06 2015-02-16 国立大学法人東北大学 Production method of noble metal catalyst, and noble metal catalyst
WO2016047504A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
CN112234216A (en) * 2020-09-08 2021-01-15 广东工业大学 Foamed ceramic supported nano metal catalyst for methanol reforming and preparation method and application thereof

Also Published As

Publication number Publication date
JP3382343B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US4498395A (en) Powder comprising coated tungsten grains
DE69532541T2 (en) High-strength, highly wear-resistant sintered diamond body
US3019103A (en) Process for producing sintered metals with dispersed oxides
US5240742A (en) Method of producing metal coatings on metal powders
US5462903A (en) Composite alumina/metal powders, cermets made from said powders, and processes of production
US5134039A (en) Metal articles having a plurality of ultrafine particles dispersed therein
CN1159464C (en) Powder mixture or composite powder, method for production thereof and use thereof in composite materials
EP0363552B1 (en) Process for preparing metal particles
CN1330784C (en) Pre-alloyed bond powders
US4089676A (en) Method for producing nickel metal powder
JP3382343B2 (en) Method for producing catalyst for steam reforming of methanol
US2853403A (en) Method of producing composite metal powders
CN1468677A (en) Decomposition method for producing submicro-particles in liquid bath
Bönnemann et al. Selective oxidation of glucose on bismuth-promoted Pd-Pt/C catalysts prepared from NOct4Cl-stabilized Pd-Pt colloids
EP1666144B1 (en) Catalyst for use in reforming methanol with steam and method for preparation thereof
US3317285A (en) Composition comprising iron-group metal and particulate refractory metal oxide
US4975333A (en) Metal coatings on metal powders
US5455001A (en) Method for manufacturing intermetallic compound
US5458847A (en) Electroless plating method of NI-Al intermetallic compound
US3150443A (en) Process of incorporating a refractory metal oxide in a metal and product resulting therefrom
US3070440A (en) Production of dispersion hardened metals
US5800638A (en) Ultrafine particle of quasi-crystalline aluminum alloy and process for producing aggregate thereof
Boccuzzi et al. Pt/ZnO System: IR study of the vibrational and electronical effects induced by heating in CO atmosphere
US3176386A (en) Dispersion strengthening of metals
WO2000035616A1 (en) Process for the production of tungsten-copper composite sinterable powders

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees