WO2016047424A1 - 腎イメージング剤 - Google Patents

腎イメージング剤 Download PDF

Info

Publication number
WO2016047424A1
WO2016047424A1 PCT/JP2015/075295 JP2015075295W WO2016047424A1 WO 2016047424 A1 WO2016047424 A1 WO 2016047424A1 JP 2015075295 W JP2015075295 W JP 2015075295W WO 2016047424 A1 WO2016047424 A1 WO 2016047424A1
Authority
WO
WIPO (PCT)
Prior art keywords
renal
nitro
imidazol
imaging agent
ckd
Prior art date
Application number
PCT/JP2015/075295
Other languages
English (en)
French (fr)
Inventor
徳仁 中田
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Priority to EP15843318.5A priority Critical patent/EP3199183A4/en
Priority to KR1020177003360A priority patent/KR20170058360A/ko
Priority to CN201580049336.XA priority patent/CN106687145A/zh
Priority to JP2016550088A priority patent/JP6321191B2/ja
Priority to CA2959776A priority patent/CA2959776A1/en
Priority to US15/508,325 priority patent/US20170281803A1/en
Priority to AU2015322871A priority patent/AU2015322871A1/en
Publication of WO2016047424A1 publication Critical patent/WO2016047424A1/ja
Priority to US15/915,774 priority patent/US20180193493A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/91Nitro radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a renal imaging agent.
  • Non-Patent Document 1 The number of patients with kidney disease in Japan is increasing year by year and has a significant impact on the health of the people. Among them, chronic kidney failure (CKD) may cause serious cardiovascular disease or require artificial dialysis when it worsens. For this reason, in recent years, various efforts have been made to prevent the aggravation of CKD (for example, Non-Patent Document 1).
  • CKD chronic kidney failure
  • CKD is (i) urinary abnormalities, diagnostic imaging, blood, pathology reveals the presence of kidney damage, especially 0.15 g / gCr or higher proteinuria (30 mg / gCr or higher albumin) (Ii) presence of urine; (ii) for symptoms of GFR (glomerular filtration rate) less than 60 mL / min / 1.73 m 2 , either (i), (ii), or both last for more than 3 months It has been shown that the severity of CKD is classified by GFR and ACR (albumin / creatinine ratio).
  • Non-Patent Document 2 suggests that renal biopsy should be performed after determining the indication with reference to urinalysis findings to determine CKD diagnosis and treatment policy.
  • Abdominal ultrasonography is used to diagnose the diseases indicated (urinary stones, obstructive urinary tract disorders, cystic kidney disease, etc.), and ultrasonic Doppler, MR angiography, It is stated that CT angiography is recommended to be selected according to renal function.
  • CKD is characterized by progressive loss of renal function due to chronic tubulointerstitial injury, which includes tubule atrophy and interstitial fibrosis. Such changes reduce oxygenation in the kidney, thereby initiating and promoting the fibrotic reaction one after another through various cytokine signaling pathways and cellular signals. Fibrosis and hypoxia are considered to be the main factors that lead to the progression of CKD, and if these factors can be accurately evaluated and evaluated non-invasively, it is considered useful for the treatment of CKD.
  • BOLD blood oxygenation level-dependent
  • Drug nephropathy is a renal disorder caused by drugs (antibacterial drugs, analgesics, anticancer drugs, contrast media) used for treatment or diagnosis. Many drug-induced nephropathy is reversible, but accurate early diagnosis is required to avoid irreversible renal dysfunction. Serum creatinine, urea nitrogen, and general urinalysis are Listed as an essential periodic inspection.
  • Nuclear medicine inspection is known as one of the methods for examining renal function.
  • This nuclear medicine examination includes renography for examining renal dynamics and renal scintigraphy, and [ 131 I] orthoiodic hyperpuric acid ( 131 I-OIH), 99 m is used as a radiopharmaceutical used for examination of renal dynamics.
  • Tc-MAG3 mercaptoacetyltriglycine
  • 99m Tc-DTPA diethylenetriaminepentaacetic acid
  • 99m Tc-DMSA dimercaptosuccinic acid
  • renal biopsy is useful for determining CKD treatment policy and predicting long-term prognosis, but renal function and ischemia cannot be grasped by renal biopsy.
  • Non-Patent Document 4 it is known that a hypoxic condition in the kidney worsens kidney damage, but an established technique that can detect a hypoxic condition in the kidney is not known.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel renal imaging agent capable of noninvasively depicting a lesion site based on the intrarenal environment.
  • the present inventor has newly found that by using a specific nitroimidazole compound labeled with radioactive fluorine ( 18 F), a renal lesion can be depicted noninvasively using a nuclear medicine examination method.
  • Nitroimidazole compounds accumulate specifically in the hypoxic region. Therefore, by detecting the extent of hypoxia in the kidney and evaluating the hypoxia quantitatively, the degree of renal fibrosis is evaluated, early detection of kidney disease, early treatment, prognosis prediction, treatment It is expected that the effect can be judged.
  • a renal imaging agent containing a nitroimidazole compound represented by the following general formula (1) or a salt thereof.
  • R 1 is hydrogen or a hydroxymethyl group.
  • A is any one of the following groups (I) to (IV).
  • R 2 is hydrogen or a hydroxy group
  • R 3 is hydrogen or a hydroxymethyl group
  • R 4 is a hydroxy group or a hydroxymethyl group
  • k is 0 or 1.
  • M is 0 or 1
  • n is 0, 1 or 2
  • X is radioactive fluorine.
  • n is 0, 1 or 2
  • p is 1 or 2
  • q is 0, 1 or 2
  • X is radioactive fluorine.
  • n 0, 1 or 2
  • X is radioactive fluorine
  • n 0, 1 or 2
  • X is radioactive fluorine
  • a renal imaging agent capable of non-invasively depicting a lesion site based on the intrarenal environment.
  • 18 is a PET imaging image (MIP image) of 18 F-HIC101.
  • A is an image of a CKD model
  • (b) is an image of a healthy model. It is a figure which shows the result of the biodistribution for 100 minutes after 18 F-HIC101 administration. It is a figure which shows the comparison of the expression level of HIF-1 (alpha) in a renal tissue, and the localization of 18 F-HIC101.
  • It is a PET imaging image (MIP image) of 18 F-FMISO.
  • A) is an image of a CKD model
  • (b) is an image of a healthy model.
  • radioactive fluorine is a radioactive isotope of fluorine and refers to fluorine-18 ( 18 F).
  • the “salt” may be any one that is pharmaceutically acceptable.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, or acetic acid, trifluoroacetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycol Acid, salicylic acid, pyranosidic acid (glucuronic acid, galacturonic acid, etc.), ⁇ -hydroxy acid (citric acid, tartaric acid, etc.), amino acid (aspartic acid, glutamic acid, etc.), aromatic acid (benzoic acid, cinnamic acid, etc.), sulfone Salts derived from organic acids such as acids (p-toluenesulfonic acid, ethanesulfonic acid, etc.) can be used.
  • the “nitroimidazole compound” refers to the above general formula (1), for example, 2- [ 18 F] fluoromethyl-2-((2-nitro-1H-imidazol-1-yl) methyl] -1,3-propanediol
  • 18 F-HIC101 a group in which A is represented by (I) A compound in which R 1 and R 2 are hydrogen, R 3 and R 4 are hydroxymethyl groups, k is 0, m is 0, and n is 1); 2- [ 18 F] fluoromethyl-2-((4-hydroxymethyl-2-nitro-1H-imidazol-1-yl) methyl) -1,3-propanediol (group in which A is represented by (I) R 1 , R 3 , R 4 are hydroxymethyl groups, R 2 is hydrogen, k is 0, m is 0, and n is 1); 2- [ 18 F] fluoromethyl-2- (2- (2-nitro-1H-imidazol-1-yl) ethyl) -1,
  • nitroimidazole compounds having lower lipophilicity than 18 F-FMISO are preferred.
  • the octanol / water partition coefficient (log P) at 25 ° C. is 18 F-FMISO.
  • Those having a lower than log P of are preferred.
  • a nitroimidazole compound having a log P of ⁇ 0.4 or less is more preferable, and a range of ⁇ 2 to ⁇ 0.6 is more preferable.
  • R 1 is preferably hydrogen in the general formula (1).
  • R 2 is preferably hydrogen in (I) from the viewpoint of enhancing accumulation in renal lesions.
  • R 4 is preferably a hydroxymethyl group.
  • M is preferably 0.
  • N is preferably 1. More preferably, R 3 is a hydroxymethyl group and k is 0.
  • a nitroimidazole compound is disclosed in WO2013 / 042668; “Manufacture and quality control of a radiopharmaceutical for PET—synthesis and clinical use” (PET Chemistry Workshop) —4th edition (revised 2011) ); Nucl. Med, 2001, 42, pp. Anals of Nucleic Medicine, 2007, 21, pp. 1397-1404; 101-107, and can be synthesized based on other known information.
  • n is preferably 1 from the viewpoint of enhancing accumulation in a renal lesion.
  • p is 2
  • q is preferably 0, and when p is 1, q is preferably 2.
  • nitroimidazole compounds are disclosed in, for example, British Journal of Cancer, 2004, 90, pp. 2232-2242; Applied Radiation and Isotopes, 2001, 54, pp. 73-80, or other known information.
  • n is preferably 1 from the viewpoint of enhancing accumulation in a renal lesion.
  • nitroimidazole compounds can be synthesized based on WO 2008/124651 and other known information.
  • n is preferably 0 from the viewpoint of enhancing accumulation in a renal lesion.
  • nitroimidazole compounds are disclosed in “Manufacturing and Quality Control of Radiopharmaceuticals for PET: Synthesis and Clinical Use” (PET Chemistry Workshop)-4th edition (2011 revised edition) and others It is possible to synthesize based on the information.
  • the renal imaging agent according to the present invention can be defined as a formulation containing a nitroimidazole compound represented by the above general formula (1) or a salt thereof in a form suitable for administration into a living body.
  • the renal imaging agent according to the present invention is preferably in a form administered parenterally, that is, by injection, and more preferably an aqueous solution.
  • Such compositions may optionally contain additional components such as pH adjusters, pharmaceutically acceptable solubilizers, stabilizers or antioxidants.
  • the nitroimidazole compound represented by the above general formula (1) accumulates in the hypoxic kidney tissue. Therefore, radiation can be detected non-invasively from outside the organism using positron emission tomography (PET), and the extent and extent of renal lesions can be imaged. Therefore, according to the renal imaging agent of the present invention, for various kidney diseases, renal function information that could not be obtained by conventional examination methods is provided, and early detection, early treatment, prognosis prediction, and therapeutic effects of kidney disease Judgment becomes feasible.
  • the renal imaging agent of the present invention can provide information on renal function and ischemia, it can be used in a complementary manner with renal biopsy to more accurately determine the pathological condition of CKD and predict the prognosis. .
  • renal function disorder when pharmacotherapy such as an anticancer agent is used, renal function disorder can be discovered earlier than changes in blood and urine by monitoring renal function using the renal imaging agent according to the present invention. Therefore, irreversible drug-induced renal injury can be avoided by stopping or changing the administration of the drug.
  • 18 F-HIC101 2- [ 18 F] fluoromethyl-2-((2-nitro-1H-imidazol-1-yl) methyl) -1,3-propanediol (Compound 1 of Examples in WO2013 / 042668)
  • 18 F-FMISO 1- [18 F] fluoro-3- (2-nitro -1H- imidazol-1-yl) -2-propanol (18 F- fluoro miso NIDA tetrazole)
  • Example 1 Production of CKD model animal [1] Lewis rat (male, 8 weeks old, source: Nippon SLC Co., Ltd.) was administered to the tail vein of adriamycin (manufactured by Wako Pure Chemical Industries, Ltd.) 7.5 mg / kg) and 2 cases died In 11 cases excluding urine, urinary protein was measured on the 13th day after administration according to the Bradford method. Among these, 4 cases with high urinary protein values were selected as CKD model animals and used in Examples described later on the 14th day after administration of adriamycin. The state of four examples is shown in Table 1. As a healthy model, four cases prepared by administering an equal amount of physiological saline instead of adriamycin were used.
  • the amount of FABP-4 in each model urine was measured using an ELISA kit (manufactured by R & D Systems) that quantifies L-FABP present in mouse and rat samples by the sandwich method.
  • urinary creatinine was measured using a kit (Cayman Chemical Co.) using a Jaffe reaction.
  • Table 1 shows the average value ⁇ standard deviation of each of the four cases.
  • Table 1 shows the average value ⁇ standard deviation of each of the four cases.
  • Example 2 PET imaging [1] 18 F-HIC101 (radiochemical purity 84.2%) was produced in Example 1 by 4 CKD models, 18.6 ⁇ 0.9 MBq / animal, 4 healthy models, 17.0 ⁇ 2.7 MBq. / Static imaging was carried out using an animal PET apparatus (eXplore Vista, manufactured by GE) from 80 minutes after administration. Collection conditions were 10 minutes with an energy window of 250-700 keV. The collected data was reconstructed and imaged by the 3D-OSEM method. From the images, the average of the maximum SUV (standardized uptake value) value of the kidney in each slice (the region of interest (ROI) was set excluding the renal pelvis) and the average value of the SUV of the normal tissue were measured. Based on these values, the normal tissue ratio and normal kidney ratio were used for evaluation. In addition, student's t-test was used for the statistical analysis of the measurement result. The results are shown in FIG.
  • FIG. 1 is an MIP image obtained by performing image processing by the maximum value projection method.
  • FIG. 1A is a CKD model
  • FIG. 1B is a healthy model.
  • the black arrow indicates the intestine
  • the white arrow indicates the renal pelvis.
  • the maximum SUV value of kidney tissue (excluding renal pelvis) in the CKD model is significantly higher than that in the healthy model (p ⁇ 0.001 for both left and right), and may be significantly higher in the normal tissue ratio. Recognized (both left and right p ⁇ 0.001).
  • the maximum SUV value of kidney tissue is 10.
  • Example 3 Biodistribution experiment [1] After the PET imaging of Example 2 was completed, the sample was placed under anesthesia until 100 minutes after administration, and exsanguinated. Next, the right and left kidneys, blood, brain, lungs, heart, liver, spleen, stomach, small intestine, large intestine, adrenal gland, muscle, bone, fat around the kidneys, urine, and whole body were collected, and the weight and radioactivity were measured. . The student's t-test was used for statistical analysis of the results. The results are shown in FIG.
  • the left bar is a healthy model group
  • the right bar is a CKD model group.
  • the CKD model group had significantly higher accumulation in the left and right kidneys.
  • accumulation was significantly higher in the CKD model group.
  • Example 4 Localization Evaluation of Intrarenal Accumulation
  • the renal tissue obtained in Example 3 was divided into two equal parts after measuring the radioactivity, and one of the O.D. C. T. T. et al.
  • the sample was embedded in a compound (Sakura Finetech) and a fresh frozen section (thickness 10 ⁇ m) was prepared using a cryostat (format: CM3050, manufactured by Leica), and autoradiography was performed using this. .
  • the kidney tissue sections were exposed with an imaging plate for 8 to 10 hours, and then imaged using a bioimaging analyzer (type: BAS-2500, manufactured by Fuji Film). Thereafter, immunohistochemistry (LSAB method) was performed using the same section after radioactive decay.
  • LSAB method immunohistochemistry
  • anti-rat HIF-1 ⁇ mouse monoclonal antibody (source: manufactured by GeneTex, 100-fold diluted) was used as the primary antibody, and anti-mouse IgG antibody (source: DAKO) was used as the secondary antibody.
  • DAB 3,3′-diaminobenzidine
  • HRP-labeled streptavidin manufactured by DAKO
  • FIG. 3 Expression of HIF-1 ⁇ in renal tissue was confirmed in 2 CKD models (SUV maximum (left) 4.30, (right) 5.12) and 1 healthy model (SUV maximum 1.06). As a result, it was confirmed that HIF-1 ⁇ was highly expressed in the renal cortex of the CKD model. As a result of comparison with the localization of 18 F-HIC101 by autoradiography, the site indicated by the white arrow in FIG. 3 coincided with the HIF-1 ⁇ expression site. In FIG. 3, ARG is an abbreviation for autoradiography. In addition, a place where accumulation is found in an untreated autoradiographic image is a renal pelvis.
  • PET imaging 18 F-FMISO (radiochemical purity of 96% or more) was produced in Example 1 by 4 CKD models, 18.7 ⁇ 1.1 MBq / animal, 4 healthy models, 19.5 ⁇ 0.69 MBq / animal. The animals were administered, and static imaging was carried out 80 minutes after administration using an animal PET apparatus (eXplore Vista, manufactured by GE). In addition, after PET imaging for each case, it was placed under anesthesia again, and imaging was performed 180 minutes after administration. The collection conditions were an energy window of 250-700 keV for 10 minutes, and the collected data were reconstructed and imaged by the 3D-OSEM method.
  • FIG. 4 is an MIP image that has been subjected to image processing by the maximum value projection method that is imaged 180 minutes after administration.
  • FIG. 4A is a CKD model
  • FIG. 4B is a healthy model.
  • what is indicated by a white arrow is a renal pelvis.
  • Example 6 Biodistribution experiment [2] In Example 5, each group of 3 cases where PET imaging was completed 80 minutes after administration, and each group where PET imaging was not performed were placed under anesthesia until 100 minutes after administration and were exsanguinated. Next, the right and left kidneys, blood, brain, lungs, heart, liver, spleen, stomach, small intestine, large intestine, adrenal gland, muscle, bone, fat around the kidneys, urine, and whole body were collected, and the weight and radioactivity were measured. . The student's t-test was used for statistical analysis of the results. The results are shown in Table 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 本発明は、ニトロイミダゾール系化合物又はその塩を含有する、腎イメージング剤を提供するものである。本発明の腎イメージング剤は、陽電子放出断層撮影に用いることができる。

Description

腎イメージング剤
 本発明は、腎イメージング剤に関する。
 日本における腎疾患患者は年々増加傾向にあり、国民の健康に重大な影響を及ぼしている。中でも、慢性腎不全(chronic kidney disease:CKD)は、悪化すると重大な心血管疾患を引き起こしたり、人工透析が必要になったりする場合がある。このため、近年、CKDの重症化を予防するための様々な取り組みがなされている(例えば、非特許文献1)。
 CKD診療ガイドライン(非特許文献2)においてCKDは、(i)尿異常、画像診断、血液、病理で腎障害の存在が明らか、特に0.15g/gCr以上の蛋白尿(30mg/gCr以上のアルブミン尿)の存在が重要;(ii)GFR(糸球体濾過量)が60mL/分/1.73m未満、という症状について、(i)、(ii)のいずれか、または両方が3カ月以上持続すること、と定義されており、CKDの重症度は、GFRとACR(アルブミン/クレアチニン比)で分類されることが示されている。また、非特許文献2には、CKDの診断と治療方針の決定のため、検尿所見を参考に適応を見極めたうえで、腎生検の施行が推奨されること、CKDでは、形態的変化を示す疾患(尿路結石、尿路の閉塞性障害、嚢胞性腎疾患など)の診断には腹部超音波検査が、腎動脈狭窄の有無および程度の評価には超音波ドプラ法、MRアンジオグラフィ、CT血管造影検査が腎機能に応じて選択するよう推奨されると記載されている。
 CKDは、慢性的な尿細管間質障害による進行的な腎機能の損失に特徴づけられており、これは尿細管萎縮や間質性線維症を含むものである。このような変化は、腎における酸素化を減少させるものであり、これにより、様々なサイトカインシグナル伝達経路や細胞シグナルを介して、次々に、繊維化反応を開始し、促進する。繊維化と低酸素はCKDの進行を導く主要な要因とみなされるので、これらの要因を正確に評価し、非侵襲的に評価できれば、CKDの治療に有用と考えられる。非特許文献3では、こうした背景の下、fMRIを用いたBOLD(blood oxygenation level-dependent)-MRIにより、CKDの虚血病変の検出を検討したことが報告されている。
 薬剤性腎障害は、治療又は診断に使用される薬剤(抗菌薬、鎮痛薬、抗がん薬、造影剤)により引き起こされる腎障害である。薬剤性腎症の多くは可逆性であるが、不可逆的な腎機能障害を回避するためには的確な早期診断が必要とされており、血清クレアチニン、尿素窒素、一般検尿が薬剤性腎障害の必須定期検査として挙げられている。
 核医学検査法は、腎機能を検査する手法の一つとして知られている。この核医学検査には、腎動態を検査するレノグラフィーと、腎シンチグラフィーがあり、腎動態の検査に使用される放射性薬剤として、[131I]オルトヨウ化ヒプル酸(131I-OIH)、99mTc-MAG3(メルカプトアセチルトリグリシン)、99mTc-DTPA(ジエチレントリアミン五酢酸)、腎シンチグラフィーに使用される放射性薬剤として、99mTc-DMSA(ジメルカプトコハク酸)が知られている。これら核医学検査によれば、血液検査や尿検査とは異なり、左右の腎臓別々に機能を評価できるという利点がある。
今後の腎疾患対策のあり方について、腎疾患対策検討会(平成20年3月) エビデンスに基づくCKD診療ガイドライン2013 Journal of the American Society of Nephrology、2011、22(8)、pp.1429-34 Kidney International、2008、74、pp.867-872
 しかしながら、従来の腎疾患の検査法には、以下のような課題があった。
 非特許文献2に記載されるように、CKDの場合、ステージG3区分以降(遅くてもステージG4)に専門医を紹介することにより、腎機能低下速度が緩やかになり、透析導入すべき時期が遅延できたという後ろ向き研究の報告がある。この理由の一つとして、専門医による薬剤調整が考えられるが、確固たるエビデンスは得られていない。
 また、CKDの治療方針の決定や長期予後の予測には、腎生検が有用とされる一方、腎機能や虚血状態などは腎生検で把握することができない。
 従来の核医学診断法は、腎機能の測定値の信頼性が十分に検定されておらず、臨床検査としての実用性については課題が残る。
 非特許文献4に記載されるように、腎臓内の低酸素状態が腎障害を悪化させることは知られているが、腎臓内の低酸素状態を検出できる確立した技術は知られていない。
 薬剤性腎障害の場合、不可逆的に腎障害が発生しているものは、尿検査や血液検査で異常が検出されたときには手遅れであり、投薬の中止によっても腎機能障害が回復しないこともある。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、腎内環境に基づき病変部位を非侵襲的に描出できる新規な腎イメージング剤を提供することにある。
 本発明者は、放射性フッ素(18F)で標識した特定のニトロイミダゾール系化合物を用いることにより、核医学検査法を用いて腎病変を非侵襲的に描出できることを新たに知見した。ニトロイミダゾール系化合物は低酸素領域に特異的に集積する。このため、腎臓内低酸素状態の広がりを検出し、低酸素状態を定量的に評価することにより、腎の繊維化の程度を評価して、腎臓病の早期発見、早期治療、予後予測、治療効果判定が可能になることが期待される。
 すなわち、本発明によれば、下記一般式(1)で表されるニトロイミダゾール系化合物又はその塩を含有する、腎イメージング剤が提供される。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、Rは水素又はヒドロキシメチル基である。Aは、下記(I)~(IV)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000007
 (I)で表される基中、Rは水素又はヒドロキシ基であり、Rは水素又はヒドロキシメチル基であり、Rはヒドロキシ基又はヒドロキシメチル基であり、kは0又は1であり、mは0又は1であり、nは0、1又は2であり、Xは放射性フッ素である。
Figure JPOXMLDOC01-appb-C000008
 (II)で表される基中、nは0、1又は2であり、pは1又は2であり、qは0、1又は2であり、Xは放射性フッ素である。
Figure JPOXMLDOC01-appb-C000009
 (III)で表される基中、nは0、1又は2であり、Xは放射性フッ素である。
Figure JPOXMLDOC01-appb-C000010
 (IV)で表される基中、nは0、1又は2であり、Xは放射性フッ素である。
 本発明によれば、腎内環境に基づき病変部位を非侵襲的に描出できる腎イメージング剤を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
18F-HIC101のPETイメージング画像(MIP画像)である。(a)がCKDモデルの画像であり、(b)が健常モデルの画像である。 18F-HIC101投与後100分の体内分布の結果を示す図である。 腎組織内のHIF-1αの発現量と18F-HIC101の局在の比較を示す図である。 18F-FMISOのPETイメージング画像(MIP画像)である。(a)がCKDモデルの画像であり、(b)が健常モデルの画像である。
 本発明において、「放射性フッ素」とは、フッ素の放射性同位体であり、フッ素-18(18F)をいう。
 本発明において、「塩」とは、医薬として許容されるものであればよい。例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸などの無機酸、又は、酢酸、トリフルオロ酢酸、マレイン酸、コハク酸、マンデル酸、フマル酸、マロン酸、ピルビン酸、シュウ酸、グリコール酸、サリチル酸、ピラノシジル酸(グルクロン酸、ガラクツロン酸など)、α-ヒドロキシ酸(クエン酸、酒石酸など)、アミノ酸(アスパラギン酸、グルタミン酸など)、芳香族酸(安息香酸、ケイ皮酸など)、スルホン酸(p-トルエンスルホン酸、エタンスルホン酸など)などの有機酸から誘導される塩にすることができる。
 本発明において、「ニトロイミダゾール系化合物」とは、上記一般式(1)のものをいい、例えば、
 2-[18F]フルオロメチル-2-((2-ニトロ-1H-イミダゾール-1-イル)メチル]-1,3-プロパンジオール(18F-HIC101:Aが(I)で表される基であり、R、Rが水素であり、R、Rがヒドロキシメチル基であり、kが0であり、mが0であり、nが1である化合物);
 2-[18F]フルオロメチル-2-((4-ヒドロキシメチル-2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-プロパンジオール(Aが(I)で表される基であり、R、R、Rがヒドロキシメチル基であり、Rが水素であり、kが0であり、mが0であり、nが1である化合物);
 2-[18F]フルオロメチル-2-(2-(2-ニトロ-1H-イミダゾール-1-イル)エチル)-1,3-プロパンジオール(Aが(I)で表される基であり、R、Rが水素であり、R、Rがヒドロキシメチル基であり、kが0であり、mが0であり、nが2である化合物);
 1-[18F]フルオロ-3-(2-ニトロ-1H-イミダゾール-1-イル)-2-プロパノール(18F-FMISO:Aが(I)で表される基であり、R、R、Rが水素であり、Rがヒドロキシ基であり、kが0であり、mが0であり、nが1である化合物);
 1-[18F]フルオロ-4-(2-ニトロ-1H-イミダゾール-1-イル)-2,3-ブタンジオール(18F-FETNIM:Aが(I)で表される基であり、R、Rが水素であり、R、Rがヒドロキシ基であり、kが0であり、m、nが1である化合物);
 3-[18F]フルオロ-2-((2-ニトロ-1H-イミダゾール-1-イル)メトキシ)-1-プロパノール(18F-FRP-170:Aが(I)で表される基であり、R、R、Rが水素であり、Rがヒドロキシメチル基であり、kが1であり、mが0であり、nが1である化合物);
 N-(2-[18F]フルオロエチル)-2-ニトロ-1H-イミダゾール-1-アセタミド(18F-FETA:Aが(II)で表される基であり、Rが水素であり、nが1であり、pが2であり、qが0である化合物);
 2-ニトロ-N-(2,2,3,3,3-[18F]ペンタフルオロプロピル)-1H-イミダゾール-1-アセタミド(18F-EF5:Aが(II)で表される基であり、Rが水素であり、nが1であり、pが1であり、qが2である化合物);
 (3-[18F]フルオロ-2-(4-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1H-1,2,3-トリアゾール-1-イル)-1-プロパノール(18F-HX4:Aが(III)で表される基であり、Rが水素であり、nが1である化合物);又は、
 1-(5-デオキシ-5-[18F]フルオロ-α-D-アラビノフラノシル)-2-ニトロ-1H-イミダゾール(18F-FAZA:Aが(IV)で表される基であり、Rが水素であり、nが0である化合物)
が挙げられる。
 なお、(I)~(IV)中、*(アスタリスク)は結合部位を示す。
 腎病変への集積を高める観点からは、18F-FMISOよりも脂溶性の低いニトロイミダゾール系化合物が好ましく、具体的には、25℃におけるオクタノール/水分配係数(logP)が、18F-FMISOのlogPよりも低いものが好ましい。logPが、-0.4以下がより好ましく、-2~-0.6の範囲にあるニトロイミダゾール系化合物がさらに好ましい。ニトロイミダゾール系化合物の構造としては、一般式(1)中、Rは、水素が好ましい。
 一般式(1)中、Aが(I)のニトロイミダゾール系化合物においては、腎病変への集積を高める観点から、(I)中、Rは水素が好ましい。また、Rはヒドロキシメチル基が好ましい。また、mは0であることが好ましい。また、nは1であることが好ましい。より好ましくは、Rがヒドロキシメチル基であり、kが0である。このようなニトロイミダゾール系化合物は、WO2013/042668;「PET用放射性薬剤の製造および品質管理―合成と臨床使用へのてびき」(PET 化学ワークショップ編)―第4版(平成23年改定版);J.Nucl.Med、2001、42、pp.1397-1404;Annals of Nuclear Medicine、2007、21、pp.101-107、その他公知の情報に基づき合成することができる。
 一般式(1)中、Aが(II)のニトロイミダゾール系化合物においては、腎病変への集積を高める観点から、nは1であることが好ましい。また、pが2のときqが0であることが好ましく、pが1であるときqは2であることが好ましい。このようなニトロイミダゾール系化合物は、例えば、British Journal of Cancer、2004、90、pp.2232-2242;Applied Radiation and Isotopes、2001、54、pp.73-80、その他公知の情報に基づき合成することができる。
 一般式(1)中、Aが(III)のニトロイミダゾール系化合物においては、腎病変への集積を高める観点から、nは1であることが好ましい。このようなニトロイミダゾール系化合物は、WO2008/124651、その他公知の情報に基づき合成することができる。
 一般式(1)中、Aが(IV)のニトロイミダゾール系化合物においては、腎病変への集積を高める観点から、nは0であることが好ましい。このようなニトロイミダゾール系化合物は、「PET用放射性薬剤の製造および品質管理―合成と臨床使用へのてびき」(PET 化学ワークショップ編)―第4版(平成23年改定版)、その他公知の情報に基づき合成することができる。
 本発明に係る腎イメージング剤は、上記一般式(1)で表されるニトロイミダゾール系化合物又はその塩を生体内への投与に適した形態で含む処方物であると定義することができる。本発明に係る腎イメージング剤は、非経口的に、即ち注射によって投与される形態であることが好ましく、水溶液であることがより好ましい。かかる組成物は適宜、pH調節剤、製薬学的に許容される可溶化剤、安定剤又は酸化防止剤などの追加成分を含んでいてもよい。
 本発明に係る腎イメージング剤は、生物体内に導入すると、上記一般式(1)で表されるニトロイミダゾール系化合物が低酸素状態の腎臓組織に集積する。そのため、陽電子放出断層撮影法(PET)を用いて生物体外から非侵襲的に放射線を検出し、腎病変の広がり・程度を画像化することができる。したがって、本発明の腎イメージング剤によれば、様々な腎臓病に対し、従来の検査法において得られなかった腎機能情報を提供して、腎臓病の早期発見、早期治療、予後予測、治療効果判定が実現可能になる。
 例えば、CKDにおいては、本発明に係る腎イメージング剤を用いて腎皮質における放射能集積を定量化することにより、繊維化の進行度を適切に把握し、薬剤治療の最適化することで、透析の時期を遅らせることが可能になる。また、本発明の腎イメージング剤により、腎機能や虚血状態に関する情報が得られるため、腎生検と相補的に使用することで、より正確なCKDの病態の把握や予後予測が可能になる。
 また、抗癌剤等の薬物治療の際、本発明に係る腎イメージング剤を用いて腎機能のモニタリングすることにより、血液や尿の変化よりも早期に腎機能障害を発見することができる。このため、薬物の投与中止・変更をすることにより、不可逆的な薬剤性腎障害を回避することが可能になる。
 以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。
 本実施例で使用する化合物は、以下のとおり定義され、いずれもWO2013/042668記載の方法で合成された。
18F-HIC101:2-[18F]フルオロメチル-2-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-プロパンジオール(WO2013/042668実施例の化合物1)
18F-FMISO:1-[18F]フルオロ-3-(2-ニトロ-1H-イミダゾール-1-イル)-2-プロパノール(18F-フルオロミソニダゾール)
(実施例1)CKDモデル動物の作製[1]
 Lewis rat(雄性、8週齢、入手先:日本エスエルシー株式会社)13例に対してアドリアマイシン(和光純薬工業(株)製)7.5mg/kg)を尾静脈投与し、死亡した2例を除く11例について、投与後13日に、ブラッドフォード法に従って尿タンパクを測定した。このうち、尿タンパクの値の高いもの4例をCKDモデル動物として選出し、アドリアマイシン投与後14日に後述する実施例で使用した。4例の状態を表1に示す。
 健常モデルとしては、アドリアマイシンに変えて、等量の生理食塩液を投与して作製した4例を用いた。
 なお、マウスやラット試料中に存在するL-FABPをサンドイッチ法により定量するELISAキット(R&D Systems社製)を用いて、各モデルの尿中のFABP-4の量を測定した。また、生体活動による尿中成分の濃縮及び希釈の影響を補正するため、ヤッフェ反応を利用したキット(Cayman Chemical社製)を用いて尿中クレアチニンの測定を実施した。
Figure JPOXMLDOC01-appb-T000011
 表1には、各4例の平均値±標準偏差を示す。CKDモデル群において、18F-FMISO投与群及び18F-HIC101投与群間での尿タンパク及びL-FABPの値に有意な差は認められなかった。
(実施例2)PETイメージング[1]
 18F-HIC101(放射化学的純度84.2%)を実施例1で作製したCKDモデル4匹に、18.6±0.9MBq/匹、健常モデル4匹に、17.0±2.7MBq/匹投与し、投与80分後より、動物用PET装置(eXplore Vista、GE社製)を用い、static撮像を実施した。収集条件は、250-700keVのエネルギーウィンドウで10分間とした。収集データは、3D-OSEM法により再構成して画像化した。画像より各スライスにおける腎臓のSUV(standardized uptake value)最高値の平均(腎盂を除いて関心領域(ROI)を設定)、正常組織のSUV平均値を測定した。これらの値より、評価は正常組織比、正常腎比を用いた。なお、測定結果の統計解析はstudent's t-testを使用した。結果を図1、表2に示す。
Figure JPOXMLDOC01-appb-T000012
 図1は、最大値投影法で画像処理を行ったMIP画像である。図1(a)がCKDモデルであり、図1(b)が健常モデルである。図1中、黒い矢印で示すものが腸管であり、白い矢印で示すものが腎盂である。画像解析により、CKDモデルにおける腎組織(腎盂を除く)のSUV最大値は健常モデルと比較して有意に高く(左右いずれもp<0.001)また、正常組織比においても有意に高いことが認められた(左右いずれもp<0.001)。図1の例は、腎組織のSUV最大値が10である。なお、正常組織のSUV平均値でもCKDモデルにおいて有意に高いことが認められた(p=0.045)。
(実施例3)体内分布実験[1]
 実施例2のPET撮像終了後、投与100分後まで麻酔下に置き、放血死させた。次いで、左右腎臓、血液、脳、肺、心臓、肝臓、脾臓、胃、小腸、大腸、副腎、筋肉、骨、腎臓の周りの脂肪、尿、残全身を採取し、重量及び放射能量を測定した。なお、結果の統計解析はstudent's t-testを使用した。結果を図2、表3に示す。
Figure JPOXMLDOC01-appb-T000013
 図2中、各臓器において左のバーが健常モデル群であり、右のバーがCKDモデル群である。健常モデル群と比較してCKDモデル群では左右の腎臓において有意に集積が高かった。また、主要組織である血液、心臓、肺、肝臓、筋肉ではCKDモデル群で有意に集積が高かった。なお、小腸、大腸、尿では有意差は認められなかったが、これは胆汁排泄速度と尿排泄に個体差があったためと考えられる。
(実施例4)腎臓内集積の局在評価
 実施例3で得られた腎組織を放射能量測定後に二等分し、片方をO.C.T.コンパウンド(サクラファインテック社製)に包埋し、クリオスタット(形式:CM3050、Leica社製)を用いて、新鮮凍結切片(厚さ10μm)を作製し、これを用いてオートラジオグラフィーを実施した。当該腎組織切片をイメージングプレートで8~10時間露光させた後、バイオイメージングアナライザー(形式:BAS-2500、富士フィルム社製)を用いて画像化した。
 その後、放射能減衰後の同切片を用いて免疫組織化学(LSAB法)を実施した。腎組織切片の固定と賦活化処理後、1次抗体に抗ラットHIF-1αマウスモノクローナル抗体(入手先:GeneTex社製)100倍希釈)を、2次抗体に抗マウスIgG抗体(入手先:DAKO社製)をそれぞれ使用して腎組織切片と反応させ、2次抗体に反応するHRP標識ストレプトアビジン(DAKO社製)を用い、HRP活性をDAB(3,3'-ジアミノベンジジン)を基質とした呈色反応で検出することで、腎組織切片のHIF-1αの発現部位を同定した。近接切片として連続で薄切した1枚をネガティブコントロールとして用い、1次抗体だけを反応させない手順で上記同様の実験を行い、1次抗体以外の成分による腎組織切片への非特異的な反応が認められないことを確認した。顕微鏡システム(形式:BZ-9000、キーエンス社製)を用い、免疫組織化学染色により得られた標本画像の全体画像を取得した。画像は、DAB陽性部位をImageJにより抜き出し、疑似カラー化する画像処理を行った。
 結果を図3に示す。CKDモデル2例(SUV最大値(左)4.30、(右)5.12)、健常モデル1例(SUV最大値1.06)の腎組織内HIF-1αの発現を確認した。その結果、肉眼的にCKDモデルの腎皮質部においてHIF-1αが高発現していることが認められた。オートラジオグラフィーによる18F-HIC101の局在と比較した結果、図3中、白矢印で示す部位がHIF-1αの発現部位と一致していた。なお、図3中、ARGはオートラジオグラフィーの略である。また、未処置のオートラジオグラフィー画像で集積がある箇所は腎盂である。
(実施例5)PETイメージング[2]
 18F-FMISO(放射化学的純度96%以上)を実施例1で作製したCKDモデル4匹に、18.7±1.1MBq/匹、健常モデル4匹に、19.5±0.69MBq/匹投与し、投与80分後より、動物用PET装置(eXplore Vista、GE社製)を用い、static撮像を実施した。また、各群1例ずつPET撮像後再度麻酔下に置き、投与180分後に撮像を実施した。収集条件は、250-700keVのエネルギーウィンドウで10分間とし、収集データは、3D-OSEM法により再構成して画像化した。画像より各スライスにおける腎臓のSUV最高値の平均(腎盂を除いて関心領域(ROI)を設定)、正常組織のSUV平均値を測定した。これらの値より、評価は正常組織比、正常腎比を用いた。なお、測定結果の統計解析はstudent's t-testを使用した。結果を図4、表4に示す。
Figure JPOXMLDOC01-appb-T000014
 投与80分後のPET画像を解析した結果、CKDモデルにおける腎組織(腎盂を除く)のSUV最大値は健常モデルと比較して有意に高いが(左右いずれもp<0.05)、腎正常組織比では左腎臓で有意な差が認められなかった(右:p<0.01,左:p=0.08)。
 投与180分後のPET画像を投与80分後のPET画像と比較すると、腎皮質部への集積が腎盂より高くなる傾向が認められた。CKDモデルと健常モデルでバックグランドに差がなく、また、投与80分後と同様であることが肉眼的に確認された。ROI解析の結果、投与80分後よりもSUV最大値が増加し、それに伴い腎正常組織比も増加する傾向が認められた。
 図4は、投与180分後に撮像した最大値投影法で画像処理を行ったMIP画像である。図4(a)がCKDモデルであり、図4(b)が健常モデルである。図4中、白い矢印で示すものが腎盂である。
(実施例6)体内分布実験[2]
 実施例5において投与80分後にPET撮像終了した各群3例、及び、PET撮像を実施していない各群1例につき、投与100分後まで麻酔下に置き、放血死させた。次いで、左右腎臓、血液、脳、肺、心臓、肝臓、脾臓、胃、小腸、大腸、副腎、筋肉、骨、腎臓の周りの脂肪、尿、残全身を採取し、重量及び放射能量を測定した。なお、結果の統計解析はstudent's t-testを使用した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000015
 以上の結果から、18F-HIC101及び18F-FMISOは、いずれも、CKDモデルにおいて、健常モデルに対して優位に腎盂を除く腎組織に取り込まれることが確認された。また、CKDモデルにおける取り込みを比較した結果、18F-HIC101は、18F-FMISOに比べて高い取り込みが確認された。これらの結果から、イミダゾール系化合物、特に18F-HIC101は、腎イメージング剤として有用であることが示された。
 この出願は、2014年9月25日に出願された日本出願特願2014-195802号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (4)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは、水素又はヒドロキシメチル基であり、Aは、下記(I)~(IV):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素又はヒドロキシ基であり、Rは水素又はヒドロキシメチル基であり、Rはヒドロキシ基又はヒドロキシメチル基であり、kは0又は1であり、mは0又は1であり、nは0、1又は2であり、Xは放射性フッ素である)
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは0、1又は2であり、pは1又は2であり、qは0、1又は2であり、Xは放射性フッ素である)
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは0、1又は2であり、Xは放射性フッ素である)
    Figure JPOXMLDOC01-appb-C000005
    のいずれかの基である〕
    で表されるニトロイミダゾール系化合物又はその塩を含有する、腎イメージング剤。
  2.  前記ニトロイミダゾール系化合物が、
     2-[18F]フルオロメチル-2-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-プロパンジオール;
     2-[18F]フルオロメチル-2-((4-ヒドロキシメチル-2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-プロパンジオール;
     2-[18F]フルオロメチル-2-(2-(2-ニトロ-1H-イミダゾール-1-イル)エチル)-1,3-プロパンジオール;
     1-[18F]フルオロ-3-(2-ニトロ-1H-イミダゾール-1-イル)-2-プロパノール;
     1-[18F]フルオロ-4-(2-ニトロ-1H-イミダゾール-1-イル)-2,3-ブタンジオール;
     3-[18F]フルオロ-2-((2-ニトロ-1H-イミダゾール-1-イル)メトキシ)-1-プロパノール;
     N-(2-[18F]フルオロエチル)-2-ニトロ-1H-イミダゾール-1-アセタミド;
     2-ニトロ-N-(2,2,3,3,3-[18F]ペンタフルオロプロピル)-1H-イミダゾール-1-アセタミド;
     (3-[18F]フルオロ-2-(4-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1H-1,2,3-トリアゾール-1-イル)-1-プロパノール;又は、
     1-(5-デオキシ-5-[18F]フルオロ-α-D-アラビノフラノシル)-2-ニトロ-1H-イミダゾール
    である、請求項1に記載の腎イメージング剤。
  3.  前記ニトロイミダゾール系化合物は、25℃において、1-[18F]フルオロ-3-(2-ニトロ-1H-イミダゾール-1-イル)-2-プロパノールのlogPよりも低いlogPを有する化合物である、請求項1に記載の腎イメージング剤。
  4.  陽電子放出断層撮影に用いられる、請求項1乃至3いずれか一項に記載の腎イメージング剤。
PCT/JP2015/075295 2014-09-25 2015-09-07 腎イメージング剤 WO2016047424A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15843318.5A EP3199183A4 (en) 2014-09-25 2015-09-07 Renal imaging agent
KR1020177003360A KR20170058360A (ko) 2014-09-25 2015-09-07 신장 이미징제
CN201580049336.XA CN106687145A (zh) 2014-09-25 2015-09-07 肾显像剂
JP2016550088A JP6321191B2 (ja) 2014-09-25 2015-09-07 腎イメージング剤
CA2959776A CA2959776A1 (en) 2014-09-25 2015-09-07 Renal imaging agent
US15/508,325 US20170281803A1 (en) 2014-09-25 2015-09-07 Renal imaging agent
AU2015322871A AU2015322871A1 (en) 2014-09-25 2015-09-07 Renal imaging agent
US15/915,774 US20180193493A1 (en) 2014-09-25 2018-03-08 Renal imaging agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-195802 2014-09-25
JP2014195802 2014-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/508,325 A-371-Of-International US20170281803A1 (en) 2014-09-25 2015-09-07 Renal imaging agent
US15/915,774 Division US20180193493A1 (en) 2014-09-25 2018-03-08 Renal imaging agent

Publications (1)

Publication Number Publication Date
WO2016047424A1 true WO2016047424A1 (ja) 2016-03-31

Family

ID=55580952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075295 WO2016047424A1 (ja) 2014-09-25 2015-09-07 腎イメージング剤

Country Status (8)

Country Link
US (2) US20170281803A1 (ja)
EP (1) EP3199183A4 (ja)
JP (1) JP6321191B2 (ja)
KR (1) KR20170058360A (ja)
CN (1) CN106687145A (ja)
AU (1) AU2015322871A1 (ja)
CA (1) CA2959776A1 (ja)
WO (1) WO2016047424A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501055A (ja) * 1999-07-21 2004-01-15 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア 低酸素の検出のために有用な化合物の製造
JP2010523596A (ja) * 2007-04-05 2010-07-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド ニトロ−イミダゾール低酸素造影剤
WO2013042668A1 (ja) * 2011-09-22 2013-03-28 日本メジフィジックス株式会社 放射性フッ素標識化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2237447T3 (es) * 1999-09-13 2005-08-01 Pola Chemical Industries, Inc. Derivado de nitroimidazol y agente de diagnostico formador de imagenes que lo contiene.
JP2014232738A (ja) * 2011-09-22 2014-12-11 シャープ株式会社 太陽電池モジュールおよび太陽光発電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501055A (ja) * 1999-07-21 2004-01-15 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア 低酸素の検出のために有用な化合物の製造
JP2010523596A (ja) * 2007-04-05 2010-07-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド ニトロ−イミダゾール低酸素造影剤
WO2013042668A1 (ja) * 2011-09-22 2013-03-28 日本メジフィジックス株式会社 放射性フッ素標識化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AIRI JO ET AL.: "Hypoxia imaging and its clinical application", THE CELL, vol. 42, no. 6, 2010, pages 261 - 264, XP009501226 *
EMAMI, SAEED ET AL.: "Synthesis, transport and hypoxia-selective binding of 1-beta-D-(5-deoxy-5- fluororibofuranosyl)-2-nitroimidazole(beta-5-FAZR), a configurational isomer of the clinical hypoxia marker", FAZA, JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES, vol. 10, no. 2, 2007, pages 237 - 245, XP009501162 *
KANETA T. ET AL.: "Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia", ANNALS OF NUCLEAR MEDICINE, vol. 21, no. 2, 2007, pages 101 - 107, XP055419636 *
See also references of EP3199183A4 *

Also Published As

Publication number Publication date
CA2959776A1 (en) 2016-03-31
JPWO2016047424A1 (ja) 2017-08-03
US20170281803A1 (en) 2017-10-05
EP3199183A4 (en) 2018-02-21
AU2015322871A1 (en) 2017-03-23
EP3199183A1 (en) 2017-08-02
KR20170058360A (ko) 2017-05-26
CN106687145A (zh) 2017-05-17
US20180193493A1 (en) 2018-07-12
JP6321191B2 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
Dorbala et al. Imaging cardiac amyloidosis: a pilot study using 18 F-florbetapir positron emission tomography
Nanni et al. 18F-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone
CA3064277A1 (en) Cd206+ macrophage-specific molecular imaging probe compositions and methods and the noninvasive quantification of arterial wall macrophage infiltration in humans
Finch et al. Glomerular filtration rate estimation by use of a correction formula for slope-intercept plasma iohexol clearance in cats
EP2627361B1 (en) Imaging of meningiomas using phenylbenzothiazole, stilbene, or biphenylalkyne derivatives
Hiroyama et al. Usefulness of 18F-FPP-RGD2 PET in pathophysiological evaluation of lung fibrosis using a bleomycin-induced rat model
JP2010540512A (ja) 異なるタイプの認知症を特異的に診断する方法
JP6321191B2 (ja) 腎イメージング剤
Ibhagui et al. Early detection and staging of lung fibrosis enabled by collagen-targeted MRI protein contrast agent
US20060233705A1 (en) Diagnosis by determination of hyperactivity or increased expression of members of cell signaling pathways
Muros et al. Two-phase scintigraphy with technetium 99m–sestamibi in patients with hyperparathyroidism due to chronic renal failure
Chan et al. Prevalence and significance of extracardiac uptake on pyrophosphate imaging in the SCAN-MP study: the first 379 cases
US20220040335A1 (en) Radiolabeled paba and derivatives thereof for use as functional renal imaging agents
JP2004067659A (ja) タウ蛋白蓄積性疾患の診断プローブとしてのベンゾイミダゾール環含有化合物
KR20200004120A (ko) 핵의학 영상 신장기능 평가 기술을 이용한 항암제의 신장 독성 평가법
Lim et al. Assessment of Individual Renal Function Using 99mTc-MAG3 Renography
US20230201382A1 (en) Radioligands for myelin
US11801315B2 (en) Radioligands for myelin
Nicholls et al. The role of in vivo imaging in the study of transporter interactions in animals and humans
Carlson Development, Evaluation, and Translation of Novel Neuroimaging Probes and Techniques to Investigate Neurodegenerative Diseases
Egi et al. Single center analysis of cardiac amyloidosis using 99mTc-HMDP imaging for diagnosis and evaluation after tafamidis treatment
WO2023239953A2 (en) Imaging of matrix metalloproteinase inhibitors
Chen et al. In Vivo SPECT Imaging of Amyloid-β Deposition with Radioiodinated Imidazo [1, 2-α] pyridine Derivative DRM106 in Mouse Model of Alzheimer's Disease
Lacy Imaging of PARP1/2-Overexpressing Cancers with Novel AZD2281-Derived Probes
Downs et al. Pre-clinical Anatomical, Molecular, and Functional Imaging of the Lung with Multiple Modalities 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550088

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003360

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2959776

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15508325

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015843318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015322871

Country of ref document: AU

Date of ref document: 20150907

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE