WO2016047121A1 - Heat storage material, catalytic unit, and heat storage system - Google Patents

Heat storage material, catalytic unit, and heat storage system Download PDF

Info

Publication number
WO2016047121A1
WO2016047121A1 PCT/JP2015/004762 JP2015004762W WO2016047121A1 WO 2016047121 A1 WO2016047121 A1 WO 2016047121A1 JP 2015004762 W JP2015004762 W JP 2015004762W WO 2016047121 A1 WO2016047121 A1 WO 2016047121A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage material
heat
strongly correlated
correlated electron
Prior art date
Application number
PCT/JP2015/004762
Other languages
French (fr)
Japanese (ja)
Inventor
伸矢 笠松
卓哉 布施
欣 河野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014196739A external-priority patent/JP2016069393A/en
Priority claimed from JP2014196738A external-priority patent/JP2016069392A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016047121A1 publication Critical patent/WO2016047121A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a heat storage material, a catalyst unit, and a heat storage system.
  • Patent Document 1 a heat storage material made of a substance that undergoes an electronic phase transition is known (see Patent Document 1).
  • This heat storage material uses the enthalpy change accompanying the electronic phase transition for heat storage.
  • the heat storage material described in Patent Document 1 sometimes has an insufficient amount of heat to be stored. Further, the heat storage material described in Patent Document 1 sometimes has low heat exchange efficiency when heat exchange is performed with the heat transport medium.
  • This disclosure is intended to provide a heat storage material, a catalyst unit, and a heat storage system with a large amount of heat storage.
  • This disclosure has another object to provide a heat storage material, a catalyst unit, and a heat storage system with high heat exchange efficiency.
  • the heat storage material includes a strongly correlated electron material and a porous material. According to this, the heat storage material can increase the heat storage amount.
  • the heat storage material includes a strongly correlated electron material and has a porous shape. According to this, since the heat storage material has a porous shape, the contact area with the heat transport medium can be increased, and the heat exchange efficiency can be increased.
  • Thermal storage material 1-1 Strongly correlated electron material
  • the heat storage material of the present disclosure includes a strongly correlated electron material.
  • a strongly correlated electron material is a system in which at least one of the degrees of freedom of spin, orbital, and charge possessed by an electron is manifested by strong Coulomb repulsion between electrons. The manifested degrees of freedom of spin, orbital, and charge show large entropy changes accompanying the change in the number of states due to the order-disorder phase transition, respectively. Called the phase transition).
  • Examples of strongly correlated electron materials include those that undergo a metal-insulator phase transition.
  • Examples of strongly correlated electron materials include transition metal oxides.
  • strongly correlated electron materials include, for example, V (1-X) W X O 2 (0 ⁇ X ⁇ 0.0650), V (1-X) Ta X O 2 (0 ⁇ X ⁇ 0. 117), V (1-X) Nb X O 2 (0 ⁇ X ⁇ 0.115), V (1-X) Ru X O 2 (0 ⁇ X ⁇ 0.150), V (1-X) Mo X O 2 (0 ⁇ X ⁇ 0.161), V (1-X) Re X O 2 (0 ⁇ X ⁇ 0.0964), LiMn 2 O 4 , LiVS 2 , LiVO 2 , NaNiO 2 , LiRh 2 O 4 , V 2 O 3 , V 4 O 7 , V 6 O 11 , Ti 4 O 7 , SmBaFe 2 O 5 , EuBaFe 2 O 5 , GdBaFe 2 O 5 , TbBaFe 2 O 5 , DyBaFe 2 O 5 , HoBaFe 2
  • Porous material The heat storage material of this indication contains a porous material.
  • the porous material may be any of a microporous material, a mesoporous material, and a macroporous material. Examples of the porous material include zeolite, activated carbon, SiO 2 porous material (for example, diatomaceous earth) and the like.
  • the specific surface area of the porous material may be 1 m 2 / g or more. By being in this range, the effect of adsorbing vapor molecules to the porous material and storing latent heat of vaporization becomes more remarkable.
  • the specific surface area is a value measured by the BET method.
  • the pore diameter in the porous material may be 0.1 nm or more. By being in this range, the effect of adsorbing vapor molecules to the porous material and storing latent heat of vaporization becomes more remarkable.
  • the pore diameter can be calculated from the pore diameter measured in the SEM photograph or TEM photograph obtained by photographing the porous material.
  • Form of heat storage material examples of the form of the strongly correlated electron material and the porous material in the heat storage material of the present disclosure include, for example, form A shown in FIG. 1, form B shown in FIG. 2, and FIG. There is Form C.
  • the islands 3 including the porous material are dispersed in the sea 1 including the strongly correlated electron material, and the islands 3 are unevenly distributed on the surface 7 side of the heat storage material 5.
  • the sea 1 containing a strongly correlated electron material may be made of a strongly correlated electron material, or may contain other materials.
  • the island 3 containing a porous material may consist of a porous material, and may further contain another material.
  • the surface 7 where the islands are unevenly distributed may be a surface on the side where the heat storage material 5 receives heat from a heat transport medium or the like.
  • the surface 7 on which the islands 3 are unevenly distributed may be one surface of the heat storage material 5 or a plurality of surfaces (for example, one surface of the heat storage material 5 and the opposite surface thereof). May be.
  • the islands 11 including the strongly correlated electron material are dispersed in the sea 9 including the porous material.
  • the sea 9 containing a porous material may be made of a porous material or may contain other materials.
  • the island 11 including a strongly correlated electron material may be made of a strongly correlated electron material, or may further include other materials.
  • islands 15 containing a porous material are dispersed in the sea 13 containing a strongly correlated electron material.
  • the sea 13 containing a strongly correlated electron material may be made of a strongly correlated electron material, or may contain other materials.
  • the island 15 containing a porous material may be made of a porous material, and may further contain other materials.
  • composition ratio of heat storage material The weight ratio of the strongly correlated electron material in the heat storage material of the present disclosure may be 20 wt% or more. By being in this range, the amount of stored heat can be further increased. Further, the weight ratio of the porous material in the heat storage material of the present disclosure may be 90 wt% or less. By being in this range, the adsorption performance is further improved.
  • the heat storage material of the present disclosure may be composed of a strongly correlated electron material and a porous material, and may further include other materials.
  • the heat storage material of the present disclosure can adsorb vapor molecules to the porous material. At this time, latent heat of evaporation is generated, and the heat storage material of the present disclosure can also store the latent heat of evaporation. Therefore, the heat storage material of the present disclosure can store more heat when storing heat in an environment containing steam.
  • the heat storage material of the present disclosure can desorb vapor molecules adsorbed on the porous material from the porous material. At this time, latent heat of vaporization is taken from the heat storage material, and the heat storage material is cooled.
  • Catalyst unit 2-1 Catalyst carrier
  • the catalyst unit of this indication has a catalyst carrier containing the heat storage material mentioned above.
  • the catalyst carrier may be made of a heat storage material, and may further contain other materials.
  • the shape of the catalyst carrier can be, for example, a honeycomb-shaped catalyst carrier 17 shown in FIG.
  • the catalyst unit of the present disclosure includes a catalyst supported on the catalyst carrier described above.
  • the type of the catalyst is not particularly limited, and can be appropriately selected from known catalysts (for example, Pt, Pd, Rh, etc.).
  • the catalyst can be supported on the surface of the catalyst carrier by a method such as a wash coat method.
  • the catalyst unit of the present disclosure has a catalyst carrier including a heat storage material, a temperature change is mitigated. Therefore, the catalytic reaction can be performed stably.
  • the heat storage material includes a porous material, latent heat of vaporization can be stored as described above. Therefore, the temperature of the catalyst carrier including the heat storage material and the catalyst supported thereon are further increased, and as a result, the catalytic reaction in the catalyst unit is further promoted.
  • the catalyst unit of the present disclosure can be used for various purposes, for example, for use in purifying exhaust gas of an internal combustion engine (eg, gasoline engine, diesel engine, etc.).
  • an internal combustion engine eg, gasoline engine, diesel engine, etc.
  • CO, CH, NOx, etc. in the exhaust gas can be purified by the catalyst supported on the catalyst carrier 17.
  • sucks to the pore in the porous material contained in a thermal storage material.
  • the temperature of the catalyst carrier and the catalyst supported thereon is further increased, and the catalytic reaction for purifying the exhaust gas is further promoted.
  • Thermal storage system 3-1 Flow path of heat transport medium
  • the heat storage system of the present disclosure includes a flow path of a heat transport medium.
  • Examples of the flow path include hollow pipes.
  • Examples of the heat transport medium include exhaust gas discharged from the energy converter, or a cooling medium used for cooling the energy converter.
  • Examples of the energy converter include an internal combustion engine and a fuel cell.
  • the cooling medium may be a liquid (for example, water, alcohol, oil, organic solvent, etc.) or a gas (for example, air, nitrogen gas, rare gas, etc.).
  • Thermal storage material The thermal storage system of this indication is provided with the thermal storage material which performs heat exchange with the heat transport medium which flows through a channel.
  • the heat storage material is as described above.
  • the heat storage material can be brought into contact with at least a part of the outer peripheral surface of the flow path, for example. Further, the heat storage material may exchange heat with the heat transport medium via another member (for example, a member having a higher thermal conductivity than the heat storage material).
  • the heat exchange may store heat of the heat transport medium in the heat storage material, or may release heat stored in the heat storage material to the heat transport medium.
  • the heat storage system of this indication is provided with the steam supply unit which supplies steam to heat storage material.
  • the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material.
  • the heat storage system of this indication can discharge
  • the heat storage material provided in the heat storage system of the present disclosure includes a strongly correlated electron material and a porous material. Therefore, the heat storage system of the present disclosure can accumulate more heat of the heat transport medium and can release more heat to the heat transport medium.
  • the heat storage system of the present disclosure includes a steam supply unit that supplies steam to the heat storage material.
  • the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material by the steam supply unit. Therefore, the heat storage system of the present disclosure can release more heat to the heat transport medium.
  • Example 1 First, VO 2 powder was filled in the lower part of the jig. Thereafter, a mixed powder of zeolite powder and VO 2 powder was filled in the upper part of the jig. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the heat storage material of the form A shown in FIG.
  • the part comprising the mixed powder of zeolite powder and the VO 2 powder, an island that contains a porous material (zeolite) is dispersed portion.
  • VO 2 powder is an example of a strongly correlated electron material.
  • Zeolite powder is an example of a porous material.
  • other strongly correlated electron materials may be used.
  • other porous materials may be used in place of the zeolite powder.
  • sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
  • Example 2 A mixed powder of zeolite powder and VO 2 powder was filled in a jig. At this time, the weight of the zeolite powder was larger than the weight of the VO 2 powder. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the thermal storage material of the form B shown in FIG.
  • VO 2 powder other strongly correlated electron materials may be used.
  • other porous materials may be used in place of the zeolite powder.
  • sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
  • Example 3 A mixed powder of zeolite powder and VO 2 powder was filled in a jig. At this time, the weight of the zeolite powder was less than the weight of the VO 2 powder. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the thermal storage material of the form C shown in FIG.
  • VO 2 powder other strongly correlated electron materials may be used.
  • other porous materials may be used in place of the zeolite powder.
  • sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
  • Example 4 (A) Configuration of Heat Storage System 19
  • the configuration of the heat storage system 19 will be described with reference to FIGS.
  • the exhaust gas 101 discharged from the energy converter 21 passes through the heat storage system 19.
  • the energy converter 21 is an internal combustion engine or a fuel cell.
  • the exhaust gas 101 is an example of a heat transport medium.
  • the heat storage system 19 stores the heat of the exhaust gas 101. If the temperature of the exhaust gas 101 is low, the heat storage system 19 releases the heat that has been stored up to that time to the exhaust gas 101 and raises the temperature of the exhaust gas 101.
  • the energy converter 21 When the temperature of the exhaust gas 101 rises, the energy converter 21 can be warmed up quickly. Further, when the temperature of the exhaust gas 101 is increased, the catalytic reaction for purifying the exhaust gas 101 can be promoted.
  • the heat storage system 19 includes a hollow container 23, a heat storage material 25 and water 27 accommodated therein.
  • the container 23 is provided with a narrow constricted passage 29 in the center thereof.
  • a valve 31 that can be opened and closed is provided in the passage 29. As shown in FIG. 7, the valve 31 can realize either a state in which the passage 29 is opened or a state in which the passage 29 is closed as shown in FIG. 8.
  • the valve 31 may be manually operated by the user, or may be automatically operated in accordance with a control unit provided in the heat storage system 19 or an external command.
  • the heat storage material 25 exists above the passage 29 in the container 23.
  • the heat storage material 25 is supported by a mesh-like support plate 33 so as not to fall downward.
  • the heat storage material 25 is manufactured in the first embodiment. Further, the heat storage material 25 may be manufactured in the second embodiment or the third embodiment.
  • the water 27 exists below the passage 29 in the container 23.
  • a medium flow path 35 penetrating the container 23 in the lateral direction is provided above the container 23.
  • the medium flow path 35 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication.
  • the heat storage material 25 is disposed around the medium flow path 35.
  • the medium flow path 35 is a flow path for the exhaust gas 101.
  • an air flow path 39 penetrating the container 23 in the lateral direction is provided below the container 23.
  • the air flow path 39 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication.
  • the water 27 exists around the air flow path 39.
  • the air flow path 39 is a flow path of the air 103 for cooling the water 27.
  • the container 23, the water 27, and the valve 31 are an example of a steam supply unit that supplies steam (water vapor) to the heat storage material 25.
  • (B-2) First Heat Dissipation Process In the first heat release process, the valve 31 is opened as shown in FIG.
  • the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Further, the water vapor evaporated from the water 27 is adsorbed to the porous material included in the heat storage material 25. Thereby, the latent heat of vaporization is stored in the heat storage material 25. The heat storage material 25 also releases its latent heat of vaporization to the exhaust gas 101.
  • the heat storage system 19 can select and perform one of a 1st heat dissipation process and the 2nd heat dissipation process mentioned later.
  • this indication can take various forms, without being limited to the above-mentioned embodiment.
  • the heat storage system 19 stores heat of cooling water (an example of a cooling medium) used for cooling the energy converter 21 instead of the exhaust gas 101, and releases the stored heat to the cooling water. Also good. In this case, the temperature of the cooling water can be stabilized so that it does not decrease excessively. Therefore, warming up of the energy converter 21 can be performed quickly.
  • cooling water an example of a cooling medium
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate
  • Thermal storage material 1-1 Strongly correlated electron material
  • the heat storage material of the present disclosure includes a strongly correlated electron material.
  • a strongly correlated electron material is a system in which at least one of the degrees of freedom of spin, orbital, and charge possessed by an electron is manifested by strong Coulomb repulsion between electrons. The manifested degrees of freedom of spin, orbital, and charge show large entropy changes accompanying the change in the number of states due to the order-disorder phase transition, respectively. Called the phase transition).
  • Examples of strongly correlated electron materials include those that undergo a metal-insulator phase transition.
  • Examples of strongly correlated electron materials include transition metal oxides.
  • strongly correlated electron materials include, for example, V (1-X) W X O 2 (0 ⁇ X ⁇ 0.0650), V (1-X) Ta X O 2 (0 ⁇ X ⁇ 0. 117), V (1-X) Nb X O 2 (0 ⁇ X ⁇ 0.115), V (1-X) Ru X O 2 (0 ⁇ X ⁇ 0.150), V (1-X) Mo X O 2 (0 ⁇ X ⁇ 0.161), V (1-X) Re X O 2 (0 ⁇ X ⁇ 0.0964), LiMn 2 O 4 , LiVS 2 , LiVO 2 , NaNiO 2 , LiRh 2 O 4 , V 2 O 3 , V 4 O 7 , V 6 O 11 , Ti 4 O 7 , SmBaFe 2 O 5 , EuBaFe 2 O 5 , GdBaFe 2 O 5 , TbBaFe 2 O 5 , DyBaFe 2 O 5 , HoBaFe 2
  • the heat storage material of the present disclosure has a porous shape.
  • the porous shape is a shape in which a large number of pores 6 exist inside the heat storage material 5.
  • the porous shape may be any of microporous, mesoporous, and macroporous.
  • the pores may be continuous vents or closed pores.
  • the pore diameter of the pores constituting the porous shape may be 0.1 nm or more. By being in this range, the effect of adsorbing vapor molecules and storing latent heat of vaporization becomes even more remarkable.
  • the pore diameter can be calculated from the pore diameter measured in the SEM photograph or TEM photograph obtained by photographing the porous shape of the heat storage material.
  • the ratio of the volume occupied by the pores in the heat storage material may be greater than 0 vol% and 80 vol% or less. By being in this range, the heat storage amount and strength are further improved.
  • the heat storage material may have a porous shape throughout, or a part thereof may have a porous shape.
  • the size of the pores, the number density of the pores, etc. may be uniform or may vary depending on the location.
  • the heat storage material of the present disclosure has a porous shape and can adsorb vapor molecules to the pores constituting the porous shape. At this time, latent heat of evaporation is generated, and the heat storage material of the present disclosure can also store the latent heat of evaporation. Therefore, the heat storage material of the present disclosure can store more heat when storing heat in an environment containing steam.
  • the heat storage material of the present disclosure can desorb vapor molecules adsorbed in the pores. At this time, latent heat of vaporization is taken from the heat storage material, and the heat storage material is cooled.
  • the heat storage material of the present disclosure has a porous shape, the specific surface area is large. Therefore, the heat storage material of the present disclosure has high heat exchange efficiency.
  • Catalyst unit 2-1 Catalyst carrier
  • the catalyst unit of this indication has a catalyst carrier containing the heat storage material mentioned above.
  • the catalyst carrier may be made of a heat storage material, and may further contain other materials.
  • the shape of the catalyst carrier can be, for example, a honeycomb-shaped catalyst carrier 17 shown in FIG.
  • the catalyst unit of the present disclosure includes a catalyst supported on the catalyst carrier described above.
  • the type of the catalyst is not particularly limited, and can be appropriately selected from known catalysts (for example, Pt, Pd, Rh, etc.).
  • the catalyst can be supported on the surface of the catalyst carrier by a method such as a wash coat method.
  • the catalyst unit of the present disclosure has a catalyst carrier including a heat storage material, a temperature change is mitigated. Therefore, the catalytic reaction can be performed stably.
  • the heat storage material has a porous shape, latent heat of vaporization can be stored as described above. Therefore, the temperature of the catalyst carrier including the heat storage material and the catalyst supported thereon are further increased, and as a result, the catalytic reaction in the catalyst unit is further promoted.
  • the catalyst unit of the present disclosure can be used for various purposes, for example, for use in purifying exhaust gas of an internal combustion engine (eg, gasoline engine, diesel engine, etc.).
  • an internal combustion engine eg, gasoline engine, diesel engine, etc.
  • CO, CH, NOx, etc. in the exhaust gas can be purified by the catalyst supported on the catalyst carrier 17.
  • numerator contained in exhaust gas is adsorb
  • the temperature of the catalyst carrier and the catalyst supported thereon is further increased, and the catalytic reaction for purifying the exhaust gas is further promoted.
  • Thermal storage system 3-1 Flow path of heat transport medium
  • the heat storage system of this indication is provided with the flow path of a heat transport medium.
  • Examples of the flow path include hollow pipes.
  • Examples of the heat transport medium include exhaust gas discharged from the energy converter, or a cooling medium used for cooling the energy converter.
  • Examples of the energy converter include an internal combustion engine and a fuel cell.
  • the cooling medium may be a liquid (for example, water, alcohol, oil, organic solvent, etc.) or a gas (for example, air, nitrogen gas, rare gas, etc.).
  • Thermal storage material The thermal storage system of this indication is provided with the thermal storage material which performs heat exchange with the heat transport medium which flows through a channel.
  • the heat storage material is as described above.
  • the heat storage material can be brought into contact with at least a part of the outer peripheral surface of the flow path, for example. Further, the heat storage material may exchange heat with the heat transport medium via another member (for example, a member having a higher thermal conductivity than the heat storage material).
  • the heat exchange may store heat of the heat transport medium in the heat storage material, or may release heat stored in the heat storage material to the heat transport medium.
  • the heat storage system of this indication is provided with the steam supply unit which supplies steam to heat storage material.
  • the steam supply unit which supplies steam to heat storage material.
  • the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material.
  • the heat storage system of this indication can discharge
  • the heat storage material provided in the heat storage system of the present disclosure has a porous shape. Therefore, the heat storage system of the present disclosure can accumulate more heat of the heat transport medium and can release more heat to the heat transport medium.
  • the heat storage system of the present disclosure includes a steam supply unit that supplies steam to the heat storage material.
  • the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material by the steam supply unit. Therefore, the heat storage system of the present disclosure can release more heat to the heat transport medium.
  • Example 5 A predetermined amount of V 2 O 5 and oxalic acid was placed in an autoclave and hydrothermally synthesized. As a result, a heat storage material having a porous shape could be manufactured. This heat storage material contains VO 2 as a strongly correlated electron material.
  • Example 6 VO 2 was supported on cellulose and heated. At this time, cellulose functions as a mold. By the above manufacturing method, a heat storage material made of VO 2 and having a porous shape could be manufactured.
  • Example 7 (A) Configuration of Heat Storage System 19
  • the configuration of the heat storage system 19 will be described with reference to FIGS.
  • the exhaust gas 101 discharged from the energy converter 21 passes through the heat storage system 19.
  • the energy converter 21 is an internal combustion engine or a fuel cell.
  • the exhaust gas 101 is an example of a heat transport medium.
  • the heat storage system 19 stores the heat of the exhaust gas 101. If the temperature of the exhaust gas 101 is low, the heat storage system 19 releases the heat that has been stored up to that time to the exhaust gas 101 and raises the temperature of the exhaust gas 101.
  • the energy converter 21 When the temperature of the exhaust gas 101 rises, the energy converter 21 can be warmed up quickly. Further, when the temperature of the exhaust gas 101 is increased, the catalytic reaction for purifying the exhaust gas 101 can be promoted.
  • the heat storage system 19 includes a hollow container 23, a heat storage material 25 and water 27 accommodated therein.
  • the container 23 is provided with a narrow constricted passage 29 in the center thereof.
  • a valve 31 that can be opened and closed is provided in the passage 29.
  • the valve 31 can realize either a state in which the passage 29 is opened or a state in which the passage 29 is closed as shown in FIG. 14.
  • the valve 31 may be manually operated by the user, or may be automatically operated in accordance with a control unit provided in the heat storage system 19 or an external command.
  • the heat storage material 25 exists above the passage 29 in the container 23.
  • the heat storage material 25 is supported by a mesh-like support plate 33 so as not to fall downward.
  • the heat storage material 25 is manufactured in the fifth embodiment. Further, the heat storage material 25 may be manufactured in the sixth embodiment.
  • the water 27 exists below the passage 29 in the container 23.
  • a medium flow path 35 penetrating the container 23 in the lateral direction is provided above the container 23.
  • the medium flow path 35 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication.
  • the heat storage material 25 is disposed around the medium flow path 35.
  • the medium flow path 35 is a flow path for the exhaust gas 101.
  • an air flow path 39 penetrating the container 23 in the lateral direction is provided below the container 23.
  • the air flow path 39 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication.
  • the water 27 exists around the air flow path 39.
  • the air flow path 39 is a flow path of the air 103 for cooling the water 27.
  • the container 23, the water 27, and the valve 31 are an example of a steam supply unit that supplies steam (water vapor) to the heat storage material 25.
  • (B-2) First Heat Dissipation Process In the first heat release process, the valve 31 is opened as shown in FIG.
  • the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Further, the water vapor evaporated from the water 27 is adsorbed to the pores constituting the porous shape of the heat storage material 25. Thereby, the latent heat of vaporization is stored in the heat storage material 25. The heat storage material 25 also releases its latent heat of vaporization to the exhaust gas 101.
  • the heat storage system 19 can select and perform one of a 1st heat dissipation process and the 2nd heat dissipation process mentioned later.
  • this indication can take various forms, without being limited to the above-mentioned embodiment.
  • the heat storage system 19 stores heat of cooling water (an example of a cooling medium) used for cooling the energy converter 21 instead of the exhaust gas 101, and releases the stored heat to the cooling water. Also good. In this case, the temperature of the cooling water can be stabilized so that it does not decrease excessively. Therefore, warming up of the energy converter 21 can be performed quickly.
  • cooling water an example of a cooling medium
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate
  • the present disclosure can be realized in various forms such as a heat storage method, an exhaust gas purification method, a heat exchange method, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Provided is a heat storage material (5) that comprises a strongly correlated electron material and a porous material. Alternatively provided is a heat storage material (5) that comprises a strongly correlated electron material and has a porous shape. The strongly correlated electron material may undergo metal-insulator phase transition. The strongly correlated electron material may be a transition metal oxide. Also provided is a catalytic unit that comprises a catalyst support (17) which includes the heat storage material, and a catalyst supported on the catalyst support. Further provided is a heat storage system (19) that comprises a flow channel (35) for a heat transport medium, the heat storage material (25) mentioned above which exchanges heat with the heat transport medium (101) flowing through the flow channel, and steam supplying units (23, 27, 31) that supply steam to the heat storage material. According to the invention, a heat storage material with greater storage of heat, a catalytic unit, and a heat storage system can be provided.

Description

蓄熱材料、触媒ユニット、および蓄熱システムThermal storage material, catalyst unit, and thermal storage system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年9月26日に出願された日本特許出願2014-196738および、2014年9月26日に出願された日本特許出願2014-196739を基にしている。 This application includes Japanese Patent Application No. 2014-196738 filed on September 26, 2014 and Japanese Patent Application No. 2014-2014 filed on September 26, 2014, the disclosures of which are incorporated herein by reference. Based on 196739.
 本開示は、蓄熱材料、触媒ユニット、及び蓄熱システムに関する。 The present disclosure relates to a heat storage material, a catalyst unit, and a heat storage system.
 従来、電子相転移する物質から成る蓄熱材料が知られている(特許文献1参照)。この蓄熱材料は、電子相転移にともなうエンタルピー変化を蓄熱に利用する。特許文献1記載の蓄熱材料は、蓄える熱量が不十分な場合があった。また、特許文献1記載の蓄熱材料は、熱輸送媒体との間で熱交換をするときの熱交換効率が低い場合があった。 Conventionally, a heat storage material made of a substance that undergoes an electronic phase transition is known (see Patent Document 1). This heat storage material uses the enthalpy change accompanying the electronic phase transition for heat storage. The heat storage material described in Patent Document 1 sometimes has an insufficient amount of heat to be stored. Further, the heat storage material described in Patent Document 1 sometimes has low heat exchange efficiency when heat exchange is performed with the heat transport medium.
特開2010-163510号公報JP 2010-163510 A
 本開示は、蓄熱量が大きい蓄熱材料、触媒ユニット、及び蓄熱システムを提供することを目的としている。 This disclosure is intended to provide a heat storage material, a catalyst unit, and a heat storage system with a large amount of heat storage.
 本開示は、熱交換効率が高い蓄熱材料、触媒ユニット、及び蓄熱システムを提供することをもう一つの目的としている。 This disclosure has another object to provide a heat storage material, a catalyst unit, and a heat storage system with high heat exchange efficiency.
 本開示の第1態様によると、蓄熱材料は、強相関電子系材料と、多孔質材料とを含む。これによれば、蓄熱材料は、蓄熱量を大きくすることができる。 According to the first aspect of the present disclosure, the heat storage material includes a strongly correlated electron material and a porous material. According to this, the heat storage material can increase the heat storage amount.
 本開示の第2態様によると、蓄熱材料は、強相関電子系材料を含み、多孔質形状を有する。これによれば、蓄熱材料は、多孔質形状を有することにより、熱輸送媒体との接触面積を大きくすることができ、熱交換効率を高くすることができる。 According to the second aspect of the present disclosure, the heat storage material includes a strongly correlated electron material and has a porous shape. According to this, since the heat storage material has a porous shape, the contact area with the heat transport medium can be increased, and the heat exchange efficiency can be increased.
本開示の第1実施形態における蓄熱材料の形態を表す模式図である。It is a schematic diagram showing the form of the heat storage material in 1st Embodiment of this indication. 第1実施形態における蓄熱材料の他の形態を表す模式図である。It is a schematic diagram showing the other form of the heat storage material in 1st Embodiment. 第1実施形態における蓄熱材料の他の形態を表す模式図である。It is a schematic diagram showing the other form of the heat storage material in 1st Embodiment. 第1実施形態における触媒担体の形態を表す模式図である。It is a schematic diagram showing the form of the catalyst carrier in 1st Embodiment. 第1実施形態における触媒ユニットが奏する作用を表す模式図である。It is a schematic diagram showing the effect | action which the catalyst unit in 1st Embodiment show | plays. 第1実施形態における触媒システムを含むシステム全体を示すブロック図である。It is a block diagram which shows the whole system containing the catalyst system in 1st Embodiment. 第1実施形態における、バルブが開の状態にある触媒システムを示す模式図である。It is a mimetic diagram showing a catalyst system in the state where a valve is opened in a 1st embodiment. 第1実施形態における、バルブが閉の状態にある触媒システムを示す模式図である。It is a mimetic diagram showing a catalyst system in the state where a valve is closed in a 1st embodiment. 本開示の第2実施形態における蓄熱材料を表す模式図である。It is a schematic diagram showing the thermal storage material in 2nd Embodiment of this indication. 第2実施形態における触媒担体の形態を表す模式図である。It is a schematic diagram showing the form of the catalyst carrier in 2nd Embodiment. 第2実施形態における触媒ユニットが奏する作用を表す模式図である。It is a schematic diagram showing the effect | action which the catalyst unit in 2nd Embodiment has. 第2実施形態における触媒システムを含むシステム全体を示すブロック図である。It is a block diagram which shows the whole system containing the catalyst system in 2nd Embodiment. 第2実施形態における、バルブが開の状態にある触媒システムを示す模式図である。It is a mimetic diagram showing a catalyst system in the state where a valve is opened in a 2nd embodiment. 第2実施形態における、バルブが閉の状態にある触媒システムを示す模式図である。It is a mimetic diagram showing a catalyst system in the state where a valve in a 2nd embodiment is closed.
(第1実施形態)
 本開示の第1実施形態を説明する。
(First embodiment)
A first embodiment of the present disclosure will be described.
 1.蓄熱材料
 1-1.強相関電子系材料
 本開示の蓄熱材料は、強相関電子系材料を含む。強相関電子系材料は、電子間の強いクーロン反発力により、電子が持つスピン・軌道・電荷の自由度のうち少なくとも一つ以上が顕在化した系である。顕在化したスピン・軌道・電荷の自由度は、それぞれ、秩序-無秩序相転移によって状態数の変化に伴う大きなエントロピー変化を示す(顕在化したスピン・軌道・電荷の自由度の相転移は、電子相転移と呼ばれる)。
1. Thermal storage material 1-1. Strongly correlated electron material The heat storage material of the present disclosure includes a strongly correlated electron material. A strongly correlated electron material is a system in which at least one of the degrees of freedom of spin, orbital, and charge possessed by an electron is manifested by strong Coulomb repulsion between electrons. The manifested degrees of freedom of spin, orbital, and charge show large entropy changes accompanying the change in the number of states due to the order-disorder phase transition, respectively. Called the phase transition).
 強相関電子系材料としては、例えば、金属-絶縁体相転移するものが挙げられる。また、強相関電子系材料としては、例えば、遷移金属酸化物が挙げられる。 Examples of strongly correlated electron materials include those that undergo a metal-insulator phase transition. Examples of strongly correlated electron materials include transition metal oxides.
 強相関電子系材料の具体例としては、例えば、V(1-X)(0≦X≦0.0650)、V(1-X)Ta(0≦X≦0.117)、V(1-X)Nb(0≦X≦0.115)、V(1-X)Ru(0≦X≦0.150)、V(1-X)Mo(0≦X≦0.161)、V(1-X)Re(0≦X≦0.0964)、LiMn、LiVS、LiVO、NaNiO、LiRh、V、V、V11、Ti、SmBaFe、EuBaFe、GdBaFe、TbBaFe、DyBaFe、HoBaFe、YBaFe、PrBaCo5.5、DyBaCo5.54、HoBaCo5.48、YBaCo5.49等が挙げられる。これらはいずれも、金属-絶縁体相転移するものであり、遷移金属酸化物である。 Specific examples of strongly correlated electron materials include, for example, V (1-X) W X O 2 (0 ≦ X ≦ 0.0650), V (1-X) Ta X O 2 (0 ≦ X ≦ 0. 117), V (1-X) Nb X O 2 (0 ≦ X ≦ 0.115), V (1-X) Ru X O 2 (0 ≦ X ≦ 0.150), V (1-X) Mo X O 2 (0 ≦ X ≦ 0.161), V (1-X) Re X O 2 (0 ≦ X ≦ 0.0964), LiMn 2 O 4 , LiVS 2 , LiVO 2 , NaNiO 2 , LiRh 2 O 4 , V 2 O 3 , V 4 O 7 , V 6 O 11 , Ti 4 O 7 , SmBaFe 2 O 5 , EuBaFe 2 O 5 , GdBaFe 2 O 5 , TbBaFe 2 O 5 , DyBaFe 2 O 5 , HoBaFe 2 O 5, YBaFe 2 O 5, PrBaCo 2 O 5.5, Dy aCo 2 O 5.54, HoBaCo 2 O 5.48, and the like YBaCo 2 O 5.49. All of these are metal-insulator phase transitions and are transition metal oxides.
 1-2.多孔質材料
 本開示の蓄熱材は、多孔質材料を含む。多孔質材料は、ミクロポーラス材料、メソポーラス材料、及びマクロポーラス材料のいずれであってもよい。多孔質材料としては、例えば、ゼオライト、活性炭、SiO系多孔質材料(例えば珪藻土)等が挙げられる。
1-2. Porous material The heat storage material of this indication contains a porous material. The porous material may be any of a microporous material, a mesoporous material, and a macroporous material. Examples of the porous material include zeolite, activated carbon, SiO 2 porous material (for example, diatomaceous earth) and the like.
 多孔質材料の比表面積は1m/g以上でもよい。この範囲内であることにより、多孔質材料に蒸気の分子を吸着させ、蒸発潜熱を蓄熱する効果が一層顕著になる。なお、比表面積は、BET法により測定した値である。 The specific surface area of the porous material may be 1 m 2 / g or more. By being in this range, the effect of adsorbing vapor molecules to the porous material and storing latent heat of vaporization becomes more remarkable. The specific surface area is a value measured by the BET method.
 多孔質材料における細孔径は0.1nm以上でもよい。この範囲内であることにより、多孔質材料に蒸気の分子を吸着させ、蒸発潜熱を蓄熱する効果が一層顕著になる。なお、細孔径は、多孔質材料を撮影したSEM写真又はTEM写真において計測した細孔径から算出することができる。 The pore diameter in the porous material may be 0.1 nm or more. By being in this range, the effect of adsorbing vapor molecules to the porous material and storing latent heat of vaporization becomes more remarkable. The pore diameter can be calculated from the pore diameter measured in the SEM photograph or TEM photograph obtained by photographing the porous material.
 1-3.蓄熱材料の形態
 本開示の蓄熱材料における、強相関電子系材料と多孔質材料との形態の例としては、例えば、図1に示す形態Aと、図2に示す形態Bと、図3に示す形態Cとがある。形態Aでは、強相関電子系材料を含む海1の中に、多孔質材料を含む島3が分散しており、その島3は、蓄熱材料5における表面7側に偏在している。強相関電子系材料を含む海1は、強相関電子系材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。また、多孔質材料を含む島3は、多孔質材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。
1-3. Form of heat storage material Examples of the form of the strongly correlated electron material and the porous material in the heat storage material of the present disclosure include, for example, form A shown in FIG. 1, form B shown in FIG. 2, and FIG. There is Form C. In the form A, the islands 3 including the porous material are dispersed in the sea 1 including the strongly correlated electron material, and the islands 3 are unevenly distributed on the surface 7 side of the heat storage material 5. The sea 1 containing a strongly correlated electron material may be made of a strongly correlated electron material, or may contain other materials. Moreover, the island 3 containing a porous material may consist of a porous material, and may further contain another material.
 島が偏在する表面7は、蓄熱材料5が熱輸送媒体等から熱を受け取る側の表面でもよい。島3が偏在する表面7は、蓄熱材料5における一方の表面であってもよいし、複数の側の表面(例えば、蓄熱材料5における一方の側の表面と、その反対側の表面)であってもよい。 The surface 7 where the islands are unevenly distributed may be a surface on the side where the heat storage material 5 receives heat from a heat transport medium or the like. The surface 7 on which the islands 3 are unevenly distributed may be one surface of the heat storage material 5 or a plurality of surfaces (for example, one surface of the heat storage material 5 and the opposite surface thereof). May be.
 また、形態Bの蓄熱材料5では、多孔質材料を含む海9の中に、強相関電子系材料を含む島11が分散している。多孔質材料を含む海9は、多孔質材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。また、強相関電子系材料を含む島11は、強相関電子系材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。 Further, in the heat storage material 5 of the form B, the islands 11 including the strongly correlated electron material are dispersed in the sea 9 including the porous material. The sea 9 containing a porous material may be made of a porous material or may contain other materials. Further, the island 11 including a strongly correlated electron material may be made of a strongly correlated electron material, or may further include other materials.
 また、形態Cの蓄熱材料5では、強相関電子系材料を含む海13の中に、多孔質材料を含む島15が分散している。強相関電子系材料を含む海13は、強相関電子系材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。また、多孔質材料を含む島15は、多孔質材料から成るものであってもよいし、さらに他の材料を含んでいてもよい。 In the heat storage material 5 of form C, islands 15 containing a porous material are dispersed in the sea 13 containing a strongly correlated electron material. The sea 13 containing a strongly correlated electron material may be made of a strongly correlated electron material, or may contain other materials. Moreover, the island 15 containing a porous material may be made of a porous material, and may further contain other materials.
 1-4.蓄熱材料の組成比
 本開示の蓄熱材料における強相関電子系材料の重量比は、20wt%以上でもよい。この範囲であることにより、蓄熱量を一層大きくすることができる。また、本開示の蓄熱材料における多孔質材料の重量比は、90wt%以下でもよい。この範囲であることにより、吸着性能が一層向上する。
1-4. Composition ratio of heat storage material The weight ratio of the strongly correlated electron material in the heat storage material of the present disclosure may be 20 wt% or more. By being in this range, the amount of stored heat can be further increased. Further, the weight ratio of the porous material in the heat storage material of the present disclosure may be 90 wt% or less. By being in this range, the adsorption performance is further improved.
 本開示の蓄熱材料は、強相関電子系材料と多孔質材料とから成るものであってもよいし、さらに他の材料を含んでいてもよい。 The heat storage material of the present disclosure may be composed of a strongly correlated electron material and a porous material, and may further include other materials.
 1-5.蓄熱材料の効果
 強相関電子系材料は単位体積当りの蓄熱量が大きい。本開示の蓄熱材料は、その強相関電子系材料を含むため、単位体積当りの蓄熱量が大きい。
1-5. Effects of heat storage materials Strongly correlated electronic materials have a large amount of heat storage per unit volume. Since the heat storage material of the present disclosure includes the strongly correlated electron material, the heat storage amount per unit volume is large.
 さらに、本開示の蓄熱材は、蒸気の分子を多孔質材料に吸着させることができる。このとき、蒸発潜熱が発生し、本開示の蓄熱材料は、その蒸発潜熱も蓄熱することができる。よって、本開示の蓄熱材料は、蒸気を含む環境下で蓄熱するとき、一層多くの熱を蓄熱することができる。 Furthermore, the heat storage material of the present disclosure can adsorb vapor molecules to the porous material. At this time, latent heat of evaporation is generated, and the heat storage material of the present disclosure can also store the latent heat of evaporation. Therefore, the heat storage material of the present disclosure can store more heat when storing heat in an environment containing steam.
 また、本開示の蓄熱材料は、多孔質材料に吸着していた蒸気の分子を、多孔質材料から脱離させることができる。このとき、蓄熱材料から蒸発潜熱が奪われ、蓄熱材料は冷却される。 Also, the heat storage material of the present disclosure can desorb vapor molecules adsorbed on the porous material from the porous material. At this time, latent heat of vaporization is taken from the heat storage material, and the heat storage material is cooled.
 2.触媒ユニット
 2-1.触媒担体
 本開示の触媒ユニットは、上述した蓄熱材料を含む触媒担体を有する。触媒担体は、蓄熱材料から成るものであってもよいし、さらにそれ以外の材料を含んでいてもよい。触媒担体の形状は、例えば、図4に示すハニカム形状の触媒担体17とすることができる。
2. Catalyst unit 2-1. Catalyst carrier The catalyst unit of this indication has a catalyst carrier containing the heat storage material mentioned above. The catalyst carrier may be made of a heat storage material, and may further contain other materials. The shape of the catalyst carrier can be, for example, a honeycomb-shaped catalyst carrier 17 shown in FIG.
 2-2.触媒
 本開示の触媒ユニットは、上述した触媒担体に担持された触媒を含む。触媒の種類は特に限定されず、公知の触媒(例えば、Pt、Pd、Rh等)から適宜選択できる。触媒は、例えば、ウオッシュコート法等の方法で、触媒担体の表面に担持することができる。
2-2. Catalyst The catalyst unit of the present disclosure includes a catalyst supported on the catalyst carrier described above. The type of the catalyst is not particularly limited, and can be appropriately selected from known catalysts (for example, Pt, Pd, Rh, etc.). The catalyst can be supported on the surface of the catalyst carrier by a method such as a wash coat method.
 2-3.触媒ユニットの効果
 本開示の触媒ユニットは、蓄熱材料を含む触媒担体を有するので、温度変化が緩和される。そのため、触媒反応を安定して行うことができる。
2-3. Effect of catalyst unit Since the catalyst unit of the present disclosure has a catalyst carrier including a heat storage material, a temperature change is mitigated. Therefore, the catalytic reaction can be performed stably.
 また、蓄熱材料は多孔質材料を含むので、上述したとおり、蒸発潜熱を蓄熱することができる。そのため、蓄熱材料を含む触媒担体、及びそれに担持された触媒の温度が一層高くなり、結果として、触媒ユニットにおける触媒反応が一層促進される。 Further, since the heat storage material includes a porous material, latent heat of vaporization can be stored as described above. Therefore, the temperature of the catalyst carrier including the heat storage material and the catalyst supported thereon are further increased, and as a result, the catalytic reaction in the catalyst unit is further promoted.
 2-4.触媒ユニットの用途
 本開示の触媒ユニットは、種々の用途に用いることができ、例えば、内燃機関(例えばガソリンエンジン、ディーゼルエンジン等)の排ガスを浄化する用途に用いることができる。排ガスを浄化する用途に用いる場合、図5に示すように、触媒担体17に担持した触媒により、排ガス中のCO、CH、NOx等を浄化することができる。また、排ガスを浄化する用途に用いる場合、排ガスに含まれる蒸気の分子が、蓄熱材料に含まれる多孔質材料における細孔に吸着する。その結果、触媒担体、及びそれに担持された触媒の温度が一層高くなり、排ガスを浄化する触媒反応が一層促進される。
2-4. Use of catalyst unit The catalyst unit of the present disclosure can be used for various purposes, for example, for use in purifying exhaust gas of an internal combustion engine (eg, gasoline engine, diesel engine, etc.). When used for the purpose of purifying exhaust gas, as shown in FIG. 5, CO, CH, NOx, etc. in the exhaust gas can be purified by the catalyst supported on the catalyst carrier 17. Moreover, when using for the use which purify | cleans waste gas, the vapor | steam molecule | numerator contained in waste gas adsorb | sucks to the pore in the porous material contained in a thermal storage material. As a result, the temperature of the catalyst carrier and the catalyst supported thereon is further increased, and the catalytic reaction for purifying the exhaust gas is further promoted.
 3.蓄熱システム
 3-1.熱輸送媒体の流路
 本開示の蓄熱システムは、熱輸送媒体の流路を備える。流路としては、例えば、中空配管等が挙げられる。熱輸送媒体としては、例えば、エネルギー変換器が排出する排ガス、又はエネルギー変換器の冷却に用いられる冷却媒体等が挙げられる。エネルギー変換機としては、例えば、内燃機関、燃料電池等が挙げられる。冷却媒体は、液体(例えば、水、アルコール、油、有機溶媒等)であってもよいし、気体(例えば空気、窒素ガス、希ガス等)であってもよい。
3. Thermal storage system 3-1. Flow path of heat transport medium The heat storage system of the present disclosure includes a flow path of a heat transport medium. Examples of the flow path include hollow pipes. Examples of the heat transport medium include exhaust gas discharged from the energy converter, or a cooling medium used for cooling the energy converter. Examples of the energy converter include an internal combustion engine and a fuel cell. The cooling medium may be a liquid (for example, water, alcohol, oil, organic solvent, etc.) or a gas (for example, air, nitrogen gas, rare gas, etc.).
 3-2.蓄熱材料
 本開示の蓄熱システムは、流路を流れる熱輸送媒体と熱交換を行う蓄熱材料を備える。蓄熱材料は、上述したものである。蓄熱材料は、例えば、流路の外周面の少なくとも一部と接触させることができる。また、蓄熱材料は、他の部材(例えば、熱伝導率が蓄熱材料より高い材料から成る部材)を介して、熱輸送媒体と熱交換を行ってもよい。熱交換は、熱輸送媒体の熱を蓄熱材料に蓄えるものであってもよいし、蓄熱材料に蓄えていた熱を熱輸送媒体に放出するものであってもよい。
3-2. Thermal storage material The thermal storage system of this indication is provided with the thermal storage material which performs heat exchange with the heat transport medium which flows through a channel. The heat storage material is as described above. The heat storage material can be brought into contact with at least a part of the outer peripheral surface of the flow path, for example. Further, the heat storage material may exchange heat with the heat transport medium via another member (for example, a member having a higher thermal conductivity than the heat storage material). The heat exchange may store heat of the heat transport medium in the heat storage material, or may release heat stored in the heat storage material to the heat transport medium.
 3-3.蒸気供給ユニット
 本開示の蓄熱システムは、蓄熱材料に蒸気を供給する蒸気供給ユニットを備える。蒸気供給ユニットにより蓄熱材料に蒸気を供給し、蒸気の分子が蓄熱材料に含まれる多孔質材料に吸着すると、蒸発潜熱が発生する。そのため、本開示の蓄熱システムは、蓄熱材料に蒸発潜熱を蓄熱することができる。また、本開示の蓄熱システムは、蓄熱材料に蓄熱した蒸発潜熱を熱輸送媒体に放出することができる。
3-3. Steam supply unit The heat storage system of this indication is provided with the steam supply unit which supplies steam to heat storage material. When steam is supplied to the heat storage material by the steam supply unit and vapor molecules are adsorbed to the porous material contained in the heat storage material, latent heat of evaporation is generated. Therefore, the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material. Moreover, the heat storage system of this indication can discharge | release the evaporation latent heat stored in the heat storage material to a heat transport medium.
 3-4.蓄熱システムの効果
 本開示の蓄熱システムが備える蓄熱材料は、強相関電子系材料と、多孔質材料とを含む。そのため、本開示の蓄熱システムは、熱輸送媒体の熱を一層多く蓄積し、また、一層多くの熱を熱輸送媒体に放出することができる。
3-4. Effect of heat storage system The heat storage material provided in the heat storage system of the present disclosure includes a strongly correlated electron material and a porous material. Therefore, the heat storage system of the present disclosure can accumulate more heat of the heat transport medium and can release more heat to the heat transport medium.
 また、本開示の蓄熱システムは、蓄熱材料に蒸気を供給する蒸気供給ユニットを備える。本開示の蓄熱システムは、上述したとおり、蒸気供給ユニットにより、蓄熱材料に蒸発潜熱を蓄熱することができる。そのため、本開示の蓄熱システムは、一層多くの熱を熱輸送媒体に放出することができる。 The heat storage system of the present disclosure includes a steam supply unit that supplies steam to the heat storage material. As described above, the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material by the steam supply unit. Therefore, the heat storage system of the present disclosure can release more heat to the heat transport medium.
 (実施例1)
 まず、VO粉末を冶具の下部に充填した。その後、さらに、ゼオライト粉末とVO粉末との混合粉末を、治具の上部に充填した。ゼオライト粉末の比表面積は350m/gである。次に、ホットプレスの手法を用いて焼結し、図1に示す形態Aの蓄熱材料を製造した。
(Example 1)
First, VO 2 powder was filled in the lower part of the jig. Thereafter, a mixed powder of zeolite powder and VO 2 powder was filled in the upper part of the jig. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the heat storage material of the form A shown in FIG.
 なお、製造した蓄熱材料のうち、ゼオライト粉末とVO粉末との混合粉末から成る部分が、多孔質材料(ゼオライト)を含む島が分散した部分となる。 Incidentally, in the manufacturing the heat storage material, the part comprising the mixed powder of zeolite powder and the VO 2 powder, an island that contains a porous material (zeolite) is dispersed portion.
 VO粉末は強相関電子系材料の一例である。ゼオライト粉末は多孔質材料の一例である。VO粉末に代えて、他の強相関電子系材料を用いてもよい。また、ゼオライト粉末に代えて、他の多孔質材料を用いてもよい。また、ホットプレスの手法に代えて、放電プラズマ焼結(SPS)、熱間等方圧加圧法(HIP)等の手法で焼結してもよい。 VO 2 powder is an example of a strongly correlated electron material. Zeolite powder is an example of a porous material. Instead of the VO 2 powder, other strongly correlated electron materials may be used. In addition, other porous materials may be used in place of the zeolite powder. Further, instead of the hot pressing method, sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
 (実施例2)
 ゼオライト粉末とVO粉末との混合粉末を治具に充填した。このとき、ゼオライト粉末の重量は、VO粉末の重量に比べて多くした。ゼオライト粉末の比表面積は350m/gである。次に、ホットプレスの手法を用いて焼結し、図2に示す形態Bの蓄熱材料を製造した。
(Example 2)
A mixed powder of zeolite powder and VO 2 powder was filled in a jig. At this time, the weight of the zeolite powder was larger than the weight of the VO 2 powder. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the thermal storage material of the form B shown in FIG.
 VO粉末に代えて、他の強相関電子系材料を用いてもよい。また、ゼオライト粉末に代えて、他の多孔質材料を用いてもよい。また、ホットプレスの手法に代えて、放電プラズマ焼結(SPS)、熱間等方圧加圧法(HIP)等の手法で焼結してもよい。 Instead of the VO 2 powder, other strongly correlated electron materials may be used. In addition, other porous materials may be used in place of the zeolite powder. Further, instead of the hot pressing method, sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
 (実施例3)
 ゼオライト粉末とVO粉末との混合粉末を治具に充填した。このとき、ゼオライト粉末の重量は、VO粉末の重量に比べて少なくした。ゼオライト粉末の比表面積は350m/gである。次に、ホットプレスの手法を用いて焼結し、図3に示す形態Cの蓄熱材料を製造した。
(Example 3)
A mixed powder of zeolite powder and VO 2 powder was filled in a jig. At this time, the weight of the zeolite powder was less than the weight of the VO 2 powder. The specific surface area of the zeolite powder is 350 m 2 / g. Next, it sintered using the method of the hot press, and manufactured the thermal storage material of the form C shown in FIG.
 VO粉末に代えて、他の強相関電子系材料を用いてもよい。また、ゼオライト粉末に代えて、他の多孔質材料を用いてもよい。また、ホットプレスの手法に代えて、放電プラズマ焼結(SPS)、熱間等方圧加圧法(HIP)等の手法で焼結してもよい。 Instead of the VO 2 powder, other strongly correlated electron materials may be used. In addition, other porous materials may be used in place of the zeolite powder. Further, instead of the hot pressing method, sintering may be performed by a method such as discharge plasma sintering (SPS) or hot isostatic pressing (HIP).
 (実施例4)
 (a)蓄熱システム19の構成
 蓄熱システム19の構成を図6~図8に基づき説明する。図6に示すように、エネルギー変換器21が排出した排ガス101は蓄熱システム19内を通過する。なお、エネルギー変換器21は、内燃機関又は燃料電池である。また、排ガス101は熱輸送媒体の一例である。
Example 4
(A) Configuration of Heat Storage System 19 The configuration of the heat storage system 19 will be described with reference to FIGS. As shown in FIG. 6, the exhaust gas 101 discharged from the energy converter 21 passes through the heat storage system 19. The energy converter 21 is an internal combustion engine or a fuel cell. The exhaust gas 101 is an example of a heat transport medium.
 蓄熱システム19内を通過する排ガス101の温度が高ければ、蓄熱システム19は排ガス101の熱を蓄熱する。また、排ガス101の温度が低ければ、蓄熱システム19は、それまで蓄熱していた熱を排ガス101に放出し、排ガス101の温度を上げる。 If the temperature of the exhaust gas 101 passing through the heat storage system 19 is high, the heat storage system 19 stores the heat of the exhaust gas 101. If the temperature of the exhaust gas 101 is low, the heat storage system 19 releases the heat that has been stored up to that time to the exhaust gas 101 and raises the temperature of the exhaust gas 101.
 排ガス101の温度が上がると、エネルギー変換器21の暖気を迅速に行うことができる。また、排ガス101の温度が上がると、排ガス101を浄化する触媒反応を促進することができる。 When the temperature of the exhaust gas 101 rises, the energy converter 21 can be warmed up quickly. Further, when the temperature of the exhaust gas 101 is increased, the catalytic reaction for purifying the exhaust gas 101 can be promoted.
 図7、図8に示すように、蓄熱システム19は、中空の容器23と、その内部に収容された蓄熱材料25及び水27を備える。容器23は、その中央に細くくびれた通路29を備える。通路29には開閉自在のバルブ31が設けられている。バルブ31は、図7に示すように、通路29を開放する状態と、図8に示すように、通路29を閉じる状態とのうちのいずれの状態も実現できる。バルブ31はユーザが手動で操作するものであってもよいし、蓄熱システム19が備える制御部、又は外部からの指令に応じて自動的に動作するものであってもよい。 7 and 8, the heat storage system 19 includes a hollow container 23, a heat storage material 25 and water 27 accommodated therein. The container 23 is provided with a narrow constricted passage 29 in the center thereof. A valve 31 that can be opened and closed is provided in the passage 29. As shown in FIG. 7, the valve 31 can realize either a state in which the passage 29 is opened or a state in which the passage 29 is closed as shown in FIG. 8. The valve 31 may be manually operated by the user, or may be automatically operated in accordance with a control unit provided in the heat storage system 19 or an external command.
 蓄熱材料25は、容器23の内部のうち、通路29よりも上方に存在する。蓄熱材料25は、メッシュ状の支持板33により、下方に落下しないように支持されている。蓄熱材料25は、前記実施例1で製造したものである。また、蓄熱材料25は、前記実施例2又は前記実施例3で製造したものであってもよい。水27は、容器23の内部のうち、通路29よりも下側に存在する。 The heat storage material 25 exists above the passage 29 in the container 23. The heat storage material 25 is supported by a mesh-like support plate 33 so as not to fall downward. The heat storage material 25 is manufactured in the first embodiment. Further, the heat storage material 25 may be manufactured in the second embodiment or the third embodiment. The water 27 exists below the passage 29 in the container 23.
 容器23の上方には、容器23を横方向に貫通する媒体流路35が設けられている。媒体流路35と、容器23の内部とは、容器23の外壁37により隔てられ、連通していない。蓄熱材料25は媒体流路35の周囲に配置されている。媒体流路35は、排ガス101の流路である。 A medium flow path 35 penetrating the container 23 in the lateral direction is provided above the container 23. The medium flow path 35 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication. The heat storage material 25 is disposed around the medium flow path 35. The medium flow path 35 is a flow path for the exhaust gas 101.
 また、容器23の下方には、容器23を横方向に貫通する空気流路39が設けられている。空気流路39と、容器23の内部とは、容器23の外壁37により隔てられ、連通していない。水27は、空気流路39の周囲に存在する。空気流路39は、水27を冷却するための空気103の流路である。 Further, below the container 23, an air flow path 39 penetrating the container 23 in the lateral direction is provided. The air flow path 39 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication. The water 27 exists around the air flow path 39. The air flow path 39 is a flow path of the air 103 for cooling the water 27.
 なお、容器23、水27、及びバルブ31は、蓄熱材料25に蒸気(水蒸気)を供給する蒸気供給ユニットの一例である。 The container 23, the water 27, and the valve 31 are an example of a steam supply unit that supplies steam (water vapor) to the heat storage material 25.
 (b)蓄熱システム19が実行する処理
 (b-1)蓄熱処理
 排ガス101の温度が高いとき、排ガス101の熱は蓄熱材料25に蓄熱される。このとき、バルブ31は、図7に示すように、開の状態となる。蓄熱によって蓄熱材料25の温度が上昇すると、後述する第1の放熱処理によって蓄熱材料25に吸着していた水蒸気は蒸発し、通路29を通り、容器23の下方に移動する。そして、空気103により冷却されている水27に接触し、凝縮する。上記のように、蓄熱材料25から水蒸気が除去されることで、蓄熱材料25は再生する。
(B) Process performed by the heat storage system 19 (b-1) Heat storage heat When the temperature of the exhaust gas 101 is high, the heat of the exhaust gas 101 is stored in the heat storage material 25. At this time, the valve 31 is opened as shown in FIG. When the temperature of the heat storage material 25 rises due to the heat storage, the water vapor adsorbed on the heat storage material 25 by the first heat radiation process described later evaporates and passes through the passage 29 and moves below the container 23. Then, it contacts the water 27 cooled by the air 103 and condenses. As described above, the heat storage material 25 is regenerated by removing the water vapor from the heat storage material 25.
 (b-2)第1の放熱処理
 第1の放熱処理では、図7に示すように、バルブ31は開の状態となる。排ガス101の温度が低いとき、蓄熱材料25は、それまで蓄熱していた熱を排ガス101に放出する。さらに、水27から蒸発した水蒸気が、蓄熱材料25に含まれる多孔質材料に吸着する。このことにより、蓄熱材料25には、蒸発潜熱が蓄熱される。蓄熱材料25は、その蒸発潜熱も、排ガス101に放出する。
(B-2) First Heat Dissipation Process In the first heat release process, the valve 31 is opened as shown in FIG. When the temperature of the exhaust gas 101 is low, the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Further, the water vapor evaporated from the water 27 is adsorbed to the porous material included in the heat storage material 25. Thereby, the latent heat of vaporization is stored in the heat storage material 25. The heat storage material 25 also releases its latent heat of vaporization to the exhaust gas 101.
 水27から水蒸気が蒸発するとき、水27から蒸発潜熱が奪われ、水27は冷却される。そのため、空気103は、水27により冷却される。 When the water vapor evaporates from the water 27, latent heat of vaporization is removed from the water 27, and the water 27 is cooled. Therefore, the air 103 is cooled by the water 27.
 なお、蓄熱システム19は、第1の放熱処理と、後述する第2の放熱処理とのうちの一方を選択して行うことができる。 In addition, the heat storage system 19 can select and perform one of a 1st heat dissipation process and the 2nd heat dissipation process mentioned later.
 (b-3)第2の放熱処理
 第2の放熱処理では、図8に示すように、バルブ31は閉の状態となる。排ガス101の温度が低いとき、蓄熱材料25は、それまで蓄熱していた熱を排ガス101に放出する。なお、バルブ31は閉の状態であるので、水27から蒸発した水蒸気が、蓄熱材料25に含まれる多孔質材料に吸着することはない。
(B-3) Second Heat Dissipation Process In the second heat dissipation process, the valve 31 is closed as shown in FIG. When the temperature of the exhaust gas 101 is low, the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Since the valve 31 is in a closed state, the water vapor evaporated from the water 27 is not adsorbed by the porous material included in the heat storage material 25.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されることなく、種々の形態を採り得る。 As mentioned above, although embodiment of this indication was described, this indication can take various forms, without being limited to the above-mentioned embodiment.
 前記実施例4において、蓄熱システム19は、排ガス101に代えて、エネルギー変換器21の冷却に用いられる冷却水(冷却媒体の一例)の熱を蓄熱し、蓄熱した熱を冷却水に放出してもよい。この場合、冷却水の温度を安定化し、過度に低下しないようにすることができる。そのため、エネルギー変換器21の暖気を迅速に行うことができる。 In the fourth embodiment, the heat storage system 19 stores heat of cooling water (an example of a cooling medium) used for cooling the energy converter 21 instead of the exhaust gas 101, and releases the stored heat to the cooling water. Also good. In this case, the temperature of the cooling water can be stabilized so that it does not decrease excessively. Therefore, warming up of the energy converter 21 can be performed quickly.
 上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 
 上述した蓄熱材料の他、蓄熱方法等、排ガス浄化方法、熱交換方法等、種々の形態で本開示を実現することもできる。
(第2実施形態)
 本開示の第2実施形態を説明する。
The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.
In addition to the heat storage material described above, the present disclosure can be realized in various forms such as a heat storage method, an exhaust gas purification method, a heat exchange method, and the like.
(Second Embodiment)
A second embodiment of the present disclosure will be described.
 1.蓄熱材料
 1-1.強相関電子系材料
 本開示の蓄熱材料は、強相関電子系材料を含む。強相関電子系材料は、電子間の強いクーロン反発力により、電子が持つスピン・軌道・電荷の自由度のうち少なくとも一つ以上が顕在化した系である。顕在化したスピン・軌道・電荷の自由度は、それぞれ、秩序-無秩序相転移によって状態数の変化に伴う大きなエントロピー変化を示す(顕在化したスピン・軌道・電荷の自由度の相転移は、電子相転移と呼ばれる)。
1. Thermal storage material 1-1. Strongly correlated electron material The heat storage material of the present disclosure includes a strongly correlated electron material. A strongly correlated electron material is a system in which at least one of the degrees of freedom of spin, orbital, and charge possessed by an electron is manifested by strong Coulomb repulsion between electrons. The manifested degrees of freedom of spin, orbital, and charge show large entropy changes accompanying the change in the number of states due to the order-disorder phase transition, respectively. Called the phase transition).
 強相関電子系材料としては、例えば、金属-絶縁体相転移するものが挙げられる。また、強相関電子系材料としては、例えば、遷移金属酸化物が挙げられる。 Examples of strongly correlated electron materials include those that undergo a metal-insulator phase transition. Examples of strongly correlated electron materials include transition metal oxides.
 強相関電子系材料の具体例としては、例えば、V(1-X)(0≦X≦0.0650)、V(1-X)Ta(0≦X≦0.117)、V(1-X)Nb(0≦X≦0.115)、V(1-X)Ru(0≦X≦0.150)、V(1-X)Mo(0≦X≦0.161)、V(1-X)Re(0≦X≦0.0964)、LiMn、LiVS、LiVO、NaNiO、LiRh、V、V、V11、Ti、SmBaFe、EuBaFe、GdBaFe、TbBaFe、DyBaFe、HoBaFe、YBaFe、PrBaCo5.5、DyBaCo5.54、HoBaCo5.48、YBaCo5.49等が挙げられる。これらはいずれも、金属-絶縁体相転移するものであり、遷移金属酸化物である。 Specific examples of strongly correlated electron materials include, for example, V (1-X) W X O 2 (0 ≦ X ≦ 0.0650), V (1-X) Ta X O 2 (0 ≦ X ≦ 0. 117), V (1-X) Nb X O 2 (0 ≦ X ≦ 0.115), V (1-X) Ru X O 2 (0 ≦ X ≦ 0.150), V (1-X) Mo X O 2 (0 ≦ X ≦ 0.161), V (1-X) Re X O 2 (0 ≦ X ≦ 0.0964), LiMn 2 O 4 , LiVS 2 , LiVO 2 , NaNiO 2 , LiRh 2 O 4 , V 2 O 3 , V 4 O 7 , V 6 O 11 , Ti 4 O 7 , SmBaFe 2 O 5 , EuBaFe 2 O 5 , GdBaFe 2 O 5 , TbBaFe 2 O 5 , DyBaFe 2 O 5 , HoBaFe 2 O 5, YBaFe 2 O 5, PrBaCo 2 O 5.5, Dy aCo 2 O 5.54, HoBaCo 2 O 5.48, and the like YBaCo 2 O 5.49. All of these are metal-insulator phase transitions and are transition metal oxides.
 1-2.多孔質形状
 本開示の蓄熱材料は、多孔質形状を有する。多孔質形状は、例えば、図9に示すように、蓄熱材料5の内部に多数の細孔6が存在する形状である。多孔質形状は、ミクロポーラス、メソポーラス、及びマクロポーラスのいずれであってもよい。細孔は連通気孔であってもよいし、閉気孔であってもよい。
1-2. Porous shape The heat storage material of the present disclosure has a porous shape. For example, as shown in FIG. 9, the porous shape is a shape in which a large number of pores 6 exist inside the heat storage material 5. The porous shape may be any of microporous, mesoporous, and macroporous. The pores may be continuous vents or closed pores.
 多孔質形状を構成する細孔の細孔径は0.1nm以上であでもよい。この範囲内であることにより、蒸気の分子を吸着させ、蒸発潜熱を蓄熱する効果が一層顕著になる。なお、細孔径は、蓄熱材料の多孔質形状を撮影したSEM写真又はTEM写真において計測した細孔径から算出することができる。 The pore diameter of the pores constituting the porous shape may be 0.1 nm or more. By being in this range, the effect of adsorbing vapor molecules and storing latent heat of vaporization becomes even more remarkable. The pore diameter can be calculated from the pore diameter measured in the SEM photograph or TEM photograph obtained by photographing the porous shape of the heat storage material.
 蓄熱材料において細孔が占める体積の割合は、0vol%より大きく、80vol%以下でもよい。この範囲内であることにより、蓄熱量と強度とが一層向上する。 The ratio of the volume occupied by the pores in the heat storage material may be greater than 0 vol% and 80 vol% or less. By being in this range, the heat storage amount and strength are further improved.
 蓄熱材料は、その全体にわたって多孔質形状を有していてもよいし、一部において多孔質形状を有していてもよい。多孔質形状を有する部分において、細孔の大きさ、細孔の数密度等は均一であってもよいし、場所により変化してもよい。 The heat storage material may have a porous shape throughout, or a part thereof may have a porous shape. In the portion having a porous shape, the size of the pores, the number density of the pores, etc. may be uniform or may vary depending on the location.
 1-3.蓄熱材料の効果
 強相関電子系材料は単位体積当りの蓄熱量が大きい。本開示の蓄熱材料は、その強相関電子系材料を含むため、単位体積当りの蓄熱量が大きい。
1-3. Effects of heat storage materials Strongly correlated electronic materials have a large amount of heat storage per unit volume. Since the heat storage material of the present disclosure includes the strongly correlated electron material, the heat storage amount per unit volume is large.
 さらに、本開示の蓄熱材料は、多孔質形状を有し、蒸気の分子を、多孔質形状を構成する細孔に吸着させることができる。このとき、蒸発潜熱が発生し、本開示の蓄熱材料は、その蒸発潜熱も蓄熱することができる。よって、本開示の蓄熱材料は、蒸気を含む環境下で蓄熱するとき、一層多くの熱を蓄熱することができる。 Furthermore, the heat storage material of the present disclosure has a porous shape and can adsorb vapor molecules to the pores constituting the porous shape. At this time, latent heat of evaporation is generated, and the heat storage material of the present disclosure can also store the latent heat of evaporation. Therefore, the heat storage material of the present disclosure can store more heat when storing heat in an environment containing steam.
 また、本開示の蓄熱材料は、細孔に吸着していた蒸気の分子を脱離させることができる。このとき、蓄熱材料から蒸発潜熱が奪われ、蓄熱材料は冷却される。 Further, the heat storage material of the present disclosure can desorb vapor molecules adsorbed in the pores. At this time, latent heat of vaporization is taken from the heat storage material, and the heat storage material is cooled.
 また、本開示の蓄熱材料は多孔質形状を有するので、比表面積が大きい。そのため、本開示の蓄熱材料は熱交換効率が高い。 Moreover, since the heat storage material of the present disclosure has a porous shape, the specific surface area is large. Therefore, the heat storage material of the present disclosure has high heat exchange efficiency.
 2.触媒ユニット
 2-1.触媒担体
 本開示の触媒ユニットは、上述した蓄熱材料を含む触媒担体を有する。触媒担体は、蓄熱材料から成るものであってもよいし、さらにそれ以外の材料を含んでいてもよい。触媒担体の形状は、例えば、図10に示すハニカム形状の触媒担体17とすることができる。
2. Catalyst unit 2-1. Catalyst carrier The catalyst unit of this indication has a catalyst carrier containing the heat storage material mentioned above. The catalyst carrier may be made of a heat storage material, and may further contain other materials. The shape of the catalyst carrier can be, for example, a honeycomb-shaped catalyst carrier 17 shown in FIG.
 2-2.触媒
 本開示の触媒ユニットは、上述した触媒担体に担持された触媒を含む。触媒の種類は特に限定されず、公知の触媒(例えば、Pt、Pd、Rh等)から適宜選択できる。触媒は、例えば、ウオッシュコート法等の方法で、触媒担体の表面に担持することができる。
2-2. Catalyst The catalyst unit of the present disclosure includes a catalyst supported on the catalyst carrier described above. The type of the catalyst is not particularly limited, and can be appropriately selected from known catalysts (for example, Pt, Pd, Rh, etc.). The catalyst can be supported on the surface of the catalyst carrier by a method such as a wash coat method.
 2-3.触媒ユニットの効果
 本開示の触媒ユニットは、蓄熱材料を含む触媒担体を有するので、温度変化が緩和される。そのため、触媒反応を安定して行うことができる。
2-3. Effect of catalyst unit Since the catalyst unit of the present disclosure has a catalyst carrier including a heat storage material, a temperature change is mitigated. Therefore, the catalytic reaction can be performed stably.
 また、蓄熱材料は多孔質形状を有するので、上述したとおり、蒸発潜熱を蓄熱することができる。そのため、蓄熱材料を含む触媒担体、及びそれに担持された触媒の温度が一層高くなり、結果として、触媒ユニットにおける触媒反応が一層促進される。 Further, since the heat storage material has a porous shape, latent heat of vaporization can be stored as described above. Therefore, the temperature of the catalyst carrier including the heat storage material and the catalyst supported thereon are further increased, and as a result, the catalytic reaction in the catalyst unit is further promoted.
 2-4.触媒ユニットの用途
 本開示の触媒ユニットは、種々の用途に用いることができ、例えば、内燃機関(例えばガソリンエンジン、ディーゼルエンジン等)の排ガスを浄化する用途に用いることができる。排ガスを浄化する用途に用いる場合、例えば、図11に示すように、触媒担体17に担持した触媒により、排ガス中のCO、CH、NOx等を浄化することができる。また、排ガスを浄化する用途に用いる場合、排ガスに含まれる蒸気の分子が、蓄熱材料の多孔質形状を構成する細孔に吸着される。その結果、触媒担体、及びそれに担持された触媒の温度が一層高くなり、排ガスを浄化する触媒反応が一層促進される。
2-4. Use of catalyst unit The catalyst unit of the present disclosure can be used for various purposes, for example, for use in purifying exhaust gas of an internal combustion engine (eg, gasoline engine, diesel engine, etc.). When used for the purpose of purifying exhaust gas, for example, as shown in FIG. 11, CO, CH, NOx, etc. in the exhaust gas can be purified by the catalyst supported on the catalyst carrier 17. Moreover, when using for the use which purifies exhaust gas, the vapor | steam molecule | numerator contained in exhaust gas is adsorb | sucked by the pore which comprises the porous shape of a thermal storage material. As a result, the temperature of the catalyst carrier and the catalyst supported thereon is further increased, and the catalytic reaction for purifying the exhaust gas is further promoted.
 3.蓄熱システム
 3-1.熱輸送媒体の流路
 本開示の蓄熱システムは、熱輸送媒体の流路を備える。流路としては、例えば、中空配管等が挙げられる。熱輸送媒体としては、例えば、エネルギー変換器が排出する排ガス、又はエネルギー変換器の冷却に用いられる冷却媒体等が挙げられる。エネルギー変換機としては、例えば、内燃機関、燃料電池等が挙げられる。冷却媒体は、液体(例えば、水、アルコール、油、有機溶媒等)であってもよいし、気体(例えば空気、窒素ガス、希ガス等)であってもよい。
3. Thermal storage system 3-1. Flow path of heat transport medium The heat storage system of this indication is provided with the flow path of a heat transport medium. Examples of the flow path include hollow pipes. Examples of the heat transport medium include exhaust gas discharged from the energy converter, or a cooling medium used for cooling the energy converter. Examples of the energy converter include an internal combustion engine and a fuel cell. The cooling medium may be a liquid (for example, water, alcohol, oil, organic solvent, etc.) or a gas (for example, air, nitrogen gas, rare gas, etc.).
 3-2.蓄熱材料
 本開示の蓄熱システムは、流路を流れる熱輸送媒体と熱交換を行う蓄熱材料を備える。蓄熱材料は、上述したものである。蓄熱材料は、例えば、流路の外周面の少なくとも一部と接触させることができる。また、蓄熱材料は、他の部材(例えば、熱伝導率が蓄熱材料より高い材料から成る部材)を介して、熱輸送媒体と熱交換を行ってもよい。熱交換は、熱輸送媒体の熱を蓄熱材料に蓄えるものであってもよいし、蓄熱材料に蓄えていた熱を熱輸送媒体に放出するものであってもよい。
3-2. Thermal storage material The thermal storage system of this indication is provided with the thermal storage material which performs heat exchange with the heat transport medium which flows through a channel. The heat storage material is as described above. The heat storage material can be brought into contact with at least a part of the outer peripheral surface of the flow path, for example. Further, the heat storage material may exchange heat with the heat transport medium via another member (for example, a member having a higher thermal conductivity than the heat storage material). The heat exchange may store heat of the heat transport medium in the heat storage material, or may release heat stored in the heat storage material to the heat transport medium.
 3-3.蒸気供給ユニット
 本開示の蓄熱システムは、蓄熱材料に蒸気を供給する蒸気供給ユニットを備える。蒸気供給ユニットにより蓄熱材料に蒸気を供給し、蒸気の分子が、蓄熱材料が有する多孔質形状を構成する細孔に吸着すると、蒸発潜熱が発生する。そのため、本開示の蓄熱システムは、蓄熱材料に蒸発潜熱を蓄熱することができる。また、本開示の蓄熱システムは、蓄熱材料に蓄熱した蒸発潜熱を熱輸送媒体に放出することができる。
3-3. Steam supply unit The heat storage system of this indication is provided with the steam supply unit which supplies steam to heat storage material. When steam is supplied to the heat storage material by the steam supply unit and the vapor molecules are adsorbed to the pores constituting the porous shape of the heat storage material, latent heat of evaporation is generated. Therefore, the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material. Moreover, the heat storage system of this indication can discharge | release the evaporation latent heat stored in the heat storage material to a heat transport medium.
 3-4.蓄熱システムの効果
 本開示の蓄熱システムが備える蓄熱材料は、多孔質形状を有する。そのため、本開示の蓄熱システムは、熱輸送媒体の熱を一層多く蓄積し、また、一層多くの熱を熱輸送媒体に放出することができる。
3-4. Effect of heat storage system The heat storage material provided in the heat storage system of the present disclosure has a porous shape. Therefore, the heat storage system of the present disclosure can accumulate more heat of the heat transport medium and can release more heat to the heat transport medium.
 また、本開示の蓄熱システムは、蓄熱材料に蒸気を供給する蒸気供給ユニットを備える。本開示の蓄熱システムは、上述したとおり、蒸気供給ユニットにより、蓄熱材料に蒸発潜熱を蓄熱することができる。そのため、本開示の蓄熱システムは、一層多くの熱を熱輸送媒体に放出することができる。 The heat storage system of the present disclosure includes a steam supply unit that supplies steam to the heat storage material. As described above, the heat storage system of the present disclosure can store latent heat of vaporization in the heat storage material by the steam supply unit. Therefore, the heat storage system of the present disclosure can release more heat to the heat transport medium.
 (実施例5)
 V2O5とシュウ酸とをオートクレーブに所定量入れ、水熱合成した。その結果、多孔質形状を有する蓄熱材料を製造することができた。この蓄熱材料は、強相関電子系材料として、VOを含む。
(Example 5)
A predetermined amount of V 2 O 5 and oxalic acid was placed in an autoclave and hydrothermally synthesized. As a result, a heat storage material having a porous shape could be manufactured. This heat storage material contains VO 2 as a strongly correlated electron material.
 (実施例6)
 セルロースにVOを担持させ、加熱した。このとき、セルロースが鋳型として機能する。上記の製法によって、VOから成り、多孔質形状を有する蓄熱材料を製造することができた。
(Example 6)
VO 2 was supported on cellulose and heated. At this time, cellulose functions as a mold. By the above manufacturing method, a heat storage material made of VO 2 and having a porous shape could be manufactured.
 (実施例7)
 (a)蓄熱システム19の構成
 蓄熱システム19の構成を図12~図14に基づき説明する。図12に示すように、エネルギー変換器21が排出した排ガス101は蓄熱システム19内を通過する。なお、エネルギー変換器21は、内燃機関又は燃料電池である。また、排ガス101は熱輸送媒体の一例である。
(Example 7)
(A) Configuration of Heat Storage System 19 The configuration of the heat storage system 19 will be described with reference to FIGS. As shown in FIG. 12, the exhaust gas 101 discharged from the energy converter 21 passes through the heat storage system 19. The energy converter 21 is an internal combustion engine or a fuel cell. The exhaust gas 101 is an example of a heat transport medium.
 蓄熱システム19内を通過する排ガス101の温度が高ければ、蓄熱システム19は排ガス101の熱を蓄熱する。また、排ガス101の温度が低ければ、蓄熱システム19は、それまで蓄熱していた熱を排ガス101に放出し、排ガス101の温度を上げる。 If the temperature of the exhaust gas 101 passing through the heat storage system 19 is high, the heat storage system 19 stores the heat of the exhaust gas 101. If the temperature of the exhaust gas 101 is low, the heat storage system 19 releases the heat that has been stored up to that time to the exhaust gas 101 and raises the temperature of the exhaust gas 101.
 排ガス101の温度が上がると、エネルギー変換器21の暖気を迅速に行うことができる。また、排ガス101の温度が上がると、排ガス101を浄化する触媒反応を促進することができる。 When the temperature of the exhaust gas 101 rises, the energy converter 21 can be warmed up quickly. Further, when the temperature of the exhaust gas 101 is increased, the catalytic reaction for purifying the exhaust gas 101 can be promoted.
 図13、図14に示すように、蓄熱システム19は、中空の容器23と、その内部に収容された蓄熱材料25及び水27を備える。容器23は、その中央に細くくびれた通路29を備える。通路29には開閉自在のバルブ31が設けられている。バルブ31は、図13に示すように、通路29を開放する状態と、図14に示すように、通路29を閉じる状態とのうちのいずれの状態も実現できる。バルブ31はユーザが手動で操作するものであってもよいし、蓄熱システム19が備える制御部、又は外部からの指令に応じて自動的に動作するものであってもよい。 As shown in FIGS. 13 and 14, the heat storage system 19 includes a hollow container 23, a heat storage material 25 and water 27 accommodated therein. The container 23 is provided with a narrow constricted passage 29 in the center thereof. A valve 31 that can be opened and closed is provided in the passage 29. As shown in FIG. 13, the valve 31 can realize either a state in which the passage 29 is opened or a state in which the passage 29 is closed as shown in FIG. 14. The valve 31 may be manually operated by the user, or may be automatically operated in accordance with a control unit provided in the heat storage system 19 or an external command.
 蓄熱材料25は、容器23の内部のうち、通路29よりも上方に存在する。蓄熱材料25は、メッシュ状の支持板33により、下方に落下しないように支持されている。蓄熱材料25は、前記実施例5で製造したものである。また、蓄熱材料25は、前記実施例6で製造したものであってもよい。水27は、容器23の内部のうち、通路29よりも下側に存在する。 The heat storage material 25 exists above the passage 29 in the container 23. The heat storage material 25 is supported by a mesh-like support plate 33 so as not to fall downward. The heat storage material 25 is manufactured in the fifth embodiment. Further, the heat storage material 25 may be manufactured in the sixth embodiment. The water 27 exists below the passage 29 in the container 23.
 容器23の上方には、容器23を横方向に貫通する媒体流路35が設けられている。媒体流路35と、容器23の内部とは、容器23の外壁37により隔てられ、連通していない。蓄熱材料25は媒体流路35の周囲に配置されている。媒体流路35は、排ガス101の流路である。 A medium flow path 35 penetrating the container 23 in the lateral direction is provided above the container 23. The medium flow path 35 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication. The heat storage material 25 is disposed around the medium flow path 35. The medium flow path 35 is a flow path for the exhaust gas 101.
 また、容器23の下方には、容器23を横方向に貫通する空気流路39が設けられている。空気流路39と、容器23の内部とは、容器23の外壁37により隔てられ、連通していない。水27は、空気流路39の周囲に存在する。空気流路39は、水27を冷却するための空気103の流路である。 Further, below the container 23, an air flow path 39 penetrating the container 23 in the lateral direction is provided. The air flow path 39 and the inside of the container 23 are separated by the outer wall 37 of the container 23 and are not in communication. The water 27 exists around the air flow path 39. The air flow path 39 is a flow path of the air 103 for cooling the water 27.
 なお、容器23、水27、及びバルブ31は、蓄熱材料25に蒸気(水蒸気)を供給する蒸気供給ユニットの一例である。 The container 23, the water 27, and the valve 31 are an example of a steam supply unit that supplies steam (water vapor) to the heat storage material 25.
 (b)蓄熱システム19が実行する処理
 (b-1)蓄熱処理
 排ガス101の温度が高いとき、排ガス101の熱は蓄熱材料25に蓄熱される。このとき、バルブ31は、図13に示すように、開の状態となる。蓄熱によって蓄熱材料25の温度が上昇すると、後述する第1の放熱処理によって蓄熱材料25に吸着していた水蒸気は蒸発し、通路29を通り、容器23の下方に移動する。そして、空気103により冷却されている水27に接触し、凝縮する。上記のように、蓄熱材料25から水蒸気が除去されることで、蓄熱材料25は再生する。
(B) Process performed by the heat storage system 19 (b-1) Heat storage heat When the temperature of the exhaust gas 101 is high, the heat of the exhaust gas 101 is stored in the heat storage material 25. At this time, the valve 31 is in an open state as shown in FIG. When the temperature of the heat storage material 25 rises due to the heat storage, the water vapor adsorbed on the heat storage material 25 by the first heat radiation process described later evaporates and passes through the passage 29 and moves below the container 23. Then, it contacts the water 27 cooled by the air 103 and condenses. As described above, the heat storage material 25 is regenerated by removing the water vapor from the heat storage material 25.
 (b-2)第1の放熱処理
 第1の放熱処理では、図13に示すように、バルブ31は開の状態となる。排ガス101の温度が低いとき、蓄熱材料25は、それまで蓄熱していた熱を排ガス101に放出する。さらに、水27から蒸発した水蒸気が、蓄熱材料25が有する多孔質形状を構成する細孔に吸着する。このことにより、蓄熱材料25には、蒸発潜熱が蓄熱される。蓄熱材料25は、その蒸発潜熱も、排ガス101に放出する。
(B-2) First Heat Dissipation Process In the first heat release process, the valve 31 is opened as shown in FIG. When the temperature of the exhaust gas 101 is low, the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Further, the water vapor evaporated from the water 27 is adsorbed to the pores constituting the porous shape of the heat storage material 25. Thereby, the latent heat of vaporization is stored in the heat storage material 25. The heat storage material 25 also releases its latent heat of vaporization to the exhaust gas 101.
 水27から水蒸気が蒸発するとき、水27から蒸発潜熱が奪われ、水27は冷却される。そのため、空気103は、水27により冷却される。 When the water vapor evaporates from the water 27, latent heat of vaporization is removed from the water 27, and the water 27 is cooled. Therefore, the air 103 is cooled by the water 27.
 なお、蓄熱システム19は、第1の放熱処理と、後述する第2の放熱処理とのうちの一方を選択して行うことができる。 In addition, the heat storage system 19 can select and perform one of a 1st heat dissipation process and the 2nd heat dissipation process mentioned later.
 (b-3)第2の放熱処理
 第2の放熱処理では、図14に示すように、バルブ31は閉の状態となる。排ガス101の温度が低いとき、蓄熱材料25は、それまで蓄熱していた熱を排ガス101に放出する。なお、バルブ31は閉の状態であるので、水27から蒸発した水蒸気が、蓄熱材料25に吸着することはない。
(B-3) Second Heat Dissipation Process In the second heat dissipation process, the valve 31 is closed as shown in FIG. When the temperature of the exhaust gas 101 is low, the heat storage material 25 releases the heat stored up to that time to the exhaust gas 101. Since the valve 31 is in a closed state, the water vapor evaporated from the water 27 is not adsorbed by the heat storage material 25.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されることなく、種々の形態を採り得る。 As mentioned above, although embodiment of this indication was described, this indication can take various forms, without being limited to the above-mentioned embodiment.
 前記実施例7において、蓄熱システム19は、排ガス101に代えて、エネルギー変換器21の冷却に用いられる冷却水(冷却媒体の一例)の熱を蓄熱し、蓄熱した熱を冷却水に放出してもよい。この場合、冷却水の温度を安定化し、過度に低下しないようにすることができる。そのため、エネルギー変換器21の暖気を迅速に行うことができる。 In the seventh embodiment, the heat storage system 19 stores heat of cooling water (an example of a cooling medium) used for cooling the energy converter 21 instead of the exhaust gas 101, and releases the stored heat to the cooling water. Also good. In this case, the temperature of the cooling water can be stabilized so that it does not decrease excessively. Therefore, warming up of the energy converter 21 can be performed quickly.
 上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.
 上述した蓄熱材料の他、蓄熱方法、排ガス浄化方法、熱交換方法等、種々の形態で本開示を実現することもできる。 In addition to the heat storage material described above, the present disclosure can be realized in various forms such as a heat storage method, an exhaust gas purification method, a heat exchange method, and the like.

Claims (14)

  1.  強相関電子系材料と、多孔質材料とを含む蓄熱材料(5)。 A heat storage material (5) including a strongly correlated electron material and a porous material.
  2.  請求項1に記載の蓄熱材料であって、
     前記強相関電子系材料が、金属-絶縁体相転移するものである蓄熱材料。
    The heat storage material according to claim 1,
    A heat storage material in which the strongly correlated electron system material undergoes a metal-insulator phase transition.
  3.  請求項1又は2に記載の蓄熱材料であって、
     前記強相関電子系材料が、遷移金属酸化物である蓄熱材料。
    The heat storage material according to claim 1 or 2,
    A heat storage material in which the strongly correlated electron material is a transition metal oxide.
  4.  請求項1~3のいずれか1項に記載の蓄熱材料であって、
     前記多孔質材料の比表面積が1m/g以上である蓄熱材料。
    The heat storage material according to any one of claims 1 to 3,
    The heat storage material whose specific surface area of the said porous material is 1 m < 2 > / g or more.
  5.  請求項1~4のいずれか1項に記載の蓄熱材料を含む触媒担体(17)と、
     前記触媒担体に担持された触媒と、
     を含む触媒ユニット。
    A catalyst carrier (17) comprising the heat storage material according to any one of claims 1 to 4;
    A catalyst supported on the catalyst carrier;
    A catalyst unit comprising:
  6.  熱輸送媒体の流路(35)と、
     前記流路を流れる熱輸送媒体(101)と熱交換を行う請求項1~4のいずれか1項に記載の蓄熱材料(25)と、
     前記蓄熱材料に蒸気を供給する蒸気供給ユニット(23、27、31)と、
     を備える蓄熱システム(19)。
    A heat transport medium flow path (35);
    The heat storage material (25) according to any one of claims 1 to 4, which performs heat exchange with a heat transport medium (101) flowing through the flow path,
    A steam supply unit (23, 27, 31) for supplying steam to the heat storage material;
    A heat storage system (19) comprising:
  7.  請求項6に記載の蓄熱システムであって、
     前記熱輸送媒体は、エネルギー変換器(21)が排出する排ガス(101)、又は前記エネルギー変換器の冷却に用いられる冷却媒体である蓄熱システム。
    The heat storage system according to claim 6,
    The heat transport medium is a heat storage system which is an exhaust gas (101) discharged from an energy converter (21) or a cooling medium used for cooling the energy converter.
  8.  強相関電子系材料を含み、多孔質形状を有する蓄熱材料(5)。 A heat storage material (5) containing a strongly correlated electron material and having a porous shape.
  9.  請求項8に記載の蓄熱材料であって、
     前記強相関電子系材料が、金属-絶縁体相転移するものである蓄熱材料。
    The heat storage material according to claim 8,
    A heat storage material in which the strongly correlated electron system material undergoes a metal-insulator phase transition.
  10.  請求項8又は9に記載の蓄熱材料であって、
     前記強相関電子系材料が、遷移金属酸化物である蓄熱材料。
    The heat storage material according to claim 8 or 9,
    A heat storage material in which the strongly correlated electron material is a transition metal oxide.
  11.  請求項8~10のいずれか1項に記載の蓄熱材料であって、
     前記多孔質形状を構成する細孔(6)が、連通細孔、又は閉細孔である蓄熱材料。
    The heat storage material according to any one of claims 8 to 10,
    A heat storage material in which the pores (6) constituting the porous shape are communication pores or closed pores.
  12.  請求項8~11のいずれか1項に記載の蓄熱材料を含む触媒担体(17)と、
     前記触媒担体に担持された触媒と、
     を含む触媒ユニット。
    A catalyst carrier (17) comprising the heat storage material according to any one of claims 8 to 11;
    A catalyst supported on the catalyst carrier;
    A catalyst unit comprising:
  13.  熱輸送媒体の流路(35)と、
     前記流路を流れる熱輸送媒体(101)と熱交換を行う請求項8~11のいずれか1項に記載の蓄熱材料(25)と、
     前記蓄熱材料に蒸気を供給する蒸気供給ユニット(23、27、31)と、
     を備える蓄熱システム(19)。
    A heat transport medium flow path (35);
    The heat storage material (25) according to any one of claims 8 to 11, which exchanges heat with a heat transport medium (101) flowing through the flow path,
    A steam supply unit (23, 27, 31) for supplying steam to the heat storage material;
    A heat storage system (19) comprising:
  14.  請求項13に記載の蓄熱システムであって、
     前記熱輸送媒体は、エネルギー変換器(21)が排出する排ガス(101)、又は前記エネルギー変換器の冷却に用いられる冷却媒体である蓄熱システム。
     
    The heat storage system according to claim 13,
    The heat transport medium is a heat storage system which is an exhaust gas (101) discharged from an energy converter (21) or a cooling medium used for cooling the energy converter.
PCT/JP2015/004762 2014-09-26 2015-09-17 Heat storage material, catalytic unit, and heat storage system WO2016047121A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014196739A JP2016069393A (en) 2014-09-26 2014-09-26 Heat storage material, catalyst unit, and heat storage system
JP2014-196739 2014-09-26
JP2014196738A JP2016069392A (en) 2014-09-26 2014-09-26 Heat storage material, catalyst unit, and heat storage system
JP2014-196738 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047121A1 true WO2016047121A1 (en) 2016-03-31

Family

ID=55580668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004762 WO2016047121A1 (en) 2014-09-26 2015-09-17 Heat storage material, catalytic unit, and heat storage system

Country Status (1)

Country Link
WO (1) WO2016047121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069609A (en) * 2014-10-02 2016-05-09 日本碍子株式会社 Heat storage member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024086A (en) * 2007-07-19 2009-02-05 Harima Chem Inc Method of manufacturing supported type solid heat storing material
JP2009262748A (en) * 2008-04-24 2009-11-12 Toyota Central R&D Labs Inc Vehicular chemical heat storage system
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir
JP2013010915A (en) * 2011-06-28 2013-01-17 Masaru Hiyamizu Heat absorbing material and product of the same
JP2013013844A (en) * 2011-07-01 2013-01-24 Miki Riken Kogyo Kk Functional particle and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024086A (en) * 2007-07-19 2009-02-05 Harima Chem Inc Method of manufacturing supported type solid heat storing material
JP2009262748A (en) * 2008-04-24 2009-11-12 Toyota Central R&D Labs Inc Vehicular chemical heat storage system
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir
JP2013010915A (en) * 2011-06-28 2013-01-17 Masaru Hiyamizu Heat absorbing material and product of the same
JP2013013844A (en) * 2011-07-01 2013-01-24 Miki Riken Kogyo Kk Functional particle and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069609A (en) * 2014-10-02 2016-05-09 日本碍子株式会社 Heat storage member

Similar Documents

Publication Publication Date Title
RU2446855C2 (en) Gas separator
JP6481753B2 (en) heat pump
JP4818358B2 (en) Metal oxide catalyst for hydrogen production and method for producing the same
CN101688705B (en) Component for solar adsorption refrigeration system and method of making such component
JP2009019572A (en) Canister, adsorbent for canister and method of manufacturing its adsorbent
JP2005161225A (en) Catalyst for purifying exhaust gas
US20210229024A1 (en) Enhanced refrigeration purge system
KR102546112B1 (en) Manufacturing Method of Electrified Fiber Sorbent for Electric and Electromagnetic Swing Adsorption Process
WO2016047121A1 (en) Heat storage material, catalytic unit, and heat storage system
JP4706384B2 (en) Hydrogen storage device
Wang et al. “Storage-oxidation” cycling process for indoor benzene removal at room temperature
JP2016069392A (en) Heat storage material, catalyst unit, and heat storage system
JP2016069393A (en) Heat storage material, catalyst unit, and heat storage system
JP2008215253A (en) NOx EMISSION CONTROL METHOD AND NOx EMISSION CONTROL DEVICE
JP2008200653A (en) New exhaust gas cleaning method
JP2015124645A (en) Canister
JP4857831B2 (en) Manufacturing method of diesel particulate filter
JP5428774B2 (en) Exhaust gas purification catalyst
WO2018021139A1 (en) Thermal storage system, thermal storage container, thermal storage device using thermal storage container, and warm air device using thermal storage device
JP4362435B2 (en) Hydrogen gas removal device
KR20160107871A (en) An electrode for electro-adsoptive desalination device and method for preparing the same
JP4823100B2 (en) New exhaust gas purification catalyst
JP4662534B2 (en) Hydrogen gas generator
JP4876644B2 (en) Exhaust gas purification method
JP2018146162A (en) Heat storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844439

Country of ref document: EP

Kind code of ref document: A1