JP2015124645A - Canister - Google Patents

Canister Download PDF

Info

Publication number
JP2015124645A
JP2015124645A JP2013268410A JP2013268410A JP2015124645A JP 2015124645 A JP2015124645 A JP 2015124645A JP 2013268410 A JP2013268410 A JP 2013268410A JP 2013268410 A JP2013268410 A JP 2013268410A JP 2015124645 A JP2015124645 A JP 2015124645A
Authority
JP
Japan
Prior art keywords
adsorbent
thickness
canister
less
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013268410A
Other languages
Japanese (ja)
Inventor
雄治 荒瀬
Yuji Arase
雄治 荒瀬
順平 大道
Junpei Omichi
順平 大道
貴志 蓮見
Takashi Hasumi
貴志 蓮見
山碕 弘二
Koji Yamazaki
弘二 山碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Priority to JP2013268410A priority Critical patent/JP2015124645A/en
Publication of JP2015124645A publication Critical patent/JP2015124645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a size and a weight of a canister while improving adsorbing/desorbing performance by optimizing an adsorbent charged in a plurality of chambers in the canister.SOLUTION: An adsorbent is charged in each of a plurality of chambers 5-8 arranged in series along the flowing direction in a case 2. When an outer diameter of the adsorbent of a solid shape or a thickness of each portion of the adsorbent of a hollow shape is defined as a thickness of the adsorbent, and a ratio of microscopic pores of a size less than 500 nm among the microscopic pores of a size of 50 nm or more in the adsorbent is defined as a volume ratio of less than 500 nm, the thickness of the adsorbent charged in the plurality of chambers are gradually reduced, and the volume ratio of less than 500 nm is gradually increased from an inflow/outflow portion side toward an atmosphere open side.

Description

この発明は、例えば自動車用内燃機関の燃料蒸気の処理などに用いられ、吸着材として微視的細孔と巨視的細孔とを有する活性炭を用いたキャニスタに関する。   The present invention relates to a canister that is used, for example, for the treatment of fuel vapor in an internal combustion engine for automobiles and uses activated carbon having microscopic pores and macroscopic pores as an adsorbent.

例えば自動車用内燃機関においては、車両の燃料タンクから蒸発した燃料蒸気の外部への放出を防止するために、燃料蒸気の吸着および脱離が可能なキャニスタが設けられている。このキャニスタは、周知のように、ケース内に吸着材が充填されており、流れ方向一端側には大気開放口が設けられ、他端側には燃料タンクに連通する燃料蒸気の流入部(チャージポート)と内燃機関の吸気通路に連通する燃料蒸気の流出部(パージポート)とが設けられている。車両停止後等に発生する燃料蒸気は、流入部を通して燃料タンクからキャニスタへ導入されて、吸着材に一時的に吸着される。その後の運転中に、内燃機関の吸気サイクルにおいて大気開放口から大気が流入して流出部より流出する空気の流れが生じ、この吸気流れにより吸着材に吸着されていた燃料成分を新気とともに脱離させて流出部から内燃機関の吸気通路を経由して燃焼室内で燃焼処理するようになっている。   For example, in an automobile internal combustion engine, a canister capable of adsorbing and desorbing fuel vapor is provided in order to prevent release of fuel vapor evaporated from a fuel tank of the vehicle to the outside. As is well known, the canister is filled with an adsorbent in the case, provided with an air opening at one end in the flow direction, and an inflow portion (charge) for the fuel vapor communicating with the fuel tank at the other end. Port) and a fuel vapor outflow portion (purge port) communicating with the intake passage of the internal combustion engine. Fuel vapor generated after the vehicle stops or the like is introduced from the fuel tank to the canister through the inflow portion, and is temporarily adsorbed by the adsorbent. During the subsequent operation, air flows in from the atmosphere opening port and flows out from the outflow part in the intake cycle of the internal combustion engine, and this intake flow removes the fuel components adsorbed on the adsorbent together with fresh air. The combustion treatment is performed in the combustion chamber from the outflow portion via the intake passage of the internal combustion engine.

このようなキャニスタにおいて、吸着脱離を効率的に行えるように、例えば特許文献1では、キャニスタのケース内に、吸着材が充填される複数の室を流れ方向に沿って直列に配置し、大気開放口側の室には、熱容量の大きい蓄熱吸着材を配置することが開示されている。   In such a canister, for example, in Patent Document 1, a plurality of chambers filled with an adsorbent are arranged in series along the flow direction in the canister case so that adsorption / desorption can be performed efficiently. It is disclosed that a heat storage adsorbent having a large heat capacity is disposed in the chamber on the opening side.

また、特許文献2では、昼夜呼吸損失エミッション(Diurnal Bleathing Loss;DBL)を大幅に低減する技術として、キャニスタに充填される吸着材を、n−ブタン濃度が5容積%と50容積%との間でのn−ブタン濃度の平衡吸着量の差分が35g/Lを超える活性炭(以下、「A炭」と呼ぶ)と、35g/L以下の活性炭(以下、「B炭」と呼ぶ)の二種類に区分し、流入・流出部側の室にはA炭を用いた吸着材を充填し、大気開放口側の室にはB炭を用いた吸着材を充填している。このように、大気開放口側に平衡吸着量の差分が小さい活性炭、つまり有効吸着量(吸着時と脱離後の吸着量の差分)が少ないものの脱離性能に優れたB炭を配置することで、大気開放口側への燃料蒸気の排出を抑制し、昼夜呼吸損失エミッション(DBL)の低減を図るものである。   Further, in Patent Document 2, as a technique for significantly reducing day and night breathing loss (DBL), an adsorbent filled in a canister is used with an n-butane concentration between 5% by volume and 50% by volume. Activated carbon (hereinafter referred to as “A charcoal”) having a difference in equilibrium adsorption amount of n-butane concentration exceeding 35 g / L and activated carbon having a difference of 35 g / L or less (hereinafter referred to as “B charcoal”). The chamber on the inflow / outflow section side is filled with an adsorbent using A charcoal, and the chamber on the atmosphere opening side is filled with an adsorbent using B charcoal. In this way, activated carbon with a small difference in equilibrium adsorption amount on the atmosphere opening side, that is, B charcoal with excellent desorption performance with a small effective adsorption amount (difference between adsorption amount after adsorption and after adsorption) is arranged. Thus, the discharge of fuel vapor to the atmosphere opening side is suppressed, and the breathing loss emission (DBL) is reduced day and night.

特開2009−19572号公報JP 2009-19572 A 特表2005−510654号公報JP 2005-510654 A

しかしながら、特許文献1のように、蓄熱吸着材を用いた場合、吸着材の体積に加えて、蓄熱材料の体積が必要となり、キャニスタの大型化を招く。   However, when the heat storage adsorbent is used as in Patent Document 1, the volume of the heat storage material is required in addition to the volume of the adsorbent, resulting in an increase in the size of the canister.

また、特許文献2のように、有効吸着量が少ないB炭を用いた吸着材を大気開放口側に配置すると、所定の有効吸着量を確保するために必要な活性炭の容量(体積)が増加し、やはりキャニスタの大型化や重量増加が問題となる。   Moreover, if the adsorbent using B charcoal with little effective adsorption amount is arrange | positioned like the patent document 2 in the atmosphere opening | mouth side, the capacity | capacitance (volume) of activated carbon required in order to ensure a predetermined effective adsorption amount will increase. However, enlargement of the canister and increase in weight are also problems.

そこで本発明は、大気開放口側に有効吸着量の大きい活性炭を用いた吸着材を配置した場合であっても、脱離性能に優れ、昼夜呼吸損失エミッション(DBL)を十分に低減することが可能な新規なキャニスタを提供することを目的としている。   Therefore, the present invention is excellent in desorption performance even when an adsorbent using activated carbon with a large effective adsorption amount is disposed on the atmosphere opening side, and can sufficiently reduce day and night respiratory loss emissions (DBL). It aims to provide a possible new canister.

この発明に係るキャニスタは、ケース内の流れ方向に沿って直列に配置された複数の室内に吸着材が充填されるとともに、上記流れ方向の一端に燃料蒸気の流入・流出部、他端に大気開放口を備えている。   The canister according to the present invention has an adsorbent filled in a plurality of chambers arranged in series along the flow direction in the case, an inflow / outflow portion of fuel vapor at one end in the flow direction, and an atmosphere at the other end. It has an open mouth.

上記吸着材は、円柱状もしくは球形の中実形状もしくは中空形状をなしている。   The adsorbent has a cylindrical or spherical solid shape or a hollow shape.

そして、上記中実形状の吸着材の外径、もしくは上記中空形状の吸着材の各部の肉厚を吸着材の厚みと定義し、上記吸着材における50nm以上の大きさの巨視的細孔のうち、500nm未満の大きさの巨視的細孔が占める比率を500nm未満の容積比率と定義すると、上記流入・流出部側から大気開放口側へ向けて、上記複数の室に充填される吸着材の厚みを段階的に小さくするとともに、上記500nm未満の容積比率を段階的に大きくしている。   Then, the outer diameter of the solid adsorbent or the thickness of each part of the hollow adsorbent is defined as the thickness of the adsorbent, and among the macroscopic pores having a size of 50 nm or more in the adsorbent When the ratio of the macroscopic pores having a size of less than 500 nm is defined as the volume ratio of less than 500 nm, the adsorbent filled in the plurality of chambers from the inflow / outflow portion side to the atmosphere opening side is defined. While decreasing the thickness stepwise, the volume ratio of less than 500 nm is increased stepwise.

好ましくは、上記流入・流出部側から大気開放口側へ向けて、上記複数の室に充填される吸着材の外径を段階的に大きくする。   Preferably, the outer diameter of the adsorbent filled in the plurality of chambers is increased stepwise from the inflow / outflow side toward the atmosphere opening side.

更に好ましくは、上記流入・流出部側から大気開放口側へ向けて、上記複数の室の通路直交方向の断面積を段階的に小さくする。   More preferably, the cross-sectional area of the plurality of chambers in the direction perpendicular to the passage is gradually reduced from the inflow / outflow side toward the atmosphere opening side.

この発明のよれば、キャニスタのケースに内に直列に配置される複数の室に充填される吸着材に対し、流入・流出部側から大気開放口側へ向けて、その厚みを大気開放口側へ向けて段階的に小さくするとともに、500nm未満の容積比率を段階的に大きくすることによって、吸着・脱離性能を向上して昼夜呼吸損失エミッション(DBL)を大幅に削減しつつ、吸着材の容量の増加を抑制して、キャニスタの小型化・軽量化を図ることができる。   According to the present invention, the thickness of the adsorbent filled in the plurality of chambers arranged in series in the canister case from the inflow / outflow portion side to the air release port side is reduced to the air release port side. While gradually reducing the volume ratio of less than 500 nm toward the target, the adsorption / desorption performance is improved and the breathing loss emission (DBL) is greatly reduced while the adsorbent is reduced. The increase in capacity can be suppressed, and the canister can be reduced in size and weight.

また、流入・流出部側から大気開放口側へ向けて、上記複数の室に充填される吸着材の外径を段階的に大きくし、更に好ましくは、複数の室の通路直交方向の断面積を段階的に小さくすることによって、昼夜呼吸損失エミッションを更に低減しつつ、通気抵抗を抑制することができる。   Further, the outer diameter of the adsorbent filled in the plurality of chambers is gradually increased from the inflow / outflow portion side toward the atmosphere opening side, and more preferably, the cross-sectional area of the plurality of chambers in the direction perpendicular to the passageway. By reducing the stepwise, the ventilation resistance can be suppressed while further reducing the breathing loss emission during the day and night.

本発明の第1実施例に係るキャニスタを示す断面図。1 is a cross-sectional view showing a canister according to a first embodiment of the present invention. 中空状の吸着材を示す側面図(a)および正面図(b)。The side view (a) and front view (b) which show a hollow adsorbent. 吸着材として使用され得る5つの活性炭の各データを示す表。The table | surface which shows each data of five activated carbon which can be used as an adsorbent. 図3の5つの活性炭の形状を示す断面図。Sectional drawing which shows the shape of five activated carbons of FIG. 図3の5つの活性炭の巨視的細孔の大きさの分布を示すグラフ。The graph which shows distribution of the magnitude | size of the macroscopic pore of five activated carbons of FIG. 上記第1実施例と比較例における昼夜呼吸損失エミッションを示す特性図。The characteristic view which shows the day and night respiratory loss emission in the said 1st Example and a comparative example. 本発明の第2実施例に係るキャニスタを示す断面図。Sectional drawing which shows the canister which concerns on 2nd Example of this invention.

図1は、本発明に係るキャニスタ1の第1実施例を示している。このキャニスタ1は、合成樹脂製のケース2によって二重のUターン形状に流路が形成されているものであって、流れ方向の一端に、燃料蒸気の流入部となるチャージポート3と、燃料蒸気の流出部となるパージポート4と、が設けられており、流れ方向の他端に、大気開放口となる大気ポート5が設けられている。上記チャージポート3は例えば図示しない自動車の燃料タンクに接続され、上記パージポート4は例えば内燃機関の吸気系に接続される。   FIG. 1 shows a first embodiment of a canister 1 according to the present invention. This canister 1 has a flow path formed in a double U-turn shape by a case 2 made of synthetic resin. At one end in the flow direction, a charge port 3 serving as an inflow portion of fuel vapor, a fuel A purge port 4 serving as a steam outflow portion is provided, and an air port 5 serving as an air release port is provided at the other end in the flow direction. The charge port 3 is connected to a fuel tank of an automobile (not shown), for example, and the purge port 4 is connected to an intake system of an internal combustion engine, for example.

上記ケース2内には、吸着材を収容する室として、上記チャージポート3およびパージポート4の側から順に、第1室6、第2室7、第3室8及び第4室9が直列に設けられている。第1室6には、後述する活性炭A−1からなる相対的に粒径の小さい吸着材10が充填されている。第2室7には、上記の活性炭A−1を用いた吸着材11が充填されている。第3室8には、後述する活性炭A−2を用いた吸着材12が充填され、第4室9には、後述する活性炭B−2を用いたハニカム形状をなす外径の最も大きな吸着材13が充填されている。   In the case 2, a first chamber 6, a second chamber 7, a third chamber 8, and a fourth chamber 9 are arranged in series in order from the charge port 3 and purge port 4 side as a chamber for containing an adsorbent. Is provided. The first chamber 6 is filled with an adsorbent 10 having a relatively small particle diameter made of activated carbon A-1 described later. The second chamber 7 is filled with the adsorbent 11 using the activated carbon A-1. The third chamber 8 is filled with an adsorbent 12 using activated carbon A-2, which will be described later, and the fourth chamber 9 is an adsorbent having the largest outer diameter and having a honeycomb shape using activated carbon B-2, which will be described later. 13 is filled.

これにより、キャニスタ1の流路の中で特に大気ポート5に近い部分での通気抵抗の低減が達成され、キャニスタ1全体としての脱離性能が向上する。上記第1室6、第2室7、第3室8及び第4室9の間は、例えば通気性を有する多孔板やフィルタによって互いに区画されている。   As a result, a reduction in ventilation resistance is achieved in a portion close to the atmospheric port 5 in the flow path of the canister 1, and the detachment performance of the canister 1 as a whole is improved. The first chamber 6, the second chamber 7, the third chamber 8, and the fourth chamber 9 are separated from each other by, for example, a perforated plate or a filter having air permeability.

上記第3室8に充填される吸着材12は、活性炭そのものの微視的細孔(直径が2nm以上50nm未満の細孔)に加えて、燃料蒸気の通路となる巨視的細孔(直径が50nm以上100000nm未満の細孔)を有するものであり、例えば、粉末状の活性炭に、常温で固体でありかつ後述する焼成時の温度で気化、昇華または分解するメルタブルコアをバインダとともに加えて成形した上で、焼成し、所定の大きさの粒状としたものである。   The adsorbent 12 filled in the third chamber 8 has not only microscopic pores (pores having a diameter of 2 nm or more and less than 50 nm) of the activated carbon itself, but also macroscopic pores (diameter having a diameter of fuel vapor). For example, powdery activated carbon is solidified at room temperature and melted, sublimated, or decomposed at a firing temperature described later together with a binder and molded. Then, it is fired to obtain a granule having a predetermined size.

活性炭は、例えば、市販されている石炭系、木質系等の活性炭を粉砕して粒子径が350μm以下(42メッシュパス)の粉末状のものである。バインダは、粉末状のベントナイト、木節粘土、シリカゾル、アルミナゾルなどの粉体あるいはゾルの固形分を用いることができる。メルタブルコアは、常温で固体でありかつ焼成時の温度で気化、昇華または分解し、さらには製造時の媒体とする水に溶けにくい粉末状(好ましくは粒子径が0.1μm〜1mm)の材料、例えば、昇華性有機化合物(ナフタレン、パラジクロロベンゼンなど)や、融点が高く、分解しやすいポリマ(ポリエチレンなど)や、繊維状の材料(φ0.1μm〜100μm×繊維長1mm以下)の材料、例えばナイロン、ポリエステル、ポリプロピレンなどを用いることができる。   The activated carbon is, for example, in the form of a powder having a particle diameter of 350 μm or less (42 mesh pass) by pulverizing commercially available activated carbon such as coal or wood. As the binder, powdered bentonite, Kibushi clay, silica sol, alumina sol or the like, or a solid content of the sol can be used. The meltable core is a powdery material (preferably having a particle size of 0.1 μm to 1 mm) that is solid at normal temperature and is vaporized, sublimated or decomposed at the firing temperature, and hardly soluble in water as a medium during production, For example, sublimable organic compounds (such as naphthalene and paradichlorobenzene), polymers having a high melting point and easily decomposable (such as polyethylene), and fibrous materials (φ0.1 μm to 100 μm × fiber length 1 mm or less), such as nylon Polyester, polypropylene, etc. can be used.

そして、これら3者を、適宜な配合比でもって、適宜に水を加えて混合し、押出成形により直径が4〜6mmで長さが2〜12mm程度(望ましくは直径とほぼ等しい長さ)の円柱状に成形する。そして、この成形体をロータリーキルンなどを使用して不活性ガス雰囲気下にて650℃〜1000℃で3〜4時間焼成して、粒状の吸着材を得る。   Then, these three members are mixed with an appropriate blending ratio, and water is appropriately added. By extrusion, the diameter is 4 to 6 mm and the length is about 2 to 12 mm (preferably the length approximately equal to the diameter). Molded into a cylindrical shape. And this molded object is baked for 3 to 4 hours at 650 degreeC-1000 degreeC by inert gas atmosphere using a rotary kiln etc., and a granular adsorbent is obtained.

上記のメルタブルコアは、焼成の際に消失し、これによって、活性炭そのものの微視的細孔(直径が2nm以上50nm未満の細孔)に加えて燃料蒸気の通路となる巨視的細孔(直径が50nm以上100000nm未満の細孔)が形成される。つまり、得られた吸着材11は、巨視的細孔からなるいわゆるマクロポーラス構造を有すると同時に、燃料蒸気の分子を捕捉する微視的細孔からなるいわゆるメソポーラス構造を有するものとなる。   The above meltable core disappears upon firing, so that in addition to the microscopic pores of the activated carbon itself (pores having a diameter of 2 nm or more and less than 50 nm), macroscopic pores (diameter of the diameter) serving as fuel vapor passages. Pores of 50 nm or more and less than 100,000 nm) are formed. That is, the obtained adsorbent 11 has a so-called macroporous structure composed of macroscopic pores, and at the same time, a so-called mesoporous structure composed of microscopic pores for capturing fuel vapor molecules.

吸着材12の巨視的細孔の大きさは、主に、使用する活性炭によって定まるが、メルタブルコアの割合等によって調整可能である。   The size of the macroscopic pores of the adsorbent 12 is mainly determined by the activated carbon to be used, but can be adjusted by the ratio of the meltable core or the like.

図2は、一例として、第3室8に充填される吸着材12の断面形状を示している。この吸着材12は、外側の円筒壁12Aと、この円筒壁12Aの中心部に設けられた十字形の放射状壁12Bと、を有する中空円筒状をなす。そして、各部の肉厚は、0.6mm以上で1.5mm以下の範囲内にある。例えば、円筒壁12Aの外径D1は、4.5mmであり、内径D2は、3.0mmである。また放射状壁12Bの各々の肉厚dは、例えば0.8mmであり、円筒壁12Aの肉厚(半径方向の厚み)は、例えば0.8mmである。また、軸方向の長さLは4mmである。但し、これらの寸法は、実際の切断加工の際に生じるばらつきが大きい。なお、吸着材12の外径は球形であってもよく、また放射状壁12Bとしては、上記のような十字形のほか、3方向へ延びる放射状のもの、あるいは2方向へ延びるI字形のもの、など種々の形状が可能である。   FIG. 2 shows a cross-sectional shape of the adsorbent 12 filled in the third chamber 8 as an example. The adsorbent 12 has a hollow cylindrical shape having an outer cylindrical wall 12A and a cross-shaped radial wall 12B provided at the center of the cylindrical wall 12A. And the thickness of each part exists in the range of 0.6 mm or more and 1.5 mm or less. For example, the outer diameter D1 of the cylindrical wall 12A is 4.5 mm, and the inner diameter D2 is 3.0 mm. Further, the thickness d of each of the radial walls 12B is, for example, 0.8 mm, and the thickness (radial thickness) of the cylindrical wall 12A is, for example, 0.8 mm. The axial length L is 4 mm. However, these dimensions have large variations that occur during actual cutting. In addition, the outer diameter of the adsorbent 12 may be spherical, and the radial wall 12B is a cross-shaped shape as described above, a radial shape extending in three directions, or an I-shape extending in two directions, Various shapes are possible.

図3は、吸着材に用いられる5つの活性炭A−1,A−2,A−3,B−1,B−2の各種のデータを示す表である。上述したように、上記実施例では、吸着材A−1が第1室6及び第2室7の吸着材10,11として用いられ、活性炭A−2が第3室8の吸着材12として用いられ、活性炭B−2が第4室9の吸着材13として用いられている。   FIG. 3 is a table showing various data of five activated carbons A-1, A-2, A-3, B-1, and B-2 used for the adsorbent. As described above, in the above embodiment, the adsorbent A-1 is used as the adsorbents 10 and 11 in the first chamber 6 and the second chamber 7, and the activated carbon A-2 is used as the adsorbent 12 in the third chamber 8. Activated carbon B-2 is used as the adsorbent 13 in the fourth chamber 9.

活性炭A−1,A−3及びB−1は、図4(A)に示すように、中空の無い円柱形状もしくは球形状の吸着材に成形されるものであり、その外径(粒径)は2mmである。活性炭A−2は、上記の図2及び図4(B)に示すように、十字形の放射状壁12Bを有する中空円筒状をなす吸着材12に成形されるものである。活性炭B−2は、図4(C)に示すように、第4室9内に挿入・配置される一つの大きなハニカム状の吸着材13として成型されるものであり、外側の円筒壁13Aと、この円筒壁13Aの内側に設けられた格子状壁13Bと、を有する中空円筒状をなし、格子状壁13Bによって円筒壁13Aの内部が通路長手方向に延びる複数の空間に仕切られている。円筒壁13Aの外径は30mm、格子状壁13Bの厚みは0.3mmである。   Activated carbon A-1, A-3, and B-1 are formed into a hollow columnar or spherical adsorbent as shown in FIG. 4 (A), and the outer diameter (particle size) thereof. Is 2 mm. The activated carbon A-2 is formed into the adsorbent 12 having a hollow cylindrical shape having a cross-shaped radial wall 12B as shown in FIGS. 2 and 4B. As shown in FIG. 4C, the activated carbon B-2 is molded as one large honeycomb-shaped adsorbent 13 inserted and arranged in the fourth chamber 9, and the outer cylindrical wall 13A and A hollow cylindrical shape having a grid-like wall 13B provided inside the cylindrical wall 13A is formed, and the inside of the cylindrical wall 13A is partitioned into a plurality of spaces extending in the longitudinal direction of the passage by the grid-like wall 13B. The outer diameter of the cylindrical wall 13A is 30 mm, and the thickness of the lattice wall 13B is 0.3 mm.

キャニスタ1の通気抵抗の抑制の上では、吸着材の大きさが大きいことが有利となる。しかし、それに伴って吸着材12の厚み(単純な球形の場合はその直径が厚みに相当する)が厚くなると、吸着材としての吸着脱離性能とりわけ脱離性能が悪化する。従って、特に大気開放口寄りの第3室8及び第4室9に充填される吸着材11は、中空形状で、各部の厚みが薄いものとされている。   In order to suppress the airflow resistance of the canister 1, it is advantageous that the adsorbent is large in size. However, when the thickness of the adsorbent 12 (in the case of a simple sphere, the diameter corresponds to the thickness) is increased accordingly, the adsorption / desorption performance as the adsorbent, in particular, the desorption performance is deteriorated. Therefore, in particular, the adsorbent 11 filled in the third chamber 8 and the fourth chamber 9 close to the atmosphere opening is hollow and the thickness of each part is thin.

図3において、吸着材12,13における直径が50nm以上100000nm未満の巨視的細孔の容積のうち、500nm未満の大きさの巨視的細孔が示す容積比率(%)は、例えば「ISO 15901−1」で規定される水銀圧入法によって測定することができる。図5に、50nm以上100000nm未満の巨視的細孔(マクロポア)の大きさの容積の比率、つまり大きさの分布を示すグラフを示している。   In FIG. 3, the volume ratio (%) indicated by the macroscopic pores having a size of less than 500 nm among the macroscopic pores having a diameter of 50 nm or more and less than 100,000 nm in the adsorbents 12 and 13 is, for example, “ISO 15901- It can be measured by the mercury intrusion method specified in “1”. FIG. 5 shows a graph showing the volume ratio of the size of macroscopic pores (macropores) of 50 nm or more and less than 100,000 nm, that is, the size distribution.

ここで、中実形状の吸着材の外径、もしくは中空形状の吸着材の各部の肉厚を吸着材の厚みと定義し、吸着材における50nm以上の大きさの巨視的細孔のうち、500nm未満の大きさの巨視的細孔が占める比率を500nm未満の容積比率と定義すと、図3に示すように、チャージ・パージポート3,4が設けられる流入・流出部側から大気ポート5が設けられる大気開放口側へ向けて、複数の室6〜9に充填される吸着材(活性炭)及びその外径,厚み,更に500nm未満の容積比率は以下の通りである。
・吸着材(活性炭):A−1→A−1→A−2→B−2
・外径(mm) : 2→ 2→4.5→ 30
・厚み(mm) :2.0→2.0→0.8→0.3
・容積比率 : 27→ 27→ 54→ 82
このように本実施例では、流入・流出部側から大気開放口側へ向けて、吸着材の厚みを段階的に小さくするとともに、500nm未満の巨視的細孔が占める容積比率を段階的に大きくしている。特に、流入・流出部側の第1室6と第2室7には同じ活性炭A−1が用いられているために吸着材の厚みや500nm未満の容積比率は変わらないが、第2室7から第4室9にかけては、吸着材の厚みを徐々に小さくしつつ、500nm未満の容積比率を徐々に大きくしている。これによって、大気開放側へ向かうに従って、段階的に通気抵抗が抑制されるとともに脱離性能が向上し、結果として、昼夜呼吸損失エミッションを大幅に削減することができる。しかも、流入・流出部側へ向かって吸着材の厚みを段階的に大きくするとともに、上記500nm未満の容積比率を小さくしていくことで、所期の吸着性能を確保しつつ、吸着材の容量を低減し、キャニスタの小型化・軽量化を図ることができる。
Here, the outer diameter of the solid-shaped adsorbent or the thickness of each part of the hollow adsorbent is defined as the thickness of the adsorbent, and among the macroscopic pores having a size of 50 nm or more in the adsorbent, 500 nm If the ratio of the macroscopic pores having a size less than 500 nm is defined as a volume ratio of less than 500 nm, the atmospheric port 5 is formed from the inflow / outflow part side where the charge / purge ports 3 and 4 are provided as shown in FIG. The adsorbent (activated carbon) filled in the plurality of chambers 6 to 9 and the outer diameter and thickness, and the volume ratio of less than 500 nm are as follows toward the open side of the atmosphere.
Adsorbent (activated carbon): A-1 → A-1 → A-2 → B-2
・ Outer diameter (mm): 2 → 2 → 4.5 → 30
・ Thickness (mm): 2.0 → 2.0 → 0.8 → 0.3
-Volume ratio: 27->27->54-> 82
As described above, in this example, the thickness of the adsorbent is gradually reduced from the inflow / outflow side to the atmosphere opening side, and the volume ratio occupied by macroscopic pores of less than 500 nm is increased stepwise. doing. In particular, since the same activated carbon A-1 is used for the first chamber 6 and the second chamber 7 on the inflow / outflow portion side, the thickness of the adsorbent and the volume ratio of less than 500 nm do not change. From the fourth chamber 9 to the fourth chamber 9, the volume ratio of less than 500 nm is gradually increased while gradually reducing the thickness of the adsorbent. As a result, the ventilation resistance is gradually reduced and the desorption performance is improved as it goes to the atmosphere opening side, and as a result, day and night respiratory loss emission can be greatly reduced. Moreover, while increasing the thickness of the adsorbent stepwise toward the inflow / outflow portion, and reducing the volume ratio of less than 500 nm, the adsorbent capacity is ensured while ensuring the desired adsorption performance. The canister can be reduced in size and weight.

更に本実施例では、流入・流出部側から大気開放口側へ向けて、複数の室に充填される吸着材の外径を段階的に大きくするとともに、複数の室の通路直交方向の断面積を段階的に小さくしている。つまり、図1にも示すように、流入・流出部側の第1室6と第2室7の通路断面積はほぼ同じであるが、第3室8の通路断面積を第1室6,第2室7よりも小さくしており、更に第4室9の通路断面積を第3室8よりも小さくしている。このように、大気開放口側へ向けて吸着材の外径を徐々に大きくしつつ通路断面積を徐々に小さくすることによって、大気開放口側へ向かって脱離性能が段階的に向上し、昼夜呼吸損失エミッションを更に低減することができるとともに、流入・流出部側へ向かって段階的に吸着材の外径を小さくする一方で室の断面積を大きくすることで、大気開放口側へ向けて段階的に脱離性能を向上させて、昼夜呼吸損失エミッションを更に低減することができるとともに、吸着材の容量を抑制してキャニスタの更なるコンパクト化を図ることができる。   Furthermore, in this embodiment, the outer diameter of the adsorbent filled in the plurality of chambers is increased stepwise from the inflow / outflow portion side to the atmosphere opening side, and the cross-sectional area of the plurality of chambers in the direction perpendicular to the passageway is increased. Is gradually reduced. That is, as shown in FIG. 1, the passage cross-sectional area of the first chamber 6 and the second chamber 7 on the inflow / outflow side is substantially the same, but the passage cross-sectional area of the third chamber 8 is the same as that of the first chamber 6. It is made smaller than the second chamber 7, and the passage sectional area of the fourth chamber 9 is made smaller than that of the third chamber 8. Thus, by gradually reducing the passage cross-sectional area while gradually increasing the outer diameter of the adsorbent toward the atmosphere opening side, the desorption performance is gradually improved toward the atmosphere opening side, Reducing the breathing loss during the day and night, and reducing the outer diameter of the adsorbent stepwise toward the inflow / outflow side, while increasing the cross-sectional area of the chamber toward the atmosphere opening side Thus, the desorption performance can be improved stepwise to further reduce day and night respiratory loss emissions, and the canister can be made more compact by suppressing the capacity of the adsorbent.

図6は、上述した実施例と、比較例と、における昼夜呼吸損失エミッション(DBL)を示す特性図である。上記の比較例は、第3室8に活性炭B−1を用いた吸着材が充填されていることを除いて、上記実施例と同様のものである。つまり、比較例の複数の室6〜9に充填される吸着材及びその外径,厚み及び500nm未満の容積比率は、流入・流出部側から大気開放口側へ向けて、以下のように推移する。
・吸着材(活性炭):A−1→A−1→B−1→B−2
・外径(mm) : 2→ 2→ 2→ 30
・厚み(mm) :2.0→2.0→2.0→0.3
・容積比率 : 27→ 27→ 20→ 82
この比較例では、500nm未満の容積比率が大気開放口側へ向けて段階的に小さくなっておらず、また厚みも第3室8から第4室9の間でのみ急激に変化するものとなっている。このような比較例では、第3室8から第4室9の間で、急激な吸着材の厚みの削減と500nm未満の容積比率の上昇となるために、図6に示すように、実施例に比してDBLが大幅に悪化(増加)することが確認された。
FIG. 6 is a characteristic diagram showing day and night respiratory loss emissions (DBL) in the above-described embodiment and the comparative example. The above comparative example is the same as the above example except that the third chamber 8 is filled with an adsorbent using activated carbon B-1. That is, the adsorbent filled in the plurality of chambers 6 to 9 of the comparative example and the outer diameter, thickness, and the volume ratio of less than 500 nm change as follows from the inflow / outflow side to the atmosphere opening side. To do.
Adsorbent (activated carbon): A-1 → A-1 → B-1 → B-2
・ Outer diameter (mm): 2 → 2 → 2 → 30
・ Thickness (mm): 2.0 → 2.0 → 2.0 → 0.3
-Volume ratio: 27->27->20-> 82
In this comparative example, the volume ratio of less than 500 nm is not gradually reduced toward the atmosphere opening side, and the thickness also changes rapidly only between the third chamber 8 and the fourth chamber 9. ing. In such a comparative example, between the third chamber 8 and the fourth chamber 9, since the thickness of the adsorbent is sharply reduced and the volume ratio increases below 500 nm, as shown in FIG. It was confirmed that DBL was significantly deteriorated (increased) as compared with.

図7は、本発明の第2実施例を示している。この第2実施例では、第1室6Aに活性炭A−3を用いた吸着材10Aを用いた点でのみ、第1実施例と異なっている。この第2実施例における複数の室6A,7,8,9に充填される吸着材及びその外径,厚み及び500nm未満の容積比率は、流入・流出部側から大気開放口側へ向けて、以下の通りである。
・吸着材(活性炭):A−3→A−1→A−2→B−2
・外径(mm) : 2→ 2→4.5→ 30
・厚み(mm) :2.0→2.0→0.8→0.3
・容積比率 : 52→ 27→ 54→ 82
この第2実施例では、最も流入・流出部側の第1室6Aに充填される吸着材10Aに用いられる活性炭A−3の500nm未満の容積比率が52%と高くなっている点を除き、上記の第1実施例と同様、流入・流出部側から大気開放口側へ向けて、吸着材の厚みを段階的に小さくするとともに、500nm未満の巨視的細孔が占める容積比率を段階的に大きくしている。第1室6Aは大気ポート5から最も遠い位置にあり、昼夜呼吸損失エミッションに対する影響は少ないことから、この第2実施例のように流入・流出部側の第1室6Aに500nm未満の容積比率の比較的高い吸着材10Aを用いた場合であっても、上記第1実施例と同様に、DBL性能を大幅に向上することが可能である。
FIG. 7 shows a second embodiment of the present invention. This second embodiment differs from the first embodiment only in that an adsorbent 10A using activated carbon A-3 is used for the first chamber 6A. In the second embodiment, the adsorbent filled in the plurality of chambers 6A, 7, 8, 9 and the outer diameter, thickness, and volume ratio of less than 500 nm are from the inflow / outflow side to the atmosphere opening side. It is as follows.
Adsorbent (activated carbon): A-3 → A-1 → A-2 → B-2
・ Outer diameter (mm): 2 → 2 → 4.5 → 30
・ Thickness (mm): 2.0 → 2.0 → 0.8 → 0.3
・ Volume ratio: 52 → 27 → 54 → 82
In the second embodiment, except that the volume ratio of activated carbon A-3 used for the adsorbent 10A filled in the first chamber 6A closest to the inflow / outflow portion side is as high as 52%, less than 500%, As in the first embodiment, the thickness of the adsorbent is gradually reduced from the inflow / outflow portion side to the atmosphere opening side, and the volume ratio occupied by macroscopic pores less than 500 nm is stepwise. It is getting bigger. Since the first chamber 6A is located farthest from the atmospheric port 5 and has little influence on the breathing loss emission during the day and night, the volume ratio of less than 500 nm is added to the first chamber 6A on the inflow / outflow portion side as in the second embodiment. Even when the relatively high adsorbent 10A is used, the DBL performance can be greatly improved as in the first embodiment.

また、第2実施例の変更例として、第2室7にも活性炭A−3を用いた吸着材を用いるようにしても良い。この場合の複数の室6A,7,8,9に充填される吸着材及びその外径,厚み及び500nm未満の容積比率は、流入・流出部側から大気開放口側へ向けて、以下の通りである。
・吸着材(活性炭):A−3→A−3→A−2→B−2
・外径(mm) : 2→ 2→4.5→ 30
・厚み(mm) :2.0→2.0→0.8→0.3
・容積比率 : 52→ 52→ 54→ 82
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、上記実施例ではキャニスタ内を4つの室に区画しているが、流入・流出部側から大気開放口側へ向けて活性炭の厚みが段階的を段階的に小さくするとともに、500nm未満の容積比率を段階的に大きくしたものであれば、3つあるいは5つ以上の室に分割しても良い。
As a modification of the second embodiment, an adsorbent using activated carbon A-3 may also be used in the second chamber 7. In this case, the adsorbent filled in the plurality of chambers 6A, 7, 8, 9 and the outer diameter, thickness, and volume ratio of less than 500 nm are as follows from the inflow / outflow side to the atmosphere opening side. It is.
Adsorbent (activated carbon): A-3 → A-3 → A-2 → B-2
・ Outer diameter (mm): 2 → 2 → 4.5 → 30
・ Thickness (mm): 2.0 → 2.0 → 0.8 → 0.3
-Volume ratio: 52->52->54-> 82
As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes. For example, in the above embodiment, the inside of the canister is divided into four chambers, and the thickness of the activated carbon is gradually reduced from the inflow / outflow side to the atmosphere opening side, and the volume is less than 500 nm. If the ratio is increased stepwise, it may be divided into three or five or more chambers.

1…キャニスタ
2…ケース
3…チャージポート(流入部)
4…パージポート(流出部)
5…大気ポート(大気開放口)
6,7,8,9…室
10,11,12,13…吸着材
1 ... canister 2 ... case 3 ... charge port (inflow part)
4 ... Purge port (outflow part)
5… Atmosphere port (atmosphere opening)
6, 7, 8, 9 ... Chambers 10, 11, 12, 13 ... Adsorbent

Claims (3)

ケース内の流れ方向に沿って直列に配置された複数の室内に吸着材が充填されるとともに、上記流れ方向の一端に燃料蒸気の流入・流出部、他端に大気開放口を備えたキャニスタにおいて、
上記吸着材は、円柱状もしくは球形の中実形状もしくは中空形状をなし、
上記中実形状の吸着材の外径、もしくは上記中空形状の吸着材の各部の肉厚を吸着材の厚みとし、
上記吸着材における50nm以上の大きさの巨視的細孔のうち、500nm未満の大きさの巨視的細孔が占める比率を500nm未満の容積比率とすると、
上記流入・流出部側から大気開放口側へ向けて、上記複数の室に充填される吸着材の厚みを段階的に小さくするとともに、上記500nm未満の容積比率を段階的に大きくした、ことを特徴とするキャニスタ。
In a canister in which a plurality of chambers arranged in series along a flow direction in a case are filled with an adsorbent, and an inflow / outflow portion of fuel vapor is provided at one end of the flow direction, and an air opening is provided at the other end. ,
The adsorbent has a cylindrical or spherical solid shape or hollow shape,
The outer diameter of the solid adsorbent, or the thickness of each part of the hollow adsorbent is the thickness of the adsorbent,
Among the macroscopic pores having a size of 50 nm or more in the adsorbent, when the ratio occupied by macroscopic pores having a size of less than 500 nm is a volume ratio of less than 500 nm,
From the inflow / outflow side to the atmosphere opening side, the thickness of the adsorbent filled in the plurality of chambers is decreased stepwise, and the volume ratio of less than 500 nm is increased stepwise. A characteristic canister.
更に、上記流入・流出部側から大気開放口側へ向けて、上記複数の室に充填される吸着材の外径を段階的に大きくした、ことを特徴とする請求項1に記載のキャニスタ。   2. The canister according to claim 1, wherein an outer diameter of the adsorbent filled in the plurality of chambers is increased stepwise from the inlet / outlet side toward the atmosphere opening side. 更に、上記流入・流出部側から大気開放口側へ向けて、上記複数の室の通路直交方向の断面積を段階的に小さくした、ことを特徴とする請求項1又は2に記載のキャニスタ。   3. The canister according to claim 1, wherein a cross-sectional area of the plurality of chambers in a direction perpendicular to the passage is gradually reduced from the inflow / outflow side toward the atmosphere opening side.
JP2013268410A 2013-12-26 2013-12-26 Canister Pending JP2015124645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268410A JP2015124645A (en) 2013-12-26 2013-12-26 Canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268410A JP2015124645A (en) 2013-12-26 2013-12-26 Canister

Publications (1)

Publication Number Publication Date
JP2015124645A true JP2015124645A (en) 2015-07-06

Family

ID=53535542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268410A Pending JP2015124645A (en) 2013-12-26 2013-12-26 Canister

Country Status (1)

Country Link
JP (1) JP2015124645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110214052A (en) * 2017-01-25 2019-09-06 英格维蒂南卡罗来纳有限责任公司 Particulate adsorbent material and the method for manufacturing it
JPWO2019208600A1 (en) * 2018-04-24 2021-05-13 大阪ガスケミカル株式会社 Manufacturing method of adsorbent, canister and adsorbent
US11473535B2 (en) 2020-06-12 2022-10-18 Futaba Industrial Co., Ltd. Evaporated fuel treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110214052A (en) * 2017-01-25 2019-09-06 英格维蒂南卡罗来纳有限责任公司 Particulate adsorbent material and the method for manufacturing it
CN110214052B (en) * 2017-01-25 2023-06-20 英格维蒂南卡罗来纳有限责任公司 Particulate adsorbent material and method of making the same
JPWO2019208600A1 (en) * 2018-04-24 2021-05-13 大阪ガスケミカル株式会社 Manufacturing method of adsorbent, canister and adsorbent
US11896949B2 (en) 2018-04-24 2024-02-13 Mahle International Gmbh Adsorbent, canister and method for producing adsorbent
JP7469223B2 (en) 2018-04-24 2024-04-16 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Adsorbent, canister, and method for producing adsorbent
US11473535B2 (en) 2020-06-12 2022-10-18 Futaba Industrial Co., Ltd. Evaporated fuel treatment device

Similar Documents

Publication Publication Date Title
JP6203043B2 (en) Canister
JP5867800B2 (en) Canister adsorbent and canister
US8015965B2 (en) Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
JP7322086B2 (en) Honeycomb adsorbent, manufacturing method thereof, and canister
JP5638298B2 (en) Granulated heat storage material and evaporative fuel processing device
WO2019208600A1 (en) Adsorbent, canister and method for producing adsorbent
JP2013217243A (en) Trap canister
JPWO2004110928A1 (en) Activated carbon sheet molded body and element for fuel vapor transpiration prevention device
WO2020067007A1 (en) Adsorbent, canister, and method for producing adsorbent
JP2015124645A (en) Canister
JP2011132903A (en) Adsorbent for canister
JP2017014996A (en) Evaporated fuel treatment device
CN112154027B (en) Adsorbent, canister, and method for producing adsorbent
JP2020029861A (en) Adsorbent for canister, manufacturing method thereof and canister