WO2016045926A1 - Filtersystem mit durchströmbarem akustikelement - Google Patents

Filtersystem mit durchströmbarem akustikelement Download PDF

Info

Publication number
WO2016045926A1
WO2016045926A1 PCT/EP2015/070105 EP2015070105W WO2016045926A1 WO 2016045926 A1 WO2016045926 A1 WO 2016045926A1 EP 2015070105 W EP2015070105 W EP 2015070105W WO 2016045926 A1 WO2016045926 A1 WO 2016045926A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
flow
fluid
acoustic
filter system
Prior art date
Application number
PCT/EP2015/070105
Other languages
English (en)
French (fr)
Inventor
Volker Kümmerling
Julia Schempp
Matthias Alex
Thomas Jessberger
Original Assignee
Mann+Hummel Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mann+Hummel Gmbh filed Critical Mann+Hummel Gmbh
Publication of WO2016045926A1 publication Critical patent/WO2016045926A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4236Reducing noise or vibration emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/40Porous blocks

Definitions

  • the invention relates to a filter system for filtering a fluid with an acoustical element arranged therein, in particular for use as an air filter of an internal combustion engine.
  • Air filters are all separators that filter out aerosols or unwanted suspended matter such as pathogens, pollens, dusts or gases from the air. More precisely, these are usually filtering separators which remove substances from the air in a filtering medium. Fibers or grains are usually used as the filter medium. It is differentiated into fiber layer filters, bulk layer filters and filters with solid medium (more rarely, such as sintered layers, ceramics). Common to all filters is the relatively high air flow necessary to achieve the filter target. This high air flow rate can be associated with a significant noise during operation.
  • a filter bellows part of the filter element which filters a fluid.
  • filters a fluid There are filter bellows with a filtering medium of a folded cellulosic material in use.
  • a filter bellows may also consist of another medium, such as a nonwoven material, whereby unfolded media are also referred to as filter bellows.
  • This filter type is also used in the automotive industry. They are paper-like ring cylindrical or rectangular flat structures which have zigzag folded fabric as a filter element. The folding increases the filter area and reduces the flow resistance while increasing the service life.
  • the contaminated air is drawn outside the cylinder and the filtered cleaned air within the ring cylinder is sucked away. forwarded.
  • the filter element is represented by a flat, fixed in a frame and folded filter mat in an air filter box. The air usually flows from bottom to top through the horizontally aligned filter element. Deposited larger foreign objects can fall so at standstill of the air flow to the bottom of the filter box and do not impede the air flow in addition.
  • foam dry filters exist. These are the same designs as paper air filters, except that smooth foam layers are used instead of the folded paper.
  • both types of filters are combined: a pre-filter made of a non-woven material and / or foam for coarse dirt, as a main filter downstream of a paper filter. Especially in applications with increased dirt / dust accumulation is used on this principle, eg. As in agriculture or lawn mower to increase the service life of the filter.
  • the air filter system for a vehicle is known, which reduces the intake noise of the air filter system without an additional resonator.
  • the air filter system comprises a housing in which an air filter element is arranged in a free space.
  • the air filter element is divided into upper and lower air filters and has a resonator chamber formed between both air filters.
  • the resonator chamber has an opening which is designed for a specific frequency. Noises resulting from the intake of air through an inlet are partially absorbed at the bottom of the filter system where the lower air filter is located. The rest of the noise is absorbed in the resonator chamber between the lower and upper air filters. The absorption frequency is tuned by the opening of the resonator. A remaining amount of noise is then filtered out in the upper area of the air filter system, where the upper air filter is arranged.
  • An object of the invention is therefore to provide a filter system for filtering a fluid, which makes it possible to favorably influence the acoustic properties induced by the flowing fluid and / or transmitted by the flowing fluid. Another object is to provide a filter element for use in such a filter system.
  • a filter system for filtering a fluid, in particular an internal combustion engine, with a fluid path between a raw side of the filter system and a clean side of the filter system.
  • the filter system comprises at least one filter element, which separates the raw side of the filter system from the clean side with a filter bellows, and a filter housing in which the filter element is arranged.
  • the filter system according to the invention can be used both in filter systems with flat filter elements in a rectangular shape and in filter systems with ring-cylindrical round elements.
  • the filter system for filtering a fluid, in particular an internal combustion engine, such as a motor vehicle, proposed with a fluid path between a raw side of the filter system and a clean side of the filter system.
  • the filter system comprises at least one filter element, which separates the raw side of the filter system from the clean side with a filter bellows, and a filter housing in which the filter element is arranged.
  • at least one is arranged by ström ble acoustic element along the fluid path upstream of and / or downstream of the filter bellows, wherein the flow-through acoustic element causes a targeted acoustically influencing the flow of the fluid.
  • air can be used as fluid to be filtered, as is the case in particular for an air filter of an internal combustion engine.
  • a nonwoven medium or another medium instead of a paper medium as a filter medium of the filter bellows of a filter element, the acoustic effectiveness of a filter element can be improved.
  • a damping effect on noise in the fluid and other noise sources of an internal combustion engine as well as a disturbance of acoustic modes in the filter system can be effected.
  • an inner wall of a filter housing is lined with an acoustical element through which an acoustically effective medium can flow.
  • the surfaces of the throughflowable acoustic element can also have a three-dimensional shape in order to reduce or even eliminate standing waves or specific frequencies of the flowing fluid which form during operation of the filter element or filter system.
  • This can be z. B. simulated by standard model calculations to determine a favorable three-dimensional shape for a given system.
  • lambda / 4-pipes, Helmholtz resonators or other acoustic measures which are usually used as noise-damping measures in air filter systems, can be dispensed with.
  • the frequency band to be absorbed can be changed quickly and easily by changing the three-dimensional shape of the acoustical element which can be flowed through.
  • the three-dimensional shape of the throughflowable acoustic element also allows the utilization of an additional filter performance of the filter system.
  • the noise and / or acoustic modes of the filter system can be selectively attenuated.
  • noises in the fluid and noise sources located on and / or in the internal combustion engine can be damped and / or acoustic modes of the filter system can be disturbed.
  • Acoustic modes are characterized by standing waves of the sound pressure waves in the filter housing whose resonant nodes in their spatial position can be decisively influenced by the three-dimensional shape of the flow body.
  • the frequency response of the filter housing is changed by the three-dimensional shape of a flow body in the free space of the filter housing, so that thereby the frequency-dependent position of acoustic modes in the filter housing can be influenced.
  • the through-flowable acoustic element may comprise one or more material elevations which are arranged in regions of intensively occurring fluid flow-induced and / or transmitted by the flowing fluid noises and / or acoustic modes of the filter system.
  • noise and / or acoustic modes can be specifically attenuated by the spatial position of accumulations of material of the acoustical element which can be flowed through at the location of resonance nodes and thus reduce or even eliminate their acoustic effect.
  • an acoustical damping of the flow of the fluid of the filter system from a frequency of 500 Hz of 0.5 dB to 5 dB, preferably up to 10 dB, can be effected via the acoustically permeable acoustic element.
  • This acoustic damping can be decisively influenced by selecting the materials used as a throughflowable acoustic element. Especially in filter insert commonly used materials such as nonwovens or various foams can cause such damping effects beneficial.
  • the flow-through bare acoustic element may comprise at different angles to the fluid flow arranged reflection surfaces.
  • the flow through the acoustic element through which the fluid can flow in particular comprise a fiber material or nonwoven material. It is particularly favorable if the material of the throughflowable acoustic element is porous and / or open-pored. Open cell foam can be used cheaply. It is advantageous if the structure of the material is soft, as is the case, for example, with an acoustic fleece which can absorb sound. Such by cash ble acoustic element may have an additional filter effect against the fluid flowing through, so that thereby the filter effect of the actual filter bellows is favorably supported.
  • the through-flowable acoustic element can cause a directed flow behavior of the fluid.
  • a sensor is a flow sensor frequently used in the regulation and measurement technology of an internal combustion engine, in particular in the vehicle sector, which determines the mass of the air flowing through per unit time, that is to say the mass flow.
  • hot film air flow meters HVM
  • a directed flow behavior can also be provided independently of a targeted acoustic effect of a flow-through element, which is arranged downstream of and / or upstream on a filter bellows.
  • the through-flowable acoustic element has a flow channel for achieving a directed flow of the fluid.
  • the flow channel can be favorably oriented so that thus a central flow of the air mass sensor can be adjusted.
  • the location of the flow channel it is also possible to select an area on the filter bellows in which less dust or dirt particles accumulate, or in which there is a flow-calmed area in order to be able to flow as cheaply and uniformly as possible to an air mass sensor. In this way, a premature failure of the air mass sensor can be prevented by dirt and / or moisture accumulation.
  • the flow channel can also be independent of a targeted acoustic effect of a flow-through element may be provided, which is arranged downstream and / or upstream of a filter bellows.
  • a wall of the flow channel is provided with a turbulence-reducing, for example smooth, surface, in order to produce a low-turbulence flow behavior.
  • a foam element or nonwoven element is used as an element that can be moved by an acoustic element or through a flowable element, it is possible to smooth the wall of the flow channel itself during the production process, for example of a foam element, or to melt it after manufacture and thereby smooth it out Canal effect to reinforce and to ensure better airflow.
  • an air mass sensor such as an HFM can be flowed through the integrated flow channel so favorable.
  • a filter element which comprises at least one filter bellows through which a fluid can flow, at least one acoustical element through which a fluid can flow and a seal.
  • the filter element can be interchangeable arranged in a described filter system.
  • the throughflowable acoustic element can be connected and / or integrated directly with the filter element. It may be favorable if the through-flowable acoustic element is welded or glued to the filter element. Alternatively, however, it may also be attached or attached to the filter element or arranged, for example, during assembly of the filter element in the filter system to the filter element.
  • the seal of the filter element is used for the fluidic and / or fluid-tight separation of raw to clean side of the filter system.
  • the at least one through-flowable acoustic element of the filter element can be arranged on the raw air side on an inflow surface or on the clean air side on an outflow surface of the filter bellows.
  • Acoustic noises can occur both on the inflow side of the filter bellows and on the outflow side. Therefore, it is quite useful to provide such a flow by cash acoustic element for the raw side and / or for the clean side of the filter bellows.
  • the targeted direction of the flow idstroms on an air mass sensor can be favorably influenced, if the through-flowable acoustic element is mounted on the clean side of the filter bellows.
  • the at least one throughflowable acoustic element of the filter element may favorably have a three-dimensional shape, with which targeted noise and / or acoustic modes of the flow of the fluid can be selectively attenuated.
  • Acoustic modes are characterized by standing waves of the fluid in the filter housing whose resonant nodes in their spatial position can be decisively influenced by the three-dimensional shape of the flow body.
  • the three-dimensional shape of a throughflowable acoustic element in the free space of the filter housing the frequency response of the filter housing is changed, so that thereby the frequency-dependent position of resonant nodes in the filter housing can be influenced. In this way, acoustic modes of the flow of the fluid can be selectively damped by the three-dimensional shape of the acoustical element through which it is possible to flow.
  • the at least one through-flowable acoustic element of the filter element can have one or more material elevations which correspond to areas of noise-induced and / or transmitted by the flowing fluid noises and / or acoustic modes.
  • noise and / or acoustic modes can be specifically attenuated by the spatial position of accumulations of material of the acoustical element which can be flowed through at the location of resonance nodes and thus reduce or even eliminate their acoustic effect.
  • the throughflowable acoustic element of the filter element can have a flow channel for directed flow of the fluid, in particular a flow channel with turbulence-reducing, for example smooth, walls.
  • a flow channel with turbulence-reducing, for example smooth, walls By using the flow-through acoustic element with flow channel, a favorable flow of an air mass sensor of the intake tract of an internal combustion engine can be adjusted. Due to the turbulence-reducing walls of the flow channel, for example due to the manufacturing process in the case of a foam element or by melting of plastic materials in the wall of the flow channel to smooth the wall, so the channel effect can be strengthened and ensure better airflow.
  • the invention relates to the use of the filter element as an air filter, in particular as an air filter of an internal combustion engine.
  • FIG. 1 shows a schematic cross section through a filter system with throughflowable acoustic elements according to an embodiment of the invention.
  • Fig. 2 is an isometric view of a filter system with permeable
  • FIG. 3 shows an isometric view of a filter element with a throughflowable acoustic element according to an embodiment of the invention
  • FIG. 4 shows an isometric illustration of a filter element with a throughflowable acoustic element according to a further exemplary embodiment of the invention
  • FIG. 5 shows an isometric illustration of a filter element with a throughflowable acoustic element with a plurality of material elevations according to another exemplary embodiment of the invention
  • FIG. 6 shows an isometric illustration of a filter element with a throughflowable acoustic element with a plurality of material elevations according to a further exemplary embodiment of the invention
  • FIG. 7 is an isometric view of a filter element with a flow-through acoustical element with a flow channel according to a further exemplary embodiment of the invention.
  • FIG. 8 shows a cross section through the filter element according to the embodiment in Fig. 7.
  • 9 shows a cross section through the filter element according to the embodiment in Fig. 7 with a differently extending flow channel.
  • FIG. 1 shows a schematic cross section through a filter system 100 with throughflowable acoustic elements 20, 21 according to an embodiment of the invention.
  • the filter system 100 for filtering a fluid, in particular as an air filter of an internal combustion engine, with a fluid path 14 from a raw side 18 of the filter system 100 to a clean side 16 of the filter system comprises a filter element 10, which with a filter bellows 12, the raw side 18 of the filter system from the clean side 16 separates, as well as a filter housing 108, in which the filter element 10 is arranged.
  • the fluid to be filtered flows along the fluid path 14 from a raw side 18 into the filter housing 108 through the filter element 10 and thus the filter bellows 12 to the clean side 16.
  • the filter housing 108 is further through a ble Bares acoustic element 20 along the fluid path 14 upstream before and arranged downstream of the filter bellows 12 by an acoustic element 21 which can flow therethrough, whereby the acoustical elements 20, 21 which can be flowed through can effect a targeted acoustic influencing of the filter system 100.
  • the through-flowable acoustic element 20, as well as the through-flowable acoustic element 21, comprises reflecting surfaces 26 arranged at different angles to the fluid flow. At these reflection surfaces 26, the fluid can be conducted and guided in a favorable manner.
  • the throughflowable acoustic elements 20, 21 can be flowed through by the fluid and in particular comprise a fiber material or nonwoven material.
  • an acoustic attenuation of the flow of the fluid of the filter system from a frequency range of 500 Hz from 0.5 dB to 5 dB, preferably up to 10 dB, can be effected.
  • FIG. 2 shows an isometric view of a filter system 100 with throughflowable acoustic elements 20, 21 according to a further exemplary embodiment of the invention.
  • the filter housing 108 in the embodiment shown, a hollow cylinder is, which is flowing from a front side of the raw side 18 with a fluid. The fluid then flows along the fluid path 14 through the filter housing 108 and leaves it again through the opposite end face of the clean side 16.
  • the inner wall of the filter housing 108 may be lined with a through-flowing acoustic element 21 in order to influence the fluid flow acoustically and fluidly. Furthermore, an end face of the filter housing can also be clad with an acoustical element 20 through which it can flow in order to achieve additional acoustic damping of the fluid flow.
  • FIG. 3 shows, in an isometric view of a filter element 10 with a throughflowable acoustic element 20, a further embodiment of the invention.
  • the filter element 10 which is embodied as a flat filter element and separates a raw side 18 from a clean side 16 of the filter system 100, comprises a block-shaped filter bellows 12 through which the fluid can flow, which is provided with a circumferential seal 28.
  • a pyramid-shaped through ble cash acoustic element 20 is arranged, which has a material elevation 32.
  • noises and / or acoustic modes of the flow of the fluid of the filter system 100 can be deliberately damped.
  • the material collection 32 may conveniently be arranged in areas of fluid flow induced and / or transmitted by the flowing fluid noises and / or acoustic modes of the filter system, which can be effectively damped in this way or even eliminated.
  • FIG. 4 shows an isometric illustration of a filter element 10 with a throughflowable acoustic element 20 according to a further exemplary embodiment of the invention.
  • the three-dimensional shape of the flow body 20 has a completely different shape in FIG. Instead of a central material elevation, the material elevation 32 in FIG. 4 has a largely linear course along an edge of the filter bellows 12.
  • FIG. 5 shows an isometric illustration of a filter element 10 with a throughflowable acoustic element 20 with a plurality of material elevations 32 according to another exemplary embodiment of the invention.
  • the through-flowable acoustic element 20 in FIG. 5 corresponds in its cross-section along a longitudinal edge of the filter element 10 to a wave-like shape with two material elevations 32.
  • FIG. 6 shows, in an isometric view of a filter element 10 with a throughflowable acoustic element 20 with a plurality of material elevations 32 according to a further exemplary embodiment of the invention, a shaping of the acoustical element 20 through which it can flow as four separate material elevations 32 each in the form of a pyramidal shape.
  • these four bumps of material could be located at locations of acoustic resonance nodes within a filter housing 108 to effectively damp them by absorbing the acoustic energy of the flowing fluid.
  • FIG. 7 shows an isometric illustration of a filter element 10 with a throughflowable acoustic element 20 with a flow channel 22 according to a further exemplary embodiment of the invention.
  • the filter element 10 can thus be flowed through and flowed through by the inflow side 34 of the filter bellows 12.
  • the fluid which has flowed through the filter bellows 12 can then flow through the acoustical element 20 through which it can flow if it is made of a material through which it can flow.
  • a partial flow of the fluid will flow through the flow channel 22 arranged in the interior of the flow-through acoustic element 20 to obtain a directed flow of the fluid, which can thus effect a directed flow behavior of a partial flow of the fluid.
  • an air mass sensor 30 arranged in front of the outlet of the flow channel 22 is directly flowed by the fluid emerging from the flow channel 22.
  • the location of the flow channel 22 it is possible to select a surface on the filter bellows 12 in which less dust or dirt particles accumulate, or in which there is a flow-calmed region in order to be able to flow as cheaply as possible to an air mass sensor 30. In this way, a premature failure of the air mass sensor 30 can be prevented by dirt and / or moisture accumulation.
  • the flow channel 22 may also be independent. gig be provided by a targeted acoustic effect of a flow-through element 20, which is arranged downstream and / or upstream of a filter bellows 12.
  • FIG. 8 shows a cross section through the filter element 10 according to the exemplary embodiment in FIG. 7.
  • the air mass sensor 30 can thus be flowed directly through the flow channel 22 of the filtered fluid.
  • a wall 24 of the flow channel 22 may be provided with a turbulence-reducing, for example smooth, surface, in order to effect a low-turbulence flow behavior of the filtered fluid.
  • FIG. 9 shows a cross section through the filter element 10 according to the exemplary embodiment in FIG. 7 with a differently extending flow channel 22 in the throughflowable acoustic element 20.
  • the inlet for the fluid that has passed through the filter bellows 12 into the flow channel 22 is central in the filter bellows 12 arranged so that it can be achieved by the filtered fluid more symmetrical An flow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Filtersystem (100) zum Filtern eines Fluids, insbesondere einer Brennkraftmaschine, mit einem Fluidpfad (14) zwischen einer Rohseite (18) und einer Reinseite (16) des Filtersystems. Das Filtersystem (100) umfasst wenigstens ein Filterelement (10), welches mit einem Filterbalg (12) die Rohseite (18) des Filtersystems von der Reinseite (16) trennt, sowie ein Filtergehäuse (108), in dem das Filterelement (10) angeordnet ist. Dabei ist wenigstens ein durchströmbares Akustikelement (20) entlang des Fluidpfads (14) stromaufwärts vor und/oder stromabwärts nach dem Filterbalg (12) angeordnet, wobei das durchströmbare Akustikelement (20) eine gezielte akustische Beeinflussung der Strömung des Fluids bewirkt. Die Erfindung betrifft ferner ein Filterelement (10) mit einem durchströmbaren Akustikelement (20) für ein solches Filtersystem (100). Weiter betrifft die Erfindung die Verwendung eines solchen Filtersystems (100) als Luftfilter, insbesondere als Luftfilter einer Brennkraftmaschine.

Description

Beschreibung
Filtersystem mit durchströmbarem Akustikelement Technisches Gebiet
Die Erfindung betrifft ein Filtersystem zum Filtern eines Fluids mit einem darin angeordneten durchströmbaren Akustikelement, insbesondere zur Verwendung als Luftfilter einer Brennkraftmaschine. Stand der Technik
Als Luftfilter werden alle Abscheider bezeichnet, die Aerosole bzw. unerwünschte Schwebstoffe wie Krankheitserreger, Pollen, Stäube oder Gase aus der Luft herausfiltern. Genauer handelt es sich dabei meist um filternde Abscheider, die in einem filternden Medium Substanzen aus der Luft entfernen. Als Filtermedium kommen meist Fa- sern oder Körner zum Einsatz. Es wird in Faserschichtfilter, Schüttschichtfilter und Filter mit festem Medium (seltener, wie Sinterschichten, Keramik) unterschieden. Allen Filtern gemein ist der relativ hohe Luftdurchsatz, der zur Erreichung des Filterziels notwendig ist. Dieser hohe Luftdurchsatz kann im laufenden Einsatz mit einer erheblichen Geräuschentwicklung verbunden sein.
Als Filterbalg wird der Teil des Filterelementes bezeichnet, der ein Fluid filtert. Es sind Filterbälge mit einem filternden Medium aus einem gefalteten Zellulosematerial im Einsatz. Ebenso kann ein Filterbalg aber auch aus einem anderen Medium wie einem Vliesmaterial bestehen, wobei auch ungefaltete Medien als Filterbalg bezeichnet wer- den.
Diese Filterart wird auch in der Fahrzeugindustrie verwendet. Es sind papierähnliche ringzylinderförmige oder rechteckig flache Gebilde, die zickzackförmig gefaltetes Gewebe als Filterelement haben. Die Faltung vergrößert die Filterfläche und verringert den Strömungswiderstand bei gleichzeitiger Erhöhung der Standzeit.
In den meisten Fällen eines Ringzylinders wird die kontaminierte Luft außerhalb des Zylinders angesaugt und die gefilterte gesäuberte Luft innerhalb des Ringzylinders wei- tergeleitet. Als Varianten sind auch flächige Luftfilter gebräuchlich. Hier wird in einem Luftfilterkasten das Filterelement durch eine ebene, in einem Rahmen fixierte und gefaltete Filtermatte dargestellt. Die Luft strömt meist von unten nach oben durch das horizontal ausgerichtete Filterelement. Abgeschiedene größere Fremdkörper können so bei Stillstand des Luftstromes auf den Boden des Filterkastens fallen und behindern den Luftstrom nicht zusätzlich.
Des Weiteren existieren Schaumstoff-Trockenfilter. Es handelt sich dabei um dieselben Konstruktionen wie Papierluftfilter, nur dass anstelle des gefalteten Papieres glatte Schaumstofflagen verwendet werden.
Häufig werden beide Filterarten miteinander kombiniert: Ein Vorfilter aus einem Vliesmaterial und/oder Schaumstoff für Grobschmutz, als Hauptfilter nachgeordnet ein Papierfilter. Insbesondere in Einsatzgebieten mit erhöhtem Schmutz-/Staubanfall wird auf dieses Prinzip zurückgegriffen, z. B. in der Landwirtschaft oder auch beim Rasenmäher, um die Standzeit des Filters zu erhöhen.
Aus der KR 100470775 B1 ist ein Luftfiltersystem für ein Fahrzeug bekannt, das Ansauggeräusche des Luftfiltersystems ohne einen zusätzlichen Resonator reduziert. Das Luftfiltersystem umfasst ein Gehäuse, in dem in einem freien Raum ein Luftfilterelement angeordnet ist. Das Luftfilterelement ist in einen oberen und einen unteren Luftfilter aufgeteilt und weist eine Resonatorkammer auf, die zwischen beiden Luftfiltern ausgebildet ist. Die Resonatorkammer weist eine Öffnung auf, welche auf eine bestimmte Frequenz ausgelegt ist. Geräusche, die durch das Ansaugen der Luft durch einen Einlass entste- hen, werden im unteren Bereich des Filtersystems, wo der untere Luftfilter angeordnet ist, zum Teil absorbiert. Der Rest der Geräusche wird in der Resonatorkammer zwischen dem unteren und dem oberen Luftfilter absorbiert. Die Absorptionsfrequenz wird dabei durch die Öffnung der Resonatorkammer abgestimmt. Ein weiter verbleibender Geräuschanteil wird dann im oberen Bereich des Luftfiltersystems, wo der obere Luftfil- ter angeordnet ist, herausgefiltert.
Offenbarung der Erfindung Eine Aufgabe der Erfindung ist es daher, ein Filtersystem zum Filtern eines Fluids zu schaffen, das es erlaubt, die durch das strömende Fluid induzierten und/oder durch das strömende Fluid übertragenen akustischen Eigenschaften günstig zu beeinflussen. Eine weitere Aufgabe ist die Schaffung eines Filterelements zum Einsatz in einem solchen Filtersystem.
Die vorgenannten Aufgaben werden gelöst von einem Filtersystem zum Filtern eines Fluids, insbesondere einer Brennkraftmaschine, mit einem Fluidpfad zwischen einer Rohseite des Filtersystems und einer Reinseite des Filtersystems. Das Filtersystem umfasst dabei wenigstens ein Filterelement, welches mit einem Filterbalg die Rohseite des Filtersystems von der Reinseite trennt, sowie ein Filtergehäuse, in dem das Filterelement angeordnet ist. Das erfindungsgemäße Filtersystem kann sowohl bei Filtersystemen mit Flachfilterelementen in Rechteckform als auch bei Filtersystemen mit ringzylinderförmigen Rundelementen zum Einsatz kommen.
Günstige Ausgestaltungen und Vorteile der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und der Zeichnung.
Es wird ein Filtersystem zum Filtern eines Fluids, insbesondere einer Brennkraftmaschine, beispielsweise eines Kraftfahrzeugs, mit einem Fluidpfad zwischen einer Rohseite des Filtersystems und einer Reinseite des Filtersystems vorgeschlagen. Das Filtersystem umfasst dabei wenigstens ein Filterelement, welches mit einem Filterbalg die Rohseite des Filtersystems von der Reinseite trennt, sowie ein Filtergehäuse, in dem das Filterelement angeordnet ist. Dabei ist wenigstens ein durch ström bares Akustikelement entlang des Fluidpfads stromaufwärts vor und/oder stromabwärts nach dem Filterbalg angeordnet, wobei das durchströmbare Akustikelement eine gezielte akusti- sehe Beeinflussung der Strömung des Fluids bewirkt. Insbesondere kann als zu filterndes Fluid Luft eingesetzt werden, wie es insbesondere für einen Luftfilter einer Brennkraftmaschine der Fall ist. Durch den Einsatz eines Vliesmediums oder eines anderen Mediums anstelle eines Papiermediums als Filtermedium des Filterbalgs eines Filterelements kann die akustische Wirksamkeit eines Filterelements verbessert werden. Um die akustische Wirksamkeit weiter zu steigern, ist es möglich, ein dreidimensionales durch ström bares Akustikelement aus Vliesmedium, Schaum, und/oder anderen akustisch wirksamen Medien dem Filterbalg entlang des Fluidpfads vor- und/oder nachzuschalten. Durch eine jeweilig angepasste dreidimensionale Gestalt des durchströmbaren Akustikelements kann beispielsweise eine dämpfende Wirkung auf Geräusche im Fluid und von anderen Geräuschquellen einer Brennkraftmaschine sowie eine Störung von Akustikmoden im Filtersystem bewirkt werden. Dabei geht es insbesondere um die akustische Wirkung zur Dämpfung von Schallwellen, die z. B. bei dem Verbrennungs- prozess bzw. in dem Turbolader, dem Kompressor oder ähnlichen Aggregaten einer Brennkraftmaschine entstehen. Dies kann durch eine Veränderung der akustischen Systemcharakteristik des Filtersystems erreicht werden.
Ein weiterer Vorteil kann sich beispielsweise ergeben, wenn eine Innenwand eines Filtergehäuses mit einem durchströmbaren Akustikelement aus einem akustisch wirksamen Medium ausgekleidet wird. Dabei können auch die Flächen des durchströmbaren Akustikelements eine dreidimensionale Gestalt aufweisen, um stehende Wellen oder bestimmte Frequenzen des strömenden Fluids zu reduzieren oder gar zu eliminieren, die sich im Betrieb des Filterelements bzw. Filtersystems ausbilden. Dies kann z. B. mittels üblichen Modellrechnungen simuliert werden, um eine günstige dreidimensionale Gestalt für ein gegebenes System zu bestimmen. Zusätzlich können dadurch Lamb- da/4-Rohre, Helmholtz-Resonatoren oder weitere akustische Maßnahmen, welche üblicherweise als geräuschdämpfende Maßnahmen in Luftfiltersystemen eingesetzt werden, entfallen. Des Weiteren kann schnell und einfach das zu absorbierende Frequenzband geändert werden, indem die dreidimensionale Gestalt des durchströmbaren Akustikelements verändert wird. Die dreidimensionale Gestalt des durchströmbaren Akusti- kelements erlaubt außerdem die Ausnutzung einer zusätzlichen Filterleistung des Filtersystems.
In einer vorteilhaften Ausgestaltung können über eine dreidimensionale Formgebung des durchströmbaren Akustikelements Geräusche und/oder Akustikmoden des Filtersystems gezielt bedämpfbar sein. So können Geräusche im Fluid sowie von an und/oder in der Brennkraftmaschine befindlichen Geräuschquellen bedämpft werden und/oder Akustikmoden des Filtersystems gestört werden. Akustikmoden zeichnen sich durch stehende Wellen der Schalldruckwellen im Filtergehäuse aus, deren Resonanzknoten in ihrer räumlichen Lage durch die dreidimensionale Gestalt des Strömungskörpers entscheidend beeinflusst werden kann. Auch wird durch die dreidimensionale Gestalt eines Strömungskörpers im freien Raum des Filtergehäuses der Frequenzgang des Filtergehäuses verändert, sodass dadurch auch die frequenzabhängige Lage von Akustikmoden im Filtergehäuse beeinflusst werden kann.
Günstigerweise kann das durchströmbare Akustikelement eine oder mehrere Materialerhebungen aufweisen, welche in Bereichen von verstärkt auftretenden fluidströmungs- induzierten und/oder durch das strömende Fluid übertragenen Geräuschen und/oder Akustikmoden des Filtersystems angeordnet sind. Dadurch lassen sich Geräusche und/oder Akustikmoden durch die räumliche Lage von Materialanhäufungen des durchströmbaren Akustikelements an dem Ort von Resonanzknoten diese gezielt bedämpfen und so deren akustische Auswirkung reduzieren oder gar eliminieren. So kann beispielsweise über das durchströmbare Akustikelement eine akustische Dämpfung der Strömung des Fluids des Filtersystems ab einer Frequenz von 500 Hz von 0,5 dB bis 5 dB, bevorzugt bis 10 dB, bewirkbar sein. Diese akustische Dämpfung kann durch Auswahl der als durchströmbares Akustikelement eingesetzten Materialien entscheidend beeinflusst werden. Gerade im Filtereinsatz häufig verwendete Materia- lien wie Vliese oder verschiedenste Schaumstoffe können solche Dämpfungseffekte günstig bewirken.
In einer vorteilhaften Ausgestaltung kann das durchström bare Akustikelement in unterschiedlichen Winkeln zur Fluidströmung angeordnete Reflexionsflächen umfassen. Durch eine solche Anordnung des durchströmbaren Akustikelements kann sowohl eine akustische Beeinflussung als auch eine gezielte Richtwirkung der Strömung des zu filternden Fluids günstig bewirkt werden. Zweckmäßigerweise kann dazu das durchströmbare Akustikelement vom Fluid durchströmbar sein, insbesondere ein Fasermaterial oder Vliesmaterial aufweisen. Besonders günstig ist es, wenn das Material des durchströmbaren Akustikelements dabei porös und/oder offenporig ausgebildet ist. Offenzelliger Schaum kann günstig eingesetzt werden. Vorteilhaft ist es, wenn die Struktur des Materials weich ist, wie es beispielsweise bei einem akustischen Vlies, das Schall absorbieren kann, der Fall ist. Ein solches durch ström bares Akustikelement kann eine zusätzliche Filterwirkung gegenüber dem durchströmenden Fluid aufweisen, sodass dadurch die Filterwirkung des eigentlichen Filterbalgs günstig unterstützt wird.
In einer vorteilhaften Ausgestaltung kann das durchströmbare Akustikelement ein gerichtetes Strömungsverhalten des Fluids bewirken. Durch den Einsatz des durchströmbaren Akustikelements kann so eine günstige Anströmung eines Luftmassensensors des Ansaugtrakts einer Brennkraftmaschine eingestellt werden. Ein solcher Sensor stellt ein in der Regelungs- und Messtechnik einer Brennkraftmaschine, insbesondere im Fahrzeugbereich, häufig eingesetzter Durchflusssensor dar, der die Masse der pro Zeiteinheit durchströmenden Luft, also den Massenstrom, bestimmt. In der Fahrzeugtechnik werden dazu üblicherweise Heißfilmluftmassenmesser (HFM) verwendet. In einer alternativen besonderen Ausgestaltung kann ein gerichtetes Strömungsverhalten auch unabhängig von einer gezielten akustischen Wirkung eines durchströmbaren Elements vorgesehen sein, das abströmseitig und/oder anströmseitig auf einem Filterbalg angeordnet ist.
Vorteilhaft ist es dabei, wenn das durchströmbare Akustikelement einen Strömungska- nal zur Erzielung einer gerichteten Strömung des Fluids aufweist. Der Strömungskanal kann dabei günstig so ausgerichtet sein, dass damit eine zentrale Anströmung des Luftmassensensors eingestellt werden kann. Durch die Wahl des Ortes des Strömungskanals kann außerdem eine Fläche auf dem Filterbalg ausgewählt werden, in der weniger Staub oder Schmutzpartikel anfallen, oder in der ein strömungsberuhigter Bereich vorliegt, um so einen Luftmassensensor möglichst günstig und gleichmäßig anströmen zu können. Auf diese Weise kann auch einem vorzeitigen Ausfall des Luftmassensensors durch Schmutz- und/oder Feuchtigkeitsanlagerung vorgebeugt werden. In alternativer besonderer Ausgestaltung kann der Strömungskanal auch unabhängig von einer gezielten akustischen Wirkung eines durchströmbaren Elements vorgesehen sein, das abströmseitig und/oder anströmseitig auf einem Filterbalg angeordnet ist.
Weiter ist es günstig, wenn eine Wand des Strömungskanals mit einer turbulenzredu- zierenden, beispielsweise glatten, Oberfläche versehen ist, um ein turbulenzarmes Strömungsverhalten zu bewirken. Wird beispielsweise ein Schaumelement oder Vlieselement als durch ström bares Akustikelement oder durch ström bares Element eingesetzt, ist es möglich, die Wand des Strömungskanals beim Herstellungsprozess, beispielsweise eines Schaumelements, selbst zu glätten oder aber nach der Herstellung anzuschmelzen und damit zu glätten, um so die Kanalwirkung noch zu verstärken und eine bessere Luftführung zu gewährleisten. Auch wenn die dreidimensionale Gestalt des durchströmbaren Akustikelements oder durchströmbaren Elements durch Staub, Schmutz oder Wasser zugesetzt ist, kann so über den integrierten Strömungskanal ein Luftmassensensor wie beispielsweise ein HFM günstig angeströmt werden.
Gemäß einem weiteren Aspekt der Erfindung wird ein Filterelement vorgeschlagen, das wenigstens einen von einem Fluid durchströmbaren Filterbalg, wenigstens ein durchströmbares Akustikelement und eine Dichtung umfasst. Dabei kann das Filterelement auswechselbar in einem beschriebenen Filtersystem angeordnet sein. Das durchström- bare Akustikelement kann dabei direkt mit dem Filterelement verbunden und/oder integriert, sein. Günstig kann es sich darstellen, wenn das durchströmbare Akustikelement mit dem Filterelement verschweißt oder verklebt ist. Alternativ kann es jedoch auch an das Filterelement an- oder aufgesteckt sein oder beispielsweise bei der Montage des Filterelements in dem Filtersystem an dem Filterelement angeordnet sein. Die Dichtung des Filterelements dient der strömungsmäßigen und/oder fluiddichten Trennung von Roh- zu Reinseite des Filtersystems.
Vorteilhaft kann das wenigstens eine durchströmbare Akustikelement des Filterelements rohluftseitig an einer Anströmfläche oder reinluftseitig an einer Abströmfläche des Filterbalgs angeordnet sein. Akustische Geräusche können sowohl auf der Anströmseite des Filterbalgs als auch auf der Abströmseite entstehen. Deshalb ist es durchaus sinnvoll, ein solches durch ström bares Akustikelement für die Rohseite und/oder für die Reinseite des Filterbalgs vorzusehen. Die gezielte Richtung des Flu- idstroms auf einen Luftmassensensor wird günstiger beeinflusst werden können, wenn das durchströmbare Akustikelement auf der Reinseite des Filterbalgs angebracht ist.
Günstigerweise kann das wenigstens eine durchströmbare Akustikelement des Fil- terelements eine dreidimensionale Formgebung aufweisen, mit der gezielt Geräusche und/oder Akustikmoden der Strömung des Fluids gezielt bedämpfbar sind. Akustikmoden zeichnen sich durch stehende Wellen des Fluids im Filtergehäuse aus, deren Resonanzknoten in ihrer räumlichen Lage durch die dreidimensionale Gestalt des Strömungskörpers entscheidend beeinflusst werden kann. Auch wird durch die dreidimensi- onale Gestalt eines durchströmbaren Akustikelements im freien Raum des Filtergehäuses der Frequenzgang des Filtergehäuses verändert, sodass dadurch auch die frequenzabhängige Lage von Resonanzknoten im Filtergehäuse beeinflusst werden kann. So lassen sich Akustikmoden der Strömung des Fluids durch die dreidimensionale Gestalt des durchströmbaren Akustikelements gezielt bedämpfen.
Vorteilhaft kann das wenigstens eine durchströmbare Akustikelement des Filterelements eine oder mehrere Materialerhebungen aufweisen, welche Bereichen von flu- idströmungsinduzierten und/oder durch das strömende Fluid übertragenen Geräuschen und/oder Akustikmoden entsprechen. Dadurch lassen sich Geräusche und/oder Akus- tikmoden durch die räumliche Lage von Materialanhäufungen des durchströmbaren Akustikelements an dem Ort von Resonanzknoten diese gezielt bedämpfen und so deren akustische Auswirkung reduzieren oder gar eliminieren.
Zweckmäßigerweise kann das durchströmbare Akustikelement des Filterelements einen Strömungskanal zur gerichteten Strömung des Fluids aufweisen, insbesondere einen Strömungskanal mit turbulenzreduzierenden, beispielsweise glatten, Wänden. Durch den Einsatz des durchströmbaren Akustikelements mit Strömungskanal kann eine günstige Anströmung eines Luftmassensensors des Ansaugtrakts einer Brennkraftmaschine eingestellt werden. Durch die turbulenzreduzierenden Wände des Strömungska- nals, beispielsweise auf Grund des Herstellungsprozesses im Fall eines Schaumelements oder durch Anschmelzen von Kunststoffmaterialien in der Wand des Strömungskanals zum Glätten der Wand, lässt sich so die Kanalwirkung noch verstärken und eine bessere Luftführung gewährleisten. Nach einem weiteren Aspekt betrifft die Erfindung die Verwendung des Filterelements als Luftfilter, insbesondere als Luftfilter einer Brennkraftmaschine.
Kurze Beschreibung der Zeichnungen
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigen beispielhaft
Fig. 1 einen schematischen Querschnitt durch ein Filtersystem mit durchströmbaren Akustikelementen nach einem Ausführungsbeispiel der Erfindung;
Fig. 2 eine isometrische Darstellung eines Filtersystems mit durchströmbaren
Akustikelementen nach einem weiteren Ausführungsbeispiel der Erfindung;
Fig. 3 eine isometrische Darstellung eines Filterelements mit einem durchströmbaren Akustikelement nach einem Ausführungsbeispiel der Erfindung;
Fig. 4 eine isometrische Darstellung eines Filterelements mit einem durchströmbaren Akustikelement nach einem weiteren Ausführungsbeispiel der Erfindung;
Fig. 5 eine isometrische Darstellung eines Filterelements mit einem durchströmbaren Akustikelement mit mehreren Materialerhebungen nach einem anderen Ausführungsbeispiel der Erfindung;
Fig. 6 eine isometrische Darstellung eines Filterelements mit einem durchströmbaren Akustikelement mit mehreren Materialerhebungen nach einem weiteren Ausführungsbeispiel der Erfindung;
Fig. 7 eine isometrische Darstellung eines Filterelements mit einem durchströmbaren Akustikelement mit Strömungskanal nach einem weiteren Ausführungsbeispiel der Erfindung;
Fig. 8 einen Querschnitt durch das Filterelement nach dem Ausführungsbeispiel in Fig. 7; und Fig. 9 einen Querschnitt durch das Filterelement nach dem Ausführungsbeispiel in Fig. 7 mit einem unterschiedlich verlaufenden Strömungskanal.
Ausführungsformen der Erfindung
In den Figuren sind gleiche oder gleichartige Komponenten mit gleichen Bezugszeichen beziffert. Die Figuren zeigen lediglich Beispiele und sind nicht beschränkend zu verstehen.
Figur 1 zeigt einen schematischen Querschnitt durch ein Filtersystem 100 mit durch- strömbaren Akustikelementen 20, 21 nach einem Ausführungsbeispiel der Erfindung. Das Filtersystem 100 zum Filtern eines Fluids, insbesondere als Luftfilter einer Brennkraftmaschine, mit einem Fluidpfad 14 von einer Rohseite 18 des Filtersystems 100 auf eine Reinseite 16 des Filtersystems, umfasst ein Filterelement 10, welches mit einem Filterbalg 12 die Rohseite 18 des Filtersystems von der Reinseite 16 trennt, sowie ein Filtergehäuse 108, in dem das Filterelement 10 angeordnet ist. Das zu filternde Fluid strömt dabei entlang des Fluidpfads 14 von einer Rohseite 18 in das Filtergehäuse 108 durch das Filterelement 10 und damit den Filterbalg 12 auf die Reinseite 16. In dem Filtergehäuse 108 ist weiter ein durch ström bares Akustikelement 20 entlang des Fluidpfads 14 stromaufwärts vor und ein durch ström bares Akustikelement 21 stromabwärts nach dem Filterbalg 12 angeordnet, wobei die durchströmbaren Akustikelemente 20, 21 eine gezielte akustische Beeinflussung des Filtersystems 100 bewirken können. Das durchströmbare Akustikelement 20, ebenso wie das durchströmbare Akustikelement 21 , umfasst in unterschiedlichen Winkeln zur Fluidströmung angeordnete Reflexionsflächen 26. An diesen Reflexionsflächen 26 kann das Fluid günstig entlang geleitet und geführt werden. Die durchströmbaren Akustikelemente 20, 21 können vom Fluid durchströmbar sein und insbesondere ein Fasermaterial oder Vliesmaterial aufweisen. Über die durchströmbaren Akustikelemente 20, 21 kann eine akustische Dämpfung der Strömung des Fluids des Filtersystems ab einer Frequenzbereich von 500 Hz von 0,5 dB bis 5 dB, bevorzugt bis 10 dB bewirkbar sein.
Figur 2 zeigt eine isometrische Darstellung eines Filtersystems 100 mit durchströmbaren Akustikelementen 20, 21 nach einem weiteren Ausführungsbeispiel der Erfindung. Das Filtergehäuse 108 stellt in dem gezeigten Ausführungsbeispiel einen Hohlzylinder dar, der von einer Stirnseite der Rohseite 18 mit einem Fluid angeströmt wird. Das Fluid strömt dann entlang des Fluidpfads 14 durch das Filtergehäuse 108 und verlässt es wieder durch die gegenüber liegende Stirnseite der Reinseite 16. In dem Filtergehäuse ist aus Übersichtlichkeitsgründen kein Filterelement 10 eingezeichnet, es könnte jedoch beispielsweise den Hohlzylinder des Filtergehäuses 108 als Zwischenboden zwischen Rohseite 18 und Reinseite 16 trennen, sodass der Filterbalg 12 zwangsläufig von dem Fluid durchströmt würde. Die Innenwand des Filtergehäuses 108 kann mit einem durchströmbaren Akustikelement 21 ausgekleidet sein, um die Fluidströmung akustisch und strömungsmäßig günstig zu beeinflussen. Weiter kann auch eine Stirnseite des Filter- gehäuses mit einem durchströmbaren Akustikelement 20 verkleidet sein, um so eine zusätzliche akustische Dämpfung des Fluidstroms zu erreichen.
Figur 3 zeigt in einer isometrischen Darstellung eines Filterelements 10 mit einem durchströmbaren Akustikelement 20 ein weiteres Ausführungsbeispiel der Erfindung. Das Filterelement 10, das als Flachfilterelement ausgeführt ist und eine Rohseite 18 von einer Reinseite 16 des Filtersystems 100 trennt, umfasst einen von dem Fluid durchströmbaren quaderförmigen Filterbalg 12, der mit einer umlaufenden Dichtung 28 versehen ist. Auf einem Teil der Abströmseite 36 des Filterbalgs 12 ist ein pyramidenförmiges durch ström bares Akustikelement 20 angeordnet, das eine Materialerhebung 32 aufweist. Über die dreidimensionale Formgebung des durchströmbaren Akustikelements 20 können Geräusche und/oder Akustikmoden der Strömung des Fluids des Filtersystems 100 gezielt bedämpfbar sein. Die Materialerhebung 32 kann günstigerweise in Bereichen von fluidströmungsinduzierten und/oder durch das strömende Fluid übertragenen Geräuschen und/oder Akustikmoden des Filtersystems angeordnet sein, die auf diese Weise wirksam bedämpft oder gar eliminiert werden können.
In Figur 4 ist eine isometrische Darstellung eines Filterelements 10 mit einem durchströmbaren Akustikelement 20 nach einem weiteren Ausführungsbeispiel der Erfindung zu erkennen. Die dreidimensionale Gestalt des Strömungskörpers 20 weist in Figur 4 eine völlig andere Formgebung auf. Statt einer zentralen Materialerhebung, weist die Materialerhebung 32 in Figur 4 einen weitgehend linearen Verlauf entlang einer Kante des Filterbalgs 12 auf. Figur 5 zeigt eine isometrische Darstellung eines Filterelements 10 mit einem durchströmbaren Akustikelement 20 mit mehreren Materialerhebungen 32 nach einem anderen Ausführungsbeispiel der Erfindung. Das durchströmbare Akustikelement 20 in Figur 5 entspricht in seinem Querschnitt entlang einer Längskante des Filterelements 10 einer wellenförmigen Form mit zwei Materialerhebungen 32.
Figur 6 weist dagegen in einer isometrischen Darstellung eines Filterelements 10 mit einem durchströmbaren Akustikelement 20 mit mehreren Materialerhebungen 32 nach einem weiteren Ausführungsbeispiel der Erfindung eine Formgebung des durchström- baren Akustikelements 20 als vier separate Materialerhebungen 32 jeweils in Gestalt einer Pyramidenform auf. Diese vier Materialerhebungen könnten beispielsweise an Orten von akustischen Resonanzknoten im Inneren eines Filtergehäuses 108 angeordnet sein, um diese so wirksam zu bedämpfen, indem die akustische Energie des strömenden Fluids absorbiert wird.
Figur 7 zeigt eine isometrische Darstellung eines Filterelements 10 mit einem durchströmbaren Akustikelement 20 mit Strömungskanal 22 nach einem weiteren Ausführungsbeispiel der Erfindung. Das Filterelement 10 kann so von der Anströmseite 34 des Filterbalgs 12 angeströmt und durchströmt werden. Das durch den Filterbalg 12 durch- geströmte Fluid kann dann durch das durchströmbare Akustikelement 20 strömen, wenn dieses aus durchströmbarem Material ausgebildet ist. Außerdem wird eine Teilströmung des Fluids jedoch durch den im Inneren des durchströmbaren Akustikelements 20 zur Erzielung einer gerichteten Strömung des Fluids angeordneten Strömungskanal 22 strömen, der so ein gerichtetes Strömungsverhalten einer Teilströmung des Fluids bewirken kann. Auf diese Weise lässt sich erreichen, dass beispielsweise ein vor dem Austritt des Strömungskanals 22 angeordneter Luftmassensensor 30 direkt von dem aus dem Strömungskanal 22 austretenden Fluid angeströmt wird. Durch die Wahl des Ortes des Strömungskanals 22 kann eine Fläche auf dem Filterbalg 12 ausgewählt werden, in der weniger Staub oder Schmutzpartikel anfallen, oder in der ein strömungs- beruhigter Bereich vorliegt, um so einen Luftmassensensor 30 möglichst günstig anströmen zu können. Auf diese Weise kann auch einem vorzeitigen Ausfall des Luftmassensensors 30 durch Schmutz- und/oder Feuchtigkeitsanlagerung vorgebeugt werden. In alternativer besonderer Ausgestaltung kann der Strömungskanal 22 auch unabhän- gig von einer gezielten akustischen Wirkung eines durchströmbaren Elements 20 vorgesehen sein, das abströmseitig und/oder anströmseitig auf einem Filterbalg 12 angeordnet ist.
In Figur 8 ist dazu ein Querschnitt durch das Filterelement 10 nach dem Ausführungsbeispiel in Figur 7 dargestellt. Der Luftmassensensor 30 kann so direkt über den Strömungskanal 22 von dem gefilterten Fluid angeströmt werden. Zusätzlich kann eine Wand 24 des Strömungskanals 22 mit einer turbulenzreduzierenden, beispielsweise glatten, Oberfläche versehen sein, um ein turbulenzarmes Strömungsverhalten des gefilterten Fluids zu bewirken. Durch die glatten Wände des Strömungskanals 22, beispielsweise im Herstellungsprozess bei Schaumelementen direkt erzielt oder durch Anschmelzen von Kunststoffmaterialien in der Wand des Strömungskanals 22, lässt sich so die Kanalwirkung noch verstärken und eine bessere Luftführung gewährleisten.
Figur 9 zeigt einen Querschnitt durch das Filterelement 10 nach dem Ausführungsbeispiel in Figur 7 mit einem unterschiedlich verlaufenden Strömungskanal 22 in dem durchströmbaren Akustikelement 20. In diesem gezeigten Ausführungsbeispiel ist der Eintritt für das durch den Filterbalg 12 durchgetretene Fluid in den Strömungskanal 22 zentral in dem Filterbalg 12 angeordnet, sodass dadurch eine mehr symmetrische An- strömung durch das gefilterte Fluid erreicht werden kann.

Claims

Ansprüche
Filtersystem (100) zum Filtern eines Fluids, insbesondere einer Brennkraftmaschine, mit einem Fluidpfad (14) zwischen einer Rohseite (18) und einer Reinseite (16) des Filtersystems, umfassend wenigstens ein Filterelement (10), welches mit einem Filterbalg (12) die Rohseite (18) des Filtersystems von der Reinseite (16) trennt, ein Filtergehäuse (108), in dem das Filterelement (10) angeordnet ist, wobei wenigstens ein durchströmbares Akustikelement (20) entlang des Flu- idpfads (14) stromaufwärts vor und/oder stromabwärts nach dem Filterbalg (12) angeordnet ist, und wobei das durchströmbare Akustikelement (20) eine gezielte akustische Beeinflussung der Strömung des Fluids bewirkt.
Filtersystem nach Anspruch 1 , wobei über eine dreidimensionale Formgebung des durchströmbaren Akustikelements (20) Geräusche und/oder Akustikmoden des Filtersystems gezielt bedämpfbar sind.
Filtersystem nach Anspruch 1 oder 2, wobei das durchströmbares Akustikelement (20) eine oder mehrere Materialerhebungen (32) aufweist, welche Bereichen von fluidströmungsinduzierten und/oder durch das strömende Fluid übertragenen Geräuschen und/oder Akustikmoden des Filtersystems, entsprechen.
Filtersystem nach einem der vorhergehenden Ansprüche, wobei über das durchströmbare Akustikelement (20) eine akustische Dämpfung der Strömung des Fluids des Filtersystems ab einer Frequenz von 500 Hz von 0,5 dB bis 5 dB, bevorzugt bis 10 dB bewirkbar ist.
Filtersystem nach einem der vorhergehenden Ansprüche, wobei das durchströmbare Akustikelement (20) in unterschiedlichen Winkeln zur Fluidströmung angeordnete Reflexionsflächen (26) umfasst.
Filtersystem nach einem der vorhergehenden Ansprüche, wobei das durchströmbare Akustikelement (20) vom Fluid durchströmbar ist, insbesondere ein Fasermaterial oder Vliesmaterial aufweist.
Filtersystem nach einem der vorhergehenden Ansprüche, wobei das durch- strömbare Akustikelement (20) ein gerichtetes Strömungsverhalten des Fluids bewirkt.
8. Filtersystem nach einem der vorhergehenden Ansprüche, wobei das durchströmbare Akustikelement (20) einen Strömungskanal (22) zur Erzielung einer gerichteten Strömung des Fluids aufweist.
9. Filtersystem nach Anspruch 8, wobei eine Wand (24) des Strömungskanals (22) mit einer turbulenzreduzierenden Oberfläche versehen ist, die ein turbulenzarmes Strömungsverhalten bewirkt.
10. Filterelement (10), umfassend wenigstens einen von einem Fluid durchströmbaren Filterbalg (12), wenigstens ein durchströmbares Akustikelement (20) und eine Dichtung (28), wobei das Filterelement auswechselbar in einem Filtersystem (100) nach einem der Ansprüche 1 bis 9 angeordnet ist.
1 1 . Filterelement nach Anspruch 10, wobei das wenigstens eine durchströmbare Akustikelement (20) rohluftseitig an einer Anströmfläche (34) oder reinluftseitig an einer Abströmfläche (36) des Filterbalgs (12) angeordnet ist.
12. Filterelement nach Anspruch 10 oder 1 1 , wobei das wenigstens eine durchströmbare Akustikelement (20) eine dreidimensionale Formgebung aufweist, mit der gezielt Geräusche und/oder Akustikmoden der Strömung des Fluids gezielt bedämpfbar sind.
13. Filterelement nach einem der Ansprüche 10 bis 12, wobei das wenigstens eine durch ström bare Akustikelement (20) eine oder mehrere Materialerhebungen (32) aufweist, welche Bereichen von fluidströmungsinduzierten und/oder durch das strömende Fluid übertragenen Geräuschen und/oder Akustikmoden entsprechen.
14. Filterelement nach einem der Ansprüche 10 bis 13, wobei das durchström bare Akustikelement (20) einen Strömungskanal (22) zur gerichteten Strömung des Fluids aufweist, insbesondere einen Strömungskanal (22) mit turbulenzreduzierenden Wänden.
15. Verwendung eines Filtersystems nach einem der Ansprüche 1 bis 9 als Luftfilter, insbesondere als Luftfilter einer Brennkraftmaschine.
PCT/EP2015/070105 2014-09-25 2015-09-03 Filtersystem mit durchströmbarem akustikelement WO2016045926A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014014007.5A DE102014014007A1 (de) 2014-09-25 2014-09-25 Filtersystem mit durchströmbarem Akustikelement
DE102014014007.5 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016045926A1 true WO2016045926A1 (de) 2016-03-31

Family

ID=54056202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/070105 WO2016045926A1 (de) 2014-09-25 2015-09-03 Filtersystem mit durchströmbarem akustikelement

Country Status (2)

Country Link
DE (1) DE102014014007A1 (de)
WO (1) WO2016045926A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201022A1 (de) 2019-01-28 2020-07-30 Mahle International Gmbh Filterelement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737073B2 (ja) * 2016-08-29 2020-08-05 トヨタ紡織株式会社 エアクリーナ
DE102018108071A1 (de) 2017-04-05 2018-10-11 Mann+Hummel Gmbh Filterelementströmungsteileeinrichtung, Filterelement, Filtersystem mit einem Filterelement sowie Verfahren zum Bereitstellen einer Filterelementströmungsteileeinrichtung und/oder eines Filtersystems und/oder eines Filterelements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429633A1 (de) * 1984-08-11 1986-02-20 Ing. Walter Hengst GmbH & Co KG, 4400 Münster Schalldaempfendes luftansaugfilter fuer eine brennkraftmaschine
DE10047068A1 (de) * 2000-09-22 2002-04-18 Behr Gmbh & Co Filter für eine Heizungs- oder Klimaanlage eines Kraftfahrzeuges
KR100470775B1 (ko) 2001-11-19 2005-03-08 기아자동차주식회사 자동차용 에어크리너
JP2007177706A (ja) * 2005-12-28 2007-07-12 Denso Corp エアクリーナフィルタ
EP2551509A1 (de) * 2011-07-28 2013-01-30 Nissan Motor Manufacturing (UK) Ltd. Luftfilterelement mit Rauschverminderung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217281B1 (en) * 1999-06-30 2001-04-17 Industrial Technology Research Institute Low-noise fan-filter unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429633A1 (de) * 1984-08-11 1986-02-20 Ing. Walter Hengst GmbH & Co KG, 4400 Münster Schalldaempfendes luftansaugfilter fuer eine brennkraftmaschine
DE10047068A1 (de) * 2000-09-22 2002-04-18 Behr Gmbh & Co Filter für eine Heizungs- oder Klimaanlage eines Kraftfahrzeuges
KR100470775B1 (ko) 2001-11-19 2005-03-08 기아자동차주식회사 자동차용 에어크리너
JP2007177706A (ja) * 2005-12-28 2007-07-12 Denso Corp エアクリーナフィルタ
EP2551509A1 (de) * 2011-07-28 2013-01-30 Nissan Motor Manufacturing (UK) Ltd. Luftfilterelement mit Rauschverminderung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201022A1 (de) 2019-01-28 2020-07-30 Mahle International Gmbh Filterelement

Also Published As

Publication number Publication date
DE102014014007A1 (de) 2016-03-31

Similar Documents

Publication Publication Date Title
EP3085428B1 (de) Filterelement und filteranordnung
DE102016003455B4 (de) Filteraufnahme und Filteranordnung
EP2215951B1 (de) Filterbeutel
DE102014016300B4 (de) Filter sowie Verwendung eines Hohlfilterelements in diesem Filter
EP3017854B1 (de) Filter zur filtrierung von fluid
WO2005095783A1 (de) Ansaugfilter für eine brennkraftmaschine eines fahrzeugs
DE102014009888A1 (de) Filterelement eines Filters, mehrlagiges Filtermedium eines Filters und Filter
WO2009106593A1 (de) Luftfilter mit sicherheitselement
EP3423169B1 (de) Filtereinsatz und kraftstofffilter
DE102016003456A1 (de) Filteraufnahme, Filterelement und Filteranordnung
WO2016045926A1 (de) Filtersystem mit durchströmbarem akustikelement
DE102015016446A1 (de) Schutzfiltervorrichtung, Innenraumluftfiltersystem sowie Verfahren zur Reinigung von mit Schadgasen und/oder Aerosolen und/oder Feststoffpartikelstaub beladener Luft
DE102013014492A1 (de) Filtersystem mit Filterelement
EP2764904B1 (de) Filterelement
DE102005019672A1 (de) Filtersystem
DE102017119333A1 (de) Luftreinigungsvorrichtung
EP2510854B2 (de) Geräuscharme Abluftausblasanordnung
EP2567076B1 (de) Breitbandig dämpfende vorrichtung zur schalldämpfung bei industrieeinrichtungen, grossanlagen oder maschinen
EP3820591B1 (de) Sekundärfilterelement und filteranordnung
DE102008021729A1 (de) Ölabscheidevorrichtung, insbesondere für die Druckluftentölung eines Verdichters
DE202007011100U1 (de) Filterelement
DE19835104A1 (de) Luftansauganlage für einen Dieselmotor in einem Lastkraftwagen
EP2510851B1 (de) Staubsauger mit Filtervorrichtung und mit einem Schallabsorber
DE102014019901B3 (de) Filter
EP1820679A1 (de) Fahrzeugklimaanlage mit einem Luftfilter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757497

Country of ref document: EP

Kind code of ref document: A1