WO2016047499A1 - Guide wire - Google Patents

Guide wire Download PDF

Info

Publication number
WO2016047499A1
WO2016047499A1 PCT/JP2015/076135 JP2015076135W WO2016047499A1 WO 2016047499 A1 WO2016047499 A1 WO 2016047499A1 JP 2015076135 W JP2015076135 W JP 2015076135W WO 2016047499 A1 WO2016047499 A1 WO 2016047499A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
central axis
recess
reshape
shape
Prior art date
Application number
PCT/JP2015/076135
Other languages
French (fr)
Japanese (ja)
Inventor
大 秋友
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2016047499A1 publication Critical patent/WO2016047499A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/0915Guide wires having features for changing the stiffness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Definitions

  • the present invention relates to a guide wire.
  • Guidewires can be used to treat difficult-to-surgical sites, such as PTCA (Percutaneous Transluminal Coronary Angioplasty), or for treatment that is minimally invasive to the human body, Used to guide catheters used for examinations such as angiography.
  • PTCA Percutaneous Transluminal Coronary Angioplasty
  • a guide wire used for PTCA surgery is inserted to the vicinity of the target vascular stenosis portion together with the balloon catheter with the tip of the guide wire protruding from the tip of the balloon catheter. Guide to near.
  • the blood vessel is intricately curved, and the guide wire used to insert the balloon catheter into the blood vessel has moderate flexibility and resilience to bending, and pushability to transmit the proximal end operation to the distal end.
  • torque transmission properties collectively referred to as “operability”
  • tensile strength tensile strength
  • kink resistance bending resistance
  • the like are required as a structure for obtaining moderate flexibility and resilience.
  • Some use super-elastic wires such as Ni-Ti (for example, see Patent Document 1). It is also known that a reinforcing material is separately provided at the tip of the core material in order to improve torque transmission.
  • the guide wire when used in PTCA surgery, the guide wire has been made to reduce the pushability by thinning the tip of the core material so as to avoid the penetration of the blood vessel wall and be used as safely as possible. In order to maintain sufficient tensile strength to avoid breakage, the cross-sectional area should not be reduced excessively.
  • the tip of the core material may be shaped. In order to facilitate this shaping, it is known to press the tip of the core material into a flat plate shape. This reduces the pushability of the tip and improves safety.
  • torque transmission performance is remarkably lowered, and when the reinforcing material is provided separately, torque transmission is improved, but it is difficult to perform such shaping.
  • An object of the present invention is to provide a guide wire that can be easily shaped at the distal end portion of the guide wire and is excellent in torque transmission to the distal end portion.
  • a guide wire comprising a core wire having a long shape and a thin tip portion,
  • the guide wire has a rod shape that is not a flat shape, and has a plurality of recesses formed on an outer peripheral portion thereof and disposed along a central axis direction of the core wire.
  • the plurality of recesses include a first recess on the near side of the center axis and a second recess on the back side of the center axis in a side view of the guide wire.
  • each of the recesses is a groove along a circumferential direction of the outer peripheral portion.
  • the sizes of the recesses are the same.
  • torque can be reliably transmitted to the distal end portion of the guide wire by forming the tip portion of the rod shape which is not a flat shape, that is, excellent torque transmission.
  • the bending direction at the distal end portion of the guide wire becomes only one direction, and shaping is performed. Becomes easy.
  • the area decrease in each cross section can be suppressed, so the decrease in tensile strength is reduced.
  • FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is a view of the core wire (reshaping portion) provided in the guide wire shown in FIG. 1 as viewed from the direction of arrow A in the drawing.
  • FIG. 3 is a perspective view of a core wire (reshaping portion) provided in the guide wire shown in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 6 is a cross-sectional view of the reshape portion of the core wire provided in the guide wire (second embodiment) of the present invention.
  • FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is a view of the core wire (reshaping portion) provided in the guide wire shown in FIG. 1 as viewed from the direction of arrow A in the drawing.
  • FIG. 3
  • FIG. 7 is a cross-sectional view of the reshape part of the core wire provided in the guide wire (second embodiment) of the present invention.
  • FIG. 8 is a plan view of the reshape portion of the core wire provided in the guide wire (third embodiment) of the present invention.
  • FIG. 9 is a plan view of the reshape portion of the core wire provided in the guide wire (fourth embodiment) of the present invention.
  • FIG. 10 is a plan view of the reshape part of the core wire provided in the guide wire (fifth embodiment) of the present invention.
  • FIG. 11 is a plan view of a reshape portion of a core wire included in the guide wire (sixth embodiment) of the present invention.
  • FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is a view of the core wire (reshaping portion) provided in the guide wire shown in FIG. 1 as viewed from the direction of arrow A in the drawing.
  • FIG. 3 is a perspective view of a core wire (reshaping portion) provided in the guide wire shown in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is a cross-sectional view taken along the line CC in FIG.
  • the right side in FIGS. 1 to 3 (same as in FIGS.
  • FIGS. 8 to 11 is referred to as “base end”, and the left side is referred to as “tip”. Also, in FIGS. 1 to 3 (the same applies to FIGS. 8 to 11), for the sake of easy understanding, the length direction of the guide wire is shortened and the thickness direction of the guide wire is exaggerated and schematically illustrated. The ratio between the length direction and the thickness direction is very different from the actual one.
  • a guide wire 1 shown in FIG. 1 is a guide wire for a catheter that is used by being inserted into the lumen of a catheter (including an endoscope) by PTCA, for example.
  • the total length of the guide wire 1 is not particularly limited, but is preferably about 200 to 5000 mm.
  • the guide wire 1 includes a core wire (wire body) 2 composed of a single long wire, and a spiral coil 5 installed at the tip end portion (tip end portion) of the core wire 2. ing.
  • the core wire 2 includes a reshape portion 3 located on the distal end side and a main body portion 4 located on the proximal end side of the reshape portion 3.
  • the reshape portion 3 is a portion that is located at the tip of the core wire 2 and can be reshaped (shaped) with a small diameter.
  • the reshape portion 3 is bent or curved in the arrow direction in FIG. 1 so as to be deformed into a desired shape.
  • a doctor or the like previously sets the distal end of the guide wire to a desired shape. In this way, bending the tip of the guide wire into a desired shape is called reshaping.
  • the reshape part 3 reshape can be performed easily and reliably, and the operativity at the time of inserting the guide wire 1 in a biological body improves markedly.
  • tip part may be attached
  • the main body 4 is a thicker and longer part than the reshape part 3.
  • the main body portion 4 has a tapered portion 41 having a tapered shape in which the outer diameter gradually increases in the proximal direction, and a constant outer diameter portion 42 having a constant outer diameter.
  • the rigidity (bending rigidity, torsional rigidity) of the core wire 2 can be gradually reduced toward the distal end.
  • the guide wire 1 can obtain a good stenosis portion passing through and flexibility at the distal end portion, improve followability to a blood vessel and the like, and can be prevented from being bent.
  • the taper angle (decrease rate of the outer diameter) of the taper portion 41 may be constant along the longitudinal direction of the core wire 2 or may have a portion that varies along the longitudinal direction. For example, a portion where a relatively large taper angle and a relatively small portion are alternately formed a plurality of times may be used.
  • the outer diameter constant portion 42 has the same outer diameter as the maximum outer diameter of the tapered portion 41, and is a portion having relatively high rigidity. Thereby, the pushing property to the front-end
  • the base end surface 421 of the constant outer diameter portion 42 is preferably rounded.
  • a coil 5 is disposed on the outer periphery of the reshape portion 3 of the core wire 2 so as to cover the reshape portion 3.
  • the coil 5 reduces the contact area of the surface of the core wire 2 with the inner wall of the catheter or the surface of the living body, thereby reducing sliding resistance, and as a result, the operability of the guide wire 1 is further improved.
  • the reshape portion 3 is inserted through the central portion inside the coil 5, and the reshape portion 3 is not in contact with the inner surface of the coil 5. As a result, a gap 11 is formed between the coil 5 and the reshapable portion 3, and the pushability with respect to the blood vessel wall can be lowered.
  • the coil 5 is formed by winding a wire 51 in a spiral shape along the circumferential direction of the reshapable portion 3.
  • one strand 51 may be spirally wound, or a plurality of strands 51 may be spirally wound.
  • the adjacent strands 51 of the coil 5 are in contact with each other and are in a so-called densely wound state. These strands 51 generate a force (compression force) that pushes them in the axial direction of the core wire 2 in a natural state where no external force is applied.
  • the guide wire 1 is not limited to this, and there may be a so-called sparsely wound portion where the adjacent strands 51 of the coil 5 are separated from each other.
  • the constituent material of the strand 51 is not particularly limited, and may be either a metal material or a resin material.
  • the metal material include X-ray opaque materials such as stainless steel, noble metals such as Au and Pt, and alloys containing the noble metals (for example, Pt—Ni alloys).
  • X-ray opaque materials such as stainless steel, noble metals such as Au and Pt, and alloys containing the noble metals (for example, Pt—Ni alloys).
  • X-ray opaque material When an X-ray opaque material is used, X-ray contrast properties are obtained at the distal end portion of the guide wire 1, and it can be inserted into the living body while confirming the position of the distal end portion under X-ray fluoroscopy.
  • the coil 5 may be a combination of two or more materials.
  • the strand 51 on the distal end side of the coil 5 can be made of an X-ray opaque material such as the Pt—Ni alloy, and the strand 51 on the proximal end side of the coil 5 can be made of stainless steel.
  • the part located on the distal end side of the coil 5 particularly, the part including the reshapable portion 3 can be emphasized more than the part located closer to the proximal end ( Therefore, the position of the most distal portion (the portion where the reshape portion 3 exists) of the guide wire 1 can be visually recognized more clearly.
  • the wire diameter of the strand 51 of the coil 5 may be the same over the entire length of the coil 5, but the wire diameter of the strand 51 may be different between the distal end side and the proximal end side of the coil 5.
  • the wire diameter of the strand 51 may be smaller (or larger) on the distal end side of the coil 5 than on the proximal end side.
  • the outer diameter of the coil 5 may be the same over the entire length of the coil 5, but the outer diameter of the coil 5 may be different between the distal end side and the proximal end side of the coil 5.
  • the outer diameter of the coil 5 may be smaller on the distal end side of the coil 5 than on the proximal end side.
  • the coil 5 is fixed to the core wire 2 at two locations. That is, the distal end portion of the coil 5 is fixed to the distal end of the reshapable portion 3 via a fixing material (fixing portion) 52, and the proximal end portion of the coil 5 is located in the middle of the tapered portion 41 via the fixing material (fixing portion) 53. It is fixed.
  • the coil 5 can be securely fixed to the core wire 2 while preventing the tip portion of the guide wire 1 (the portion where the coil 5 is present) from being impaired. it can.
  • the reshape portion 3 can be securely fixed to the coil 5, and the shape of the shaped reshape portion 3 can be secured. Can be held properly.
  • Each of the fixing materials 52 and 53 is preferably made of solder (brazing material).
  • the fixing materials 52 and 53 may be adhesives.
  • the method for fixing the coil 5 to the core wire 2 is not limited to the above-described fixing material, and for example, welding may be used.
  • the distal end surface 521 of the fixing material 52 is preferably rounded.
  • a resin coating layer 6 that covers the whole (or a part) of the core wire 2 is provided on the proximal end side of the fixing material 53 of the core wire 2.
  • the resin coating layer 6 can be formed for various purposes. As an example, the operability of the guide wire 1 is reduced by reducing the friction (sliding resistance) of the guide wire 1 and improving the slidability. May be improved.
  • the resin coating layer 6 is preferably made of a material that can reduce friction as described below.
  • the frictional resistance (sliding resistance) with the inner wall of the catheter used together with the guide wire 1 is reduced, the slidability is improved, and the operability of the guide wire 1 in the catheter becomes better.
  • the guide wire 1 can be reliably prevented from being kinked (bent) or twisted when the guide wire 1 is moved and / or rotated in the catheter.
  • materials that can reduce such friction include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • the resin coating layer 6 may be a single layer or a laminate of two or more layers (for example, an inner layer made of a material that is more flexible than an outer layer).
  • the reshape portion 3 is disposed at the most distal end portion of the core wire 2, and the reshape portion 3 is formed integrally with the main body portion 4.
  • manufacture of the core wire 2 (guide wire 1) becomes easy.
  • the constituent material of the core wire 2 is not particularly limited.
  • stainless steel for example, SUS304, SUS303, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F, SUS302, and all other types of SUS.
  • Various metal materials such as piano wire can be used, and among these, stainless steel is preferable.
  • a superelastic alloy exhibiting superelasticity in vivo can be used as a constituent material of the core wire 2.
  • Superelastic alloys include any shape of stress-strain curve caused by tension, including those where the transformation point of As, Af, Ms, Mf, etc. can be measured remarkably, and those that cannot be deformed. However, everything that returns to its original shape by removing stress is included.
  • the preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like. Of these, the Ni—Ti alloy is particularly preferable.
  • heat treatment is performed on the portion of the core wire 2 that is to be the reshaped portion 3.
  • the physical property in the said part changes, ie, superelasticity reduces or lose
  • the portion may be cold worked.
  • a superelastic alloy typified by a Ni—Ti alloy is excellent in adhesion to the resin coating layer 6.
  • the reshapable portion 3 is not flat, that is, in the present embodiment, there are a plurality of circular cross-sectional portions 31 (14 in the configuration shown in FIG. 1) having a circular cross-sectional shape. However, it is a rod-shaped part. These circular cross-sections 31 are intermittently arranged along the central axis O 2 of the core wire 2. And in the outer peripheral part between adjacent circular cross-section parts 31, the 1st recessed part (1st defect
  • first recesses 32 and the second recesses 33 are alternately arranged so as not to overlap in the side view of the guide wire 1 (hereinafter, this arrangement relationship is referred to as “alternate arrangement”. Say). Therefore, as shown in FIG. 2, the first recess 32 is located on the front side (the front side of the drawing) from the center axis O 2 and the second recess 33 is the center axis O 2 as viewed from the side of the guide wire 1. It will be in the state located in the back side (paper surface back side).
  • the reshape portion 3 has a flat shape, that is, a flat plate shape (ribbon shape), and the thickness thereof is smaller than the outer diameter (maximum outer diameter) ⁇ d 31 of the circular cross section 31. .
  • the reshapable portion 3 can be easily bent and reshapable, but the torque transmission at the reshapable portion 3 may be significantly reduced. Therefore, for example, even if a torque is applied to the guide wire from the proximal end side so that the distal end portion of the guide wire passes through a stenosis portion (lesioned portion) in the blood vessel, the distal end portion does not rotate 1: 1. As a result, it may be difficult to pass through the constriction.
  • a minute force applied to the distal end portion of the guide wire 1 by the narrowed portion is not transmitted to the proximal end portion of the guide wire 1 and it becomes difficult to obtain information such as the hardness of the narrowed portion.
  • reshapable portion 3 is not a flat shape, and is intended to round sectional portions 31 is intermittently disposed along the central axis O 2.
  • the reshapable portion 3 as a whole becomes so-called firm, that is, the torsional rigidity is increased and the torque transmission is improved.
  • non-circular cross-sectional portion 34 the cross-sectional shape of the portion of the reshapable portion 3 where the first concave portion 32 and the second concave portion 33 are formed.
  • the shape is such that part of the circle is missing. Therefore, the width in the pressing direction of the non-circular cross section 34 is smaller than the thickness of the circular cross section 31.
  • each non-circular cross-sectional portion 34 can be preferentially deformed over each circular cross-sectional portion 31, and thus the shape of the reshaped portion 3.
  • the attachment can be easily and reliably performed in one direction along the non-circular cross section 34, and the shape is maintained.
  • the guide wire 1 can be easily shaped at the tip, that is, the reshape portion 3, and has excellent torque transmission to the reshape portion 3.
  • the first recesses 32 and the second recesses 33 are arranged alternately. Thereby, since the circular cross-sectional part 31 remains reliably (formed) between the 1st recessed part 32 and the 2nd recessed part 33, the fall of torque performance can be suppressed.
  • the alternating arrangement can prevent the thickness of the reshapable portion 3 from becoming extremely thin, thereby preventing a decrease in tensile strength and shape maintainability.
  • each recess has the same size.
  • the maximum depth u of each recess is preferably 1% or more and 50% or less of the outer diameter ⁇ d 31 (maximum outer diameter of the outer peripheral portion of the reshapable part 3) of the circular cross-section 31, preferably 5% or more. More preferably, it is 20% or less.
  • the width w of each recess is preferably 1% or more and 200% or less, and 50% or more and 100% or less of the outer diameter ⁇ d 31 of the circular cross-section 31 (the maximum outer diameter of the outer peripheral portion of the reshapable part 3). More preferably. Due to such a magnitude relationship, for example, the ease of bending is the same when the reshapable portion is bent upward in FIG. 1 and when the reshapable portion is bent downward, thereby improving operability during reshaping.
  • the bottom 321 of the first recess 32 is rounded in an arc shape
  • the bottom 331 of the second recess 33 is also rounded in an arc shape.
  • Second Embodiment 6 and 7 are cross-sectional views of the reshape portion of the core wire provided in the guide wire (second embodiment) of the present invention (the positions of the cross-section in FIG. 6 and the cross-section in FIG. 7 are respectively , Different in the longitudinal direction of the reshapable part).
  • the first recess 32 and the second recess 33 are each configured by a groove along the circumferential direction of the outer peripheral portion of the reshapable portion 3.
  • the length L 1 of each groove 10% or more of the total circumference L 2 of the outer peripheral portion of the reshapable portion 3, but preferably not more than 75%, 15% or more, more preferably 60% or less.
  • the formation of the first concave portion 32 and the second concave portion 33 having such a shape can prevent the torque transmission at the reshape portion 3 from being lowered.
  • FIG. 8 is a plan view of the reshape portion of the core wire provided in the guide wire (third embodiment) of the present invention.
  • a first recess 32 intervals adjacent to the central axis O 2 direction, it varies along the central axis O 2. That is, in this embodiment, the first recess 32 the distance between the centers of adjacent to the center axis O 2 direction (pitch) p 32 are gradually decreased along the distal direction.
  • the interval between the second recess 33 adjacent to the central axis O 2 direction varies along the central axis O 2. That is, in this embodiment, distance between centers of the second recess 33 adjacent to the central axis O 2 direction (pitch) p 33 also gradually decreases along the distal direction.
  • the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually reduced in the distal direction. Therefore, in the reshape part 3, the distal end portion is the proximal end portion. It becomes easier to bend than.
  • This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
  • FIG. 9 is a plan view of the reshape portion of the core wire provided in the guide wire (fourth embodiment) of the present invention.
  • the first recess 32 intervals adjacent to the central axis O 2 direction, it varies along the central axis O 2. That is, in the present embodiment, the center-to-center distance (pitch) p 32 between the first recesses 32 adjacent in the direction of the central axis O 2 gradually decreases toward the base end direction.
  • the interval between the second recess 33 adjacent to the central axis O 2 direction varies along the central axis O 2. That is, in this embodiment, distance between centers of the second recess 33 adjacent to the central axis O 2 direction (pitch) p 33 also gradually decreases along the proximal direction.
  • the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually decreased in the proximal direction. Therefore, in the reshape part 3, the proximal side part is the distal side part. It becomes easier to bend than the part.
  • This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
  • FIG. 10 is a plan view of the reshape part of the core wire provided in the guide wire (fifth embodiment) of the present invention.
  • each first recess 32 and the second recess 33 is omitted.
  • the size of each first recess 32 is changed in accordance along the central axis O 2. That is, in the present embodiment, the width w of each first recess 32 gradually increases toward the proximal direction.
  • the maximum depth u of each first recess 32 is the same, but the curvature R of the bottom 321 is different, that is, gradually decreases toward the proximal direction.
  • the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually decreased in the proximal direction. Therefore, in the reshape part 3, the proximal side part is the distal side part. It becomes easier to bend than the part.
  • This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
  • FIG. 11 is a plan view of a reshape portion of a core wire included in the guide wire (sixth embodiment) of the present invention.
  • each first recess 32 and the second recess 33 is omitted.
  • the size of each first recess 32 is changed in accordance along the central axis O 2. That is, in the present embodiment, the width w of each first recess 32 gradually increases toward the distal end.
  • the maximum depth u of each first recess 32 is the same, but the curvature R of the bottom 321 is different, that is, gradually decreases toward the tip.
  • the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually reduced in the distal direction. Therefore, in the reshape part 3, the distal end portion is the proximal end portion. It becomes easier to bend than.
  • This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
  • each part which comprises a guide wire is a thing of arbitrary structures which can exhibit the same function. Can be substituted. Moreover, arbitrary components may be added.
  • the guide wire of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
  • the guide wire of the present invention is a guide wire having a long shape and a core wire having a thin tip portion, and the tip portion is formed in a rod shape that is not a flat shape, and is formed on the outer peripheral portion of the guide wire. It has a plurality of recesses arranged along the central axis direction. Therefore, it is easy to shape the tip of the guide wire, and the torque transmission to the tip is excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

This guide wire has an elongated shape and is provided with a core having a small-diameter tip section. In this guide wire, the tip section is a rod-shape that is not flat and has multiple recessed sections that are formed on the outer circumferential section thereof and that are positioned along the central axis direction of the core. The cross-sectional shape of the tip section is circular in locations offset from the areas where the recessed sections are formed. Further, the multiple recessed sections include, in a guide wire side view, first recessed sections that are on the near side from the central axis, and second recessed sections that are on the far side from the central axis, and both the first recessed sections and the second recessed sections are positioned in different locations in the central axis direction.

Description

ガイドワイヤGuide wire
 本発明は、ガイドワイヤに関する。 The present invention relates to a guide wire.
 ガイドワイヤは、例えばPTCA術(Percutaneous Transluminal Coronary Angioplasty:経皮的冠状動脈血管形成術)のような、外科的手術が困難な部位の治療、または人体への低侵襲を目的とした治療や、心臓血管造影などの検査に用いられるカテーテルを誘導するのに使用される。PTCA術に用いられるガイドワイヤは、ガイドワイヤの先端をバルーンカテーテルの先端より突出させた状態にて、バルーンカテーテルと共に目的部位である血管狭窄部付近まで挿入され、バルーンカテーテルの先端部を血管狭窄部付近まで誘導する。 Guidewires can be used to treat difficult-to-surgical sites, such as PTCA (Percutaneous Transluminal Coronary Angioplasty), or for treatment that is minimally invasive to the human body, Used to guide catheters used for examinations such as angiography. A guide wire used for PTCA surgery is inserted to the vicinity of the target vascular stenosis portion together with the balloon catheter with the tip of the guide wire protruding from the tip of the balloon catheter. Guide to near.
 血管は、複雑に湾曲しており、バルーンカテーテルを血管に挿入する際に用いるガイドワイヤには、曲げに対する適度な柔軟性と復元性、基端部における操作を先端側に伝達するための押し込み性およびトルク伝達性(これらを総称して「操作性」という)、さらには引っ張り強さや耐キンク性(耐折れ曲がり性)等が要求される。それらの特性の内、適度な柔軟性と復元性を得るための構造として、ガイドワイヤの細い先端芯材の周りに曲げに対する柔軟性を有する二重金属コイルを備えたものや、ガイドワイヤの芯材にNi-Ti等の超弾性線を用いたものがある(例えば、特許文献1参照)。また、トルク伝達性を向上させるために、芯材の先端部に補強材を別途設けたりすることが知られている。 The blood vessel is intricately curved, and the guide wire used to insert the balloon catheter into the blood vessel has moderate flexibility and resilience to bending, and pushability to transmit the proximal end operation to the distal end. In addition, torque transmission properties (collectively referred to as “operability”), tensile strength, kink resistance (bending resistance), and the like are required. Among these properties, as a structure for obtaining moderate flexibility and resilience, a structure having a double metal coil having flexibility for bending around a thin tip core material of the guide wire, or a core material of the guide wire Some use super-elastic wires such as Ni-Ti (for example, see Patent Document 1). It is also known that a reinforcing material is separately provided at the tip of the core material in order to improve torque transmission.
 また、PTCA術で用いられる場合、ガイドワイヤは、血管壁の穿通を避け、できる限り安全に使用されるように、芯材の先端部を細くしてプッシャビリティを下げることが行われているが、破損を避けられる十分な引っ張り強さを保つためには、横断面積は過度に減少させられるべきではない。さらに、PTCA術では、芯材の先端部に形状付けを行なうことがある。この形状付けを容易にするために、芯材の先端部を平板状にプレスすることが知られている。これにより、先端のプッシャビリティが下がり安全性も向上する。しかしながらトルク伝達性能が著しく低下してしまい、また前記補強材を別途設けた場合には、トルク伝達性が向上するが、このような形状付けを行なうのが困難となってしまう。 In addition, when used in PTCA surgery, the guide wire has been made to reduce the pushability by thinning the tip of the core material so as to avoid the penetration of the blood vessel wall and be used as safely as possible. In order to maintain sufficient tensile strength to avoid breakage, the cross-sectional area should not be reduced excessively. Furthermore, in the PTCA technique, the tip of the core material may be shaped. In order to facilitate this shaping, it is known to press the tip of the core material into a flat plate shape. This reduces the pushability of the tip and improves safety. However, torque transmission performance is remarkably lowered, and when the reinforcing material is provided separately, torque transmission is improved, but it is difficult to perform such shaping.
 このように、従来のガイドワイヤでは、安全なプッシャビリティと引っ張り強さを保ちながら、先端部での形状付けの容易性と先端部までのトルク伝達性の向上との併存を行うことが難しかった。 As described above, with the conventional guide wire, it is difficult to coexist with ease of shaping at the tip and improvement in torque transmission to the tip while maintaining safe pushability and tensile strength. .
米国特許第7785274 B2US Patent No. 7785274 B2
 本発明の目的は、ガイドワイヤの先端部での形状付けが容易であり、先端部までのトルク伝達性に優れたガイドワイヤを提供することにある。 An object of the present invention is to provide a guide wire that can be easily shaped at the distal end portion of the guide wire and is excellent in torque transmission to the distal end portion.
 このような目的は、下記(1)~(9)の本発明により達成される。
 (1) 長尺状をなし、細径の先端部を有する芯線を備えるガイドワイヤであって、
 前記先端部は、偏平形状ではない棒状をなし、その外周部に形成され、前記芯線の中心軸方向に沿って配置された複数の凹部を有することを特徴とするガイドワイヤ。
Such an object is achieved by the present inventions (1) to (9) below.
(1) A guide wire comprising a core wire having a long shape and a thin tip portion,
The guide wire has a rod shape that is not a flat shape, and has a plurality of recesses formed on an outer peripheral portion thereof and disposed along a central axis direction of the core wire.
 (2) 前記先端部は、前記凹部が形成されている部分からズレた位置での横断面形状が円形のものである上記(1)に記載のガイドワイヤ。 (2) The guide wire according to (1), wherein the distal end portion has a circular cross-sectional shape at a position displaced from a portion where the concave portion is formed.
 (3) 前記複数の凹部には、当該ガイドワイヤの側面視で、前記中心軸よりも手前側の第1の凹部と、前記中心軸よりも奥側の第2の凹部とが含まれており、
 前記第1の凹部と前記第2の凹部とは、前記中心軸方向で異なる位置に配されている上記(1)または(2)に記載のガイドワイヤ。
(3) The plurality of recesses include a first recess on the near side of the center axis and a second recess on the back side of the center axis in a side view of the guide wire. ,
The guide wire according to (1) or (2), wherein the first recess and the second recess are arranged at different positions in the central axis direction.
 (4) 前記各凹部は、それぞれ、その底部が丸みを帯びている上記(1)ないし(3)のいずれかに記載のガイドワイヤ。 (4) The guide wire according to any one of (1) to (3), wherein each of the recesses has a round bottom.
 (5) 前記凹部の最大深さは、前記外周部の最大外径の1%以上、50%以下である上記(1)ないし(4)のいずれかに記載のガイドワイヤ。 (5) The guide wire according to any one of (1) to (4), wherein a maximum depth of the concave portion is 1% or more and 50% or less of a maximum outer diameter of the outer peripheral portion.
 (6) 前記各凹部は、それぞれ、前記外周部の周方向に沿った溝である上記(1)ないし(5)のいずれかに記載のガイドワイヤ。 (6) The guide wire according to any one of (1) to (5), wherein each of the recesses is a groove along a circumferential direction of the outer peripheral portion.
 (7) 前記溝の長さは、前記外周部の全周の10%以上、75%以下である上記(6)に記載のガイドワイヤ。 (7) The guide wire according to (6), wherein the length of the groove is 10% or more and 75% or less of the entire circumference of the outer peripheral portion.
 (8) 前記各凹部の大きさは、前記中心軸に沿うに従って変化している上記(1)ないし(7)のいずれかに記載のガイドワイヤ。 (8) The guide wire according to any one of (1) to (7), wherein the size of each of the recesses changes along the central axis.
 (9) 前記中心軸方向に隣り合う凹部同士の間隔は、前記中心軸に沿って変化している上記(1)ないし(8)のいずれかに記載のガイドワイヤ。 (9) The guide wire according to any one of (1) to (8), wherein an interval between the recesses adjacent in the central axis direction changes along the central axis.
 また、本発明のガイドワイヤでは、前記各凹部の大きさは、互いに同じあるのが好ましい。 In the guide wire of the present invention, it is preferable that the sizes of the recesses are the same.
 本発明によれば、先端部が偏平形状ではない棒状をなすことにより、ガイドワイヤの先端部までトルクを確実に伝達することができる、すなわち、トルク伝達性に優れる。 According to the present invention, torque can be reliably transmitted to the distal end portion of the guide wire by forming the tip portion of the rod shape which is not a flat shape, that is, excellent torque transmission.
 また、先端部の外周部に芯線の中心軸方向に沿って配置された複数の凹部が同一角度に形成されていることにより、ガイドワイヤの先端部での曲げ方向が一方向のみとなり、形状付けが容易となる。 In addition, since the plurality of recesses arranged along the central axis direction of the core wire are formed at the same angle on the outer peripheral portion of the distal end portion, the bending direction at the distal end portion of the guide wire becomes only one direction, and shaping is performed. Becomes easy.
 さらに、上記凹部をプレス加工により形成することで、各断面における面積減少が抑えられるため、引張強さの減少が少なくなる。 Furthermore, by forming the concave portion by press working, the area decrease in each cross section can be suppressed, so the decrease in tensile strength is reduced.
図1は、本発明のガイドワイヤの第1実施形態を示す部分縦断面図である。FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention. 図2は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を図中の矢印A方向から見た図である。FIG. 2 is a view of the core wire (reshaping portion) provided in the guide wire shown in FIG. 1 as viewed from the direction of arrow A in the drawing. 図3は、図1に示すガイドワイヤが備える芯線(リシェイプ部)の斜視図である。FIG. 3 is a perspective view of a core wire (reshaping portion) provided in the guide wire shown in FIG. 図4は、図3中のB-B線断面図である。4 is a cross-sectional view taken along line BB in FIG. 図5は、図3中のC-C線断面図である。FIG. 5 is a cross-sectional view taken along the line CC in FIG. 図6は、本発明のガイドワイヤ(第2実施形態)が備える芯線のリシェイプ部の横断面図である。FIG. 6 is a cross-sectional view of the reshape portion of the core wire provided in the guide wire (second embodiment) of the present invention. 図7は、本発明のガイドワイヤ(第2実施形態)が備える芯線のリシェイプ部の横断面図である。FIG. 7 is a cross-sectional view of the reshape part of the core wire provided in the guide wire (second embodiment) of the present invention. 図8は、本発明のガイドワイヤ(第3実施形態)が備える芯線のリシェイプ部の平面図である。FIG. 8 is a plan view of the reshape portion of the core wire provided in the guide wire (third embodiment) of the present invention. 図9は、本発明のガイドワイヤ(第4実施形態)が備える芯線のリシェイプ部の平面図である。FIG. 9 is a plan view of the reshape portion of the core wire provided in the guide wire (fourth embodiment) of the present invention. 図10は、本発明のガイドワイヤ(第5実施形態)が備える芯線のリシェイプ部の平面図である。FIG. 10 is a plan view of the reshape part of the core wire provided in the guide wire (fifth embodiment) of the present invention. 図11は、本発明のガイドワイヤ(第6実施形態)が備える芯線のリシェイプ部の平面図である。FIG. 11 is a plan view of a reshape portion of a core wire included in the guide wire (sixth embodiment) of the present invention.
 以下、本発明のガイドワイヤを添付図面に示す好適な実施形態に基づいて詳細に説明する。 Hereinafter, the guide wire of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 <第1実施形態>
  図1は、本発明のガイドワイヤの第1実施形態を示す部分縦断面図である。図2は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を図中の矢印A方向から見た図である。図3は、図1に示すガイドワイヤが備える芯線(リシェイプ部)の斜視図である。図4は、図3中のB-B線断面図である。図5は、図3中のC-C線断面図である。なお、以下では、説明の都合上、図1~図3中(図8~図11についも同様)の右側を「基端」、左側を「先端」と言う。また、図1~図3中(図8~図11についても同様)では、見易くするため、ガイドワイヤの長さ方向を短縮し、ガイドワイヤの太さ方向を誇張して模式的に図示しており、長さ方向と太さ方向の比率は実際とは大きく異なる。
<First Embodiment>
FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention. FIG. 2 is a view of the core wire (reshaping portion) provided in the guide wire shown in FIG. 1 as viewed from the direction of arrow A in the drawing. FIG. 3 is a perspective view of a core wire (reshaping portion) provided in the guide wire shown in FIG. 4 is a cross-sectional view taken along line BB in FIG. FIG. 5 is a cross-sectional view taken along the line CC in FIG. In the following, for convenience of explanation, the right side in FIGS. 1 to 3 (same as in FIGS. 8 to 11) is referred to as “base end”, and the left side is referred to as “tip”. Also, in FIGS. 1 to 3 (the same applies to FIGS. 8 to 11), for the sake of easy understanding, the length direction of the guide wire is shortened and the thickness direction of the guide wire is exaggerated and schematically illustrated. The ratio between the length direction and the thickness direction is very different from the actual one.
 図1に示すガイドワイヤ1は、例えばPTCA術でカテーテル(内視鏡も含む)の内腔に挿入して用いられるカテーテル用ガイドワイヤである。ガイドワイヤ1の全長は、特に限定されないが、200~5000mm程度であるのが好ましい。このガイドワイヤ1は、長尺状をなす1本の単線で構成された芯線(ワイヤ本体)2と、芯線2の先端部(先端側の部分)に設置された螺旋状のコイル5とを備えている。 A guide wire 1 shown in FIG. 1 is a guide wire for a catheter that is used by being inserted into the lumen of a catheter (including an endoscope) by PTCA, for example. The total length of the guide wire 1 is not particularly limited, but is preferably about 200 to 5000 mm. The guide wire 1 includes a core wire (wire body) 2 composed of a single long wire, and a spiral coil 5 installed at the tip end portion (tip end portion) of the core wire 2. ing.
 芯線2は、先端側に位置するリシェイプ部3と、リシェイプ部3の基端側に位置する本体部4とで構成されている。 The core wire 2 includes a reshape portion 3 located on the distal end side and a main body portion 4 located on the proximal end side of the reshape portion 3.
 リシェイプ部3は、芯線2の先端部に位置し、細径でリシェイプ(形状付け)可能な部分であり、所望の形状に変形するように、例えば図1中の矢印方向に屈曲または湾曲させて用いることができる。一般に、ガイドワイヤでは、誘導するカテーテル等の先端部を血管形状に対応させたり、血管分岐を適正かつ円滑に選択、誘導したりするために、医師等がガイドワイヤの先端部を予め所望の形状に変形させて使用することがあり、このようにガイドワイヤの先端部を所望の形状に曲げることをリシェイプと言う。そして、リシェイプ部3を設けることにより、リシェイプを容易かつ確実に行うことができ、ガイドワイヤ1を生体内に挿入する際の操作性が格段に向上する。なお、ガイドワイヤ1の先端部には、当該先端部の好ましい曲げ方向を示すマーカが付されていてもよい。 The reshape portion 3 is a portion that is located at the tip of the core wire 2 and can be reshaped (shaped) with a small diameter. For example, the reshape portion 3 is bent or curved in the arrow direction in FIG. 1 so as to be deformed into a desired shape. Can be used. In general, in order to guide the distal end of a guide catheter or the like to a blood vessel shape, or to select and guide a blood vessel branch appropriately and smoothly, a doctor or the like previously sets the distal end of the guide wire to a desired shape. In this way, bending the tip of the guide wire into a desired shape is called reshaping. And by providing the reshape part 3, reshape can be performed easily and reliably, and the operativity at the time of inserting the guide wire 1 in a biological body improves markedly. In addition, the marker which shows the preferable bending direction of the said front-end | tip part may be attached | subjected to the front-end | tip part of the guide wire 1. FIG.
 本体部4は、リシェイプ部3よりも太く長い部分である。本体部4は、外径が基端方向に向かって漸増するテーパ状をなすテーパ部41と、外径が一定の外径一定部42とを有している。 The main body 4 is a thicker and longer part than the reshape part 3. The main body portion 4 has a tapered portion 41 having a tapered shape in which the outer diameter gradually increases in the proximal direction, and a constant outer diameter portion 42 having a constant outer diameter.
 リシェイプ部3と外径一定部42との間にテーパ部41が形成されていることにより、芯線2の剛性(曲げ剛性、ねじり剛性)を先端方向に向かって徐々に減少させることができ、その結果、ガイドワイヤ1は、先端部に良好な狭窄部の通過性および柔軟性を得て、血管等への追従性、安全性が向上すると共に、折れ曲がり等も防止することができる。なお、テーパ部41のテーパ角度(外径の減少率)は、芯線2の長手方向に沿って一定であっても、長手方向に沿って変化する部位があってもよい。例えば、テーパ角度が比較的大きい箇所と比較的小さい箇所とが複数回交互に繰り返して形成されているようなものでもよい。 By forming the taper portion 41 between the reshape portion 3 and the constant outer diameter portion 42, the rigidity (bending rigidity, torsional rigidity) of the core wire 2 can be gradually reduced toward the distal end. As a result, the guide wire 1 can obtain a good stenosis portion passing through and flexibility at the distal end portion, improve followability to a blood vessel and the like, and can be prevented from being bent. In addition, the taper angle (decrease rate of the outer diameter) of the taper portion 41 may be constant along the longitudinal direction of the core wire 2 or may have a portion that varies along the longitudinal direction. For example, a portion where a relatively large taper angle and a relatively small portion are alternately formed a plurality of times may be used.
 外径一定部42は、その外径がテーパ部41の最大外径と同じとなっており、比較的剛性が高い部分である。これにより、ガイドワイヤ1の先端方向への押し込み性が良好となる。なお、外径一定部42の基端面421は、丸みを帯びているのが好ましい。 The outer diameter constant portion 42 has the same outer diameter as the maximum outer diameter of the tapered portion 41, and is a portion having relatively high rigidity. Thereby, the pushing property to the front-end | tip direction of the guide wire 1 becomes favorable. The base end surface 421 of the constant outer diameter portion 42 is preferably rounded.
 図1に示すように、芯線2のリシェイプ部3の外周には、当該リシェイプ部3を覆うようにコイル5が配置されている。このコイル5により、カテーテルの内壁や生体表面に対する芯線2の表面の接触面積が少なくなり、これにより、摺動抵抗を低減することができ、その結果、ガイドワイヤ1の操作性がより向上する。 As shown in FIG. 1, a coil 5 is disposed on the outer periphery of the reshape portion 3 of the core wire 2 so as to cover the reshape portion 3. The coil 5 reduces the contact area of the surface of the core wire 2 with the inner wall of the catheter or the surface of the living body, thereby reducing sliding resistance, and as a result, the operability of the guide wire 1 is further improved.
 コイル5の内側の中心部には、リシェイプ部3が挿通されており、当該リシェイプ部3は、コイル5の内面と非接触状態となっている。これにより、コイル5とリシェイプ部3との間に間隙11が形成され、血管壁に対するプッシャビリティを下げることが可能となる。 The reshape portion 3 is inserted through the central portion inside the coil 5, and the reshape portion 3 is not in contact with the inner surface of the coil 5. As a result, a gap 11 is formed between the coil 5 and the reshapable portion 3, and the pushability with respect to the blood vessel wall can be lowered.
 コイル5は、素線51を、リシェイプ部3の周方向に沿って螺旋状に巻回してなるものである。この場合、1本の素線51を螺旋状に巻いたものであってもよいし、複数本の素線51を螺旋状に巻いたものであってもよい。 The coil 5 is formed by winding a wire 51 in a spiral shape along the circumferential direction of the reshapable portion 3. In this case, one strand 51 may be spirally wound, or a plurality of strands 51 may be spirally wound.
 本実施形態では、コイル5の隣接する素線51同士は、接触しており、いわゆる密巻きの状態となっている。これらの素線51同士は、外力が付与していない自然状態で互いに芯線2の軸方向に押し合う力(圧縮力)が生じている。なお、ガイドワイヤ1ではこれに限らず、コイル5の隣接する素線51同士が離間している、いわゆる疎巻きの箇所があってもよい。 In this embodiment, the adjacent strands 51 of the coil 5 are in contact with each other and are in a so-called densely wound state. These strands 51 generate a force (compression force) that pushes them in the axial direction of the core wire 2 in a natural state where no external force is applied. The guide wire 1 is not limited to this, and there may be a so-called sparsely wound portion where the adjacent strands 51 of the coil 5 are separated from each other.
 素線51の構成材料は、特に限定されず、金属材料、樹脂材料のいずれでもよい。金属材料の好ましい例としては、ステンレス鋼や、例えばAu、Pt等の貴金属、該貴金属を含む合金(例えばPt-Ni合金)のようなX線不透過材料が挙げられる。X線不透過材料を用いた場合、ガイドワイヤ1の先端部にX線造影性が得られ、X線透視下で先端部の位置を確認しつつ生体内に挿入することができ、好ましい。 The constituent material of the strand 51 is not particularly limited, and may be either a metal material or a resin material. Preferable examples of the metal material include X-ray opaque materials such as stainless steel, noble metals such as Au and Pt, and alloys containing the noble metals (for example, Pt—Ni alloys). When an X-ray opaque material is used, X-ray contrast properties are obtained at the distal end portion of the guide wire 1, and it can be inserted into the living body while confirming the position of the distal end portion under X-ray fluoroscopy.
 なお、コイル5は、2種以上の材料を組み合わせたものでもよい。例えば、コイル5の先端側の素線51を前記Pt-Ni合金のようなX線不透過材料で構成し、コイル5の基端側の素線51をステンレス鋼で構成することができる。この場合には、X線透視下で、コイル5の先端側に位置する部位(特に、リシェイプ部3を含む部位)を、それよりも基端側に位置する部位よりも強調することができ(視認し易くなり)、よって、ガイドワイヤ1の最先端部(リシェイプ部3が存在する部分)の位置をより鮮明に視認することができる。 The coil 5 may be a combination of two or more materials. For example, the strand 51 on the distal end side of the coil 5 can be made of an X-ray opaque material such as the Pt—Ni alloy, and the strand 51 on the proximal end side of the coil 5 can be made of stainless steel. In this case, under X-ray fluoroscopy, the part located on the distal end side of the coil 5 (particularly, the part including the reshapable portion 3) can be emphasized more than the part located closer to the proximal end ( Therefore, the position of the most distal portion (the portion where the reshape portion 3 exists) of the guide wire 1 can be visually recognized more clearly.
 また、コイル5の素線51の線径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、素線51の線径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べ素線51の線径が小さく(または大きく)なっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の柔軟性をより向上させることができる。 The wire diameter of the strand 51 of the coil 5 may be the same over the entire length of the coil 5, but the wire diameter of the strand 51 may be different between the distal end side and the proximal end side of the coil 5. For example, the wire diameter of the strand 51 may be smaller (or larger) on the distal end side of the coil 5 than on the proximal end side. Thereby, the softness | flexibility of the guide wire 1 in the front-end | tip part of the coil 5 can be improved more.
 また、コイル5の外径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、コイル5の外径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べコイル5の外径が小さくなっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の病変部の穿通性をより向上させることができる。 Further, the outer diameter of the coil 5 may be the same over the entire length of the coil 5, but the outer diameter of the coil 5 may be different between the distal end side and the proximal end side of the coil 5. For example, the outer diameter of the coil 5 may be smaller on the distal end side of the coil 5 than on the proximal end side. Thereby, the penetration of the lesioned part of the guide wire 1 at the distal end of the coil 5 can be further improved.
 図1に示すように、コイル5は、芯線2に対し2箇所で固定されている。すなわち、コイル5の先端部が固定材料(固定部)52を介してリシェイプ部3の先端に固定され、コイル5の基端部が固定材料(固定部)53を介してテーパ部41の途中に固定されている。このように複数の箇所で固定することにより、ガイドワイヤ1の先端部(コイル5が存在する部位)の柔軟性を損なうのを防止しつつ、芯線2に対しコイル5を確実に固定することができる。 As shown in FIG. 1, the coil 5 is fixed to the core wire 2 at two locations. That is, the distal end portion of the coil 5 is fixed to the distal end of the reshapable portion 3 via a fixing material (fixing portion) 52, and the proximal end portion of the coil 5 is located in the middle of the tapered portion 41 via the fixing material (fixing portion) 53. It is fixed. By fixing at a plurality of locations in this way, the coil 5 can be securely fixed to the core wire 2 while preventing the tip portion of the guide wire 1 (the portion where the coil 5 is present) from being impaired. it can.
 特に、リシェイプ部3の先端側および基端側がそれぞれ固定材料52および53により固定されているため、リシェイプ部3をコイル5に対し確実に固定することができ、形状付けされたリシェイプ部3の形状を適正に保持することができる。 In particular, since the distal end side and the proximal end side of the reshape portion 3 are fixed by the fixing materials 52 and 53, respectively, the reshape portion 3 can be securely fixed to the coil 5, and the shape of the shaped reshape portion 3 can be secured. Can be held properly.
 固定材料52および53は、それぞれ、好ましくは半田(ろう材)で構成されている。その他、固定材料52および53は、接着剤であってもよい。また、コイル5の芯線2に対する固定方法は、前記のような固定材料によるものに限らず、例えば、溶接でもよい。 Each of the fixing materials 52 and 53 is preferably made of solder (brazing material). In addition, the fixing materials 52 and 53 may be adhesives. Further, the method for fixing the coil 5 to the core wire 2 is not limited to the above-described fixing material, and for example, welding may be used.
 なお、血管等の体腔の内壁の損傷を防止するために、固定材料52の先端面521は、丸みを帯びているのが好ましい。 In addition, in order to prevent damage to the inner wall of a body cavity such as a blood vessel, the distal end surface 521 of the fixing material 52 is preferably rounded.
 図1に示すように、芯線2の固定材料53よりも基端側の部分には、その全体(または一部)を覆う樹脂被覆層6が設けられている。この樹脂被覆層6は、種々の目的で形成することができるが、その一例として、ガイドワイヤ1の摩擦(摺動抵抗)を低減し、摺動性を向上させることによってガイドワイヤ1の操作性を向上させることがある。 As shown in FIG. 1, a resin coating layer 6 that covers the whole (or a part) of the core wire 2 is provided on the proximal end side of the fixing material 53 of the core wire 2. The resin coating layer 6 can be formed for various purposes. As an example, the operability of the guide wire 1 is reduced by reducing the friction (sliding resistance) of the guide wire 1 and improving the slidability. May be improved.
 ガイドワイヤ1の摩擦(摺動抵抗)の低減を図るためには、樹脂被覆層6は、以下に述べるような摩擦を低減し得る材料で構成されているのが好ましい。これにより、ガイドワイヤ1とともに用いられるカテーテルの内壁との摩擦抵抗(摺動抵抗)が低減されて摺動性が向上し、カテーテル内でのガイドワイヤ1の操作性がより良好なものとなる。また、ガイドワイヤ1の摺動抵抗が低くなることで、ガイドワイヤ1をカテーテル内で移動および/または回転した際に、ガイドワイヤ1のキンク(折れ曲がり)やねじれを確実に防止することができる。 In order to reduce the friction (sliding resistance) of the guide wire 1, the resin coating layer 6 is preferably made of a material that can reduce friction as described below. Thereby, the frictional resistance (sliding resistance) with the inner wall of the catheter used together with the guide wire 1 is reduced, the slidability is improved, and the operability of the guide wire 1 in the catheter becomes better. Further, since the sliding resistance of the guide wire 1 is lowered, the guide wire 1 can be reliably prevented from being kinked (bent) or twisted when the guide wire 1 is moved and / or rotated in the catheter.
 このような摩擦を低減し得る材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリエステル(PET、PBT等)、ポリアミド、ポリイミド、ポリウレタン、ポリスチレン、ポリカーボネート、シリコーン樹脂、フッ素系樹脂(PTFE、ETFE等)、またはこれらの複合材料が挙げられる。 Examples of materials that can reduce such friction include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
 なお、樹脂被覆層6は、単層のものであってもよいし、2層以上の積層体(例えば、内側の層が外側の層に比べより柔軟な材料で構成されたもの)でもよい。 The resin coating layer 6 may be a single layer or a laminate of two or more layers (for example, an inner layer made of a material that is more flexible than an outer layer).
 さて、図1に示すように、ガイドワイヤ1では、芯線2の最先端部にリシェイプ部3が配置されており、当該リシェイプ部3は、本体部4と一体的に形成されている。このように芯線2を構成する各部が一体的に形成されていることにより、芯線2(ガイドワイヤ1)の製造が容易となる。 Now, as shown in FIG. 1, in the guide wire 1, the reshape portion 3 is disposed at the most distal end portion of the core wire 2, and the reshape portion 3 is formed integrally with the main body portion 4. Thus, since each part which comprises the core wire 2 is formed integrally, manufacture of the core wire 2 (guide wire 1) becomes easy.
 芯線2の構成材料としては、特に限定されず、例えば、ステンレス鋼(例えば、SUS304、SUS303、SUS316、SUS316L、SUS316J1、SUS316J1L、SUS405、SUS430、SUS434、SUS444、SUS429、SUS430F、SUS302等SUSの全品種)、ピアノ線などの各種金属材料を用いることができ、これらの中でもステンレス鋼が好ましい。 The constituent material of the core wire 2 is not particularly limited. For example, stainless steel (for example, SUS304, SUS303, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F, SUS302, and all other types of SUS. ), Various metal materials such as piano wire can be used, and among these, stainless steel is preferable.
 また、ステンレス鋼のような比較的剛性が高い材料の他に、芯線2の構成材料として、生体内で超弾性を示す超弾性合金も用いることができる。超弾性合金には、引張りによる応力-ひずみ曲線のいずれの形状も含み、As、Af、Ms、Mf等の変態点が顕著に測定できるものも、できないものも含み、応力により大きく変形(歪)し、応力の除去により元の形状にほぼ戻るものは全て含まれる。超弾性合金の好ましい組成としては、49~52原子%NiのNi-Ti合金等のNi-Ti系合金、38.5~41.5重量%ZnのCu-Zn合金、1~10重量%XのCu-Zn-X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、36~38原子%AlのNi-Al合金等が挙げられる。これらの中でも特に好ましいものは、上記のNi-Ti系合金である。芯線2が超弾性合金で構成されている場合、芯線2の中でリシェイプ部3とすべき部分に対しては、熱処理を施す。これにより、当該部分での物性が変化して、すなわち、超弾性が低減または消失して、リシェイプ可能なリシェイプ部3を設けることができる。なお、当該部分に対しては、熱処理の他に冷間加工を施してもよい。また、Ni-Ti系合金に代表される超弾性合金は、樹脂被覆層6との密着性にも優れている。 Further, in addition to a material having relatively high rigidity such as stainless steel, a superelastic alloy exhibiting superelasticity in vivo can be used as a constituent material of the core wire 2. Superelastic alloys include any shape of stress-strain curve caused by tension, including those where the transformation point of As, Af, Ms, Mf, etc. can be measured remarkably, and those that cannot be deformed. However, everything that returns to its original shape by removing stress is included. The preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like. Of these, the Ni—Ti alloy is particularly preferable. When the core wire 2 is made of a superelastic alloy, heat treatment is performed on the portion of the core wire 2 that is to be the reshaped portion 3. Thereby, the physical property in the said part changes, ie, superelasticity reduces or lose | disappears, and the reshape part 3 which can be reshaped can be provided. In addition to the heat treatment, the portion may be cold worked. In addition, a superelastic alloy typified by a Ni—Ti alloy is excellent in adhesion to the resin coating layer 6.
 図1~図3に示すように、リシェイプ部3は、偏平形状ではない、すなわち、本実施形態では横断面形状が円形である円形断面部31を複数(図1に示す構成では14個)有し、棒状をなす部分となっている。これらの円形断面部31は、芯線2の中心軸Oに沿って間欠的に配置されている。そして、隣り合う円形断面部31同士の間の外周部には、第1の凹部(第1の欠損部)32または第2の凹部(第2の欠損部)33が1つずつ形成されている。なお、各凹部は、それぞれ、例えばプレス成型により加工可能である。 As shown in FIGS. 1 to 3, the reshapable portion 3 is not flat, that is, in the present embodiment, there are a plurality of circular cross-sectional portions 31 (14 in the configuration shown in FIG. 1) having a circular cross-sectional shape. However, it is a rod-shaped part. These circular cross-sections 31 are intermittently arranged along the central axis O 2 of the core wire 2. And in the outer peripheral part between adjacent circular cross-section parts 31, the 1st recessed part (1st defect | deletion part) 32 or the 2nd recessed part (2nd defect | deletion part) 33 is formed 1 each. . Each recess can be processed by, for example, press molding.
 これらの凹部は、第1の凹部32および第2の凹部33の双方とも、中心軸O方向に沿って一直線上に等間隔に配置されてはいるが、互いに中心軸O方向で異なる位置にズレて配置されている、すなわち、第1の凹部32と第2の凹部33とがガイドワイヤ1の側面視で重ならないように交互に配置されている(以下この配置関係を「交互配置」と言う)。従って、図2に示すように、ガイドワイヤ1の側面視で、第1の凹部32が中心軸Oよりも手前側(紙面手前側)に位置し、第2の凹部33が中心軸Oよりも奥側(紙面奥側)に位置した状態となる。 These concave portions are arranged at equal intervals on the straight line along the central axis O 2 direction in both the first concave portion 32 and the second concave portion 33, but are different from each other in the central axis O 2 direction. In other words, the first recesses 32 and the second recesses 33 are alternately arranged so as not to overlap in the side view of the guide wire 1 (hereinafter, this arrangement relationship is referred to as “alternate arrangement”. Say). Therefore, as shown in FIG. 2, the first recess 32 is located on the front side (the front side of the drawing) from the center axis O 2 and the second recess 33 is the center axis O 2 as viewed from the side of the guide wire 1. It will be in the state located in the back side (paper surface back side).
 ここで、仮に、リシェイプ部3が、偏平形状、すなわち、平板状(リボン状)をなし、その厚さが円形断面部31の外径(最大外径)φd31よりも小さい場合を考えてみる。この場合、リシェイプ部3を容易に曲げることができ、リシェイプを行なうことができるが、リシェイプ部3でのトルク伝達性が著しく低下するおそれがある。従って、例えば、ガイドワイヤの先端部を、血管内の狭窄部(病変部)を通過させようとして、当該ガイドワイヤに基端側からトルクを掛けても、先端部は1対1では回転せず、結果、狭窄部の通過が困難となることがある。また狭窄部(先端部)がガイドワイヤ1の先端部に与える微小な力もガイドワイヤ1の基端部に伝わらず、狭窄部の硬さなどの情報を得にくくなる。 Here, suppose that the reshape portion 3 has a flat shape, that is, a flat plate shape (ribbon shape), and the thickness thereof is smaller than the outer diameter (maximum outer diameter) φd 31 of the circular cross section 31. . In this case, the reshapable portion 3 can be easily bent and reshapable, but the torque transmission at the reshapable portion 3 may be significantly reduced. Therefore, for example, even if a torque is applied to the guide wire from the proximal end side so that the distal end portion of the guide wire passes through a stenosis portion (lesioned portion) in the blood vessel, the distal end portion does not rotate 1: 1. As a result, it may be difficult to pass through the constriction. In addition, a minute force applied to the distal end portion of the guide wire 1 by the narrowed portion (distal end portion) is not transmitted to the proximal end portion of the guide wire 1 and it becomes difficult to obtain information such as the hardness of the narrowed portion.
 そこで、前述したように、リシェイプ部3は、偏平形状ではなく、円形断面部31が中心軸Oに沿って間欠的に配置されたものとなっている。これにより、リシェイプ部3は、全体として、いわゆるコシの強いものとなって、すなわち、捩じり剛性が高まり、トルク伝達性が向上する。 Therefore, as described above, reshapable portion 3 is not a flat shape, and is intended to round sectional portions 31 is intermittently disposed along the central axis O 2. As a result, the reshapable portion 3 as a whole becomes so-called firm, that is, the torsional rigidity is increased and the torque transmission is improved.
 また、図4、図5に示すように、リシェイプ部3の第1の凹部32や第2の凹部33が形成された部分(以下「非円形断面部34」と言う)での横断面形状は、円の一部を欠損させたような形状となる。従って、非円形断面部34のプレス方向の幅は、円形断面部31の太さよりも細くなる。これにより、リシェイプ部3を所望の形状にリシェイプした際に、各非円形断面部34は、それぞれ、各円形断面部31よりも優先的に変形することができ、よって、リシェイプ部3での形状付けを非円形断面部34に沿って容易かつ確実に一方向にすることができるとともに、その形状が維持される。 As shown in FIGS. 4 and 5, the cross-sectional shape of the portion of the reshapable portion 3 where the first concave portion 32 and the second concave portion 33 are formed (hereinafter referred to as “non-circular cross-sectional portion 34”) is The shape is such that part of the circle is missing. Therefore, the width in the pressing direction of the non-circular cross section 34 is smaller than the thickness of the circular cross section 31. As a result, when the reshaped portion 3 is reshaped into a desired shape, each non-circular cross-sectional portion 34 can be preferentially deformed over each circular cross-sectional portion 31, and thus the shape of the reshaped portion 3. The attachment can be easily and reliably performed in one direction along the non-circular cross section 34, and the shape is maintained.
 このように、ガイドワイヤ1では、その先端部、すなわち、リシェイプ部3での形状付けが容易であり、当該リシェイプ部3までのトルク伝達性に優れたものとなっている。 As described above, the guide wire 1 can be easily shaped at the tip, that is, the reshape portion 3, and has excellent torque transmission to the reshape portion 3.
 また、前述したように、第1の凹部32と第2の凹部33とが前記交互配置となっている。これにより、第1の凹部32と第2の凹部33との間に、円形断面部31が確実に残る(形成される)ので、トルク性能の低下を抑えることができる。 As described above, the first recesses 32 and the second recesses 33 are arranged alternately. Thereby, since the circular cross-sectional part 31 remains reliably (formed) between the 1st recessed part 32 and the 2nd recessed part 33, the fall of torque performance can be suppressed.
 また、第1の凹部32と第2の凹部33とがガイドワイヤ1の側面視で重なるように配置されていると、その部分(非円形断面部34)でのリシェイプ部3の横断面積が極端に小さくなってしまい、引張強さが大きく低下する。また、形状付けした後(リシェイプ後)の形状維持性(限界荷重)が低下する。しかしながら、前記交互配置により、リシェイプ部3の太さが極端に細くなるのを防止することができ、よって、引張強さと形状維持性の低下も防止することができる。 If the first recess 32 and the second recess 33 are arranged so as to overlap in a side view of the guide wire 1, the cross-sectional area of the reshape portion 3 at that portion (noncircular cross-sectional portion 34) is extremely large. The tensile strength is greatly reduced. Moreover, the shape maintenance property (limit load) after shaping (after reshaping) is reduced. However, the alternating arrangement can prevent the thickness of the reshapable portion 3 from becoming extremely thin, thereby preventing a decrease in tensile strength and shape maintainability.
 図4、図5(図1~図3についても同様)に示すように、第1の凹部32と第2の凹部33とは、互いに同じ大きさである。なお、各凹部の最大深さuは、円形断面部31の外径φd31(リシェイプ部3の外周部の最大外径)の1%以上、50%以下であるのが好ましく、5%以上、20%以下であるのがより好ましい。各凹部の幅wは、円形断面部31の外径φd31(リシェイプ部3の外周部の最大外径)の1%以上、200%以下であるのが好ましく、50%以上、100%以下であるのがより好ましい。このような大小関係により、例えば、リシェイプ部を図1中の上側に曲げた場合と、下側に曲げた場合とで曲げ易さが同じとなり、よって、リシェイプ時の操作性が向上する。 As shown in FIGS. 4 and 5 (the same applies to FIGS. 1 to 3), the first recess 32 and the second recess 33 have the same size. The maximum depth u of each recess is preferably 1% or more and 50% or less of the outer diameter φd 31 (maximum outer diameter of the outer peripheral portion of the reshapable part 3) of the circular cross-section 31, preferably 5% or more. More preferably, it is 20% or less. The width w of each recess is preferably 1% or more and 200% or less, and 50% or more and 100% or less of the outer diameter φd 31 of the circular cross-section 31 (the maximum outer diameter of the outer peripheral portion of the reshapable part 3). More preferably. Due to such a magnitude relationship, for example, the ease of bending is the same when the reshapable portion is bent upward in FIG. 1 and when the reshapable portion is bent downward, thereby improving operability during reshaping.
 図3に示すように、第1の凹部32の底部321は、円弧状に丸みを帯びており、第2の凹部33の底部331も、円弧状に丸みを帯びている。これにより、リシェイプした際、底部321や底部331付近での応力集中を緩和または防止することができる。 As shown in FIG. 3, the bottom 321 of the first recess 32 is rounded in an arc shape, and the bottom 331 of the second recess 33 is also rounded in an arc shape. Thereby, when reshaping, stress concentration near the bottom 321 and the bottom 331 can be reduced or prevented.
 <第2実施形態>
  図6および図7は、それぞれ、本発明のガイドワイヤ(第2実施形態)が備える芯線のリシェイプ部の横断面図である(図6の横断面の位置と図7の横断面の位置とは、リシェイプ部の長手方向で異なっている)。
Second Embodiment
6 and 7 are cross-sectional views of the reshape portion of the core wire provided in the guide wire (second embodiment) of the present invention (the positions of the cross-section in FIG. 6 and the cross-section in FIG. 7 are respectively , Different in the longitudinal direction of the reshapable part).
 以下、これらの図を参照して本発明のガイドワイヤの第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、凹部の形状が異なること以外は前記第1実施形態と同様である。
Hereinafter, the second embodiment of the guide wire of the present invention will be described with reference to these drawings, but the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted.
This embodiment is the same as the first embodiment except that the shape of the recess is different.
 図6、図7に示すように、本実施形態では、第1の凹部32および第2の凹部33は、それぞれ、リシェイプ部3の外周部の周方向に沿った溝で構成されている。そして、各溝の長さLは、リシェイプ部3の外周部の全周Lの10%以上、75%以下であるのが好ましく、15%以上、60%以下であるのがより好ましい。 As shown in FIGS. 6 and 7, in the present embodiment, the first recess 32 and the second recess 33 are each configured by a groove along the circumferential direction of the outer peripheral portion of the reshapable portion 3. The length L 1 of each groove, 10% or more of the total circumference L 2 of the outer peripheral portion of the reshapable portion 3, but preferably not more than 75%, 15% or more, more preferably 60% or less.
 このような形状の第1の凹部32および第2の凹部33が形成されていることにより、リシェイプ部3でのトルク伝達性が低下するのを防止することができる。 The formation of the first concave portion 32 and the second concave portion 33 having such a shape can prevent the torque transmission at the reshape portion 3 from being lowered.
 <第3実施形態>
  図8は、本発明のガイドワイヤ(第3実施形態)が備える芯線のリシェイプ部の平面図である。
<Third Embodiment>
FIG. 8 is a plan view of the reshape portion of the core wire provided in the guide wire (third embodiment) of the present invention.
 以下、この図を参照して本発明のガイドワイヤの第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、凹部の配置状態が異なること以外は前記第1実施形態と同様である。
Hereinafter, the third embodiment of the guide wire of the present invention will be described with reference to this figure, but the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted.
This embodiment is the same as the first embodiment except that the arrangement state of the recesses is different.
 図8に示すように、中心軸O方向に隣り合う第1の凹部32同士の間隔は、中心軸Oに沿って変化している。すなわち、本実施形態では、中心軸O方向に隣り合う第1の凹部32同士の中心間距離(ピッチ)p32は、先端方向に向かって徐々に減少している。 As shown in FIG. 8, a first recess 32 intervals adjacent to the central axis O 2 direction, it varies along the central axis O 2. That is, in this embodiment, the first recess 32 the distance between the centers of adjacent to the center axis O 2 direction (pitch) p 32 are gradually decreased along the distal direction.
 これと同様に、中心軸O方向に隣り合う第2の凹部33同士の間隔も、中心軸Oに沿って変化している。すなわち、本実施形態では、中心軸O方向に隣り合う第2の凹部33同士の中心間距離(ピッチ)p33も、先端方向に向かって徐々に減少している。 Similarly, the interval between the second recess 33 adjacent to the central axis O 2 direction, varies along the central axis O 2. That is, in this embodiment, distance between centers of the second recess 33 adjacent to the central axis O 2 direction (pitch) p 33 also gradually decreases along the distal direction.
 このような構成により、リシェイプ部3全体としての剛性を(曲げ剛性)を先端方向に向かって徐々に減少させることができ、よって、リシェイプ部3では、先端側の部分が、基端側の部分よりも曲げ易くなる。そして、この構成は、リシェイプ部3で曲げ易さに変化、すなわち、大小(強弱)を徐々に持たせたい場合に有効な構成である。 With such a configuration, the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually reduced in the distal direction. Therefore, in the reshape part 3, the distal end portion is the proximal end portion. It becomes easier to bend than. This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
 <第4実施形態>
  図9は、本発明のガイドワイヤ(第4実施形態)が備える芯線のリシェイプ部の平面図である。
<Fourth embodiment>
FIG. 9 is a plan view of the reshape portion of the core wire provided in the guide wire (fourth embodiment) of the present invention.
 以下、この図を参照して本発明のガイドワイヤの第4実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、凹部の配置状態が異なること以外は前記第1実施形態と同様である。
Hereinafter, the guide wire according to the fourth embodiment of the present invention will be described with reference to the drawings. However, the difference from the above-described embodiment will be mainly described, and the description of the same matters will be omitted.
This embodiment is the same as the first embodiment except that the arrangement state of the recesses is different.
 図9に示すように、中心軸O方向に隣り合う第1の凹部32同士の間隔は、中心軸Oに沿って変化している。すなわち、本実施形態では、中心軸O方向に隣り合う第1の凹部32同士の中心間距離(ピッチ)p32は、基端方向に向かって徐々に減少している。 As shown in FIG. 9, the first recess 32 intervals adjacent to the central axis O 2 direction, it varies along the central axis O 2. That is, in the present embodiment, the center-to-center distance (pitch) p 32 between the first recesses 32 adjacent in the direction of the central axis O 2 gradually decreases toward the base end direction.
 これと同様に、中心軸O方向に隣り合う第2の凹部33同士の間隔も、中心軸Oに沿って変化している。すなわち、本実施形態では、中心軸O方向に隣り合う第2の凹部33同士の中心間距離(ピッチ)p33も、基端方向に向かって徐々に減少している。 Similarly, the interval between the second recess 33 adjacent to the central axis O 2 direction, varies along the central axis O 2. That is, in this embodiment, distance between centers of the second recess 33 adjacent to the central axis O 2 direction (pitch) p 33 also gradually decreases along the proximal direction.
 このような構成により、リシェイプ部3全体としての剛性を(曲げ剛性)を基端方向に向かって徐々に減少させることができ、よって、リシェイプ部3では、基端側の部分が、先端側の部分よりも曲げ易くなる。そして、この構成は、リシェイプ部3で曲げ易さに変化、すなわち、大小(強弱)を徐々に持たせたい場合に有効な構成である。 With such a configuration, the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually decreased in the proximal direction. Therefore, in the reshape part 3, the proximal side part is the distal side part. It becomes easier to bend than the part. This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
 <第5実施形態>
  図10は、本発明のガイドワイヤ(第5実施形態)が備える芯線のリシェイプ部の平面図である。
<Fifth Embodiment>
FIG. 10 is a plan view of the reshape part of the core wire provided in the guide wire (fifth embodiment) of the present invention.
 以下、この図を参照して本発明のガイドワイヤの第5実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、凹部の大きさが異なること以外は前記第1実施形態と同様である。
Hereinafter, the fifth embodiment of the guide wire of the present invention will be described with reference to this drawing. However, the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted.
This embodiment is the same as the first embodiment except that the size of the recesses is different.
 図10に示すように、本実施形態では、第1の凹部32および第2の凹部33のうちの一方の凹部(本実施形態では第2の凹部33)が省略されている。そして、各第1の凹部32の大きさは、中心軸Oに沿うに従って変化している。すなわち、本実施形態では、各第1の凹部32の幅wは、基端方向に向かって徐々に増大している。なお、各第1の凹部32の最大深さuは、それぞれ、同じであるが、底部321の曲率Rが異なっている、すなわち、基端方向に向かって徐々に減少している。 As shown in FIG. 10, in the present embodiment, one of the first recess 32 and the second recess 33 (the second recess 33 in the present embodiment) is omitted. The size of each first recess 32 is changed in accordance along the central axis O 2. That is, in the present embodiment, the width w of each first recess 32 gradually increases toward the proximal direction. The maximum depth u of each first recess 32 is the same, but the curvature R of the bottom 321 is different, that is, gradually decreases toward the proximal direction.
 このような構成により、リシェイプ部3全体としての剛性を(曲げ剛性)を基端方向に向かって徐々に減少させることができ、よって、リシェイプ部3では、基端側の部分が、先端側の部分よりも曲げ易くなる。そして、この構成は、リシェイプ部3で曲げ易さに変化、すなわち、大小(強弱)を徐々に持たせたい場合に有効な構成である。 With such a configuration, the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually decreased in the proximal direction. Therefore, in the reshape part 3, the proximal side part is the distal side part. It becomes easier to bend than the part. This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
 <第6実施形態>
  図11は、本発明のガイドワイヤ(第6実施形態)が備える芯線のリシェイプ部の平面図である。
<Sixth Embodiment>
FIG. 11 is a plan view of a reshape portion of a core wire included in the guide wire (sixth embodiment) of the present invention.
 以下、この図を参照して本発明のガイドワイヤの第6実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、凹部の大きさが異なること以外は前記第1実施形態と同様である。
Hereinafter, the sixth embodiment of the guide wire according to the present invention will be described with reference to this figure. However, the difference from the above-described embodiment will be mainly described, and the description of the same matters will be omitted.
This embodiment is the same as the first embodiment except that the size of the recesses is different.
 図11に示すように、本実施形態では、第1の凹部32および第2の凹部33のうちの一方の凹部(本実施形態では第2の凹部33)が省略されている。そして、各第1の凹部32の大きさは、中心軸Oに沿うに従って変化している。すなわち、本実施形態では、各第1の凹部32の幅wは、先端方向に向かって徐々に増大している。なお、各第1の凹部32の最大深さuは、それぞれ、同じであるが、底部321の曲率Rが異なっている、すなわち、先端方向に向かって徐々に減少している。 As shown in FIG. 11, in the present embodiment, one of the first recess 32 and the second recess 33 (the second recess 33 in the present embodiment) is omitted. The size of each first recess 32 is changed in accordance along the central axis O 2. That is, in the present embodiment, the width w of each first recess 32 gradually increases toward the distal end. The maximum depth u of each first recess 32 is the same, but the curvature R of the bottom 321 is different, that is, gradually decreases toward the tip.
 このような構成により、リシェイプ部3全体としての剛性を(曲げ剛性)を先端方向に向かって徐々に減少させることができ、よって、リシェイプ部3では、先端側の部分が、基端側の部分よりも曲げ易くなる。そして、この構成は、リシェイプ部3で曲げ易さに変化、すなわち、大小(強弱)を徐々に持たせたい場合に有効な構成である。 With such a configuration, the rigidity (bending rigidity) of the reshape part 3 as a whole can be gradually reduced in the distal direction. Therefore, in the reshape part 3, the distal end portion is the proximal end portion. It becomes easier to bend than. This configuration is effective when the reshapable portion 3 is changing in bendability, that is, when it is desired to gradually increase or decrease the size (strength).
 以上、本発明のガイドワイヤを図示の実施形態について説明したが、本発明は、これに限定されるものではなく、ガイドワイヤを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。 As mentioned above, although the guide wire of this invention was demonstrated about embodiment of illustration, this invention is not limited to this, Each part which comprises a guide wire is a thing of arbitrary structures which can exhibit the same function. Can be substituted. Moreover, arbitrary components may be added.
 また、本発明のガイドワイヤは、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。 Further, the guide wire of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
 本発明のガイドワイヤは、長尺状をなし、細径の先端部を有する芯線を備えるガイドワイヤであって、先端部は、偏平形状ではない棒状をなし、その外周部に形成され、芯線の中心軸方向に沿って配置された複数の凹部を有する。そのため、ガイドワイヤの先端部での形状付けが容易であり、先端部までのトルク伝達性に優れる。 The guide wire of the present invention is a guide wire having a long shape and a core wire having a thin tip portion, and the tip portion is formed in a rod shape that is not a flat shape, and is formed on the outer peripheral portion of the guide wire. It has a plurality of recesses arranged along the central axis direction. Therefore, it is easy to shape the tip of the guide wire, and the torque transmission to the tip is excellent.
 1      ガイドワイヤ
 11     間隙
 2      芯線(ワイヤ本体)
 3      リシェイプ部
 31     円形断面部
 32     第1の凹部(第1の欠損部)
 321    底部
 33     第2の凹部(第2の欠損部)
 331    底部
 34     非円形断面部
 4      本体部
 41     テーパ部
 42     外径一定部
 421    基端面
 5      コイル
 51     素線
 52、53  固定材料(固定部)
 521    先端面
 6      樹脂被覆層
 φd31   外径(最大外径)
 L     長さ
 L     全周
 O     中心軸
 p32、p33 中心間距離(ピッチ)
 R      曲率
 u      最大深さ
 w      幅
1 Guide wire 11 Gap 2 Core wire (Wire body)
3 Reshape part 31 Circular cross-sectional part 32 1st recessed part (1st defect | deletion part)
321 bottom 33 second recess (second defect)
331 Bottom portion 34 Non-circular cross section 4 Body portion 41 Taper portion 42 Constant outer diameter portion 421 Base end surface 5 Coil 51 Wire 52, 53 Fixing material (fixing portion)
521 Tip surface 6 Resin coating layer φd 31 outer diameter (maximum outer diameter)
L 1 length L 2 full circumference O 2 center axis p 32 , p 33 center distance (pitch)
R Curvature u Maximum depth w Width

Claims (9)

  1.  長尺状をなし、細径の先端部を有する芯線を備えるガイドワイヤであって、
     前記先端部は、偏平形状ではない棒状をなし、その外周部に形成され、前記芯線の中心軸方向に沿って配置された複数の凹部を有することを特徴とするガイドワイヤ。
    A guide wire comprising a core wire having an elongated shape and a thin tip portion,
    The guide wire has a rod shape that is not a flat shape, and has a plurality of recesses formed on an outer peripheral portion thereof and disposed along a central axis direction of the core wire.
  2.  前記先端部は、前記凹部が形成されている部分からズレた位置での横断面形状が円形のものである請求項1に記載のガイドワイヤ。 The guide wire according to claim 1, wherein the distal end portion has a circular cross-sectional shape at a position shifted from a portion where the concave portion is formed.
  3.  前記複数の凹部には、当該ガイドワイヤの側面視で、前記中心軸よりも手前側の第1の凹部と、前記中心軸よりも奥側の第2の凹部とが含まれており、
     前記第1の凹部と前記第2の凹部とは、前記中心軸方向で異なる位置に配されている請求項1または2に記載のガイドワイヤ。
    The plurality of recesses include a first recess on the nearer side than the central axis and a second recess on the farther side than the central axis in a side view of the guide wire,
    The guide wire according to claim 1 or 2, wherein the first recess and the second recess are arranged at different positions in the central axis direction.
  4.  前記各凹部は、それぞれ、その底部が丸みを帯びている請求項1ないし3のいずれか1項に記載のガイドワイヤ。 The guide wire according to any one of claims 1 to 3, wherein each of the recesses has a round bottom.
  5.  前記凹部の最大深さは、前記外周部の最大外径の1%以上、50%以下である請求項1ないし4のいずれか1項に記載のガイドワイヤ。 The guide wire according to any one of claims 1 to 4, wherein a maximum depth of the concave portion is 1% or more and 50% or less of a maximum outer diameter of the outer peripheral portion.
  6.  前記各凹部は、それぞれ、前記外周部の周方向に沿った溝である請求項1ないし5のいずれか1項に記載のガイドワイヤ。 The guide wire according to any one of claims 1 to 5, wherein each of the concave portions is a groove along a circumferential direction of the outer peripheral portion.
  7.  前記溝の長さは、前記外周部の全周の10%以上、75%以下である請求項6に記載のガイドワイヤ。 The guide wire according to claim 6, wherein the length of the groove is 10% or more and 75% or less of the entire circumference of the outer peripheral portion.
  8.  前記各凹部の大きさは、前記中心軸に沿うに従って変化している請求項1ないし7のいずれか1項に記載のガイドワイヤ。 The guide wire according to any one of claims 1 to 7, wherein the size of each of the recesses changes along the central axis.
  9.  前記中心軸方向に隣り合う凹部同士の間隔は、前記中心軸に沿って変化している請求項1ないし8のいずれか1項に記載のガイドワイヤ。 The guide wire according to any one of claims 1 to 8, wherein an interval between recesses adjacent to each other in the central axis direction changes along the central axis.
PCT/JP2015/076135 2014-09-26 2015-09-15 Guide wire WO2016047499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-196932 2014-09-26
JP2014196932 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047499A1 true WO2016047499A1 (en) 2016-03-31

Family

ID=55581026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076135 WO2016047499A1 (en) 2014-09-26 2015-09-15 Guide wire

Country Status (1)

Country Link
WO (1) WO2016047499A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950137B2 (en) 2009-04-03 2018-04-24 Scientia Vascular, Llc Micro-fabricated guidewire devices formed with hybrid materials
US10232141B2 (en) 2008-12-08 2019-03-19 Scientia Vascular, Llc Micro-cutting systems for forming cuts in products
US10363389B2 (en) 2009-04-03 2019-07-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having varying diameters
US10821268B2 (en) 2016-09-14 2020-11-03 Scientia Vascular, Llc Integrated coil vascular devices
US10953203B2 (en) 2016-07-18 2021-03-23 Scientia Vascular, Llc Guidewire devices having shapeable polymer tips
CN112587782A (en) * 2020-12-07 2021-04-02 上海璞慧医疗器械有限公司 Medical guide wire
US11052228B2 (en) 2016-07-18 2021-07-06 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11305095B2 (en) 2018-02-22 2022-04-19 Scientia Vascular, Llc Microfabricated catheter having an intermediate preferred bending section
US11369351B2 (en) 2017-05-26 2022-06-28 Scientia Vascular, Inc. Micro-fabricated medical device having a non-helical cut arrangement
US11406791B2 (en) 2009-04-03 2022-08-09 Scientia Vascular, Inc. Micro-fabricated guidewire devices having varying diameters
US11452541B2 (en) 2016-12-22 2022-09-27 Scientia Vascular, Inc. Intravascular device having a selectively deflectable tip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245852A (en) * 2007-03-29 2008-10-16 Terumo Corp Guide wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245852A (en) * 2007-03-29 2008-10-16 Terumo Corp Guide wire

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980968B2 (en) 2008-12-08 2021-04-20 Scientia Vascular, Llc Micro-cutting systems for forming cuts in products
US10232141B2 (en) 2008-12-08 2019-03-19 Scientia Vascular, Llc Micro-cutting systems for forming cuts in products
US10363389B2 (en) 2009-04-03 2019-07-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having varying diameters
US11406791B2 (en) 2009-04-03 2022-08-09 Scientia Vascular, Inc. Micro-fabricated guidewire devices having varying diameters
US9950137B2 (en) 2009-04-03 2018-04-24 Scientia Vascular, Llc Micro-fabricated guidewire devices formed with hybrid materials
US10953203B2 (en) 2016-07-18 2021-03-23 Scientia Vascular, Llc Guidewire devices having shapeable polymer tips
US10953202B2 (en) 2016-07-18 2021-03-23 Scientia Vascular, Llc Guidewire devices having distally extending coils and shapeable tips
US11052228B2 (en) 2016-07-18 2021-07-06 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11207502B2 (en) 2016-07-18 2021-12-28 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11890434B2 (en) 2016-07-18 2024-02-06 Scientia Vascular, Inc. Guidewire devices having distally extending coils and shapeable tips
US11951267B2 (en) 2016-07-18 2024-04-09 Scientia Vascular, Inc. Guidewire devices having shapeable tips and bypass cuts
US10821268B2 (en) 2016-09-14 2020-11-03 Scientia Vascular, Llc Integrated coil vascular devices
US11452541B2 (en) 2016-12-22 2022-09-27 Scientia Vascular, Inc. Intravascular device having a selectively deflectable tip
US11369351B2 (en) 2017-05-26 2022-06-28 Scientia Vascular, Inc. Micro-fabricated medical device having a non-helical cut arrangement
US11305095B2 (en) 2018-02-22 2022-04-19 Scientia Vascular, Llc Microfabricated catheter having an intermediate preferred bending section
CN112587782A (en) * 2020-12-07 2021-04-02 上海璞慧医疗器械有限公司 Medical guide wire

Similar Documents

Publication Publication Date Title
WO2016047499A1 (en) Guide wire
JP5020630B2 (en) Guide wire
JP6082807B2 (en) Guide wire
JP5148936B2 (en) Guide wire
JP2004230142A (en) Guide wire
JP2008194185A (en) Guide wire
JP2008237253A (en) Guide wire
EP2937109A1 (en) Guidewire
WO2009119387A1 (en) Guide wire and method of manufacturing guide wire
JP6759069B2 (en) Guide wire
JP2015159865A (en) guide wire
JP2018079246A (en) Guide wire
EP2982405B1 (en) Coil, guide wire, and coil manufacturing method
JP5473677B2 (en) Guide wire
JP6701082B2 (en) Guide wire and method for manufacturing guide wire
JP2007319705A (en) Guide wire and production method of guide wire
JP6306994B2 (en) Guide wire and guide wire manufacturing method
JP2013208351A (en) Guide wire
JP6155199B2 (en) Guide wire
US9808604B2 (en) Guide wire
WO2018034072A1 (en) Guidewire
WO2014162389A1 (en) Guide wire
JP2013154070A (en) Guide wire
JP2011152467A (en) Method for manufacturing guide wire
WO2014162391A1 (en) Guide wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15844775

Country of ref document: EP

Kind code of ref document: A1