WO2016046980A1 - Semiconductor storage device - Google Patents

Semiconductor storage device Download PDF

Info

Publication number
WO2016046980A1
WO2016046980A1 PCT/JP2014/075710 JP2014075710W WO2016046980A1 WO 2016046980 A1 WO2016046980 A1 WO 2016046980A1 JP 2014075710 W JP2014075710 W JP 2014075710W WO 2016046980 A1 WO2016046980 A1 WO 2016046980A1
Authority
WO
WIPO (PCT)
Prior art keywords
read
cell
semiconductor memory
memory device
voltage
Prior art date
Application number
PCT/JP2014/075710
Other languages
French (fr)
Japanese (ja)
Inventor
健三 黒土
笹子 佳孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016549880A priority Critical patent/JPWO2016046980A1/en
Priority to PCT/JP2014/075710 priority patent/WO2016046980A1/en
Publication of WO2016046980A1 publication Critical patent/WO2016046980A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00

Definitions

  • the present invention relates to a semiconductor memory device, and particularly to an electrically rewritable nonvolatile memory such as a phase change memory, a ReRAM (resistance change memory), and an STT-MRAM (spin injection magnetization reversal resistance change memory). It relates to effective technology.
  • an electrically rewritable nonvolatile memory such as a phase change memory, a ReRAM (resistance change memory), and an STT-MRAM (spin injection magnetization reversal resistance change memory). It relates to effective technology.
  • Patent Document 1 JP-A-2005-327409
  • Patent Document 1 JP-A-2005-327409
  • the two ends of the memory cells connected in series are Each memory cell unit is connected to a data transfer line and a reference potential line via a selection transistor, and a read voltage that turns the memory cell on or off according to the data is applied to the selected memory cell in the memory cell unit.
  • a pass voltage that turns on the memory cell regardless of the data is applied to the remaining non-selected memory cells, the selection transistor is turned on, and whether or not there is a current between the data transfer line and the reference potential line Has a data read mode in which the data of the selected memory cell is determined by detecting (see the summary).
  • Patent Document 2 states that “in a memory cell in which data is stored by accumulating or removing charges and read by current, when threshold voltage variation increases.
  • Another object of the present invention is to provide a semiconductor memory device and a data discriminating method capable of accurately discriminating data, including a memory cell 1 for storing data by accumulating or removing electric charges and reading data by electric current.
  • the circuit 2 writes intermediate data in the cell itself from which normal data is read, and generates and determines a reference current for determining normal data by reading the intermediate data (summary). reference).
  • Patent Document 3 “a dummy cell 109 or 110 to which stress is applied according to the number of times of reading / writing is provided, and a change in resistance value of a phase change element of the dummy cell is compared. 111, 112 "(see summary).
  • Patent Document 4 a technique for manufacturing a large-capacity semiconductor memory device by using a phase change memory as a nonvolatile memory and connecting a plurality of bits in series in a chain shape is known (see, for example, Patent Document 4).
  • JP 2005-327409 A Republished WO2009 / 041187 JP 2006-202383 A JP 2012-69830 A
  • the inventor examined the circuit configuration of the resistance change type memory, particularly the phase change memory in detail, and found the following knowledge.
  • a peripheral circuit including a read circuit section having a sense amplifier for reading is provided around the memory array.
  • a read circuit section having a sense amplifier for reading is provided around the memory array.
  • the phase change element has an amorphous (amorphous) state, a low resistance crystal state, and a high resistance, and uses a difference in electrical resistance. For example, the high resistance state is set to “0” and the low resistance state is set to “1”. Record information. A change from '1' to '0' is a write or reset operation, and a change from 0 'to' 1 'is an erase or set operation.
  • the phase change element has a phenomenon called resistance drift in which the element resistance gradually increases with time after writing. It is said that the cause of the resistance drift is the structural relaxation of the phase change material that occurs after writing. This resistance drift is characterized in that the resistance value is likely to increase as the element resistance increases.
  • An object of the present invention is to provide a technique capable of improving the reliability of a read operation without being affected by variations in resistance of read bit lines and non-selected memory cells.
  • a typical semiconductor memory device includes a memory array having a plurality of storage units for storing information, and a read circuit that reads out data stored in the storage unit, and includes a first read mode and a second read mode. And having.
  • the storage unit includes at least one memory cell.
  • the memory cell includes a storage element and a selection element.
  • the memory element has at least a first memory state and a second memory state due to a difference in electrical resistance.
  • the selection element selects a storage element.
  • the first read mode is a mode in which all the storage elements of the storage unit are not selected and a precharge voltage is supplied to the storage unit.
  • the second read mode is a mode in which a memory element of the memory unit is selected and a precharge voltage is supplied to the memory unit.
  • the read circuit determines read data by comparing the reference current flowing in the storage unit in the first read mode with the cell read current flowing in the storage unit in the second read mode.
  • the read circuit acquires the read current and the reference current from the same bit line to which the selected storage unit is connected in the first read mode and the second read mode, respectively.
  • the reliability of data reading in the semiconductor memory device can be improved.
  • FIG. 4 is an explanatory diagram illustrating an example of a partial circuit configuration of a memory array 202 included in the semiconductor memory device according to the first embodiment
  • FIG. FIG. 2 is an explanatory diagram illustrating an example of a configuration of a read circuit provided in a peripheral portion of the memory array in FIG. 1. It is explanatory drawing which shows an example of the layout in the semiconductor memory device which this inventor examined. It is explanatory drawing which shows the other example of the layout in the semiconductor memory device which this inventor examined. It is explanatory drawing which showed an example of the change of the elapsed time after writing, and phase change element resistance.
  • FIG. 2 is an explanatory diagram showing an example of an on / off state of a Z selection transistor when a cell read current flows in the memory array of FIG. 1.
  • FIG. 3 is an explanatory diagram showing an example of an on / off state of a MOS when a cell read current is passed in the read circuit of FIG. 2.
  • 3 is a timing chart showing an example of a read operation by the read circuit of FIG. 2. It is explanatory drawing which shows an example of the breakdown of the resistance read by a sense amplifier at the time of a read. It is explanatory drawing which shows the example of a structure of the read circuit used as the object of a comparison with FIG. 1 which this inventor examined.
  • 11 is a timing chart illustrating an operation example of the read circuit in FIG. 10.
  • FIG. 3 is an explanatory diagram showing an example of a configuration in a semiconductor memory device having the read circuit of FIG. 2.
  • FIG. 10 is an explanatory diagram showing a partial circuit configuration example of a memory array included in a semiconductor storage device according to a second embodiment
  • FIG. 15 is an explanatory diagram enlarging a part of the memory array of FIG. 14.
  • FIG. 16 is a schematic diagram illustrating a cross section taken along the line D-D ′ of FIG. 15. 17 is a timing chart showing an operation example of a read circuit provided in a semiconductor memory device having the memory array of FIG.
  • FIG. 10 is an explanatory diagram illustrating an example of a partial circuit configuration of a memory array according to a third embodiment.
  • FIG. 19 is a timing chart illustrating an operation example of a read circuit provided in a semiconductor memory device having the memory array of FIG. It is explanatory drawing which shows an example of a structure of the read circuit by this Embodiment 4. It is explanatory drawing which shows an example of a structure of the read circuit by this Embodiment 5.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the semiconductor memory device has, for example, a 1T-1R type (1 transistor-1 resistance element) parallel type memory cell.
  • a semiconductor memory device that performs a determination of “0” and “1” at the time of reading by flowing a reference current using the same path as the cell read current except for the selected memory cell will be described.
  • FIG. 1 is an explanatory diagram showing an example of a partial circuit configuration of a memory array 202 included in the semiconductor memory device according to the first embodiment.
  • the memory array 202 is composed of a plurality of memory chains MC.
  • the memory chain MC serving as a storage unit includes a selection element XMOS and at least one memory cell CELL.
  • the memory cell has a configuration in which one phase change element PCM which is a storage element and a Z selection transistor ZMOS which is one Z selection element are connected in parallel.
  • phase change element PCM and one Z selection transistor ZMOS are connected in parallel.
  • one phase change element PCM and a plurality of Z selection transistors ZMOS are connected in parallel. It goes without saying that it is possible to connect to.
  • a plurality of phase change elements PCM and one Z selection transistor ZMOS can be connected in parallel, or a plurality of phase change elements PCM and a plurality of Z selection transistors ZMOS can be connected in parallel. Needless to say.
  • the Z direction is a direction orthogonal to the silicon substrate which is a semiconductor substrate, and the X direction and the Y direction are preferably orthogonal to the Z direction and orthogonal to each other. In this way, a plurality of memory cells existing in the Z direction can be collectively formed by a single drilling process, and the manufacturing cost can be reduced.
  • the gate electrodes of the Z selection transistor ZMOS are connected to each other for each layer between the plurality of memory chains MC.
  • the potential of the Z selection line Z0 connected to the gate of the zeroth layer Z selection transistor ZMOS is the same in any memory chain MC.
  • the Z selection line Z connected to the gate of the Z selection transistor can be separated for each bit line and the potential can be individually controlled. It goes without saying that the Z selection line Z can be separated for each X selection line X and the potential can be individually controlled. In this case, since the optimum gate potential of the Z selection transistor ZMOS can be controlled for each location, the gate breakdown voltage of the Z selection transistor ZMOS can be reduced, and the reliability of the semiconductor memory device 201 is improved.
  • the Z selection transistor ZMOS is preferably a vertical GAA-NMOSFET (Gate All Around n-channel MOSFET).
  • GAA-NMOSFET Gate All Around n-channel MOSFET
  • the size of the transistor can be reduced by using the vertical MOSFET as compared with the case of using 4F2 (F is the minimum processing size) and a planar MOS, the capacity can be increased.
  • the gate width can be increased compared to the case of using a planar MOS, the MOS driving power is improved, the number of memory cells included in the memory chain MC is increased, and Capacitance can be achieved.
  • the voltage applied to the gate electrode of the non-selected Z selection transistor can be lowered as compared with the case where the NMOS is used. Therefore, the gate breakdown voltage of the Z selection transistor ZMOS can be reduced, and the reliability of the semiconductor memory device 201 The effect is improved.
  • a chalcogenide material particularly a GeSbTe alloy (germanium-antimony-tellurium alloy) can be used.
  • the chalcogenide material can take two metastable states, an amorphous (amorphous state) and a crystalline state, and the electric resistance values in the respective states are different. That is, in the case of amorphous, the resistance is high, and in the crystalline state, the resistance is low. By utilizing the difference in electrical resistance, the values “0” and “1” can be stored.
  • phase change element PCM Rewriting is performed by passing current through the phase change element PCM and generating Joule heat.
  • the phase change element In order to erase, the phase change element is crystallized by holding at a temperature equal to or higher than the crystallization temperature for a certain period of time. In order to write, it is made amorphous (vitrified) by heating above the melting point and rapidly cooling. Needless to say, the phase change element PCM can take a value of three or more.
  • phase change element that has already been applied to a product as a memory element
  • the development period can be shortened, and the semiconductor memory device 201 can be shipped in a short period of time.
  • a phase change element that performs a crystal-amorphous phase change will be described.
  • a phase change element of crystal A-crystal B can be used. Absent.
  • the crystal A and the crystal B are crystals having different crystal structures.
  • phase change element is used as a memory element
  • ReRAM spin injection MRAM
  • ReRAM ReRAM with a small rewrite current
  • the semiconductor memory device 201 having a high write data rate can be realized by using the STT-MRAM having a high rewrite speed.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the read circuit 101 provided in the peripheral portion of the memory array 202 of FIG.
  • a read circuit 101 and a write / erase selection switch PROGS are connected to the bit line BL.
  • the memory array 202 includes a plurality of bit lines BL.
  • a write / erase selection switch PROGS is provided between the write / erase circuit 102 and the bit line BL.
  • the read circuit 101 as a read circuit includes a reference resistor REFR, a cell read current selection switch CELLS, a reference current selection switch REFS, a discharge switch DISS, a precharge switch PRES, a sense amplifier activation switch SA_ENS, a sense amplifier SA, a data output DOUT, a cell read. It has a voltage holding capacitor C CELL and a reference voltage holding capacitor C REF .
  • the value of the reference resistor REFR is a read threshold value used for determining “0” and “1” at the time of reading. For example, 1 M ⁇ .
  • the reference resistor REFR can be formed using, for example, a diffusion layer resistor.
  • the cell read current selection switch CELLS is turned on based on the cell read current selection signal CES when generating the cell read current.
  • the reference current selection switch REFS is turned on based on the reference current selection signal RFS when generating the reference current.
  • the discharge switch DISS is turned on based on the discharge signal DIS when the cell read voltage V CELL and the reference voltage V REF are discharged to 0V, for example.
  • the precharge switch PRES is turned on based on the precharge signal PRE when the cell read voltage V CELL and the reference voltage V REF are set to a precharge voltage V PRE , for example, 1V.
  • the sense amplifier activation switch SA_ENS is turned on based on the sense amplifier activation signal SA_ENS when the cell read voltage V CELL and the reference voltage V REF are input to the sense amplifier SA.
  • the sense amplifier SA differentially amplifies the input signal and outputs the result to the data output line DOUT.
  • the cell read voltage holding capacitor C CELL and the reference voltage holding capacitor C REF are used to hold the cell read voltage V CELL and the reference voltage V REF .
  • the capacitor can be manufactured using, for example, a gate insulating film capacitor.
  • the write / erase circuit 102 is used for writing or erasing the phase change element PCM included in the memory cell CELL. As described above, it is desirable to amplify the voltage difference in order to reduce the circuit area, but it goes without saying that other means, for example, means for comparing with the amount of current can be taken.
  • FIG. 1 shows the on and off states of the MOS when a reference current is passed.
  • the reference voltage holding capacitor C REF holds the precharge voltage V PRE in advance.
  • the precharge switch PRES is turned on in advance to set the reference voltage VREF to the precharge voltage VPRE . Then, the voltage is held using the reference voltage holding capacitor C REF .
  • the electric charge held in the reference voltage holding capacitor C REF flows to the source electrode SL through the reference resistor REFR, the bit line BL, and the memory chain MC0 when the reference current selection switch REFS is turned on.
  • the current flowing at this time is used as a reference current.
  • the resistance of the Z selection transistor ZMOS in which the Z selection transistor ZMOS is on is Low is desirable.
  • the resistance value is 33 k ⁇ .
  • the current flows mainly through the Z selection transistor ZMOS, and the current flowing through the phase change element PCM can be reduced, thereby realizing a highly reliable semiconductor memory device 201. be able to.
  • the Z selection transistor ZMOS is turned on by Z selection lines Z0, Z1, Z2, and Z3 selected by a Z selection line driving circuit (not shown) disposed in the vicinity of the memory array 202. . Therefore, the reference current mainly passes through the selection element XMOS0 and the four Z selection transistors ZMOS in the memory chain MC0.
  • the selected memory cell to be read is the memory cell CELL2, and the non-selected memory cells that are not to be read are the memory cells CELL0, CELL1, and CELL3.
  • FIG. 6 is an explanatory diagram showing an example of an on / off state of the Z selection transistor ZMOS when a cell read current is allowed to flow in the memory array 202 of FIG.
  • FIG. 7 is an explanatory diagram showing an example of the on / off state of the MOS when a cell read current is passed in the read circuit 101 of FIG.
  • the cell read voltage holding capacitor C CELL holds the precharge voltage V PRE .
  • the precharge switch PRES is turned on in advance to set the cell read voltage V CELL to the precharge voltage V PRE , and this voltage is set using the cell read voltage holding capacitor C CELL .
  • the charge held in the cell read voltage holding capacitor C CELL flows to the source electrode SL through the bit line BL and the memory chain MC0 when the cell read current selection switch CELLS is turned on.
  • the current flowing at this time is defined as a cell read current.
  • the Z selection transistors ZMOS of the non-selected memory cells CELL0, CELL1, and CELL3 are turned on by the Z selection lines Z0, Z1, and Z3. Therefore, the current flows mainly through the Z selection transistor ZMOS, not the phase change element PCM.
  • the Z selection transistor ZMOS of the selected memory cell CELL2 to be read is turned off by the Z selection line Z2, the current flows mainly through the phase change element PCM, not the Z selection transistor ZMOS. It is desirable that the off-resistance of the Z selection transistor ZMOS is higher than the resistance of the phase change element PCM in the write state and the erase state.
  • the resistance of the phase change element PCM can be read with higher accuracy, and a highly reliable semiconductor memory device 201 can be realized.
  • the cell read current mainly passes through the three Z selection transistors ZMOS in the selection element XMOS0 and the memory cells CELL0, CELL1, and CELL3, and mainly passes through the phase change element in the memory cell CELL2. ing.
  • the cell read voltage V CELL and the reference voltage V REF that were initially the precharge voltage V PRE are lowered.
  • the cell read voltage V CELL and the reference voltage V REF after flowing the reference current and the cell read current for a certain time are input to the sense amplifier SA by turning on the sense amplifier activation switch SA_ENS, and are differentially amplified.
  • the time for supplying the reference current and the time for supplying the cell read current are the same.
  • the design of the read circuit can be simplified, and the time required for designing the semiconductor memory device 201 can be shortened.
  • the cell read current is smaller than the reference current, and the cell read voltage V CELL is higher than the reference voltage V REF .
  • the sense amplifier SA By amplifying this voltage difference with the sense amplifier SA, it can be read that the value of the memory cell CELL2 is “0”.
  • the cell read current is larger than the reference current, and the cell read voltage V CELL is lower than the reference voltage V REF .
  • the sense amplifier SA By amplifying this voltage difference by the sense amplifier SA, it can be read that the value of the memory cell CELL2 is “1”.
  • FIG. 8 is a timing chart showing an example of a read operation by the read circuit 101 of FIG. In FIG. 8, from the upper side to the lower side, the cell read voltage V CELL , the reference voltage V REF , the Z selection line Z2, the Z selection lines Z0, Z1, Z3, the discharge switch DISS, the cell read current selection switch CELLS, the reference current selection switch REFS, Signal timings in the precharge switch PRES and the sense amplifier activation switch SA_ENS are respectively shown.
  • the precharge voltage V PRE is applied to the reference voltage holding capacitor C REF and the cell read voltage holding capacitor C CELL . It is desirable to perform precharging simultaneously with respect to the reference voltage and the read voltage. By carrying out simultaneously, it becomes possible to shorten precharge time to half time compared with the case where each precharge is performed, and the high-speed semiconductor memory device 201 can be realized. Needless to say, it can be charged individually.
  • the read voltage and the precharge voltage of the reference voltage be the same. By doing so, the design becomes easy and the design period can be shortened. Needless to say, the precharge voltages can be different from each other. By increasing the precharge voltage of the reference voltage, the precharge time can be shortened, and the semiconductor memory device 201 having a high read speed can be realized.
  • the precharge switch PRES is turned off and the reference current selection switch REFS is turned on (timing 602 in FIG. 8), thereby causing a reference current to flow.
  • This operation is the first read mode.
  • Reference current the reference voltage holding capacitor C REF from the bit line BL, and through the memory chain MC 0, flows to the source electrode SL.
  • the Z selection line Z2 is turned on, the current mainly passes through the Z selection transistor ZMOS in the memory cell CELL2 of the memory chain MC0.
  • the transistor characteristics of the X selection element XMOS are adjusted so that the leakage current is relatively smaller than the current flowing through the memory chain MC0, and the off-current is reduced.
  • the cell read current is caused to flow by turning off the reference current selection switch REFS and the Z selection line Z2 and turning on the cell read current selection switch CELLS. This operation is the second reading mode.
  • the cell read current flows from the cell read voltage holding capacitor C CELL through the bit line BL and the memory chain MC0 to the source electrode SL. Since Z selection line Z2 is turned off, current mainly passes through phase change element PCM in memory cell CELL2 of memory chain MC0.
  • the cell read current selection switch CELLS is turned off, and the sense amplifier activation switch SA_ENS is turned on (timing 604 in FIG. 8).
  • the potential difference between the cell read voltage V CELL and the reference voltage V REF is amplified by the sense amplifier SA. Using this amplified voltage, it is determined whether the value of the memory cell is “0” or “1”.
  • FIG. 3 is an explanatory diagram showing an example of the layout in the semiconductor memory device examined by the present inventors.
  • FIG. 4 is an explanatory diagram showing another example of the layout in the semiconductor memory device examined by the present inventors.
  • the size of the semiconductor chip CH of the semiconductor memory device is, for example, 10 mm ⁇ 11 mm, and its area is 110 mm 2 .
  • the number of memory arrays MRY is four, the size of the memory array MRY is 4 mm square, and the area of the memory array MRY is 16 mm 2 .
  • a sense amplifier is located on one side of the memory array MRY. In this case, the distance from the memory cell to the sense amplifier, that is, the length of the bit line is about 4 mm at the maximum.
  • the short sides of the read circuit 501 and the column decoder 502 are assumed to be about 1 mm.
  • the column decoder 502 includes a write circuit and an erase circuit in addition to the column selection control circuit.
  • the short side of the row decoder 503 is set to 0.5 mm.
  • the pad unit 504 is used for connecting the semiconductor memory device to an external controller. For example, when the semiconductor storage device is used for an SSD (Solid State Drive), the external controller becomes an SSD controller. Needless to say, the power supply voltage VDD and the ground voltage VSS are supplied.
  • FIG. 4 shows a case where the number of memory arrays is larger than that in FIG.
  • the size of the semiconductor chip CH is 10 mm ⁇ 11 mm and the area is 110 mm 2 as in FIG. 3, but the number of memory arrays MRY is 16.
  • the size of the memory array MRY is 1.5 mm ⁇ 1.75 mm, its area is 2.625 mm 2, and when the sense amplifier is located on one side of the memory array MRY, the memory cell MRY is changed to the sense amplifier.
  • Distance that is, the length of the bit line is 1.5 mm at the maximum.
  • 1 mm each is assigned vertically and horizontally as a scribe portion and a pad portion 504 required when manufacturing a semiconductor memory device.
  • the scribe part is a part that becomes a cutting part when the semiconductor wafer 201 is manufactured by cutting a silicon wafer with a diamond cutter.
  • the ratio of the memory array MRY to the semiconductor memory device decreases. For example, when the number of memory arrays MRY shown in FIG. 3 is 4, the occupation ratio 1 occupied by the memory array MRY in the semiconductor memory device is expressed by the following equation (1).
  • the occupation ratio 2 occupied by the memory array MRY in the semiconductor memory device 201 is expressed by the following equation (2).
  • bit line material is tungsten
  • sheet resistance is 3 ⁇ / ⁇ , when the memory array MRY shown in FIG.
  • the maximum resistance RBL1 is expressed by the following equation (3).
  • the wiring resistance is, for example, about 10% to 40%. For example, assuming that the bit line resistance varies by 30%, the resistance varies by about 113 k ⁇ when the number of memory arrays MRY shown in FIG. 3 is four. On the other hand, when the number of memory arrays MRY shown in FIG. 4 is 16, the resistance variation is about 42 k ⁇ , and the variation amount is small. Needless to say, the wiring width also varies.
  • FIG. 5 is an explanatory diagram showing an example of a change between the elapsed time after writing and the phase change element resistance.
  • the horizontal axis represents the elapsed time after writing or erasing
  • the vertical axis represents the resistance of the phase change element.
  • the graph is shown as a log-log plot.
  • Lines 401, 403, and 404 respectively indicate resistance changes after the erase operation.
  • the line 402 shows the resistance change after the write operation.
  • a read operation is performed to check whether erasing and writing are successful.
  • the lead for confirmation is the verify lead.
  • a line 401 is an example in the case where erasing can be performed to a sufficiently low resistance, and the resistance becomes sufficiently lower than an erase verify threshold, for example, 300 k ⁇ , at the time of verify read after erasure, for example, 20 us (microseconds) after erasure. ing. Furthermore, the resistance is lower than the read threshold, for example, 1 M ⁇ , even when data retention must be guaranteed (assumed as a guarantee period), for example, after 5 years. Therefore, even if reading is performed at the time of the guarantee period, it can be read that the value is “1” correctly.
  • an erase verify threshold for example, 300 k ⁇
  • the resistance is lower than the read threshold, for example, 1 M ⁇ , even when data retention must be guaranteed (assumed as a guarantee period), for example, after 5 years. Therefore, even if reading is performed at the time of the guarantee period, it can be read that the value is “1” correctly.
  • a line 402 is an example in the case where the write is successful.
  • the resistance is higher than a write verify threshold, for example, 3 M ⁇ at the time of the verify read after the write, and the resistance is higher than the read threshold even in the guarantee period. High resistance. Therefore, even if reading is performed after the guarantee period from writing, it can be read that the value is “0” correctly.
  • a line 403 is an example in which the resistance at the time of erasing is relatively high, and the value of the phase change element resistance is slightly below the read threshold value during the guarantee period. In this case, the increase in resistance with time is greater than that of line 401.
  • line 404 is an example in which the resistance at the time of erasing is higher, and the value of the phase change element resistance exceeds the read threshold value during the guarantee period. The increase in resistance with time is further increased, and if it is read from the write after the guarantee period, it is determined to be “0”, and the original value cannot be read correctly.
  • the erase verify is performed so that the resistance read by the verify read after erasure exceeds the erase verify threshold. Set the threshold.
  • FIG. 9 is an explanatory diagram showing an example of the breakdown of the resistance read by the sense amplifier SA at the time of reading.
  • the number of memory arrays is 4, the size of the memory array is 4 mm square, and the area is 16 mm 2 .
  • the maximum length of the bit line BL is 4 mm.
  • the phase change element resistance in the erased state is, for example, 100 k ⁇ .
  • the maximum resistance of the bit line is, for example, 375 k ⁇ as described in the problem.
  • the resistance of the non-selected memory cell is 100 k ⁇ , for example.
  • Other resistors including the resistance of the X selection MOS and the on-state MOS in the read circuit are, for example, 30 k ⁇ .
  • the resistance read by the sense amplifier may include a relatively large bit line resistance in addition to the resistance of the phase change element desired to be read. This high bit line resistance may make it difficult to read the phase change element resistance.
  • the same bit line BL is used both when a reference current is passed and when a cell read current is passed. Therefore, stable phase change element resistance reading can be performed without being affected by the resistance variation of the bit line BL.
  • FIG. 10 is an explanatory diagram showing an example of the configuration of a read circuit to be compared with FIG. 1 examined by the present inventors.
  • the read circuit of FIG. 10 differs from the read circuit of FIG. 1 in that it has a reference voltage source V FREF having a fixed voltage value, and is controlled by a reference current selection switch REFS and a sense amplifier activation switch SA_ENS. It is connected to the sense amplifier SA via the element.
  • FIG. 11 is a timing chart showing an operation example of the read circuit of FIG.
  • the precharge voltage V PRE is applied to the cell read voltage holding capacitor C CELL .
  • the cell read current flows from the cell read voltage holding capacitor C CELL through the bit line BL and the memory chain MC0 to the source electrode SL. Since Z selection line Z2 is turned off, current mainly passes through phase change element PCM in memory cell CELL2 of memory chain MC0.
  • the cell read current selection switch CELLS is turned off and the sense amplifier activation switch SA_ENS is turned on (timing 604 in FIG. 11).
  • the potential difference between the cell read voltage V CELL and the reference voltage V REF is amplified by the sense amplifier SA. Using this amplified voltage, it is determined whether the value of the memory cell is “0” or “1”.
  • the bit line BL when the cell read current is allowed to flow, the bit line BL is used, but the reference voltage V REF uses the fixed reference voltage V FREF and does not change depending on the resistance of the bit line BL. Therefore, it is affected by the resistance variation of the bit line BL, and it becomes impossible to read the phase change element resistance stably.
  • the resistance of the bit line BL varies 113 k ⁇ . It is higher than 100 k ⁇ , which is an example of the resistance of the phase change element in the erased state. Due to this resistance variation, it becomes difficult to determine the resistance of the phase change element from the resistance read by the sense amplifier. It becomes impossible to determine whether the state of the element is “0” or “1” with high reliability.
  • Write and erase are performed by generating Joule heat by supplying a write current to the phase change element PCM.
  • the write current is 40 ⁇ A, for example, and the erase current is 20 ⁇ A, for example.
  • writing or erasing can also be performed by generating Joule heat by passing a current through the adjacent Z selection transistor ZMOS.
  • the potential of the source electrode SL is maintained at approximately 0V. Strictly speaking, it goes without saying that the potential of the source electrode is slightly higher than about 0 V, which is the potential of the GND terminal, due to a voltage drop caused by a current flowing from the source electrode to the GND (ground) terminal. By maintaining the voltage at approximately 0 V, it is possible to avoid an increase in power consumption caused by driving a source electrode having a large parasitic capacitance.
  • FIG. 12 is an explanatory diagram showing an example of the configuration of the semiconductor memory device 201 having the read circuit 101 of FIG. In FIG. 12, only one memory array 202 is shown for simplicity.
  • the semiconductor memory device 201 is supplied with the power supply voltage VDD and the ground voltage VSS from the outside of the semiconductor chip, and communicates control signals and the like through the data signal line DQ.
  • Examples of the input control signal include a chip valid signal CE, a command latch valid signal CLE, an address latch valid signal ALE, a clock signal CLK, a read / write valid signal W / R #, and a write protect signal WP #.
  • an input / output control signal for example, there is a data strobe DQS, and as an output control signal, for example, there is a read busy signal R / B #.
  • an I / O signal power supply VCCQ, an I / O signal ground source VSSQ, and the like can be supplied.
  • the semiconductor memory device 201 includes a row system circuit 1001, a column system circuit 1002, a control system circuit 1003, a power supply circuit 1004, a memory array 202, and the like.
  • the row circuit 1001 includes a bit line selector, a sense amplifier, and the like.
  • the column system circuit 1002 includes a row decoder, a word line driver, and the like.
  • the control system circuit 1003 includes a command decoder, a control circuit, a buffer device, and the like.
  • power is supplied to the row system circuit 1001, the column system circuit 1002, and the control system circuit 1003. A part of the voltage is stepped up or stepped down, and the remaining voltage is supplied with the power supply voltage VDD as it is.
  • FIG. 13 is an explanatory diagram showing an example of operations at the time of writing and erasing in the phase change element PCM of FIG.
  • the Write is performed by causing a reset pulse to flow through the phase change element PCM and generating Joule heat.
  • the phase change element PCM is heated to the melting point or higher by the reset pulse, and is brought into an amorphous state by being rapidly cooled.
  • the application time of the reset pulse is about 8 ns, for example.
  • Erasing is performed by causing a set pulse to flow through the Z selection transistor ZMOS (FIG. 1) and generating Joule heat.
  • phase change element PCM is held for a certain time, for example, 500 ns above the crystallization temperature by the set pulse.
  • phase change element PCM enters a crystalline state.
  • the crystalline state has a lower resistance than the amorphous state, and by utilizing the difference in resistance, information can be recorded, for example, by setting the low resistance state to “1” and the high resistance state to “0”.
  • the read circuit 101 uses the same bit line BL when supplying the reference current and when supplying the cell read current, the influence of the resistance variation of the bit line BL can be reduced. As a result, stable phase change element resistance reading can be performed, and the reliability of the semiconductor memory device can be improved.
  • FIG. 14 is an explanatory diagram showing a circuit configuration example of a part of the memory array 202 included in the semiconductor memory device according to the second embodiment.
  • the memory array 202 includes a plurality of memory chains MC as shown in FIG.
  • the memory chain MC is configured by connecting a plurality of memory cells CELL in series.
  • the memory chain MC is composed of eight memory cells CELL.
  • the memory cell CELL is configured by connecting one phase change element PCM and one Z selection transistor ZMOS in parallel.
  • one phase change element PCM and one Z selection transistor ZMOS are connected in parallel.
  • a plurality of phase change elements PCM and one Z selection transistor ZMOS can be connected in parallel, or a plurality of phase change elements PCM and a plurality of Z selection transistors ZMOS can be connected in parallel. Needless to say.
  • the number of stacked memory cells is 8 ⁇ 4, 32 layers. It goes without saying that it is possible to stack more than four layers or to have a number of layers less than four. There is an advantage that the memory capacity can be increased by increasing the number of stacked layers. There is an advantage that manufacturing is facilitated by reducing the number of stacked layers.
  • the memory chain of the X address I and the Y address J of the H layer is represented as MC (H)-(I)-(J).
  • the plurality of read bit lines RBL are assumed to be extended in the X direction.
  • the read bit line of the Y address J of the H layer is indicated as RBL (H)-(J).
  • the X selection MOS and the Y selection MOS are double gate MOSs, and there are two gate electrodes for each MOS. Further, since the channel thickness of the MOS is thin, the MOS is turned on only when an on-voltage is applied to the two gate electrodes.
  • the Y selection line is driven by a Y driver YDR.
  • FIG. 15 is an explanatory diagram enlarging a part of the memory array of FIG.
  • the memory chain MC is arranged at 2F intervals as shown in FIG.
  • the X selection destination is extended in the Y direction.
  • FIG. 16 is a schematic diagram showing a D-D ′ section of FIG. 15.
  • FIG. 16 shows a part of the memory chain MC, and shows a plurality of Z selection transistors ZMOS and a phase change element PCM.
  • the Z selection transistor ZMOS and the phase change element PCM include a silicon oxide film 1406, a gate oxide film 1403, a silicon channel 1404, a phase change material 1405, a Z selection transistor gate electrode 1401, an interlayer insulating film 1402, and the like.
  • the Z selection transistor ZMOS is preferably a vertical GAA-NMOSFET (Gate All Around n-channel MOSFET).
  • GAA-NMOSFET Gate All Around n-channel MOSFET
  • the size of the transistor can be reduced as compared with the case of using 4F2 and a planar MOS, so that the capacity can be increased.
  • the GAA structure it becomes possible to widen the gate width as compared with the case of using a planar MOS, improving the driving power of the MOS, and increasing the number of memory cells CELL included in the phase change chain MC. The capacity can be increased.
  • the voltage applied to the gate electrode of the non-selected Z selection transistor ZMOS can be made lower than when the NMOS is used, so that the gate breakdown voltage of the Z selection transistor ZMOS can be reduced. This has the effect of improving the reliability.
  • the number of memory cells included in the memory chain MC can be increased. Furthermore, since the cell area of the memory chain MC can be reduced to 4F2 (F is the minimum processing dimension), which is 6 to 8F2 when the planar MOSFET is used, a large-capacity semiconductor memory device can be realized. it can.
  • the double-gate NMOSFET has two gate electrodes, and when an on-voltage is applied to both gate electrodes, the MOS is turned on (that is, in a low resistance state). When an on voltage is applied only to one of the gate electrodes, or when an off voltage is applied to all the gate electrodes, the MOS is turned off (that is, a high resistance state is set).
  • the light plate electrode WR is used to supply a write current and an erase current used for writing and erasing.
  • a large current required for writing and erasing can be stably supplied, and a highly reliable semiconductor memory device can be realized.
  • the configuration of the read circuit 101 is the same as that of the read circuit 101 in FIG. 1 of the first embodiment.
  • FIG. 17 is a timing chart showing an operation example of the read circuit 101 provided in the semiconductor memory device having the memory array 202 of FIG.
  • the cell read voltage V CELL reference voltage V REF , Z selection line Z0-0, Z selection lines Z0-1 to Z0-7, discharge switch DISS, cell read current selection switch CELLS, reference current Signal timings on the selection switch REFS, precharge switch PRES, sense amplifier activation switch SA_ENS, Y selection lines Y0-0, Y0-1, X selection lines X0-0, X0-1, and X selection line X0-2 are respectively shown. Show.
  • the Y selection lines such as Y0-0 and Y0-1 are turned off, and the read bit line RBL and the write plate electrode WR are electrically disconnected.
  • the X selection line X0-0 and the X selection line X0-1 are each turned on, and the selection operation of the memory chain MC0-0-0 is performed. On the other hand, for example, the X selection line X0-2 is turned off.
  • FIG. 18 is an explanatory diagram showing an example of a partial circuit configuration of the memory array 202 according to the third embodiment.
  • the memory chain MC included in the memory array 202 has a configuration including one memory cell CELL and an X selection element XMOS.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • FIG. 19 is a timing chart showing an operation example of the read circuit provided in the semiconductor memory device having the memory array 202 of FIG.
  • the configuration of the read circuit 101 is the same as that of the read circuit 101 in FIG. 1 of the first embodiment.
  • the Z selection line Z0 exists as the Z selection line.
  • the Z selection line Z0 is turned on when a reference current flows, and the reference current mainly flows through the Z selection transistor ZMOS.
  • the cell read current flows, it is turned off, and the cell read current mainly flows through the phase change element PCM.
  • the cell read current and the reference current flow through the same bit line.
  • Multiple memory cells are not connected in series. That is, the semiconductor memory device does not have “a plurality of electrically rewritable memory cells connected in series”. Naturally, since there is no unselected memory cell in the same memory chain as the selected memory cell, it is impossible to “apply a pass voltage that turns on the memory cell regardless of the data”. Furthermore, since there is no non-selected memory cell, the electric resistance of the non-selected memory cell does not exist and it is not necessary to reduce its value.
  • the read data rate can be increased.
  • the influence is reduced by the electric resistance of the bit line BL and its variation.
  • the NAND flash memory described in Patent Document 1 is a one-transistor type memory, and the memory cell configuration is different from the 1T-1R type in which one transistor and one resistance element are connected in parallel.
  • the 1T-1R type there is no “read voltage at which a memory cell is turned on or off according to the data” described in Patent Document 1 (see abstract).
  • FIG. 20 is an explanatory diagram showing an example of the configuration of the read circuit 101 according to the fourth embodiment.
  • the three reference resistors are constituted by a read reference resistor REFR_READ, a write verify reference resistor REFR_WRITEV, and an erase verify reference resistor REFR_ERASEV.
  • the read reference resistor REFR_READ is a first resistor
  • the erase verify reference resistor REFR_ERASEV is a second resistor
  • the write verify reference resistor REFR_WRITEV is a third resistor.
  • the read reference resistance REFR_READ is about 1 M ⁇
  • the write verify reference resistance REFR_WRITEV is about 3 M ⁇
  • the erase verify reference resistance REFR_ERASEV is about 300 k ⁇ .
  • the read margin is ensured by setting the resistance value of the read reference resistor REFR_READ between the resistance value of the write verify reference resistor REFR_WRITEV and the erase verify reference resistor REFR_ERASEV.
  • the resistance value of the read reference resistor REFR_READ is higher than the resistance value of the erase verify reference resistor REFR_ERASEV. Needless to say, the number of reference resistors does not need to be fixed to three types.
  • the value of the reference resistance can be two types for reading and erasing verification. Since the resistance drift of the phase change element increases with time, a certain degree of reliability can be ensured only by preparing two types for reading and erasing verification.
  • the number of reference resistors can be four.
  • the value of the reference resistance at the time of “0” 1 ”judgment read,“ 1 ”2” judgment read, “2” 3 ”judgment read, write verify and erase verify A multi-value operation in which more than one bit value is stored in one phase change element can be stably performed.
  • FIG. 21 is an explanatory diagram showing an example of the configuration of the read circuit 101 according to the fifth embodiment.
  • the read circuit 101 shown in FIG. 21 has a configuration in which the reference resistor REFR is removed from the read circuit 101 of FIG. Other configurations are the same as those in FIG.
  • the sense amplifier SA compares the cell read voltage V CELL with the reference voltage V REF and determines the value recorded in the memory cell CELL using, for example, the following formulas (5) and (6).
  • the value of 0.8 times is merely an example, and it goes without saying that the value is actually set appropriately according to the configuration of the memory array. For example, when the size of the memory array is small and the bit line resistance is small, a value smaller than 0.8 is desirable.
  • the sense amplifier SA preferably includes a current mirror circuit. By using the current mirror circuit, the values of “0” and “1” can be determined with high accuracy.
  • the sense amplifier shown in the example with a magnification of 0.8 can be adjusted by changing the driving power by changing the gate width of the transistor used to compare the voltages of the two included in the current mirror circuit.
  • the precharge voltage is changed by the cell read voltage and the reference voltage.
  • the voltage to be precharged to the cell read voltage is 1 V
  • the voltage to be precharged to the reference voltage is 0. Needless to say, it can be set to 8V.
  • the time for supplying the cell read current and the current for supplying the reference current are changed.
  • the cell read current can be supplied for about 500 ns and the reference current can be supplied for about 400 ns.
  • the circuit area of the reference resistor can be reduced by not using the reference resistor. Thereby, the chip area can be reduced and the manufacturing cost of the semiconductor memory device can be reduced.

Landscapes

  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

The present invention enhances read operation reliability without being influenced by the resistance variation of a bit line and unselected memory cells. A semiconductor storage device is provided with a read circuit 101 for reading out data stored in a plurality of memory chains for storing information. To determine readout data, the read circuit 101 compares a reference current flowing through the memory chains as a result of a first readout mode and a cell read current flowing through the memory chains as a result of a second readout mode. In the first readout mode, a precharge voltage is supplied to the memory chains with all of the phase-change elements of the memory chains unselected. In the second readout mode, the precharge voltage is supplied to the memory chains with the phase-change elements of the memory chains selected.

Description

半導体記憶装置Semiconductor memory device
 本発明は、半導体記憶装置に関し、特に電気的に書き換え可能な不揮発性メモリ、例えば相変化メモリ、ReRAM(抵抗変化型メモリ)、STT-MRAM(スピン注入磁化反転型抵抗変化メモリ)に適用して有効な技術に関するものである。 The present invention relates to a semiconductor memory device, and particularly to an electrically rewritable nonvolatile memory such as a phase change memory, a ReRAM (resistance change memory), and an STT-MRAM (spin injection magnetization reversal resistance change memory). It relates to effective technology.
 本技術分野の背景技術として、例えば特開2005-327409号公報(特許文献1)がある。この公報には、課題として「誤読み出しの可能性を低減した信頼性の高いデータ読み出しモードを持つ半導体記憶装置を提供する」とあり、さらに、解決手段として「直列接続されたメモリセルの両端がそれぞれ選択トランジスタを介してデータ転送線及び基準電位線に接続されるメモリセルユニットを備え、前記メモリセルユニット内の選択メモリセルにそのデータに応じてメモリセルがオン又はオフになる読み出し電圧を印加し、残りの非選択メモリセルにそのデータによらずメモリセルがオンするパス電圧を印加し、前記選択トランジスタをオンにして、前記データ転送線と基準電位線との間の電流の有無又は大小を検出して前記選択メモリセルのデータを判定するデータ読み出しモードを有し」と記載されている(要約参照)。 As background art in this technical field, for example, there is JP-A-2005-327409 (Patent Document 1). In this publication, there is a problem of “providing a semiconductor memory device having a highly reliable data read mode in which the possibility of erroneous reading is reduced”, and further, as a solving means, “the two ends of the memory cells connected in series are Each memory cell unit is connected to a data transfer line and a reference potential line via a selection transistor, and a read voltage that turns the memory cell on or off according to the data is applied to the selected memory cell in the memory cell unit Then, a pass voltage that turns on the memory cell regardless of the data is applied to the remaining non-selected memory cells, the selection transistor is turned on, and whether or not there is a current between the data transfer line and the reference potential line Has a data read mode in which the data of the selected memory cell is determined by detecting (see the summary).
 また、再公表WO2009/041187号公報(特許文献2)には、「電荷を蓄積又は除去することによってデータを記憶し、電流で読み出しを行うメモリセルにおいて、しきい電圧のばらつきが増大した場合にも、データを正確に判別できる半導体記憶装置及びデータ判別方法を提供することを目的とする。電荷を蓄積又は除去することによってデータを記憶し、電流で読み出しを行うメモリセル1を有し、書き込み回路2は、通常のデータの読み出しを行うセル自身に中間データを書き込み、該中間データを読み出すことによって通常のデータを判別するための参照電流を生成し、判別する」と記載されている(要約参照)。 Further, the re-published WO2009 / 041187 (Patent Document 2) states that “in a memory cell in which data is stored by accumulating or removing charges and read by current, when threshold voltage variation increases. Another object of the present invention is to provide a semiconductor memory device and a data discriminating method capable of accurately discriminating data, including a memory cell 1 for storing data by accumulating or removing electric charges and reading data by electric current. The circuit 2 writes intermediate data in the cell itself from which normal data is read, and generates and determines a reference current for determining normal data by reading the intermediate data (summary). reference).
 さらに、特開2006-202383号公報(特許文献3)には、「読み出し・書き込み回数に応じたストレスが与えられるダミーセル109,110を設け、該ダミーセルの相変化素子の抵抗値の変化を比較回路111,112で検出」と記載されている(要約参照)。 Further, in Japanese Patent Laid-Open No. 2006-202383 (Patent Document 3), “a dummy cell 109 or 110 to which stress is applied according to the number of times of reading / writing is provided, and a change in resistance value of a phase change element of the dummy cell is compared. 111, 112 "(see summary).
 また、相変化メモリを不揮発性メモリとして用いて、複数ビットをチェーン状に直列接続することで大容量の半導体記憶装置を作製する技術が知られている(例えば、特許文献4を参照)。 Also, a technique for manufacturing a large-capacity semiconductor memory device by using a phase change memory as a nonvolatile memory and connecting a plurality of bits in series in a chain shape is known (see, for example, Patent Document 4).
 この公報には、「ダイオードとトランジスタとを直列接続した半導体メモリにおいて、ダイオードからトランジスタにキャリアが入ることで、トランジスタの特性が劣化する課題がある。」と記載されている(要約参照)。また、段落0044には、「このようなトランジスタと相変化素子が並列接続されたメモリセルが直列に接続されたセル、すなわちチェインセルでは、例えば以下のような動作が行われる」と記載されている。 This publication states that "in a semiconductor memory in which a diode and a transistor are connected in series, there is a problem that the characteristics of the transistor deteriorate due to carriers entering the transistor from the diode" (see summary). Further, paragraph 0044 states that “the following operation is performed in a cell in which a memory cell in which such a transistor and a phase change element are connected in parallel, ie, a chain cell, is connected”. Yes.
特開2005-327409号公報JP 2005-327409 A 再公表WO2009/041187号公報Republished WO2009 / 041187 特開2006-202383号公報JP 2006-202383 A 特開2012-69830号公報JP 2012-69830 A
 本発明者が抵抗変化型メモリ、特に相変化メモリの回路構成に関して詳細に検討したところ、下記の知見が得られた。 The inventor examined the circuit configuration of the resistance change type memory, particularly the phase change memory in detail, and found the following knowledge.
 メモリアレイの周辺にはリードを行うためのセンスアンプを有するリード回路部などからなる周辺回路が設けられる。ここで、大容量の半導体不揮発メモリを実現するためには、メモリチップに占めるメモリアレイ面積の割合を向上させることが必要である。すなわち、メモリアレイの個数を低減し、メモリアレイ以外の周辺回路の面積を低減することが必要である。 A peripheral circuit including a read circuit section having a sense amplifier for reading is provided around the memory array. Here, in order to realize a large-capacity semiconductor nonvolatile memory, it is necessary to improve the ratio of the memory array area to the memory chip. That is, it is necessary to reduce the number of memory arrays and to reduce the area of peripheral circuits other than the memory array.
 ところが、メモリアレイの個数を削減するとメモリセルとセンスアンプを接続するビット線の長さが長くなり、ビット線の抵抗が高くなるという問題点が生じる。さらに、配線抵抗には、一定の抵抗ばらつきが存在するため、相変化素子の抵抗の読み出しが困難になる。 However, if the number of memory arrays is reduced, the length of the bit line connecting the memory cell and the sense amplifier becomes longer, resulting in a problem that the resistance of the bit line increases. Furthermore, since there is a certain resistance variation in the wiring resistance, it is difficult to read out the resistance of the phase change element.
 相変化素子は、アモルファス(非晶質)状態と低抵抗の結晶状態と高抵抗を持ち、その電気抵抗の違いを用い、例えば、高抵抗状態を’0’とし、低抵抗状態を’1’として、情報を記録する。’1’から’0’にすることをライトもしくは、リセット動作とし、0’から’1’にすることを消去もしくは、セット動作とする。 The phase change element has an amorphous (amorphous) state, a low resistance crystal state, and a high resistance, and uses a difference in electrical resistance. For example, the high resistance state is set to “0” and the low resistance state is set to “1”. Record information. A change from '1' to '0' is a write or reset operation, and a change from 0 'to' 1 'is an erase or set operation.
 相変化素子には、ライト後にその素子抵抗が時間とともに徐々に高くなる抵抗ドリフトという現象が存在する。抵抗ドリフトの原因は、ライト後に生じる相変化材料の構造緩和であるといわれている。この抵抗ドリフトは素子抵抗が高いほど抵抗値が上昇しやすいという特徴がある。 The phase change element has a phenomenon called resistance drift in which the element resistance gradually increases with time after writing. It is said that the cause of the resistance drift is the structural relaxation of the phase change material that occurs after writing. This resistance drift is characterized in that the resistance value is likely to increase as the element resistance increases.
 ところで、相変化素子の消去動作について、消去後の相変化素子の抵抗値に一定のばらつきが存在する。そのため、データ保持を高信頼に行うためには、相変化素子の消去動作を行った後には、読み出し動作を行い、相変化素子の抵抗が十分に低いことを確認することが望ましい。 Incidentally, in the erase operation of the phase change element, there is a certain variation in the resistance value of the phase change element after erasure. Therefore, in order to perform data retention with high reliability, it is desirable to perform a read operation after performing the erase operation of the phase change element to confirm that the resistance of the phase change element is sufficiently low.
 ところが、大容量化に伴うメモリアレイ数の低減により、ビット線抵抗が高くなり、さらには、そのばらつきが大きくなるため、相変化素子の抵抗が十分に低いことを確認することが困難になる。 However, the reduction in the number of memory arrays accompanying an increase in capacity increases the bit line resistance, and further increases the variation thereof, making it difficult to confirm that the resistance of the phase change element is sufficiently low.
 そのため、相変化素子の抵抗が十分に低いことを確認することができず、抵抗ドリフトにより、相変化素子の値が’1’から’0’に変わってしまうデータ反転が生じてしまい、相変化メモリの信頼性が低下する課題がある。 For this reason, it cannot be confirmed that the resistance of the phase change element is sufficiently low, and data inversion in which the value of the phase change element changes from '1' to '0' due to resistance drift occurs, resulting in phase change. There is a problem that the reliability of the memory is lowered.
 本発明の目的は、リードビット線および非選択メモリセルの抵抗ばらつきの影響を受けることなく、リード動作の信頼性を向上することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the reliability of a read operation without being affected by variations in resistance of read bit lines and non-selected memory cells.
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、代表的な半導体記憶装置は、情報を記憶する複数の記憶部を備えたメモリアレイと、第1の読み出しモードおよび第2の読み出しモードを備え、記憶部に記憶されたデータを読み出す読み出し回路と、を有する。記憶部は、少なくとも1つのメモリセルを備える。 That is, a typical semiconductor memory device includes a memory array having a plurality of storage units for storing information, and a read circuit that reads out data stored in the storage unit, and includes a first read mode and a second read mode. And having. The storage unit includes at least one memory cell.
 メモリセルは、記憶素子および選択素子を具備する。記憶素子は、電気抵抗の違いにより、少なくとも第1の記憶状態および第2の記憶状態を有する。選択素子は、記憶素子を選択する。 The memory cell includes a storage element and a selection element. The memory element has at least a first memory state and a second memory state due to a difference in electrical resistance. The selection element selects a storage element.
 第1の読み出しモードは、記憶部のすべての記憶素子を非選択として記憶部にプリチャージ電圧を供給するモードである。第2の読み出しモードは、記憶部の記憶素子を選択して記憶部にプリチャージ電圧を供給するモードである。 The first read mode is a mode in which all the storage elements of the storage unit are not selected and a precharge voltage is supplied to the storage unit. The second read mode is a mode in which a memory element of the memory unit is selected and a precharge voltage is supplied to the memory unit.
 そして、読み出し回路は、第1の読み出しモードによって記憶部に流れる参照電流と、第2の読み出しモードによって記憶部に流れるセルリード電流とを比較して読み出しデータを判定する。 The read circuit determines read data by comparing the reference current flowing in the storage unit in the first read mode with the cell read current flowing in the storage unit in the second read mode.
 特に、読み出し回路は、第1の読み出しモードおよび第2の読み出しモードにおいて、選択された記憶部が接続される同一のビット線から、リード電流および参照電流をそれぞれ取得する。 In particular, the read circuit acquires the read current and the reference current from the same bit line to which the selected storage unit is connected in the first read mode and the second read mode, respectively.
 半導体記憶装置におけるデータの読み出しの信頼性を向上させることができる。 The reliability of data reading in the semiconductor memory device can be improved.
実施の形態1による半導体記憶装置が有するメモリアレイ202の一部の回路構成の一例を示す説明図である。4 is an explanatory diagram illustrating an example of a partial circuit configuration of a memory array 202 included in the semiconductor memory device according to the first embodiment; FIG. 図1のメモリアレイの周辺部に設けられるリード回路の構成の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a configuration of a read circuit provided in a peripheral portion of the memory array in FIG. 1. 本発明者が検討した半導体記憶装置におけるレイアウトの一例を示す説明図である。It is explanatory drawing which shows an example of the layout in the semiconductor memory device which this inventor examined. 本発明者が検討した半導体記憶装置におけるレイアウトの他例を示す説明図である。It is explanatory drawing which shows the other example of the layout in the semiconductor memory device which this inventor examined. ライト後の経過時間と相変化素子抵抗との変化の一例を示した説明図である。It is explanatory drawing which showed an example of the change of the elapsed time after writing, and phase change element resistance. 図1のメモリアレイにおけるセルリード電流を流す際のZ選択トランジスタのオン、オフ状態の一例を示した説明図である。FIG. 2 is an explanatory diagram showing an example of an on / off state of a Z selection transistor when a cell read current flows in the memory array of FIG. 1. 図2のリード回路におけるセルリード電流を流す際のMOSのオン、オフ状態の一例を示した説明図である。FIG. 3 is an explanatory diagram showing an example of an on / off state of a MOS when a cell read current is passed in the read circuit of FIG. 2. 図2のリード回路によるリード動作の一例を示すタイミングチャートである。3 is a timing chart showing an example of a read operation by the read circuit of FIG. 2. リード時においてセンスアンプにて読み出す抵抗の内訳の一例を示す説明図である。It is explanatory drawing which shows an example of the breakdown of the resistance read by a sense amplifier at the time of a read. 本発明者が検討した図1との比較の対象となるリード回路の構成の例を示す説明図である。It is explanatory drawing which shows the example of a structure of the read circuit used as the object of a comparison with FIG. 1 which this inventor examined. 図10のリード回路の動作例を示すタイミングチャートである。11 is a timing chart illustrating an operation example of the read circuit in FIG. 10. 図2のリード回路を有する半導体記憶装置における構成の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a configuration in a semiconductor memory device having the read circuit of FIG. 2. 図1の相変化素子におけるライトおよび消去時における動作の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of operations during writing and erasing in the phase change element of FIG. 1. 本実施の形態2による半導体記憶装置が有するメモリアレイの一部の回路構成例を示す説明図である。FIG. 10 is an explanatory diagram showing a partial circuit configuration example of a memory array included in a semiconductor storage device according to a second embodiment; 図14のメモリアレイの一部を拡大した説明図である。FIG. 15 is an explanatory diagram enlarging a part of the memory array of FIG. 14. 図15のD-D’断面を示す模式図である。FIG. 16 is a schematic diagram illustrating a cross section taken along the line D-D ′ of FIG. 15. 図16のメモリアレイを有する半導体記憶装置に設けられるリード回路の動作例を示すタイミングチャートである。17 is a timing chart showing an operation example of a read circuit provided in a semiconductor memory device having the memory array of FIG. 実施の形態3によるメモリアレイの一部の回路構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a partial circuit configuration of a memory array according to a third embodiment. 図18のメモリアレイを有する半導体記憶装置に設けられたリード回路の動作例を示すタイミングチャートである。19 is a timing chart illustrating an operation example of a read circuit provided in a semiconductor memory device having the memory array of FIG. 本実施の形態4によるリード回路の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the read circuit by this Embodiment 4. 本実施の形態5によるリード回路の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the read circuit by this Embodiment 5.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of components, etc., the shape of the component is substantially the case unless it is clearly specified and the case where it is clearly not apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
 以下、実施の形態を詳細に説明する。 Hereinafter, embodiments will be described in detail.
 (実施の形態1)
 〈半導体記憶装置の構成〉
 半導体記憶装置は、例えば1T-1R型(1トランジスタ-1抵抗素子)並列型のメモリセルを有する。この半導体記憶装置において、選択メモリセル以外はセルリード電流と同じ経路を用いて参照電流を流すことにより、リード時の’0’と’1’の判定を行う半導体記憶装置の例を説明する。
(Embodiment 1)
<Configuration of semiconductor memory device>
The semiconductor memory device has, for example, a 1T-1R type (1 transistor-1 resistance element) parallel type memory cell. In this semiconductor memory device, an example of a semiconductor memory device that performs a determination of “0” and “1” at the time of reading by flowing a reference current using the same path as the cell read current except for the selected memory cell will be described.
 図1は、実施の形態1による半導体記憶装置が有するメモリアレイ202の一部の回路構成の一例を示す説明図である。 FIG. 1 is an explanatory diagram showing an example of a partial circuit configuration of a memory array 202 included in the semiconductor memory device according to the first embodiment.
 メモリアレイ202は、複数のメモリチェーンMCから構成される。記憶部となるメモリチェーンMCは、選択素子XMOSと少なくとも1個以上のメモリセルCELLから構成される。メモリセルは、記憶素子である1個の相変化素子PCMと1個のZ選択素子であるZ選択トランジスタZMOSが並列に接続された構成となっている。 The memory array 202 is composed of a plurality of memory chains MC. The memory chain MC serving as a storage unit includes a selection element XMOS and at least one memory cell CELL. The memory cell has a configuration in which one phase change element PCM which is a storage element and a Z selection transistor ZMOS which is one Z selection element are connected in parallel.
 ここでは、1個の相変化素子PCMと1個のZ選択トランジスタZMOSとが並列に接続されている例について説明するが、1個の相変化素子PCMと複数個のZ選択トランジスタZMOSとを並列に接続することが可能であることは言うまでもない。あるいは、複数個の相変化素子PCMと1個のZ選択トランジスタZMOSとを並列に接続すること、あるいは複数個の相変化素子PCMと複数個のZ選択トランジスタZMOSとを並列に接続することが可能であることは言うまでもない。 Here, an example in which one phase change element PCM and one Z selection transistor ZMOS are connected in parallel will be described. However, one phase change element PCM and a plurality of Z selection transistors ZMOS are connected in parallel. It goes without saying that it is possible to connect to. Alternatively, a plurality of phase change elements PCM and one Z selection transistor ZMOS can be connected in parallel, or a plurality of phase change elements PCM and a plurality of Z selection transistors ZMOS can be connected in parallel. Needless to say.
 Z方向は、半導体基板であるシリコン基板と直交する方向であり、X方向とY方向はZ方向と直交し、かつ、互いに直交する方向が望ましい。このようにすることでZ方向に複数個存在するメモリセルを1回の穴開け加工により、一括して形成することが可能になり、製造コストを低減することができる。 The Z direction is a direction orthogonal to the silicon substrate which is a semiconductor substrate, and the X direction and the Y direction are preferably orthogonal to the Z direction and orthogonal to each other. In this way, a plurality of memory cells existing in the Z direction can be collectively formed by a single drilling process, and the manufacturing cost can be reduced.
 Z選択トランジスタZMOSのゲート電極は、複数のメモリチェーンMC間で1層ごとに互いに接続されることが望ましい。例えば第0層Z選択トランジスタZMOSのゲートに接続されるZ選択線Z0の電位は、どのメモリチェーンMCにおいても同じ電位となっている。 It is desirable that the gate electrodes of the Z selection transistor ZMOS are connected to each other for each layer between the plurality of memory chains MC. For example, the potential of the Z selection line Z0 connected to the gate of the zeroth layer Z selection transistor ZMOS is the same in any memory chain MC.
 このような構成にすることで、Z選択トランジスタZMOSのゲート電極の面積を低減することで半導体記憶装置201のチップ面積を低減して、安価な半導体記憶装置201を提供できる効果がある。 With such a configuration, there is an effect that the chip area of the semiconductor memory device 201 can be reduced by reducing the area of the gate electrode of the Z selection transistor ZMOS, and an inexpensive semiconductor memory device 201 can be provided.
 なお、Z選択トランジスタのゲートに接続されるZ選択線Zをビット線毎に分離し、個別に電位を制御することが可能であることは言うまでもない。また、Z選択線ZをX選択線X毎に分離し、個別に電位を制御することが可能であることは言うまでもない。この場合、場所ごとに最適なZ選択トランジスタZMOSのゲート電位を制御できるため、Z選択トランジスタZMOSのゲート耐圧が少なくて済み、半導体記憶装置201の信頼性が向上する効果がある。 It goes without saying that the Z selection line Z connected to the gate of the Z selection transistor can be separated for each bit line and the potential can be individually controlled. It goes without saying that the Z selection line Z can be separated for each X selection line X and the potential can be individually controlled. In this case, since the optimum gate potential of the Z selection transistor ZMOS can be controlled for each location, the gate breakdown voltage of the Z selection transistor ZMOS can be reduced, and the reliability of the semiconductor memory device 201 is improved.
 Z選択トランジスタZMOSは、縦型GAA-NMOSFET(Gate All Around n-channel MOSFET)を用いることが望ましい。PMOSFETに比べて電流駆動力の高いNMOSFETを用いることでメモリチェーンMCに含まれる相変化素子PCMの数を増加させ、大容量の半導体記憶装置201を実現することができる。もちろん、PMOSを用いることが可能であることは言うまでもない。 The Z selection transistor ZMOS is preferably a vertical GAA-NMOSFET (Gate All Around n-channel MOSFET). By using an NMOSFET having a higher current driving capability than a PMOSFET, the number of phase change elements PCM included in the memory chain MC can be increased, and a large-capacity semiconductor memory device 201 can be realized. Of course, it goes without saying that a PMOS can be used.
 縦型MOSFETを用いることでトランジスタの大きさを4F2(Fは最小加工寸法)と平面MOSを用いる場合に比べて小さくすることができるため、大容量化することができる。 Since the size of the transistor can be reduced by using the vertical MOSFET as compared with the case of using 4F2 (F is the minimum processing size) and a planar MOS, the capacity can be increased.
 GAA構造にすることで、平面MOSを用いた場合に比べて、ゲート幅を広くすることが可能になり、MOSの駆動力を向上させ、メモリチェーンMCに含まれるメモリセルの数を増やし、大容量化することができる。 By using the GAA structure, the gate width can be increased compared to the case of using a planar MOS, the MOS driving power is improved, the number of memory cells included in the memory chain MC is increased, and Capacitance can be achieved.
 PMOSを用いた場合、非選択のZ選択トランジスタのゲート電極に印加する電圧がNMOSを用いた場合に比べて低くできるため、Z選択トランジスタZMOSのゲート耐圧が少なくて済み、半導体記憶装置201の信頼性が向上する効果がある。 When the PMOS is used, the voltage applied to the gate electrode of the non-selected Z selection transistor can be lowered as compared with the case where the NMOS is used. Therefore, the gate breakdown voltage of the Z selection transistor ZMOS can be reduced, and the reliability of the semiconductor memory device 201 The effect is improved.
 相変化素子PCMの材料の一部としては、例えばカルコゲナイド材料、特にGeSbTe合金(ゲルマニウム-アンチモン-テルル合金)を用いることができる。カルコゲナイド材料は、アモルファス(非晶質状態)と結晶状態の2つの準安定な状態を取ることが可能であり、それぞれの状態の電気抵抗の値が異なる。すなわち、アモルファスの場合は、高抵抗であり、結晶状態の場合は、低抵抗となる。その電気抵抗の違いを利用して‘0’と‘1’の値を記憶することができる。 As a part of the material of the phase change element PCM, for example, a chalcogenide material, particularly a GeSbTe alloy (germanium-antimony-tellurium alloy) can be used. The chalcogenide material can take two metastable states, an amorphous (amorphous state) and a crystalline state, and the electric resistance values in the respective states are different. That is, in the case of amorphous, the resistance is high, and in the crystalline state, the resistance is low. By utilizing the difference in electrical resistance, the values “0” and “1” can be stored.
 アモルファスの場合を‘0’、結晶状態の場合を‘1’とする。‘0’から‘1’に書き換えることを消去、もしくはセット動作、‘1’から‘0’に書き換えることをライト、もしくはリセット動作とする。 ‘0’ for the amorphous state and ‘1’ for the crystalline state. Rewriting from '0' to '1' is erasing or setting operation, and rewriting from '1' to '0' is writing or resetting operation.
 相変化素子PCMに電流を流し、ジュール熱を発生させることで書き換えを行う。消去するためには、結晶化温度以上で一定時間保持することで、相変化素子を結晶化させる。ライトするためには、融点以上に加熱し、急冷することでアモルファス化(ガラス化)させる。相変化素子PCMが3値以上の値を取ることも可能であることは言うまでもない。 Rewriting is performed by passing current through the phase change element PCM and generating Joule heat. In order to erase, the phase change element is crystallized by holding at a temperature equal to or higher than the crystallization temperature for a certain period of time. In order to write, it is made amorphous (vitrified) by heating above the melting point and rapidly cooling. Needless to say, the phase change element PCM can take a value of three or more.
 記憶素子としてすでに製品に適用されている相変化素子を用いることで開発期間を短縮することが可能であり、短期間で半導体記憶装置201を出荷できる効果がある。なお、本実施の形態では、相変化素子として結晶-アモルファスの相変化を行うものを例にして説明するが、結晶A-結晶Bの相変化を行うものを用いることができるのはいうまでもない。ここで、結晶Aと結晶Bは、異なる結晶構造を持つ結晶である。 By using a phase change element that has already been applied to a product as a memory element, the development period can be shortened, and the semiconductor memory device 201 can be shipped in a short period of time. In this embodiment, an example of a phase change element that performs a crystal-amorphous phase change will be described. However, it is needless to say that a phase change element of crystal A-crystal B can be used. Absent. Here, the crystal A and the crystal B are crystals having different crystal structures.
 なお、本実施の形態では、記憶素子として相変化素子を用いた場合を例にして説明するが、記憶素子としてReRAMやSTT-MRAM(スピン注入型MRAM)を用いることが可能であることは言うまでもない。 Note that in this embodiment, a case where a phase change element is used as a memory element is described as an example. However, it is needless to say that ReRAM or STT-MRAM (spin injection MRAM) can be used as the memory element. Yes.
 書き換え電流の少ないReRAMを用いることで1個のメモリチェーンMCに含まれる記憶素子の数を増やすことが可能になり、大容量の半導体記憶装置201を実現できる効果がある。また、書き換え速度の速いSTT-MRAMを用いることでライトデータレートの大きな半導体記憶装置201を実現できる効果がある。 By using ReRAM with a small rewrite current, it is possible to increase the number of memory elements included in one memory chain MC, and there is an effect that a large-capacity semiconductor memory device 201 can be realized. In addition, there is an effect that the semiconductor memory device 201 having a high write data rate can be realized by using the STT-MRAM having a high rewrite speed.
 〈リード回路の構成および動作〉
 以下、記憶素子として相変化素子を用いた場合について説明する。
<Configuration and operation of lead circuit>
Hereinafter, a case where a phase change element is used as a memory element will be described.
 図2は、図1のメモリアレイ202の周辺部に設けられるリード回路101の構成の一例を示す説明図である。 FIG. 2 is an explanatory diagram showing an example of the configuration of the read circuit 101 provided in the peripheral portion of the memory array 202 of FIG.
 ビット線BLには、リード回路101とライト・消去選択スイッチPROGSが接続されている。メモリアレイ202は、複数のビット線BLを有することは言うまでもない。また、ライト・消去回路102とビット線BLの間にライト・消去選択スイッチPROGSが設けられている。 A read circuit 101 and a write / erase selection switch PROGS are connected to the bit line BL. Needless to say, the memory array 202 includes a plurality of bit lines BL. A write / erase selection switch PROGS is provided between the write / erase circuit 102 and the bit line BL.
 読み出し回路であるリード回路101は、参照抵抗REFR、セルリード電流選択スイッチCELLS、参照電流選択スイッチREFS、ディスチャージスイッチDISS、プリチャージスイッチPRES、センスアンプ活性化スイッチSA_ENS、センスアンプSA、データ出力DOUT、セルリード電圧保持キャパシタCCELL、および参照電圧保持キャパシタCREFを有する。 The read circuit 101 as a read circuit includes a reference resistor REFR, a cell read current selection switch CELLS, a reference current selection switch REFS, a discharge switch DISS, a precharge switch PRES, a sense amplifier activation switch SA_ENS, a sense amplifier SA, a data output DOUT, a cell read. It has a voltage holding capacitor C CELL and a reference voltage holding capacitor C REF .
 参照抵抗REFRの値は、リード時に’0’と’1’を判定するために用いるリードしきい値にすることが望ましい。例えば1MΩである。参照抵抗REFRは、例えば拡散層抵抗を用いて形成することができる。 It is desirable that the value of the reference resistor REFR is a read threshold value used for determining “0” and “1” at the time of reading. For example, 1 MΩ. The reference resistor REFR can be formed using, for example, a diffusion layer resistor.
 セルリード電流選択スイッチCELLSは、セルリード電流を生成するときに、セルリード電流選択信号CESに基づいて、オンされる。また、参照電流選択スイッチREFSは、参照電流を生成するときに参照電流選択信号RFSに基づいてオンされる。 The cell read current selection switch CELLS is turned on based on the cell read current selection signal CES when generating the cell read current. The reference current selection switch REFS is turned on based on the reference current selection signal RFS when generating the reference current.
 さらに、ディスチャージスイッチDISSは、セルリード電圧VCELLと参照電圧VREFをディスチャージし、例えば0Vにするときにディスチャージ信号DISに基づいてオンされる。 Further, the discharge switch DISS is turned on based on the discharge signal DIS when the cell read voltage V CELL and the reference voltage V REF are discharged to 0V, for example.
 プリチャージスイッチPRESは、セルリード電圧VCELLと参照電圧VREFをプリチャージ電圧VPRE、例えば、1Vにするときプリチャージ信号PREに基づいてオンされる。センスアンプ活性化スイッチSA_ENSは、セルリード電圧VCELLと参照電圧VREFをセンスアンプSAに入力するときにセンスアンプ活性化信号SA_ENSに基づいてオンされる。 The precharge switch PRES is turned on based on the precharge signal PRE when the cell read voltage V CELL and the reference voltage V REF are set to a precharge voltage V PRE , for example, 1V. The sense amplifier activation switch SA_ENS is turned on based on the sense amplifier activation signal SA_ENS when the cell read voltage V CELL and the reference voltage V REF are input to the sense amplifier SA.
 センスアンプSAは、入力された信号を差動増幅し、その結果をデータ出力線DOUTに出力する。セルリード電圧保持キャパシタCCELLと参照電圧保持キャパシタCREFは、セルリード電圧VCELLと参照電圧VREFを保持するために用いられる。キャパシタは例えば、ゲート絶縁膜容量を用いて作製することができる。 The sense amplifier SA differentially amplifies the input signal and outputs the result to the data output line DOUT. The cell read voltage holding capacitor C CELL and the reference voltage holding capacitor C REF are used to hold the cell read voltage V CELL and the reference voltage V REF . The capacitor can be manufactured using, for example, a gate insulating film capacitor.
 ライト・消去回路102は、メモリセルCELLに含まれる相変化素子PCMをライト、もしくは消去するために用いられる。なお、上述したように、回路面積を小さくなるために電圧差を増幅することが望ましいが、その他の手段、例えば、電流量で比較するなどの手段を取ることが可能であることは言うまでもない。 The write / erase circuit 102 is used for writing or erasing the phase change element PCM included in the memory cell CELL. As described above, it is desirable to amplify the voltage difference in order to reduce the circuit area, but it goes without saying that other means, for example, means for comparing with the amount of current can be taken.
 図1には、参照電流を流すときのMOSのオン、オフ状態が記載されている。予め参照電圧保持キャパシタCREFは、プリチャージ電圧VPREを保持している。予めプリチャージスイッチPRESをオンして、参照電圧VREFをプリチャージ電圧VPREにする。そして、その電圧を参照電圧保持キャパシタCREFを用いて保持する。 FIG. 1 shows the on and off states of the MOS when a reference current is passed. The reference voltage holding capacitor C REF holds the precharge voltage V PRE in advance. The precharge switch PRES is turned on in advance to set the reference voltage VREF to the precharge voltage VPRE . Then, the voltage is held using the reference voltage holding capacitor C REF .
 参照電圧保持キャパシタCREFに保持された電荷は、参照電流選択スイッチREFSがオンになることで、参照抵抗REFRとビット線BL、およびメモリチェーンMC0を通り、ソース電極SLに流れる。このときに流れる電流を参照電流とする。 The electric charge held in the reference voltage holding capacitor C REF flows to the source electrode SL through the reference resistor REFR, the bit line BL, and the memory chain MC0 when the reference current selection switch REFS is turned on. The current flowing at this time is used as a reference current.
 相変化素子PCMの’0’の値が記録されたライト状態と’1’の値が記録された消去状態に比べて、Z選択トランジスタZMOSがオンされた状態のZ選択トランジスタZMOSの抵抗は、低いことが望ましい。例えば、その抵抗値は33kΩである。 Compared to the write state in which the value “0” of the phase change element PCM is recorded and the erase state in which the value “1” is recorded, the resistance of the Z selection transistor ZMOS in which the Z selection transistor ZMOS is on is Low is desirable. For example, the resistance value is 33 kΩ.
 これにより、非選択状態のメモリセルCELLにおいては、電流は主にZ選択トランジスタZMOSに流れ、相変化素子PCMに流れる電流を低減することが可能になり、高信頼な半導体記憶装置201を実現することができる。 As a result, in the memory cell CELL in the non-selected state, the current flows mainly through the Z selection transistor ZMOS, and the current flowing through the phase change element PCM can be reduced, thereby realizing a highly reliable semiconductor memory device 201. be able to.
 図1に示された状態ではZ選択トランジスタZMOSは、メモリアレイ202の近傍に配置されている図示しないZ選択線駆動回路によって選択されたZ選択線Z0,Z1,Z2,Z3によりオンされている。よって、参照電流は、メモリチェーンMC0の中において、選択素子XMOS0と4個のZ選択トランジスタZMOSを主に通っている。 In the state shown in FIG. 1, the Z selection transistor ZMOS is turned on by Z selection lines Z0, Z1, Z2, and Z3 selected by a Z selection line driving circuit (not shown) disposed in the vicinity of the memory array 202. . Therefore, the reference current mainly passes through the selection element XMOS0 and the four Z selection transistors ZMOS in the memory chain MC0.
 なお、リード対象の選択メモリセルは、メモリセルCELL2であり、リード対象でない非選択メモリセルは、メモリセルCELL0,CELL1,CELL3である。 Note that the selected memory cell to be read is the memory cell CELL2, and the non-selected memory cells that are not to be read are the memory cells CELL0, CELL1, and CELL3.
 続いて、セルリード電流を流す際の各MOSの動作について説明する。 Next, the operation of each MOS when a cell read current is passed will be described.
 図6は、図1のメモリアレイ202におけるセルリード電流を流す際のZ選択トランジスタZMOSのオン、オフ状態の一例を示した説明図である。図7は、図2のリード回路101におけるセルリード電流を流す際のMOSのオン、オフ状態の一例を示した説明図である。 FIG. 6 is an explanatory diagram showing an example of an on / off state of the Z selection transistor ZMOS when a cell read current is allowed to flow in the memory array 202 of FIG. FIG. 7 is an explanatory diagram showing an example of the on / off state of the MOS when a cell read current is passed in the read circuit 101 of FIG.
 セルリード電圧保持キャパシタCCELLは、プリチャージ電圧VPREを保持している。予めプリチャージスイッチPRESをオンして、セルリード電圧VCELLをプリチャージ電圧VPREにし、その電圧をセルリード電圧保持キャパシタCCELLを用いてする。 The cell read voltage holding capacitor C CELL holds the precharge voltage V PRE . The precharge switch PRES is turned on in advance to set the cell read voltage V CELL to the precharge voltage V PRE , and this voltage is set using the cell read voltage holding capacitor C CELL .
 セルリード電圧保持キャパシタCCELLに保持された電荷は、セルリード電流選択スイッチCELLSがオンになることで、ビット線BL、メモリチェーンMC0を通り、ソース電極SLに流れる。このときに流れる電流をセルリード電流とする。 The charge held in the cell read voltage holding capacitor C CELL flows to the source electrode SL through the bit line BL and the memory chain MC0 when the cell read current selection switch CELLS is turned on. The current flowing at this time is defined as a cell read current.
 非選択状態のメモリセルCELL0,CELL1,CELL3のZ選択トランジスタZMOSは、Z選択線Z0,Z1,Z3によりオンされている。そのため、電流は、相変化素子PCMではなく、主にZ選択トランジスタZMOSに流れる。 The Z selection transistors ZMOS of the non-selected memory cells CELL0, CELL1, and CELL3 are turned on by the Z selection lines Z0, Z1, and Z3. Therefore, the current flows mainly through the Z selection transistor ZMOS, not the phase change element PCM.
 リード対象である選択状態のメモリセルCELL2のZ選択トランジスタZMOSは、Z選択線Z2によりオフされているため、電流は、Z選択トランジスタZMOSではなく、主に相変化素子PCMに流れる。なお、Z選択トランジスタZMOSのオフ抵抗は、相変化素子PCMのライト状態と消去状態の抵抗より、高いことが望ましい。 Since the Z selection transistor ZMOS of the selected memory cell CELL2 to be read is turned off by the Z selection line Z2, the current flows mainly through the phase change element PCM, not the Z selection transistor ZMOS. It is desirable that the off-resistance of the Z selection transistor ZMOS is higher than the resistance of the phase change element PCM in the write state and the erase state.
 このようにすると、相変化素子PCMの抵抗をより精度よくリードすることが可能になり、高信頼な半導体記憶装置201を実現することができる。繰り返すと、メモリチェーンMC0の中では、セルリード電流は、選択素子XMOS0とメモリセルCELL0,CELL1,CELL3では3個のZ選択トランジスタZMOSを主に通り、メモリセルCELL2では、相変化素子を主に通っている。 In this way, the resistance of the phase change element PCM can be read with higher accuracy, and a highly reliable semiconductor memory device 201 can be realized. To repeat, in the memory chain MC0, the cell read current mainly passes through the three Z selection transistors ZMOS in the selection element XMOS0 and the memory cells CELL0, CELL1, and CELL3, and mainly passes through the phase change element in the memory cell CELL2. ing.
 上記の通り、参照電圧保持キャパシタCREFとセルリード電圧保持キャパシタCCELLとにそれぞれ蓄積された電荷の一部は、参照電流とセルリード電流としてソース電極に移動する。 As described above, some of the charges accumulated in the reference voltage holding capacitor C REF and the cell read voltage holding capacitor C CELL move to the source electrode as the reference current and the cell read current.
 その結果、当初、プリチャージ電圧VPREであったセルリード電圧VCELLと参照電圧VREFは、低下することとなる。一定時間、参照電流とセルリード電流をそれぞれ流したあとのセルリード電圧VCELLと参照電圧VREFをセンスアンプ活性化スイッチSA_ENSをオンさせることで、センスアンプSAに入力し、差動増幅させる。 As a result, the cell read voltage V CELL and the reference voltage V REF that were initially the precharge voltage V PRE are lowered. The cell read voltage V CELL and the reference voltage V REF after flowing the reference current and the cell read current for a certain time are input to the sense amplifier SA by turning on the sense amplifier activation switch SA_ENS, and are differentially amplified.
 なお、参照電流を流す時間とセルリード電流を流す時間は、同じにすることが望ましい。同じにすることでリード回路の設計が簡易になり、半導体記憶装置201の設計に要する期間を短縮することができる。 It is desirable that the time for supplying the reference current and the time for supplying the cell read current are the same. By making the same, the design of the read circuit can be simplified, and the time required for designing the semiconductor memory device 201 can be shortened.
 もし、選択メモリセルCELL2が高抵抗状態の’0’であるなら、セルリード電流は、参照電流よりも少なく、セルリード電圧VCELLは、参照電圧VREFよりも高くなる。この電圧差をセンスアンプSAにて増幅することで、メモリセルCELL2の値が’0’であると読み出すことができる。 If the selected memory cell CELL2 is “0” in the high resistance state, the cell read current is smaller than the reference current, and the cell read voltage V CELL is higher than the reference voltage V REF . By amplifying this voltage difference with the sense amplifier SA, it can be read that the value of the memory cell CELL2 is “0”.
 一方、選択メモリセルCELL2が低抵抗状態の’1’であるなら、セルリード電流は、参照電流よりも多く、セルリード電圧VCELLは、参照電圧VREFよりも低くなる。この電圧差をセンスアンプSAによって増幅することで、メモリセルCELL2の値が’1’であると読み出すことができる。 On the other hand, if the selected memory cell CELL2 is “1” in the low resistance state, the cell read current is larger than the reference current, and the cell read voltage V CELL is lower than the reference voltage V REF . By amplifying this voltage difference by the sense amplifier SA, it can be read that the value of the memory cell CELL2 is “1”.
 〈リード回路の詳細な動作〉
 さらに、図8を用いて詳細な説明を行う。
<Detailed operation of lead circuit>
Further detailed description will be given with reference to FIG.
 図8は、図2のリード回路101によるリード動作の一例を示すタイミングチャートである。図8において、上方から下方にかけては、セルリード電圧VCELL、参照電圧VREF、Z選択線Z2、Z選択線Z0,Z1,Z3、ディスチャージスイッチDISS、セルリード電流選択スイッチCELLS、参照電流選択スイッチREFS、プリチャージスイッチPRES、およびセンスアンプ活性化スイッチSA_ENSにおける信号タイミングをそれぞれ示している。 FIG. 8 is a timing chart showing an example of a read operation by the read circuit 101 of FIG. In FIG. 8, from the upper side to the lower side, the cell read voltage V CELL , the reference voltage V REF , the Z selection line Z2, the Z selection lines Z0, Z1, Z3, the discharge switch DISS, the cell read current selection switch CELLS, the reference current selection switch REFS, Signal timings in the precharge switch PRES and the sense amplifier activation switch SA_ENS are respectively shown.
 ディスチャージスイッチDISSをオフにし、プリチャージスイッチPRESをオンにすることで(図8のタイミング601)、参照電圧保持キャパシタCREFとセルリード電圧保持キャパシタCCELLにプリチャージ電圧VPREが印加される。プリチャージは、参照電圧とリード電圧に関して、同時に行うことが望ましい。同時に行うことでそれぞれプリチャージを行う場合に比べて、プリチャージ時間を半分の時間に短縮することが可能になり、リードの高速な半導体記憶装置201を実現することができる。なお、個別にチャージすることが可能であることは言うまでもない。 By turning off the discharge switch DISS and turning on the precharge switch PRES (timing 601 in FIG. 8), the precharge voltage V PRE is applied to the reference voltage holding capacitor C REF and the cell read voltage holding capacitor C CELL . It is desirable to perform precharging simultaneously with respect to the reference voltage and the read voltage. By carrying out simultaneously, it becomes possible to shorten precharge time to half time compared with the case where each precharge is performed, and the high-speed semiconductor memory device 201 can be realized. Needless to say, it can be charged individually.
 さらに、リード電圧と参照電圧のプリチャージ電圧は、同じにすることが望ましい。このようにすることで設計が容易になり、設計期間を短縮することが可能になる。なお、プリチャージ電圧をそれぞれ別の電圧にすることが可能であることは言うまでもない。参照電圧のプリチャージ電圧を高くすることでプリチャージ時間を短縮し、リード速度の高速な半導体記憶装置201を実現することが可能である。 Furthermore, it is desirable that the read voltage and the precharge voltage of the reference voltage be the same. By doing so, the design becomes easy and the design period can be shortened. Needless to say, the precharge voltages can be different from each other. By increasing the precharge voltage of the reference voltage, the precharge time can be shortened, and the semiconductor memory device 201 having a high read speed can be realized.
 続いて、プリチャージスイッチPRESをオフにし、参照電流選択スイッチREFSをオンにする(図8のタイミング602)ことで、参照電流を流す。この動作が第1の読み出しモードとなる。参照電流は、参照電圧保持キャパシタCREFからビット線BL、メモリチェーンMC0を通って、ソース電極SLに流れる。なお、Z選択線Z2はオンされているため、メモリチェーンMC0のメモリセルCELL2において、電流は、主にZ選択トランジスタZMOSを通過する。このとき、非選択のメモリチェーンMC1などに電流が僅かに流れることは言うまでもない。但し、このリーク電流がメモリチェーンMC0を流れる電流に比べて、比較的小さくなるようにX選択素子XMOSのトランジスタ特性は調整されており、オフ電流が小さくなっている。 Subsequently, the precharge switch PRES is turned off and the reference current selection switch REFS is turned on (timing 602 in FIG. 8), thereby causing a reference current to flow. This operation is the first read mode. Reference current, the reference voltage holding capacitor C REF from the bit line BL, and through the memory chain MC 0, flows to the source electrode SL. Since the Z selection line Z2 is turned on, the current mainly passes through the Z selection transistor ZMOS in the memory cell CELL2 of the memory chain MC0. At this time, it goes without saying that a slight current flows through the non-selected memory chain MC1 and the like. However, the transistor characteristics of the X selection element XMOS are adjusted so that the leakage current is relatively smaller than the current flowing through the memory chain MC0, and the off-current is reduced.
 さらに、参照電流選択スイッチREFSとZ選択線Z2をオフにして、セルリード電流選択スイッチCELLSをオンにすることで、セルリード電流を流す。この動作が第2の読み出しモードとなる。セルリード電流は、セルリード電圧保持キャパシタCCELLからビット線BL、メモリチェーンMC0を通って、ソース電極SLに流れる。なお、Z選択線Z2はオフされているため、メモリチェーンMC0のメモリセルCELL2において、電流は、主に相変化素子PCMを通過する。 Further, the cell read current is caused to flow by turning off the reference current selection switch REFS and the Z selection line Z2 and turning on the cell read current selection switch CELLS. This operation is the second reading mode. The cell read current flows from the cell read voltage holding capacitor C CELL through the bit line BL and the memory chain MC0 to the source electrode SL. Since Z selection line Z2 is turned off, current mainly passes through phase change element PCM in memory cell CELL2 of memory chain MC0.
 そして、セルリード電流選択スイッチCELLSをオフにし、センスアンプ活性化スイッチSA_ENSをオンにする(図8のタイミング604)。これにより、センスアンプSAにより、セルリード電圧VCELLと参照電圧VREFの電位差が増幅される。この増幅された電圧を用いて、メモリセルの値が’0’であるか、’1’であるかを判定する。 Then, the cell read current selection switch CELLS is turned off, and the sense amplifier activation switch SA_ENS is turned on (timing 604 in FIG. 8). As a result, the potential difference between the cell read voltage V CELL and the reference voltage V REF is amplified by the sense amplifier SA. Using this amplified voltage, it is determined whether the value of the memory cell is “0” or “1”.
 〈課題について〉
 ここで、従来技術で述べた抵抗ドリフトによる相変化メモリの信頼性の低下の課題について具体的な数値を用いて再検討する。
<About issues>
Here, the problem of deterioration of the reliability of the phase change memory due to the resistance drift described in the prior art will be reviewed using specific numerical values.
 図3は、本発明者が検討した半導体記憶装置におけるレイアウトの一例を示す説明図である。図4は、本発明者が検討した半導体記憶装置におけるレイアウトの他例を示す説明図である。 FIG. 3 is an explanatory diagram showing an example of the layout in the semiconductor memory device examined by the present inventors. FIG. 4 is an explanatory diagram showing another example of the layout in the semiconductor memory device examined by the present inventors.
 図3に示すように、半導体記憶装置の半導体チップCHの大きさは、例えば10mm×11mmであり、その面積は面積110mm2とする。また、メモリアレイMRYの個数は4個であり、該メモリアレイMRYの大きさを4mm角とし、メモリアレイMRYの面積を16mm2とする。そして、メモリアレイMRYの1辺にセンスアンプが位置するものとする。この場合、メモリセルからセンスアンプまでの距離、すなわちビット線の長さは、最大4mm程度となる。リード回路501と列デコーダ502の短辺は、1mm程度と仮定した。 As shown in FIG. 3, the size of the semiconductor chip CH of the semiconductor memory device is, for example, 10 mm × 11 mm, and its area is 110 mm 2 . The number of memory arrays MRY is four, the size of the memory array MRY is 4 mm square, and the area of the memory array MRY is 16 mm 2 . It is assumed that a sense amplifier is located on one side of the memory array MRY. In this case, the distance from the memory cell to the sense amplifier, that is, the length of the bit line is about 4 mm at the maximum. The short sides of the read circuit 501 and the column decoder 502 are assumed to be about 1 mm.
 列デコーダ502は、列選択制御回路に加えライト回路と消去回路とを含む。また、行デコーダ503の短辺を0.5mmとした。パッド部504は、半導体記憶装置を外部コントローラと接続するために用いられる。外部コントローラは、例えば、半導体記憶装置をSSD(Solid State Drive)に用いる場合は、SSDコントローラになる。また、電源電圧VDDやグランド電圧VSSが供給されることは言うまでもない。 The column decoder 502 includes a write circuit and an erase circuit in addition to the column selection control circuit. The short side of the row decoder 503 is set to 0.5 mm. The pad unit 504 is used for connecting the semiconductor memory device to an external controller. For example, when the semiconductor storage device is used for an SSD (Solid State Drive), the external controller becomes an SSD controller. Needless to say, the power supply voltage VDD and the ground voltage VSS are supplied.
 図4は、図3よりもメモリアレイの個数が多い場合を示している。図4の半導体記憶装置は、半導体チップCHの大きさが図3と同じ10mm×11mmで面積が110mm2であるが、メモリアレイMRYの個数が16個となっている。 FIG. 4 shows a case where the number of memory arrays is larger than that in FIG. In the semiconductor memory device of FIG. 4, the size of the semiconductor chip CH is 10 mm × 11 mm and the area is 110 mm 2 as in FIG. 3, but the number of memory arrays MRY is 16.
 また、メモリアレイMRYの大きさは、1.5mm×1.75mmであり、その面積は、2.625mm2とし、メモリアレイMRYの1辺にセンスアンプが位置する場合は、メモリセルからセンスアンプまでの距離、すなわち、ビット線の長さは最大1.5mmとなる。 The size of the memory array MRY is 1.5 mm × 1.75 mm, its area is 2.625 mm 2, and when the sense amplifier is located on one side of the memory array MRY, the memory cell MRY is changed to the sense amplifier. Distance, that is, the length of the bit line is 1.5 mm at the maximum.
 なお、半導体記憶装置を製造するときに必要とされるスクライブ部やパッド部504として、縦横、それぞれ1mmずつを割り当てている。スクライブ部は、ダイヤモンドカッタによりシリコンウエハを切断し、半導体記憶装置201を製造するときに、切断部となる部分である。 It should be noted that 1 mm each is assigned vertically and horizontally as a scribe portion and a pad portion 504 required when manufacturing a semiconductor memory device. The scribe part is a part that becomes a cutting part when the semiconductor wafer 201 is manufactured by cutting a silicon wafer with a diamond cutter.
 また、メモリアレイの個数が変わっても、列デコーダや行デコーダの回路構成は大きくは変わらず、短辺の幅はほぼ同じである。そのため、メモリアレイの個数が増えるとともにメモリアレイMRYが半導体記憶装置に占める割合は減少する。例えば、図3に示すメモリアレイMRYが4個の場合、メモリアレイMRYが半導体記憶装置に占める占有率1は、下記(1)式で表される。 Also, even if the number of memory arrays changes, the circuit configuration of the column decoder and row decoder does not change greatly, and the width of the short side is almost the same. Therefore, as the number of memory arrays increases, the ratio of the memory array MRY to the semiconductor memory device decreases. For example, when the number of memory arrays MRY shown in FIG. 3 is 4, the occupation ratio 1 occupied by the memory array MRY in the semiconductor memory device is expressed by the following equation (1).
 メモリアレイ占有率1=16mm2×4個/110mm2=58%      (1)
 一方、図4に示すメモリアレイMRYが16個の場合、メモリアレイMRYが半導体記憶装置201に占める占有率2は、下記(2)式で表される。
Memory array occupation ratio 1 = 16 mm 2 × 4/110 mm 2 = 58% (1)
On the other hand, when the number of memory arrays MRY shown in FIG. 4 is 16, the occupation ratio 2 occupied by the memory array MRY in the semiconductor memory device 201 is expressed by the following equation (2).
 メモリアレイ占有率2=2.625mm2×16個/110mm2=38%  (2)
 すなわち、メモリアレイの個数が少ないほうがメモリアレイ占有率が高く、大容量の半導体記憶装置を実現することができる。
Memory array occupancy 2 = 2.625mm 2 × 16 pieces / 110mm 2 = 38% (2 )
That is, the smaller the number of memory arrays, the higher the memory array occupancy rate, and a large-capacity semiconductor memory device can be realized.
 一方、メモリセルとセンスアンプを接続するビット線の抵抗について検討する。 On the other hand, consider the resistance of the bit line connecting the memory cell and the sense amplifier.
 ビット線幅を最小加工寸法であるF=32nmとし、ビット線の材質をタングステンとし、シート抵抗を3Ω/□とすると、図3に示すメモリアレイMRYが4個の場合、最長4mmであるビット線の最大抵抗RBL1は、下記(3)式で表される。 Assuming that the bit line width is the minimum processing dimension F = 32 nm, the bit line material is tungsten, and the sheet resistance is 3Ω / □, when the memory array MRY shown in FIG. The maximum resistance RBL1 is expressed by the following equation (3).
 RBL1=3Ω×4mm/32nm=375kΩ             (3)
 一方、図4に示すメモリアレイMRYが16個の場合、最長1.5mmであるビット線の最大抵抗RBL1は、下記(3)式で表される。
RBL1 = 3Ω × 4 mm / 32 nm = 375 kΩ (3)
On the other hand, when the number of memory arrays MRY shown in FIG. 4 is 16, the maximum resistance RBL1 of the bit line having a maximum length of 1.5 mm is expressed by the following equation (3).
 RBL2=3Ω×1.5mm/32nm=141kΩ           (4)
 すなわち、メモリアレイの個数が少ないほうがビット線抵抗が高い。また、ビット線抵抗が高い分、抵抗ばらつきの影響を強く受けることとなる。配線抵抗は、例えば10%から40%程度である。例えば、ビット線抵抗が30%ばらつくと仮定すると、図3に示すメモリアレイMRYが4個の場合には、113kΩ程度抵抗がばらつく。一方、図4に示すメモリアレイMRYが16個の場合には、抵抗のばらつきは42kΩ程度であり、ばらつき量が少ない。なお、配線幅に関しても、ばらつきがあることは言うまでもない。
RBL2 = 3Ω × 1.5 mm / 32 nm = 141 kΩ (4)
That is, the smaller the number of memory arrays, the higher the bit line resistance. Further, since the bit line resistance is high, it is strongly influenced by the resistance variation. The wiring resistance is, for example, about 10% to 40%. For example, assuming that the bit line resistance varies by 30%, the resistance varies by about 113 kΩ when the number of memory arrays MRY shown in FIG. 3 is four. On the other hand, when the number of memory arrays MRY shown in FIG. 4 is 16, the resistance variation is about 42 kΩ, and the variation amount is small. Needless to say, the wiring width also varies.
 続いて、抵抗ドリフトに関して、さらに詳細に述べる。 Subsequently, the resistance drift will be described in more detail.
 図5は、ライト後の経過時間と相変化素子抵抗との変化の一例を示した説明図である。図5において、横軸は、ライト、もしくは消去後の経過時間であり、縦軸は、相変化素子の抵抗である。また、グラフは両対数プロットで示されている。 FIG. 5 is an explanatory diagram showing an example of a change between the elapsed time after writing and the phase change element resistance. In FIG. 5, the horizontal axis represents the elapsed time after writing or erasing, and the vertical axis represents the resistance of the phase change element. The graph is shown as a log-log plot.
 線401,403,404は、消去動作後の抵抗変化をそれぞれ示す。一方、線402は、ライト動作後の抵抗変化を示す。消去およびライト後には、リード動作を行い、消去およびライトが成功したかを確認すると仮定する。確認のためのリードをベリファイリードとする。 Lines 401, 403, and 404 respectively indicate resistance changes after the erase operation. On the other hand, the line 402 shows the resistance change after the write operation. Assume that after erasing and writing, a read operation is performed to check whether erasing and writing are successful. The lead for confirmation is the verify lead.
 線401は、十分に低い抵抗まで消去できた場合の例であり、消去後のベリファイリードの時点、例えば消去から20us(マイクロ秒)後に消去ベリファイしきい値、例えば300kΩより十分に低い抵抗となっている。さらに、データ保持を保証しなければならない時点(保証期間とする)、例えば、5年後においてもリードしきい値、例えば1MΩよりも低い抵抗となっている。そのため、保証期間の時点で読み出しを行っても正しくその値が’1’であると読み出すことができる。 A line 401 is an example in the case where erasing can be performed to a sufficiently low resistance, and the resistance becomes sufficiently lower than an erase verify threshold, for example, 300 kΩ, at the time of verify read after erasure, for example, 20 us (microseconds) after erasure. ing. Furthermore, the resistance is lower than the read threshold, for example, 1 MΩ, even when data retention must be guaranteed (assumed as a guarantee period), for example, after 5 years. Therefore, even if reading is performed at the time of the guarantee period, it can be read that the value is “1” correctly.
 次に、線402は、ライトに成功した場合の例であり、ライト後のベリファイリードの時点でライトベリファイしきい値、例えば3MΩより高い抵抗となっており保証期間においてもリードしきい値よりも高い抵抗となっている。そのため、ライトから保証期間後に読み出しを行っても正しくその値が’0’であると読み出すことができる。 Next, a line 402 is an example in the case where the write is successful. The resistance is higher than a write verify threshold, for example, 3 MΩ at the time of the verify read after the write, and the resistance is higher than the read threshold even in the guarantee period. High resistance. Therefore, even if reading is performed after the guarantee period from writing, it can be read that the value is “0” correctly.
 一方、線403は、消去時の抵抗が比較的高い場合の例であり、保証期間において、相変化素子抵抗の値は、わずかにリードしきい値を下回っている。この場合、時間に伴う抵抗の増大は、線401に比べて大きくなる。 On the other hand, a line 403 is an example in which the resistance at the time of erasing is relatively high, and the value of the phase change element resistance is slightly below the read threshold value during the guarantee period. In this case, the increase in resistance with time is greater than that of line 401.
 さらに、線404は、消去時の抵抗がさらに高い場合の例であり、保証期間において、相変化素子抵抗の値は、リードしきい値を上回っている。時間に伴う抵抗の増大は、さらに大きくなり、ライトから保証期間後に読み出すと’0’であると判定され、元々の値を正しく読み出すことができない。 Furthermore, line 404 is an example in which the resistance at the time of erasing is higher, and the value of the phase change element resistance exceeds the read threshold value during the guarantee period. The increase in resistance with time is further increased, and if it is read from the write after the guarantee period, it is determined to be “0”, and the original value cannot be read correctly.
 このように、消去後の抵抗が高くなることを防ぎ、信頼性の高い相変化メモリを実現するために、消去後のベリファイリードで読みだした抵抗が消去ベリファイしきい値を上回るように消去ベリファイしきい値を設定する。 In this way, in order to prevent the resistance after erasure from increasing and to realize a highly reliable phase change memory, the erase verify is performed so that the resistance read by the verify read after erasure exceeds the erase verify threshold. Set the threshold.
 そして、線404の消去が行われた場合には、消去後のベリファイリードを行ったときに、相変化素子抵抗が消去ベリファイしきい値以上であると判定し、再消去を行わなければならない。 When the line 404 is erased, when verify read after erasure is performed, it is determined that the phase change element resistance is equal to or greater than the erase verify threshold value, and erasure must be performed again.
 そのために、消去ベリファイしきい値より素子抵抗が高いか、それとも低いかを正確にリードを行うことが相変化素子の高信頼化に必要である。一方、大容量化を行うと、ビット線の抵抗とそのばらつきが大きくなり、相変化素子抵抗のリードが困難になる。すなわち、大容量化に伴い、ビット線抵抗が高くなり、相変化素子の信頼性確保が困難になる。 For this reason, it is necessary to improve the reliability of the phase change element by accurately reading whether the element resistance is higher or lower than the erase verify threshold. On the other hand, when the capacity is increased, the resistance of the bit line and its variation increase, making it difficult to read the phase change element resistance. That is, as the capacity increases, the bit line resistance increases, making it difficult to ensure the reliability of the phase change element.
 図9は、リード時においてセンスアンプSAにて読み出す抵抗の内訳の一例を示す説明図である。 FIG. 9 is an explanatory diagram showing an example of the breakdown of the resistance read by the sense amplifier SA at the time of reading.
 本実施例ではメモリアレイの個数を4個、メモリアレイの大きさを4mm角、面積16mm2として説明する。ビット線BLの長さは最大4mmとなる。消去状態の相変化素子抵抗は例えば100kΩである。ビット線の最大抵抗は課題で述べたように例えば375kΩである。非選択メモリセルの抵抗は例えば100kΩである。X選択MOSやリード回路内のオン状態のMOSの抵抗を含むそのほかの抵抗は例えば30kΩである。この内訳からわかるように、センスアンプで読み出す抵抗には、読み出したい相変化素子の抵抗に加えて、相対的に大きなビット線抵抗が含まれることがある。この高いビット線抵抗が相変化素子抵抗の読み出しを困難にすることがある。 In this embodiment, description will be made assuming that the number of memory arrays is 4, the size of the memory array is 4 mm square, and the area is 16 mm 2 . The maximum length of the bit line BL is 4 mm. The phase change element resistance in the erased state is, for example, 100 kΩ. The maximum resistance of the bit line is, for example, 375 kΩ as described in the problem. The resistance of the non-selected memory cell is 100 kΩ, for example. Other resistors including the resistance of the X selection MOS and the on-state MOS in the read circuit are, for example, 30 kΩ. As can be seen from the breakdown, the resistance read by the sense amplifier may include a relatively large bit line resistance in addition to the resistance of the phase change element desired to be read. This high bit line resistance may make it difficult to read the phase change element resistance.
 一方、本実施の形態のリード回路101においては、参照電流を流すときも、セルリード電流を流すときも、同一のビット線BLを用いる。そのため、ビット線BLの抵抗ばらつきの影響を受けず、安定した相変化素子抵抗の読み出しを可能にしている。 On the other hand, in the read circuit 101 of the present embodiment, the same bit line BL is used both when a reference current is passed and when a cell read current is passed. Therefore, stable phase change element resistance reading can be performed without being affected by the resistance variation of the bit line BL.
 図10は、本発明者が検討した図1との比較の対象となるリード回路の構成の例を示す説明図である。 FIG. 10 is an explanatory diagram showing an example of the configuration of a read circuit to be compared with FIG. 1 examined by the present inventors.
 図10のリード回路が図1のリード回路と異なる点は、固定された電圧値を持つ参照電圧源VFREFを有し、参照電流選択スイッチREFSとセンスアンプ活性化スイッチSA_ENSにて制御された選択素子を経由してセンスアンプSAに接続されているところである。 The read circuit of FIG. 10 differs from the read circuit of FIG. 1 in that it has a reference voltage source V FREF having a fixed voltage value, and is controlled by a reference current selection switch REFS and a sense amplifier activation switch SA_ENS. It is connected to the sense amplifier SA via the element.
 図11は、図10のリード回路の動作例を示すタイミングチャートである。 FIG. 11 is a timing chart showing an operation example of the read circuit of FIG.
 まず、ディスチャージスイッチDISSをオフにし、プリチャージスイッチPRESをオンにすることで(図11のタイミング901)、セルリード電圧保持キャパシタCCELLにプリチャージ電圧VPREが印加される。 First, by turning off the discharge switch DISS and turning on the precharge switch PRES (timing 901 in FIG. 11), the precharge voltage V PRE is applied to the cell read voltage holding capacitor C CELL .
 次に、プリチャージスイッチPRESをオフにし、参照電流選択スイッチREFSをオンにし(図11のタイミング902)、参照電圧VREFを固定参照電圧VFREFにする。セルリード電流選択スイッチCELLSをオンにすることで、セルリード電流を流す(図11のタイミング903)。 Next, turn off the precharge switch PRES, (timing 902 of FIG. 11) the reference current selection switch REFS is turned on, the reference voltage V REF to a fixed reference voltage V FREF. By turning on the cell read current selection switch CELLS, a cell read current flows (timing 903 in FIG. 11).
 セルリード電流は、セルリード電圧保持キャパシタCCELLからビット線BL、メモリチェーンMC0を通って、ソース電極SLに流れる。なお、Z選択線Z2は、オフされているため、メモリチェーンMC0のメモリセルCELL2において、電流は主に相変化素子PCMを通過する。 The cell read current flows from the cell read voltage holding capacitor C CELL through the bit line BL and the memory chain MC0 to the source electrode SL. Since Z selection line Z2 is turned off, current mainly passes through phase change element PCM in memory cell CELL2 of memory chain MC0.
 続いて、セルリード電流選択スイッチCELLSをオフにし、センスアンプ活性化スイッチSA_ENSをオンにする(図11のタイミング604)。これにより、センスアンプSAにより、セルリード電圧VCELLと参照電圧VREFの電位差が増幅される。この増幅された電圧を用いて、メモリセルの値が’0’であるか、’1’であるかを判定する。 Subsequently, the cell read current selection switch CELLS is turned off and the sense amplifier activation switch SA_ENS is turned on (timing 604 in FIG. 11). As a result, the potential difference between the cell read voltage V CELL and the reference voltage V REF is amplified by the sense amplifier SA. Using this amplified voltage, it is determined whether the value of the memory cell is “0” or “1”.
 図10の構成例の場合、セルリード電流を流すときは、ビット線BLを用いるが、参照電圧VREFは、固定参照電圧VFREFを用い、ビット線BLの抵抗により変化しない。そのため、ビット線BLの抵抗ばらつきの影響を受けてしまい、安定した相変化素子抵抗の読み出しが不可能となる。 In the configuration example of FIG. 10, when the cell read current is allowed to flow, the bit line BL is used, but the reference voltage V REF uses the fixed reference voltage V FREF and does not change depending on the resistance of the bit line BL. Therefore, it is affected by the resistance variation of the bit line BL, and it becomes impossible to read the phase change element resistance stably.
 例えば、ビット線BLの抵抗は、113kΩばらつく。相変化素子の消去状態の抵抗の例である100kΩに比べて、高く、この抵抗ばらつきの影響により、センスアンプで読み出した抵抗から、相変化素子の抵抗を判定することは困難になり、相変化素子の状態が’0’か’1’かを高信頼に判定することが不可能になる。 For example, the resistance of the bit line BL varies 113 kΩ. It is higher than 100 kΩ, which is an example of the resistance of the phase change element in the erased state. Due to this resistance variation, it becomes difficult to determine the resistance of the phase change element from the resistance read by the sense amplifier. It becomes impossible to determine whether the state of the element is “0” or “1” with high reliability.
 ライトと消去は、相変化素子PCMにライト電流を流すことでジュール熱を発生させることで行う。ライト電流は、例えば40μAであり、消去電流は例えば20μAである。なお、ライトもしくは消去について、隣接するZ選択トランジスタZMOSに電流を流すことでジュール熱を発生させることで行うことも可能である。 Write and erase are performed by generating Joule heat by supplying a write current to the phase change element PCM. The write current is 40 μA, for example, and the erase current is 20 μA, for example. Note that writing or erasing can also be performed by generating Joule heat by passing a current through the adjacent Z selection transistor ZMOS.
 ソース電極SLの電位は、ほぼ0Vに保たれることが望ましい。なお、厳密に述べるとソース電極の電位は、ソース電極からGND(グランド)端子に流れる電流による電圧降下により、GND端子の電位である0V程度より若干、高くなることは言うまでもない。ほぼ0Vに保つことで寄生容量の大きいソース電極を駆動することで生じる消費電力の増大を避けることが可能になる。 It is desirable that the potential of the source electrode SL is maintained at approximately 0V. Strictly speaking, it goes without saying that the potential of the source electrode is slightly higher than about 0 V, which is the potential of the GND terminal, due to a voltage drop caused by a current flowing from the source electrode to the GND (ground) terminal. By maintaining the voltage at approximately 0 V, it is possible to avoid an increase in power consumption caused by driving a source electrode having a large parasitic capacitance.
 〈半導体記憶装置の構成例〉
 図12は、図2のリード回路101を有する半導体記憶装置201における構成の一例を示す説明図である。なお、図12において、メモリアレイ202は、簡単化のため1つだけを示している。
<Configuration example of semiconductor memory device>
FIG. 12 is an explanatory diagram showing an example of the configuration of the semiconductor memory device 201 having the read circuit 101 of FIG. In FIG. 12, only one memory array 202 is shown for simplicity.
 半導体記憶装置201は、半導体チップの外部から電源電圧VDDとグランド電圧VSSがそれぞれ供給されており、制御信号などがデータ信号線DQによりを介して通信される。 The semiconductor memory device 201 is supplied with the power supply voltage VDD and the ground voltage VSS from the outside of the semiconductor chip, and communicates control signals and the like through the data signal line DQ.
 入力制御信号としては、例えばチップ有効信号CE、コマンドラッチ有効信号CLE、アドレスラッチ有効信号ALE、クロック信号CLK、リードライト有効信号W/R#、およびライトプロテクト信号WP#などがある。 Examples of the input control signal include a chip valid signal CE, a command latch valid signal CLE, an address latch valid signal ALE, a clock signal CLK, a read / write valid signal W / R #, and a write protect signal WP #.
 入出力制御信号としては、例えばデータストローブDQSがあり、出力制御信号としては、例えばリードビジー信号R/B#がある。そのほか、I/O信号電源VCCQやI/O信号グランド源VSSQなどを供給することができる。 As an input / output control signal, for example, there is a data strobe DQS, and as an output control signal, for example, there is a read busy signal R / B #. In addition, an I / O signal power supply VCCQ, an I / O signal ground source VSSQ, and the like can be supplied.
 半導体記憶装置201は、ロウ系回路1001、カラム系回路1002、制御系回路1003、電源回路1004、メモリアレイ202などを備える。ロウ系回路1001は、ビット線セレクタやセンスアンプなどを含む。カラム系回路1002は、ロウデコーダやワード線ドライバなどを含む。制御系回路1003は、コマンドデコーダ、制御回路、およびバッファ装置などを含む。 The semiconductor memory device 201 includes a row system circuit 1001, a column system circuit 1002, a control system circuit 1003, a power supply circuit 1004, a memory array 202, and the like. The row circuit 1001 includes a bit line selector, a sense amplifier, and the like. The column system circuit 1002 includes a row decoder, a word line driver, and the like. The control system circuit 1003 includes a command decoder, a control circuit, a buffer device, and the like.
 電源回路1004からは、ロウ系回路1001、カラム系回路1002、および制御系回路1003に電源が供給される。その一部の電圧は、昇圧もしくは降圧されて、残りの電圧は、電源電圧VDDがそのまま供給される。 From the power supply circuit 1004, power is supplied to the row system circuit 1001, the column system circuit 1002, and the control system circuit 1003. A part of the voltage is stepped up or stepped down, and the remaining voltage is supplied with the power supply voltage VDD as it is.
 〈相変化素子のライト/消去〉
 続いて、相変化素子PCMについてライトと消去について説明する。
<Write / erase phase change element>
Subsequently, writing and erasing of the phase change element PCM will be described.
 図13は、図1の相変化素子PCMにおけるライトおよび消去時における動作の一例を示す説明図である。 FIG. 13 is an explanatory diagram showing an example of operations at the time of writing and erasing in the phase change element PCM of FIG.
 ライトは、リセットパルスを相変化素子PCMに流し、ジュール熱を発生させることで行う。リセットパルスにより相変化素子PCMは、融点以上に加熱され、急冷されることによってアモルファス状態になる。リセットパルスの印加時間は、例えば8ns程度である。 Write is performed by causing a reset pulse to flow through the phase change element PCM and generating Joule heat. The phase change element PCM is heated to the melting point or higher by the reset pulse, and is brought into an amorphous state by being rapidly cooled. The application time of the reset pulse is about 8 ns, for example.
 また、消去は、セットパルスをZ選択トランジスタZMOS(図1)に流し、ジュール熱を発生させることで行う。 Erasing is performed by causing a set pulse to flow through the Z selection transistor ZMOS (FIG. 1) and generating Joule heat.
 セットパルスにより相変化素子PCMは、結晶化温度以上で一定時間、例えば500ns保持される。相変化素子PCMは、これにより結晶状態になる。結晶状態は、アモルファス状態に比べて、抵抗が低く、その抵抗の違いを利用して、例えば、低抵抗状態を’1’、高抵抗状態を’0’として、情報を記録することができる。 The phase change element PCM is held for a certain time, for example, 500 ns above the crystallization temperature by the set pulse. Thus, phase change element PCM enters a crystalline state. The crystalline state has a lower resistance than the amorphous state, and by utilizing the difference in resistance, information can be recorded, for example, by setting the low resistance state to “1” and the high resistance state to “0”.
 以上により、リード回路101は、参照電流を流すときも、セルリード電流を流すときも、同一のビット線BLを用いるので、ビット線BLの抵抗ばらつきの影響を低減することができる。その結果、安定した相変化素子抵抗の読み出しを可能にすることができ、半導体記憶装置の信頼性を向上させることができる。 As described above, since the read circuit 101 uses the same bit line BL when supplying the reference current and when supplying the cell read current, the influence of the resistance variation of the bit line BL can be reduced. As a result, stable phase change element resistance reading can be performed, and the reliability of the semiconductor memory device can be improved.
 (実施の形態2)
 〈概要〉
 本実施の形態2では、ライトプレート電極WRを有する半導体記憶装置について説明する。ライトプレート電極WRを有する構成とすることで、ライトデータレートと消去速度を高速化することができる。
(Embodiment 2)
<Overview>
In the second embodiment, a semiconductor memory device having a light plate electrode WR will be described. With the configuration having the light plate electrode WR, the write data rate and the erasing speed can be increased.
 〈メモリアレイの構成〉
 図14は、本実施の形態2による半導体記憶装置が有するメモリアレイ202の一部の回路構成例を示す説明図である。
<Configuration of memory array>
FIG. 14 is an explanatory diagram showing a circuit configuration example of a part of the memory array 202 included in the semiconductor memory device according to the second embodiment.
 メモリアレイ202は、図14に示すように、複数のメモリチェーンMCから構成されている。メモリチェーンMCは、複数のメモリセルCELLを直列に接続することで構成される。ここではメモリチェーンMCは、8個のメモリセルCELLからなるものとする。 The memory array 202 includes a plurality of memory chains MC as shown in FIG. The memory chain MC is configured by connecting a plurality of memory cells CELL in series. Here, it is assumed that the memory chain MC is composed of eight memory cells CELL.
 メモリセルCELLは、1個の相変化素子PCMと1個のZ選択トランジスタZMOSとを並列に接続することで構成される。ここでは、1個の相変化素子PCMと1個のZ選択トランジスタZMOSとが並列に接続されている例で説明するが、1個の相変化素子PCMと複数個のZ選択トランジスタZMOSとを並列に接続することが可能であることは言うまでもない。さらに、複数個の相変化素子PCMと1個のZ選択トランジスタZMOSとを並列に接続すること、あるいは複数個の相変化素子PCMと複数個のZ選択トランジスタZMOSとを並列に接続することが可能であることは言うまでもない。 The memory cell CELL is configured by connecting one phase change element PCM and one Z selection transistor ZMOS in parallel. Here, an example in which one phase change element PCM and one Z selection transistor ZMOS are connected in parallel will be described, but one phase change element PCM and a plurality of Z selection transistors ZMOS are connected in parallel. It goes without saying that it is possible to connect to. Further, a plurality of phase change elements PCM and one Z selection transistor ZMOS can be connected in parallel, or a plurality of phase change elements PCM and a plurality of Z selection transistors ZMOS can be connected in parallel. Needless to say.
 なお、図14では、リードビット線はX、方向に延伸され、Y選択線と平行であるとして、説明する。メモリチェーンは、4層積層されている場合を例にする。 In FIG. 14, description will be made assuming that the read bit line is extended in the X direction and parallel to the Y selection line. An example in which the memory chain is stacked in four layers is taken as an example.
 この場合、メモリセルの積層数は、8個×4層の32層になる。4層より多く積層したり、4層未満の積層数としたりすることが可能であるのは言うまでもない。積層数を多くすることでメモリ容量を大きくすることができるメリットがある。積層数を少なくことで製造が容易になるメリットがある。 In this case, the number of stacked memory cells is 8 × 4, 32 layers. It goes without saying that it is possible to stack more than four layers or to have a number of layers less than four. There is an advantage that the memory capacity can be increased by increasing the number of stacked layers. There is an advantage that manufacturing is facilitated by reducing the number of stacked layers.
 また、図14においては、第H層のXアドレスI、YアドレスJのメモリチェーンをMC(H)-(I)-(J)と表記する。複数のリードビット線RBLは、X方向に延伸されるとする。第H層のYアドレスJのリードビット線は、RBL(H)-(J)として示す。 Further, in FIG. 14, the memory chain of the X address I and the Y address J of the H layer is represented as MC (H)-(I)-(J). The plurality of read bit lines RBL are assumed to be extended in the X direction. The read bit line of the Y address J of the H layer is indicated as RBL (H)-(J).
 X選択MOSとY選択MOSは、ダブルゲートのMOSとなっており、1つのMOSにつき、2つのゲート電極が存在する。さらに、MOSのチャネル膜厚が薄いため、この2つのゲート電極にともにオン電圧が印加されたときのみMOSがオンする。Y選択線はYドライバYDRにより駆動される。 The X selection MOS and the Y selection MOS are double gate MOSs, and there are two gate electrodes for each MOS. Further, since the channel thickness of the MOS is thin, the MOS is turned on only when an on-voltage is applied to the two gate electrodes. The Y selection line is driven by a Y driver YDR.
 図15は、図14のメモリアレイの一部を拡大した説明図である。 FIG. 15 is an explanatory diagram enlarging a part of the memory array of FIG.
 メモリチェーンMCは、図15に示すように、2F間隔にて配置されている。X選択先はY方向に延伸されている。 The memory chain MC is arranged at 2F intervals as shown in FIG. The X selection destination is extended in the Y direction.
 図16は、図15のD-D’断面を示す模式図である。この図16は、メモリチェーンMCの一部が示されており、複数のZ選択トランジスタZMOSと相変化素子PCMとが示されている。 FIG. 16 is a schematic diagram showing a D-D ′ section of FIG. 15. FIG. 16 shows a part of the memory chain MC, and shows a plurality of Z selection transistors ZMOS and a phase change element PCM.
 Z選択トランジスタZMOSと相変化素子PCMは、シリコン酸化膜1406、ゲート酸化膜1403、シリコンチャネル1404、相変化材料1405、Z選択トランジスタゲート電極1401、および層間絶縁膜1402などにより構成されている。 The Z selection transistor ZMOS and the phase change element PCM include a silicon oxide film 1406, a gate oxide film 1403, a silicon channel 1404, a phase change material 1405, a Z selection transistor gate electrode 1401, an interlayer insulating film 1402, and the like.
 Z選択トランジスタZMOSは、縦型GAA-NMOSFET(Gate All Around n-channel MOSFET)を用いることが望ましい。PMOSFETに比べて電流駆動力の高いNMOSFETを用いることで、メモリチェーンMCに含まれる相変化素子PCMの数を増加させ、大容量の半導体記憶装置を実現することができる。もちろん、PMOSを用いることが可能であることは言うまでもない。 The Z selection transistor ZMOS is preferably a vertical GAA-NMOSFET (Gate All Around n-channel MOSFET). By using an NMOSFET having a higher current driving capability than a PMOSFET, the number of phase change elements PCM included in the memory chain MC can be increased, and a large-capacity semiconductor memory device can be realized. Of course, it goes without saying that a PMOS can be used.
 縦型MOSFETを用いることで、トランジスタの大きさを4F2と平面MOSを用いる場合に比べて小さくすることができるため、大容量化することができる。GAA構造にすることで、平面MOSを用いた場合に比べて、ゲート幅を広くすることが可能になり、MOSの駆動力を向上させ、相変化チェーンMCに含まれるメモリセルCELLの数を増やし、大容量化することができる。 By using the vertical MOSFET, the size of the transistor can be reduced as compared with the case of using 4F2 and a planar MOS, so that the capacity can be increased. By using the GAA structure, it becomes possible to widen the gate width as compared with the case of using a planar MOS, improving the driving power of the MOS, and increasing the number of memory cells CELL included in the phase change chain MC. The capacity can be increased.
 PMOSを用いた場合には、非選択のZ選択トランジスタZMOSのゲート電極に印加する電圧がNMOSを用いた場合に比べて低くできるため、Z選択トランジスタZMOSのゲート耐圧が少なくて済み、半導体記憶装置の信頼性が向上する効果がある。 When the PMOS is used, the voltage applied to the gate electrode of the non-selected Z selection transistor ZMOS can be made lower than when the NMOS is used, so that the gate breakdown voltage of the Z selection transistor ZMOS can be reduced. This has the effect of improving the reliability.
 X選択素子XMOSは、ダブルゲートのNMOSFETを用いることが望ましい。ダブルゲートのMOSFETを用いることで、平面型のMOSFETを用いる場合と比較して、MOSFETのゲート幅を広く取ることができる。それにより、相変化素子PCMのライトに必要な電流を確保することが容易になる。その結果、半導体記憶装置201の歩留まりを向上させることができる利点がある。 It is desirable to use a double gate NMOSFET as the X selection element XMOS. By using a double gate MOSFET, the gate width of the MOSFET can be increased compared to the case of using a planar MOSFET. Thereby, it becomes easy to secure a current necessary for writing phase change element PCM. As a result, there is an advantage that the yield of the semiconductor memory device 201 can be improved.
 また、MOSFETの駆動力が向上するため、メモリチェーンMCに含まれるメモリセルの数を増やすことができる。さらに、メモリチェーンMCのセル面積を4F2(Fは最小加工寸法)と、平面型MOSFETを用いるときの6~8F2と比べて小さくすることができるため、大容量の半導体記憶装置を実現することができる。 Further, since the driving power of the MOSFET is improved, the number of memory cells included in the memory chain MC can be increased. Furthermore, since the cell area of the memory chain MC can be reduced to 4F2 (F is the minimum processing dimension), which is 6 to 8F2 when the planar MOSFET is used, a large-capacity semiconductor memory device can be realized. it can.
 ダブルゲートのNMOSFETは、2個のゲート電極を持ち、両方のゲート電極にオン電圧が印加されるとMOSはオン(すなわち、低抵抗状態になる)する。片方のゲート電極のみにオン電圧が印加された場合、もしくはすべてのゲート電極にオフ電圧が印加された場合には、MOSがオフ(すなわち高抵抗状態になる)する。 The double-gate NMOSFET has two gate electrodes, and when an on-voltage is applied to both gate electrodes, the MOS is turned on (that is, in a low resistance state). When an on voltage is applied only to one of the gate electrodes, or when an off voltage is applied to all the gate electrodes, the MOS is turned off (that is, a high resistance state is set).
 〈ダブルゲートのNMOSFETの適用例〉
 以下、ダブルゲートのNMOSFETを用いた場合について説明する。
<Application example of double-gate NMOSFET>
Hereinafter, a case where a double gate NMOSFET is used will be described.
 ライトプレート電極WRは、ライトと消去で用いるライト電流と消去電流を供給するために用いられる。配線幅の広いライトプレート電極WRを用いることにより、ライトと消去に要する大電流を安定して供給することが可能になり、高信頼の半導体記憶装置を実現することができる。 The light plate electrode WR is used to supply a write current and an erase current used for writing and erasing. By using the light plate electrode WR having a wide wiring width, a large current required for writing and erasing can be stably supplied, and a highly reliable semiconductor memory device can be realized.
 〈リード回路の動作〉
 続いて、リード回路101の動作について説明する。なお、本実施の形態2において、リード回路101の構成は、前記実施の形態1の図1におけるリード回路101と同様の構成となっている。
<Operation of lead circuit>
Subsequently, the operation of the read circuit 101 will be described. In the second embodiment, the configuration of the read circuit 101 is the same as that of the read circuit 101 in FIG. 1 of the first embodiment.
 図17は、図16のメモリアレイ202を有する半導体記憶装置に設けられるリード回路101の動作例を示すタイミングチャートである。 FIG. 17 is a timing chart showing an operation example of the read circuit 101 provided in the semiconductor memory device having the memory array 202 of FIG.
 図17において、上方から下方にかけては、セルリード電圧VCELL、参照電圧VREF、Z選択線Z0-0、Z選択線Z0-1~Z0-7、ディスチャージスイッチDISS、セルリード電流選択スイッチCELLS、参照電流選択スイッチREFS、プリチャージスイッチPRES、センスアンプ活性化スイッチSA_ENS、Y選択線Y0-0,Y0-1、X選択線X0-0,X0-1、およびX選択線X0-2における信号タイミングをそれぞれ示している。 In FIG. 17, from the top to the bottom, the cell read voltage V CELL , reference voltage V REF , Z selection line Z0-0, Z selection lines Z0-1 to Z0-7, discharge switch DISS, cell read current selection switch CELLS, reference current Signal timings on the selection switch REFS, precharge switch PRES, sense amplifier activation switch SA_ENS, Y selection lines Y0-0, Y0-1, X selection lines X0-0, X0-1, and X selection line X0-2 are respectively shown. Show.
 図17では、メモリチェーンMC0-0-0に含まれるZ選択線Z0-0に接続されたメモリセルを選択し、リードを行うとする。 In FIG. 17, assume that a memory cell connected to the Z selection line Z0-0 included in the memory chain MC0-0-0 is selected and read.
 セルリード電流が流れる間、Y選択線、例えばY0-0やY0-1はオフされており、リードビット線RBLとライトプレート電極WRを電気的に切り離している。X選択線X0-0とX選択線X0-1は、それぞれオンされており、メモリチェーンMC0-0-0の選択動作が行われている。一方、例えば、X選択線X0-2はオフされている。 While the cell read current flows, the Y selection lines such as Y0-0 and Y0-1 are turned off, and the read bit line RBL and the write plate electrode WR are electrically disconnected. The X selection line X0-0 and the X selection line X0-1 are each turned on, and the selection operation of the memory chain MC0-0-0 is performed. On the other hand, for example, the X selection line X0-2 is turned off.
 なお、セルリード電流と参照電流は、同一のビット線を経由して、電流を流す。実施の形態1と重複するリード動作の詳細については省略する。 Note that the cell read current and the reference current flow through the same bit line. The details of the read operation overlapping with the first embodiment will be omitted.
 以上により、ライトプレート電極WRを有する構成とすることによって、ライトデータレートと消去速度を高速化することができる。 As described above, it is possible to increase the write data rate and the erasing speed by adopting the configuration having the light plate electrode WR.
 (実施の形態3)
 〈概要〉
 本実施の形態3においては、メモリチェーンが1個のメモリセルによって構成される半導体記憶装置について説明する。メモリチェーンを1個のメモリセルにて構成することによって、リードデータレートの高速化を実現することができる。
(Embodiment 3)
<Overview>
In the third embodiment, a semiconductor memory device in which a memory chain is composed of one memory cell will be described. By configuring the memory chain with one memory cell, the read data rate can be increased.
 〈メモリアレイの構成〉
 図18は、実施の形態3によるメモリアレイ202の一部の回路構成の一例を示す説明図である。
<Configuration of memory array>
FIG. 18 is an explanatory diagram showing an example of a partial circuit configuration of the memory array 202 according to the third embodiment.
 メモリアレイ202が有するメモリチェーンMCは、図18に示すように、1個のメモリセルCELLとX選択素子XMOSとを有する構成からなる。その他の構成については、前記実施の形態1の図1と同様であるので、説明は省略する。 As shown in FIG. 18, the memory chain MC included in the memory array 202 has a configuration including one memory cell CELL and an X selection element XMOS. Other configurations are the same as those of the first embodiment shown in FIG.
 〈リード回路の動作〉
 図19は、図18のメモリアレイ202を有する半導体記憶装置に設けられたリード回路の動作例を示すタイミングチャートである。本実施の形態3において、リード回路101の構成は、前記実施の形態1の図1におけるリード回路101と同様の構成となっている。
<Operation of lead circuit>
FIG. 19 is a timing chart showing an operation example of the read circuit provided in the semiconductor memory device having the memory array 202 of FIG. In the third embodiment, the configuration of the read circuit 101 is the same as that of the read circuit 101 in FIG. 1 of the first embodiment.
 図19において、上方から下方にかけては、セルリード電圧VCELL、参照電圧VREF、Z選択線Z0、ディスチャージスイッチDISS、セルリード電流選択スイッチCELLS、参照電流選択スイッチREFS、プリチャージスイッチPRES、およびセンスアンプ活性化スイッチSA_ENSにおける信号タイミングをそれぞれ示している。 In FIG. 19, from the top to the bottom, the cell read voltage V CELL , the reference voltage V REF , the Z selection line Z 0, the discharge switch DISS, the cell read current selection switch CELLS, the reference current selection switch REFS, the precharge switch PRES, and the sense amplifier activation Signal timings at the switch SA_ENS are shown.
 図18に示すメモリアレイ202の場合、Z選択線は、Z選択線Z0のみが存在する。Z選択線Z0は、参照電流を流すときはオンされ、参照電流は、Z選択トランジスタZMOSを主に流れる。 In the case of the memory array 202 shown in FIG. 18, only the Z selection line Z0 exists as the Z selection line. The Z selection line Z0 is turned on when a reference current flows, and the reference current mainly flows through the Z selection transistor ZMOS.
 セルリード電流を流すときは、オフされ、該セルリード電流は、相変化素子PCMを主に流れる。セルリード電流と参照電流は、同一のビット線を経由して、電流を流す。 When the cell read current flows, it is turned off, and the cell read current mainly flows through the phase change element PCM. The cell read current and the reference current flow through the same bit line.
 ここで、本構成の特徴について再度確認を行う。 Here, we will confirm the characteristics of this configuration again.
 メモリセルは、複数個、直列接続されていない。すなわち、半導体記憶装置は、「複数個直列接続された電気的書き換え可能なメモリセル」は有していない。当然、選択メモリセルと同一メモリチェーン内に非選択メモリセルは存在しないため、「そのデータによらずメモリセルがオンするパス電圧を印加する」ことはできない。さらに、非選択メモリセルが存在しないため、非選択メモリセルの電気抵抗は、存在せず、その値を低減する必要もない。 ・ Multiple memory cells are not connected in series. That is, the semiconductor memory device does not have “a plurality of electrically rewritable memory cells connected in series”. Naturally, since there is no unselected memory cell in the same memory chain as the selected memory cell, it is impossible to “apply a pass voltage that turns on the memory cell regardless of the data”. Furthermore, since there is no non-selected memory cell, the electric resistance of the non-selected memory cell does not exist and it is not necessary to reduce its value.
 以上により、リードデータレートを高速化することができる。 As described above, the read data rate can be increased.
 なお、本実施の形態3において、影響を低減するのはビット線BLの電気抵抗とそのばらつきである。さらに、特許文献1に記載されたNAND型フラッシュメモリは、1トランジスタ型のメモリであり、1トランジスタと1抵抗素子とが並列に接続された1T-1R型とは、メモリセル構成が異なる。例えば、1T-1R型では、特許文献1に記載された「そのデータに応じてメモリセルがオンまたはオフになる読み出し電圧」(要約参照)は、存在しない。 In the third embodiment, the influence is reduced by the electric resistance of the bit line BL and its variation. Further, the NAND flash memory described in Patent Document 1 is a one-transistor type memory, and the memory cell configuration is different from the 1T-1R type in which one transistor and one resistance element are connected in parallel. For example, in the 1T-1R type, there is no “read voltage at which a memory cell is turned on or off according to the data” described in Patent Document 1 (see abstract).
 (実施の形態4)
 〈概要〉
 本実施の形態4では、参照抵抗の値を、リード時と、ライトベリファイ時と消去ベリファイ時にて変更することを特徴とする半導体記憶装置201について説明する。これによって、半導体記憶装置の信頼性を高めることができる。
(Embodiment 4)
<Overview>
In the fourth embodiment, a semiconductor memory device 201 is described in which the value of the reference resistance is changed at the time of reading, at the time of write verify, and at the time of erase verify. As a result, the reliability of the semiconductor memory device can be improved.
 〈リード回路の構成〉
 図20は、本実施の形態4によるリード回路101の構成の一例を示す説明図である。
<Configuration of lead circuit>
FIG. 20 is an explanatory diagram showing an example of the configuration of the read circuit 101 according to the fourth embodiment.
 図20に示すリード回路101は、図1に示すリード回路101の構成に、スイッチSWおよび該スイッチSWにて切り替えられる3つの参照抵抗が新たに設けられた構成となっている。 20 has a configuration in which a switch SW and three reference resistors that are switched by the switch SW are newly provided in the configuration of the read circuit 101 shown in FIG.
 3つの参照抵抗は、リード用参照抵抗REFR_READ、ライトベリファイ用参照抵抗REFR_WRITEV、消去ベリファイ用参照抵抗REFR_ERASEVから構成されている。リード用参照抵抗REFR_READは、第1の抵抗であり、消去ベリファイ用参照抵抗REFR_ERASEVは、第2の抵抗であり、ライトベリファイ用参照抵抗REFR_WRITEVは、第3の抵抗である。 The three reference resistors are constituted by a read reference resistor REFR_READ, a write verify reference resistor REFR_WRITEV, and an erase verify reference resistor REFR_ERASEV. The read reference resistor REFR_READ is a first resistor, the erase verify reference resistor REFR_ERASEV is a second resistor, and the write verify reference resistor REFR_WRITEV is a third resistor.
 これらの抵抗値は、例えば、リード用参照抵抗REFR_READが1MΩ程度であり、ライトベリファイ用参照抵抗REFR_WRITEVが3MΩ程度であり、消去ベリファイ用参照抵抗REFR_ERASEVが300kΩ程度である。 These resistance values are, for example, the read reference resistance REFR_READ is about 1 MΩ, the write verify reference resistance REFR_WRITEV is about 3 MΩ, and the erase verify reference resistance REFR_ERASEV is about 300 kΩ.
 すなわち、ライトベリファイ用参照抵抗REFR_WRITEVの抵抗値と消去ベリファイ用参照抵抗REFR_ERASEVの抵抗値の間にリード用参照抵抗REFR_READの抵抗値を設定することで、リードマージンを確保する。 That is, the read margin is ensured by setting the resistance value of the read reference resistor REFR_READ between the resistance value of the write verify reference resistor REFR_WRITEV and the erase verify reference resistor REFR_ERASEV.
 なお、リード用参照抵抗REFR_READの抵抗値は、消去ベリファイ用参照抵抗REFR_ERASEVの抵抗値よりも高い。なお、参照抵抗の数が3種類に固定される必要がないことは言うまでもない。 Note that the resistance value of the read reference resistor REFR_READ is higher than the resistance value of the erase verify reference resistor REFR_ERASEV. Needless to say, the number of reference resistors does not need to be fixed to three types.
 例えば、参照抵抗の値は、リード用と消去ベリファイ用の2種類にすることができる。相変化素子の抵抗ドリフトは、時間とともに上昇するため、リード用と消去ベリファイ用の2種類を用意するだけである程度の信頼性を確保することができる。 For example, the value of the reference resistance can be two types for reading and erasing verification. Since the resistance drift of the phase change element increases with time, a certain degree of reliability can be ensured only by preparing two types for reading and erasing verification.
 参照抵抗の種類を3種類から2種類に低減することで、参照抵抗素子が半導体記憶装置201に占める割合を低減することが可能になり、小面積でコストの安い半導体記憶装置201を実現できる。 By reducing the number of reference resistors from three to two, it is possible to reduce the ratio of the reference resistance element to the semiconductor memory device 201, and the semiconductor memory device 201 with a small area and low cost can be realized.
 さらに、参照抵抗の数は、4種類にすることが可能であることは言うまでもない。参照抵抗の値を’0’’1’判定リード時と、’1’’2’判定リード時と、’2’’3’判定リード時と、ライトベリファイ時と消去ベリファイ時で変更することにより、1個の相変化素子に1ビットより多くの値を記憶する多値動作を安定して行うことができる。 Furthermore, it goes without saying that the number of reference resistors can be four. By changing the value of the reference resistance at the time of “0” 1 ”judgment read,“ 1 ”2” judgment read, “2” 3 ”judgment read, write verify and erase verify A multi-value operation in which more than one bit value is stored in one phase change element can be stably performed.
 参照抵抗の値をリード時と、ライトベリファイ時と消去ベリファイ時で変更することにより、ライト状態の相変化素子の抵抗値と消去状態の相変化素子の抵抗値に大きなリードマージンを設けることが可能になり、例えば、環境温度が変化したときにも安定したリード動作を行うことが可能になる。 By changing the reference resistance value between read, write verify, and erase verify, it is possible to provide a large read margin for the resistance value of the phase change element in the write state and the resistance value of the phase change element in the erase state For example, a stable read operation can be performed even when the environmental temperature changes.
 (実施の形態5)
 〈概要〉
 本実施の形態5においては、参照抵抗REFRを不要とするリード回路101について説明する。これによって、半導体記憶装置のチップ面積が小さく、製造コストを安価にする。
(Embodiment 5)
<Overview>
In the fifth embodiment, a read circuit 101 that does not require the reference resistor REFR will be described. As a result, the chip area of the semiconductor memory device is small, and the manufacturing cost is reduced.
 〈リード回路の構成〉
 図21は、本実施の形態5によるリード回路101の構成の一例を示す説明図である。
<Configuration of lead circuit>
FIG. 21 is an explanatory diagram showing an example of the configuration of the read circuit 101 according to the fifth embodiment.
 図21に示すリード回路101は、図1のリード回路101から、参照抵抗REFRが取り除かれた構成となっている。その他の構成については、図1と同様であるので説明は、省略する。 The read circuit 101 shown in FIG. 21 has a configuration in which the reference resistor REFR is removed from the read circuit 101 of FIG. Other configurations are the same as those in FIG.
 図21に示す参照抵抗REFRを有しないリード回路101の動作について、説明する。 The operation of the read circuit 101 not having the reference resistor REFR shown in FIG. 21 will be described.
 この場合、センスアンプSAは、セルリード電圧VCELLと参照電圧VREFを比較し、例えば、下記(5)式および(6)式を用いて、メモリセルCELLに記録された値の判定を行う。 In this case, the sense amplifier SA compares the cell read voltage V CELL with the reference voltage V REF and determines the value recorded in the memory cell CELL using, for example, the following formulas (5) and (6).
 VCELL > 参照電圧VREF×0.8 → セルは高抵抗状態、値は’0’  (5)
 VCELL ≦ 参照電圧VREF×0.8 → セルは低抵抗状態、値は’1’  (6)
 ここで、0.8倍という値はあくまでも例であり、実際にはメモリアレイの構成に応じて適切に設定することは言うまでもない。例えば、メモリアレイの大きさが小さく、ビット線抵抗が小さい場合は0.8より小さい値とすることが望ましい。
V CELL > reference voltage V REF × 0.8 → cell is in high resistance state, value is '0' (5)
V CELL ≤ reference voltage V REF × 0.8 → cell is in low resistance state, value is '1' (6)
Here, the value of 0.8 times is merely an example, and it goes without saying that the value is actually set appropriately according to the configuration of the memory array. For example, when the size of the memory array is small and the bit line resistance is small, a value smaller than 0.8 is desirable.
 センスアンプSAの構成に関して、センスアンプSAはカレントミラー回路を含むことが望ましい。カレントミラー回路を用いることで高精度に’0’と’1’の値の判定を行うことができる。 Regarding the configuration of the sense amplifier SA, the sense amplifier SA preferably includes a current mirror circuit. By using the current mirror circuit, the values of “0” and “1” can be determined with high accuracy.
 このカレントミラー回路に含まれる両者の電圧を比較するときに用いるトランジスタのゲート幅を変えて駆動力を変えることにより、倍率0.8倍の例で示したセンスアンプの調整を行うことができる。 The sense amplifier shown in the example with a magnification of 0.8 can be adjusted by changing the driving power by changing the gate width of the transistor used to compare the voltages of the two included in the current mirror circuit.
 なお、センスアンプSAの回路構成を変えるのではなく、セルリード電圧と参照電圧でプリチャージ電圧を変化させる、例えば、セルリード電圧にプリチャージする電圧を1Vとし、参照電圧にプリチャージする電圧を0.8Vにすることが可能であることは言うまでもない。さらに、セルリード電流を流す時間と参照電流を流す電流を変化させる、例えば、セルリード電流を500ns程度流し、参照電流を400ns程度流すことが可能であることは言うまでもない。 Instead of changing the circuit configuration of the sense amplifier SA, the precharge voltage is changed by the cell read voltage and the reference voltage. For example, the voltage to be precharged to the cell read voltage is 1 V, and the voltage to be precharged to the reference voltage is 0. Needless to say, it can be set to 8V. Furthermore, it goes without saying that the time for supplying the cell read current and the current for supplying the reference current are changed. For example, the cell read current can be supplied for about 500 ns and the reference current can be supplied for about 400 ns.
 以上により、参照抵抗を用いないことによって、参照抵抗の回路面積を削減することができる。それによって、チップ面積を小さくし、半導体記憶装置の製造コストを低減することができる。 As described above, the circuit area of the reference resistor can be reduced by not using the reference resistor. Thereby, the chip area can be reduced and the manufacturing cost of the semiconductor memory device can be reduced.
101 リード回路
102 消去回路
201 半導体記憶装置
202 メモリアレイ
501 リード回路
502 列デコーダ
503 行デコーダ
504 パッド部
1001 ロウ系回路
1002 カラム系回路
1003 制御系回路
1004 電源回路
MC メモリチェーン
XMOS 選択素子
CELL メモリセル
PCM 相変化素子
ZMOS Z選択トランジスタ
Z0~Z3 Z選択線
Z Z選択線
X X選択線
BL ビット線
PROGS  消去選択スイッチ
REFR 参照抵抗
CELLS セルリード電流選択スイッチ
REFS 参照電流選択スイッチ
DISS ディスチャージスイッチ
PRES プリチャージスイッチ
SA_ENS センスアンプ活性化スイッチ
SA        センスアンプ
CCELL セルリード電圧保持キャパシタ
CREF 参照電圧保持キャパシタ
CCELL セルリード電圧保持キャパシタ
SL ソース電極
CH 半導体チップ
MRY メモリアレイ
WR ライトプレート電極
RBL リードビット線
YDR Yドライバ
SW スイッチ
REFR_READ リード用参照抵抗
REFR_WRITEV ライトベリファイ用参照抵抗
REFR_ERASEV 消去ベリファイ用参照抵抗
101 Read Circuit 102 Erase Circuit 201 Semiconductor Memory Device 202 Memory Array 501 Read Circuit 502 Column Decoder 503 Row Decoder 504 Pad Unit 1001 Row System Circuit 1002 Column System Circuit 1003 Control System Circuit 1004 Power Supply Circuit MC Memory Chain XMOS Select Element CELL Memory Cell PCM Phase change element ZMOS Z selection transistor Z0 to Z3 Z selection line Z Z selection line X X selection line BL Bit line PROGS Erase selection switch REFR Reference resistance CELLS Cell read current selection switch REFS Reference current selection switch DISS Discharge switch PRES Precharge switch SA_ENS Sense Amplifier activation switch SA Sense amplifier CCELL Cell read voltage holding capacitor CREF Reference voltage holding capacitor CCEL Cell read voltage holding capacitor SL source electrode CH semiconductor chip MRY memory array WR write plate electrode RBL read bit line YDR Y driver SW switch REFR_READ read reference resistor REFR_WRITEV write verify reference resistor REFR_ERASEV for erase verify reference resistor

Claims (14)

  1.  情報を記憶する複数の記憶部を備えたメモリアレイと、
     第1の読み出しモードおよび第2の読み出しモードを備え、前記記憶部に記憶されたデータを読み出す読み出し回路と、
     を有し、
     前記記憶部は、少なくとも1つのメモリセルを備え、
     前記メモリセルは、
     電気抵抗の違いにより、少なくとも第1の記憶状態および第2の記憶状態を有する記憶素子を具備し、
     前記第1の読み出しモードは、前記記憶部のすべての前記記憶素子を非選択として前記記憶部にプリチャージ電圧を供給するモードであり、
     前記第2の読み出しモードは、前記記憶部の前記記憶素子を選択して前記記憶部に前記プリチャージ電圧を供給するモードであり、
     前記読み出し回路は、前記第1の読み出しモードによって前記記憶部に流れる参照電流と、前記第2の読み出しモードによって前記記憶部に流れるセルリード電流とを比較して、読み出しデータを判定する、半導体記憶装置。
    A memory array having a plurality of storage units for storing information;
    A read circuit having a first read mode and a second read mode, for reading data stored in the storage unit;
    Have
    The storage unit includes at least one memory cell,
    The memory cell is
    A storage element having at least a first storage state and a second storage state due to a difference in electrical resistance;
    The first read mode is a mode in which all the storage elements of the storage unit are deselected and a precharge voltage is supplied to the storage unit,
    The second read mode is a mode in which the storage element of the storage unit is selected and the precharge voltage is supplied to the storage unit,
    The read circuit determines a read data by comparing a reference current flowing through the storage unit in the first read mode with a cell read current flowing through the storage unit in the second read mode. .
  2.  請求項1記載の半導体記憶装置において、
     前記読み出し回路は、前記第1の読み出しモードおよび前記第2の読み出しモードにおいて選択された前記記憶部が接続される同一のビット線から、前記セルリード電流および前記参照電流をそれぞれ取得する、半導体記憶装置。
    The semiconductor memory device according to claim 1.
    The semiconductor memory device, wherein the read circuit acquires the cell read current and the reference current from the same bit line to which the storage unit selected in the first read mode and the second read mode is connected, respectively. .
  3.  請求項1記載の半導体記憶装置において、
     前記読み出し回路は、前記第1の読み出しモードにおいて選択された前記記憶部に流れる電流を制限する参照抵抗を有し、前記参照抵抗によって前記参照電流を設定する、半導体記憶装置。
    The semiconductor memory device according to claim 1.
    The semiconductor memory device, wherein the read circuit includes a reference resistor that limits a current flowing through the storage unit selected in the first read mode, and sets the reference current by the reference resistor.
  4.  請求項3記載の半導体記憶装置において、
     前記参照抵抗は、
     第1の抵抗値を有する第1の抵抗と、
     第2の抵抗値を有する第2の抵抗と、
     を備え、
     前記読み出し回路は、前記第1の読み出しモードによる読み出しの際に、前記第1の抵抗を用いて前記参照電流を取得し、データの消去が正しくできたかを判定する消去ベリファイの際に、前記第2の抵抗を用いて前記参照電流を取得する、半導体記憶装置。
    The semiconductor memory device according to claim 3.
    The reference resistance is
    A first resistor having a first resistance value;
    A second resistor having a second resistance value;
    With
    The read circuit obtains the reference current using the first resistor during reading in the first read mode, and determines whether the data has been correctly erased during the erase verify. A semiconductor memory device that obtains the reference current using a resistance of 2.
  5.  請求項4記載の半導体記憶装置において、
     前記第1の抵抗は、前記第2の抵抗よりも高い抵抗値である、半導体記憶装置。
    The semiconductor memory device according to claim 4.
    The semiconductor memory device, wherein the first resistor has a higher resistance value than the second resistor.
  6.  請求項5記載の半導体記憶装置において、
     さらに、前記参照抵抗は、第3の抵抗値を有する第3の抵抗を備え、
     前記読み出し回路は、データの書き込みが正しくできたかを判定するライトベリファイの際に、前記第3の抵抗を用いて前記参照電流を取得する、半導体記憶装置。
    The semiconductor memory device according to claim 5.
    Further, the reference resistor includes a third resistor having a third resistance value,
    The semiconductor memory device, wherein the read circuit acquires the reference current by using the third resistor during a write verify that determines whether data has been correctly written.
  7.  請求項6記載の半導体記憶装置において、
     前記第3の抵抗値は、前記第1の抵抗よりも低い抵抗値であり、前記第2の抵抗よりも高い抵抗値である、半導体記憶装置。
    The semiconductor memory device according to claim 6.
    The semiconductor memory device, wherein the third resistance value is lower than the first resistance and higher than the second resistance.
  8.  請求項1記載の半導体記憶装置において、
     前記読み出し回路は、入力信号を差動増幅するセンスアンプを有し、前記センスアンプによって前記セルリード電流と前記参照電流とを比較する、半導体記憶装置。
    The semiconductor memory device according to claim 1.
    The read circuit includes a sense amplifier that differentially amplifies an input signal, and compares the cell read current and the reference current by the sense amplifier.
  9.  請求項8記載の半導体記憶装置において、
     前記センスアンプは、カレントミラー回路を有し、
      前記カレントミラー回路は、前記参照電流が入力される参照電流側回路に用いられるトランジスタの駆動力と、前記セルリード電流が入力されるセルリード電流側回路に用いられるトランジスタの駆動力とが異なる、半導体記憶装置。
    The semiconductor memory device according to claim 8.
    The sense amplifier has a current mirror circuit,
    In the semiconductor memory, the driving power of a transistor used in a reference current side circuit to which the reference current is input is different from a driving power of a transistor used in a cell read current side circuit to which the cell read current is input. apparatus.
  10.  請求項1記載の半導体記憶装置において、
     前記読み出し回路は、
     前記参照電流に基づいて発生する参照電圧を蓄積する参照電圧保持キャパシタと、
     前記セルリード電流に基づいて発生するセルリード電圧を蓄積するセルリード電圧保持キャパシタと、
     を有し、
     前記読み出し回路は、前記参照電圧保持キャパシタおよび前記セルリード電圧保持キャパシタに蓄積された電圧を比較することによって前記読み出しデータを判定する、半導体記憶装置。
    The semiconductor memory device according to claim 1.
    The readout circuit is
    A reference voltage holding capacitor for storing a reference voltage generated based on the reference current;
    A cell lead voltage holding capacitor for storing a cell lead voltage generated based on the cell lead current;
    Have
    The semiconductor memory device, wherein the read circuit determines the read data by comparing voltages stored in the reference voltage holding capacitor and the cell read voltage holding capacitor.
  11.  請求項10記載の半導体記憶装置において、
     前記読み出し回路は、前記参照電圧保持キャパシタおよび前記セルリード電圧保持キャパシタに前記プリチャージ電圧を蓄積するプリチャージ動作を行った後、前記第1の読み出しモードによって、前記プリチャージ電圧が充電された前記参照電圧保持キャパシタから前記参照電流を一定時間流した後の残りの電圧を前記参照電圧として取得し、前記プリチャージ電圧が充電された前記セルリード電圧保持キャパシタから前記参照電流を一定時間流した後の残りの電圧を前記セルリード電圧として取得して比較する、半導体記憶装置。
    The semiconductor memory device according to claim 10.
    The read circuit performs a precharge operation of storing the precharge voltage in the reference voltage holding capacitor and the cell read voltage holding capacitor, and then the reference in which the precharge voltage is charged in the first read mode. The remaining voltage after flowing the reference current from the voltage holding capacitor for a certain time is obtained as the reference voltage, and the remaining voltage after flowing the reference current from the cell read voltage holding capacitor charged with the precharge voltage for a certain time Is obtained as the cell read voltage and compared.
  12.  請求項11記載の半導体記憶装置において、
     前記読み出し回路は、前記参照電圧保持キャパシタおよび前記セルリード電圧保持キャパシタに対するプリチャージ動作を同時に行う、半導体記憶装置。
    The semiconductor memory device according to claim 11.
    The semiconductor memory device, wherein the read circuit simultaneously performs a precharge operation on the reference voltage holding capacitor and the cell read voltage holding capacitor.
  13.  請求項12記載の半導体記憶装置において、
     前記参照電圧保持キャパシタに蓄積される前記プリチャージ電圧と、前記セルリード電圧保持キャパシタに蓄積される前記プリチャージ電圧とは、電圧が異なる、半導体記憶装置。
    The semiconductor memory device according to claim 12.
    The semiconductor memory device, wherein the precharge voltage stored in the reference voltage holding capacitor is different from the precharge voltage stored in the cell read voltage holding capacitor.
  14.  請求項11記載の半導体記憶装置において、
     前記記憶素子は、相変化メモリである、半導体記憶装置。
    The semiconductor memory device according to claim 11.
    The semiconductor memory device, wherein the memory element is a phase change memory.
PCT/JP2014/075710 2014-09-26 2014-09-26 Semiconductor storage device WO2016046980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016549880A JPWO2016046980A1 (en) 2014-09-26 2014-09-26 Semiconductor memory device
PCT/JP2014/075710 WO2016046980A1 (en) 2014-09-26 2014-09-26 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075710 WO2016046980A1 (en) 2014-09-26 2014-09-26 Semiconductor storage device

Publications (1)

Publication Number Publication Date
WO2016046980A1 true WO2016046980A1 (en) 2016-03-31

Family

ID=55580539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075710 WO2016046980A1 (en) 2014-09-26 2014-09-26 Semiconductor storage device

Country Status (2)

Country Link
JP (1) JPWO2016046980A1 (en)
WO (1) WO2016046980A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009516A (en) * 2018-07-11 2020-01-16 三星電子株式会社Samsung Electronics Co.,Ltd. Method of storing data in nonvolatile memory device, method of erasing data, and nonvolatile memory device performing the same
JP7442625B2 (en) 2019-08-28 2024-03-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Suppressing Drift Coefficient Outliers During Programming of Phase Change Memory Synapses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525781A (en) * 2004-12-02 2007-09-06 キモンダ アクチエンゲゼルシャフト Memory circuit and evaluation method for evaluating memory data of CBRAM resistance memory cell
JP2010086638A (en) * 2008-10-02 2010-04-15 Sony Corp Variable resistance memory device, and operating method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525781A (en) * 2004-12-02 2007-09-06 キモンダ アクチエンゲゼルシャフト Memory circuit and evaluation method for evaluating memory data of CBRAM resistance memory cell
JP2010086638A (en) * 2008-10-02 2010-04-15 Sony Corp Variable resistance memory device, and operating method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009516A (en) * 2018-07-11 2020-01-16 三星電子株式会社Samsung Electronics Co.,Ltd. Method of storing data in nonvolatile memory device, method of erasing data, and nonvolatile memory device performing the same
CN110718260A (en) * 2018-07-11 2020-01-21 三星电子株式会社 Nonvolatile memory device and method for writing data and erasing data
KR20200006705A (en) * 2018-07-11 2020-01-21 삼성전자주식회사 Method of writing data in nonvolatile memory device, method of erasing data in nonvolatile memory device and nonvolatile memory device performing the same
JP7308057B2 (en) 2018-07-11 2023-07-13 三星電子株式会社 Method for storing data in non-volatile memory device, method for erasing data, and non-volatile memory device performing the same
KR102575476B1 (en) * 2018-07-11 2023-09-07 삼성전자주식회사 Method of writing data in nonvolatile memory device, method of erasing data in nonvolatile memory device and nonvolatile memory device performing the same
JP7442625B2 (en) 2019-08-28 2024-03-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Suppressing Drift Coefficient Outliers During Programming of Phase Change Memory Synapses

Also Published As

Publication number Publication date
JPWO2016046980A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP4646636B2 (en) Semiconductor device
US7830706B2 (en) Semiconductor device
US9064590B2 (en) Driving method of semiconductor storage device and semiconductor storage device
US8391047B2 (en) Method of executing a forming operation to variable resistance element
JP6122212B2 (en) Semiconductor memory device
JP4606869B2 (en) Semiconductor device
JP5575243B2 (en) Semiconductor memory with improved memory block switching
KR100900135B1 (en) Phase change memory device
EP2823486B1 (en) Voltage mode sensing for low power flash memory
JP2016167331A (en) Semiconductor storage device
US9053791B2 (en) Flash memory with integrated ROM memory cells
US20160133320A1 (en) Sense amplifier including a single-transistor amplifier and level shifter and methods therefor
TW201503140A (en) Lithography-friendly local read circuit for NAND flash memory devices and manufacturing method thereof
KR102524804B1 (en) One time programmable memory cell, and otp memory and memory system having the same
JP5316608B2 (en) Nonvolatile memory cell and nonvolatile memory
WO2016046980A1 (en) Semiconductor storage device
JP4668668B2 (en) Semiconductor device
JPWO2015186164A1 (en) Semiconductor memory device
US10355049B1 (en) Methods and apparatus for three-dimensional non-volatile memory
US11257536B2 (en) Semiconductor storage device and control method thereof
JP2021150308A (en) Semiconductor storage device
JPWO2008041278A1 (en) Semiconductor device
JP2010123987A (en) Semiconductor device
JP5135406B2 (en) Semiconductor device
WO2014061091A1 (en) Semiconductor storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902566

Country of ref document: EP

Kind code of ref document: A1