WO2016047092A1 - ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法 - Google Patents

ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法 Download PDF

Info

Publication number
WO2016047092A1
WO2016047092A1 PCT/JP2015/004681 JP2015004681W WO2016047092A1 WO 2016047092 A1 WO2016047092 A1 WO 2016047092A1 JP 2015004681 W JP2015004681 W JP 2015004681W WO 2016047092 A1 WO2016047092 A1 WO 2016047092A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wavelength
band
branching
dummy
Prior art date
Application number
PCT/JP2015/004681
Other languages
English (en)
French (fr)
Inventor
欣也 瀧川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2016047092A1 publication Critical patent/WO2016047092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/42Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
    • H04Q3/52Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements

Definitions

  • the present invention relates to a cable coupling, a wavelength division multiplexing optical communication system, and a wavelength division multiplexing optical signal branching method.
  • WDM wavelength division multiplexing
  • a plurality of optical signals (channels) having different wavelengths can be simultaneously transmitted through a single waveguide to perform large-capacity communication.
  • Communication between any devices can be performed by branching / inserting a channel of a specific wavelength.
  • a signal can be inserted (added) or extracted (dropped) without being converted into an electrical signal with respect to a channel of a specific wavelength which is a part of the multiplexed trunk signal.
  • OADM Optical Add / Drop Multiplexer
  • ROADM Reconfigurable Optical Add / Drop Multiplexer
  • the branch station can use an optical signal (channel) having an arbitrary wavelength.
  • Patent Document 1 discloses a technique for keeping the total light intensity constant when an optical signal is added / dropped using OADM / ROADM.
  • a circuit breaker that blocks an optical signal of a channel that should not be intercepted is provided between a branching device that adds / drops a channel from a trunk signal and a terminal device. Then, at the time of transmission from the terminal device, a dummy signal is multiplexed and transmitted to the channel of the band to be cut off, so that the total light intensity in the transmission path becomes constant. In this way, while ensuring signal quality, the branch station can use only necessary signals to ensure information security.
  • Patent Document 2 has a problem that the cost for installing a circuit breaker increases. This is because the circuit breaker is provided independently between the branch device and the terminal device. In particular, when applied to communication using a submarine cable, the cost of the casing is increased to ensure water pressure resistance.
  • the present invention has been made in view of the above problems, and is a cable coupling, wavelength division multiplexing optical communication system, and wavelength division multiplexing optical signal branching method that branches only a signal that can be used at a branch station at low cost. Is intended to provide.
  • the cable coupling of the present invention is a cable coupling for connecting a branching device for branching a wavelength multiplexed optical signal and a branching cable, wherein the wavelength of the signal dropped by the branching device is the first.
  • Band limiting means for transmitting only limited to one band
  • dummy signal generating means for generating a dummy signal having a wavelength in the second band not including the first band, and transmitting through the first band limiting means
  • Signal multiplexing means for multiplexing the signal and the dummy signal and sending the multiplexed signal to the branch cable.
  • the effect of the present invention is that it is possible to provide a cable coupling, wavelength division multiplexing optical communication system and wavelength division multiplexing optical signal branching method that branches only a signal that is allowed to be used in a branch station at low cost.
  • FIG. 1 is a block diagram showing the cable coupling of the first embodiment.
  • the cable coupling 100 connects the branch device 200 that branches the wavelength multiplexed optical signal 10 and the branch cable 20.
  • the branch cable 20 has, for example, an optical fiber as a signal transmission path.
  • the cable coupling 100 includes a band limiting unit 110, a dummy signal generating unit 120, and a signal multiplexing unit 130.
  • the band limiting unit 110 is an optical filter having a wavelength selection function, transmits signal light only in a predetermined wavelength band permitted to be used on the branch side, and transmits light in other wavelength bands to the branch side. To prevent that. For this reason, the signal dropped by the branching device 200 from the wavelength multiplexed optical signal 10 is transmitted to the branch cable side by being limited to a signal in a band permitted to be used.
  • the dummy signal generator 120 is an optical signal generator that generates a dummy signal.
  • the dummy signal is an optical signal having no significant information, and uses light in a wavelength band other than the wavelength band permitted to be used on the branch side as a carrier wave.
  • the signal multiplexing unit 130 multiplexes the signal light permitted to be used on the branch side that has passed through the first band limiting unit 110 and the dummy signal light, and transmits the multiplexed signal light to the branch cable 20.
  • FIG. 2 is a block diagram showing a cable coupling according to the second embodiment.
  • the band limiting unit 110 includes an unnecessary light separating unit 111 in addition to the configuration of the first embodiment.
  • the dummy signal generation unit 120 includes a signal invalidation unit 121.
  • the branching device 200 to which the cable coupling 100 is applied branches the wavelength multiplexed optical signal 10.
  • a method using an optical splitter in which a plurality of optical fibers are fused, a method using a planar lightwave circuit in which a waveguide is formed on a flat plate, or the like can be used.
  • Unnecessary light separating means 111 separates signal light other than that transmitted through the band limiting means 110 from the dropped signal as unnecessary light.
  • an optical element that spatially separates light for each wavelength such as a prism and a diffraction grating
  • An arrayed waveguide grating AWG, Arrayed-Waveguide Grating
  • AWG AWG, first, incident light is spatially separated for each wavelength by using a waveguide (slab waveguide) that diffracts light in different directions for each wavelength. And the light of each wavelength can be taken out from the optical fiber arrange
  • the unnecessary light separating unit 111 outputs the signal light used on the branch side to the signal multiplexing unit 130 and outputs the unnecessary light to the dummy signal generating unit 120.
  • the signal invalidating means 121 provided in the dummy signal property controlling means means 120 is an optical element that invalidates unnecessary light separated by the unnecessary light separating means 111.
  • the invalidation here means invalidating information transmitted by the original signal.
  • the optical signal is meaningless.
  • signal invalidation for example, addition of polarization mode dispersion, addition of polarization dependent loss, nonlinear modulation, or the like can be used.
  • Addition of polarization mode dispersion can be performed, for example, by passing through a waveguide whose birefringence is randomly changed. By adding polarization mode dispersion, the pulse expands and information as a signal is lost.
  • polarization dependent loss can be performed using, for example, a Faraday rotator having a magneto-optic effect.
  • the polarization state can be randomized and the signal invalidated by changing the magnetic field over time.
  • Non-linear modulation is performed, for example, by passing through a waveguide made of a material having a property that the refractive index changes with the incidence of light. As a result, the signal can be invalidated.
  • the dummy signal generation unit 120 generates a dummy signal using the invalidated optical signal as described above, and outputs the dummy signal to the signal multiplexing unit 130.
  • the generated dummy signal is multiplexed with the signal transmitted through the band limiting unit 110 by the signal multiplexing unit 130 and sent to the branch cable 20 as the drop signal 21.
  • Multiplexing can be performed by, for example, multiplexing light using an optical coupler in which a plurality of optical fibers are fused.
  • the cable coupling 100 may also have a function of transmitting an add signal 22 added from the branch cable 20 to the wavelength multiplexed optical signal 10.
  • a dummy signal can be generated without providing a light source for a dummy signal.
  • FIG. 3 is a block diagram showing the third embodiment.
  • the dummy signal generating unit 120 includes a light intensity adjusting unit 122.
  • the light intensity adjusting means 122 adjusts the light intensity of the dummy signal transmitted from the dummy signal generating means 120.
  • a wavelength division multiplexing optical communication (WDM) transmission system is designed to transmit a signal while keeping the total light intensity at a predetermined value. For this reason, it is difficult to maintain signal quality unless the total light intensity is set to a predetermined value. Therefore, it is desirable to maintain the total light intensity of signals transmitted through the branch cable 20 within a predetermined range.
  • the light intensity adjusting unit 122 adjusts the intensity of the dummy signal so that the total light intensity when the dummy signal and the signal light transmitted through the band limiting unit 110 are multiplexed is within the predetermined range.
  • the dummy signal generation unit 120 may include a laser light source having a wavelength of the dummy signal
  • the light intensity adjustment unit 122 may include a variable optical attenuator (VOA, Variable Optical Attenuator). It can. Using these, the light intensity can be maintained at a predetermined level. The adjustment of the total light intensity may be performed based on monitoring the total light intensity of the wavelength multiplexed optical signal 10.
  • VOA variable optical attenuator
  • the total light intensity of the drop signal transmitted through the branch cable 20 can be maintained within a predetermined range. Thereby, a predetermined signal quality can be ensured.
  • FIG. 4 is a block diagram showing the fourth embodiment.
  • the dummy signal generating unit 120 includes a light intensity adjusting unit 122.
  • the dummy signal generation unit 120 can be configured not to have a light source independently, so that the efficiency is further improved.
  • the total light intensity of the drop signal 21 can be maintained at a predetermined level, and the signal quality can be ensured.
  • the configuration for adjusting the light intensity can be the same as that of the third embodiment.
  • FIG. 5 is a block diagram showing a fifth embodiment of the present invention.
  • a mounting form of the cable coupling 100 with respect to the branching device 200 to which the cable coupling 100 of the second embodiment is adapted will be described.
  • the branching device 200 selectively transmits a wavelength within a predetermined range, a demultiplexing unit 201 that demultiplexes a signal to be dropped from the wavelength multiplexed optical signal 10, a multiplexing unit 202 that combines a signal added to the wavelength multiplexed optical signal.
  • Wavelength selection means 211 and 212 are included in the demultiplexing unit 201 that demultiplexes a signal to be dropped from the wavelength multiplexed optical signal 10.
  • the demultiplexing means 201 demultiplexes the trunk signal 10 into the through side and the drop side.
  • the through side is a direction toward the output side of the branching device 200 without branching to the drop side.
  • the demultiplexing unit 201 for example, an optical splitter in which a plurality of optical fibers are fused, a planar lightwave circuit in which a waveguide is formed on a flat plate, or the like can be used.
  • the wavelength selection unit 211 is an optical filter that removes the signal in the band of the signal dropped by the branching unit from the signal passed through the branching unit 201.
  • the wavelength selection unit 211 can be configured by combining, for example, a prism, a diffraction grating, an AWG, and the like and a block that blocks light of a wavelength that is not selected.
  • a multilayer filter that transmits light of a predetermined wavelength band and blocks light of other wavelengths may be used.
  • the wavelength selector 212 on the add side is an optical filter having a wavelength selection function, and removes unnecessary signal light from the signal light to be added.
  • the add signal 22 includes dummy signal light for maintaining the total light intensity in addition to the signal light in the band used by the branch terminal.
  • the wavelength selection means 212 removes this dummy signal.
  • the wavelength selection method can be the same method as the wavelength selection unit 211, for example.
  • the multiplexing unit 202 is an optical multiplexer that multiplexes the signal light transmitted from the wavelength selection unit 211 and the signal light transmitted from the wavelength selection unit 212.
  • an optical coupler in which a plurality of optical fibers are fused, a planar lightwave circuit in which a waveguide is formed on a flat plate, or the like can be used.
  • the channels accommodated by the wavelength multiplexed optical signal 10 can be made the same on the input side and the output side of the branching device 20.
  • FIG. 6 is a schematic diagram showing a specific example of the operation at this time.
  • the ch1, ch2, and ch3 signals are multiplexed in the wavelength multiplexed optical signal 10, and only the use of ch2 is permitted on the branch side.
  • Signals such as ch1, ch2, and ch3 are not limited to signals of a single wavelength, but may include a plurality of channels in a certain wavelength range.
  • ch1, ch2, and ch3 are input, and the demultiplexing unit 201 demultiplexes the wavelength multiplexed optical signal 10 into the through side and the branch side.
  • the channel 2 is transmitted to the branch side by the band limiting means 110.
  • the ch1 and ch3 are transmitted to the dummy signal generating unit 120 by the unnecessary light separating unit 111.
  • the dummy signal generation unit 120 invalidates the ch1 and ch3 signals by the operation of the signal invalidation unit 121, and generates dummy signals dm1 and dm3.
  • ch 2, dm 1, dm 3 are multiplexed by the signal multiplexing means 130 and sent out as a drop signal 21.
  • the ch1 and ch3 signals are output to the through side of the demultiplexing unit 201 and input to the multiplexing unit 202.
  • the signal ch4 and the dummy signal dm5 transmitted from the branch terminal are input as the add signal 22 to the add side of the cable coupling 100. Then, it is transmitted to the add side of the branching device 200.
  • ch4 has the same bandwidth as ch2 available to the branch terminal.
  • the dummy signal dm5 is removed from the add signal input to the branching device 200 by the wavelength selection unit 212, and only ch4 is transmitted to the wavelength multiplexed optical signal 10 side.
  • the ch 1, ch 3, and ch 4 signals are multiplexed and input from the branching device 200 to the wavelength multiplexed optical signal 10.
  • ch2 and ch4 are signals in the same band, the channels accommodated by the trunk signal 11 are the same on the input side and output side of the branching apparatus 200.
  • the channels accommodated by the wavelength multiplexed optical signals are made the same on the input side and the output side of the branching device while ensuring security that unnecessary signals are not branched. Can do.
  • FIG. 7 is a block diagram showing a sixth embodiment of the present invention.
  • a mounting form of the cable coupling 100 with respect to the branching device 200 to which the cable coupling 100 of the first embodiment is applicable will be described.
  • the branching device 200 has wavelength separation means 213 that wavelength-separates the input wavelength multiplexed optical signal 10 and demultiplexes the signal light into the through side and the branch side based on the wavelength. Further, the branching apparatus 200 includes a wavelength selection unit 212 that removes unnecessary signals from the add signal 22 and a multiplexing unit 202 that combines the through signal, the add signal, and the signal.
  • FIG. 8 is a block diagram showing a specific example for explaining the present embodiment.
  • the wavelength multiplexed optical signal 10 contains signals ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, and ⁇ 5. It is assumed that only ⁇ 4 and ⁇ 5 are available at the branch terminal station. Note that each of ⁇ 1, ⁇ 2,... May accommodate a plurality of channels.
  • the wavelength separation means 213 transmits only ⁇ 4 and ⁇ 5 available on the branch side to the cable coupling 100. Other signals are sent to the output side of the branching device 200 as through signals 11.
  • ⁇ 4 and ⁇ 5 are transmitted by the band limiting means 110. Then, the dummy signal generated by the dummy signal generating unit 120 and the signal multiplexing unit 130 are multiplexed and transmitted to the branch cable 20.
  • the unnecessary signal is removed from the add signal 22 by the wavelength selection unit 212 on the add side of the branching device 200. Then, the signal is multiplexed with the through signal 11 by the multiplexing means 202 and output as the wavelength multiplexed optical signal 10.
  • the present invention need not be applied if the above-described branching device 200 is used. However, when there is a failure or a malicious operation, it may be possible that the wavelength separation means 213 sends an unnecessary signal to the branch side.
  • FIG. 9 shows a specific example of such a situation.
  • ⁇ 3 is transmitted from the branching device 200 to the branch side in addition to ⁇ 4 and ⁇ 5 that can be originally used due to some trouble. Without the cable coupling 100 of this embodiment, ⁇ 3 is transmitted to the branch terminal station and intercepted. On the other hand, according to the present embodiment, ⁇ 3 is blocked by the band limiting means 110 as shown by the crosses in FIG. Therefore, information leakage can be prevented.
  • FIG. 10 is a block diagram illustrating the present embodiment.
  • the cable coupling 100 of the present embodiment has a second band limiting unit 140 on the add side.
  • the wavelength band that can be used in the branch terminal station is referred to as ⁇ n.
  • ⁇ n is not limited to one wavelength, and may include wavelengths corresponding to a plurality of channels.
  • the second band limiting unit 140 is an optical filter having a wavelength selection function, limits the band of the add signal 22 to the wavelength band ⁇ n that can be used at the branch terminal station, and outputs the band to the branching device 200. Block the light.
  • the specific configuration of the second band limiting unit 140 includes, for example, a prism, a diffraction grating, an AWG, and the like, as in the band limiting unit 110, to spatially separate incident light for each wavelength, and the wavelength band is other than ⁇ n. It can be set as the structure which interrupts
  • FIG. 11 is a block diagram showing the eighth embodiment.
  • the dummy signal generation unit 120 includes a dummy signal reuse unit 123.
  • the second band limiting unit 140 includes a second unnecessary light separating unit 141.
  • the add signal 22 added from the branch side includes signal light in a wavelength band permitted to be used on the branch side and a dummy signal in a wavelength band not permitted to be used.
  • the second unnecessary light separating means 141 is an optical element that separates light of a predetermined wavelength, and separates it into signal light of a wavelength band ⁇ n used as a signal and dummy signal light of other bands. Then, the signal light of the band ⁇ n is output to the branching device 200 side, and the dummy signal light is output to the dummy signal generating unit 120.
  • the dummy signal reuse unit 123 receives the light output from the second unnecessary light separation unit 141 and combines it with light from a light source (not shown) included in the dummy signal generation unit 120.
  • a specific configuration of the dummy signal reuse unit 123 may be an optical coupler, for example.
  • the dummy signal generation unit 120 generates a dummy signal using the combined light as a light source.
  • FIG. 12 is a block diagram showing the ninth embodiment.
  • the eighth embodiment is applied to the second embodiment.
  • unnecessary light separated by the unnecessary light separating unit 111 is used as a light source for a dummy signal, and in the same manner as in the eighth embodiment, the second unnecessary light is used.
  • the dummy signal light separated by the separating means 141 is used as a light source.
  • the dummy signal reuse unit 123 multiplexes the unnecessary light separated by the unnecessary light separating unit 111 and the dummy signal light separated by the second second unnecessary light separating unit 141.
  • the signal invalidating means 121 invalidates the combined light signal and generates a dummy signal.
  • the dummy signal generation unit 120 may be configured not to include a self-light-emitting light source.
  • an optical attenuator such as a VOA may be provided to adjust the light intensity.
  • the energy required for generating the dummy signal can be further reduced as compared with the eighth embodiment.
  • FIG. 13 is a block diagram showing a tenth embodiment of the present invention.
  • the cable coupling of the present embodiment corresponds to a full-duplex wavelength division multiplexing optical communication network.
  • the unidirectional wavelength-multiplexed optical signal 10 has been described for the sake of brevity, but in general, the WDM network is usually full-duplex.
  • the WDM network transmits two-way wavelength multiplexed optical signals, an upstream wavelength multiplexed optical signal 10a and a downstream wavelength multiplexed optical signal 10b.
  • the cable coupling 300 includes cable coupling units 100a and 100b that correspond to upstream and downstream.
  • the cable coupling units 100a and 100b have the configuration of the cable coupling according to any one of the first to ninth embodiments.
  • the cable coupling unit corresponding to the upstream wavelength multiplexed optical signal 10a is 100a
  • the cable coupling unit corresponding to the downstream wavelength multiplexed optical signal 10b is 100b.
  • the upward and downward directions of the trunk signal used in the above description are specified for convenience of description, and the naming of the direction is arbitrary.
  • FIG. 14 is a block diagram showing the eleventh embodiment. This embodiment is a configuration example of a WDM system using the cable coupling 100 of the present invention.
  • the WDM system includes a terminal station device A_400, an opposing terminal device B_500, and a trunk cable 30 that connects the two.
  • the trunk cable 30 transmits a wavelength multiplexed optical signal.
  • a plurality of branch devices 200 are installed on the trunk cable 30 between the terminal device A_400 and the terminal device B_500, and signals are added / dropped to / from the plurality of branch terminal devices 600.
  • branch terminal devices 600a, 600b, 600c,... are installed and are limited so that only ⁇ a, ⁇ b, ⁇ c,. It is assumed that at least one of ⁇ a, ⁇ b, ⁇ c,... has a different band.
  • the band coupling used by the branch terminal 600 is limited by the cable coupling 100. Accordingly, the selection of the band to be used is determined by the specifications of the cable coupling 100 to be used.
  • the cable coupling unit 100a has a specification that only ⁇ a can be used
  • 100b has a specification that only ⁇ b can use
  • 100c has a specification that only ⁇ c can use, and so on.
  • the structure of the branching device can be shared. For this reason, it is not necessary to produce a different branch device for each band or to have a spare machine. As a result, the cost can be greatly reduced and the system design is facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

[課題]低コストで、分岐局での利用が許された信号だけを分岐する、ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法を、提供する。 [解決手段]波長多重光信号を分岐する分岐装置と分岐ケーブルとを接続するケーブルカップリングであって、前記分岐装置がドロップした信号の波長を第1の帯域に限定して透過する帯域限定手段と、前記第1の帯域を含まない第2の帯域の波長を有するダミー信号を生成するダミー信号生成手段と、前記帯域限定手段を透過した信号と前記ダミー信号とを多重化して前記分岐ケーブルに送出する信号多重化手段と、を有する。

Description

ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法
 本発明は、ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法に関する。
 波長多重光通信(WDM:Wavelength Division Multiplex)では、1本の導波路で波長の異なる複数の光信号(チャネル)を同時に伝送し大容量の通信を行うことができる。そして、特定波長のチャネルを分岐・挿入することにより、任意の装置間で通信を行うことができる。この時、多重化された幹線信号の一部である特定波長のチャネルに対し、電気信号に変換することなく信号を挿入(Add、アド)・抜き出し(Drop、ドロップ)することができる。それが、OADM(Optical Add/Drop Multiplexer)技術である。近年、アド・ドロップするチャネルの設定を遠隔で制御できるROADM(Reconfigurable Optical Add/Drop Multiplexer)が主流になってきている。上述のOADM/ROADMを用いることにより、分岐局は任意の波長の光信号(チャネル)を利用することができる。
 信号を分岐すると総光強度が変動する可能性がある。しかし長距離に渡るWDM通信を行う場合には、総光強度を一定にしておく必要がある。これは雑音レベルを抑え信号品質を確保するためである。例えば、特許文献1には、OADM/ROADMを用いた光信号のアド・ドロップを行った際に、総光強度を一定に保つ技術が開示されている。
 ところで幹線信号の中には、ある分岐局に不要なチャネルの光信号、さらに言えば当該分岐局が傍受してはいけないチャネルの光信号が存在する。したがって、このような光信号が当該分岐局に到達しないようにする仕組みが必要となる。それを実現する技術の一例が特許文献2に開示されている。
 特許文献2の技術では、幹線信号からチャネルをアド/ドロップする分岐装置と端局装置の間に、傍受してはいけないチャネルの光信号を遮断する遮断器を設けている。そして、端局装置からの送信時には、遮断される帯域のチャネルにダミー信号を合波して送信し、伝送路における総光強度が一定になるようにしている。こうして信号品質を確保しつつ、必要な信号だけを分岐局が利用できるようにして、情報のセキュリティを確保している。
特表2013-513344号公報 特開2011-82751号公報
 しかしながら、特許文献2の技術では、遮断器を設置するためのコストが高くなるという問題点があった。これは、遮断器を、分岐装置と端局装置との間に独立して設けているためである。特に海底ケーブルを用いた通信に適用する場合には、耐水圧を確保するため筐体のコストが高価になる。
 本発明は上記の問題に鑑みてなされたものであり、低コストで、分岐局での利用が許された信号だけを分岐する、ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法を、提供することを目的としている。
 上記の課題を解決するため、本発明のケーブルカップリングは、波長多重光信号を分岐する分岐装置と分岐ケーブルとを接続するケーブルカップリングであって、前記分岐装置がドロップした信号の波長を第1の帯域に限定して透過する帯域限定手段と、前記第1の帯域を含まない第2の帯域の波長を有するダミー信号を生成するダミー信号生成手段と、前記第1の帯域限定手段を透過した信号と前記ダミー信号とを多重化して前記分岐ケーブルに送出する信号多重化手段と、を有している。
 本発明の効果は、低コストで、分岐局での利用が許された信号だけを分岐する、ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法を、提供できることである。
本発明第1の実施の形態を示すブロック図である。 本発明第2の実施の形態を示すブロック図である。 本発明第3の実施の形態を示すブロック図である。 本発明第4の実施の形態を示すブロック図である。 本発明第5の実施の形態を示すブロック図である。 本発明第3の実施の形態の動作を示す模式図である。 本発明第6の実施の形態を示すブロック図である。 本発明第6の実施の形態の動作を示すブロック図である。 本発明第6の実施の形態の別の動作を示すブロック図である。 本発明第7の実施の形態の動作を示すブロック図である。 本発明第8の実施の形態の動作を示すブロック図である。 本発明第9の実施の形態の動作を示すブロック図である。 本発明第10の実施の形態の動作を示すブロック図である。 本発明第11の実施の形態の動作を示すブロック図である。
 以下、図面を参照しながら本発明について詳細に説明する。なお、異なる図面における同様の構成要素については、同じ符号を付し、その繰り返しの説明は省略することがある。
 (第1の実施の形態)
 図1は第1の実施の形態のケーブルカップリングを示すブロック図である。ケーブルカップリング100は、波長多重光信号10を分岐する分岐装置200と分岐ケーブル20とを接続する。なお、図示はしていないが、分岐ケーブル20は信号の伝送路として例えば光ファイバを有している。
 ケーブルカップリング100は、帯域限定手段110と、ダミー信号生成手段120と、信号多重化手段130と、を有する。
 帯域限定手段110は、波長選択機能を有する光学フィルタであり、分岐側での利用が許された所定波長帯域だけの信号光を透過し、それ以外の波長帯域の光が分岐側に送出されることを防止する。このため波長多重光信号10から、分岐装置200がドロップした信号は、利用が許された帯域の信号に限定されて分岐ケーブル側に伝送される。
 ダミー信号生成手段120は、ダミー信号を生成する光信号発生装置である。ダミー信号は有意な情報を持たない光信号であり、分岐側での利用が許された波長帯域以外の波長帯域の光を搬送波とする。
 信号多重化手段130は、第1の帯域限定手段110を通過した分岐側での利用が許された信号光と、ダミー信号光とを多重化して分岐ケーブル20に送出する。
 以上説明したように、本実施の形態によれば、波長多重光信号の幹線に独立した遮断器を設ける方法などに比べ、低コストで、分岐局で利用が許された信号だけを利用できるようになる。その結果、チャネルごとに情報のセキュリティを確保することができる。
 (第2の実施の形態)
 図2は第2の実施の形態のケーブルカップリングを示すブロック図である。本実施の形態のケーブルカップリング100は、第1の実施の形態の構成に加えて、帯域限定手段110が不要光分離手段111を有している。また、ダミー信号生成手段120が、信号無効化手段121を有している。
 ケーブルカップリング100を適用する分岐装置200は、波長多重光信号10を分岐する。その方法は、任意であるが、例えば、複数の光ファイバを融着した光スプリッタを用いる方法や、平板上に導波路を形成した平面光波回路を用いる方法などを用いることができる。
 不要光分離手段111はドロップした信号のうち帯域限定手段110が透過する以外の信号光を不要光として分離する。その分離には、例えば、プリズム、回折格子、など、光を波長ごとに空間的に分離する光学素子を用いることができる。また、同様の機能を有する、アレイ導波路グレーティング(AWG、Arrayed‐Waveguide Grating)を使用することもできる。AWGでは、まず、入射した光が、波長ごと異なる方向に光を回折する導波路(スラブ導波路)を用いて、波長ごとに光を空間的に分離する。そして、各回折光が入射する位置に配置された光ファイバから、それぞれの波長の光を取り出すことができる。また、逆方向から光を入射することで合波器として用いることもできる。上記のような光学素子により、不要光分離手段111は分岐側で使用する信号光を信号多重化手段130に向けて出力するとともに、不要光をダミー信号生成手段120に出力する。
 ダミー信号性制御手段手段120に設けられた信号無効化手段121は、不要光分離手段111によって分離された不要光を無効化する光学素子である。ここでの無効化とは、元の信号が伝送する情報を無効化することである。即ち、意味のない光信号とすることである。信号の無効化には、例えば、偏波モード分散の付加、偏光依存損失の付加、非線形変調などを用いることができる。
 偏波モード分散の付加は、例えば複屈折性をランダムに変化させた導波路を通過させて行うことができる。偏波モード分散の付加によりパルスが拡大し信号としての情報が失われる。
 偏光依存損失の付加は、例えば、磁気光学効果を有するファラデー回転子を用いて行うことができる。例えば、磁界が時間的に変化するようにして、偏光状態をランダムにし、信号を無効化することができる。
 非線形変調は、例えば光の入射によって屈折率が変化するような性質を有する材料でできた導波路を通過させて行う。これにより信号を無効化することができる。
 ダミー信号生成手段120は、上記のような、無効化された光信号を用いてダミー信号を生成し、信号多重化手段130に出力する。
 生成されたダミー信号は信号多重化手段130によって、帯域限定手段110を透過した信号と多重化され、ドロップ信号21として、分岐ケーブル20に送出される。多重化は、例えば複数の光ファイバを融着した光カプラなどを用いて、光を合波することにより行うことができる。
 なお、ケーブルカップリング100は分岐ケーブル20から波長多重光信号10にアドするアド信号22を伝送する機能も有していて良い。
 以上説明したように、本実施の形態によれば、ダミー信号用の光源を設けることなくダミー信号を生成することができる。
 (第3の実施の形態)
 図3は第3の実施の形態を示すブロック図である。本実施の形態のケーブルカップリング100は、第1の実施の形態の構成に加えて、ダミー信号生成手段120が、光強度調整手段122を有している。
 光強度調整手段122はダミー信号生成手段120から送出するダミー信号の光強度を調整する。一般的に波長多重光通信(WDM)の伝送システムは、信号の総光強度を所定値に保って伝送するように設計されている。このため、総光強度を所定値にしないと信号の品質を保つことが困難になる。したがって、分岐ケーブル20を伝送する信号の総光強度も所定範囲に維持することが望ましい。光強度調整手段122は、ダミー信号と帯域限定手段110を透過した信号光とを多重化した時の総光強度が、上記の所定範囲になるようにダミー信号の強度を調整する。具体的には、例えば、ダミー信号生成手段120が、ダミー信号の波長のレーザー光源を備え、光強度調整手段122として、可変光減衰器(VOA、Variable Optical Attenuator)を備えた構成とすることができる。これらを用いて光強度を所定のレベルに保つことができる。なお、総光強度の調整は、波長多重光信号10の総光強度をモニターし、これに基づいて行っても良い。
 以上説明したように、本実施の形態によれば、分岐ケーブル20を伝送するドロップ信号の総光強度を所定範囲に保つことができる。これにより所定の信号品質を確保することができる。
 (第4の実施の形態)
 図4は第4の実施の形態を示すブロック図である。本実施の形態のケーブルカップリング100は、第2の実施の形態の構成に加えて、ダミー信号生成手段120が光強度調整手段122を有している。この構成では、不要光をダミー信号生成手段120の光源として利用しているため、効率良くダミー信号を生成できる。無効化による不要光の減衰が小さい場合は、ダミー信号生成手段120が独自に光源を持たない構成とできるので、さらに効率が良い。そして、本実施形態によって、第3の実施の形態と同様に、ドロップ信号21の総光強度を所定レベルに保ち、信号品質を確保することができる。なお、光強度を調整するための構成は、第3の実施の形態と同様とすることができる。
 (第5の実施の形態)
 図5は本発明第5の実施の形態を示すブロック図である。本実施の形態では、第2の実施の形態のケーブルカップリング100が適合する分岐装置200に対する、ケーブルカップリング100の実装形態について説明する。
 分岐装置200は、波長多重光信号10からドロップする信号を分波する分波手段201と、波長多重光信号にアドする信号を合波する合波手段202と、所定範囲の波長を選択透過する波長選択手段211および212と、を有している。
 分波手段201は幹線信号10をスルー側とドロップ側に分波する。ここでスルー側とは、ドロップ側に分岐されずに分岐装置200の出力側に向かう方向のことである。分波手段201には、例えば、複数の光ファイバを融着した光スプリッタや、平板上に導波路を形成した平面光波回路などを用いることができる。
 波長選択手段211は、分波手段201からスルーされた信号から、分派手段でドロップされた信号の帯域の信号を除去する光学フィルタである。波長選択手段211は、例えば、プリズム、回折格子、AWGなどと、選択しない波長の光を遮断するブロックとを組み合わせて構成することができる。また、選択する波長が固定で良い場合は、所定波長帯の光を透過し、それ以外の波長の光を遮断する多層膜フィルタを用いてもよい。
 アド側の波長選択手段212は、波長選択機能を有する光学フィルタであり、アドする信号光から不要な信号光を除去する。アド信号22には、分岐端局が利用する帯域の信号光以外に総光強度を保つためのダミー信号光が含まれている。波長選択手段212はこのダミー信号を除去する。波長選択の方式は、例えば、波長選択手段211と同様な方式とすることができる。
 合波手段202は、波長選択手段211が送出した信号光と、波長選択手段212が送出した信号光を合波する光合波器である。合波手段202には、複数の光ファイバを融着した光カプラや、平板上に導波路を形成した平面光波回路などを用いることができる。
 以上の構成とすることにより、分岐装置20の入力側と出力側とで、波長多重光信号10が収容するチャネルを同じにすることができる。
 図6はこの時の動作を具体的な例で示す模式図である。ここで、波長多重光信号10にはch1、ch2、ch3の信号が多重化されており、分岐側ではch2の利用のみが許可されているものとする。なおch1、ch2、ch3などの信号はそれぞれが単一波長の信号に限られるものではなく、ある波長範囲の複数のチャネルを含んでいても良いものとする。
 まず、ch1、ch2、ch3が入力され、分波手段201が波長多重光信号10をスルー側と分岐側に分波する。
 ケーブルカップリング100に入力された信号は、帯域限定手段110により、ch2のみが分岐側に透過される。ch1、ch3は不要光分離手段111によってダミー信号生成手段120に送信される。ダミー信号生成手段120では、信号無効化手段121の作用によりch1、ch3の信号を無効化し、ダミー信号のdm1、dm3を生成する。そして信号多重化手段130によってch2、dm1、dm3が多重化され、ドロップ信号21として送出される。
 分波手段201のスルー側には、ch1、ch3の信号が出力され、合波手段202に入力される。
 ケーブルカップリング100のアド側には、分岐端局から送信された信号ch4とダミー信号dm5がアド信号22として入力される。そして分岐装置200のアド側に送信される。ここでch4は分岐端局が利用可能なch2と同じ帯域を持っている。
 分岐装置200に入力されたアド信号は、波長選択手段212によって、ダミー信号dm5が除去され、ch4だけが波長多重光信号10側に送出される。
 合波手段202では、ch1、ch3、ch4の信号が合波され、分岐装置200から波長多重光信号10に入力される。ここで、ch2とch4は同じ帯域の信号であるため、分岐装置200の入力側と出力側で幹線信号11が収容するチャネルは同じになる。
 以上説明したように、本実施の形態によれば、不要な信号が分岐されないセキュリティを確保しつつ、分岐装置の入力側と出力側とで、波長多重光信号が収容するチャネルを同じにすることができる。
 (第6の実施の形態)
 図7は本発明第6の実施の形態を示すブロック図である。本実施の形態では、第1の実施の形態のケーブルカップリング100が適合する分岐装置200に対する、ケーブルカップリング100の実装形態について説明する。
 分岐装置200は、入力された波長多重光信号10を波長分離して、波長に基づいて信号光をスルー側と分岐側に分波する波長分離手段213を有している。また、分岐装置200は、アド信号22から不要信号を除去する波長選択手段212と、スルー信号とアド信と号を合波する合波手段202と、を有している。
 図8は、本実施の形態を説明する具体的な例を示すブロック図である。ここで、波長多重光信号10は信号λ1、λ2、λ3、λ4、λ5を収容しているものとする。そして分岐端局ではλ4、λ5のみが利用可能であるとする。なおλ1、λ2、・・・は、それぞれが複数チャネルを収容していても良いものとする。
 波長分離手段213によって、分岐側で利用可能なλ4、λ5のみがケーブルカップリング100に送信される。他の信号はスルー信号11として分岐装置200の出力側に送出される。
 ケーブルカップリング100では、帯域限定手段110によってλ4、λ5が透過される。そしてダミー信号生成手段120で生成されたダミー信号と信号多重化手段130によって多重化され、分岐ケーブル20に送信される。
 分岐装置200のアド側では、波長選択手段212によってアド信号22から不要信号が除去される。そして合波手段202で、スルー信号11と合波され、波長多重光信号10として出力される。
 以上の説明で明らかなように、上記の分岐装置200を用いれば、本発明を適用する必要はないように思われる。しかしながら、障害や悪意を持った不正操作などがあった場合、波長分離手段213が不要な信号を分岐側に送出することも考えられる。
 このような事態の具体例を示したのが図9である。何らかの不具合により、本来利用可能なλ4、λ5に加えて、分岐装置200から分岐側にλ3が送出された場合を示している。本実施の形態のケーブルカップリング100が無い場合、λ3は分岐端局に送信され、傍受されてしまう。一方本実施の形態によれば、λ3は帯域限定手段110によって、図9中の×印で示すようにブロックされる。したがって情報の漏えいを防ぐことができる。
 以上説明したように、本実施の形態によれば、不測の事態が起きた場合にも、情報のセキュリティを保つことができる。
 (第7の実施の形態)
 図10は、本実施の形態を示すブロック図である。本実施の形態のケーブルカップリング100は、第1の実施の形態の構成に加えて、アド側に第2の帯域限定手段140を有している。ここで、分岐端局で利用可能な波長帯域をλnと呼ぶこととする。λnは、1つの波長に限らず、複数のチャネルに対応する波長を含んでいて良い。
 第2の帯域限定手段140は、波長選択機能を有する光学フィルタであり、アド信号22の帯域を分岐端局で利用可能な波長帯域λnに限定して、分岐装置200に出力し、他の帯域の光を遮断する。具体的な第2の帯域限定手段140の構成は、例えば、帯域限定手段110と同様に、プリズム、回折格子、AWGなど、入射光を波長ごとに空間的に分離し、波長帯域がλn以外の光を遮断する構成とすることができる。
 以上説明したように、本実施の形態によれば、分岐側から利用を許可されていない帯域の信号がアドされることを防止し、セキュリティを強化することができる。
 (第8の実施の形態)
 図11は第8の実施の形態を示すブロック図である。本実施の形態のケーブルカップリング100は、第1の実施の形態の構成に加えて、ダミー信号生成手段120がダミー信号再利用手段123を有している。また第2の帯域限定手段140が、第2の不要光分離手段141を有している。
 分岐側からアドされるアド信号22は、分岐側で利用が許可された波長帯域の信号光と、利用が許可されていない波長帯域のダミー信号とを含んでいる。第2の不要光分離手段141は、所定波長の光を分離する光学素子であり、信号として用いる波長帯域λnの信号光と、それ以外の帯域のダミー信号光とに分離する。そして、帯域λnの信号光を分岐装置200側に出力し、ダミー信号光をダミー信号生成手段120に出力する。
 ダミー信号再利用手段123は、第2の不要光分離手段141から出力された光を受光し、ダミー信号生成手段120が備える光源(図示なし)の光と合波する。具体的なダミー信号再利用手段123の構成は、例えば光カプラとすることができる。ダミー信号生成手段120は、この合波された光を光源として、ダミー信号を生成する。
 以上の構成とすることにより、ダミー信号生成に必要なエネルギーを小さくすることができる。
 (第9の実施の形態)
 図12は、第9の実施の形態を示すブロック図である。本実施の形態は、第8の実施の形態を第2の実施の形態に適用したものである。本実施の形態では、第2の実施形態と同様に、不要光分離手段111が分離した不要光をダミー信号の光源として利用するとともに、第8の実施の形態と同様に、第2の不要光分離手段141が分離したダミー信号光を光源として利用する。そして、ダミー信号再利用手段123が、不要光分離手段111が分離した不要光と、第2の第2の不要光分離手段141が分離したダミー信号光とを合波する。そして、信号無効化手段121が、この合波された光の信号を無効化して、ダミー信号を生成する。
 上記のような構成とすると、ダミー信号の光源として、利用できる光量が増えるため、ダミー信号生成手段120が自発光の光源を備えない構成とすることも可能である。図示はしていないが、光量が多すぎる場合にはVOAなどの光減衰器を設けて、光強度を調整しても良い。
 以上の構成により、ダミー信号の生成に必要とするエネルギーを、第8の実施の形態よりも、さらに小さくすることができる。
 (第10の実施の形態)
 図13は本発明第10の実施の形態を示すブロック図である。本実施の形態のケーブルカップリングは、全二重化された波長多重光通信ネットワークに対応する。第1から第9の実施の形態では、説明を簡潔にするため一方向の波長多重光信号10を用いて説明したが、一般的にはWDMネットワークは全二重化されているのが普通である。
 WDMネットワークは上り波長多重光信号10a、下り波長多重光信号10b、の2方向の波長多重光信号を伝送する。ケーブルカップリング300は、上り、下りそれぞれに対応するケーブルカップリングユニット100a、100bを有している。
 ケーブルカップリングユニット100a、100bは第1から第9の実施の形態のいずれかのケーブルカップリングの構成を有している。図13の例では、上り波長多重光信号10aに対応するケーブルカップリングユニットを100a、下り波長多重光信号10bに対応するケーブルカップリングユニットを100bとしている。なお上記の説明で用いた幹線信号の上り、下りの向きは説明の便宜上指定したものであり、方向の命名は任意である。
 以上説明したように、本実施の形態により、全二重化された波長分割多重光通信ネットワークにおいても、分岐側に不要な帯域の信号が到達することを防ぎ通信のセキュリティを確保することができる。
 (第11の実施の形態)
 図14は、第11の実施の形態を示すブロック図である。本実施の形態は本発明のケーブルカップリング100を用いたWDMシステムの構成例である。
 WDMシステムは、端局装置A_400と、対向する端局装置B_500と、両者を接続する幹線ケーブル30と、を有している。幹線ケーブル30は波長多重光信号を伝送する。また、端局装置A_400と端局装置B_500との間の幹線ケーブル30には、複数の分岐装置200が設置され、複数の分岐端局装置600に対して信号をアド・ドロップする。図の例では、分岐端局装置600a、600b、600c、・・・が設置され、それぞれλa、λb、λc、・・・信号のみが利用できるように制限されているものとする。λa、λb、λc、・・・のうち少なくとも一つは帯域の異なるものとする。
 分岐装置200は全て同じものである。分岐端局600が利用する帯域の制限はケーブルカップリング100が行う。したがって利用する帯域の選択は、用いるケーブルカップリング100の仕様によって決定される。図の例では、ケーブルカップリングユニット100aはλaのみが利用できる仕様、100bはλbのみが利用できる仕様、100cはλcのみが利用できる仕様、・・・としている。このようにすることにより、同じ分岐装置200を用いながら、ケーブルカップリング100をそれぞれの利用帯域に合わせて配置するだけで、各分岐端局装置が利用する帯域を適切に制限することができる。
 以上説明したように、本実施の形態のWDMシステムでは、分岐装置に帯域制限機能を設ける必要がなく、分岐装置の構造を共通化することができる。このため、帯域ごとに異なる分岐装置を作製したり、予備機を持ったりする必要が無くなる。その結果、コストを大幅に削減でき、またシステム設計も容易になる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上記実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年9月25日に出願された日本出願特願2014-194854を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  波長多重光信号
 11  スルー信号
 20  分岐ケーブル
 21  ドロップ信号
 22  アド信号
 100、300  ケーブルカップリング
 110  帯域限定手段
 111  不要光分離手段
 120  ダミー信号生成手段
 121  信号無効化手段
 122  光強度調整手段
 123  ダミー信号再利用手段
 130  信号多重化手段
 140  第2の帯域限定手段
 141  第2の不要光分離手段
 200  分岐装置
 201  分波手段
 202  合波手段
 211、212  波長選択手段
 213  波長分離手段
 400  端局装置A
 500  端局装置B
 600  分岐端局装置

Claims (10)

  1.  波長多重光信号を分岐する分岐装置と分岐ケーブルとを接続するケーブルカップリングであって、
     前記分岐装置がドロップした信号の波長を第1の帯域に限定して透過する帯域限定手段と、前記第1の帯域を含まない第2の帯域の波長を有するダミー信号を生成するダミー信号生成手段と、前記帯域限定手段を透過した信号と前記ダミー信号とを多重化して前記分岐ケーブルに送出する信号多重化手段と、を有することを特徴とするケーブルカップリング。
  2.  前記帯域限定手段が前記第1の帯域の信号を透過し前記第1の帯域以外の帯域の信号を不要光として分離する不要光分離手段を有し、前記ダミー信号生成手段が前記不要光を無効化してダミー信号を生成する信号無効化手段を有している、ことを特徴とする請求項1に記載のケーブルカップリング。
  3.  前記ダミー信号生成手段が光強度調整手段を有する、ことを特徴とする請求項1または請求項2に記載のケーブルカップリング。
  4.  前記分岐ケーブルから前記波長多重光信号にアドする信号の帯域を前記第1の帯域に限定して透過する第2の帯域限定手段を有する、ことを特徴とする請求項1に記載のケーブルカップリング。
  5.  前記第2の帯域限定手段が前記第1の帯域の信号を透過し前記第1の帯域以外の帯域の信号を第2の不要光として分離する第2の不要光分離手段を有し、前記ダミー信号生成手段が前記第2の不要光を利用してダミー信号を生成するダミー信号再利用手段を有している、ことを特徴とする請求項4に記載のケーブルカップリング。
  6.  第1の端局装置と、第2の端局装置と、少なくとも1つの分岐端局装置と、前記第1の端局装置と前記第2の端局装置との間で波長多重光信号を伝送するケーブルと、前記波長多重光信号の少なくとも一部を分岐する分岐装置と、前記分岐装置と前記分岐端局装置とを結ぶ分岐ケーブルと、前記分岐装置と前記分岐ケーブルとを接続する請求項1乃至請求項5いずれか一項に記載のケーブルカップリングと、を有することを特徴とする波長多重光通信システム。
  7.  複数の前記分岐装置を有し、前記分岐装置が共通であることを特徴とする請求項6に記載の波長多重光通信システム。
  8.  波長多重光信号を分岐する波長多重光信号分岐方法であって、分岐装置が前記波長多重光信号の少なくとも一部をドロップし、前記ドロップした信号の波長を第1の帯域に限定して透過した第1の分岐信号を生成し、前記第1の帯域を含まない第2の帯域の波長を有するダミー信号を生成し、前記第1の分岐信号と前記ダミー信号とを多重化して第2の分岐信号を生成する、ことを特徴とする波長多重光信号分岐方法。
  9.  前記ドロップした信号から前記第1の帯域以外の帯域の信号を不要光として分離し、前記不要光を無効化して前記ダミー信号を生成する、ことを特徴とする請求項8に記載の波長多重光信号分岐方法。
  10.  前記波長多重光信号の光強度に基づいて前記ダミー信号の強度を調整する、ことを特徴とする請求項8または請求項9に記載の波長多重光信号分岐方法。
PCT/JP2015/004681 2014-09-25 2015-09-15 ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法 WO2016047092A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014194854 2014-09-25
JP2014-194854 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047092A1 true WO2016047092A1 (ja) 2016-03-31

Family

ID=55580643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004681 WO2016047092A1 (ja) 2014-09-25 2015-09-15 ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法

Country Status (1)

Country Link
WO (1) WO2016047092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117354653A (zh) * 2023-12-05 2024-01-05 华海通信技术有限公司 一种海缆系统带宽复用方法及海缆系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276129A (ja) * 1997-03-28 1998-10-13 Nec Corp 光分岐挿入回路及び光伝送方法
JP2011082751A (ja) * 2009-10-06 2011-04-21 Nec Corp 波長多重光ネットワークシステム及び波長多重光の送受信方法
JP2012205045A (ja) * 2011-03-25 2012-10-22 Fujitsu Ltd 通信システム、通信装置および通信方法
JP2012531866A (ja) * 2009-06-30 2012-12-10 アルカテル−ルーセント 光信号を伝送するシステムおよび方法
WO2015146106A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光送受信装置、光通信システム及び光通信方法
WO2015146107A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276129A (ja) * 1997-03-28 1998-10-13 Nec Corp 光分岐挿入回路及び光伝送方法
JP2012531866A (ja) * 2009-06-30 2012-12-10 アルカテル−ルーセント 光信号を伝送するシステムおよび方法
JP2011082751A (ja) * 2009-10-06 2011-04-21 Nec Corp 波長多重光ネットワークシステム及び波長多重光の送受信方法
JP2012205045A (ja) * 2011-03-25 2012-10-22 Fujitsu Ltd 通信システム、通信装置および通信方法
WO2015146106A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光送受信装置、光通信システム及び光通信方法
WO2015146107A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117354653A (zh) * 2023-12-05 2024-01-05 华海通信技术有限公司 一种海缆系统带宽复用方法及海缆系统
CN117354653B (zh) * 2023-12-05 2024-02-06 华海通信技术有限公司 一种海缆系统带宽复用方法及海缆系统

Similar Documents

Publication Publication Date Title
US10003425B2 (en) Branching configuration including separate branching unit and predetermined wavelength filter unit and system and method including the same
EP3176968B1 (en) Optical communication device, optical communication system, and optical communication method
EP1622297B1 (en) Optical add/drop multiplexer
JP5521168B2 (ja) 光伝送装置及び光伝送システム
US8861966B2 (en) Method and system for band blocking in an optical telecommunication network
US9225457B2 (en) Overlapping spectrum in optical communication
JP4152932B2 (ja) 光分波方法および光合波方法、並びに、それを用いた光伝送装置
US20060198636A1 (en) Wavelength grid for DWDM
US11336386B2 (en) Submarine branching apparatus, optical submarine cable system, and optical communication method
WO2019188462A1 (ja) 海底分岐装置、光海底ケーブルシステム及び光通信方法
JP2012169870A (ja) 光伝送装置および光フィルタ回路
JP6256626B2 (ja) ノード装置及びノード装置の制御方法
EP3614581A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
US20150256283A1 (en) Optical branching/coupling device and optical branching/coupling method
EP3092735A1 (en) Overlapping spectrum in optical communication
WO2016047092A1 (ja) ケーブルカップリングおよび波長多重光通信システムおよび波長多重光信号分岐方法
JP6954307B2 (ja) 光伝送装置および光伝送方法
US20050100271A1 (en) Reconfigurable optical node with distributed spectral filtering
Al Sayeed et al. Low-loss reconfigurable OADM for metro core optical network
KR100908239B1 (ko) 채널 통과/결합 광 모듈 및 이를 이용한 oadm노드에서의 채널 통과/결합 방법
Lee et al. Optical-Layer Restoration in a Self-Healing Ring Network Using a Wavelength-Blocker-based Reconfigurable Optical Add/Drop Multiplexer
KR20150139696A (ko) 가변형 광 분기결합 다중화 시스템
JP2005136994A (ja) 光ネットワークのネットワーク容量を増加させるための方法及びシステム
Sayeed et al. Transparent ring-to-ring interconnection for metro core optical network
KR100831123B1 (ko) 광전송장치에서 광채널 분기/결합 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP